В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНО • СТРОИТЕЛЯ

В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ

B TPEX TOMAX

В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ

Издание 8-е, переработанное и дополненное

Под редакцией И.Н. Жестковой

 $\overset{{}_{\mathsf{M}}}{2}$

ББК 34.42я2 A73 УДК 621.001.66 (035)

Анурьев В.И.

А73 Справочник конструктора-машиностроителя: в 3-х т.: Т. 2. – 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. – М.: Машиностроение, 2001. – 912 с.: ил.

ISBN 5-217-02964-1

Во втором томе приведены современные справочные сведения по расчету и конструкциям осей, валов, подшипников скольжения и качения, муфт, зубчатых, червячных, винтовых, цепных, плоско-и клиноременных передач, храповых зацеплений и разъемных соединений.

Восьмое издание (7-е изд. 1992 г.) переработано и дополнено в соответствии с новыми ГОСТами и нормативно-технической документацией. Дан новый раздел по расчету и конструированию шариковых винтовых передач.

Предназначен для инженеров и техников-конструкторов.

ISBN 5-217-02964-1 (T. 2) ISBN 5-217-02964-5

- © Издательство "Машиностроение", 1992
- © Издательство "Машиностроение", 1999, с изменениями
- © Издательство "Машиностроение", 2001, с изменениями и приложением.

ОГЛАВЛЕНИЕ

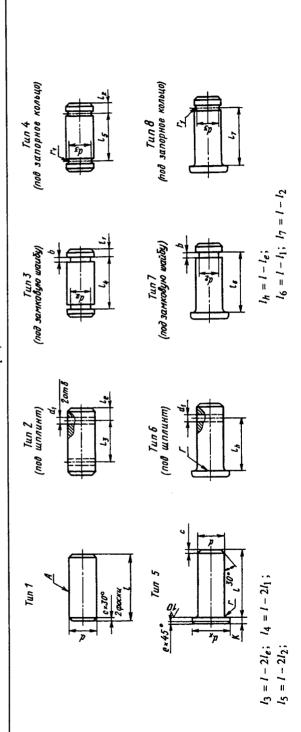
Глава I. ОСИ и ВАЛЫ	8	Щероховатость поверхностей подшипников качения	102
Оси	8	Зазоры и предварительные на-	
Типы, конструкции и размеры.	8	тяги в подшипниках	103
Расчет осей	12	Выбор подшипников и схемы	• • •
Валы	12	• .	107
Цилиндрические и конические		CTATHUROVAGE POPONONIA MACCE	107
	12	Статическая грузоподъемность,	
КОНЦЫ ВАЛОВ	19	статическая эквивалентная на-	108
Расчет валов	19	грузка	100
Расчет на прочность	19	Общие сведения, основные	100
Расчет на жесткость	19	определения	108
Определение вращающего	20	Формулы для расчета базовой	
MOMEHTA		статической радиальной Сог	
Определение нагрузок на валы	22	(осевой C_{oa}) грузоподъемности	110
Определение реакций опор и	22	Формулы для расчета стати-	
изгибающих моментов	23	ческой радиальной P_{or} (осевой	
Пример расчета	27	P_{oa}) нагрузки	111
Конструкция валов	30	Динамическая расчетная грузо-	
Дополнительные ис-		подъемность	112
точники	31	Общие сведения, основные	
		определения	112
Глава II. ПОДШИПНИКИ	32	Формулы для расчета базовой	
		динамической радиальной C_r	
Подшинники скольжения	32	(осевой C_a) грузоподъемности	113
Основные виды трения сколь-		Формулы для расчета эквива-	
жения	32	лентной динамической ради-	
Металлические подшипники		альной P_r (осевой P_a) нагрузки	118
скольжения	32	Расчетный ресурс подшипника.	122
Приближенный расчет (провер-		Выбор и расчет подшипников	
ка) радиального подшипника	32	• •	123
Расчет упорного подшипника	34	Оправодительной императория	120
Втулки и вкладыши подшипни-		Определение сил, нагружаю-	123
КОВ	35	щих подшипники	125
Корпуса подшипников сколь-		Подбор подшипников	123
жения	54	Расчет подшипников на ста-	125
Неметаллические подшипники		тическую грузоподъемность	123
скольжения	62	Расчет подшипников на за-	126
Втулки и вкладыши неметалли-		данный ресурс	126
ческих подшипников	66	Расчет допустимой осевой	
Рекомендуемые конструкции		нагрузки для роликовых ради-	
термопластичных подшипников		альных подшипников	133
скольжения (ТПС)	76	Трение в подшипниках	134
Рекомендуемые размеры втулок	. •	Предельная частота вращения	136
подшипников из углепластиков	78	Показатели качества	138
		Посадки колец подшипников на	
Подшинники качения	79	вал и в корпус	138
(О.П. Леликов)	"	Поля допусков и посадки	138
Классификация подшипников	79	Основные указания по выбору	
качения	13	посадок для колец подшипни-	
Условные обозначения под-	79	ков	139
шипников качения	17	Основные рекомендации по	
Краткие характеристики под-	83	конструированию	151
шипников основных типов		Рекомендации по монтажу	
Общие технические условия	90	подшипников качения	152
Классы точности подшипни-		Смазывание подшипников	155
KOB	90	Технические требования к поса-	
Предельные отклонения	91		
Материалы. Твердость колец и		дочным поверхностям валов и	164
тел качения	102	корпусов	10-

Оощие треоования к посадоч-		цилиндрические косозуоые	
ным поверхностям	164	передачи при параллельных	
Шероховатость посадочных и		валах	406
опорных торцовых поверхно-		Цилиндрические винтовые	
стей	164	зубчатые передачи	431
Отклонения формы посадоч-		Цилиндрические эвольвент-	
ных и опорных торцовых по-		ные зубчатые передачи внут-	
верхностей	165	реннего зацепления	431
Допустимые углы взаимного		Допуски цилиндрических зуб-	.51
перекоса колец подшипников		чатых передач	438
качения	169		450
Отклонения расположения	10)	Конструкции цилиндрических	469
посадочных и опорных по-		зубчатых колес	409
верхностей вала и корпуса	170	Правила выполнения черте-	470
Предельные радиусы галтелей	170	жей зубчатых колес	472
	173	Ресчиме передачи	475
вала и корпуса	175	Расчет реек	475
Заплечики для установки под-	177	Допуски на изготовление зубча-	
шипников качения	189	тых реек	475
	107	Правила выполнения чертежей	400
Размеры и основные характери-	202	зубчатых реек	488
Примеру комприсыва	203	Конические зубчатые передачи	489
Примеры конструкций под-	250	Конические зубчатые передачи	
шипниковых узлов	250	с прямыми зубьями	490
Торцовые крышки узлов под-	254	Конические зубчатые передачи	
шипников качения	254	с круговыми зубьями	499
Корпуса подшипников качения	286	Допуски конических и гипоид-	
Дополнительные ис-	200	ных зубчатых передач	529
точники	299	Конструкция конических зубча-	
Глава III. МУФТЫ	300	тых колес	547
	300	Правила выполнения чертежей	
Постоянные муфты	300	_ конических зубчатых колес	548
Кулачковые сцепные муфты	358	Расчет на прочность	551
Муфты с V-образным мелким		Расчет на прочность зубчатых	
(мышиным) зубом	362	цилиндрических эвольвентных	
Муфты трения	363	передач внешнего зацепления	555
Обгонные роликовые муфты	365	Расчет на прочность зубчатых	
Расчет геометрических пара-		конических передач	603
метров ненормализованной		Червячные передачи	606
обгонной муфты	367	Общие сведения и основные	
Указания по монтажу	367	параметры	606
Предохранительные муфты	377	Геометрический расчет червяч-	
Втулочные муфты со срезным		ной передачи	620
штифтом	377	Допуски цилиндрических чер-	
Кулачковые, шариковые и		вячных передач	624
фрикционные предохрани-		Конструкция червячных колес .	642
тельные муфты	378	Правила выполнения чертежей	
Пружинно-кулачковые муфты	384	цилиндрических червяков и	
Электроматнитные многодиско-		червячных колес	642
вые муфты с магнитопроводя-		Силы в зацеплении и КПД чер-	
шими дисками	385	вячных передач	643
Дополнительные ис-		Расчет на прочность цилиндри-	
точники	396	ческой червячной передачи	644
Fuse IV SVEHATLIE II ITEE		Дополнительные ис-	
Глава IV. ЗУБЧАТЫЕ И ЧЕР-	207	точники	647
ВЯЧНЫЕ ПЕРЕДАЧИ	3 9 7		
Зубчатые передачи	397	Глава V. ЦЕПНЫЕ ПЕРЕДАЧИ	648
Расчет геометрических парамет-			
pos	397	Приводные роликовые и втулочные	
Цилиндрические зубчатые пере-		депи	648
дачи	397	Звездочки приводных цепей	659
Цилиндрические прямозубые		Расчет ролнковой цепной передачи	671
передачи	405	Тяговые пластинчатые цепи	672

Основные типы, исполнения и размеры присоединительных элементов	679	Храповое зацепление Виды храповиков Расчет храповиков	780 780 783
Звездочки для пластинчатых це-	0,,	Дополнительные ис-	, 05
пей	682	точники	784
Приводные зубчатые цепи	692		
Звездочки для приводных зубчатых цепей	696	Глава VIII. ШАРИКОВЫЕ ВИНТОВЫЕ ПЕРЕДАЧИ	785
Дополнительные ис-		Общие сведения	785
точники	708	Основные параметры и размеры	786
Глава VI. РЕМЕННЫЕ ПЕРЕ-		Нормы точности	788 790
дачи	709	Основные характеристики ШВП	793
		Технические требования	173
Общие сведения	709	чества	794
Плоскоременная передача	712	Схемы монтажа опор винтов и	,,,,
Типы передач и выбор ремня	712	raek	794
Ремни плоские приводные ре-		Выбор и расчет шариковинто-	,,,
зинотканые	713	вой передачи (ШВП)	796
Основные параметры	713	ШВП с зазором	799
Правила монтажа и условия		ШВП с натягом	799
эксплуатации плоских привод-			
ных ремней	716	Глава IX. РАЗЪЕМНЫЕ СО-	002
Приводные хлопчатобумажные		ЕДИНЕНИЯ	803
цельнотканые пропитанные		Болтовые соединения	803
ремни	718	Ненапряженные соединения	803
Расчет передачи с хлопчатобу-		Напряженные соединения	803
мажными цельноткаными про-		Соединения с поперечной на-	
питанными ремнями	719	грузкой	804
Давление на валы	723	Разгрузочные устройства	805
Шкивы для плоских приводных	# 0.	Клеммовые соединения	805
ремней	724	Крепление крыщек	806
Клиноременная передача	726	Крепление стыков	807
Приводные клиновые ремни	726	Кольцевая форма стыка	808
Шкивы для приводных клино-	724	Соединение с эксцентричной	
вых ремней	734	нагрузкой	808
Расчет и конструирование пере-	740	Шпоночные соединения	809
дачи	740	Призматические шпонки	809
Особые виды клиноременных	761	Сегментные шпонки	822
Передач	762	Выбор шпонок для ступенчатых	825
Вариаторные клиновые ремни .	765	Валов	825
Шкивы вариаторной передачи . Рекомендуемые данные для рас-	703	Расчет шпонок	827
чета и конструирования вариа-		Шлицевые соединения	827
TOPOB	766	Прямобочные соединения Допуски и посадки шлицевых	02,
Расчет передач и передаваемые		прямобочных соединений	830
мощности	766	Шлицевые эвольвентные соеди-	050
Правила монтажа и эксплуата-		нения с утлом профиля 30°	834
ции вариаторных ремней и		Допуски и посадки шлицевых	-
шкивов	772	эвольвентных соединений	838
Дополнительные ис-		Треугольные зубчатые соедине-	
точники	772	ния	850
		Формулы для определения эле-	
Глава VII. ВИНТОВЫЕ ПЕРЕ-		ментов треугольных соединений	853
дачи и храповое зацеп-		Расчет на прочность	859
ЛЕНИЕ	773	Дополнительные ис-	
		точники	863
Винтовые передачи	773	Перечень ГОСТов	864
Расчет ходовых винтов	773	Предметный указатель	867
Устранение зазоров в винтовой			876
паре	777	Приложение	893
Расчет грузовых винтов	777	Замеченные опечатки	0プ.

Глава 1

ОСИ И ВАЛЫ


ОСИ

типы, конструкции и размеры

1. Оси (по ГОСТ 9650-80)

Оси предназначены для соединений в механизмах общего назначения. Оси изготовляют гладкие и с буртиком. Допускается изготовление осей с углублением на торце или сквозным отверстием, концентричным наружной цилиндрической поверхности.

Размеры, мм

٦	~	ور	7	7	-4	d_3		~	£.		d_{κ}		×		ø	v
	нор- маль- ный	уве- личен- ный	3	-	.	Номи-	От- КЛО-		•	нор- маль- ный	уве- личен- ный	нор- маль- ный	уве- личен- ный			
1,2	4	,	3	1,5	1,5	,				∞	,	1,5	,	9,0	9,0	9,0
1,6	4	1	4	1,5	1,5	9,6	-0,1	3	0,4	10		2,0		9'0	9,0	9,0
2,0	5	•	4	1,5	1,5	9,7	-0,1	3	0,4	12	14	2,0	3,0	9,0	9'0	9'0
3,2	ς.	,	∞	2,5	1,5	9,6	-0,1	4	0,4	14	18	2,5	4,0	9'0	9,0	0,1
3,2	ۍ	,	ı			ı	,	•	ı	15	•	2,5	4,0	9,0	9,0	0,1
3,2	8	5,5	∞	2,5	1,5	11,4	-0,1	4	9,0	91	70	2,5	4,0	9,0	9,0	1,0
4,0	s	0,9	01	3,0	2,0	13,4	-0,1	5	9,0	81	22	3,0	4,0	9'0	9,0	1,6
4,0	2	6,0	01	3,0	2,0	15,0	-0,1	\$	0,1	70	. 22	3,0	4,5	9,0	9,0	1,6
5,0	9	7,0	4	3,0	2,0	17,0	-0,1	8	1,0	22	28	3,0	5,0	1,0	9,0	1,6
5,0	9	8,0	14	3,0	2,0	8,81	-0,2	2	1,2	25	30	4	2,0	1,0	1,0	1,6
5,0	و	8,0	18	3,5	2,5	20,8	-0,2	9	1,2	78	33	4.	5,5	1,0	1,0	9,1
6,3	9	0,6		1	ı	,	r	1		30	36	4	0,9	0,1	1,0	9,1
6,3	9	0,6	,	1		ı		,	'	36	40	S	0'9	1,0	0,1	9,1
6,3	9	0'6	70	3,5	2,5	26,8	-0,5	9	1,2	36	40	8	0,9	0,1	1,0	1,6
8,0	∞	10	24	4,5	2,5	28,8	-0,2	∞	1,2	38	4	2	8,0	1,0	0,1	9,1
8,0	∞	2			1	1	ı	•	ı	4	47	9	8,0	1,0	9,1	2,5
8,0	∞	9.	78	5,0	3,0	1			ı	45	20	9	8,0	9'1	9,1	2,5
8,0	∞	91	32	5,0	3,0		1	•	•	20	55	9	8,0	1,6	9,1	2,5
10,0	2	12	36	2,0	3,0	ı	,		,	55	9	7	0,6	9,1	2,5	2,5
10,0	01	12	40	5,5	3,5	1	1	•	1	99	99	7	0,6	1,6	2,5	2,5

2
a
ша
Τ.
ġ)
3
Ž
ŝ
¥
₫.
5
9
ĕ
Ō
ŏ
=
~
-

	20	96	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300							
	45	08	85	8	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300		-			
	40	75	80	85	8	95	001	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300				
	36	70	75	80	85	90	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300			
	33	99	20	75	80	85	96	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300		
	30	55	09	65	70	75	80	85	96	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	260	280	300
	(28)	45	20	55	9	65	70	75	80	82	8	95	100	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	760
	27	55	9	65	70	75	80	82	8	95	001	105	110	115	120	130	140	150	160	170	180	190	200	210	220	240	250	760	280	300
<i>d</i> , мм	24	(36)	40	45	20	55	09	65	70	75	80	85	96	95	001	105	011	115	120	130	140	150	091	170	180	190	200	210	220	240
Длина <i>I</i> при <i>d</i> , мм	22	45	20	55	09	9	70	75	8	82	8	95	00	105	011	115	120	130	140	150	160	170	180	130	200	210	220	240	250	760
Дли	20	32	(36)	40	45	50	55	9	65	70	75	80	85	8	95	001	105	110	1115	120	130	140	150	160	170	180	190	200	210	220
	18	32	(36)	40	45	20	55	09	65	20	75	08	82	8	95	001	105	110	115	120	130	140	150	160	170	180				
	16	(25)	78	30	32	(36)	40	45	20	55	9	65	5	75	08	82	8	95	001	105	110	1115	120	130	140	150	160			
	14	(22)	28	30	32	(36)	40	45	20	55	09 —	65	70	75	08	85	8	95	<u>80</u>	105	110	1115	120	130	140					
	12	22	(25)	78	30	32	(36)	40	45	20	25	9	65	20	75	08	82	8	95	100	105	110	115	120						
ļ	10	20	22	(25)	28	30	32	(36)	-	45	20	55	9	65	02	75	8	82	8	95	00 —									
	8	91	<u>8</u>	8	22	(22)	78	30	32	(36)	40	45	20	55	9	65	70	75	8											
	9	12	4	91	81	70	22	(25)	78	30	32	(36)	40	45	20	55	9													
	5	10	12	4	91	18	70	22	(25)	28	30	32	35	(36)	40	45	20													

... 63 HRC3, c

	240	280	250	280		
	250	300	260	300		
(Размеры, указанные в скобках,	260		280			
применять не рекомендуется)	280	•	300			
	300					_
FOCT 9650—80 pacifipoctoangenes ha och manethom $d = 3 \pm 100$ mm in finite $d = 6 \pm 300$ mm. Otherwiseline 1/4 has forced.	3 + 100	MW W	+ 9 = / дони	300 202	OTHOMBUNE 1/4 UP FORES	15

из стали Ст3сп без термообработки и без по-MM = 55 **Пример обозначения оси** типа 1 диаметром d=20 мм с полем допуска h8, длиной l

То же, типа 2 из стали 40Х с цинковым покрытием толщиной 15 мкм:

Ocs 1-20h8x55. Cm3cn FOCT 9650-80.

из стали 20 с цементацией на глубину 0,8-1,5 мм, с твердостью 57 Ocs 2—20h8x55.40X. U15 FOCT 9650—80 То же, типа 6 с увеличенным буртиком диаметром d_{κ} окисным покрытием по ГОСТ 9,306—85;

Ось 6—20118×55. Л. 20.4.0,8—1,5.57 ... 63. Хим. Окс. ГОСТ 9650—80

Оси изготовляют из стали по ГОСТ 380-94, 1050-88, 4543-71, 5632-72, 1414-75, 10702-78. Предпочтительная твердость сталей 125 ... 245 НВ.

Вид покрытия — по ГОСТ 9.303-84, 9.306-85, 9.301-86.

Параметры шероховатости Ra цилиндрических поверхностей осей в зависимости от диаметра d и полей допусков, мкм, не более:

	Для	полей допу	сков
<i>d</i> , мм	f8, h8, f9	all, cll, dll, hll	h12, b12
3-10	2,5 (16)	2,5 (10)	5 (20)
11-50	2,5 (10)	5,0 (20)	10 (40)
55-100	5,0 (20)	5,0 (20)	10 (40)

 Π р и м е ч а н и е . В скобках указаны значения параметра шероховатости Rz, применение параметра Ra предпочтительно.

Допуски пересечения оси отверстия d_1 относительно оси поверхности A (в радиусном выражении):

<i>d</i> , мм	До 10	CB.10 до 18	Св.18 до 30	Св.30 до 50	CB.50
Допуски, мм	0,25	0,30	0,40	0,50	0,60

Допуски торцового биения поверхности Γ относительно поверхности A:

d, mm	До 10	CB.10 40 18	Св. 18 до 30	Св.30 до 50	CB.50
Допуски, мм	0,06	0,10	0,12	0,16	0,25

Допуски соосности поверхности B относительно поверхности A (в радиусном выражении):

<i>d</i> , мм	До 10	Св.10 до 18	Св.18 до 30	Св.30 до 50	CB.50
Допуски, мм	0,25	0,40	0,60	0,85	1,00

Допускается изготовлять оси с закруглением на конце стержня радиусом, равным размеру фаски c, и на наружном диаметре буртика - с радиусом, равным размеру фаски e.

РАСЧЕТ ОСЕЙ

Ось не передает вращающего момента, а воспринимает только поперечные нагрузки. Оси рассчитывают только на изгиб.

Рис. 1. Цилиндрическая сплошная ось (вал)

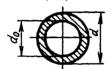


Рис. 2. Цилиндрическая полая ось

Расчетные формулы:

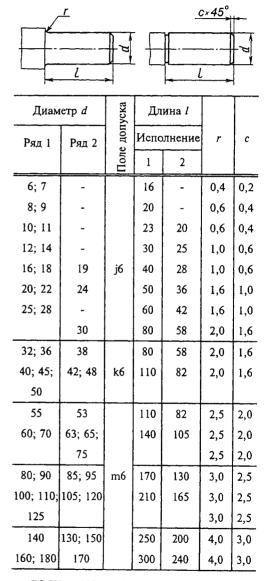
для цилиндрических сплошных осей (рис. 1)

$$d = \sqrt[3]{\frac{M_{\rm M}}{0, ! [\sigma_{\rm M3}]}} \quad \text{или}$$
$$M_{\rm M} = 0.1 \ d^3 [\sigma_{\rm M3}];$$

для цилиндрических полых осей (рис. 2)

$$M_{\rm H} = 0.1 \frac{d^4 - d_0^4}{d} \left[\sigma_{\rm H3} \right],$$

где $M_{\rm u}$ - изгибающий момент, ${\rm H\cdot MM}$; ${[\sigma_{\rm u3}]}$ - допускаемое напряжение на изгиб, МПа (см. табл. 9); d и d_0 - соответственно наружный и внутренний диаметры полой оси.


ВАЛЫ

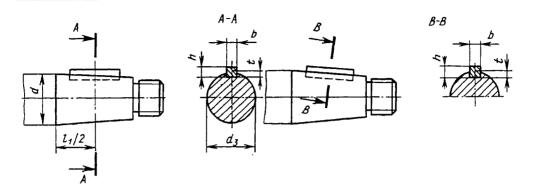
Цилиндрические и конические концы валов (по ГОСТ 12080—66, ГОСТ 12081—72)

Вышеприведенные стандарты распространяются на цилиндрические и конические (с конусностью 1:10) выходные концы валов, передающие вращающий момент.

Цилиндрические и конические концы валов предусматриваются двух исполнений: 1 - длинные, 2 - короткие.

2. Основные размеры цилиндрических концов валов, мм

ГОСТ 12080—66 предусматривает $d=0.8\dots 5$ мм и $d=200\dots 630$ мм. Ряд 1 диаметров является предпочтительным. Допускается принимать поле допуска цилиндрических концов валов диаметром до 30 мм - k6, а более 120 мм - гб.


3. Основные размеры конических концов валов, мм

		Тип 1					Тип 2	
8		q ⁴	<i>b</i>		<i>a</i> ,	P	1,	2 7
Диаме	тр <i>d</i>		1	1	I			
Ряд 1	Ряд 2		Испол	нение		d_1	d_2	l_2
		1	2	1	2			
6; 7 8; 9 10; 11 12; 14	- - -	16 20 23 30	-	10 12 15 18	-	M4 M6 M6 M8×1	- - - M4	- - - 8
16 18	- 19	40	28	28	16	M10×1,25	M4 M5	8 10
20; 22 25; 28 30-35 * 36	24 - - -	50 60 80 80	36 42 58 58	36 42 58 58	22 24 36 36	M12×1,25 M16×1,5 M20×1,5 M20×1,5	M6 M8 M10 M12	12 16 20 24
40 45 50 56	38 42 48 - 55	110	58 82	58 82	36 54	M24×2 M24×2 M30×2 M36×3 M36×3	M12 M12 M16 M16 M20	24 24 32 32 36
63 71	60; 65 70; 75	140	105	105	70	M42×3 M48×3	M20 M24	36 40
80 90 -	85 - 95	170	130	130	90	56×4 64×4 64×4	M30 M30 M36	50 50 60
100 110 - 125	- 120 -	210	165	165	120	M72×4 M80×4 M90×4 M90×4	M36 M42 M42 M48	60 65 65 70
140	130 150	250	200	200	150	M100×4 M110×4	-	-
160 180	170 -	300	240	240	180	M125×4 M140×6	-	-

^{*} d брать из ряда: 30; 32; 35 мм.

П р и м е ч а н и е . Ряд 1 диаметров является предпочтительным. ГОСТ 12081—72 предусматривает диаметры d=3...5 мм и d=190...630 мм.

4. Размеры плонок и плоночных пазов конических концов валов, мм

Диа	метр <i>d</i>		13			
Ряд 1	Ряд 2	Испол	инение	ь	h	t
		1	2			
6	-	5,50				
7	-	6,50				
8	-	7,40	-	-	-	-
9	-	8,40				
10	-	9,25				
11	-	10,25			_	
12	-	11,10	-	2	2	1,2
14	-	13,10	-			
16	-	14,60	15,20	3	3	1,8
18	-	16,60	17,20			
-	19	17,60	18,20			
20	-	18,20	18,90	4	4	2,5
22	-	20,20	20,90			
-	24	22,20	22,90			
25	-	22,90	23,80			
28	-	25,90	26,80	5	5	3,0
-	30	27,10	28,20			•
32	-	29,10	30,20			
-	35	32,10	33,20			
36	-	33,10	34,20	6	6	3,5
-	38	35,10	36,20			

Продолжение табл. 4

		T				ue muon. 4
Диам	иетр <i>d</i>	a	13			
Ряд 1	Ряд 2	Испол	нение	b	h	t
		1	2		ļ	
40	_	35,90	37,30	Ţ		
-]	42	37,90	39,30	10]	
45	-	40,90	42,30		8	5,0
-	48	43,90	45,30	12		
50	<u>-</u>	45,90	47,30			
-	55	50,90	52,30			
56	-	51,90	53,30	14	9	5,5
60	-	54,75	56,50			
63	-	57,75	59,50	16	10	6,0
-	65	59,75	61,50			
-	70	64,75	66,50			-
71	-	65,75	67,50	18	11	7,0
-	75	69,75	71,50		-	
80	-	73,50	75,50			
-	85	78,50	80,50	20	12	7,5
90	-	83,50	85,50			
-	95	88,50	90,50	22	14	9,0
100	-	91,75	94,00		7	
110	-	101,75	104,00	25		
-	120	111,75	114,00			
125	-	116,75	119,00	28	16	10,0
-	130	120,00	° 122,50			
140	-	130,00	132,50			
-	150	140,00	142,50	32	18	11,0
160	-	148,00	151,00			
-	170	158,00	161,00	36	20	12,0
180	-	168,00	171,00	40	22	13

Размеры призматических шпонок - по ГОСТ 23360-78.

Для шпоночных пазов, параллельных оси вала, допускаются другие способы простановки размера глубины паза.

Шпоночный паз для конических концов валов с диаметром d до 220 мм изготавливается параллельно оси вала, с диаметром d свыше 220 мм - параллельно образующей конуса.

Технические требования. 1. Размеры шпонок и шпоночных пазов цилиндрических концов валов должны соответствовать одному из следующих стандартов: ГОСТ 24071-80, ГОСТ 23360-78, ГОСТ 24069-80, ГОСТ 10748-79.

Предельные отклонения длин l и l_1 цилиндрической части конца вала $\pm IT15/2$ (ГОСТ 25346-89).

Для цилиндрических валов исполнения 1 используют шпонки - сегментные (ГОСТ 24071-80) для вала диаметром d до 14 мм; призматические обыкновенные (ГОСТ 23360-78) для вала диаметром d св. 12 мм; тангенциальные нормальные (ГОСТ 24069-80).

Для валов исполнения 2 используют шпонки призматические обыкновенные (ГОСТ 23360-78) для вала диаметром d до 30 мм; призматические высокие (ГОСТ 10748-79) и тангенциальные усиленные (ГОСТ 24070-80) для вала диаметром d св. 30 мм.

Для редукторов и мотор-редукторов допускается в соответствии с ГОСТ 24266-94 исполнение концов валов с двумя шпоночными пазами, расположенными под углом 120°.

Длину призматической шпонки выбирают из ряда: 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90,

100, 110, 125, 140, 160, 180, 200, 220 250 280,320.

2. Резьбовые концы конических валов допускается изготовлять с левой резьбой.

Радиальное биение конического конца вала относительно оси вращения не должно превышать величин, указанных в табл. 5.

3. Допуск угла конусности - AT'α9 по ГОСТ 8908-81.

Расчетные зависимости допускаемых вращающих моментов. Величины вращающих моментов T в H-м подсчитывают по формуле

$$T = 10^{-3} \, Kd^3$$

где d - диаметр конца вала, мм: $K = \frac{\pi}{16} [\tau]$; злесь K — в МПа.

Допускаемые вращающие моменты, передаваемые концами валов, приведены в табл. 6.

Значения коэффициента K (табл. 7) и соответствующие им допускаемые напряжения на кручение [τ]:

5. Радиальное биение конического конца вала относительно оси вращения

Размеры, мм

Номинальный диаметр	Рад	иальное биение при то	чности
конца вала d_1	нормальной	повышенной	высокой
3	0,020	0,010	0,005
Св. 3 до 6	0,025	0,012	0,006
Св. 6 до 10	0,030	0,015	0,008
Св. 10 до 18	0,035	0,018	0,010
Св. 18 до 30	0,040	0,021	_
Св. 30 до 50	0,050	0,025	_
Св. 50 до 80	0,060	0,030	_
Св. 80 до 120	0,070	0,035	_
Св. 120 до 220	0,100	0,050	_

Примечание. При диаметре концов валов более 220 мм радиальное биение конического конца вала устанавливают по соглашению между заказчиком и изготовителем.

6. Допускаемые вращающие моменты, передаваемые концами валов

Диамет	р <i>d</i> , мм		Допускаемые вращающие моменты T , H -м, для коэффициента K , $M\Pi a$						_
Ряд 1	Ряд 2		y-	для к	оэффици	ента <i>К</i> , М	1Па ————		
7		2,0	2,8	4,0	5,6	8,0	11,2	16,0	22,4
6	-	0,5	0,71	1,0	1,4	2,0	2,8	4,0	5,6
7	-	0,71	1,0	1,4	2,0	2,8	4,0	5,6	8,0
8	-	1,0	1,4	2,0	2,8	4,0	5,6	8,0	11,2
9	-	1,4	2,0	2,8	4,0	5,6	8,0	11,2	16,0
10	-	2,0	2,8	4,0	5,6	8,0	11,2	16,0	22,4
11	-	2,8	4,0	5,6	8,0	11,2	16,0	22,4	31,5
12	-	4,0	5,6	8,0	11,2	16,0	22,4	31,5	45,0
14	-	5,6	8,0	11,2	16,0	22,4	31,5	45,0	63,0
16	-	8,0	11,2	16,0	22,4	31,5	45,0	63,0	90,0
18	-	11,2	16,0	22,4	31,5	45,0	63,0	90,0	100
-	19	12,5	18,0	25,0	35,5	50,0	71,0	100	140
20	-	16,0	22,4	31,5	45,0	63,0	90,0	125	180
22	-	22,4	31,5	45,0	63,0	90,0	125	180	250
-	24	25,0	35,5	50,0	71,0	100	140	200	280
25	-	31,5	45,0	63,0	90,0	125	150	250	355
28	-	45,0	63,0	90,0	125	180	250	355	500
30	-	50,0	71,0	100	140	200	280	400	560
32	-	63,0	90,0	125	180	250	355	500	710
35; 36	-	90,0	125	180	250	355	500	710	1 000
-	38	100	140	200	280	400	560	800	1 120
40	-	125	180	250	355	500	710	1 000	1 400
-	42	140	200	280	400	560	800	1 120	1 600
45	-	180	250	355	500	710	1 000	1 400	2 000
-	48	200	280	400	560	800	1 120	1 600	2 240
50	-	250	355	500	710	1 000	1 400	2 000	2 800
-	53	280	400	560	800	1 120	1 600	2 240	3 150
55	56	355	500	710	1 000	1 400	2 000	2 800	4 000
60	-	400	560	800	1 120	1 600	2 240	3 150	4 500
63	-	500	710	1 000	1 400	2 000	2 800	4 000	5 600
-	65	560	800	1 120	1 600	2 240	3 150	4 500	6 300
70; 71	-	710	1 000	1 400	2 000	2 800	4 000	5 600	8 000
	75	800	1 120	1 600	2 240	3 150	4 500	6 300	9 000

Продолжение табл. 6

Диамет	р <i>d</i> , мм		Дог	тускаем ы е				м,	
Ряд 1	Ряд 2		для коэффициента К, МПа						
		2,0	2,8	4,0	5,6	8,0	11,2	16,0	22,4
80	-	1 000	1 400	2 000	2 800	4 000	5 600	8 000	11 200
-	85	1 120	1 600	2 240	3 150	4 500	6 300	9 000	12 500
90	-	1 400	2 000	2 800	4 000	5 600	8 000	11 200	16 000
-	95	1 600	2 240	3 150	4 500	6 300	9 000	12 500	18 000
100	-	2 000	2 800	4 000	5 600	8 000	11 200	16 000	22 400
-	105	2 500	3 150	4 500	6 300	9 000	12 500	18 000	25 000
110	-	2 800	4 000	5 600	8 000	11 200	16 000	22 400	31 500
-	120	3 150	4 500	6 300	9 000	12 500	18 000	25 000	35 500
125	-	4 000	5 600	8 000	11 200	16 000	22 400	31 500	45 000
-	130	4 500	6 300	9 000	12 500	18 000	25 000	35 500	50 000
140	-	5 600	8 000	11 200	16 000	22 400	31 500	45 000	63 000
-	150	6 300	9 000	12 500	18 000	25 000	35 500	50 000	71 000
160	-	8 000	11 200	16 000	22 400	31 500	45 000	63 000	90 000
-	170	9 000	12 500	18 000	25 000	35 500	50 000	71 000	100 000
180	-	11 200	16 000	22 400	31 500	45 000	63 000	90 000	125 000

 Π р и м е ч а н и е . Значения вращающих моментов для валов диаметром менее 6 мм не регламентируются.

7. Значения коэффициента K в зависимости от характера нагрузки, прочности и твердости материала вала

			Значені	ие коэф	ффицие	нта <i>К</i> , І	МПа, пј	ри
Предел прочности σ_{B} , МПа	Твердость вала НВ	чисто	ом круч	ении			юс изги й нагру:	б от ра- зки
					<i>F</i> ≤ 2	$50\sqrt{T}$	F > 1	$250\sqrt{T}$
		а	b	с	а	b	а	ь
От 500 до 850	От 145 до 250	8	5,6	4	5,6	4	2,8	2
Св. 850 до 1200	Св. 250 до 350	11,2	8	5,6	8	5,6	4	2,8
C 1200	Св. 350	16						
Св. 1200		22,4	11,2	8	11,2	8	5,6	4

Примечания:

- 1. а при нагрузке постоянной величины и постоянного направления;
- b при нагрузке переменной величины, если максимум достигает двукратного значения;
 - с при чистом кручении переменного направления.
 - 2. Радиальная нагрузка F приложена к середине длины конца вала.

ВАЛЫ 19

РАСЧЕТ ВАЛОВ

Расчет на прочность

При расчете валов на жесткость диаметры их получаются больше, чем при расчете на прочность, и они работают преимущественно с невысокими напряжениями. Поэтому расчет валов целесообразно вести упрощенно, не учитывая динамический характер нагрузки, т. е. не вводя в формулы коэффициенты концентрации напряжений, характеристики циклов нагружения и т.п. Эти факторы учитывают приближенно соответствующим выбором допускаемых напряжений.

Валы на прочность рассчитывают по формуле

$$W = \frac{100\sqrt{M_{\rm H}^2 + 0.45 M_{\rm Kp}^2}}{\left[\sigma_{\rm H3}\right]}$$

или

$$[\sigma_{\text{M3}}] = \frac{100\sqrt{M_{\text{M}}^2 + 0.45M_{\text{Kp}}^2}}{W}$$

где W - момент сопротивления в опасном сечении, мм³: $W = \frac{\pi d^3}{32} \approx 0.1 d^3$ - для круглого сплошного сечения (см. рис. 1); $W = \frac{\pi d^3}{32} \left[1 - \frac{d_0^4}{d^4} \right] \approx 0.1 \; \frac{d^4 - d_0^4}{d} \; - \;$ для круг-

лого полого сечения (см. рис. 2); $[\sigma_{и3}]$ - допускаемое напряжение, МПа (см. табл. 9), определяемое при динамическом расчете стальных валов по пределу выносливости с учетом факторов, вызывающих концентрацию напряжений, и диаметру вала; $M_{\rm u}$ - максимальный изгибающий момент в опасном сечении, Н·мм:

$$M_{\rm M}=\sqrt{M_{\rm M,\Gamma}^2+M_{\rm M,B}^2}\;;$$

здесь $M_{\rm w.r}$ и $M_{\rm w.s}$ - максимальные изгибающие моменты в опасном сечении, ${\rm H\cdot mm}$, действующие соответственно в горизонтальной и вертикальной плоскостях; $M_{\rm kp}$ - максимальный крутящий момент в опасном сечении, ${\rm H\cdot mm}$;

$$\sqrt{M_{\rm H}^2 + 0.45 M_{\rm Kp}^2} = M_{\rm Hp} -$$

максимальный приведенный (результирующий) момент в опасном сечении,
 Н.мм.

Диаметр вала из среднеуглеродистой стали ($\sigma_B = 500 \div 800$ МПа) при расчете на прочность приближенно определяют по следующим формулам:

при постоянной нагрузке и небольших изгибающих моментах (короткие валы из стали Ст5, Ст6 и 45)

$$d = 10\sqrt[3]{\frac{P}{n}} \; ; \tag{1}$$

при переменной нагрузке и малых изгибающих моментах или при постоянной нагрузке и средних изгибающих моментах

$$d=11\sqrt[3]{\frac{P}{n}}\;; (2)$$

при переменной нагрузке и средних изгибающих моментах или при постоянной нагрузке и значительных изгибающих моментах (длинные валы)

$$d = 12\sqrt[3]{\frac{P}{n}},\tag{3}$$

где d - в см; P - передаваемая мощность, кВт; n - частота вращения вала, мин⁻¹.

Формулы составлены из расчета вала на кручение и обусловливают напряжения: формула (1) $\tau_{\rm kp}=50~{\rm M\Pi a};$ формула (2) $\tau_{\rm kp}=37~{\rm M\Pi a};$ формула (3) $\tau_{\rm kp}=28,5~{\rm M\Pi a}.$ При наличии шпоночного паза в опасном сечении вала полученное значение необходимо увеличить на 5-10%.

Расчет на жесткость

Вал, рассчитанный из условий динамической прочности, может не обеспечить нормальной работы зубчатых колес и подшипников, если под действием передаваемых усилий он будет чрезмерно деформироваться.

Расчет на жесткость сводится к определению прогибов y (рис. 3-6), углов наклона оси вала θ и к сопоставлению их с допускаемыми. Допускаемый прогиб вала не должен превышать 0,0001-0,0005 расстояния между опорами или под зубчатыми колесами 0,01-0,003 модуля в см. Углы наклона оси вала в опорах не должны превышать 0,001 радиана при зубчатых колесах; то же в радианах, не более: 0,0025 - для цилиндрических роликоподшипников;

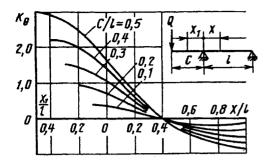


Рис. 3

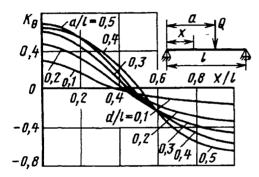
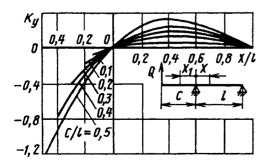



Рис. 4

PHc. 5

PHc. 6

0,0016 - для конических роликоподшипников; 0,005 - для однорядных шарикоподшипников; 0,05 - для сферических подшипников.

Угол наклона оси вала θ и прогиб вала y в расчетном сечении для двух основных схем нагружения (см. рис. 3-6) определяют по формулам

$$\theta = \frac{Ql^2}{10^7 d^4} K_\theta;$$

$$y = \frac{Ql^3}{10^7 d^4} K_y,$$

где θ - в рад; d и y - в см; Q - в H;

 K_{θ} и K_{y} - коэффициенты, учитывающие связь между точкой приложения силы и точкой, в которой определяют деформацию; коэффициенты берут по графикам (см. рис. 3-6).

Действительные деформации вала (согласно принципу наложения деформаций) определяют алгебраическим суммированием деформаций от каждой силы.

Для проверки вала на жесткость по углу закручивания при $[\phi] \approx (4.4 + 8.8) 10^{-3}$ рад $(\sim 0.25 \div 0.5^{\circ})$ на 1 м длины вала пользуются формулой

$$d \geq \left(10.5 \div 12.5\right) \sqrt[4]{\frac{P}{n}},$$

где d - в см, P - в кВт, n - в мин-1.

Определение вращающего момента

За расчетный момент принимают наибольший длительно действующий момент. Расчетный вращающий момент на валу

$$T=\frac{T_{\Pi}\eta}{i};$$

$$T=974000\frac{P_{\pi}\eta}{n},$$

где T_{π} - момент на валу двигателя, Н·см; η - КПД участка кинематической цепи от двигателя до рассчитываемого вала; $i=\frac{n}{n_0}$ -

передаточное отношение от двигателя до вала; n - расчетная частота вращения вала,

мин $^{-1}$; n_0 - частота вращения вала двигателя, мин $^{-1}$; P_{π} - мощность на валу двигателя, кВт.

Для определения вращающего момента по мощности и частоте вращения можно пользоваться и номограммой (рис. 7).

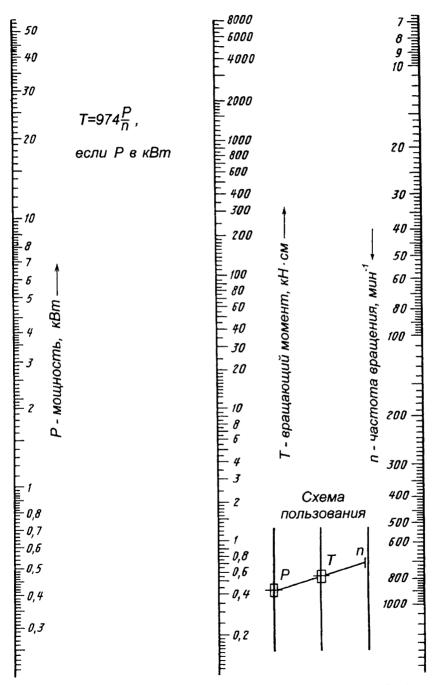


Рис. 7. Номограмма для определения вращающего момента (кН·см) по мощности и частоте вращения

Определение нагрузок на валы

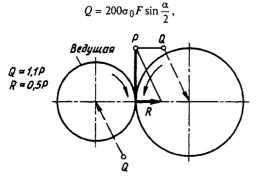
За расчетную нагрузку принимают максимальную длительно действующую нагрузку.

Расчетную нагрузку определяют:

по мощности (задаваемой обычно на входе и выходе коробки передач), КПД и скорости;

по моментам или силам (задаваемым обычно тоже на входе или выходе), передаточному отношению и КПД.

Расчетную частоту вращения вала, мин $^{-1}$, выбирают соответственно по частоте вращения шпинделя $n_{\text{шп}}$ или выходного вала коробки, при которой они передают наибольшие моменты (обычно берут минимальную частоту вращения шпинделя, при которой передается полная мощность).


Окружная сила на зубчатых колесах и цепных звезлочках

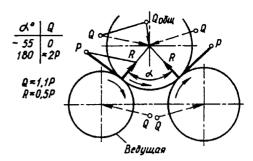
$$P=\frac{2T}{d}\;,$$

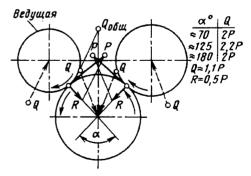
где d - делительный диаметр зубчатого колеса или цепной звездочки; T - вращающий момент.

Нагрузку на вал от цепной передачи приближенно принимают направленной параллельно ведущей ветви цепи и равной окружной силе, умноженной на коэффициент, зависящий от положения передачи (для горизонтальной передачи 1,15, для вертикальной 1,05).

Нагрузку на вал (в Н) от ременной передачи при расчете на усталость приближенно принимают направленной вдоль линии центров шкивов и определяют по формуле

PHC. 8




Рис. 9

где σ_0 - начальное натяжение, обычно принимаемое для плоскоременных передач равным 1,8 МПа, а для клиноременных 1,2—1,5 МПа; F - площадь поперечного сечения ремня, см²; α - угол обхвата шкива, град.

Так как начальное натяжение при перетяжке в 1,5 раза больше нормального, то наибольшую нагрузку на вал можно определить по формуле

$$Q_{\text{max}} = 1.5Q = 300\sigma_0 F \sin \frac{\alpha}{2}.$$

На рис. 8-11 изображено графическое определение сил, действующих на вал и подшипники, по заданной окружной силе (для зубчатой передачи с углом зацепления $\alpha=20^{\circ}$ и с учетом угла трения $\rho=5\div6^{\circ}$).

PHC. 10

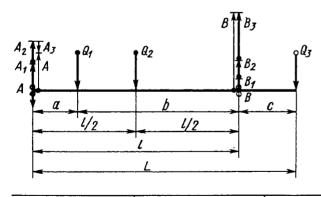
Bedyman P_1 Q_1 Q_2 P_2 $P_2 = P_1 \frac{r_1}{r_2}$, Q_1 Q_2 Q_2 Q_1 Q_2 Q_3 Q_4 Q_4 Q_5 Q_4 Q_5 Q_4 Q_5 Q_6 Q_7 Q_8 Q_1 Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 $Q_$

Рис. 11

Если нагрузки, действующие на вал, не лежат в одной плоскости, то их раскладывают по двум взаимно перпендикулярным координатным плоскостям и в каждой из этих плоскостей определяют реакции опор и изгибающие моменты, а затем проводят геометрическое суммирование.

Нередко расчет может быть упрощен удачным выбором координатных плоскостей. Например, если окружные силы от ведомого и ведущего элементов взаимно параллельны или взаимно перпендикулярны, то оси координат следует направлять вдоль действия этих сил. Отклонениями от параллельности или перпендикулярности в пределах 10—15° следует пренебрегать, совмещая силы с осями координат. Допускается также совмещение сил в одну плоскость, если угол между ними не более 30°.

Определение реакций опор и изгибающих моментов


При расчете вал принимают за балку, лежащую на шарнирных опорах. Эта расчетная схема точно соответствует действительному положению только для валов на подшипниках качения, установленных по одному или по два в опоре; при двух подшипниках должна быть обеспечена самоустанавливаемость опоры; например, установкой конических роликоподшипников вершинами роликов в разные стороны.

Для других опор такую расчетную схему можно применять как приближенную. При длинных несамоустанавливающихся подшипниках скольжения, расположенных по концам вала, равнодействующую реакции подшипника следует предполагать приложенной к точке, отстоящей от его кромки со стороны пролета на 1/3—1/4 длины подшипника.

При расчете валов, вращающихся в длинных подшипниках скольжения (l/d=3), расчетная схема приближается к схеме балки с заделанными концами.

В табл. 8 и на рис. 12 приведены формулы для определения реакций опор и изгибающих моментов двухопорных валов с характерными случаями нагружения.

8. Определение реакций в опорах

- 1. $A = A_1 + A_2 + A_3$; $B = B_1 + B_2 + B_3$ (алгебраическая сумма).
- 2. Если приложенная сила Q_n имеет направление, обратное указанному на рисунке, то реакции в опоре A_n и B_n меняют знак на обратный.
 - 3. $Q_n = A_n + B_n$ (для проверки).

Приложенная сила	Q	21	Q	Q ₂		Q ₃
Реакция опор	+ A ₁	+ B ₁	+ A ₂	+ B2	- A ₃	+ B ₃
Формула	$\frac{b}{l}Q_1$	$\frac{a}{l}Q_1$	$A_2 = B$	$Q_2 = \frac{Q_2}{2}$	$\frac{c}{L}Q_3$	$\frac{L}{l}Q_3$

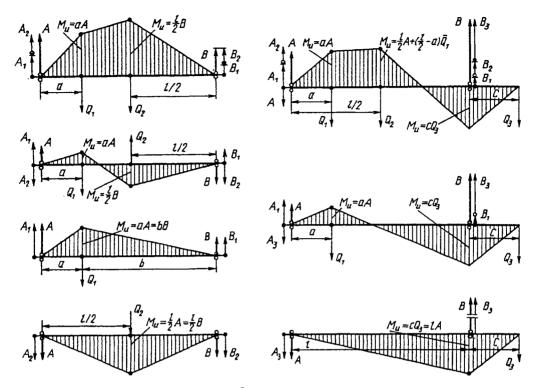


Рис. 12. Определение реакций опор и изгибающих моментов двухопорных валов с приведенными случаями нагружения

Диаметр вала можно найти по табл. 10, зная изгибающий и вращающий моменты.

Табл. 10 составлена по формуле

$$[\sigma_{\text{M3}}] \ge \frac{100\sqrt{M_{\text{M}}^2 + 0.45T^2}}{W}$$
.

При этом $[\sigma_{\rm H3}]$ взяты из табл. 9 с учетом максимальной концентрации напряжений. Материал: сталь 40X улучшенная, для стали 45 улучшенной табличные значения умножают на коэффициент 0,94; для закаленных сталей 40X и 40XH табличные значения умножают на коэффициент 1,25.

9. Допускаемые напряжения [$\sigma_{\rm M3}$]*, МПа, для стальных валов

При составлении таблицы принято:

1) коэффициент безопасности, равный 1,3;

Для валов, работающих с резко переменным режимом, при расчете по максимальной нагрузке, когда коэффициент долговечности меньше единицы, допускаемые напряжения следует соответственно понизить. Допускаемые напряжения можно повысить, увеличив прочность вала технологическими или конструктивными мероприятиями: местными упрочнениями, увеличением радиусов выкружек, применением разгрузочных канавок на ступицах сидящих деталей и т.п.

В таблице обозначено: σ_B - предел прочности при растяжении; σ_T - предел текучести; σ_{-1} - предел выносливости.

²⁾ уменьшение предела выносливости, определенного на малых образцах, для валов d=30 мм составляет $\approx 15-20\%$, для валов d=50 мм - 25-30% и для валов d=100 мм - 35-40% (меньшие значения относятся к ступенчатым валам из твердых легированных сталей, большие — к валам с насаженными деталями из более мягких сталей);

³⁾ допускаемые напряжения при изгибе соответствуют спокойной работе (коэффициент динамичности равен единице).

Продолжение табл. 9

			Стали и т	ермическая	обработка	
Источники концентрации напряжений	Диаметр вала <i>d</i> , мм	35, нор- мализо- ванная, $\sigma_{\text{B}} = 520$ 650 МПа; $\sigma_{\text{T}} \ge 300$ МПа; $\sigma_{-1} \approx 250$ МПа	45, нор- мализо- ванная, $\sigma_{\text{в}} = 600$ 750 МПа; $\sigma_{\text{т}} \ge 340$ МПа; $\sigma_{\text{-1}} \approx 280$ МПа	45, улуч- шенная, σ _в = 750 900 МПа; σ _τ = 420 520 МПа; σ ₋₁ ≈ 350 МПа	40X, улуч- шенная, σ _в = 800 1000 МПа; σ _т = 600 800 МПа; σ ₋₁ ≈ 400 МПа	40X, зака- ленная до 3542 HRC; σ _B = 1100 1300 ΜΠα; σ _τ = 900 ΜΠα; σ ₋₁ ≈ 500 ΜΠα
Насаженная на вал	30	70	75	85	90	95
деталь (зубчатое коле- со, шкив) с острыми	50	65	70	80	85	90
кромками	100	60	65	75	80	85
Насаженное на вал	30	90	100	115	120	130
кольцо подшипника качения	50	85	95	105	110	120
	100	75	85	100	100	110
Вал ступенчатой	30	80	90	105	116	115
формы с острыми	50	70	80	90	95	100
внутренними углами при $\frac{D}{d} \le 1,2$	100	60	70	80	85	90
Вал ступенчатой формы со скруглен- ными внутренними углами при	30 50	110 95	115 100	135 115	140 120	150 130
$\frac{r}{D} = 0,05; \frac{D}{d} \le 1,2$	100	85	90	100	105	110

^{*} В таблице приведены допускаемые напряжения при изгибе в случае отсутствия кручения, но их можно применять и для расчета на сложное сопротивление по результирующему моменту, который можно определять по формуле

$$M_{\rm II p} = \sqrt{M_{\rm H}^2 + 0.45 M_{\rm Kp}^2} \ .$$

10. Днаметр вала в нз расчета на усталость при одновременном действии изгибающего и вращающего моментов

<i>d,</i> мм					Допускае	мый изгис	бающий мс	Допускаемый изгибающий момент, кН-см, при	.м, при <u>Т</u>				
	0	6,5	_	1,5	2	2,5	3	3,5	4	4,5	5	5,5	9
17	₩	4,19	3,67	3,12	2,64	2,26	1,97	1,73	1,54	1,39	1,26	1,16	1,07
20		6,82	5,98	5,07	4,30	3,69	3,20	2,82	2,51	2,26	2,06	1,88	1,74
22		80,6	2,96	6,75	5,73	4,91	4,26	3,75	3,35	3,01	2,74	2,51	2,31
25		13,3	11,7	16,6	8,40	7,20	6,26	5,51	4,91	4,42	4,02	3,68	3,39
		18,7	15,4	13,9	8,11	10,1	8,79	7,74	6,90	6,21	5,65	5,17	4,76
		23,0	20,2	17,1	14,5	12,4	8,01	9,52	8,48	7,64	6,94	6,36	2,86
	_	26,4	23,1	9,61	9,91	14,3	12,4	10,9	9,72	8,76	7,96	7,28	2'9
		34,5	30,3	25,7	21,8	18,7	16,2	14,3	12,7	11,5	10,4	9,53	8,79
40	54,4	51,6	45,2	38,3	32,5	27,8	24,2	21,3	0,61	17,1	15,5	14,2	13,1
		59,7	52,3	44,4	37,6	32,2	28,0	24,7	22,0	8,61	18,0	16,5	15,2
		73,4	64,3	54,6	46,3	39,7	34,5	30,3	27,0	24,4	22,1	20,3	18,7
		101	88,2	74,8	63,5	54,4	47,3	41,6	37,1	33,4	30,3	27,8	25,6
		107	93,4	79,3	67,2	57,6	50,1	44,1	39,3	35,4	32,1	29,4	27,1
		126	110	93,8	9,62	68,1	59,2	52,1	46,5	41,8	38,0	34,8	32,1
		164	143	122	103	88,5	6,97	67,7	60,3	54,3	46,4	45,2	41,7
		181	158	134	114	9,76	84,9	74,7	9,99	0,09	54,5	49,9	46,0
		208	182	155	131	112	8,76	86,1	7,97	1,69	62,8	57,5	53,0
		260	228	193	164	140	122	107	8,56	86,3	78,4	71,8	66,2
		283	248	210	178	153	133	117	104	93,9	85,3	78,1	72,0
		320	280	238	202	173	150	132	811	106	96,4	88,3	81,4
		388	340	289	245	210	182	160	143	129	1117	107	8,86
		466	408	346	294	252	219	192	171	154	140	128	118
		553	484	411	349	299	259	228	204	183	191	152	141
		059	570	483	410	351	305	569	239	216	961	179	165
100	\neg	758	664	564	478	410	356	313	279	252	229	209	193

Пример расчета

Принятые обозначения:

 η - КПД рассчитываемого участка передачи; i - передаточное отношение частоты вращения выходного вала к рассчитываемому; T - вращающий момент рассчитываемого вала, H-мм; $T_{\rm B}$ - вращающий момент выходного вала, H-мм; β - угол между направлением действия силы и осью x; остальные обозначения указаны в решении примера.

Дано: вращающий момент на выходном валу $T_{\rm B}=162000$ H-мм.

Найти диаметр промежуточного вала для участка передачи, схема которого изображена на рис. 13.

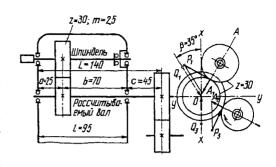


Рис. 13. Схема передачи к примеру для расчета

Решение примера приведено в табл. 11.

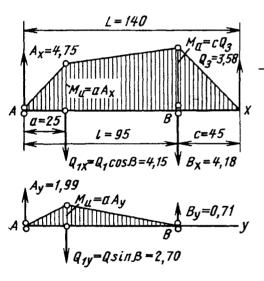
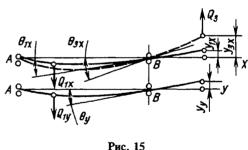
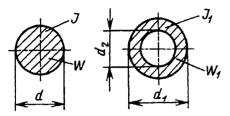



Рис. 14

11. Решение примера

Определяемое	Расчетная формула	Расчет
Вращающий момент с учетом η	$T = \frac{T_{\rm B}i_{\rm I}}{\eta}$	$\eta = 0.96;$ $T = \frac{162000 \cdot 1}{0.96} = 169000 \text{ H}\cdot\text{мм}$
Окружная сила	$P = \frac{2T}{D}$	$P_1 = \frac{2 \cdot 169\ 000}{75} = 4,50\ \text{kH};$ $P_3 = \frac{2 \cdot 169\ 000}{104} = 3,25\ \text{kH}$

Продолжение табл. 11


Опреде	ляемое	Расчетная формула	Расчет
Силы, действую подшипники	цие на вал и	Q ≈ 1,1 <i>P</i>	$Q_1 = 1.1 \cdot 4.50 = 4.95 \text{ kH};$ $Q_3 = 1.1 \cdot 3.25 = 3.58 \text{ kH}$
Реакция опоры в плоскости х и у с учетом зна- ка (рис. 14)	Опора А	$A_x = \frac{b}{l}Q_1\cos\beta + \frac{c}{l}Q_3$	$A_x = +\frac{70}{95} \cdot 4,95 \cdot 0,839 + $ $+\frac{45}{95} \cdot 3,58 = 4,75 \text{ KH}$
	Опора А	$A_{y} = \frac{b}{l}Q_{1}\sin\beta$	$A_y = +\frac{70}{95} \cdot 4,95 \cdot 0,545 =$ = 1,99 kH
Реакция опоры в плоскости <i>х</i> и <i>у</i> с учетом зна-ка (рис. 14)	Опора В	$B_x = \frac{a}{l} Q_1 \cos \beta - \frac{L}{l} Q_3$	$B_x = +\frac{25}{95} \cdot 4,95 \cdot 0,839 -$ $-\frac{140}{95} \cdot 3,58 = -4,18 \text{ kH}$
		$B_{y} = \frac{a}{l} Q_{1} \sin \beta$	$B_y = +\frac{25}{95} \cdot 4,95 \cdot 0,545 =$ = 0,71 kH
Полная реак- ция	Опора А	$A = \sqrt{A_x^2 + A_y^2}$	$A = \sqrt{4,75^2 + 1,99^2} =$ = 5,15 kH
	Опора В	$B = \sqrt{B_x^2 + B_y^2}$	$B = \sqrt{4,18^2 + 0,71^2} =$ = 4,22 kH
Изгибающий момент в	Плоскости х, у	См. эпюры (рис. 14)	Опасное сечение в опоре В
опасном сече- нии (рис. 14)	Суммарный	$M_{\rm H} = \sqrt{M_{\rm HX}^2 + M_{\rm Hy}^2}$	$M_{H} = M_{HX} =$ = 161 000 H ·MM
Отношение $\frac{T}{M_{\rm H}}$ в опасном сечении		$\frac{T}{M_{H}}$	$\frac{169\ 000}{161\ 000} = 1,05$
Диаметр вала (по $M_{\rm H}$, H·м, и $\frac{T}{M_{\rm H}}$)		По табл. 10	d = 30 mm
Угол наклона упругой линии в расчетном сечении в плоскости х	Отдельно от каждой силы	$ heta_{nx} = rac{Q_{nx} l^2}{10^4 \cdot d^4} K_{ heta} ,$ где l и d - в см	$\theta_{3x} = \frac{3,58 \cdot 90}{10^4 \cdot 81} \cdot 1,7 =$ $= 0,00068 \text{ рад;}$ $\theta_{1x} = \frac{4,15 \cdot 90}{10^4 \cdot 81} \cdot 0,4 =$ $= 0,00018 \text{ рад.}$

Продолжение табл. 11

Опреде	ляемое	Расчетная формула	Расчет
	Суммарный	$\theta_x = \sum \theta_{nx}$	$\theta_X = 0,00068 + $ $+ 0,00018 = 0,00086$ рад
Угол наклона уп расчетном сечен у (рис. 15)	• •	$\theta_{ny} = \frac{Q_{ny}l^2}{10^4 \cdot d^4} K_{\theta};$ $\theta_y = \sum \theta_{ny}$	$\theta_{1y} = \frac{2,70 \cdot 90}{10^4 \cdot 81} \cdot 0,4 =$ $= 0,00012 \text{ рад;}$ $\theta_y = \theta_{1y} = 0,00012 \text{ рад}$
Угол наклона уп расчетном сечен		$\theta = \sqrt{\theta_x^2 + \theta_y^2}$	$\theta = 10^{-5} \sqrt{86^2 + 12^2} =$ = 0,00087 pag
Прогиб в расчетном сечении в плоскости х	Отдельно от каждой силы	$y_{nx} = rac{Q_{nx}l^3}{10^4 \cdot d^4} K_y,$ где d и l - в см	$y_{3x} = \frac{3,58 \cdot 856}{10^4 \cdot 81} \cdot 1,2 =$ $= 0,0045 \text{ cm};$ $y_{1x} \approx c \cdot \text{tg } \theta_{1x} = 4,5 \times$ $\times 0,00018 = 0,0008 \text{ cm}$
	Суммарный	$y_x = \sum y_{nx}$	$y_x = 0.0045 + 0.0008 =$ = 0.0053 cm
То же, в плоскости у (рис. 15)		$y_{ny} = \frac{Q_{xy}t^3}{10^4 \cdot d^4} K_y$	
		$y_y = \sum y_{ny}$	$y_y = c \cdot \text{tg } \theta_y = 4.5 \times $ $\times 0,00012 = 0,0005 \text{ cm}$
Прогиб в расчетном сечении		$y = \sqrt{y_x^2 + y_y^2}$	$y = 10^{-4} \sqrt{53^2 + 5^2} \approx 0,0053 \text{ cm}$
	θ в опоре	0,001	0,00087 рад
Допустимые величины	у _{тах} , см	$0,0001 \div 0,0005 = \frac{y_{\text{max}}}{l};$ $y_{\text{max}} = (0,01 \div 0,03) m;$ $m - \text{модуль в см}$	$0,0053:9,5=0,00056;$ $y_{\text{max}}=0,03\cdot0,25=$ $=0,0075;$ фактически $0,0053$

 Π р и м е ч а н и е . В отношении жесткости вала диаметр d=30 мм допустим. Для создания лучших условий работы подшипников и зубчатых колес следует принять d=32 мм.

12. Сравнение сплошных и полых валов различного сечения по наружному диаметру (d, d_1) , моменту инерции (J, J_1) , моменту сопротивления (W, W_1) и массе (плошади поперечного сечения F, F_1)

 $\frac{J_1}{J}$ и $\frac{W_1}{W}$ - относительные значения моментов инерции и моментов сопротивления сечений полых валов как при изгибе, так и при кручении

$\frac{d_2}{d_1}$	При одинаковом наружном диаметре валов $d_1 = d$		При одинаковой массе валов или при одинаковой площади сечения $F=F_1$		При одинаковой прочности валов $W_1 = W$		При одинаковой жесткости валов $J_1 = J$			
	$ \frac{J_1}{J} = \frac{W_1}{W} $	Уменьшение массы, %	$\frac{d_1}{d}$	$\frac{J_1}{J}$	$\frac{W_1}{W}$	$\frac{d_1}{d} = \frac{J_1}{J}$	Уменьшение массы, %	$\frac{d_1}{d}$	$\frac{W_1}{W}$	Уменьшение массы, %
0,1	1,000	1	1,01	1,020	1,015	1,000	1	1,00	1,000	1
0,2	0,998	4	1,02	1,083	1,061	1,001	4	1,00	1,000	4
0,3	0,992	9	1,05	1,198	1,142	1,003	9	1,00	0,998	9
0,4	0,974	16	1,09	1,381	1,265	1,009	14	1,01	0,994	15
0,5	0,938	25	1,15	1,667	1,443	1,021	22	1,02	0,984	23
0,6	0,870	36	1,25	2,13	1,70	1,047	30	1,04	0,966	31
0,7	0,760	49	1,40	2,92	2,09	1,097	39	1,07	0,934	41
0,8	0,590	64	1,67	4,56	2,73	1,192	49	1,14	0,877	53
0,9	0,344	81	2,29	9,53	4,15	1,427	63	1,31	0,766	68

КОНСТРУКЦИЯ ВАЛОВ

Существенного снижения массы вала и повышения жесткости при той же прочности достигают применением полых валов, так как внутренние волокна материала при кручении и изгибе мало нагружены (табл. 12).

Валы со значительной разницей диаметров отдельных участков и фланцевые нередко выполняют с приваркой к заготовке колец (буртиков) и фланцев. Длинные валы

со свободной средней частью изготовляют полыми из трубы с приваркой концевых частей (рис. 16).

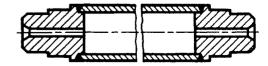


Рис. 16. Полый вал из трубы с приваренными концами

31

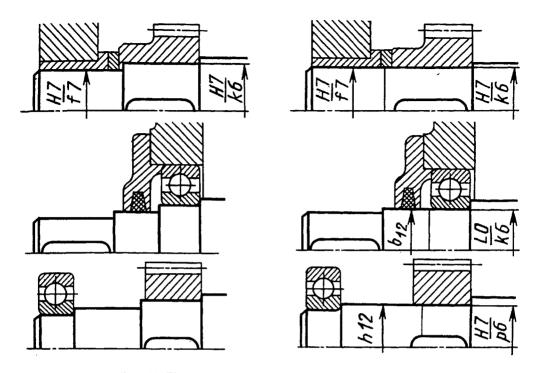


Рис. 17. Пример устранения переходных уступов на валах: a — вариант с уступами; δ — без уступа

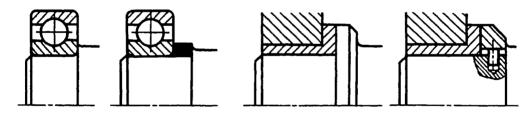


Рис. 18. Примеры уменьщения высоты уступов с применением упорных колец

Повышения сопротивления усталости валов (и осей) достигают снижением местной концентрации напряжений, создавая более плавные переходы в сечениях наиболее нагруженных участков (рис. 17).

Более технологична конструкция валов с меньшим числом уступов и буртиков, а также с меньшей их высотой. Примеры уменьшения высоты уступов с применением упорных колец приведены на рис. 18.

Дополнительные источники

1. Анурьев В. И., Леликов О. П. Цилин-

дрические и конические концы валов. Справочник. Инженерный журнал. № 4. 1997.

- 2. **Машиностроение.** Энциклопедия в 40 т. Т. IV-I. Детали машин. Конструкционная прочность. Трение, износ, смазка / Под ред. Д.Н. Решетова. М.: Машиностроение, 1995.
- 3. Валы и оси. Конструирование и расчет / С.В. Серенсен, Б.М. Громан, В.П. Когаев, Р. М. Шнейдерович. Изд. 2-е. М.: Машиностроение, 1970.
- 4. **Орлов П. И.** Основы конструирования. Т. 2. М.: Машиностроение, 1988.

Глава II

подшипники

подшипники скольжения

ОСНОВНЫЕ ВИДЫ ТРЕНИЯ СКОЛЬЖЕНИЯ

Трение без смазки (сухое). В нормально работающих металлических подшипниках трение без смазки практически не встречается.

Полусухое трение имеет место при неустановившемся режиме работы, а также при очень скудной смазке. Коэффициент трения при полусухом и сухом трении 0,1-0,5.

Полужидкостное трение. Большинство подшипников скольжения работает в условиях полужидкостного трения, при котором большая часть поверхности разделена слоем смазки, но отдельные элементы поверхности соприкасаются. Коэффициент трения 0,008-0,08.

Жидкостное трение. В этом случае смазка полностью отделяет вращающуюся цапфу от неподвижной опоры, и трение происходит только между слоями смазки. Коэффициент трения 0,001-0,008. В условиях жидкостного трения работают точно изготовленные подшипники при относительно малых нагрузках и высоких скоростях (например, подшипники шлифовальных станков).

Уменьшение скорости скольжения, увеличение нагрузки и температуры подшипника могут привести к нарушению режима жидкостного трения и переходу к работе при режиме полужидкостного и даже полусухого трения.

МЕТАЛЛИЧЕСКИЕ ПОДШИПНИКИ СКОЛЬЖЕНИЯ

ПРИБЛИЖЕННЫЙ РАСЧЕТ (ПРОВЕРКА) РАДИАЛЬНОГО ПОДШИПНИКА

Расчет производят по удельной нагрузке p в подшипнике и величине pv, в некоторой мере характеризующей износ последнего и нагрев.

Окружная скорость на шейке вала, м/с,

$$v=\frac{\pi\,d\,n}{1000\cdot60}\,,$$

где d - диаметр подшипника, мм; n - частота вращения шпинделя, мин $^{-1}$.

Удельная нагрузка в подшипнике, МПа,

$$p = \frac{P}{dl} \leq [p],$$

где d и l - диаметр и длина подшипника, мм; P - сила, действующая на подшипник, H.

Величина $pv \leq \lceil pv \rceil$.

Для предварительного расчета подшипников, несущих при небольшой скорости умеренную нагрузку, можно допускаемые p и pv принимать по табл. 1.

Момент трения на шипе

$$M_{\rm T} = 0.5 \, fPd = 0.5 \, fp \, l \, d^2$$
.

Потеря мощности на трение в подшилнике и соответствующее тепловыделение (в Вт)

$$A = \frac{M_{\rm T}\omega}{1020} \quad \text{KBT} \approx fPv, \ \text{BT},$$

где $M_{\rm T}$ - в Н-м; ω - в рад/с; P - в Н; ν - в м/с.

Коэффициенты трения f при слабой смазке для стали:

Для подшипников шпинделей, вращающих обрабатываемое изделие (например, токарных станков), расчетным случаем (при наибольших удельных нагрузках) обычно является обработка в патроне с предельными режимами, а для подшипника шпинделей тяжелых станков — обработка изделий максимальной массы.

Приведенные в табл. 2 величины установлены практикой и в значительной мере условны. При высоких кромочных давлениях или недостаточной смазке указанные значения следует несколько снижать; при совершенной смазке и малых кромочных давлениях можно допускать более высокие значения [рv].

В современных станках окружные скорости на шейке вала доходят до 12 м/с. Удельные нагрузки р в подшипниках валов и шпинделей станков, имеющих среднюю частоту вращения, обычно не превышают 3 МПа, в подшипниках тихоходных валов при малых окружных скоростях (измеряемых долями м/с) удельные нагрузки иногда доходят до 10 МПа.

1. Допускаемые [p] и [pv] для предварительного расчета полиниников

	Допускаемые			
Механизмы	[p], МПа	[рv], МПа∙м/с		
Редукторы зубчатые и червячные	1—3	6—12		
рольганги	2—10	4—10		
Открытые тихоходные передачи	1—4	3—6		
рабанов и пр	4—15	6—15		

Температура подшипника зависит от величины $\frac{v^2}{\Delta}$. При ее определении можно для упрощения расчета исходить из условия центрального расположении цапфы в подшипнике. При таком предположении температура подшипника (со смазкой без принудительного давления) может быть оценена по графику (рис. 1) в зависимости от величины $\frac{v^2}{\Delta}$, где Δ — диаметральный зазор в мм.

2. Допустимые режимы работы подшилников

Материалы вкладыша		бработанная ія шейка вала	Незакаленная шейка вала		
	[pv], МПа-м/с	[v], M /c	[pv], МПа·м/с	[v], m/c	
Бронза оловянная БрОФ10—1 Бронза БрОЦС5—7—12,	10	8		5	
БрОЦС6—6—3	8	6	5	4	
Бронза БрАЖ9—4	7,5—15	5	Не рекомендуется		
Бронза БрС30	10	10	То же		
Цинковый сплав ЦАМ 10—5	9—10	2,5	4	2,5	
Баббиты Б16, БН6	15	10	10	6	
Антифрикционный чугун АЧС-1, АЧС-2	1,5—12	1-4	1	2,5	

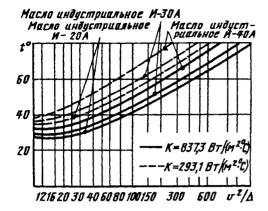


Рис. 1. Коэффициент теплоотдачи K, отнесенный к единице площади проекции шейки вала; для подшипников, расположенных в коробках скоростей и обдуваемых, принято K = 837,3 Вт/($M^2.$ °C), для отдельно расположенных подшипников K = 293,1 Вт/($M^2.$ °C)

Для шпиндельных полшипников нормальной точности можно принимать $\Delta = 0.015 \div 0.020$ мм. Для подшипников прецизионных станков расчетные значения Δ несколько меньше.

Рабочая температура подшипников не должна превышать 75 °C.

Для полшипников скольжения с принудительной подачей смазки (например, в шлифовальных станках) следует учитывать теплоотдачу в масло.

Конструктивные размеры бронзового или чугунного вкладыша (рис. 2) ориентировочно таковы:

$$H \approx (1,1 \div 1,3) S_1 + 5$$
 мм; $h \approx 0,5 H$; $S_1 \approx 5$ мм для $d = 35 \div 60$ мм; $S_1 \approx 7,5$ мм для $d = 65 \div 110$ мм;

 $S_1 \approx 10$ мм для $d = 120 \div 200$ мм.

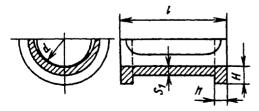


Рис. 2. Конструктивные размеры вкладыша

Целесообразно брать $\frac{l}{d} \ge 1$. В практике $\frac{l}{d} = 0.5 \div 1.5$. С увеличением d отношение $\frac{l}{d}$ уменьшается: чем длиннее цапфа, тем

а вероятнее неравномерность распределения нагрузки по ее длине и повышение местного износа вкладыша в его краях. Под-

шипник с $\frac{l}{d} > 1$ можно применять для

увеличения жесткости валов, а также в опорах подшипников вертикальных валов, где обычно кромочные давления, вызываемые изгибом вала, менее опасны.

Ориентировочные значения $\frac{l}{d}$: в подъемных механизмах 1,2—2, в металлорежущих станках 1,1—2, в редукторах 0,8—1,2.

Закрепление подшипниковых втулок винтами приведено в табл. 5. Применение закрепительных штифтов для втулок дано в табл. 10.

РАСЧЕТ УПОРНОГО ПОДШИПНИКА (рнс. 3)

Расчет плоской пяты. При хорошем смазывании

$$P \leq \frac{\pi d^2}{4} p \varphi ,$$

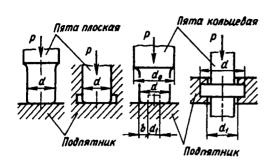
где p - удельная нагрузка, МПа; ϕ = $0.9 \div 0.95$ - коэффициент, учитывающий уменьшение рабочей поверхности пяты изза наличия смазочных канавок.

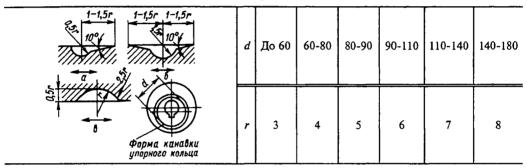
Для проверки на нагревание берут критерий pv, но под v подразумевают скорость точки, находящейся от оси вращения на расстоянии 2/3 радиуса пяты; тогда (МПа · м/с)

$$pv = \frac{P}{10\pi d^2 / 4} \frac{\pi n}{30} \frac{2}{3} \frac{d}{200} = \frac{4Pn}{90000d}$$

где P - осевая сила, H; n - частота вращения, мин⁻¹; d - диаметр пяты, см; ν - скорость, м/с.

Для пяты принимают $pv = 2 \div 4$ МПа · м/с, а значения p берут в зависимости от материала (табл. 3).




Рис. 3. Упорные подшипники

3. Значение р

Материал	р, МПа
Сталь по чугуну	2,0—2,5
Сталь по бронзе	4,0-6,0
Закаленная сталь по бронзе	7,5-8,0
То же, по стали	12,0—15,0
» по баббиту	5,0—7,0

За. Канавки упорных подшишников и колец

Размеры, мм

Если проверка на нагревание дает неудовлетворительный результат, то диаметр пяты, см,

$$d=\frac{4Pn}{90\,000pv}\,.$$

Расчет кольцевой пяты. Наружный диаметр d пяты выбирают по конструктивным соображениям; обычно $d = d_0 - (0.5 \div 2.0 \text{ cm});$

 d_1 - из расчета на удельную нагрузку;

$$P \leq \frac{\pi}{4} \left(d^2 - d_1^2 \right) p$$

и проверяют на нагревание

$$pv = \frac{P n}{60000 b},$$

где P - осевая сила, H; n - частота вращения, мин⁻¹;

$$b = \frac{d}{2} - \frac{d_1}{2}$$
; $d \bowtie d_1 - B \bowtie$.

ВТУЛКИ И ВКЛАДЫШИ ПОДШИПНИКОВ

Технические требования к металлическим втулкам и вкладышам. Материал биметаллических втулок и вкладышей: сталь 20 с заливкой бронзами БрОЦС5—5—5, БрАЖ9—4, БрОФ10—1 и сплавом ЦАМ 9—1.5Л.

Материал монолитных втулок и вкладышей — чугун АЧС-1, АЧК-2.

Для втулок. Продольную смазочную канавку при сборке следует располагать со стороны, противоположной направлению давления вала.

Дополнительное крепление втулок при D с предельными отклонениями по k6 и n6 — обязательно (табл. 5).

Для вкладышей. Обточка по наружному диаметру D производится совместно верхнего и нижнего вкладышей. По внутреннему диаметру d допускается оставлять припуск под доработку.

4. Втулки подпиниников скольжения металлические (по ГОСТ 1978-81)

Предназначены для подшипников скольжения общего назначения.

^{*} Допускается фаска под углом 15°.

Размеры, мм								
d (пред. откл. по F7)	<i>D</i> (пред.	откл. по гб)	D_1	L			ь	c
	Ряд 1	Ряд 2		Ряд 1	Ряд 2	Ряд 3		
3	5	6	8	3	5	-	2,0	0,2
4	7	8	10	4	6	-	2,0	0,2
5	8	9	12	5	8	_	2,0	0,2
6	10	12	14	6	10	i -	3,0	0,3
8	12	14	18	6	10	-	3,0	0,3
10	14	16	20	6	10	-	3,0	0,3
12	16	18	22	10	15	20	3,0	0,5
14	18	20	25	10	15	20	3,0	0,5
15	19	21	27	10	15	20	3,0	0,5
16	20	22	28	12	15	20	3,0	0,5
18	22	24	30	12	20	30	3,0	0,5
20	24	26	32	15	20	30	3,0	0,5
22	26	28	34	15	20	30	3,0	0,5
25	30	32	38	20	30	40	4,0	0,5
28	34	36	42	20	30	40	4,0	0,5
30	36	38	44	20	30	40	4,0	0,5
32	38	40	46	20	30	40	4,0	0,8
(34)	40	42 ·	48	20	30	40	5,0	0,8

Продолжение табл. 4

<i>d</i> (пред.	D (пред. с	откл. по гб)	D_1		L		b	с
откл. по F7)	Ряд 1	Ряд 2		Ряд 1	Ряд 2	Ряд 3		
35	41	45	50	30	40	50	5,0	0,8
38	45	48	54	30	40	50	5,0	0,8
40	48	50	58	30	40	60	5,0	0,8
42	50	52	60	30	40	60	5,0	0,8
45	53	55	63	30	40	60	5,0	0,8
48	56	58	66	40	50	60	5,0	0,8
50	58	60	68	40	50	60	5,0	0,8
(53)	60	63	71	40	50	60	5,0	0,8
55	63	65	73	40	50	70	5,0	0,8
60	70	75	83	40	60	80	7,5	0,8
(63)	73	78	86	40	60	80	7,5	0,8
65	75	80	88	50	60	80	7,5	1,0
70	80	85	95	50	70	90	7,5	1,0
75	85	90	100	50	70	90	7,5	1,0
80	90	95	105	60	80	100	7,5	1,0
85	95	100	110	60	80	100	7,5	1,0
90	105	110	120	60	80	120	10,0	1,0
95	110	115	125	60	100	120	10,0	1,0
100	115	120	130	80	100	120	10,0	1,0

Предусмотрены $d = 105 \div 250$ мм.

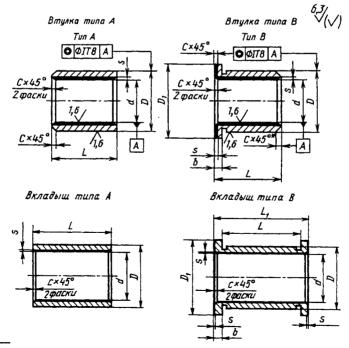
Размеры, указанные в скобках, применять не рекомендуется.

Пример условного обозначения втулки типа B с внутренним диаметром d=25 мм, наружным диаметром D=32 мм, диаметром буртика $D_1=38$ мм и длиной L=20 мм:

Втулка В 25/32 × 20 ГОСТ 1978-81

5. Дополнительное крепление втулок в неразъемных и фланцевых корпусах Размеры, мм

Втулка	đ	l	<i>I</i> 1	n	d ₁ (винт, ГОСТ 1476-93)
	12-20	7	9		M4 × 6
Корпус	22-28	10	12	1	M4 × 8
41	30-36	14	18		M5 × 12
При креплении втулок одним или двумя винтами резьбовые отверстия следует рас-	40-85	14	18	1	M6 × 16
полагать под углами 180 или 90° к смазоч- ной канавке	90-125	17	ຸ21	2	M8 × 20


6. Рекомендуемые маслоподводящие карманы для жидкой смазки втулок

Размеры, мм

A-A	d	с	r	t	ı
	40—50	17	14	1.5	,
	55-60	20	18	1,5	3
	67—80	27	24		4
≯	85—100	34	32	2	5
Маслоподводящие карманы, проточки и отверстия не следует размещать в нагру- женной зоне подшипника как на поверх-	105-120	40	40	2	5
ности трения, так и на поверхности контакта		50	50	2,5	6

7. Втулки и вкладыщи толстостенные подшипников скольжения биметаллические (по ГОСТ 24832-81, ИСО 4379-78)

Предназначены для подшипников скольжения общего назначения, изготовляют заливкой антифрикционными сплавами.

^{*} Допускается фаска под углом 15°.

Продолжение табл. 7

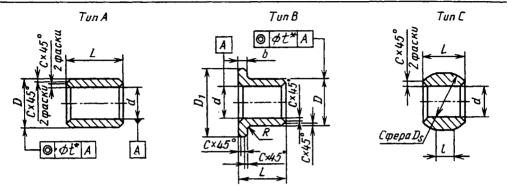
	-				F	азмеры	i, MM						-	
<i>d</i> (пред.	D	D_1		L	-		L_1		b	с			s	
откл. по F7)			Ряд 1	Ряд 2	Ряд 3	Ряд 1	Ряд 2	Ряд 3						
20	26	32	15	20	30	-	-	-	3,0	0,5	От	0,4	до	0,8
22	28	34	15	20	30	-	-	-	3,0	0,5	*	0,4	*	0,8
25	32	38	20	30	40	28	38	48	4,0	0,5	*	0,4	*	0,8
28	36	42	20	30	40	28	38	48	4,0	0,5	*	0,4	*	0,8
30	38	44	20	30	40	28	38	48	4,0	0,5	*	0,4	*	0,8
32	40	46	20	30	40	28	38	48	4,0	0,8	*	0,4	*	0,8
(34)	42	48	20	30	40	30	40	50	5,0	0,8	*	0,4	*	0,8
35	45	50	30	40	50	40	50	60	5,0	0,8	*	0,5	»	1,0
38	48	54	30	40	50	40	50	60	5,0	0,8	*	0,5	*	1,0
40	50	58	30	40	60	40	50	70	5,0	0,8	*	0,5	*	1,0
42	52	60	30	40	60	40	50	70	5,0	0,8	*	0,5	*	1,0
45	55	63	30	40	60	40	50	70	5,0	0,8	»	0,5	*	1,0
48	58	66	40	50	60	50	60	70	5,0	0,8	*	0,5	*	1,0
50	60	68	40	50	60	50	60	70	5,0	0,8	*	0,5	*	1,0
(53)	63	71	40	50	60	50	60	70	5,0	0,8	*	0,5	*	1,0
55	65	73	40	40	70	50	60	80	5,0	0,8	*	0,5	»	1,0
60	75	83	40	60	80	55	75	95 -	7,5	0,8	*	0,5	*	1,5
(63)	78	86	40	60	80	55	75	95	7,5	0,8	»	0,9	»	1,5
65	80	88	50	60	80	65	75	95	7,5	1,0	*	0,9	*	1,5
70	85	95	50	70	90	65	85	105	7,5	1,0	*	0,9	*	1,5
75	90	100	50	70	90	65	85	105	7,5	1,0	*	0,9	*	1,5
80	95	105	60	80	100	75	95	115	7,5	1,0	*	0,9	*	1,5
85	100	110	60	80	100	75	95	115	7,5	1,0	*	0,9	»	1,5
90	110	120	60	80	120	80	100	140	10,0	1,0	*	0,9	*	1,5
95	115	125	60	100	120	80	120	140	10,0	1,0	*	0,9	*	1,5
100	120	130	80	100	120	100	120	140	10,0	1,0	*	0,9	»	1,5

Предусмотрены $d = 105 \div 250$ мм.

Размеры, указанные в скобках, применять не рекомендуется.

Для вкладышей размеры L и L_1 необходимо выбирать из рядов с одинаковыми номерами.

Пример условного обозначения втулки типа B с внутренним диаметром d=20 мм, наружным диаметром D=26 мм, диаметром буртика $D_1=32$ мм и длиной L=20 мм:


Втулка В 20/26 × 20 ГОСТ 24832-81;

вкладыша типа B парного комплекта с диаметром d=40 мм, наружным диаметром D=50 мм, диаметром буртика $D_1=58$ мм и длиной L=40 мм:

Вкладыш парного комплекта В 40/50 × 40 ГОСТ 24832-81

8. Втулки подшинников скольжения из спекаемых материалов (по ГОСТ 24833-81; ИСО 2795-79)

Предназначены для подшипников скольжения общего назначения. Типы втулок: А - гладкая; В - с буртиком; С - сферическая.

^{*} t = IT8 при $D \le 50$ мм; t = IT9 при D > 50 мм.

Тип А Размеры, мм

d	D (пред.	откл. по г7)			L	
(пред. откл. по H7)	Ряд 1	Ряд 2	Ряд 1	Ряд 2	Ряд 3	Ряд 4
1,0 1,5 2,0 2,5 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 12,0 14,0 15,0	3 4 5 6 8 9 10 11 12 14 16 18 20 21 22	- - - 5 7 8 9 10 11 12 14 16 18 19	1 1 2 2 3 3 4 4 5 6 6 8 8 10 10	2 2 3 3 4 4 5 6 8 8 10 10 12 14 15	- - - - 6 8 10 10 12 14 16 20 20 25 25	- - - - - - - - - - - - - - - - - - -
18,0 20,0 22,0 25,0 28,0 30,0 32,0 (34,0) 35,0 38,0 40,0	24 26 28 32 36 38 40 42 45 48 50	22 25 27 30 33 35 38 40 41 44 46	12 15 15 20 20 20 20 25 25 25 25	18 20 20 25 25 25 25 25 35 35 35	30 25 25 30 30 30 30 40 40 45 50	30 30 35 40 40 40 - 50 (55) (60)

Продолжение табл. 8

			Ти	п В			···	
d (пред. откл. по H7)	D (пред. откл. по r7)	D_1	Ряд І	<i>L</i> Ряд 2	Ряд 3	Ряд 4	b	<i>R</i> , не более
1,0 1,5 2,0 2,5 3,0 4,0 5,0 6,0 7,0 8,0	3 4 5 6 6 8 9 10 11	5 6 8 9 9 12 13 14 15	2 2 3 3 4 3 4 4 5 6	- - - 4 5 6 8	- - - 6 8 10 10	-	1,0 1,0 1,5 1,5 1,5 2,0 2,0 2,0 2,0 2,0	0,3
9,0 10,0 12,0 14,0 15,0 16,0 20,0 22,0 25,0 28,0	14 16 18 20 21 22 24 26 28 32 36	19 22 24 26 27 28 30 32 34 39	6 8 8 10 10 12 12 15 15 20 20	10 10 12 14 15 16 18 20 20 25	14 16 20 20 25 25 30 25 25 30 30 30	- - - - - - 30 30	2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,5 4,0	0,6
30,0 32,0 (34,0) 35,0 38,0 40,0	38 40 42 45 48 50	46 48 52 55 58 60	20 20 25 25 25 25 30	25 25 35 35 35 40	30 30 40 40 45 50	- - - - -	4,0 4,0 4,0 5,0 5,0 5,0	0,8

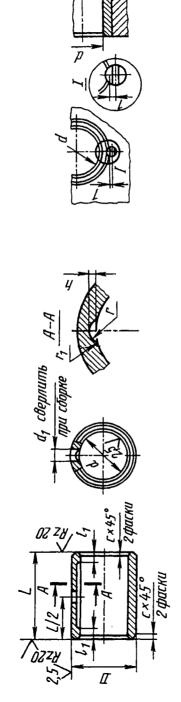
Примечание. Размеры, указанные в скобках, применять не рекомендуется.

						Тип С	2					
d (пред. откл. по H7)	D_s	1	L	от	гред. Кл. H7)	D_{s}	1	L	d (пред. откл. по H7)	D_s	I	L
1,0 1,5 2,0 2,5 3,0 4,0	3,0 4,5 5,0 6,0 8,0 10,0	0,6 0,9 0,9 1,0 2,0 2,0	2 3 3 4 6 8	6 7 8 9	,0 ,0 ,0 ,0 ,0	12,0 14,0 16,0 16,0 18,0 20,0	3,0 3,5 4,0 4,0 4,0 4,0	9 10 11 11 12 14	12,0 14,0 15,0 16,0 18,0 20,0	22,0 24,0 27,0 28,0 30,0 36,0	5,0 5,0 5,0 6,0 6,0 6,0	15 17 20 20 20 20 25
Типы А, В	3, C	Толщи	іна стен	ки	До	1	1-2	2-3	3-4	4-:	5	Св. 5
		с, не б	олее		0,2	2	0,3	0,4	0,6	0,	7	0,8

Примеры условного обозначения втулок:

Втулка типа B с внутренним диаметром d=25 мм, наружным диаметром D=32 мм, диаметром буртика $D_1=39$ мм и длиной L=25 мм:

Втулка В 25/32 × 25 ГОСТ 24833—81


Втулка типа C с внутренним диаметром d=10 мм, диаметром сферы $D_{\rm S}=20$ мм и длиной L=14 мм:

Втулка С 10 ГОСТ 24833—81

9. Чутунные втулки для неразъемных и фланцевых корпусов

Предназначены для подшипников скольжения общего назначения

Фиксация втулок в корпусах

Обозначение втулки	Обозначение <i>d</i> (пред. откл. втулки по H7)	$D = d_1$	d ₁	7	1,	7 1/	ų		'با	0	Винт по ГОСТ 1477-93	Масса, кг
12 × 16	12	18		16; 20								0,022
14 × 16	14	70		16; 20		10	_	2	-		M4 × 8	0,030
16 × 20	16	22	٧.	20; 25	٣	-			7	1.6		0,033
18 × 20	81	24		20; 25			_	2		•		0,055
20 × 25	20	26		25; 32		15	1,5	60			M5 × 12	0,085
22 × 25	22	28	. ,-	25; 32			1,5	3				0,087

0,093	0,125	0,17	0,25	0,33	0,43	0,51	65'0	0,72	1,43	1,61	2,16	2,38
M5 × 12						M6 × 15					M8 × 20	
1,6	9,1	2,5	2,5			2,5			2,5	2,5	4	4
			7							6		
			က							5	_	
			1,5						*	2,5		
		15				19					24	
4	4	4	2		v.				9			8
32; 40	32; 40	40; 50	40; 50	50; 63	50; 63	63; 80	63; 80	80; 100	80; 100	100; 125	100; 125	125
			2							-		
32	36	40	45	50	55	09	59	73	85	95	105	115
25	28	32	35	40	45	50	55	63	70	80	06	100
25 × 32	28 × 32	32 × 40	36 × 40	40 × 50	45 × 50	50 × 63	55 × 63	08 × 09	70 × 80	80 × 100	001 × 06	100 × 125

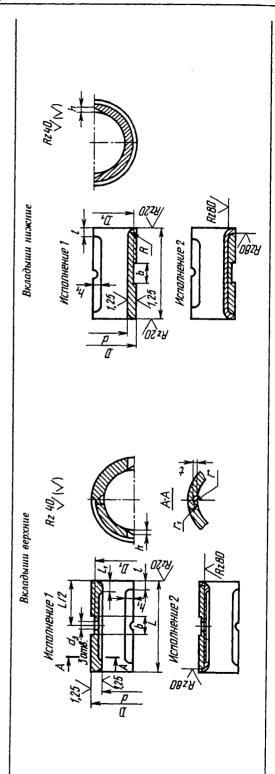
Материал втулок: антифрикционный чугун АЧС-1 или АЧК-2.

Предельные отклонения наружного диаметра D по и8. Предельные отклонения размеров, не ограниченных допусками: для валов - по h14, для остальных - по ±1Т14/2.

Допуски перпендикулярности оси втулки относительно ее торцов и торцовое биение по 8-й степени точности ГОСТ 24643-81. Pадиальное биение отверстия d относительно диаметра D по 6-й степени точности Γ OCT 24643-81.

Овальность, конусообразность, бочкообразность отверстий по 7-й степени точности ГОСТ 24643-81.

Допускается изготовление смазочных канавок другой формы.


10. Закрепительные штифты втулок

Размеры, мм

8-9 ip	5 28-40	45–70	75–90	95–120	
91-8	6 12—20	16—30	20-40	3045	

11. Металлические гладкие вкладыши корпусов

Предназначены для подшипников скольжения общего назначения.

Продолжение табл. 11

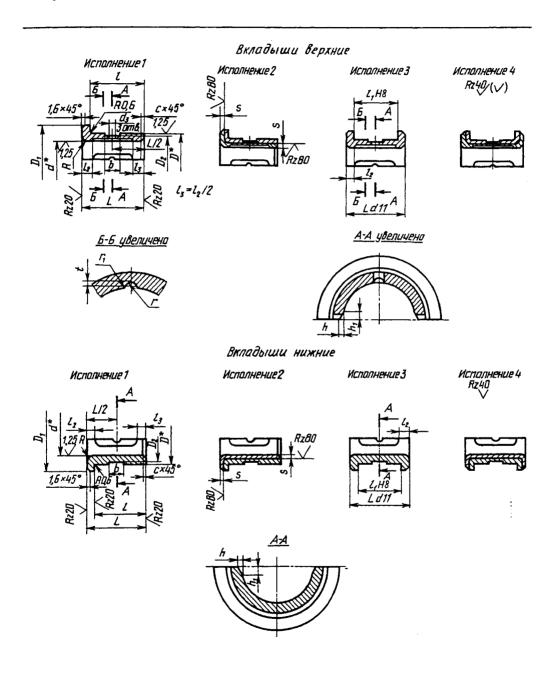
Размеры, мм

			11		
	•		2,0	2,5	2,5
	<i>\z</i>		6	12	12 12 15 15 15 15 15 15 15 15 15 15 15 15 15
			r	4	4 4 % % % %
	d_s		5	9	\$ \$ \$ \$ \$ \$ \$ \$
	hı		7	∞	12
	ų		1,0	1,0	5,1
	×		E.	4	٠,
	p		12	15	15 15 20 20 20 20
	$l = l_1$		9	∞	01
	7		35; 40; 50; 60 35; 50 35; 60	35; 50; 65; 75; 90 40; 50; 65; 90 40; 60; 75	40; 60; 85 50; 90 60, 75; 100 60; 80; 100 40; 60; 80 65; 90; 110
	D ₁		46 56 66	88 88 90	100 110 115 120 126 130
D*	ение	k6	50 60 70	85 90 95	105 115 120 125 135
<i>d</i> *	Отклонение	Н7, Н8	40 50 60	70 75 80	90 100 105 110 115

Продолжение табл. 11

d*	4											
Откло	Отклонение	D_1	7	l = l	9	8	ч	ų l	d _s	i.	۲	~
Н7, Н8	k6					<u> </u>						
125	140	135	65: 100: 115	12	92	7	3 6	71		ų		
				1	2	.	۲,2	01	×	<u> </u>	21	2,5
* Пара	* Параметры шероховатости	эховатости	поверхностей d и D $Ra=2,5$ мкм при изготовлении по 8-му квалитету точности для диаметров свыше 18 мм.	= 2,5 мкм	при изготс	влении по	8-му ква	литету то	чности д	тя диамет	гров свы	ие 18 мм.

Допуски перпендикулярности оси вкладыша относительно его торцов и торцовое биение должны быть по 8-й степени точности ГОСТ


Технические требования к вкладышам приведены на стр. 35.

12. Карманы маслоподводящие для жидкой смазки гладких вкладышей

2 2 ∞ 2 9 ζ, 2,0 ~ Ţ 9 <u>4</u> 24 32 L 50 Размеры, мм Ü 17 34 50 40 40—50 50—60 70-80 105 - 120125 P Маслоподводящие карманы, проточки и отверстия не следует размещать в нагруженной зоне подтак и на шипника как на поверхности трения, поверхности контакта

13. Металлические вкладыши с буртиком

Предназначены для подшипников общего назначения.

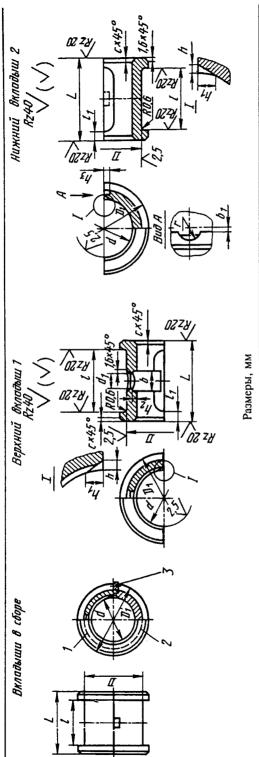
Продолжение табл. 13

		7			9			∞				10	
Ţ	l _j	Исполнение 3 4		30 45 50	35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	र छ। ४	40 60 80 25 45 65	45	50 70 35 55	60 80	60 90 110 45 75 95
7	,	Исполнение 1. 2		1)		30 40 50 60 25 35 45 55	50 60	2	$\frac{40}{32} \frac{50}{42} \frac{80}{72}$	1 010	$\frac{70}{62} \frac{96}{82}$	80 72 82	60 80 100 125 52 72 92 115
		_			7			2,5				2,5	
		_	v		6			12		12	12	15	15
		`			3			4		4	4	5	5
		a,			5			9		9	9	∞	8
<u> </u>		ن			1,0			9,1				1,6	
		<u>~</u>			7			∞				12	
		<u>~</u>			1,0			0,1	**************************************			1,5	
<u> </u>	-	× 			3			4			***	2	
		<i>o</i>			12			15		15	15	70	50
	-	<u>د</u> 		46	99	99	80	85	96	001	110	120	130
	-	2		09	70	80	95	100	110	120	130	140	150
a	The way	Отмюние	k6	90	09	70	82	06	95	105	115	125	135
p	٥		Н7, Н8	40	50	09	70	75	80	06	001	011	120

Продолжение табл. 13

	7		12					
$\frac{1}{T}$	Исполнение 3, 4		70 100 125 50 80 105					
$\frac{1}{T}$	Исполнение 1, 2		70 90 125 60 80 115					
		-	2,5					
	z.		15					
	,		5					
	d_3							
	2		9,1					
	14		91					
	ų		2,5					
	R		9					
	9		20					
	D_2		145					
	D_1	-	165 145					
D	Отклонение	k6	150					
p	Откло	Н7, Н8 к6	130					

^{*} Параметры шероховатости поверхностей d и D Ra = 2,5 мкм при изготовлении по 8-му квалитету для диаметров свыше 18 мм.


Технические требования к вкладышам приведены на стр. 35.

14. Карманы маслоподводящие для жидкой смазки вкладышей с буртиками

Размеры, мм

_	9	9	8	10	01	12
1	1,5	1,5	7	2	2	2,5
l) = l'ı	3	3	4	5	S	9
	14	81	24	32	40	20
v	17	20	27	34	40	50
р	40—50	09-05	70—80	90-100	105-120	125
A-A					Маслоподподящие карманы, проточки и отверстия не следует размещать в натоуженной зоне попшилника как на поверхности	трения, так и на поверхности контакта

15. Чутунные вкладыши для разъемных корпусов (по ГОСТ 11611-82)

Обозначения				0	бщие	Общие размеры						Вкла	Вкладыш			Вкля	Вкладыш 2	2
Вкладыш в сборе	Масса, кг	d D Macca, (откло- кг нение по нение по кл H8) s7)		D_1	7	<i>l</i> (откло- нение по H8)	l/	ų	l _l	v	d ₁ b	q	h ₂	Macca, h ₃	h3	,	b ₁	Масса, кг
32 × 40 35 × 40	0,23	32 35	40	46	04	24 24	۵	0,1	7	8,0	10 12	12	1,5	0,11	3,6 3,5	3,5	1,0	0,12
40 × 50 45 × 50	0,31	40 45	50 55	58	50	30 45					12 15	15		0,14			1,8	0,17

Продолжение табл. 15

, ,	11				,	ı		ı
Вкладыш 2	Масса, кг	0,24	0,29	0,33	0,63	0,90	1,12	1,41
Вкладыш 2	p_1		1,8				2,5	
Вкл			3,5				5,0	
	<i>h</i> 3		3,6				4,2	
	Масса, кг	0,20	0,22	0,26	0,50	0,74	0,86	1,04
Вкладыш 1	h ₂		1,5			2	2,5	
Вкл	9		15			15		20
	q ₁		12			12		15
	c		8,0					
	h ₁		7			∞	10	12
	ų	Henne no '1 " "1 C H8) 40 70 70 70 70 70			2,0	2,5	3,0	
	l _I		5			9	8	·
Общие размеры	<i>l</i> (откло- нение по H8)	40 70	80 70 8 1.0 7 0.8 80 70 8 0 70 100 85 6 2.0 8 1.0 8 1.0 8 1.0 1.0 1.00 85 1.0 8	85 110	110			
5щие р	7	63	63	80	001	100	100	125
Ō	D_1	89	73	98 86	95	105	120	130
	р (откло- о нение по s7)	09	99	78	85	95	110	120
	d (откло- нение по H8)	90	55	63	70	80	06	100
	Масса, кг	0,44	0,51	0,59	1,13	1,64	1,98	2,45
Обозначения	Вкладыш в сборе	50 × 63 50 × 80	55 × 63	63 × 80 63 × 100	70 × 80 70 × 100	80 × 100 80 × 125	90 × 100 90 × 125	100 × 125 100 × 160

Продолжение табл. 15

Закрепительная втулка 3

ГОСТ 11611—82 предусматривает также вкладыши диаметрами: d = 25; 28 и 100 - 220 мм.

Пример условного обозначения вкладыша всборе с диаметром d=50 мм, длиной L=63 мм:

Вкладыш 50 × 63 ГОСТ 11611-82

Отверстие диаметром d окончательно растачивают в сборе с корпусом подшипника.

Обточку до наружного диаметра D и подрезку внутренних торцов вкладышей по размеру I производят совместно деталей 1 и 2. Вкладыши изготовляют из антифрикционного чугуна АЧС-1 или АЧК-2 по ГОСТ 1585-85, закрепительные втулки — из стали Ст3.

Предельные отклонения размеров, не ограниченных допусками: для валов - по h14, для остальных - ±

Отклонение от перпендикулярности оси вкладыша относительно его торцов и торцовое биение - по 8-й степени точности ГОСТ 24643-81.

Овальность, конуссобразность, бочкообразность отверстий d - по 7-й степени точности ГОСТ 24643-81.

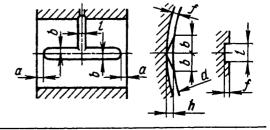
16. Фиксация вкладыща в корпусе по ГОСТ 11611-82

Размеры, мм

Вкладыши с закрепительной втулкой в корпусе	Диаметр вала	ь	r	h
	25			
	28			2.6
	32	1,0	3,5	3,6
	36			
	40			
	45			
Выемка в основании корпуса под закрепи-	50	1,8	3,5	3,6
тельную втулку <u>І</u> увеличено	55			
	63			
100 70 10 Rz 40	70			
10 th 10 10 10 10 10 10 10 10 10 10 10 10 10	80			
and r	90		5 0	
	100	2,5	5,0	4,2
()	110			
	125			

17. Профиль и размеры канавок подшипников

Для неразъемных подшипников


Для разъемных подшипников

Πρυ ποκκού φυνьπραμυν καςνα

При возможности загрязнения масла

Продолжение табл. 17

Размеры,	MM
----------	----

d	h	h_1	r	R	ь	l	f	а
До 63	1,5	2,3	3	9	7	6	1,5	5
Св. 63 до 80	2	3	4	12	8	8	2	6
» 80 » 90	2,5	3,8	5	15	10	10	2	8
» 90 » 110	3	4,6	6	18	13	12	2,5	8

Допускаемые режимы работы металлических втулок и вкладышей подшипников приведены в табл. 18.

18. Допускаемые режимы работы подшипников

Материалы втулок и вкладышей	<i>р</i> υ, МПа⋅м/с	υ, м/с, до	<i>р</i> , МПа, до
Бронза	10	3	10
БрОЦС5—5—5			
Бронза	20	3	12
БрОФ10—1			
Бронза	15	≥ 2	_
БрАЖ9—4Л			
Сплав	5	3	
ЦАМ9—1,5Л			
Чутун АЧС-1	1,8	0,2	9
Чугун АЧК-2	12	1	12

КОРПУСА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Корпуса подшипников скольжения предназначены для применения в оборудовании с раздельной установкой опор валов

 при больших длинах валов и в других случаях.

Корпуса подшипников изготовляют в неразъемном исполнении (на лапах — по ГОСТ 11521—82, фланцевые — по ГОСТ 11522—82—ГОСТ 11524—82) и разъемном исполнении (по ГОСТ 11607—82—ГОСТ 11610—82) со втулками и вкладышами из антифрикционного чугуна (по ГОСТ 11525—82, ГОСТ 11611—82, ГОСТ 25105—82).

Технические требования. Допускается по согласованию между изготовителем и потребителем корпуса изготовлять из стального литья и сварные.

Матернал: основания и крышки СЧ 15; шпильки сталь 45. Покрытие шпильки Хим. Окс.

Резьбовые отверстия под шпильки допускается изготовлять с тугой резьбой.

В смазочных отверстиях крышек допускается применять взамен резьб $M10\times1$ и $M14\times1,5$ соответственно резьбы K1/8" и K1/4" по ГОСТ 6111-52.

Острые кромки притупить.

Предельные отклонения размеров поверхностей, полученных обработкой и не ограниченных допусками, должны быть:

по Н14 — для отверстий;

по h14 — для валов;

по
$$\pm \frac{IT14}{2}$$
 — для остальных.

Предельные отклонения размеров между обработанными и необработанными поверхностями — по із 16.

В корпусах должны устанавливаться втулки по ГОСТ 11525—82 или вкладыши по ГОСТ 11611—82.

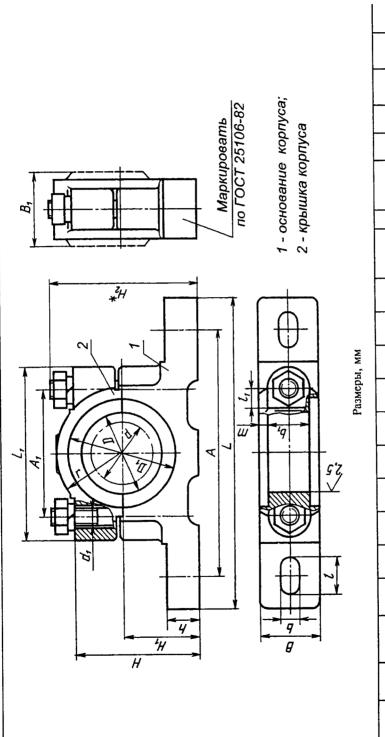
19. Неразъемные корпуса на лапах с двумя крепежными отверстиями (по ГОСТ 11521 —82)

^{*} Размер для справок.

Размеры, мм

Обозна-	Диал вал			гред. по Н8)										
чение корпуса	1-й ряд*	2-й ряд	l-й ряд*	2-й ряд	A	L	Н	H_1	h	В	<i>B</i> ₁	ь	l	r
12 × 16		12		18						16	16			
12 × 20					65	90	45	22	12	20	20	9	13	19
14 × 16	14		20				:			16	16			
14 × 20										20	20			
16 × 20		16		22	-									
16 × 25					75	105	50	25		25	25			21
18 × 20	18		24							20	20		ļ	
18 × 25									14	25	25	11	17	
20 × 25		20		26						20				
20 × 32					80	120	58	28		25	32			25
22 × 25	22		28							20	25			
22 × 32										25	32		<u> </u>	

Продолжение табл. 19


											IIpooo			
Обозна-	Диам вал		D (п откл. г	ред. 10 H8)										
чение корпуса	1-й ряд*	2-й ряд	l-й ряд*	2-й ряд	A	L	Н	H_1	h	В	<i>B</i> ₁	b	I	r
25 × 32	25		32							25	32			
25 × 40					100	140	68	34	16	32	40	13	20	30
28 × 32	28		36							25	32			
28 × 40										32	40			
32 × 40	32		40		120	165	80	42	20			17	24	35
32 × 50	32		40							40	50			
35 × 40	35		45		120	165	80	42	20	32	40	17	24	35
35 × 50										40	50			
40 × 50	40		50											
40 × 63					145	200	95	48		50	63			41
45 × 50	45		55							40	50			
45 × 63									25	50	63	22	32	
50 × 63	50		60											
50 × 80					165	220	112	56		63	80			52
55 × 63	55		65							50	63			
55 × 80										63	80			
63 × 80	63		73							63	80			
63 × 100]				200	270	140	71	32	80	100	26	39	63
70 × 80	70		85							63	80			
70 × 100										80	100		<u></u>	
80 × 100	80		95											
80 × 125		l			235	315	165	85	36	100	125			75
90 × 100	90		105							80	100	33	48	
90 × 125														
100 × 125	100		115		265	345	195	100	40	100	125			90
110 × 125	110		125					<u></u>			ļ		<u>.</u>	Ļ
125 × 125		125		140	310	410	226	118			<u> </u>			105
125 × 160					<u> </u>			ļ .	45	125	160	39	58	
140 × 125		140	1	155	330	430	245	125		100	125			115
140 × 160					<u> </u>	<u></u>	<u> </u>	<u> </u>		125	160	<u></u>	1 -5-0	

^{* 1-}й ряд является предпочтительным (оптимальным) для применения, так как он обеспечивает рациональный ряд несущих способностей корпусов при наименьших затратах.

Пример условного обозначения корпуса подшипника с $d=32;\ B_1=50:$ Корпус $32\times 50\ FOCT\ 11521-82$

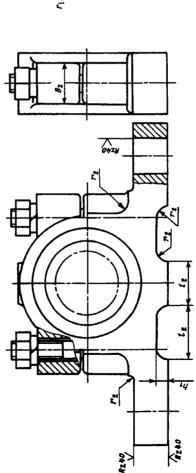
Технические требования — по ГОСТ 25106—82.

20. Корпуса подшипников скольжения разъемные с двумя крепежными отверстиями (по ГОСТ 11607-82)

E	3,5			
d_1	M8			
г, не менее	28			
1,	8			
,	17			
b ₁ (пред. 5 откл. по 1 h9)	11 18			
<i>b</i>	Ξ			
В ₁ (пред. откл. по h9)	,			
В	25			
ų	60 15 25			
H_2				
H_1	32			
Н	50			
L_1	80			
7	155			
A	60 155			
~	120			
D_1	43	48		
D (пред. откл. по Н8)	32	36		
Диа- метр вала d	25	28		
Обозна- Диа- <i>D</i> (пред. чение метр откл. корпуса вала <i>d</i> по H8)	25 × 25 25	28 × 25 28		

Продолжение табл. 20

E		4,0			2,0		4,0										
d_1				O W			M12		M16		M20				M24		
г, не менсе		35			43		52		69		82		8		105	112	130
l _l		"			12				91		70				77		
_				20			23		30		34				9		
b ₁ (пред. откл. по h9)		24			30		40		1		,		1		ı	1	
9				13		_	17	_	22		7	\dashv			32		
В ₁ (пред. откл. по h9)		,			1		'		70		85		110		140		180
В		32			40		48		09		75		100		110	120	140
ų		18			20		25		30		35			9		45	
H_2^*		80			06		102		140		170		195		210	230	260
Hı		42			45		53		70		85		95		106	118	132
Н		70			80		96		120		150		160		180	200	225
L_1		95			105		125		160		195		220		240	760	280
7		170			185		215		280		320		380		400	420	440
<u> 4</u>		70			80		95		125		150		170		190	210	230
4		135			150		170		220		260		300		320	340	360
Dı	43	48	52	55	63	89	73	80	92	105	115	125	140	150	165	180	210
D (пред. откл. по Н8)	32	36	40	45	20	55	09	99	78	85	95	110	120	130	145	160	185
Диа- метр вала <i>d</i>	25	78	32	35	40	45	50	55	63	70	80	96	100	110	125	140	160
Обозна- чение корпуса	25 × 32	28 × 32	32 × 32	35 × 32	40 × 40	45 × 40	50 × 48	55 × 48	63 × 60	70 × 60	80 × 75	90 × 75	100 × 100	110 × 100	125 × 110	140 × 120	160 × 140


* Размеры для справок.

Пример условного обозначения корпуса подшипника с d=70 мм, B=60 мм:

В разъемных корпусах подшипников следует применять вкладыши по ГОСТ 11611-82. Технические требования - по ГОСТ 25106-82.

Размеры и шероховатость поверхностей конструктивных элементов корпусов

Для d = 25...160 мм.

1. Указанные на чертеже размеры l_2 , h_1 , B_2 , r_1 , L_2 определяют по формулам:

$$B_2 = (2,0 \dots 2,5)d_1;$$

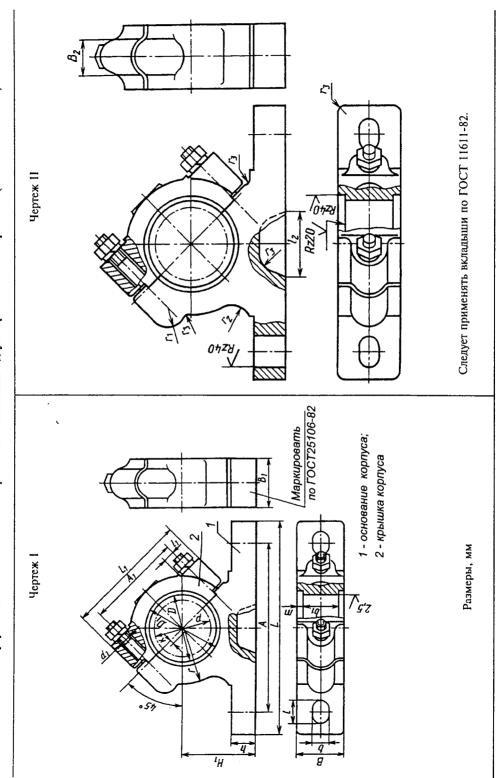
 $L_2 = \frac{L-L_1}{2} - (2 \dots 4);$

$$h_1 = (0,20...0,25) h;$$

$$I_2 = 0.25 L_1$$
; $\eta = 0.5 B_2$.

2. Радиус закругления г определяют в зависимости от значения L₁:

$$r_2 = 3$$
 мм при $L_1 \le 80$ мм,


$$r_2 = 5 \text{ mm npu } L_1 = 95 \dots 125 \text{ mm},$$

$$r_2 = 10 \text{ mm npu } L_1 = 150 \dots 220 \text{ mm},$$

 $r_2 = 20 \text{ mm npu } L_1 = 240 \text{ mm}.$

поверхностей, не подвергаемых механической обработке, Rz < 630 мкм

§>

21. Корпуса подшипников скольжения разъемные наклонные с двумя крепежными отверстиями (по ГОСТ 11609-82)

Продолжение табл. 21

	E	3,5		4,0		5,0		4,0											
	X		3						5							∞			
	d ₁	M8	M8		M10			M12		M16		M20				M24	····		
•	i.	28		35		43		52		69		85		06	·	105	112	130	
	1/	8				12				91		20				77	·		
	~	17			70	-		23		30		34				40			
	b ₁ (пред. откл. по h9)	18		24		30		40		1		1		ı			1		
	9	11			13			17		22		26				32			
	В ₁ (пред. откл. по h9)	,		ı		-		ı		70		85		011		140		180	
	В	25		32		40		48		09		75		100		110	120	140	
	ų	15		18		20		25		30		35			40		45		
	H_1	20		09		63		75		95		112		125		132	140	150	
	L_1	08		95		105		125		091		195		220		240	760	280	
	7	155		170		185		215		280		320		380		400	420	440	
	4	9		70		08		95		125		150		170		061	210	230	
	4	120		135		150		170		220		260		300		320	340	360	
	D_1	43	48	52	55	63	89	73	80	06	105	115	130	140	150	165	081	210	
	Диа- <i>D</i> (пред. метр откл. зала <i>d</i> по H8)	32	36	40	45	50	55	09	65	78	85	95	011	120	130	145	160	185	
	Диа- метр вала <i>d</i>	25	28	32	35	40	45	50	55	63	70	80	96	100	110	125	140	160	
	Обозна- чение корпуса	25	28	32	35	40	45	20	55	63	70	80	8	100	110	125	140	160	

Пример условного обозначения разъемного наклонного корпуса с d = 70 мм:

Kopnyc 70 FOCT 11609-82

Корпуса изготовляют из чугуна СЧ15 или из чугунов других марок с механическими свойствами не ниже, чем у чугуна СЧ 15. По согласованию допускается корпуса изготовлять из стального литья и сварные. Технические требования - по ГОСТ 25106-82.

Размеры и шероховатость поверхностей конструктивных элементов разъемных наклонных корпусов

1. Указанные на чертеже II размеры B_2 , l_2 , r_1 , r_2 определяют по формулам:

$$B_2 = (2,0...25) d_1;$$
 $l_2 = (0,9...1,2) r;$ $r_1 = 0.5 B_2;$ $r_2 = (0,7...0,9) B_2.$

 $r_3 = 3$ мм при $L_1 \le 80$ мм; $r_3 = 10$ мм при $L_1 = 150..220$ мм;

2. Радиус закругления r_3 определяют в зависимости от значения L_1 :

$$r_3 = 3$$
 мм при $L_1 \le 80$ мм; $r_3 = 10$ мм при $L_1 = 150...220$ мм; $r_3 = 5$ мм при $L_1 = 95...125$ мм; $r_3 = 20$ мм при $L_1 \ge 240$ мм.

3. Параметр шероховатости (ГОСТ 2789—73) поверхностей, не подвергаемых механической обработке, $Rz \le 630$ мкм.

НЕМЕТАЛЛИЧЕСКИЕ ПОДШИПНИКИ СКОЛЬЖЕНИЯ

Металлофторопластовые подшипники. Основное применение металлофторопластовых подшипников в узлах сухого трения. В узлах трения многих видов оборудования недопустимо или крайне нежелательно применение смазки. Например, по технологии производства часто исключается смазка в машинах пищевой, текстильной, бумажной и химической промышленности.

Металлофторопластовый материал без смазки при малых скоростях допускает очень большие нагрузки (до 350 МПа). Сохраняет работоспособность в интервале температур от ~200 до +280 °С. При температуре свыше +120 °С нагрузочная способность постепенно снижается; при температуре +280 °С достигает примерно половины начальной величины. При низких скоростях скольжения (0,05—0,1 м/с) и высоких

нагрузках коэффициент трения материала минимальный. При нагрузках в пределах 0,1—10 МПа и при скоростях скольжения 0,2—5 м/с коэффициент трения может изменяться от 0,1 до 0,2, т. е. быть в пределах обычных подшипниковых материалов при граничной смазке.

Повышение скорости скольжения при сохранении температуры увеличивает коэффициент трения. В зависимости от режимов работы коэффициент трения подшипников в период нормальной работы без смазки может быть в пределах 0,04—0,23.

Наиболее рациональными и эффективными материалами являются ленточные. Основой их является стальная лента, на которую нанесен тонкий пористый металлический слой антифрикционного сплава, поры которого заполняются фторопластом.

22	Размены.	мм	пенты	МФП

	Толщина ленть	I		
общая	стальной основы	антифрикционного слоя	Ширина	Длина полос
1,1	0,75	0,35		
1,6	1,30	0,30	75; 100	500-2000
2,6	2,30	0,30		ļ

 $[\]Pi$ р и м е ч а н и е . Допуск на толщину ленты 0,05 мм; толщина приработанного слоя 0,06 - 0,035 мм.

Из металлофторопластовой ленты (МФЛ) штамповкой и калибровкой изготовляют неразъемные, разъемные и открытые подшипники. К неразъемным относятся свертные втулки.

Металлофторопластовая лента состоит из трех слоев:

- 1) основы в виде полос из сталей 08кп, 10кп, покрытых слоем красной меди М1 или латуни Л90;
- порошкового пористого слоя из сферических гранул бронзы, напеченных на стальную ленту;
- фторопластового слоя с наполнителем, покрывающим тонкой пленкой гранулы бронзы и заполняющим пустоты пористого слоя бронзы.

23. Основные размеры, мм, втулок из МФЛ

Внутренний диаметр (поле допуска Н9 ^{2*} после запрессовки)	Наружный диаметр (поле допуска рб) ^{2*}	Ширина втулки ^{1*} (допуск - 0,5)
8	10	8, 10, 12
10	13	6, 10, 12, 16
12	15	8, 10, 12, 16, 20
15	18	10, 12, 16, 20, 25
16	19	10, 12, 16, 20, 25
18	21	12, 16, 20, 25, 32
20	23	12, 16, 20, 25, 32, 40
22	25	16, 20, 25, 32, 36, 40
25	28	16, 20, 25, 32, 40, 45
30	33	20, 25, 32, 40, 45, 50
32	37	20, 25, 32, 40, 50
36	41	25, 32, 40, 50
40	45	32, 40, 50, 60
45	50	32, 40, 50, 60, 65
55	60	32, 40, 50, 60, 65, 70, 75

^{1*} Наружная и внутренняя фаска 0,4 × 45°.

Рабочий слой состоит из суспензии фторопласта 4ДВ - 75 % и MoS_2 - 25 % (объемные доли).

Размеры ленты соответствуют данным табл. 22.

Основные размеры втулок из металлофторопластовой ленты приведены в табл. 23.

Запрессовка готовых втулок в корпус с посадкой рб обеспечивает фиксацию втулки и ее упругую устойчивость.

Отношение радиуса изгиба к толщине материала при свертывании втулок должно быть не менее 6.

Свертывание втулок антифрикционным слоем наружу не допускается из-за образования разрывов в наружном бронзовом слое.

При недостаточной величине зазора и нагреве подшипника вследствие трения может получиться заклинивание (заедание) вала; при излишне больших зазорах уменьшается площадь соприкосновения, вследствие чего возрастают фактические давления и ускоряют износ поверхностного слоя фторопласта.

Рекомендуемые зазоры при установке подшипников из МФЛ приведены в табл. 24

24. Рекомендуемые зазоры металлофторопластовых подшинников, работающих без смазки

Внутренний диаметр втулки, мм	Расчетный диаметральный зазор, мм				
10—18	0,030				
18-30	0,035				
30-40	0,040				
40—50	0,045				

Исследовання работоснособности подшипников из МФЛ подтвердили сравнительно высокую стабильность их антифрикционных свойств при повышении температуры. Однако более длительные их испытания приводили к износу верхнего приработочного слоя ленты и оголению бронзы. С течением времени (особенно быстро при трении без смазки и больших нагрузках) был заметен дальнейший износ

^{2*} Поля допусков даны по ГОСТ 25346-89.

ленты. При введении жидкого масла или пластичного смазочного материала скорость изнашивания материала заметно уменьшилась.

Срок службы подшипников зависит от их габаритов, твердости и шероховатости рабочей поверхности стального вала. С уменьшением рабочего диаметра и увели-

<i>d</i> , mm	10 0,50	15 0,68
<i>Ra</i> , мкм	2,5 0,3	1,25 0,47

Влияние твердости стального вала на скорость изнашивания менее заметно. Так, при прочих одинаковых условиях срок службы подшипников при трении по незакаленному валу всего на 14 % меньше, чем при трении по закаленному валу с HRC > 45.

Так как слой ПТФЭ (политетрафторэтилен) на ленте имеет незначительную толщину, то теплопроводность этого комбинированного материала близка теплопроводности металла ленты. В процессе изнашивания теплопроводность ленты изменялась от 14,7 до 33,8 Вт/(м.°С) при рекомендованном расчетном его значении 28 Вт/(м.°С). Столь высокие значения теплопроводности ленты предопределяют (наряду с низким коэффициентом трения) низкую температурную напряженность эксплуатации этих подшипников.

Подшипники из МФЛ в основном применяют в узлах, где смазывание недопустимо или затруднено, что позволяет упростить обслуживание и повысить надежность эксплуатации машин.

Ленточный материал, где в качестве антифрикционного слоя использован ПТФЭ (37 %) со свинцом (50 %) и фенолформальдегидной смолой (13 %), выпускают в Германии под маркой Спрелафлон (SF). Преимуществом подшипников из этого материала является возможность механической обработки рабочей поверхности. Ленточный материал SFa, SFb, и SFc различается толщиной антифрикционного слоя. Выпускают также втулки из композиционного материала SFm, который не спекается со стальной лентой и уступает ленточному материалу по износостойкости, допустимым нагрузкам и температуре эксплуатации.

чением шероховатости вала более *Ra* 0,32 мкм скорость изнашивания подшипников заметно повышалась.

Ниже приведены значения коэффициентов, рекомендуемые для учета влияния масштабного фактора $K_{\rm m}$ и шероховатости $K_{\rm m}$ на уменьшение срока службы подшипников из МФЛ:

20	25	30	35	40
0,81	0,91	1,0	1,08	1,13
0,63 0,68		0,32 1	0,1 1	6

Материал SF рекомендуется применять для подшипников, в которых смазывание не может осуществляться или исключается по технологическим соображениям, либо когда вследствие малой скорости скольжения или качательного движения вала не может образовываться смазочная пленка. Эти материалы наиболее часто используют для изготовления узлов рулевого и педального управления автомобилями, текстильного, пищевого и медицинского оборудования, а также для накладных направляющих. Втулки из композиционного материала рекомендуется применять в агрессивных средах.

Работоспособность ленточного материла SF в тяжелонагруженных шарнирах при давлении 70 МПа и скорости скольжения 0,02 м/с [32]: амплитуда колебаний ±2° при частоте 1,9 Гц; коэффициент трения стабильный и не превышает 0,041, температура 27°С. (Коэффициент трения для МФЛ несколько выше — 0,05, температура — около 35°С.) После 60 000 двойных ходов износ подшипников из SF составил всего 4 мкм.

О целесообразности использования материала SF для подшипников свидетельствует их многолетняя эксплуатация в узлах различных металлорежущих станков.

Подшипники из древесных пластиков. Подшипники скольжения из древесных слоистых пластиков отличаются хорошей износостойкостью, приближающейся к стойкости текстолита и цветных металлов. Наибольшей износостойкостью обладают торцовые поверхности древесного слоистого пластика, наименьшей — поверхности, параллельные клеевым слоям, что следует учитывать при конструировании втулок и вкладышей подшипников. Износ

щеек валов, работающих в паре с вкладышами из древесного слоистого пластика, меньше, чем при работе с вкладышами из бронзы или антифрикционного чугуна.

Способность древесных пластиков поглощать воду и разбухать является отрицательным свойством; в то же время смачиваемость материала позволяет применять воду в качестве смазывающего вещества.

Древесные пластики имеют относительно невысокий модуль упругости, вследствие чего подшипники излишне пружинят. Для уменьшения этого недостатка применяют вкладыши небольшой толщины с плотным набором в кассету. Другой недостаток пластика — низкая теплопроводность; поэтому нужно уделять большое внимание выбору смазки и способу ее подачи, что влияет на интенсивность отвода тепла.

При конструировании подшипников из древесных слоистых пластиков рекомендуется соблюдать следующие условия.

Толщину стенок вкладыша принимать: около 5 мм при диаметре вала до 50 мм;

8 - 10 мм при диаметре 60 - 100 мм;

10 - 12 мм при диаметре более 100 мм.

Для облегчения отвода тепла при больших удельных давлениях и окружных скоростях толщина вкладыша должна быть небольшой, длина — примерно равна его внутреннему диаметру (меньшая длина при смазке маслом).

При определении зазора между валом и подшипником учитывают тепловое расширение вала и подшипника, шероховатость поверхности, условия смазки и охлаждения.

Если древесный пластик работает не по торцовой поверхности, принимают во внимание возможное изменение размеров от разбухания вкладыша. Если же он работает торцом к поверхности шейки вала, то при смазке и малой нагрузке принимают посадку H9/f8, а при большой нагрузке посадку H11/d11.

При диаметре d шейки вала более 25 мм рекомендуются зазоры 0,04 мм +0,002d для малой нагрузки и 0,04 мм +0,003d для большой нагрузки.

Для вкладышей из древесных пластиков следует принимать большие зазоры, чем для металлических, чтобы устранить зажим вала при тепловом расширении. При работе средней интенсивности для диаметра вала от 25 до 100 мм зазор следует принимать 0,10-0,15 мм, для более интенсивной работы зазоры увеличивают.

Втулки рекомендуется запрессовывать в кассеты с натягом главным образом при смазке маслом. При смазке водой вкладыши разбухают, поэтому натяг допускается небольшой.

Обычно величину натяга под запрессовку втулок при смазке маслом принимают 0,5-1,5 % от внутреннего диаметра втулок.

В качестве смазки используют жидкие минеральные масла, воду, эмульсии и пластичные смазки. Циркуляционная смазка машинным маслом применима при нагрузках до 2 МПа и скорости v до 4 м/с. Для дальнейшего повышения нагрузок p до 20 МПа и скорости v до 7-10 м/с требуется водяная смазка. При более жестких условиях работы подшипников рекомендуется использовать эмульсии.

Текстолитовые подшипники. Подшипники из текстолита работают при температуре не выше 80 °C. При смазке водой они допускают нагрузку $p=30 \div 35$ МПа, $pv=20 \div 25$ МПа-м/с; при смазке маслом допускают $p=7,5 \div 10$ МПа, $pv=20 \div 25$ МПа-м/с.

Коэффициент трения текстолита: 0,07-0,08 при смазке минеральным маслом, 0,01-0,005 при смазке водой.

Полиамидные подшипники. Из полиамида изготовляют втулки и вкладыши способом литья под давлением. Полиамидные подшипники обладают малым коэффициентом трения и стойкостью к истиранию. Они допускают нагрузку $p = 5 \div 7$ МПа, $pv = 15 \div 20$ МПа·м/с, рабочую температуру не выше 100 °C; смазка минеральным маслом.

Капроновые подшипники. Капроновые подшипники допускают нагрузку $p \le 2,5$ МПа, окружную скорость $v \le 5$ м/с и температуру нагрева $t \le 100$ °C.

Относительный зазор в подшипнике

$$\varphi = \frac{D - d}{d} \approx 0,003 \div 0,006$$
,

где D - диаметр расточки вкладыща; d - диаметр шейки вала.

Капроновые подшипники смазывают минеральными маслами небольшой вязкости. При смазке водой грузоподъемность подшипников уменьшается. При p < 0.5 МПа и v < 1 м/с подшипники могут работать без смазки.

В капроновых подшипниках вследствие их малой теплопроводности резче, чем в

металлических, сказывается влияние скорости скольжения на температуру и грузоподъемность. Например, при уменьшении скорости с 1 до 0,4 м/с нагрузку при работе всухую можно увеличить на непродолжительное время с 0,2 - 0,5 до 2,0 - 2,5 МПа.

Добавлением небольшого количества (1 - 5 %) двусернистого молибдена или коллоидального графита увеличивается антифрикционное свойство подшипников.

К недостаткам капроновых (как и других пластмассовых) подшипников относятся разбухание в воде, малая теплопроводность, большая упругая деформация. Для уменьшения этих недостатков применяют металлические вкладыши, облицованные тонким слоем капрона (а также и других пластмасс). Облицовка осуществляется вихревым распылением. При изнашивании капроновый слой восстанавливается повторной облицовкой. Недостатком пленочных капроновых облицовок является оплавление даже при небольшом перегреве и старение с последующим разрушением.

Подшипники из пластифицированной древесины (лигностон). Изготовляются из прессованных брусков березы или бука с пропиткой. Применяют, например, для подшипников легких прокатных станов, транспортеров при небольшой нагрузке p < 10 МПа и v < 1 м/с.

25. Характеристика угленластиков отечественного производства

Параметр	АФ-3Т	AMC-1
Плотность, г/см ³ σ_{cx} , МПа, при температуре, °C:	1,73-1,80	1,74-1,76
20	90-150	160-180
200	60	30-40
σ _{изг} , МПа	60-80	50-70
НВ	48-54	40
KCV, кДж/м²	0,2-0,3	0,2-0,35
α·10 ⁵ , °C ⁻¹	1,8	4,0
λ, Bτ/(м.°C)	2-3	3-5
$T_{\text{экспл}}$, °С, предел:		
йинжин	-60	-60
верхний	250	200
f без смазки	0,087	0,1

Подшинники из углепластиков. Общим для углепластиков является высокое содержание порошковых углеродных наполнителей и смол горячего отверждения. Высокую износостойкость углепластикам придает порошок нефтяного кокса, являющийся основным наполнителем. Характеристики двух марок углепластиков приведены в табл. 25.

Результаты исследования и эксплуатации показали, что наиболее перспективны подшипники из углепластиков для работы без смазки, в воздухе, запыленном цементом, утольной и другой пылью, в сточных водах промышленных предприятий, в морской воде.

Технология изготовления подшипников из углепластиков аналогична технологии изготовления реактопластов. Подшипники из материала АФ-3Т прессуют при температуре 170 °C и давлении 80-150 МПа, а из материалов АМС-1 и АМС-3 - при 200 °C и 40—60 МПа. После прессования подшипники термообрабатывают для снятия внутренних напряжений и выявления дефектов (короблений, вздутий).

ВТУЛКИ И ВКЛАДЫШИ НЕМЕТАЛЛИЧЕСКИХ ПОДШИПНИКОВ

Рекомендации по выбору материалов. В зависимости от условий работы подшипникового узла выбирают марку материала для полимерной втулки. При подборе материала втулки необходимо учитывать требования по долговечности подшипникового узла с учетом предельной величины износа втулки, условий работы (наличие абразива, влаги, характера нагрузки и т. д.). Рекомендуемые полимерные материалы приведены в табл. 25а-25в.

Технические условия на свертные втулки из металлофторопласта (табл. 26 - 28). Внутренний диаметр втулок проверяют после запрессовки их последовательно в оба гнезда калибра, изготовленного с одной стороны по верхнему, а с другой стороны по нижнему предельному отклонению Н8 для соответствующего диаметра посадочного места в изделии.

Диаметр d должен удовлетворять требованиям посадки H7 и H8 в зависимости от типа втулки. Эскиз калибра для втулки с диаметром d=10 мм приведен на рис. 4.

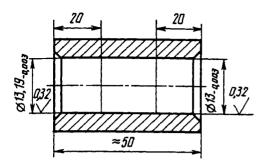


Рис. 4. Калибр для втулки

Наружный диаметр втулок гарантируется размерами оснастки.

Толщину и структуру антифрикционного слоя втулок проверяют на микрошлифах под микроскопом с увеличением в 30—50 раз.

Срок службы втулок 3 года.

Внутренний диаметр посадочного места в изделии выполняют по H7 с параметром шероховатости поверхности Ra = 0.63 мкм.

Отклонение от соосности отверстия A относительно отверстия B - не более 0,03 мм (рис. 5).

Запрессовку втулок выполняют с помощью запрессовочных пуансонов с заплечиками для упора в торец или буртик втулки. Диаметр запрессовочных пуансонов выполняют по посадке f7, а параметры шероховатости рабочей поверхности в пределах Ra 0,63 и Ra 0,32 мкм. Перед приложением усилия для запрессовки втулки необходимо установить относительно отверстия в изделии так, чтобы исключить возможность движения втулки с перекосом.

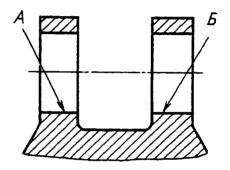


Рис. 5. Отклонение от соосности отверстия A относительно отверстия B

25a.	Рекомендуемые	MOTUMENTILLE	Marenualli
#J#.	х смомсядусими	ITOTIMEDIDE	MAICUNALIN

	Режим работ	ты		
<i>р</i> , МПа, не более	v, м/с, не более	<i>р</i> υ, МПа·м/с, не более	Смазка	Материал
5,0	0,3	0,25	Без смазки	Термопласты: полиамидная смола, по- ликапролактам, капрон вторичный
5,0	5,0	20	Периодичес- кая	То же
5,0	0,7	0,80	Без смазки	Композиции на основе термопластов с добавкой 5—10% антифрикционных наполнителей (графит серебристый, дисульфид молибдена, тальк)
5,0	0,7	0,80		То же
7,5	10	20	Периодичес- кая	Реактопласты: фенопласты, волокниты, текстолит, древесные пластики
7,5	10	25		Реактопласты, наполненные графитом

256.	Допустимые значени	я $[p_a v]$ (МПа·м/с)	при эксплуатации ТПС1*
------	--------------------	-----------------------	------------------------

Материал	Тип корпуса СК ^{2*} или	Рабочий диаметр d подшипника 3 , мм									
•	шестерня диа- метром, мм	10	15	20	25	30	40	50	60		
		Периодическое смазывание									
СФД, СТД	CK	$\frac{6,5}{10,0}$	$\frac{3,8}{6,0}$	$\frac{2,2}{3,5}$	1,6 2,7	1,2 2,0	1,0 1,6	$\frac{0,8}{1,3}$	$\frac{0,6}{1,0}$		
(основа - полицеталь)	200	4,5 7,4	3,0 4,8	$\frac{1,8}{3,0}$	$\frac{1,4}{2,4}$	1,1 1,8	0,9 1,5	$\frac{0,7}{1,2}$	$\frac{0,5}{1,0}$		
	100	3,2 5,0	$\frac{2,3}{3,2}$	$\frac{1,5}{2,0}$	1,2 1,8	1,0 1,6	$\frac{0.8}{1.4}$	$\frac{0,7}{1,2}$	$\frac{0,5}{1,0}$		
	СК	9,0 13,0	7,0 9,0	$\frac{3,6}{5,0}$	$\frac{3,0}{4,0}$	2,2 2,8	1,6	1,2 1,8	0,9 1,4		
СФД-ВМ, СФД-БС,	200	$\frac{7,0}{10,0}$	$\frac{5,0}{7,0}$	$\frac{3,0}{4,0}$	$\frac{2,6}{3,3}$	$\frac{2,0}{2,6}$	$\frac{1,5}{2,1}$	$\frac{1,1}{1,7}$	0,8 1,3		
СФД-ДМ, СФД-АФ	100	$\frac{5,0}{7,0}$	$\frac{3,8}{5,0}$	$\frac{2,8}{3,6}$	$\frac{2,4}{3,0}$	$\frac{1,8}{2,4}$	$\frac{1,4}{2,0}$	1,0 1,6	$\frac{0.7}{1.3}$		
(полицеталь (основа),		Одноразовое смазывание									
ПТФЭ, MoS ₂	СК	$\frac{5,0}{8,0}$	$\frac{3,5}{5,0}$	$\frac{1,8}{2,7}$	$\frac{1,5}{2,2}$	1,2 1,6	0,9 1,2	$\frac{0,7}{0,9}$	$\frac{0,6}{0,7}$		
и др.)	200	3,5 5,0	2,4 3,5	1,6 2,3	1,3 1,9	1,0 1,5	0,8 1,0	$\frac{0.7}{0.8}$	$\frac{0,5}{0,7}$		
	100	2,8 3,5	$\frac{2,1}{2,7}$	1,4 1,7	1,1 1,5	0,9 1,3	0,7 0,9	$\frac{0,6}{0,7}$	$\frac{0,5}{0,6}$		
ATM-2 (полиамид 6	СК	4,0 6,0	$\frac{3,0}{4,0}$	1,4 2,0	1,2 1,6	1,0	0,7 0,8	$\frac{0,6}{0,7}$	$\frac{0,5}{0,5}$		
(основа), графит,	200	$\frac{3,0}{4,0}$	1,9 2,8	1,2 1,8	1,0 1,4	0,8 1,0	0,6 0,7	0,5 0,6	0,4 0,5		
тер- моантрацит)	100	$\frac{2,0}{2,8}$	$\frac{1,5}{2,0}$	1,0	0,8 1,2	0,6	0,5 0,6	$\frac{0,4}{0,5}$	$\frac{0,3}{0,4}$		

^{1*} В числителе указано допустимое значение $[p_a v]$ подшипника с зазором, соответствующим посадке E10/h8, а в знаменателе — с зазором, соответствующим посадке D10/h8.

Для втулок, работающих при повышенных температурах, предусмотреть крепление в изделии, предотвращающее от осевого смещения и проворачивания (завальцовка, кернение, посадка на клею и др.).

После установки втулок в изделие внутренний диаметр их должен соответствовать назначенному типу втулки, его необходимо проверять гладким калибром.

Покрытие вала — гладкое хромирование с параметрами шероховатости поверхности Ra 0,63 мкм для втулок, изготовленных по H8, и Ra 0,32 мкм — для втулок, изготовленных по H7. Допускаются другие виды покрытий, которые обеспечивают надежную защиту вала от коррозии и не увеличивают шероховатости поверхности.

^{2*} СК — стенка корпуса.

 $^{3^{\}circ}$ Ширина ТПС l = 0.8d, толщина рабочего слоя t = 0.04d.

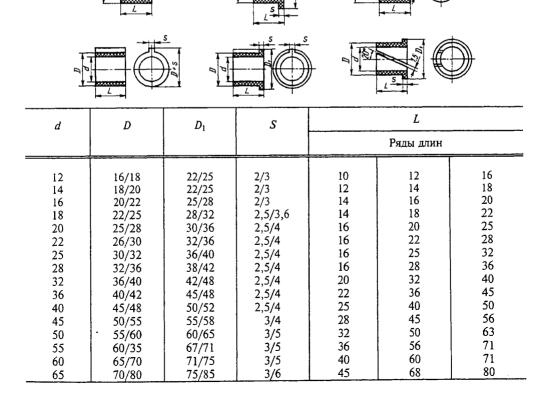
0.035/0.040

Рабочий диаметр	Тип корпуса (см. табл. 256)						
подшипника, мм	CK	Шестерня диаметром, мм					
		200	100				
10	0,160/0,200	0,140/0,175	0,120/0,140				
15	0,120/0,160	0,100/0,130	0,080/0,100				
20	0,090/0,135	0,070/0,105	0,050/0,080				
25	0,075/0,105	0,060/0,090	0,045/0,070				
30	0,060/0,085	0,050/0,070	0,040/0,055				
40	0,050/0,070	0,045/0,060	0,040/0,045				
50	0,045/0,060	0,045/0,055	0,035/0,040				

25в. Допустимые значения fp_av (МПа-м/с) при эксплуатации ТПС

Примечание. В числителе приведены допустимые значения $f \cdot p_a v$ при теплопроводности материала, равной 0,3 Вт/(м·°С), в знаменателе — при 0,8 Вт/(м·°С).

0,040/0,055


0,045/0,055

60

26. Втулки свертные из металлофторопласта

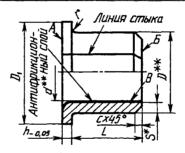
Втулки применяют в узлах трения скольжения.

Размеры, мм

Продолжение табл. 26

d	D	D_1	S	L			
				Ряды длин			
70	75/85	85/90	3/6	50	71	80	
75	80/85	85/90	3,5/6	50	75	90	
80	85/90	90/95	3,5/6	50	80	100	

Значения величин D, D_1 , S в числителе для втулок из термопластов, в знаменателе — для втулок из реактопластов.


Технические требования. Отклонения на размеры втулок — по ГОСТ 11710—66.

На размеры D и d допускается изготовление фаски — см. т. 1, гл. V.

Допускается изготовление шпонки со скругленными гранями и не на полную длину втулки. Поверхность втулок должна быть гладкой, без заусенцев, вздутий, трещин, расслоений, вмятин. После запрессовки втулки дополнительная обработка по отверстию d не допускается.

27. Втулки с буртиком из металлофторопласта

Втулки из металлофторопластовой ленты работают в условиях трения без смазки.

Размеры, мм

<i>d</i> (откл. по H7 и H8)	<i>D</i> (откл. по u7)	D_1	S	c ± 0,1	r	h	L _{-0,2} ***
5 6 7 8	7 8 9 10	12 14 16 18	1,0	0,3	1,0	0,9	4—8 4—10 4—10 4—12
10 12 14 16 18 20 22 24 26 28 30 32 34 35	13 15 17 19 21 23 25 27 29 31 33 35 37	20 22 24 26 28 30 33 36 39 42 45 48 52 54	1,5	0,5	1,5	1,4	6-16 6-18 8-22 8-24 10-26 10-30 12-34 12-36 16-40 16-42 16-44 16-48 18-56 18-56

Продолжение табл. 27

							orcanic maon. 27
<i>d</i> (откл. по H7 и H8)	<i>D</i> (откл. по u7)	<i>D</i> ₁	S	c ± 0,1	r	h	L_0,2***
38 40 42	41 43 45	57 60 65	1,5	0,5	1,5	1,4	18—56 18—60 20—60
45 48 50 55 60 65 70 75 80 85 90 100 110	50 53 55 60 65 70 75 80 85 90 95 105 115	67 73 75 82 90 95 105 112 120 125 130 140 150 160	2,5	0,8	2,0	2,4	22—60 24—60 26—65 28—65 28—65 28—65 30—65 30—65 32—65 32—70 36—70 40—70 40—70 40—70

Размер, для справок.

** Размеры даны для втулки в рабочем состоянии.

*** Размер L в указанных пределах брать из ряда: 4; 6; 8; 10; 12; 14; 16; 18; 20; 22; 24; 26; 28; 30; 32; 34; 36; 38; 40; 42; 44: 46; 48; 50; 56; 60; 65; 70 мм.

Материал: металлофторопластовая лента с основой из стали 08кп по ГОСТ 1050—88 и из коррозионно-стойкой стали 08X18H10T по ГОСТ 4986—79.

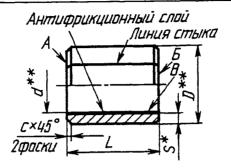
Покрытие для втулок из стали 08кп: Кд3, кроме поверхностей А и В.

Величина зазора в стыке в свободном состоянии втулки — не более 0,2 мм.

Отклонение от перпендикулярности поверхностей A и B относительно B — не более 0,1 мм на длине 100 мм.

Отклонение от параллельности линии стыка втулки относительно поверхности B — не более 0,3 мм на длине 100 мм.

Разностенность втулки — не более 0,03 мм.


Перед монтажом втулки, валы, оси тщательно промывают до полного удаления с их поверхности консервирующей смазки, пыли и насухо протирают бумажными или мягкими матерчатыми салфетками. Применение для протирки загрязненной абразивными частицами ветоши или грубых тканей не допускается. Не допускается применение для очистки от грязи металлических

щеток, ершей.

Промытые и насухо протертые рабочие поверхности валов, осей и втулок смазывают ровным слоем консистентной смазки типа ЦИАТИМ-201. В дальнейшем при работе смазка не требуется. Смазка узлов трения, работающих при повышенных температурах (от +100 до +260 °C), при установке не производится.

28. Вкладыние гладкие из металлофторопласта

Вкладыци из металлофторопластовой ленты работают в условиях трения без смазки.

Размеры, мм

d (откл. по H7, H8)	D (откл. по u8)	S	c ± 0,1	$L_{-0,2}$	<i>d</i> (откл. по Н7, Н8)	D (откл. по u8)	S	$c \pm 0,1$	$L_{-0,2}$
5 6 7 8	7 8 8 10	1	0,3	4-8 4-10 4-10 4-12	38 40 42	41 43 45	1,5	0,5	18—56 18—60 18—60
10 12 14 16 18 20 22 24 26 28 30 32 34 35	13 15 17 19 21 23 25 27 29 31 33 35 37 38	1,5	0,5	6-16 6-18 8-22 8-24 10-26 10-30 12-34 12-36 16-40 16-42 16-44 16-48 20-50 20-56	45 48 50 55 60 65 70 75 80 85 90 100 110	50 53 55 60 65 70 75 80 85 90 95 105 115 125	2,5	0,8	18-65 18-70 18-75 20-80 20-90 24-90 26-90 26-90 26-90 26-90 26-90 26-90

^{*} Размер для справок.

Технические требования. Материал: фторопластовая лента с основой из стали 08X18H10T (OX18H10T) по ГОСТ 4986—79.

Покрытие для втулок из стали 08кп: Кд3, кроме поверхности В.

Величина зазора в стыке в свободном состоянии втулки не более 0,2 мм.

Отклонение от перпендикулярности поверхностей A и B относительно поверхности B — не более 0,1 мм на длине 100 мм.

Отклонение от параллельности линии стыка втулки относительно поверхности B — не более 0,3 мм на длине 100 мм.

Разностенность втулки — не более 0,03 мм.

^{**} Размеры даны для втулки в рабочем состоянии.

d втул	пок, мм	Har	Возможный			
Номинал Отклонение		250	125	62,5	износ, мм, не более	
		Циклы, не более			1	
5—18	По Н8	15 000	60 000	150 000	0,10	
	» Н7	7 000	30 000	75 000	0,05	
20—40	По Н8	10 000	50 000	100 000	0,12	
	» Н7	5 000	25 000	50 000	0,07	
4 и выще	По Н8	10 000	50 000	100 000	0,20	
	» Н7	5 000	25 000	50 000	0,10	

29. Рекомендуемая долговечность втулок по числу циклов и переменной нагрузке

Вращение валов, осей и других деталей во втулках должно быть легким, без заеданий.

Рекомендуемые нагрузки на втулки и долговечность. Рекомендуемая долговечность втулок по количеству циклов при возвратно-вращательном движении вала с углом отклонения $\pm 30^\circ$, переменной циклической нагрузке от нуля до максимальной и рабочей температуры в пределах ± 60 °C должна соответствовать указанной в табл. 29. Скорость скольжения не должка превышать 0.01 м/с.

При повышении температуры до 260 °C нагрузки соответственно должны снижаться в 2 раза. В интервале температур от —60 до +260 °C изменение нагрузок должно соответствовать графику (рис. 6).

Втулки, работающие при нагрузках не выше 50 МПа, следует применять с учетом допускаемых значений pv, приведенных в табл. 30. Рабочая температура при этом должна быть от -60 до +60 °C.

С повышением температуры более +60 °C допустимые нагрузки и значения ру должны плавно снижаться, как показано на рис. 7.

Осевая нагрузка на буртик втулок должна быть не более половины рекомендуемой радиальной нагрузки на втулку и должна рассчитываться на площадь поверхности буртика без радиусных закруглений.

У втулок со снятым приработанным слоем после установки в изделие допускается для исправления формы отверстия (завышенная овальность, конусность и др.) калибровка протягиванием разглаживающих протяжек с натягом, не превышающим 0,06 мм. При этом протяжка и втулка должны быть смазаны смазкой ЦИАТИМ-201 или другой консистентной смазкой.

Коэффициенты трения при отсутствии смазки по мере износа антифрикционного слоя могут увеличиваться:

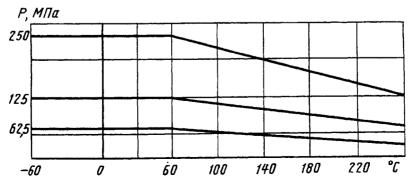


Рис. 6. Изменение нагрузок в интервале температур от -60 до +260 °C

30 J	Іопускаемые значения	DO AUS	втулок	HOR H	ardyskax I	не выше	50 МПа
------	----------------------	--------	--------	-------	------------	---------	--------

	Допускаемые значения рv, МПа·м/с (при износе не более 0,1 мм)				
Типовые случаи приложения нагрузки при применении втулок	Покрытие вала: гладкое хромирование; время работы 1000 ч	Другие виды покрытий при отсутствии коррозии вала; время работы 1000 ч			
Постоянная нагрузка вращающегося вала, фиксированная по отношению к втулке	0,31	0,23			
Постоянная нагрузка вращающегося вала относительно втулки	0,42	0,31			
Переменная по величине нагрузка вала при возвратно-вращательном движении	0,47	0,42			

кинетический ($\mu_{\text{кин}}$) — от 0,07 вначале до 0,2 к концу работы;

статический ($\mu_{\text{стат}}$) — 0,10 вначале до 0.22 к концу работы.

Для повышения долговечности рекомендуется изготовление втулок с полностью снятым приработочным слоем на металлофторопластовой ленте и упрочнение поверхности антифрикционного слоя разглаживающими протяжками с натягом, не

превышающим 0,1 мм. Рекомендуемая форма протяжки показана на рис. 8.

Рекомендуемая методика подсчета размеров развертки втулок. Подсчет длины развертки заготовки для втулок без буртика (рис. 9).

Длина развертки

$$l = \pi (d + t_1 + 2t_2 + 3t_3),$$

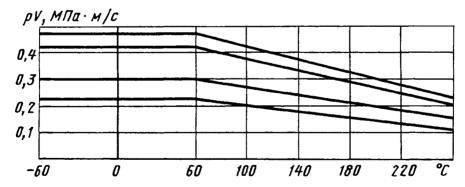
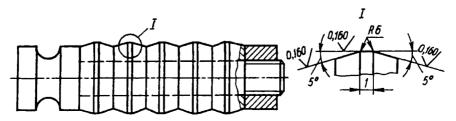
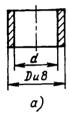


Рис. 7. Изменение допускаемых нагрузок и значений pv при изменении температуры




Рис. 8. Рекомендуемая форма разглаживающей протяжки

где d — внутренний диаметр втулки, взятый по верхнему пределу отклонения; t_1 — толщина стального слоя ленты; t_2 — толщина слоя пористой бронзы; t_3 — толщина приработанного слоя ленты.

Подсчет размеров развертки заготовки для втулки с буртиком (рис. 10).

Высота развертки заготовки

$$H = H_{\mathfrak{U}} + \frac{\pi \left(r + \frac{t_1}{2}\right)}{2} +$$

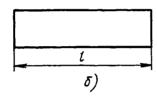


Рис. 9. Развертка заготовки втулки без буртика:

a - втулка: δ - развертка

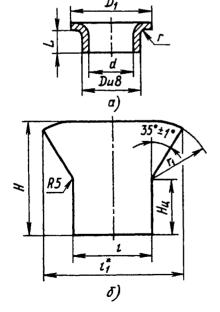
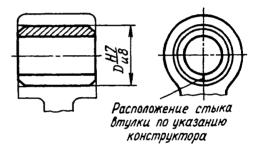


Рис. 10. Развертка заготовки втулки с буртиком:

a - втулка; δ - развертка: размер H_{u} - цилиндрическая часть заготовки

$$+\frac{D_1-(D+2r)}{2}$$
 1,2,

где 1,2 - коэффициент усадки материала при изготовлении втулки и для последующей механической обработки;


$$H_{u} = L - r.$$

Размеры I и I₁ развертки заготовки

$$l = \pi (d + t_1 + 2t_2 + 3t_3);$$

$$l_1 = l + 2r_1 \sin 35^\circ,$$

где $r_1 = H - H_{ii}$.

Примеры применения втулок приведены на рис. 11 и 12.

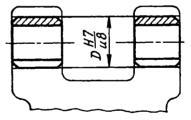


Рис. 11. Пример применения втулок без буртика

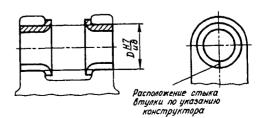
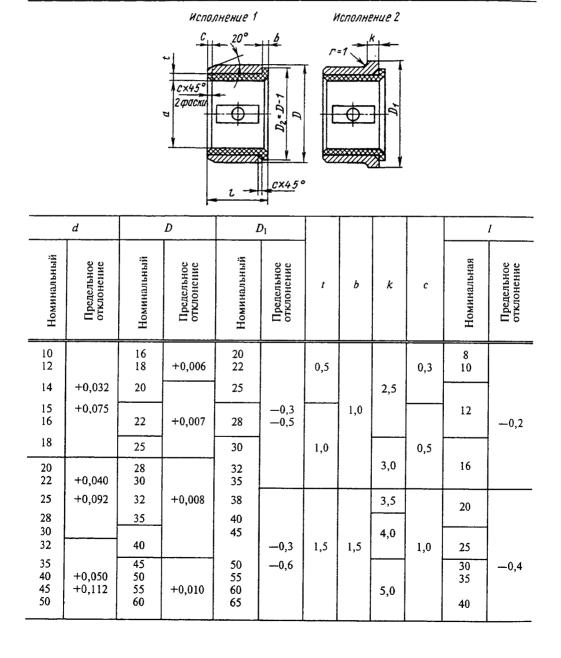
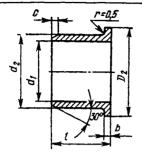



Рис. 12. Пример применения втулок с буртиком


РЕКОМЕНДУЕМЫЕ КОНСТРУКЦИИ ТЕРМОПЛАСТИЧНЫХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ (ТПС)

Анализ существующих конструкций полимерных подшипников скольжения показал, что наибольшее распространение получил подшипник, в котором изготовленная методом литья под давлением цилиндрическая втулка запрессована с определенным натягом в металлическую деталь или промежуточную обойму. Такая конструкция проверена в производственных условиях,

30а. Основные размеры, мм, термопластичных подшипников скольжения

30б. Основные размеры, мм, втулок из термопластов

Отверстие стальной обоймы (детали) выполняют по посадке H7 (ГОСТ 25346-89), шероховатость его поверхности не выше Rz 20 мкм.

			l_1			d_2					
	CG	₽Д	AT	M-2	Z.	Преде отклог					
d	Номинальный	Предельное отклонение	Номинальный	Предельное отклонение	Номинальный	СФД	ATM-2	l	<i>D</i> ₂	Ь	с
10	9,60		10,27		11,20			10	16		
12	11,60		12,27		13,20		-	12	18		
14	13,70		14,38		15,30				20		1,0
15	14,70	±0,05	15,38	±0,02	17,30	±0,05	±0,02	14	22	1,0	
16	15,70		16,38		18,30]	
18	17,80		18,50		20,40			_	_ 25		
20	19,80	1	20,52		22,40	•		18	28	1	
<u>22</u> 25	21,80 24,80	±0.07	22,52 25,63	±0.03	24,40 28,50	10.07	10.02	22	30	ļ	
28	28,0	±0,07	28,73	±0,03	31,60	±0,07	±0,03	22	32 35		1,5
30	30,0		30,73		33,60				40		
32	32,0		32,75		35,60			28	-10	1,5	
35	35,0		35,80		38,70				45	-,-	
40	40,0	±0,10	40,95	±0,04	43,80	±0,10	±0,04	35	50		2,5
45	45,0		45,95		48,80			40	55		
50	50,0		50,95		53,80			45	60		

удобна при монтаже, эксплуатации и ремонте.

В табл. 30а приведены конструкции и основные размеры ТПС с рабочим диаметром 10—50 мм. Эти размеры наиболее характерны для основного количества станочных подшипниковых узлов. Для взаимозаменяемости полимерных и металлических подшипников рабочие и посадочные размеры ТПС в основном соответствуют стандартам на втулки подшипниковые из чугуна, бронзы, порошковых материалов и биметалла.

Смазочные канавки и отверстия выполняются по усмотрению конструктора. В подшипнике из ATM-2 исполнение смазочных канавок и отверстий нецелесообразно. Конструкцией прелусмотрена запрессовка рабочей термопластичной втулки в стальную обойму. Если это конструктивно целесообразно и технологически выполнимо, следует запрессовать втулку непосредственно в деталь, в которой подшипник будет эксплуатироваться.

Конструкция втулок из материалов СФД и ATM-2 и основные размеры приведены в табл. 306.

РЕКОМЕНДУЕМЫЕ РАЗМЕРЫ ВТУЛОК ПОЛШИПНИКОВ ИЗ УГЛЕПЛАСТИКОВ

30в. Размеры, мм, втулок подшишников из углепластика АФ-3Т

	Диаметры		ı	с	Сфера	
	D	d			Н	R
R	16—25	8—15	6—10	3—6	0,8-1,0	8—10
	25—40	1525	10—20	6—10	1,0-1,5	10—15
	40—70	25—50	20—30	10-20	1,5	15-20
	70—105	50—80	30—50	20—30	1,5-2,0	20—30
	105—150	80—120	5070	30—50	2,0	30
=1	150-220	120—180	70—100	5075	2,0	30—40
	220—260	180-220	100—130	75—90	2,0—3,0	40—60
	260—300	220—250	130—150	90—100	3,0—3,5	60—70

30г. Размеры, зазоры и натяги, мм, в сопряжениях втулок из углепластиков АМС-1

Внутренний диаметр втулки d	Толщина стенки втулки	Радиус скругления <i>R</i>	Ширина <i>I</i>	Зазор по валу	Натяг по корпусу
8—10	2—4	1-2	4—10	0,02-0,04	0,03-0,05
10—15	4—7	2	10—15	0,04-0,06	0,030,05
15—30	7—10	3	15—25	0,06-0,08	0,05-0,10
30—50	7—10	3—4	25—40	0,08-0,10	0,050,10
50—75	10-12	45	4070	0,10-0,15	0,10—0,15
75—120	12—15	5—6	70—100	0,15—0,25	0,15-0,20
120—170	15—20	5—6	100—150	0,15-0,25	0,15—0,20
170—210	15—20	5—6	150—190	0,15-0,25	0,15-0,20
210—250	2025	5—6	190—220	0,15-0,25	0,15—0,20

Недостатками подшипников из углепластиков является хрупкость, что может привести к их растрескиванию и скалыванию. Вследствие отклонения от соосности вала нагрузка по ширине подшипника распределена неравномерно. Поэтому максимальные напряжения в цилиндрических подшипниках скольжения возникают у краев втулки.

Повысить нагрузочную способность подшипников из углепластиков и увеличить

прочность можно скруглением их кромок (табл. 30в).

Необходимые зазоры и натяги (табл. 30г) обеспечиваются без механической обработки.

Наружный диаметр подшипника определяется толщиной стенки втулки, а радиус скругления принимают в зависимости от внутреннего диаметра втулки. Наружный диаметр втулки соответствует размерному ряду шарикоподшипников легкой серии 2 ГОСТ 8338—75*.

ПОДШИПНИКИ КАЧЕНИЯ

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ

Подшипником называют опору или направляющую, определяющую положение движущихся частей по отношению к другим частям механизма. Подшипники качения работают преимущественно при трении качения и состоят из двух колец, тел качения и сепаратора, отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцовых поверхностях колец упорных подшипников качения) выполняют желоба - дорожки качения, по которым при работе подшипника катятся тела качения.

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жесткости применяют так называемые совмещенные опоры: дорожки качения при этом выполняют непосредственно на валу или на поверхности корпусной детали.

Некоторые подшипники качения изготовляют без сепаратора. Такие подшипники имеют большее число тел качения и, следовательно, большую грузоподъемность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

Нагружающие подшипник силы подразделяют на:

- радиальную, действующую в направлении, перпендикулярном оси подшипника;
- *осевую*, действующую в направлении, параллельном оси подшипника.

Подшипники качения классифицируют по следующим основным признакам:

- по форме тел качения шариковые и роликовые, причем последние могут быть с роликами: цилиндрическими короткими, длинными и игольчатыми, а также бочкообразными, коническими, бомбинированными с небольшой (7-30 мкм на сторону) выпуклостью поверхности качения и витыми пустотелыми;
- по направлению воспринимаемой нагрузки - радиальные, предназначенные для восприятия только радиальных или преимущественно радиальных сил (некоторые типы

могут воспринимать и осевые силы); радиально-упорные - для восприятия радиальных и осевых сил; подшипники регулируемых типов без осевой силы работать не могут; упорные - для восприятия осевых сил, радиальную силу не воспринимают; упорно-радиальные - для восприятия осевых и небольших радиальных сил;

- по числу рядов тел качения одно-, двух- и четырехрядные;
- по основным конструктивным признакам - самоустанавливающиеся (например, сферические самоустанавливаются при угловом смещении осей вала и отверстия в корпусе) и несамоустанавливающиеся; с цилиндрическим или конусным отверстием внутреннего кольца, сдвоенные и др.

Деление подшипников в зависимости от направления действия воспринимаемой нагрузки носит в ряде случаев условный характер. Например, шариковый радиальный однорядный подшипник успешно применяют для восприятия не только комбинированных (совместно действующих радиальной и осевой), но и чисто осевых нагрузок, а упорно-радиальные подшипники обычно используют только для восприятия осевых нагрузок.

Кроме основных подшипников каждого типа выпускают их конструктивные разновидности.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ

Маркировка подшипников состоит из их условного обозначения в соответствии с ГОСТ 3189-89 и условного обозначения предприятия-изготовителя. Маркировку в зависимости от применяемого технологического процесса наносят на любые поверхности подшипника, кроме поверхностей качения.

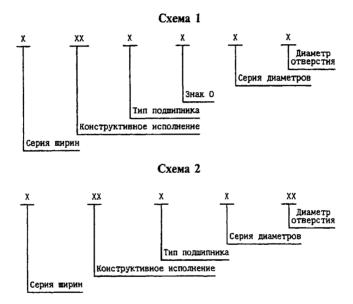
Маркирование проводят любым способом, не вызывающим коррозии подшипников. При маркировании собранных подшипников электрографическим способом ток не должен проходить через тела качения.

ГОСТ 3189-89 устанавливает систему условных обозначений подшипников и распространяется на шариковые и роликовые подшипники (кроме подшипников по ГОСТ 4060 и ГОСТ 24310).

Построение условного обозначения подшипников. Основное условное обозначение подшипника состоит из 7 основных знаков, обозначающих следующие признаки:

- размерную серию (серию диаметров и серию ширин) по ГОСТ 3478;
- тип и конструктивное исполнение по ГОСТ 3395:
 - диаметр отверстия.

Основное условное обозначение подшипника характеризует основное исполнение:


- с кольцами и телами качения из подщипниковой стали ШХ15;
 - класса точности 0 по ГОСТ 520;

- с сепаратором, установленным для основного конструктивного исполнения согласно отраслевой документации.

Порядок расположения знаков основного условного обозначения подшипников приведен на схемах 1 и 2.

Схема 1 - для подшипников с диаметром отверстия до 10 мм, кроме подшипников с диаметрами отверстий 0,6; 1,5 и 2.5 мм.

Схема 2 - для подшипников с диаметром отверстия 10 мм и более, кроме подшипников с диаметрами отверстия 22, 28, 32, 500 мм и более.

Дополнительные знаки условного обозначения располагают справа и слева от основного условного обозначения. Дополнительные знаки справа начинают с прописной буквы, а дополнительные знаки слева отделены от основного условного обозначения знаком тире.

Условное обозначение подшипника, состоящее из основных знаков и дополнительных знаков, является полным условным обозначением.

Частным случаем полного условного обозначения является основное условное обозначение.

Расшифровку знаков выполняют в порядке перечисления *справа налево*.

Обозначение диаметра отверстия. Схема 1. Первый знак, обозначающий диаметр отверстия подшипника, должен быть равен

номинальному диаметру отверстия. Диаметры отверстия подшипников: 0,6; 1,5; 2,5 мм - обозначают через дробь. Если диаметр отверстия подшипника выражен дробным числом, кроме перечисленных выше значений, то ему присваивают обозначение диаметра отверстия, округленного до целого числа. В условном обозначении таких подшипников на втором месте ставят цифру 5.

Двухрядные сферические шариковые радиальные подшипники с диаметром отверстия до 9 мм сохраняют условное обозначение по ГОСТ 5720.

Схема 2. Первые два знака обозначают диаметр отверстия подшипника. Диаметры отверстия, кратные 5, обозначают частным от деления значения этого диаметра на 5.

Обозначения диаметров отверстия подшипников от 10 до 17 мм приведены в табл. 31.

31. Обозначения	диаметров о	тверстия
подшипнико	в от 10 до 1'	7 MIM

Диаметр отверстия подшипника, мм	Обозначение
10	00
12	01
15	02
17	03

Диаметры отверстия от 10 до 17 мм, не перечисленные в табл. 31, должны иметь обозначение по ближайшему указанному диаметру. В условном обозначении таких подшипников на третьем месте ставят цифру 9.

Диаметры отверстия, равные 22, 28, 32, 500 мм и более, обозначают через дробь.

Для подшипников с диаметром отверстия 500 мм и более внутренний диаметр обозначают знаками, равными номинальному диаметру.

Диаметры отверстия, выраженные дробным числом или числом, не кратным 5, обозначают знаками, равными приближенному целому числу, полученному от деления значения диаметра на 5. В условном обозначении таких подшипников на третьем месте ставят цифру 9.

Для подшипников шариковых упорных двойных за диаметр отверстия принимают номинальный диаметр отверстия тугого кольца одинарного подшипника.

Обозначение размерных серий. Размерная серия подшипника - сочетание серий диаметров и ширин (высот), определяющее габаритные размеры подшипника.

Для подшипников установлены следующие серии (ГОСТ 3478):

диаметров 0, 8, 9, 1, 7, 2, 3, 4 и 5; ширин или высот 7, 8, 9, 0, 1, 2, 3, 4, 5 и 6.

Перечень серий диаметров указан в порядке увеличения размера наружного диаметра подшипника при одинаковом диаметре отверстия. Перечень серий ширин или высот указан в порядке увеличения размера ширины или высоты.

Второй знак *схемы 1* и третий знак *схемы 2*, обозначающие серию диаметров совместно с седьмым знаком, обозначающим серию ширин (высот), обозначают размерную серию подшипника.

Серия ширин (высот), имеющая знак 0, в условном обозначении не указывается. Третий знак схемы 1 - всегла 0.

Подшипники, нестандартные по внутреннему диаметру или ширине, относят к неопределенной серии и обозначают знаком 6 или 7 на втором месте схемы 1 и знаком 7 или 8 на третьем месте схемы 2 при нестандартном наружном диаметре или ширине. Такие подшипники не имеют в обозначении седьмого знака (серию ширин).

Обозначение типов подпинников. Четвертый знак схем 1 и 2 обозначает тип подшипника:

Тип подшипника	Обозна- чение
Шариковый радиальный	0
Шариковый радиальный сфериче-	·
ский	1
Роликовый радиальный с корот-	•
кими цилиндрическими роликами	2
Роликовый радиальный сфериче-	~
ский	3
Роликовый игольчатый или с	-
длинными цилиндрическими ро-	
ликами	4
Радиальный роликовый с витыми	•
роликами	5
Радиально-упорный шариковый	6
Роликовый конический	7
Упорный или упорно-радиальный	-
шариковый	8
Упорный или упорно-радиальный	•
роликовый	9
•	_

Обозначение конструктивного исполнения. Пятый и шестой знаки схем I и 2 обозначают конструктивные исполнения подшипников. Конструктивные исполнения для каждого типа подшипников обозначают цифрами от 00 до 99.

Основные конструктивные исполнения подшипников - по ГОСТ 3395.

Обозначение серии ширин, конструктивного исполнения и типа подшипника, имеющее знак 0 (00), стоящий левее последней значащей цифры, опускают, если серия ширин схем I и 2 обозначена знаком 0. В этом случае условное обозначение подшипника может состоять из двух, трех или четырех цифр.

Примеры основных условных обозначений. Примеры основных условных обозначений подшипников по схеме 1:

1000094 - подшипник шариковый радиальный однорядный с диаметром отверстия

4 мм, серии диаметров 9, серии ширин 1, основного конструктивного исполнения;

25 - подшипник шариковый радиальный однорядный с диаметром отверстия 5 мм, серии диаметров 2, серии ширин 0, основного конструктивного исполнения;

184009/1,5 - подшипник шариковый радиальный однорядный с упорным бортом на наружном кольце с диаметром отверстия 1,5 мм, серии диаметров 9, серии ширин 1;

1068 - подшипник шариковый радиальный сферический основного конструктивного исполнения с диаметром отверстия 8 мм, неопределенной серии (6).

Примеры основных условных обозначений подшипников по схеме 2:

32205 - подшипник роликовый радиальный с короткими цилиндрическими роликами без бортов на внутреннем кольце с диаметром отверстия 25 мм, серии диаметров 2, серии ширин 0;

4074103 - подшипник радиальный роликовый игольчатый с массивными кольцами с диаметром отверстия 17 мм, серии диаметров 1, серии ширин 4;

901 - подшипник радиальный шариковый однорядный с диаметром отверстия 12,7 мм (01 - обозначение ближайшего из указанных в табл. 31 диаметра отверстия 12 мм), неопределенной серии (9);

602/32 - подшипник радиальный шариковый однорядный с защитной шайбой, с диаметром отверстия 32 мм серии диаметров 2, серии ширин 0;

20071/1175 - подшипник роликовый конический однорядный основного конструктивного исполнения с диаметром отверстия 1175 мм серии диаметров 1, серии ширин 2.

Знаки, обозначающие дополнительные требования, проставляют слева и справа от основного обозначения.

Слева от основного обозначения проставляют знаки, определяющие класс точности (7, 8, 0, 6X, 6, 5, 4, 2, Т), группу радиального зазора по ГОСТ 21810 (0, 1, 2, 3, ..., 9; для радиальноупорных шариковых подшипников обозначают степень преднатяга: 1, 2, 3), момент трения (1, 2, 3, ..., 9 - обозначения рядов моментов трения) и категорию подшипника (A, B, C).

Знаки располагают в порядке перечисления справа налево от основного обозначения подшипника и отделяют от него знаком тире, например: **A125-3000205**, где 3000205 - основное обозначение; 5 - класс точности; 2 - группа радиального зазора; 1 - ряд момента трения; A - категория подшипника.

В условном обозначении подшипников класса точности 6X проставляют знак X.

Знак категории в условном обозначении подшипников не указывают для подшипников, не отнесенных к категориям A, B и C.

В условном обозначении подшипников категории С, а также подшипников, не отнесенных к категориям, имеющих величину зазора по нормальной группе и при отсутствии требования по моменту трения, класс точности 0 не указывают: 205.

Знаки дополнительных технических требований к подшипникам категорий A и В обозначают в соответствии с техническими условиями на эти подшипники и указывают перед обозначением категории.

В условном обозначении подшипников с регламентированным моментом трения, со значением зазора по нормальной группе, т.е. не имеющей в обозначении знака зазора, на его месте проставляют букву М, например: A1M5-1000900, B1M0-205, B2M6-306.

В условном обозначении подшипников категории С знак категории не проставляют.

Обозначение категорий А и В указыва-ют:

- перед знаком зазора - при отсутствии требований по моменту трения и группе зазора, отличной от нормальной, например **A25-204**:

- перед классом точности - при отсутствии требований по моменту трения и нормальной группе зазора, например **A5-205**; при этом для подшипников класса точности 0 в обозначении проставляют знак "0", например **B0-205**.

Для роликовых конических подшипников категории С и подшипников, не отнесенных к категориям, по монтажной высоте установлены нормальная и повышенная точности.

Для подшипников повышенной точности слева от основного обозначения после знака класса точности проставляют дополнительный знак "У", например 6У-7510.

Справа от основного обозначения проставляют знаки, определяющие материалы деталей (например, Ю - все детали подшипника или часть деталей из нержавеющей стали), конструктивные изменения (например: К - для роликовых цилиндрических подшипников обозначает стальной штампованный сепаратор; М - роликовые подшипники с модифицированным контактом), требования к температура отпуска (например, Т1 - температура отпуска 225°С), смазочный материал (например, С1 - смазочный материал ОКБ-122-7), требования по уровню вибрации (Ш, Ш1...Ш5 - с возрастанием цифрового индекса величина уровня вибрации уменьшается).

Более подробно обозначения и порядок расположения дополнительных знаков приведены в ГОСТ 3189-89.

Пример условного обозначения подшипника с дополнительными знаками:

А75-3180206ET2C2 - подшипник шариковый радиальный однорядный с двусторонним уплотнением, с диаметром отверстия 30 мм серии диаметров 2, серии ширин 3, класса точности 5, радиальный зазор - по группе 7, при отсутствии требований по моменту трения, категории А с сепаратором из пластического материала (Е), температура стабилизирующего отпуска колец 250 °C (Т2), заполнен на заводе-изготовителе смазочным материалом ЦИАТИМ-221 (С2).

КРАТКИЕ ХАРАКТЕРИСТИКИ ПОЛШИПНИКОВ ОСНОВНЫХ ТИПОВ

Типы и конструктивные исполнения подшипников установлены ГОСТ 3395-89.

Тип 0. Шариковые радиальные однорядные подшипники основного конструктивного исполнения (обозначение 0000, рис. 13, а) предназначены для восприятия радиальных и ограниченных осевых сил любого направления являются одними из наиболее распространенных и дешевых. Грузоподъемность их ниже, чем у роликоподшипников равных размеров. Могут работать под воздействием только осевой силы при высокой частоте вращения, т.е. в условиях, для которых упорные шариковые подшипники не пригодны.

Обеспечивают осевое фиксирование вала в двух направлениях. Не являясь самоустанавливающимися, допускают небольшие углы взаимного перекоса внутреннего и наружного колец, значения которых зависят от радиальных зазоров в подшипнике. При одинаковых габаритных размерах эти подшипники работают с меньшими потерями на трение и при большей частоте вращения вала, чем подшипники всех других конструкций.

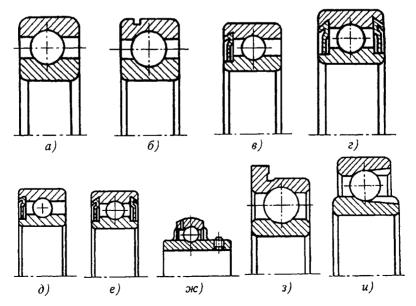


Рис. 13. Подшипники радиальные шариковые исполнений: а - 0000; б - 50000; в - 60000; г - 80000; д - 160000; е - 180000; ж - 480000; з - 840000; и - 900000

Другие конструктивные исполнения:

- с канавкой по ГОСТ 2893 на наружном кольце для установочного кольца (обозначение 50000, рис. 13, б); применение установочного кольца упрощает осевое крепление подшипника в корпусе и позволяет выполнять сквозную обработку отверстий корпуса под установку наружных колец подшипников;
- с одной (60000, рис. 13, в) или с двумя (80000, рис. 13, г) защитными шайбами, которые предохраняют подшипники от утечки смазочного материала и проникновения пыли и грязи в полостъ подшипника;
- с односторонним (160000, рис. 13, ∂) или с двусторонним (180000, рис. 13, е) уплотнением из маслостойкой резины или пластмассы; эффективность герметизации выше, чем у подшипников с защитными шайбами;
- с двумя уплотнениями, широким внутренним кольцом, сферической наружной поверхностью наружного кольца, установочным винтом во внутреннем кольце (480000, рис. 13, ж); монтаж на валу удобен и прост;
- с упорным бортом на наружном кольце (840000, рис. 13, 3); наличие упорного борта на наружном кольце позволяет выполнять сквозную обработку отверстий корпуса под установку наружных колец; возможны исполнения с одной (860000) и двумя (880000) защитными шайбами;
- с выступающим внутренним кольцом, канавкой для комплектования шариками без сепаратора (900000, рис. 13, и); обладают большей радиальной грузоподъемностью, чем подшипники основного типа; наличие канавок не позволяет применять подшипники для восприятия осевых сил; характеризуются повышенным моментом

трения и, следовательно, меньшей быстро-ходностью.

При проектировании следует ориентироваться на применение в первую очередь шариковых радиальных однорядных подшипников, отличающихся невысокой стоимостью, простотой монтажа и способностью воспринимать комбинированные нагрузки.

Тип 1. Шариковые радиальные сферические двухрядные подшипники основного конструктивного исполнения (обозначение 1000, рис. 14, а) предназначены для восприятия радиальных сил, но могут воспринимать и ограниченные осевые силы любого направления. Наличие осевой составляющей приводит к неравномерности в распределении сил между рядами. Радиальная грузоподъемность ниже, чем у радиальных однорядных шарикоподшипников.

Дорожка качения на наружном кольце подшипника обработана по сфере. Поэтому подшипник способен самоустанавливаться и работать при значительном перекосе внутреннего кольца (вала) относительно наружного кольца (корпуса). Применяют в узлах с нежесткими валами и в конструкциях, в которых не может быть обеспечена надлежащая соосность отверстий в корпусах.

Другие конструктивные исполнения:

- на закрепительной втулке (11000, рис. 14, б); допускают регулирование радиального зазора, можно устанавливать на гладких, без бортов, валах;
- с коническим отверстием (111000, рис. 14, в); допускают регулирование радиального зазора;
- с выступающим внутренним кольцом и двумя защитными шайбами (971000, рис. 14, г).

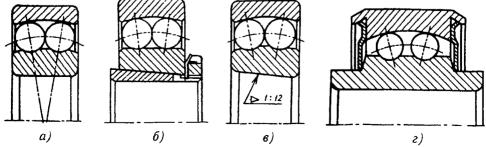


Рис. 14. Подшиники радиальные шариковые сферические исполнений: a - 1000; $\delta - 11000$; $\varepsilon - 971000$

Тип 2. Роликовые радиальные однорядные подшипники с короткими цилиндрическими роликами основного конструктивного исполнения - с бортами на внутреннем кольце и без бортов на наружном кольце (обозначение 2000, рис. 15, а) - могут воспринимать только радиальную силу. Роликоподшипники отличаются большей грузоподъемностью, чем шарикоподшипники. Возможен раздельный монтаж внутреннего (с комплектом роликов) и наружного колец. Допускают осевое взаимное смещение колец, поэтому возможно применение в качестве плавающей опоры.

Другие конструктивные исполнения:

- с однобортовым наружным кольцом (12000, рис. 15, *6*);
- без бортов на внутреннем кольце (32000, рис. 15, θ);
- с однобортовым внутренним кольцом (42000, рис. 15, г);
- с однобортовым внутренним и плоским упорным кольцом (92000, рис. 15, ∂);
- двухрядные с коническим отверстием с бортами на внутреннем кольце (182000, рис. 15, е); оси роликов в одном ряду смещены относительно осей роликов в другом ряду: допускают регулирование радиального зазора все это способствует созданию повышенной жесткости подшипников в радиальном направлении.

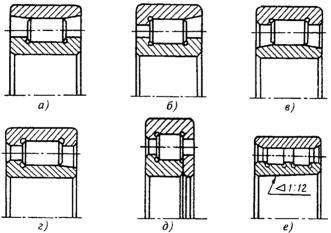


Рис. 15. Подшинники радиальные роликовые с короткими цилиндрическими роликами исполнений: a - 2000; δ - 12000; ϵ - 32000; ϵ - 42000; δ - 92000; ϵ - 182000

Подшипники, имеющие наружные и внутренние кольца с бортами, в том числе приставными, кроме радиальной могут воспринимать ограниченную одностороннюю или двустороннюю осевую силу.

Роликовые радиальные подшипники предъявляют высокие требования к соосности посадочных мест. Подшипники с модифицированным контактом (ролики или дорожки качения делают с небольшой выпуклостью - бомбиной) допускают незначительные взаимные перекосы колец. Двухрядные роликовые подшипники применяют в опорах шпинделей станков с целью обеспечения высокой жесткости и точности вращения.

Тип 3. Роликовые радиальные сферические двухрядные подшипники основного кон-

структивного исполнения - с бортиками на внутреннем кольце (обозначение 3000, рис. 16, а) - предназначены для восприятия радиальной и осевых сил любого направления; допускают значительный перекос внутреннего кольца (вала) относительно наружного кольца (корпуса). Отличаются от шарикоподшипников радиальных сферических двухрядных большей грузоподъемностью, значительно меньшей быстроходностью, большей сложностью в изготовлении.

Другие конструктивные исполнения:

- с бортиками на внутреннем кольце с закрепительной втулкой (13000, рис. 16, δ);
 - со стяжной втулкой (73000, puc. 16, в);
- с коническим отверстием конусностью 1:12 (113000, номинальный угол конуса 4°46′18,8") и 1:30 (4113000, номинальный угол конуса 1°54′34,9"), рис. 16, г; наличие

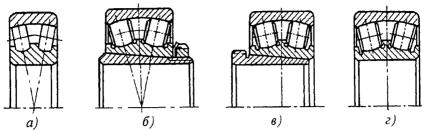


Рис. 16. Подшинники радиальные роликовые сферические исполнений: а - 3000: 6 - 13000: в - 73000: г - 113000

конического отверстия облегчает монтаж и лемонтаж.

Подшипники 13000, 73000, 113000 и 4113000 допускают регулирование радиального зазора.

Тип 4. Роликовые радиальные игольчатые или роликовые радиальные подшипники с длинными цилиндрическими роликами основного конструктивного исполнения - с наружным и внутренним кольцами без сепаратора (обозначение 74000, рис. 17, а) - отличаются большой радиальной грузоподъемностью при малых радиальных размерах. Осевые силы воспринимать не могут и осевое положение вала не фиксируют.

Другие конструктивные исполнения:

- без внутреннего кольца и сепаратора (24000, рис. 17, б);

- с наружным и внутренним кольцами с сепаратором (244000, рис. 17, \mathfrak{s});

- радиальные с игольчатыми роликами и двойные упорные с короткими цилиндри-

ческими роликами комбинированные (РИК, рис. 17, ϵ); предназначены для восприятия радиальных и двусторонних осевых сил:

- радиально-упорные игольчатые комбинированные (594000, рис. 17, д); направление воспринимаемых сил - радиальное и осевое в одну сторону.

Большинство конструкций изготовляют без сепараторов. Рекомендуются для применения в узлах, работающих с качательным движением вала или при невысоких частотах вращения. Игольчатые подшипники с сепараторами могут работать при сравнительно высоких частотах вращения. Весьма чувствительны к взаимным перекосам колец. Подшипники с модификацией профиля допускают незначительные взаимные перекосы колец.

Область применения игольчатых подшипников расширяется.

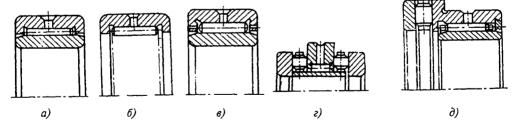


Рис. 17. Подшипники радиальные роликовые игольчатые или роликовые с длинными цилиндрическими роликами исполнений: a - 74000; δ - 24000; δ - 244000; δ - PИK; δ - 594000

Тип 5. Роликовые радиальные подшипники с витыми роликами могут воспринимать только радиальные силы, не фиксируя вал в осевом направлении. Пустотелые ролики, изготовленные из стальной ленты прямо-угольного сечения, характеризуются повышенной упругой податливостью. Подшипники имеют увеличенный радиальный зазор, способны воспринимать ударные на-

грузки, мало чувствительны к загрязнению; грузоподъемность примерно в 2 раза меньше, чем у подшипников со сплошными цилиндрическими роликами. Применяют в неответственных узлах, подверженных действию ударных нагрузок, не требующих высокой точности вращения и работающих при невысоких частотах вращения. Неперспективны, их применение сокращается.

Тип б. Шариковые радиально-упорные однорядные подшипники (рис. 18, а), Основные конструктивные исполнения 36000, 46000 и 66000 различаются начальными углами контакта ($\alpha = 12, 26$ и 36° соответственно). Угол контакта - угол между нормалью к площадке контакта и плоскостью вращения подшипника. С ростом а осевая грузоподъемность растет, а предельная частота вращения и допустимая радиальная нагрузка уменьшаются. В настоящее время промышленность переходит на выпуск подшипников с углами контакта $\alpha = 15, 25$ и 40°. Подшипники предназначены для восприятия радиальной и осевой силы только одного направления: работать под действием только радиальной силы без осевой не могут.

Для восприятия осевых сил любого направления и двусторонней фиксации вала эти подшипники устанавливают на валу попарно. При сборке узла подшипники необходимо регулировать для получения примерно нулевого зазора между шариками

и желобами колец при установившемся тепловом режиме. В некоторых машинах (например, в станках) путем регулирования парные подшипники собирают с предварительным натягом, вследствие чего повышается жесткость опор и точность вращения.

Чем меньше угол контакта, тем больше радиальная, меньше осевая жесткость и грузоподъемность подшипников. С ростом угла контакта снижается предельная быстроходность вследствие влияния гироскопического эффекта.

Радиально-упорные подшипники отличаются от радиальных большим числом шариков, которое удается разместить в подшипнике вследствие наличия скоса на наружном кольце, поэтому их жесткость и грузоподъемность выше.

Другие конструктивные исполнения:

- разъемные со съемным наружным кольцом с углом контакта $\alpha=12$ ° (6000, рис. 18, δ); допускают раздельный монтаж наружного и внутреннего (с шариками) колец подшипников;

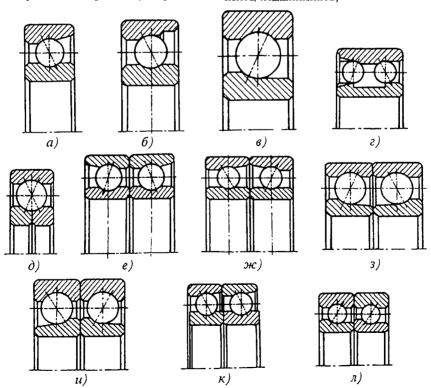


Рис. 18. Подшинники радиально-упорные шариковые исполнений: a – 36000; δ – 6000; ε – 36000K; ε – 56000; δ – 176000; ε – 236000; ω – 336000; δ – 236000K; δ – 436000K; δ – 436000K

- неразъемные со скосом на внутреннем кольце (36000К7, 36000К, 46000К, рис. 18, в); предназначены для работы с высокими частотами вращения:
- двухрядные (56000, рис. 18, г); направление воспринимаемых сил радиальное и осевое в обе стороны; изготовлены с предварительным натягом; обеспечивают повышенную радиальную жесткость опоры;
- однорядные с разъемным внутренним кольцом с трехточечным (126000) и четырехточечным (176000) контактом, рис. 18, д; профили дорожек качения образованы двумя дугами со смещенными центрами; предназначены для восприятия значительных радиальных, осевых в обе стороны, а также комбинированных нагрузок; четырехточечный контакт при данном радиальном зазоре обусловливает наименьший осевой зазор подшипника, обеспечивает точную осевую фиксацию валов;
- сдвоенные: наружные кольца обращены друг к другу широкими торцами (236000, 246000, 266000), рис. 18, е; узкими торцами (336000, 346000, 366000), рис. 18, ж; направление воспринимаемых сил радиальное и осевое в обе стороны; комплекты подшипников фиксируют вал и корпус в обоих осевых направлениях; подшипники по рис. 18, е обеспечивают более жесткую фиксацию вала, чем подшипники по рис. 18, ж;
- сдвоенные: внутренние кольца обрашены друг к другу узкими торцами (236000 К, рис. 18, з); широкими торцами (336000 К, рис. 18, и); основное назначение всех перечисленных выше сдвоенных подшипников, монтируемых с предварительным натягом, - жестко фиксировать вал в радиальном и осевом направлениях;
- сдвоенные: наружные (436000, 446000, 466000, рис. 18, к) или внутренние (436000K, рис. 18, л) кольца обращены друг

к другу разноименными торцами; направление воспринимаемых нагрузок - радиальное и осевое только в одну сторону; применяют в двух парах с противоположным расположением или же в сочетании с третьим замыкающим подшипником; для особо больших осевых нагрузок допускают комбинацию из трех и более подшипников по этому же принципу; для создания предварительного натяга комплекта таких подшипников их замыкают другим подшипником с противоположной стороны.

Сдвоенные подшипники специально комплектуют и дорабатывают на заводеизготовителе, регулирования не требуют, взаимозаменяемы только полные комплекты.

Тип 7. Роликовые радиально-упорные конические подшипники основного конструктивного исполнения повышенной грузоподъемности с нормальным углом контакта 10-16 ° (7000, рис. 19, а) предназначены для восприятия радиальной и осевой силы только одного направления. Отличаются от шариковых радиально-упорных подшипников большей грузоподъемностью, меньшей предельной частотой вращения, меньшей достижимой точностью вращения вала. В узлах с роликовыми коническими подшипниками должна быть предусмотрена возможность регулирования осевого зазора подшипников. Допускают раздельный монтаж наружного кольца и внутреннего кольца с комплектом роликов.

Другие конструктивные исполнения:

- с большим углом контакта (27000A, $\alpha \ge 20^{\circ}$); способны воспринимать значительные осевые силы;
- с упорным бортом на наружном кольце (67000, рис. 19, δ); наличие борта на

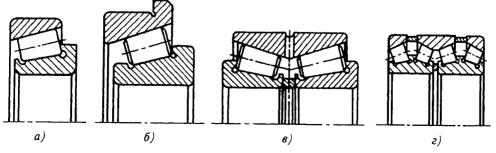


Рис. 19. Подшинники радиально-упорные роликовые исполнений: а - 7000; б - 67000; в - 97000А; г - 77000

наружном кольце позволяет выполнять сквозную обработку отверстий корпуса под установку наружных колец подшипников;

- двухрядные с внутренним дистанционным кольцом (97000A, рис. 19, в);
 - четырехрядные (77000, рис. 19, г).

Однорядные конические подшипники необходимо регулировать при сборке, двухрядные и четырехрядные регулировать не требуется. Однорядные подшипники должны для фиксирования вала устанавливаться парно, двух- и четырехрядные подшипники фиксируют положение вала относительно корпуса в осевом направлении в обе стороны.

Требуют строгой соосности посадочных поверхностей вала и корпуса. Подшипники с модифицированным контактом (особенно с модификацией контакта на рабочей поверхности наружного кольца) допускают незначительные взаимные перекосы колец.

Тип 8. Шариковые упорные и упорнорадиальные подшипники. Основное конструктивное исполнение упорного подшипника - одинарный подшипник (8000, рис. 20, а). Предназначен для восприятия только осевой силы одного направления. Подшипники лучше работают на вертикальных валах. Очень чувствительны к точности монтажа. Вследствие повышенного гироскопического эффекта применяют при значительно меньших, чем другие шарикоподшипники, частотах вращения.

Другие конструктивные исполнения:

- одинарный со свободным самоустанавливающимся и подкладным кольцами (18000, рис. 20, б); подкладное кольцо обеспечивает компенсацию отклонения от параллельности опорных поверхностей корпуса и заплечиков вала;
- двойной упорный подшипник с тремя кольцами (38000, рис. 20, в); применяют для восприятия осевых сил в обоих направлениях.

Конструктивные исполнения упорнорадиальных подшипников:

- одинарный (168000, рис. 20, *г*); применяют для восприятия радиальной и осевой силы одного направления;
- сдвоенный с углом контакта 60° (178000, рис. 20, д); направление воспринимаемых сил осевое в обе стороны и радиальное.

Упорно-радиальные подшипники применяют при невысоких частотах вращения. Они менее чем шариковые упорные, чувствительны к взаимному перекосу колец.

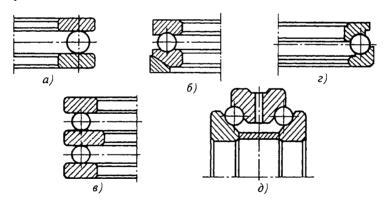


Рис. 20. Подшипники упорные и упорно-радиальные шариковые исполнений: a - 8000; δ - 18000; ϵ - 38000; ϵ - 168000; δ - 178000

Тип 9. Роликовые упорные и упорнорадиальные подшипники. Основное конструктивное исполнение упорного подшипника - одинарный однорядный с цилиндрическими роликами (9000, рис. 21, а). Применяют для восприятия только осевой силы одного направления, главным образом на вертикальных валах, работающих с невысокими частотами вращения. Характеризуется

высокой грузоподъемностью, очень чувствителен к перекосам колец.

Другие конструктивные исполнения:

- конические одинарные (19000, рис. 21, б); вершины конусов роликов пересекаются в одной точке на оси подшипника;
- с цилиндрическими роликами одинарные двухрядные (889000, рис. 21, $\boldsymbol{\varepsilon}$).

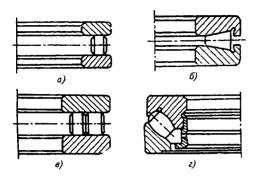


Рис. 21. Подшипники упорные и упорно-радиальные роликовые исполнений: a - 9000; $\delta - 19000$; $\delta - 889000$; $\epsilon - 39000$

Основное конструктивное исполнение упорно-радиального подшипника - сферический одинарный с бочкообразными роликами (39000, рис. 21, г); направление воспринимаемых сил - осевое и радиальное. Условия контакта допускают более высокие скорости вращения по сравнению с шариковыми упорными подшипниками. Допускают значительный взаимный перекос колец.

Общие технические условия на подшипники качения установлены ГОСТ 520-89 и распространяются на шариковые и роликовые подшипники качения с отверстием диаметром от 0,6 до 2000 мм.

Шарики должны соответствовать требованиям ГОСТ 3722, ролики игольчатые - ГОСТ 6870, ролики цилиндрические короткие с прямолинейной образующей - ГОСТ 22696, ролики цилиндрические длинные с прямолинейной образующей - ГОСТ 25255, ролики со скосами на краях, ролики конические с прямолинейной образующей, ролики с выпуклой образующей всех типов (бомбиной, модифицированным контактом, бочкообразные) - по технической документации, утвержденной в установленном порядке.

Специальные требования, отличающиеся от требований ГОСТ 520-89 и дополняющие их, к подшипникам для отдельных отраслей (авиации, железнодорожного транспорта, автомобилестроения, станкостроения, приборостроения и др.), устанавливают в технических условиях на соответствующие подшипники.

Закрепительные и стяжные втулки должны соответствовать ГОСТ 13014, ГОСТ 24208 и ГОСТ 25455, стопорные шайбы, скобы и гайки - ГОСТ 8530.

ОБШИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Классы точности подшипников

ГОСТ 520—89 устанавливает классы точности подшипников (табл. 32). Перечень классов точности дан в порядке повышения точности.

32. Классы точности подшипников

Класс точности *	Тип подшипника
0, 6, 5, 4, 2, T 0, 6, 5, 4, 2 0, 6X, 6, 5, 4, 2	Шариковые и роликовые радиальные и шариковые радиально-упорные Упорнорадиальные Роликовые конические

* Дополнительные классы точности подшипников - 8 и 7 - ниже класса точности 0 установлены для применения по заказу потребителей в неответственных узлах.

Классы точности подшипников характеризуют значениями предельных отклонений размеров, формы, положения поверхностей полшипников.

В зависимости от наличия требований по уровню вибрации или уровня других дополнительных технических требований установлены три категории подшипников - A, B, C.

К категории А относят подшипники классов точности 5, 4, 2, Т с одним из комплексных дополнительных требований по уровню вибраций, допускаемым отклонениям от круглости поверхностей качения, значениям осевого и радиального биений, соответствующих следующему, более высокому классу точности, моменту трения, контролю угла контакта и др.

К категории В относят подшипники классов точности 0, 6X, 6, 5 с одним из дополнительных требований по уровню вибраций, допускаемым отклонениям от круглости поверхностей качения, значениям осевого и радиального биений, соответствующих следующему, более высокому классу точности, моменту трения, контролю угла контакта, повышенным требованиям по высоте, монтажной высоте и ширине подшипника.

К категории С относят подшипники классов точности 8, 7, 0, 6, к которым не предъявляют дополнительные требования, установленные для подшипников категорий А и В, а также другие требования, не указанные в ГОСТ 520-89.

Конкретные значения дополнительных технических требований устанавливают в технических условиях на подшипники категорий A, B, C или в конструкторской документации, утвержденной в установленном порядке.

По заказу потребителя допускается изготовление подшипников определенного класса точности в соответствии с требованиями ГОСТ 520-89 без отнесения к категориям A, B, C, при этом дополнительные требования, предусмотренные для подшипников категорий A, B, C, не устанавливают.

Предельные отклонения

Установлены предельные отклонения размерных параметров:

для подшипников:

- шариковых и роликовых радиальных и шариковых радиально-упорных;
 - роликовых конических;
- закрытых шариковых и роликовых радиальных, шариковых радиально-упорных и роликовых конических;
 - упорных;
 - упорно-радиальных;
- классов точности 8 и 7-в технических условиях на подшипники категории С;

для конических отверстий с конусностью 1:12 внутренних колец подшипников (в том числе поставляемых в сборе с закрепительными или стяжными втулками).

Предельные отклонения наружного диаметра D_1 упорного борта роликовых конических подшипников с упорным бортом на наружном кольце всех классов точности - h9 по ГОСТ 25347.

Номинальный угол уклона конического отверстия конусностью 1:12

$$\alpha/2 = 2^{\circ}23'9.4'' = 2.38594^{\circ} = 0.041643$$
 pag.

Номинальный больший диаметр конического отверстия при ширине *В* кольца

$$d_1 = d + B/12.$$

У сферических подшипников, принадлежащих к серии 4 или более широкой серии, конусность отверстия должна быть 1:30 (номинальный угол конуса $\alpha = 1°54'34.9"$).

Наружные кольца и неразъемный комплект, состоящий из внутреннего кольца, сепаратора и шариков, разъемных радиально-упорных шарикоподшипников типа 6000, должны быть взаимозаменяемыми.

Съемные кольца роликовых радиальных подшипников и комплект, состоящий из кольца, сепаратора и роликов, могут быть как взаимозаменяемыми, так и невзаимозаменяемыми.

Наружные кольца, а также внутренние кольца с комплектом тел качения роликовых конических однорядных подшипников должны быть взаимозаменяемыми.

Предельные размеры монтажных фасок - по ГОСТ 3478.

Для оценки точности выполнения размеров и формы подшипников качения используют специальные обозначения и термины (табл. 33). Значения предельных отклонений приведены в табл. 34-50.

33. Обозначения и термины, относящиеся к размерам и точности изготовления подшипников качения

Термин	Определение
Номинальный диаметр отверстия (наружный диаметр) $d(D)$	Диаметр отверстия (наружный диаметр), относительно которого определяют предельные размеры и который служит началом отсчета отклонений
Номинальный больший диаметр конического отверстия d_1	Больший диаметр конического отверстия, относительно которого определяют предельные размеры и который служит началом отсчета отклонений
Номинальный диаметр отверстия тугого кольца двойного упорного подшипника d_2	Диаметр отверстия тугого кольца двойного упорного подшипника, относительно которого определяют предельные размеры и который служит началом отсчета отклонений

Термин Единичный диаметр отв

Единичный диаметр отверстия (наружный диаметр) d_s (D_s)

Отклонения единичного диаметра отверстия (наружного диаметра) $\Delta d_s \; (\Delta D_s)$

Единичный диаметр большего диаметра конического отверстия d_{1x}

Отклонение единичного диаметра большего диаметра конического отверстия Δd_{1s}

Средний диаметр отверстия (наружный диаметр) в единичном сечении d_{mp} (D_{mp})

Отклонение среднего диаметра отверстия (наружного диаметра) в единичном сечении Δd_{mp} (ΔD_{mp})

Средний диаметр большего диаметра конического отверстия в единичном сечении d_{1mn}

Отклонение среднего диаметра большего диаметра конического отверстия в единичном сечении Δd_{1mp}

Средний диаметр отверстия тутого кольца двойного упорного подшипника в единичном сечении d_{2mo}

Отклонение среднего диаметра отверстия тугого кольца двойного упорного подшипника в единичном сечении Δd_{2mp}

Отклонение конусности
$$\Delta d_{1mp} - \Delta d_{mp} \left(\Delta d_{1s} - \Delta d_{s} \right)$$

Непостоянство единичного диаметра отверстия (наружного диаметра) в единичном сечении $V_{dp} \big(V_{Dp} \big)$

Непостоянство единичного диаметра отверстия тугого кольца двойного упорного подшипника в единичном сечении $V_{d2\, p}$

Определение

Расстояние между двумя параллельными линиями, касательными к линии пересечения действительной поверхности отверстия (наружной поверхности) радиальной плоскостью

Алгебраическая разность между единичным и номинальным диаметрами отверстия (наружными диаметрами)

Расстояние между двумя параллельными линиями, касательными к линии пересечения действительной поверхности большего конического отверстия радиальной плоскостью

Алгебраическая разность между единичным и номинальным диаметрами большего диаметра конического отверстия

Среднее арифметическое наибольшего и наименьшего единичных диаметров отверстия (наружных диаметров) в одном и том же единичном сечении

Алгебраическая разность между средним диаметром отверстия (наружным диаметром) в единичном сечении и номинальным диаметром отверстия (наружным диаметром)

Среднее арифметическое наибольшего и наименьшего единичных диаметров большего диаметра конического отверстия в одном и том же единичном сечении

Алгебраическая разность между средним диаметром в единичном сечении и номинальным значением большего диаметра конического отверстия

Среднее арифметическое наибольшего и наименьшего единичных диаметров отверстия тугого кольца двойного упорного подшипника в одном и том же единичном сечении

Алгебраическая разность между средним диаметром в единичном сечении и номинальным диаметром отверстия тугого кольца двойного упорного подшипника

Разность отклонений средних диаметров в единичных сечениях большего диаметра и диаметра конического отверстия. (Разность отклонений единичных диаметров большего диаметра и диаметра конического отверстия)

Разность между наибольшим и наименьшим единичными диаметрами отверстия (наружными диаметрами) в единичном сечении

Разность между наибольшим и наименьшим единичными диаметрами отверстия тугого кольца двойного упорного подшипника в единичном сечении

Продолжение табл. 33

Термин	Определение
Непостоянство среднего диаметра отверстия (наружного диамет-	Разность между наибольшим и наименьшим средними диаметрами в единичных сечениях
pa) $V_{dmp}ig(V_{Dmp}ig)$	Примечание. Частным случаем непостоянства среднего диаметра отверстия (наружного диаметра) является конусообразность, определяемая как разность между наибольшим и наименьшим средними диаметрами отверстия (наружными диаметрами) в крайних сечениях
Номинальная ширина (монтажная высота) подшипника <i>В</i> , <i>С</i> (<i>T</i>)	Размер ширины (монтажной высоты) подшипника, относительно которого определяются предельные размеры и который служит началом отсчета отклонений
	Примечание. Символ В применяют в том случае, когда номинальной шириной подшипника является расстояние между торцами внутреннего кольца или когда ширины внутреннего и наружного колец подшипника одинаковы и их теоретические торцы лежат в одной плоскости; символ С - для обозначения ширины подшипника, являющейся расстоянием между торцами наружного кольца; символ Т - для обозначения расстояния между торцом внутреннего кольца и противоположным торцом наружного кольца
Номинальная ширина внутреннего (наружного) кольца B (C)	Размер ширины кольца, относительно которого определяются предельные размеры и который служит началом отсчета отклонений
Единичная ширина кольца B_s , C_s	Расстояние между точками пересечения торцов кольца подшипника с прямой, перпендикулярной к плоскости, касательной к базовому торцу кольца
Отклонение единичной ширины кольца ΔB_s , ΔC_s	Алгебраическая разность между единичной и номинальной ширинами кольца
Непостоянство единичной ширины кольца $V_{Bs},\ V_{Cs}$	Разность между наибольшей и наименьшей единичными ширинами отдельного кольца
Действительная монтажная высота подшипника $T_{\rm s}$	Расстояние между точками пересечения оси подшипников с двумя плоскостями, касательными к действительным базовым торцам колец, ограничивающим ширину подшипника, когда один торец внутреннего кольца и один торец наружного кольца установлены для ограничения ширины подшипника
	Примечание. Монтажная высота кониче- ского однорядного подшипника определяется при условии наличия контакта дорожек качения наружного и внутреннего колец и упорного бор- тика широкого торца внутреннего кольца со все- ми роликами
Отклонение действительной монтажной высоты подшипника $\Delta T_{\mathfrak{s}}$	Алгебраическая разность между действительной и но- минальной монтажными высотами подшипника
Радиальное биение внутреннего	Разность между наибольшим и наименьшим расстоя-

ниями в радиальном направлении от неподвижной точки на наружной цилиндрической поверхности подшип-

кольца радиального и радиально-

упорного подшипника в сборе K_{ia}

Продолжение табл. 33

Термин	Определение
	ника до поверхности отверстия при вращении внутреннего кольца. В направлении указанной неподвижной точки тела качения должны быть в контакте с дорожками качения колец, а у конического подшипника и с опорным торцом бортика широкого торца внутреннего кольца
Радиальное биение наружного кольца радиального и радиально- упорного подшипника в сборе K_{ea}	Разность между наибольшим и наименьшим расстояниями в радиальном направлении от неподвижной точки на поверхности отверстия внутреннего кольца до наружной цилиндрической поверхности подшипника при вращении наружного кольца. В направлении указанной неподвижной точки тела качения должны быть в контакте с дорожками качения колец, а у конического подшипника и с опорным торцом бортика широкого торца внутреннего кольца
Осевое биение дорожки качения внутреннего кольца шарикового радиального (радиально-упорного) подшипника в сборе (шариковый подшипник с желобом) S_{ia}	Разность между наибольшим и наименьшим расстояниями в осевом направлении от базового торца внутреннего кольца до точки, неподвижно связанной с наружным кольцом, на расстоянии от оси подшипника, равном половине диаметра дорожки качения внутреннего кольца при вращении внутреннего кольца.
	Дорожки качения наружного и внутреннего колец должны быть в контакте со всеми шариками
Осевое биение дорожки качения наружного кольца шарикового радиального (радиально-упорного) подшипника в сборе (шариковый подшипник с желобом) S_{ea}	Разность между наибольшим и наименьшим расстояниями в осевом направлении от базового торца наружного кольца до точки, неподвижно связанной с внутренним кольцом, на расстоянии в радиальном направлении от оси подшипника, равном половине диаметра дорожки качения наружного кольца при вращении наружного кольца.
	Дорожки качения наружного и внутреннего колец должны быть в контакте со всеми шариками
Торцовое биение базового торца внутреннего кольца S_d	Разность между наибольшим и наименьшим расстояниями в осевом направлении от базового торца до радиальной плоскости на расстоянии, равном половине диаметра дорожки качения внутреннего кольца
Осевое биение дорожки качения внутреннего кольца роликового конического подшипника в сборе S_{ia}	Разность между наибольшим и наименьшим расстояниями в осевом направлении от широкого торца внутреннего кольца до точки, неподвижно связанной с наружным кольцом, на расстоянии в радиальном направлении от оси подшипники, равном половине диаметра дорожки качения внутреннего кольца при вращении внутреннего кольца.
	Дорожки качения наружного и внутреннего колец и опорный торец бортика широкого торца внутреннего кольца должны быть в контакте со всеми роликами
Осевое биение дорожки качения наружного кольца роликового конического подшипника в сборе S_{ea}	Разность между наибольшим и наименьшим расстояниями в осевом направлении от широкого торца наружного кольца до точки, неподвижно связанной с внутренним кольцом, на расстоянии в радиальном направлении от оси подшипника, равном половине диаметра дорожки качения наружного кольца при вращении наружного кольца

нии наружного кольца.

Продолжение табл. 33

Термин	Определение
	Дорожки качения наружного и внутреннего колец и опорный торец бортика широкого торца внутреннего кольца должны быть в контакте со всеми роликами
Отклонение от перпендикулярности образующей наружной цилиндрической поверхности относительно базового торца S_D	Наибольшее изменение относительного положения в радиальном направлении, параллельном плоскости, касательной к базовому торцу наружного кольца, точек, расположенных на общей образующей наружной цилиндрической поверхности на расстоянии от торцов, равном наибольшему предельному осевому размеру фаски
Осевое биение дорожки качения тугого (свободного) кольца упорного подшипника $S_i\left(S_e\right)$	Разность между наибольшим и наименьшим расстояниями в осевом направлении от середины дорожки качения до опорного торца кольца

34. Предельные отклонения (мкм) внутренних колец шариковых и роликовых радиальных и шариковых радиально-упорных подшипников класса точности 0

d, мм ∆d,		Δα	Δd_s^{*1}		V_{dp} для серии диаметров			K _{id}	S_d	S _{ia} *3	ΔB_s нижнее *2 для подшипника						
,	d , мм Δd_{mp} ниж- нее *2 нее	ниж-	0; 8; 9	1; 7	2(5); 3(6); 4	V_{dmp}				одинар-	сдвоен- ного*4	V _{Bs} , не					
	нее 2	нее	нее			не б	олее				отон	- 1. I _					
10 ÷ 18	-8	+3	-11	10	8	6	6	10	20	24	-120	-250	20				
18 ÷ 30	-10	+3	-13	13	10	8	8	13	20	24	-120	-250	20				
30 + 50	-12	+3	-15	15	12	9	9	15	20	24	-120	-250	20				
50 ÷ 80	-15	+4	-19	19	19	11	11	20	25	30	-150	-380	25				
80 ÷ 120	-20	+5	-25	25	25	15	15	25	25	30	-200	-380	25				

^{*1} Двухточечное измерение подшипников серии диаметров 8; 9; 1; 2 (5); 3 (6) и 4; 1 при $d \le 40$ мм; 2 (5) при $d \le 180$ мм.

Примечания: 1. Наибольший предельный размер ширины внутреннего кольца подшипников с коническим отверстием не должен превышать номинальный размер.

- 2. Непостоянство ширины внутренних колец сферических подшипников с коническим отверстием не контролируют.
- 3. Радиальное биение внутренних колец подшипников с коническим отверстием, предназначенных для монтажа на закрепительных и стяжных втулках, не должно превышать 150 % значения, указанного в таблице, а значение Δd_{mp} устанавливается со знаком плюс и равным 300 % табличного значения. При этом непостоянство диаметра отверстия в единичном сечении не должно превышать поле допуска единичного диаметра отверстия Δd_{s} , указанного в таблице.

^{*2} Верхнее предельное отклонение равно нулю.

^{*3} Для шариковых радиальных и радиально-упорных подшипников, кроме сферических.

^{*4} Для колец подшипников, предназначенных для сдвоенных или комплектных подшипников.

35. Предельные отклонения и биения (мкм) наружных колец шариковых и роликовых радиальных и шариковых радиально-упорных подшипников класса точности 0

				V	о, для	подшип	ников			
	ΔD_{mp}	ΔL) _s *2	o	гкрытс	го	закрытого			
<i>D</i> , мм	нижнее*1				сери	и диаметр	оов	V_{Dmp}	Kea	S_{ea}^{*3}
		верхнее нижнее		0; 8; 9	1; 7	2(5); 3(6); 4	2(5); 3(6); 4			
		_			·	3(0), .				
6 ÷ 18	-8	+2	-10	10	8	6	10	6	15	40
18 ÷ 30	-9	+2	-11	12	9	7	12	7	15	40
30 ÷ 50	` -11	+3	-14	14	11	8	16	8	20	40
50 ÷ 80	-13	+4	-17	16	13	10	20	10	25	40
80 ÷ 120	-15	+5	-20	19	19	11	26	11	35	45
120 ÷ 150	-18	+6	-24	23	23	14	30	14	40	50
150 ÷ 180	-25	+7	-32	31	31	19	38	19	45	60
180 ÷ 250	-30	+8	-38	38	38	23		23	50	70

^{*1} Верхние предельные отклонения равны нулю.

Примечание. $\Delta C_s = \Delta B_s$; $V_{Cs} = V_{Bs}$ того же подшипника (см. табл. 34).

36. Предельные отклонения и биения (мкм) внутренних колец шариковых и роликовых радиальных и шариковых радиально-упорных подшипников класса точности 6

	Δd_s^{*2}		,*2		для с иамет	V_{dmp}	Kia	Sd	Sia*3	∆ <i>B</i> _s *1 ни подші			
<i>d</i> , мм	∆ <i>d_{тр}</i> ниж-	верх-	ниж-	0; 8; 9	1; 7	2(5); 3(6); 4	-				одинар-	сдвоен- ного	V _{Bs} , не
	нее*1	нее	нее			не б	олее		ного	(компле- ктного ^{*4})	более		
10 ÷ 18	-7	+1	-8	9	7	5	5	7	10	12	-120	-250	10
18 ÷ 30	-8	+1	-9	10	8	6	6	8	10	12	-120	-250	10
30 ÷ 50	-10	+1	-11	13	10	8	8	10	10	12	-120	-250	10
50 ÷ 80	-12	+2	-14	15	15	9	9	10	12	15	-150	-380	12
80 ÷ 120	-15	+3	-18	19	19	11	11	13	12	15	-200	-380	12

^{*1} Верхние предельные отклонения равны нулю.

Примечания: 1. Наибольший предельный размер ширины внутреннего кольца подшипников с коническим отверстием не должен превышать номинальный размер.

^{*2} Двухточечное измерение подшипников серий диаметров 8, 9; 1; 2 (5); 3(6) и 4; для серии диаметров 8 и 9 при $D \le 22$ мм; 1 при $D \le 80$ мм, 2(5) при $D \le 315$ мм. Значения, приведенные в таблице, недействительны для закрытых подшипников.

^{*3} Для шариковых радиальных и радиально-упорных подшипников (кроме сферических).

^{*2} Двухточечное измерение подшипников серий диаметров 8; 9; 1; 2(5); 3(6) и 4; 1 при $d \le 60$ мм.

^{*3} Для шариковых радиальных и радиально-упорных подшипников (кроме сферических).

^{*4} Для колец подшипников, предназначенных для сдвоенных или комплектных подшипников.

^{2.} Непостоянство ширины внутренних колец сферических подшипников с коническим отверстием не контролируют.

^{3.} При использовании параметра Δd_s конусообразность отверстий шариковых и роликовых подшипников - не более 50 % допуска на d_{mp} .

37. Предельные	отклонения и биения (мкм) наружных колец шариковых и роликовых радиальных
!	и шариковых радиально-упорных подшипников класса точности б

				V_D	»3 дл	и подши	пников				
	ΔD_{mp}	ΔD_s^{*2}		открытого закрытого							
D, MM	нижнее*1				сери	и диаметт	V_{Dmp}	Kea	Sea*4	V_{Cs}	
		верхнее	нижнее	0; 8; 9	1; 7	2(5); 3(6); 4	1; 7; 2(5); 3(6); 4				
		<u> </u>									
6 ÷ 18	-7	+1	-8	9	7	5	9	5	8	20	15
18 ÷ 30	-8	+1	-9	10	8	6	10	6	9	20	20
30 ÷ 50	-9	+2	-11	11	9	7	13	7	10	20	20
50 ÷ 80	-11	+2	-13	14	11	8	16	8	13	20	20
80 ÷ 120	-13	+2	-15	16	16	10	20	10	18	22	25
120 ÷ 150	-15	+3	-18	19	19	11	25	11	20	25	25
150 ÷ 180	-18	+3	-21	23	23	14	30	14	23	30	30
180 ÷ 250	-20	+4	-24	25	25	15	_	15	25	35	30

*1 Верхнее предельное отклонение равно нулю.

 Π римечание. $\Delta C_s = \Delta B_s$ того же подшипника (см. табл. 36).

38. Предельные отклонения и биения (мкм) внутренних колец шариковых и роликовых радиальных и шариковых радиально-упорных подшипников класса точности 5

		V_{dp} для серии диаметров			V _{dmp}	K _{ia}	S_d	S _{ia} *3	Δ <i>B</i> _s ні для под		
<i>d</i> , мм	∆d _{mp}	Δd_s^{*2}	0; 8; 9	1; 7; 2(5); 3(6); 4					одинар-	сдвоен- ного	V _{Bs} , не
	нижі	нее*1		не	более				ного	(компле- ктного)*4	более
10 ÷ 18	-5	-5	5	4	3	4	7	7	-80	-250	5
18 ÷ 30	-6	-6	6	5	3	4	8	8	-120	-250	5
30 ÷ 50	-8	-8	8	6	4	5	8	8	-120	-250	5
50 ÷ 80	-9	-9	9	7	5	5	8	8	-150	-250	6
80 ÷ 120	-10	-10	10	8	5	6	9	9	-200	-380	7

^{*1} Верхние предельные отклонения равны нулю.

 Π р и м е ч а н и е . При использовании параметра Δd_s непостоянство единичного диаметра и конусообразность отверстий шариковых и роликовых подшипников - не более 50% допуска на d_{mb} .

^{*2} Двухточечное измерение подшипников серий диаметров 8; 9; 1; 2(5); 3(6) и 4; для серии диаметров 8 и 9 при $D \le 22$ мм; 1 при $D \le 95$ мм. Значения недействительны для закрытых подшипников.

^{*3} Для колец до монтажа упорного пружинного кольца и защитной шайбы или после их снятия.

^{*4} Для шариковых радиальных и радиально-упорных подшипников (кроме сферических).

^{*2} Двухточечное измерение подшипников серий диаметров 8; 9; 1; 7; 2 (5); 3(6) и 4.

^{*3} Для шариковых радиальных и радиально-упорных подшипников (кроме сферических).

^{*4} Для колец подшипников, предназначенных для сдвоенных или комплектных подшипников.

39. Предельные отклонения и биения (мкм) наружных колец шариковых и роликовых радиальных
и шариковых радиально-упорных подшипников класса точности 5

	ΔD_{mp}	ΔD_s^{*2}	V _{Dp} *3 для	я серии диаметров	V_{Dmp}	Kea	S_D	Sea*4	V_{Gs}		
<i>D</i> , мм	-		0; 8; 9	1; 7; 2(5); 3(6); 4							
	нижі	iee ^{*1}			не более						
6 ÷ 18	-5	-5	5	4	3	5	8	8	5		
18 ÷ 30	-6	-6	6	5	3	6	8	8	5		
30 ÷ 50	-7	-7	7	5	4	7	8	8	5		
50 ÷ 80	-9	-9	9	7	5	8	8	10	6		
80 ÷ 120	-10	-10	10	8	5	10	9	11	8		
120 ÷ 150	-11	-11	11	8	6	11	10	13	8		
150 ÷ 180	-13	-13	13	10	7	13	10	14	8		
180 ÷ 250	-15	-15	15	11	8	15	11	15	10		

^{*1} Верхние предельные отклонения равны нулю.

40. Предельные отклонения, мкм, внутренних колец роликовых конических подшипников класса точности 0 категории С (нормальная точность)

<i>d</i> , мм	∆d _{mp}		Δd_s^*		V_{dp}	V_{dmp}	K _{ia}	S_d	ΔB_s		ΔT_s	
	верхн.	нижн.	верхн.	нижн.		не б	олее		верхн.	нижн.	верхн.	нижн.
От 10 до 18 включ.		-12	+3	-15	12	9	15	20		-200	+250	-250
Св. 18 » 30 »		-12	+3	-15	12	9	18	20	'	-200	+250	-250
» 30 » 50 »	0	-12	+3	-15	12	9	20	20	0	-240	+250	-250
» 50 » 80 »		-15	+4	-19	15	11	25	25		-300	+250	-250
* 80 * 120 *		-20	+5	-25	20	15	30	25		-400	+500	-500

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $d \le 40$ мм, 2(5) - $d \le 180$ мм.

41. Предельные отклонения, мкм, внутренних колец роликовых конических подшипников класса точности 0 категории С (повышенная точность)

<i>d</i> , мм	Δd_{mp}		Δd_s^*		V_{dp}	V_{dmp}	Kia	S_d	ΔB_s		ΔT_s	
	верхн.	нижн.	верхн.	нижн.		не более				нижн.	верхн.	нижн.
От 10 до 18 включ.		-8	+3	-11	8	6	15	20		-120	+200	0
Св. 18 * 30 *		-10	+3	-13	10	7,5	18	20		-120	+200	0
* 30 * 50 *	0	-12	+3	-15	12	9	20	20	0	-120	+200	0
* 50 * 80 *		-15	+4	-19	15	11	25	25		-150	+200	0
* 80 * 120 *		-20	+5	-25	20	15	30	25		-200	+200	-200

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $d \le 40$ мм, 2(5) - $d \le 180$ мм.

^{*2} Двухточечное измерение подшипников серий диаметров 8; 9; 1; 7; 2 (5); 3(6) и 4; для серии диаметров 8 и 9 при $D \le 22$ мм. Значения недействительны для закрытых подшипников.

^{*3} Значения недействительны для закрытых подшипников.

^{*4} Для шариковых радиальных и радиально-упорных подшипников (кроме сферических).

Примечание. $\Delta C_s = \Delta B_s$ того же подшипника (см. табл. 38).

42. Предельные отклонения,	мкм, внутренних	колец ролнковых	конических подшинников
	класса точности	0 категории В	

	Δ	d _{mp}	Δα	is*	V_{dp}	V _{dmp}	Kia	S_d		ΔB_s	ΔΊ	T _s	Δ	T _{is}
<i>d</i> , мм	верхн.	нижн.	верхн.	нижн.		не б	олее		верхн.	нижн.	верхн.	нижн.	верхн.	нижн.
От 10 до 18 включ.		-8	+3	-11	8	6	15	20		-120	+200	0	+100	0
CB. 18 * 30 *		-10	+3	-13	10	7,5	18	20		-120	+200	0	+100	0
* 30 * 50 *	0	-12	+3	-15	12	9	20	20	0	-120	+200	0	+100	0
* 50 * 80 *		-15	+4	-19	15	11	25	25		-150	+200	0	+100	0
* 80 * 120 *	L	-20	+5	-25	20	15	30	25		-200	+200	-200	+100	-100

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $d \le 40$ мм. 2(5) - $d \le 180$ мм.

43. Предельные отклонения, мкм, наружных колец роликовых конических подшипников класса точности 0 категории С

<i>D</i> , мм	ΔL	ΔD_{mp}		ΔD_s^*		V_{Dmp}	K _{ea}
,	верхн. ниж		верхн. нижн.		не более		
От 18 до 30 включ.		-12	+2	-14	12	9	18
CB. 30 * 50 *		-14	+3	-17	14	11	20
» 50 » 80 »		-16	+4	-20	16	12	25
» 80 » 120 »	0	-18	+5	-23	18	14	35
* 120 * 150 *		-20	+6	-26	20	15	40
* 150 * 180 *		-25	+7	-32	25	19	45
* 180 * 250 *		-30	+8	-38	30	23	50

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $D \le 80$ мм, 2 - $D \le 315$ мм.

Примечание. Предельные отклонения ширины колец не нормированы. Однако наибольший размер ширины колец не должен превышать номинальный размер.

44. Предельные отклонения, мкм, наружных колец роликовых конических подшипников класса точности 0 категории С (повышенная точность)

<i>D</i> , мм	ΔL	ΔD_{mp}		ΔD_s^*		V_{Dmp}	K _{ea}
,	верхн.	нижн.	верхн.	нижн.		не более	
От 18 до 30 включ.		-9	+2	-11	9	6	18
Св. 30 » 50 »		-11	+3	-14	11	8	20
* 50 * 80 *	- }	-13	+4	-17	13	9	25
* 80 * 120 *	0	-15	+5	-20	15	11	35
* 120 * 150 *		-18	+6	-24	18	14	40
* 150 * 180 *		-25	+7	-32	25	19	45
» 180 » 250 »		-30	+8	-38	30	23	50

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $D \le 80$ мм, 2 - $D \le 315$ мм.

Примечание. Предельные отклонения ширины колец не нормированы. Однако наибольший размер ширины колец не должен превышать номинальный размер.

45. Предельные отклонения, мкм,	наружных колец роликовых конических подшипнико	B
KJIACC	а точности 0 категории В	

<i>D</i> , мм	ΔL	тр	ΔΙ) _s *	V_{Dp}	V_{Dmp}	K _{ea}	Δ	C_s	Δ7	
	верхн.	нижн.	верхн.	нижн.		не более		верхн.	нижн.	верхн.	нижн.
От 18 до 30 включ.		-9	+2	-11	9	6	18	Равно Δ <i>В</i> ₅		+100	0
Св. 30 » 50 »		-11	+3	-14	11	8	20			+100	0
» 50 » 80 »		-13	+4	-17	13	9	25			+100	0
» 80 » 120 »	0	-15	+5	-20	15	11	35	того поді	же иип-	+100	0
* 120 * 150 *		-18	+6	-24	18	14	40	ника		+100	-100
* 150 * 180 *		-25	+7	-32	25	19	45			+200	-100
* 180 * 250 *		-30	+8	-38	30	23	50			+200	-100

^{*} Для подшипников серий диаметров 1; 2(5) и 3(6), причем для серий диаметров 1 - $D \le 80$ мм, 2 - $D \le 315$ мм.

Предельные отклонения, мкм, тугих колец упорных и упорно-радиальных подшипников

	Классы точн	юсти 0, 6, 5	Классы точности 4 и 2			
<i>d</i> , <i>d</i> ₂ , мм	∆d _{тр} , ∆d _{2тр} нижние	V _{dp} , V _{d2p} не более	∆d _{mp} , ∆d _{2mp} нижние	$V_{dp},\ V_{d2p},$ не более		
Менее 18	-8	6	-7	5		
18 ÷ 30	-10	8	-8	6		
30 ÷ 50	-12	9	-10	8		
50 ÷ 80	-15	11	-12	9		
80 ÷ 120	-20	15	-15	11		

^{*} Верхние предельные отклонения равны нулю.

47. Предельные отклонения, мкм, свободных колец упорных и упорно-радиальных подшипников

	Классы точ	ности 0, 6, 5	Классы точности 4 и 2			
<i>D</i> , мм	∆ <i>D_{тр}</i> нижние*	V_{dp} не более	ΔD_{mp} нижние*	V_{dp} , не более		
10 ÷ 18	-11	8	-7	5		
18 ÷ 30	-13	10	-8	6		
30 ÷ 50	-16	12	-9	7		
50 ÷ 80	-19	14	-11	8		
80 ÷ 120	-22	17	-13	10		

^{*} Верхние предельные отклонения равны нулю.

<i>d</i> , мм	$S_i = S_e$, не более, для подшипников класса точности							
	0	6	5	4	2			
Менее 18	10	5	3	2	i i			
18 ÷ 30	10	5	3	2	1.2			
30 ÷ 50	10	6	3	2	1,5			
50 ÷ 80	10	7	4	3	2			
80 ÷ 120	15	8	4	3	2			

48. Биения, мкм, тугих и свободных колец шариковых и роликовых упорных подпишников

Примечание. Для двойного подшипника допускаемые осевые биения S_i и S_e равны осевым биениям соответствующего (при том же наружном диаметре) одинарного подшипника.

49. Предельные отклонения, мкм, наружных колец закрытых шариковых и роликовых радиальных, шариковых радиально-упорных и роликовых конических подшишников

			ΔD	s AUS NO	дшипни	ков клас	са точн	ости		
D, mm		0	(6		5	4	ļ		2
	верх- нее	ниж- нее								
6 ÷ 18	-5	-13	+3	-10	+2	-7	+1	-6	+1	-4
18 ÷ 30	-6	-15	+4	-12	+3	-9	+2	-7	+1	-5
30 ÷ 50	-8	-19	+6	-15	+4	-11	+3	-9	+1	-5
50 ÷ 80	-10	-23	+8	-19	+6	-15	+3	-10	+1	-5
80 ÷ 120	-13	-28	+10	-23	+8	-18	+3	-11	+1	-5
120 ÷ 150	-15	-33	+12	-27	+9	-20	-	-	-	-
150 ÷ 180	-19	-44	+15	-33	-	_	-	-	_	-

Примечания: 1. Значения действительны для шариковых и роликовых радиальных, шариковых радиально-упорных и роликовых конических подшипников класса точности 0 серий диаметров 1; 2 (5); 3(6) и 4, причем для серии диаметров 1 $D \le 80$ мм.

Значения действительны для шариковых и роликовых радиальных, шариковых радиально-упорных и роликовых конических подшипников класса точности 6 серии диаметров: 1; 7;
 (5); 3(6) и 4, причем для серии диаметров 1 D ≤ 95 мм.

50. Предельные отклонения, мкм, конических отверстий с конусностью 1:12 внутренних колец подшипников класса точности 0

	Δd_{mp}	$\Delta d_{1mp} - \Delta d_{mp}$	V_{dp}^{*2} ,	$\Delta d_{_S}$	$\Delta d_{1s} - \Delta d_s$
<i>d</i> , мм	верх	нее ^{*1}	не более	верхнее*1	
10 ÷ 18	+18	+18	10	+27	+18
18 ÷ 30	+21	+21	13	+33	+21
30 ÷ 50	+25	+25	15	+39	+25
50 ÷ 80	+30	· +30	19	+46	+30
80 ÷ 120	+35	+35	25	+54	+35

^{*1} Нижние предельные отклонения равны нулю.

^{*2} Относится к любой единичной радиальной плоскости отверстия.

Материалы. Твердость колец и тел качения

Марку стали, твердость, обозначение других материалов, применяемых для изготовления деталей подшипников, указывают в конструкторской документации.

Твердость колец и роликов из наиболее часто применяемых марок сталей приведена в табл. 51. Твердость шариков из этих материалов $63 \dots 67 \text{ HRC}_3$.

Неоднородность по твердости в пределах одного кольца подшипника должна быть не более $3~\mathrm{HRC}_{2}$.

51. Твердость колец и роликов, работающих при температуре до 100 °C, HRC₃

	Кольца со ст	енкой толщиной		
Марка стали	до 35 мм и ролики диа- метром до 55 мм	св. 35 мм и ролики диаметром св. 55 мм		
ШХ4	61 64			
ШХ15, ШХ15-Ш, ШХ15-В	62 66			
ШХ15СГ*, ШХ15СГ-В*, ШХ15СГ-Ш*	61 65	59 63		
ШХ20СГ 18ГТ	61 65 62 66			
15Γ1 20X2H4A	58 62 59 66			

^{*} По заказу потребителя твердость колец со стенкой толщиной свыше 35 мм и роликов диаметром свыше 55 мм должна быть $61 \dots 65 \ HRC_3$.

Требования табл. 51 не распространяются на подшипники, имеющие в условном обозначении дополнительные знаки T, T1 ... T5.

Если подшипники используют для работы при повышенных температурах, то для обеспечения стабилизации размеров детали подшипника подвергают отпуску при температурах выше $150~^{\circ}$ С (на $50~^{\circ}$ С выше рабочих температур), что отражают в условном обозначении: T, T1...T5 (температура отпуска соответственно 200, 225, 250, 300, 350, $400~^{\circ}$ С). Детали таких подшипников имеют несколько пониженную твердость.

Кольца и тела качения подшипников, работающих при повышенных температурах (до 500 °C) или в агрессивных средах, изготовляют соответственно из теплопрочных или коррозионно-стойких сталей. Для подшипников, к которым предъявляют повышенные требования по ресурсу и надежности, применяют стали, подвергнутые специальным переплавам, уменьшающим содержание неметаллических включений, а также двойной переплав: электрошлаковый и вакуумно-дуговой.

Сепараторы изготовляют в большинстве случаев из мягкой углеродистой стали марок 08кп, 10кп. Сепараторы высокоскоростных подшипников выполняют массивными из текстолита, фторопласта, латуни, бронзы. Материалы перечислены в порядке увеличения быстроходности.

Шероховатость поверхностей подшипников качения

Параметр шероховатости *Ra* по ГОСТ 2789 наружной поверхности, поверхностей отверстия и торцов колец подшипников не должен превышать значений, указанных в табл. 52.

При изготовлении подшипников из коррозионно-стойких сталей и сплавов параметр шероховатости *Ra* устанавливают по согласованию между изготовителем и потребителем.

52. Параметры шероховатости *Ra*, мкм, поверхностей подшипников

Наименование	Класс точности	Номинальные диаметры d и D колец подшипников, мм						
поверхности подшипника	подшип- ников	до 30	св. 30 до 80	св. 80 до 150	св. 150 до 250	св. 250 до 500	св. 500 до 2000	
Поверхность	0	1,25	1,25	1,25	1,25	2,5	2,5	
отверстия	6X, 6, 5	0,63	0,63	1,25	1,25	1,25	2,5	
	4, 2, T	0,32	0,32	0,63	0,63	0,63	-	

Продолжение табл. 52

Наименование	Класс точности	Номинальные диаметры d и D колец подщипников, мм						
поверхности подшипника	подшип- ников	до 30	св. 30 до 80	св. 80 до 150	св. 150 до 250	св. 250 до 500	св. 500 до 2000	
Наружная	0	0,63	0,63	1,25	1,25	1,25	2,5	
поверхность	6X, 6, 5	0,32	0,32	0,63	0,63	0,63	1,25	
	4, 2, T	0,32	0,32	0,63	0,63	0,63	-	
Поверхность	0	2,5	2,5	2,5	2,5	2,5	2,5	
торцов колец	6X, 6, 5	1,25	1,25	1,25	1,25	2,5	2,5	
	4, 2*, T	0,63	0,63	0,63	0,63	1,25	-	

^{*} Для упорных шариковых подшипников класса точности 2 параметр шероховатости Ra для колец подшипников с номинальным диаметром отверстия тугого кольца до 80 мм должен быть не более 0,32 мкм, свыше 80 мм - не более 0,63 мкм.

ЗАЗОРЫ И ПРЕДВАРИТЕЛЬНЫЕ НАТЯГИ В ПОДШИПНИКАХ

Под радиальным или осевым зазором подразумевают полное радиальное или соответственно осевое перемещение в обоих направлениях одного кольца относительно другого.

Оптимальные значения радиальных и осевых зазоров для данных условий эксплуатации подшипника позволяют обеспечить рациональное распределение нагрузки между телами качения, необходимое смещение вала и корпуса в радиальном и осевом направлениях, а также улучшить и повысить стабильность виброакустических характеристик, снизить потери на трение.

В подшипниках нерегулируемых типов различают три вида радиальных зазоров: начальный, посадочный и рабочий.

Посадочный зазор всегда меньше начального в связи с деформациями колец в радиальном направлении после установки подшипника на рабочее место. При работе подшипникового узла и установившемся температурном режиме образуется рабочий зазор, который может быть больше или меньше посадочного в зависимости от схемы установки подшипников, воспринимаемой нагрузки и перепада температур вала и корпуса.

ГОСТ 24810-81 устанавливает условные обозначения групп зазоров и числовые значения радиального и осевого зазоров в состоянии поставки для подшипников качения, приведенных в табл. 53.

ГОСТ 24810-81 не распространяется на полшипники:

- шариковые радиальные со съемным наружным кольцом;
- шариковые радиальные однорядные с канавкой для вставления шариков:
- шариковые радиально-упорные однорядные;
- шариковые радиально-упорные двухрядные с двумя наружными кольцами;

53. Группы зазоров и их обозначения

T

Обозначение группы	Наименование типов
зазоров	подшипников
	Шариковые радиаль-
	•
	ные однорядные без
	канавок для вставле-
	ния шариков с от-
1	верстием:
6, нормальная, 7, 8, 9	цилиндрическим
2, нормальная, 3, 4	коническим
	Шариковые радиаль-
	ные сферические
	двухрядные с отвер-
	стием:
2, нормальная, 3, 4, 5	цилиндрическим
2, нормальная, 3, 4, 5	коническим
	Роликовые радиаль-
	ные с короткими
	цилиндрическими
	роликами с цилинд-
	рическим отверсти-
	ем; роликовые ради-
	альные игольчатые с
	сепаратором:
1, 6, 2, 3, 4	с взаимозаменяе-
-, -,, -	мыми деталями
0, 5, нормальная, 7, 8,	с невзаимозаме-
9	няемыми деталями

	Продолжение табл. 53.
Обозначение группы зазоров	Наименование типов подшипников
	Роликовые радиальные с короткими цилиндрическими роликами с кониче-
2, 1, 3, 4	ским отверстием: с взаимозаменяе- мыми деталями
0, 5, 6, 7, 8, 9	с невзаимозаме- няемыми деталями
Нормальная, 2	Роликовые радиаль- ные игольчатые без сепаратора
2, нормальная, 3, 4, 5 1, 2, нормальная, 3, 4, 5	Роликовые радиальные сферические однорядные с отверстием: цилиндрическим коническим
1, 2, нормальная, 3, 4, 5 1, 2, нормальная, 3, 4, 5	Роликовые радиальные сферические двухрядные с отверстием: цилиндрическим коническим
	Шариковые радиаль- но-упорные двухряд- ные:
 2, нормальная, 3, 4 2, нормальная, 3 	с неразъемным внутренним кольцом с разъемным внутренним кольцом
Примечание. приведено в порядке	Обозначения групп увеличения значения

- шариковые радиально-упорные однорядные с разъемным наружным или внутренним кольцом; - роликовые радиальные игольчатые со штампованным наружным кольцом, а также на подшипники качения, для которых установлены особые значения зазоров

По ГОСТ 24810-81 для подшипников различных типов установлены группы зазоров: нормальная и дополнительные (с меньшими и большими значениями зазоров) (табл. 53)

Нерегулируемые типы подшипников изготовляют со сравнительно небольшими зазорами; после установки на вал и в корпус они могут работать без дополнительного регулирования.

Размеры зазоров для однорядных радиальных шариковых подшипников приведены в табл. 54.

Подшипники, предназначенные для нормальных условий эксплуатации (перепад температур между наружными и внутренними кольцами незначителен - 5 ... 10 °C), должны иметь зазор, соответствующий основной - нормальной группе.

Основная область применения подшипников с увеличенными зазорами - опоры со значительными колебаниями рабочих температур, а также опоры, в которых кольца подшипника из-за ожидаемых больших динамических нагрузок монтируют на вал и корпус со значительными посадочными натягами. Радиальные однорядные шарикоподшипники, предназначенные для восприятия только осевых сил, должны иметь увеличенный радиальный зазор, позволяющий увеличить угол контакта в подшипнике, т.е. повысить его осевую грузоподъем-Радиальные несамоустанавливающиеся подшипники с увеличенным радиальным зазором применяют при отклонениях от соосности посадочных мест.

54. Размеры зазоров для однорядных радиальных шариковых подшипников без канавок для вставления шариков с цилиндрическим отверстием

Номинальный	·	Размер зазора G_r , мкм								
диаметр	наим.	наиб.	наим.	наиб.	наим.	наиб.	наим.	наиб.	наим.	наиб.
d отверстия]	руппа з	азора				
подшипника, мм		ó	норма	льная	7	7		3	9)
Св. 10 до 18 включ.	0	9	3	18	11	25	18	33	25	45
» 18 » 24 »	0	10	5	20	13	28	20	36	28	48
* 24 * 30 *	1	11	5	20	13	28	23	41	30	53
* 30 * 40 *	1	11	6	20	15	33	28	46	40	64
* 40 * 50 *	1	11	6	23	18	36	30	51	45	73
» 50 » 65 »	ı	15	8	28	23	43	38	61	55	90
* 65 * 80 *	1	15	10	30	25	51	46	71	65	105
» 80 » 100 »	1	18	12	36	30	58	53	84	75	120
* 100 * 120 *	2	20	15	41	36	66	61	97	90	140

Подшинники с уменьшенным зазором устанавливают в опорах при высоких требованиях к радиальному или осевому биению вала, работающего с умеренной частотой вращения при эффективном охлаждении.

Осевые и радиальные зазоры регулируемых подшипников могут быть установлены в определенных пределах только при монтаже в узле машины. Требуемый осевой зазор в упорных подшипниках устанавливают также при монтаже. В. зависимости от конструкции узла регулирование осевых зазоров осуществляют смещением наружного или внутреннего кольца подшипника.

Оптимальное значение зазоров устанавэкспериментально для конкретного узла. Если подшипники собраны с большим зазором, то всю нагрузку воспринимает только один или два шарика. или ролика (рис. 22, а). Условия работы подшипников при таких больших зазорах неблагоприятны, и поэтому такие зазоры недопустимы. Уменьшение зазоров приводит к более равномерному распределению нагрузки между телами качения, снижает вибрации, повышает жесткость опоры. Наличие некоторых осевых зазоров положительно сказывается на снижении момента сопротивления вращению. Обычные радиально-упорные подшипники регулируют так, чтобы осевой зазор при установившемся температурном режиме был бы близок к нулю. В этом случае под действием радиальной нагрузки находятся около половины тел качения (рис. 22, δ).

В некоторых узлах, например, в станкостроении для повышения жесткости опор, точности вращения вала и улучшения виброакустической характеристики узла применяют сборку подшипников с предварительным натягом. В этом случае более полови-

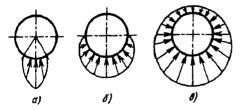


Рис. 22. Распределение нагрузок на тела качения:

а - при повышенном зазоре;
 δ - при нулевом зазоре;
 в - при предварительном натяге
 или при значительной осевой нагрузке

ны или все тела качения подшипника находятся под нагрузкой (рис.22, ε).

Сущность предварительного натяга заключается в том, что пару подшипников предварительно нагружают осевой силой, которая устраняет осевой зазор в комплекте, создавая начальную упругую деформацию в местах контакта рабочих поверхностей колец с телами качения. Если затем к подшипнику приложить рабочую осевую нагрузку, то относительное перемешение его колец вследствие дополнительной деформации рабочих поверхностей будет значительно меньше, чем до создания предварительного натяга. Предварительный натяг вызывает одинаковую деформацию в обоих подшипниках. Такие подшипники работают в более тяжелых условиях, так как повышаются нагрузки на тела качения, момент сопротивления вращению и износ, а также снижается ресурс подшипника.

Влияние зазоров и натягов на ресурс показано на рис. 23.

С предварительным натягом устанавливают подшипники шариковые радиальные, радиально-упорные, роликовые ские, а также подшипники с короткими цилиндрическими роликами типа 3182000, монтируемые на конусную шейку вала с натягом, способным вызвать расширение внутреннего кольца и полностью устранить в подшипнике радиальный зазор. Примерные значения осевых зазоров для радиально-упорных подшипников приведены в табл. 55 и 56, а для двойных и сдвоенных одинарных упорных шарикоподшипников в табл. 57. Данные табл. 57 можно использовать и при монтаже упорных роликовых полиципников.

Рис. 23. Влияние зазоров и натягов на ресурс (*L* - ресурс в процентах от расчетного)

55. Рекомендуемый осевой зазор, мкм,	для шариковых радиально-упорных
оп хындждондо	одиниников

Диаметр	отверстия	угле контакта	aα,°				
-	одшипника <i>d</i> , мм		12				36
Св.	До	Схема 1 Схема 2		Схел	ема 1		
	-	наим.	наиб.	наим.	наиб.	наим.	наиб.
	30	20	40	30	50	10	20
30	50	30	50	40	70	15	30
50	80	40	70	50	100	20	40
80	120	50	100	60	150	30	50
120	180	80	150	-100	200	40	70
180	260	120	200	150	250	50	100

 Π р и м е ч а н и е . Схемы установки подшипников: 1 - два в одной опоре; 2 - один в каждой опоре.

Рекомендуемый осевой зазор, мкм, для радиально-упорных роликовых конических однорядных подшипников

Диаметр отверстия		Осевой зазор при утле контакта α, °								
подшипн	ника <i>d</i> , мм	10 16				25 29				
Св.	До	Схе	Схема 1		ма 2	Cxe	Схема 1			
		наим.	наиб.	наим.	наиб.	наим.	наиб.			
-	30	20	40	40	70	-	T -			
30	50	40	70	50	100	20	40			
50	80	50	100	80	150	30	50			
80	120	80	150	120	200	40	70			
120	180	120	200	200	300	50	100			
180	260	160	250	250	350	80	150			
260	360	200	300	_	_	-	-			
360	400	250	350	-	_	-	_			

Примечание. Схемы установки подшипников: 1 - два в одной опоре; 2 - один в каждой опоре.

57. Рекомендуемый осевой зазор, мкм, для двойных и сдвоенных одинарных упорных шарикоподшипников

Диаметр	отверстия		Осевой зазор для типов подшипни					
подшипн	ика <i>d</i> , мм	81	8100 8200, 8300		, 38200, 38300	8400,	38400	
Св.	До	наим.	наиб.	наим.	наиб.	наим.	наиб	
-	50	10	20	20	40	-	-	
50	120	20	40	40	60	60	80	
120	140	40	60	60	80	80	120	

Приведенные в табл. 55-57 значения соответствуют нормальным условиям эксплуатации, при которых температура внутренних колец радиально-упорных подшип-

ников не превышает температуру наружных колец более чем на 10 °C, а разность температур вала и корпуса составляет $\sim 10-20$ °C; рабочая частота вращения n упорных под-

шипников не превышает половины предельно допустимой частоты вращения $n_{\rm пр}$ для подшипников данного типоразмера.

При монтаже подшипников с коническим отверстием на коническую шейку вала начальный радиальный зазор уменьшается вследствие расширения внутреннего кольца. Осевое перемещение внутреннего кольца с отверстием, имеющим конусность 1:12, относительно шейки вала или втулки вызывает уменьшение начального радиального зазора, равное примерно 1/15 величины перемещения.

Для устранения влияния гироскопического эффекта в упорных подшипниках при $n > 0,5n_{\rm пp}$ применяют сборку с предварительным натягом, осуществляемым комплектом пружин, нагружающих подшипник осевой силой, H:

$$F_a = 53 \cdot 10^{-13} \Big[\Big(D^2 - d^2 \Big) n \Big]^2$$
,

где D и d - наружный и внутренний диаметры стандартного подшипника, мм; n - частота вращения, об/мин.

ВЫБОР ПОДШИПНИКОВ И СХЕМЫ ИХ УСТАНОВКИ

Выбор подшипников. При выборе типа и размеров подшипников качения учитывают следующие факторы:

- значение и направление нагрузки (радиальная, осевая, комбинированная);
- характер нагрузки (постоянная, переменная, вибрационная, ударная);
 - частоту вращения кольца подшипника;
- необходимый ресурс (в часах или миллионах оборотов);
- состояние окружающей среды (температуру, влажность, запыленность, кислотность и т.п.);
- особые требования к подшипнику, предъявляемые конструкцией узла (необходимость самоустанавливаемости подшипника в опоре с целью компенсации перекосов вала или корпуса; способность допускать перемещения вала в осевом направлении; монтаж подшипника непосредственно на вал, на закрепительную или закрепительно-стяжную необходимость втулку; регулирования радиального и осевого зазора подшипника, повышения жесткости и точности вращения, снижения трения, шумности; желательные габаритные размеры узла; требования к надежно-

сти; стоимость подшипника и узла в целом).

Если нет повышенных требований к частоте и точности вращения, применяют подшипники класса точности 0 по ГОСТ 520-89.

Наметив тип, конструктивную разновидность и схему установки подшипников, выполняют расчет на ресурс при требуемой надежности или/и на статическую грузоподъемность, осуществляют выбор подшипника по каталогу. В зависимости от рабочих скоростей и условий работы выбирают способ смазывания, тип смазочного материала, защиту его от загрязнения и вытекания из подшипника.

Схемы установки подшипников. В большинстве случаев валы должны быть зафиксированы в опорах от осевых перемещений. По способности фиксировать осевое положение вала опоры разделяют на фиксирующие и плавающие. В фиксирующих опорах ограничено осевое перемещение вала в одном или обоих направлениях. В плавающей опоре осевое перемещение вала в любом направлении не ограничено. Фиксирующая опора воспринимает радиальную и осевую силы, а плавающая опора - только радиальную.

В некоторых конструкциях применяют так называемые "плавающие" валы. Эти валы имеют возможность осевого смещения в обоих направлениях, их устанавливают на плавающих опорах. Осевая фиксация вала осуществляется не в опорах, а какими-либо другими элементами конструкции, например торцами деталей, зубьями шевронных зубчатых колес.

На рис. 24 показаны основные способы осевого фиксирования валов.

В схемах 1а и 16 вал зафиксирован в одной (левой на рисунке) опоре: в схеме 1а - одним подшипником; в схеме 16 - двумя однорядными подшипниками. В плавающей опоре применяют обычно радиальные подшипники. Эти схемы применяют при любом расстоянии І между опорами вала. Схему 16 характеризует большая жесткость фиксирующей опоры, особенно в случае применения в одной опоре двух радиальноупорных подшипников с большими углами контакта.

Назначая фиксирующую и плавающую опоры стремятся обеспечить примерно равную нагруженность подшипников и наименьшие силы трения в плавающей опоре.

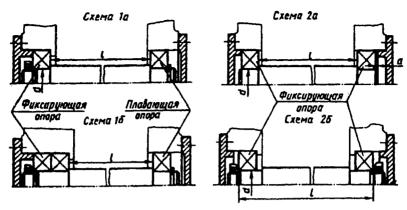


Рис. 24.Способы осевого фиксирования валов

При температурных колебаниях плавающий подшипник перемещается в осевом направлении на величину удлинения (укорочения) вала. Так как это перемещение может происходить под нагрузкой, поверхность отверстия корпуса изнашивается. Поэтому при действии на опоры вала только радиальных сил в качестве плавающей выбирают менее нагруженную опору.

Если выходной конец вала соединяют муфтой с валом другого узла, в качестве фиксирующей принимают опору вблизи выходного конца вала.

В схемах 2а и 26 вал зафиксирован в двух опорах, причем в каждой опоре в одном направлении. Эти схемы применяют с определенными ограничениями по расстоянию между опорами, что связано с изменением зазоров в подшипниках вследствие нагрева деталей при работе. При нагреве самих подшипников зазоры в них уменьшаются; при нагреве вала его длина увеличивается.

Из-за увеличения длины вала осевые зазоры в подшипниках схемы 2a также уменьшаются. Чтобы не происходило защемления вала в опорах, предусматривают при сборке осевой зазор "a". Значение зазора должно быть несколько больше ожидаемой тепловой деформации подшипников и вала. В зависимости от конструкции узла и условий эксплуатации $a = 0.15 \dots 1.0$ мм.

Схема 2a установки подшипников конструктивно наиболее проста. Ее широко применяют при относительно коротких валах. При установке в опорах радиальных подшипников отношение $1/d \approx 8 \dots 10$.

В опорах схемы 2а могут быть применены и радиально-упорные подшипники. Так

как эти подшипники более чувствительны к изменению осевых зазоров, то соотношение между величинами l и d для них является более жестким и не должно превышать $l/d=6\dots 8$. Меньшие значения относят к роликовым, большие - к шариковым радиально-упорным подшипникам. По этой схеме не рекомендуется применять радиально-упорные подшипники с углом контакта $\alpha=25\dots 40^\circ$.

При установке вала по схеме 26 вероятность защемления подшипников вследствие температурных деформаций вала меньше, так как при увеличении длины вала осевой зазор в подшипниках увеличивается. Расстояние между подшипниками может быть несколько больше, чем в схеме 2a: для подшипников шариковых радиальных $l/d = 10 \dots 12$; шариковых радиальноупорных $l/d \le 8$.

Более длинные валы устанавливать по схеме 26 не рекомендуют, так как вследствие температурных деформаций вала могут появиться большие осевые зазоры, недопустимые для радиально-упорных подшипников.

СТАТИЧЕСКАЯ ГРУЗОПОДЪЕМНОСТЬ, СТАТИЧЕСКАЯ ЭКВИВАЛЕНТНАЯ НАГРУЗКА

Общие сведения, основные определения

Методы расчета базовой статической грузоподъемности и статической эквивалентной нагрузки для подшипников качения установлены межгосударственным стандартом ГОСТ 18854-94 (ИСО 76-87).

При статическом нагружении повреждения подшипников проявляются в виде смятия рабочих поверхностей.

Приводимые в ГОСТ 18854-94 формулы и коэффициенты для расчета базовой статической расчетной грузоподъемности основаны на принятых в качестве расчетных значениях контактных напряжений.

В ГОСТ 18854-94 применяют следующие термины и определения в соответствии со стандартом ИСО 5593-84.

Статическая нагрузка - нагрузка, действующая на подшипник, кольца которого не вращаются относительно друг друга.

Базовая статическая радиальная грузоподъемность C_{or} - статическая радиальная
нагрузка, которая соответствует расчетным
контактным напряжениям в центре наиболее тяжело нагруженной зоны контакта
тела качения и дорожки качения подшипника, равным:

4600 МПа - для радиальных шариковых самоустанавливающихся подшипников;

4200 МПа - для всех других типов радиальных и радиально-упорных шариковых подшипников;

4000 МПа - для всех типов радиальных и радиально-упорных роликовых подшипников.

Возникающая при этих контактных напряжениях общая остаточная деформация тела качения и дорожки качения приблизительно равна 0,0001 диаметра тела качения.

Для однорядных радиально-упорных подшипников радиальная грузоподъемность соответствует радиальной составляющей нагрузки, вызывающей чисто радиальное смещение подшипниковых колец относительно друг друга.

Базовая статическая осевая грузоподъемность C_{oa} - статическая центральная осевая нагрузка, которая соответствует расчетным контактным напряжениям в центре наиболее тяжело нагруженной зоны контакта тела качения и дорожки качения подшипника, равным:

4200 МПа - для упорных и упорнорадиальных шариковых подшипников;

4000 МПа - для всех упорных и упорнорадиальных роликовых подшипников.

Возникающая при этих контактных напряжениях общая остаточная деформация тела качения и дорожки качения приблизительно равна 0,0001 диаметра тела качения. Статическая эквивалентная радиальная нагрузка P_{or} - статическая радиальная нагрузка, которая должна вызвать такие же контактные напряжения в наиболее тяжело нагруженной зоне контакта тела качения и дорожки качения подшипника, как и в условиях действительного нагружения.

Статическая эквивалентная осевая нагрузка P_{oa} - статическая центральная осевая нагрузка, которая должна вызвать такие же контактные напряжения в наиболее тяжело нагруженной зоне контакта тела качения и дорожки качения подшипника, как и в условиях действительного нагружения.

Диаметр ролика (для расчета грузоподъемности) D_{we} - диаметр ролика в среднем сечении. Для конического ролика диаметр для расчета грузоподъемности равен среднему значению диаметров в теоретических точках пересечения поверхности качения с большим и малым торцами ролика. Для асимметричного бочкообразного ролика диаметр D_{we} равен диаметру в точке контакта бочкообразного ролика с дорожкой качения кольца подшипника без бортика при нулевой нагрузке.

Длина ролика (для расчета грузоподъемности) L_{we} - наибольшая теоретическая длина контакта ролика и той дорожки качения, где контакт является самым коротким. За длину контакта принимают расстояние между теоретическими точками пересечения поверхности качения и торцами ролика, за вычетом фасок ролика, или ширину дорожки качения, за вычетом галтелей (проточек). При этом выбирают меньшее значение.

Номинальный угол контакта α - угол между радиальным направлением и прямой линией, проходящей через точки контакта тел качения и колец в осевом сечении подшипника. Для дорожки качения с прямолинейной образующей - угол между радиальным направлением и линией, перпендикулярной к образующей дорожки качения наружного кольца.

Диаметр окружности центров тел качения D_{pw} . Диаметр окружности центров набора шариков - диаметр окружности, проходящей через центры шариков в одном ряду подшипника. Диаметр окружности центров набора роликов - диаметр окружности, проходящей через оси роликов в среднем сечении роликов в одном ряду подшипника.

Формулы для расчета базовой статической радиальной C_{or} (осевой C_{oq}) грузоподъемности

Базовая статическая грузоподъемность в H:

шариковых подшипников:

- радиальных и радиально-упорных

$$C_{or} = f_0 i Z D_w^2 \cos \alpha; \qquad (1)$$

 одинарных или двойных упорных и упорно-радиальных

$$C_{oa} = f_0 Z D_w^2 \sin \alpha , \qquad (2)$$

где f_0 - коэффициент, зависящий от геометрии деталей подшипника и от принятого уровня напряжения (табл. 58); i - число рядов тел качения в подшипнике; Z - число шариков, воспринимающих нагрузку в одном направлении; $D_{\rm w}$ - диаметр шарика, мм.

роликовых подшипников:

- радиальных и радиально-упорных

$$C_{or} = 44(1 - D_{we} \cos \alpha / D_{pw}) i Z L_{we} D_{we} \cos \alpha;$$
(3)

- упорных и упорно-радиальных

$$C_{oa} = 220 \left(1 - D_{we} \cos \alpha / D_{pw} \right) Z L_{we} D_{we} \sin \alpha ,$$
 (4)

где D_{we} - диаметр ролика, мм; L_{we} - длина ролика, мм; Z - число роликов, воспринимающих нагрузку в одном направлении.

Если ролики имеют различную длину, вместо (ZL_{we}) подставляют сумму длин L_{we} всех роликов, воспринимающих нагрузку в одном направлении.

58. Значения коэффициента f_0 для шариковых подшипников

	f_0 для шариковых подшипников					
$\frac{D_w \cos \alpha}{D_{pw}}$	радиальных и радиаль- но- упорных	само- устанав- ливаю- щихся	упорных и упорно- радиаль- ных			
0,00	14,7	1,9	61,6			
0.01	14,9	2,0	60,8			
0,02	15,1	2,0	59,9			
0,03	15,3	2,1	59,1			
0,04	15,5	2,1	58,3			
0,05	15,7	2,1	57,5			
0,06	15,9	2,2	56,7			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		f_0 для шариковых подшипников							
D _{pw} и радиально- упорных устанавливающихся и упорнорадиальных 0,07 16,1 2,2 55,9 0,08 16,3 2,3 55,1 0,09 16,5 2,3 54,3 0,10 16,4 2,4 53,5 0,11 16,1 2,4 52,7 0,12 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,17 14,7 2,7 48,0 0,17 14,7 2,7 48,0 0,17 14,7 2,7 48,0 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9	$D_{w} \cos \alpha$	радиальных	само-	упорных					
но-упорных щихся радиальных 0,07		и радиаль-	устанав-						
0,07 16,1 2,2 55,9 0,08 16,3 2,3 55,1 0,09 16,5 2,3 54,3 0,10 16,4 2,4 53,5 0,11 16,1 2,4 52,7 0,12 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26	≥ pw	но-	ливаю-						
0,08 16,3 2,3 55,1 0,09 16,5 2,3 54,3 0,10 16,4 2,4 53,5 0,11 15,9 2,4 51,9 0,12 15,6 2,5 51,2 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,29		упорных	щихся	ных					
0,09 16,5 2,3 54,3 0,10 16,4 2,4 53,5 0,11 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,27 12,3 3,1 40,5 0,29 11,8 3,2 39,0 0,30	0,07	16,1		55,9					
0,09 16,5 2,3 54,3 0,10 16,4 2,4 53,5 0,11 15,9 2,4 52,7 0,12 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,1 40,5 0,28 12,1 3,2 39,7 0,29		16,3	2,3	55,1					
0,10 16,4 2,4 53,5 0,11 16,1 2,4 52,7 0,12 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,27 12,3 3,1 40,5 0,29 11,8 3,2 39,0 0,30		16,5	2,3	54,3					
0,12 15,9 2,4 51,9 0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 10,9 3,4 36,8 0,34 10,7 3,5		16,4	2,4	53,5					
0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,7 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,34 10,7 3,5 3,5 0,34	0,11	16,1	2,4	52,7					
0,13 15,6 2,5 51,2 0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,7 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,34 10,7 3,5 3,5 0,34		15,9	2,4	51,9					
0,14 15,4 2,5 50,4 0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 10,9 3,4 36,8 0,34 10,7 3,5 35,3 0,35 10,5 3,5 35,3 0,36 10,3 3,6	0,13	15,6	2,5	51,2					
0,15 15,2 2,6 49,6 0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 10,9 3,4 36,8 0,34 10,7 3,5 35,3 0,35 10,5 3,5 3,5 0,36	0,14	15,4	2,5	50,4					
0,16 14,9 2,6 48,8 0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,0 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 10,9 3,4 36,8 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 - <td>0,15</td> <td>15,2</td> <td>2,6</td> <td>49,6</td>	0,15	15,2	2,6	49,6					
0,17 14,7 2,7 48,0 0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,7 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7	0,16	14,9	2,6	48,8					
0,18 14,4 2,7 47,3 0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 - <td></td> <td>14,7</td> <td>2,7</td> <td>48,0</td>		14,7	2,7	48,0					
0,19 14,2 2,8 46,5 0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,8 0,34 10,7 3,5 35,3 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,18	14,4	2,7	47,3					
0,20 14,0 2,8 45,7 0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 40,5 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,8 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -		14,2	2,8	46,5					
0,21 13,7 2,8 45,0 0,22 13,5 2,9 44,2 0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,20	14,0	2,8	45,7					
0,22 13,5 2,9 44,2 0,23 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,21	13,7	2,8	45,0					
0,23 13,2 2,9 43,5 0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,0 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,22	13,5	2,9	44,2					
0,24 13,0 3,0 42,7 0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,23	13,2	2,9	43,5					
0,25 12,8 3,0 41,9 0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,24	13,0	3,0	42,7					
0,26 12,5 3,1 41,2 0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,25	12,8	3,0	41,9					
0,27 12,3 3,1 40,5 0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,26	12,5	3,1	41,2					
0,28 12,1 3,2 39,7 0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,27	12,3	3,1	40,5					
0,29 11,8 3,2 39,0 0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,28	12,1	3,2	39,7					
0,30 11,6 3,3 38,2 0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,29	11,8	3,2	39,0					
0,31 11,4 3,3 37,5 0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,30	11,6	3,3	38,2					
0,32 11,2 3,4 36,8 0,33 10,9 3,4 36,0 0,34 10,7 3,5 35,3 0,35 10,5 3,5 34,6 0,36 10,3 3,6 - 0,37 10,0 3,6 - 0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,31	11,4	3,3	37,5					
0,33		11,2	3,4	36,8					
0,34	0,33	10,9	3,4	36,0					
0,35	0,34	10,7	3,5	35,3					
0,36	0,35	10,5	3,5	34,6					
0,37	0,36	10,3	3,6	-					
0,38 9,8 3,7 - 0,39 9,6 3,8 -	0,37	10,0	3,6	-					
0,39 9,6 3,8 -	0,38	9,8	3,7	-					
0,40 9,4 3,8 -	0,39	9,6	3,8	-					
	0,40		3,8	-					

Примечания: 1. Значения f_0 рассчитаны по формулам Герца, полученным из условия первоначального точечного контакта с модулем упругости $2.07 \cdot 10^5$ МПа и коэффициентом Пуассона, равным 0.3.

- 2. Значения f_0 вычислены для случая обычного распределения внешней силы между телами качения, при котором нагрузка на наиболее нагруженный шарик в шариковых радиальных и радиально-упорных подшипниках равна $5F_r/(Z\cos\alpha)$, а в шариковых упорных и упорно-радиальных подшипниках $F_a/(Z\sin\alpha)$.
- 3. f_0 для промежуточных значений $D_{w}\cos lpha / D_{pw}$ получают линейным интерполированием.

Комплект подшипников. Базовая статическая радиальная грузоподъемность пля двух одинаковых однорядных шариковых и роликовых радиальных И радиальноподшипников. *<u>Упорных</u>* установленных рядом на одном валу при расположении широкими или узкими торцами друг к другу и образующих общий полшипниковый узел, равна удвоенной номинальной грузоподъемности одного однорядного подщипника.

Базовая статическая радиальная грузоподъемность двух и более одинаковых однорядных шариковых и роликовых радиальных
и радиально-упорных подшипников, установленных рядом на одном валу при расположении их по схеме "тандем"
(последовательно) в случае их точного изготовления и равномерного распределения
нагрузки равна номинальной грузоподъемности одного однорядного подшипника,
умноженной на число подшипников.

Базовая статическая осевая грузоподъемность для двух и более одинаковых одинарных роликовых упорных и упорнорадиальных подшипников, установленных рядом на одном валу при расположении их по схеме "тандем" при условии их точного изготовления и равномерного распределения нагрузки, равна номинальной грузо-

подъемности одного одинарного подшипника, умноженной на число подшипников.

Формулы для расчета статической эквивалентной радиальной P_{or} (осевой P_{oa}) нагрузки

Статическая эквивалентная радиальная нагрузка для шариковых радиальных и радиально-упорных, роликовых радиально-упорных ($\alpha \neq 0^{\circ}$) подшипников равна большему из двух значений, рассчитанных по формулам:

$$P_{or} = X_0 F_r + Y_0 F_a; (5)$$

$$P_{or} = F_r \,, \tag{6}$$

где F_r и F_a - соответственно радиальная и осевая нагрузка на подшипник, H; X_0 и Y_0 - соответственно коэффициент статической радиальной и статической осевой нагрузки (табл. 59).

Для роликовых радиальных подшипников ($\alpha = 0^{\circ}$), которые воспринимают только радиальную нагрузку, $P_{or} = F_{r}$

Статическую эквивалентную осевую нагрузку для шариковых и роликовых упорно-радиальных подшипников ($\alpha \neq 90^{\circ}$) рассчитывают по формуле

59. Значения	коэффициентов	X_0	H	Y_0
--------------	---------------	-------	---	-------

			• •		
		Х ₀	<i>Y</i> ₀	<i>X</i> ₀	<i>Y</i> ₀
Тип подшипников		для однорядных подшипников		для двухрядных подшипников	
Шариковые радиальные	*	0,6	0,5	0,6	0,5
Шариковые радиально-упорные при угле контакта α, °	12 15 20 25 30 35 40 45	0,5	0,47 0,46 0,42 0,38 0,33 0,29 0,26 0,22	1,0	0,94 0,92 0,84 0,76 0,66 0,58 0,52 0,44
Шариковые и роликовые самоустанавливающиеся, α ≠ 0°		0,5	0,22 ctgα	1,0	0,44 ctga
Роликовые радиально-упорные конические		0,5	0,22 ctgα	1,0	0,44 ctgα

^{* -} допустимое максимальное значение F_a/C_{or} зависит от конструкции подшипника (значения внутреннего зазора и глубины желоба).

 $[\]Pi$ р и м е ч а н и е . Значения Y_0 для промежуточных углов контакта получают линейным интерполированием.

$$P_{\alpha\alpha} = 2.3F_r \log \alpha + F_{\alpha}. \tag{7}$$

Формула действительна *для двойных подшипников* при всех соотношениях радиальной и осевой нагрузок.

Для одинарных подшипников, воспринимающих нагрузку в одном направлении, формула действительна в том случае, если значения F_r / $F_a \leq 0.44$ ctg α , и дает вполне приемлемые значения P_{oa} при F_r/F_a до 0.67ctg α .

Для шариковых и роликовых упорных подшипников ($\alpha=90^{\circ}$) $P_{oa}=F_{a}$.

Комплекты полшипников. При расчете эквивалентной радиальной статической нагрузки для двух одинаковых однорядных радиальных шариковых И радиальноупорных шариковых и роликовых подщипников, установленных рядом на одном валу при расположении широкими или узкими торцами друг к другу и образующих общий подшипниковый узел, используют значения X_0 и Y_0 для двухрядных подшипников, а значения F_r и F_a принимают в качестве общей нагрузки, действующей на весь комплект.

При расчете статической эквивалентной радиальной нагрузки для двух и более одинаковых однорядных шариковых радиальных, шариковых и роликовых радиальноупорных подшипников, установленных рядом на одном валу по схеме "тандем", используют значения X_0 и Y_0 для однорядных подшипников, а значения F_r и F_a принимают в качестве общей нагрузки, действующей на весь комплект.

При расчете статической эквивалентной осевой нагрузки для двух или более одинаковых роликовых упорных и упорнорадиальных подшипников, установленных рядом на одном валу по схеме "тандем" (парный монтаж и монтаж нескольких подшипников), значения F_r и F_a принимают в качестве нагрузки, действующей на весь комплект.

ДИНАМИЧЕСКАЯ РАСЧЕТНАЯ ГРУЗОПОДЪЕМНОСТЬ

Общие сведения, основные определения

Методы вычисления базовой динамической расчетной грузоподъемности и расчетного ресурса подшипников качения установлены межгосударственным стандартом ГОСТ 18855-94 (ИСО 281-89). Разрушение

вращающегося под нагрузкой подшипника качения происходит вследствие усталостных процессов в металле колец и тел качения. Расчетный ресурс - основной показатель правильности выбора подшипника. Целью ГОСТ 18855-94 является создание необходимой основы для расчета ресурса подшипников качения.

В ГОСТ 18855-94 применены ниже перечисленные термины и определения в соответствии со стандартом ИСО 5593-84 и ГОСТ 18854-94.

Ресурс (для конкретного подшипника качения) - число оборотов, которое одно из колец подшипника (или кольца упорного двойного подшипника) делает относительно другого кольца до появления первых признаков усталости металла одного из колец или тел качения.

Надежность (для конкретного подшипника) - вероятность того, что данный подшипник достигнет или превысит расчетный ресурс. Надежность для группы идентичных подшипников, работающих в одинаковых условиях, представляет собой число подшипников из этой группы (в процентах), которые должны достичь или превзойти расчетный ресурс.

Базовый расчетный ресурс L_{10} , миллионов оборотов, - ресурс, соответствующий 90%-й надежности для конкретного подшипника или группы, идентичных подшипников качения, работающих в одинаковых условиях, изготовленных из обычного материала с применением обычных технологии и условий эксплуатации.

Скорректированный расчетный ресурс L_{na} (в дальнейшем примем обозначение L_{sa}) миллионов оборотов, - расчетный ресурс, полученный путем корректировки базового расчетного ресурса в зависимости от заданного уровня надежности, специальных свойств подшипника и конкретных условий эксплуатации.

Базовая динамическая радиальная расчетная грузоподъемность C_n H, - постоянная радиальная нагрузка, которую подшипник теоретически может воспринимать при базовом расчетном ресурсе, составляющем один миллион оборотов. Для радиальноупорных однорядных подшипников радиальная расчетная грузоподъемность соответствует радиальной составляющей нагрузки, которая вызывает чисто радиальное смещение подшипниковых колец относительно друг друга.

Базовая динамическая осевая расчетная грузоподъемность C_a , H, - постоянная центральная осевая нагрузка, которую подшипник теоретически может воспринимать при базовом расчетном ресурсе, составляющем один миллион оборотов.

Динамическая эквивалентная радиальная нагрузка P_r , H, - постоянная радиальная нагрузка, под воздействием которой подшипник будет иметь такой же ресурс, как и в условиях действительного нагружения.

Динамическая эквивалентная осевая нагрузка P_a , H, - постоянная центральная осевая нагрузка, под воздействием которой подшипник будет иметь такой же ресурс, как и в условиях действительного нагружения.

Диаметр ролика D_{we} , мм, (для расчета грузоподъемности) - диаметр среднего сечения ролика. За диаметр асимметричного бочкообразного ролика принимают диаметр ролика в точке контакта с дорожкой качения кольца без бортика при нулевой нагрузке.

Длина ролика L_{we} , мм, (для расчета грузоподъемности) - теоретическая длина контакта ролика и дорожки качения. За длину контакта принимают расстояние между торцами ролика, уменьшенное на размер фасок, или ширину дорожки качения, уменьшенную на ширину проточек (галтелей). При этом выбирают меньшее значение.

Номинальный угол контакта α, °, - угол в осевом сечении подшипника между радиальным направлением и прямой линией, проходящей через точки контакта тела качения с дорожками качения колец. Для дорожки качения с прямолинейной образующей - угол между радиальным направлением и линией, перпендикулярной к образующей дорожки качения наружного кольца.

Диаметр окружности центров набора шариков (роликов) D_{pw} , мм, - диаметр окружности, проходящей через центры шариков (роликов) в одном ряду подшипника.

Нормальные условия эксплуатации - условия, которые являются оптимальными для подшипника, то есть подшипник правильно установлен, смазан, защищен от проникания инородных тел; нагрузка соответствует типоразмеру подшипника; подшипник не подвергается чрезмерным изменениям температуры и частоты вращения.

Формулы для расчета базовой динамической радиальной C_r (осевой C_a) расчетной грузоподъемности

Базовая динамическая расчетная грузоподъемность в H:

шариковых подшипников:

- радиальных и радиально-упорных при D_w ≤ 25,4 мм

$$C_r = b_m f_c (i \cos \alpha)^{0.7} Z^{2/3} D_w^{1.8};$$
 (8)

при $D_w > 25,4$ мм

$$C_r = 3,647 b_m f_c (i \cos \alpha)^{0.7} Z^{2/3} D_w^{1.4},$$
 (9)

где i - число рядов тел качения в подшипнике;

 b_m - коэффициент, характеризующий свойства стали с учетом способа ее обработки; значение коэффициента зависит от типа и конструкции подшипника: $b_m=1$ для вкладышных подшипников; $b_m=1,1$ для подшипников с канавкой для ввода шариков; $b_m=1,3$ для всех остальных подшипников;

значения f_c приведены в табл. 60.

Формулы для вычисления C_r применимы к подшипникам с радиусом желоба дорожки качения, не превышающим $0.52D_w$ на внутренних и $0.53D_w$ на наружных кольцах радиальных и радиально-упорных подшипников и $0.53D_w$ на внутренних кольцах шариковых самоустанавливающихся подшипников.

 D_{w} - диаметр шарика, мм;

Z - число шариков или роликов в однорядном подшипнике; число тел качения в одном ряду многорядного подшипника при одинаковом числе их в каждом ряду;

- упорных и упорно-радиальных однорядных одинарных или двойных:

при $D_w \le 25,4$ мм и $\alpha = 90^\circ$

$$C_a = b_m f_c Z^{2/3} D_w^{1,8} ; (10)$$

при $D_{\rm w} \le 25.4$ мм и $\alpha \ne 90^{\circ}$

$$C_a = b_m f_c (\cos \alpha)^{0.7} \operatorname{tg} \alpha Z^{2/3} D_w^{1.8};$$
 (11)

при $D_w > 25,4$ мм и $\alpha = 90^\circ$

$$C_a = 3,647 \, b_m f_c Z^{2/3} D_w^{1,4};$$
 (12)

при $D_w > 25.4$ мм и $\alpha \neq 90^\circ$

$$C_a = 3,647 b_m f_c (\cos \alpha)^{0.7} \operatorname{tg} \alpha Z^{2/3} D_w^{1.4}$$
, (13)

где Z - число шариков, воспринимающих нагрузку в одном направлении; $b_m = 1,3$ (значения f_c приведены в табл. 61 и применимы к подшипникам с радиусом желоба не более $0.54D_w$. Грузоподъемность подшипника не всегда увеличивается при применении меньшего радиуса желоба, но уменьшается при применении большего радиуса желоба). В случае, когда все шарики, передающие нагрузку в одном направлении, контактируют с одной и той же поверхностью дорожки качения кольца, упорные и упорно-радиальные подшипники рассматривают как одинарные. Если осевая нагрузка передается в обоих направлениях, то такие подшипники рассматривают двойные.

- упорных и упорно-радиальных с двумя или более рядами одинаковых шариков, воспринимающих нагрузку в одном направлении:

$$C_{a} = (Z_{1} + Z_{2} + \dots + Z_{n}) \times \times \left[(Z_{1}/C_{a1})^{10/3} + (Z_{2}/C_{a2})^{10/3} + \dots + (Z_{n}/C_{an})^{10/3} \right]^{-3/10},$$

$$(14)$$

где грузоподъемности $C_{a1},\ C_{a2},\ ...,\ C_{an}$ для рядов с числами шариков $Z_1, Z_2, ..., Z_n$ вычисляют по формулам для однорядных подшипников:

роликовых подшипников:

- радиальных и радиально-упорных

$$C_r = b_m f_c (i L_{we} \cos \alpha)^{7/9} Z^{3/4} D_{we}^{29/27},$$
 (15)

где $b_m = 1,0$ для игольчатых подшипников со штампованным наружным кольцом; $b_m = 1.1$ для роликовых цилиндрических, конических и игольчатых с кольцами, подвергнутыми обработке резанием: $b_m = 1,15$ для роликовых сферических;

 f_c - см. табл. 62;

- упорных и упорно-радиальных однорядных одинарных или двойных при α ≠ 90°

 $C_a = b_m f_c (L_{we} \cos \alpha)^{7/9} \operatorname{tg} \alpha Z^{3/4} D_{we}^{29/27}$; (16)

$$C_a = b_m f_c (L_{we} \cos \alpha)^{7/9} \operatorname{tg} \alpha Z^{3/4} D_{we}^{29/27}$$
; (16)
при $\alpha = 90^\circ$

$$C_a = b_m f_c L_{we}^{7/9} Z^{3/4} D_{we}^{29/27} , \qquad (17)$$

где Z - число роликов, передающих нагрузку в одном направлении (если несколько роликов по одну сторону оси подшипника устанавливают так, что их оси совпадают, то эти ролики рассматривают как один ролик с длиной L_{we} , равной сумме длин нескольких роликов);

 $b_m = 1,0$ для роликовых цилиндрических и игольчатых; $b_m = 1,1$ для конических роликовых; $b_m = 1,15$ для роликовых сфери-

значения f_c приведены в табл. 63.

- упорных и упорно-радиальных подшипников с двумя или более рядами роликов, воспринимающими нагрузку в одном направлении:

$$C_{a} = \left(Z_{1}L_{we1} + Z_{2}L_{we2} + \dots + Z_{n}L_{wen}\right) \times \left[\left(Z_{1}L_{we1}/C_{a1}\right)^{9/2} + \left(Z_{2}L_{we2}/C_{a2}\right)^{9/2} + \dots + \left(Z_{n}L_{wen}/C_{an}\right)^{9/2}\right]^{-2/9},$$
(18)

где грузоподъемности $C_{a1},\ C_{a2},\ ...,\ C_{an}$ для рядов с количеством роликов $Z_1,\ Z_2,\ ...\ ,\ Z_n,$ имеющих длины $L_{we1}, L_{we2}, ..., L_{wen}$, вычисляют по формулам для однорядных подшипников (ролики и/или часть общего числа роликов, контактирующие с одной и той же поверхностью дорожки качения упорного кольца, считают принадлежащими к одному ряду). В случае, когда все ролики, передающие нагрузку в одном направлении, контактируют с одной и той же поверхностью дорожки качения кольца, упорные и упорно-радиальные подшипники рассматривают как одинарные. Если осевая нагрузка передается в обоих направлениях, то такие подшипники рассматривают как двойные.

Значения коэффициентов b_m и f_c , приведенные для роликовых подшипников, являются максимальными, применимыми только к роликовым подшилникам, у которых под действием нагрузки напряжения распределены равномерно вдоль площадки контакта в наиболее тяжело нагруженной зоне контакта ролика с дорожкой качения. Значения f_c , меньшие указанных, рекомендуют в том случае, если под воздействием нагрузки в какой-то части площадки контакта ролика с дорожкой качения имеется резко выраженная концентрация напряжения. Такие явления имеют место в центре площадки контакта при номинальном точечном контакте или на краях площадки при линейном контакте, а также в тех случаях, когда ролики не имеют точного позиционирования или длина роликов более чем в 2,5 раза превышает их диаметр.

Меньшие значения f_c следует использовать также применительно к роликовым

упорным подшипникам, у которых геометрические особенности обусловливают повышенное скольжение на поверхностях контакта роликов с дорожками качения (например, у упорных подшипников с цилиндрическими роликами, имеющими длину, значительно превышающую диаметр).

60. Значения f_c для шариковых радиальных и радиально-упорных подшипников

· · · · · · · · · · · · · · · · · · ·		Шариковые	подшипники	
$D_{\mathbf{w}} \cos \alpha / D_{p\mathbf{w}}$	однорядные радиальные; однорядные и двухрядные радиально-упорные	двухрядные радиальные	однорядные и двухрядные самоустанавли- вающиеся	однорядные радиальные разъемные (магнетные)
0,01	29,1	27,5	9,9	9,4
0,02	35,8	33,9	12,4	11,7
0,03	40,3	38,2	14,3	13,4
0,04	43,8	41,5	15,9	14,9
0,05	46,7	44,2	17,3	16,2
0,06	49,1	46,5	18,6	17,4
0,07	51,1	48,4	19,9	18,5
0,08	52,8	50,0	21,1	19,5
0,09	54,3	51,4	22,3	20,6
0,10	55,5	52,6	23,4	21,5
0,11	56,6	53,6	24,5	22,5
0,12	57,5	54,5	25,6	23,4
0,13	58,2	55,2	26,6	24,4
0,14	58,8	55,7	27,7	25,3
0,15	59,3	56,1	28,7	26,2
0,16	59,6	56,5	29,7	27,1
0,17	59,8	56,7	30,7	27,9
0,18	59,9	56,8	31,7	28,8
0,19	60,0	56,8	32,6	29,7
0,20	59,9	56,8	33,5	30,5
0,21	59,8	56,6	34,4	31,3
0,22	59,6	56,5	35,2	32,1
0,23	59,3	56,2	36,1	32,9
0,24	59,0	55,9	36,8	33,7
0,25	58,6	55,5	37,5	34,5
0,26	58,2	55,1	38,2	35,2
0,27	57,7	54,6	38,8	35,9
0,28	57,1	54,1	39,4	36,6
0,29	56,6	53,6	39,9	37,2
0,30	56,0	53,0	40,3	37,8
0,31	55,3	52,4	40,6	38,4
0,32	54,6	51,8	40,9	38,9
0,33	53,9	51,1	41,1	39,4
0,34	53,2	50,4	41,2	39,8
0,35	52,4	49,7	41,3	40,1
0,36	51,7	48,9	41,3	40,4
0,37	50,9	48,2	41,2	40,7
0,38	50,0	47,4	41,0	40,8
0,39	49,2	46,6	40,7	40,9
0,40	48,4	45,8	40,4	40,9

 Π р и м е ч а н и е . Коэффициент f_c для промежуточных значений $D_w \cos \alpha / D_{pw}$ получают линейным интерполированием.

61. Значения f. для шариковых упорных и упорно-радиальных подшишников

Для упорных п	одшипников	Для упорно-радиальных подшипников					
	f _c		f_{c} при				
D_w / D_{pw}	при α = 90°	$D_{w}\cos\alpha/D_{pw}$	$\alpha = 45^{\circ}$	α = 60°	α = 75°		
0,01	36,7	0,01	42,1	39,2	37,3		
0,02	45,2	0,02	51,7	48,1	45,9		
0,03	51,1	0,03	58,2	54,2	51,7		
0,04	55,7	0,04	63,3	58,9	56,1		
0,05	59,5	0,05	67,3	62,6	59,7		
0,06	62,9	0,06	70,7	65,8	62,7		
0,07	65,8	0,07	73,5	68,4	65,2		
0,08	68,5	0,08	75,9	70,7	67,3		
0,09	71,0	0,09	78,0	72,6	69,2		
0,10	73,3	0,10	79,7	74,2	70,7		
0,11	75,4	0,11	81,1	75,5	-		
0,12	77,4	0,12	82 3	76,6	-		
0,13	79,3	0,13	83,3	77,5	-		
0,14	81,1	0,14	84,1	78,3	_		
0,15	82,7	0,15	84,7	78,8	-		
0,16	84,4	0,16	85,1	79,2	-		
0,17	85,9	0,17	85.4	79,5	-		
0,18	87,4	0,18	85,5	79,6	-		
0,19	88,8	0,19	85,5	79,6	_		
0,20	90,2	0,20	85,4	79,5	-		
0,21	91,5	0,21	85,2	-	-		
0,22	92,8	0,22	84,9	-	-		
0,23	94,4	0,23	84,5	_	-		
0,24	95,3	0,24	84,0	-	-		
0,25	96,4	0,25	83,4	_	-		
0,26	97,6	0,26	82,8	_	_		
0,27	98,7	0,27	82,0	-			
0,28	99,8	0,28	81,3	-	-		
0,29	100,8	0,29	80,4	-			
0,30	101,9	0,30	79,6	-	-		
0,31	102,9	_		<u>-</u>			
0,32	103,9	-	_	_	-		
0,33	104,8	_	-	_	_		
0,34	105,8	_	_	-	-		
0,35	106,7	_	_	-	-		

 Π р и м е ч а н и я : 1. Значения f_c при D_w / D_{pw} или $D_w \cos \alpha$ / D_{pw} и/или углах контакта α , не указанных в таблице, определяют линейным интерполированием.

^{2.} В упорно-радиальных подшипниках $\alpha > 45^\circ$. Значения при $\alpha = 45^\circ$ даны для обеспечения интерполирования значений f_c в диапазоне углов α контакта 45 ... 60° .

62. Максимальные значения f_c
для роликовых радиальных и радиально-упорных подшипников

$D_{we} \cos \alpha / D_{pw}$	f_c	$D_{we}\cos\alpha/D_{pw}$	f_c
0,01	52,1	0,16	88,5
0,02	60,8	0,17	88,7
0,03	66,5	0,18	88,8
0,04	70,7	0,19	88,8
0,05	74,1	0,20	88,7
0,06	76,9	0,21	88,5
0,07	79,2	0,22	88,2
0,08	81,2	0,23	87,9
0,09	82,8	0,24	87,5
0,10	84,2	0,25	87,0
0,11	85,4	0,26	86,4
0,12	86,4	0,27	85,8
0,13	87,1	0,28	85,2
0,14	87,7	0,29	84,5
0,15	88,2	0,30	83,8

Примечание. Значения f_c для отношений $D_{we}\cos\alpha/D_{pw}$, не приведенных в таблице, определяют линейным интерполированием.

63. Максимальные значения f_c для роликовых упорных и упорно-радиальных подшипников

Для упорных і	Для упорных подшипников		Для упорно-радиальных подшипников					
	f_c							
D_{we} / D_{pw}	при α = 90°	$D_{we} \cos \alpha / D_{pw}$	α = 50°	α = 65°	α = 80°			
0,01	105,4	0,01	109,7	107,1	105,6			
0,02	122,9	0,02	127,8	124,7	123,0			
0,03	134,5	0,03	139,5	136,2	134,3			
0,04	143,4	0,04	148,3	144,7	142,8			
0,05	150,7	0,05	155,2	151,5	149,4			
0,06	156,9	0,06	160,9	157,0	154,9			
0,07	162,4	0,07	165,6	161,6	159,4			
0,08	167,2	0,08	169,5	165,5	163,2			
0,09	171,7	0,09	172,8	168,7	166,4			
0,10	175,7	0,10	174,5	171,4	169,0			
0,11	179,5	0,11	177,8	173,6	171,2			
0,12	183,0	0,12	179,7	175,4	173,0			
0,13	186,3	0,13	181,1	176,8	174,4			
0,14	189,4	0,14	182,3	177,9	175,5			
0,15	192,3	0,15	183,1	178,8	176,3			
0,16	195,1	0,16	183,7	179,3				
0,17	197,7	0,17	184,0	179,6	-			
0,18	200,3	0,18	184,1	179,7	-			
0,19	207,7	0,19	184,0	179,6	-			
0,20	205,0	0,20	183,7	179,3	<u> </u>			

Продолжение табл. 63

Для упорных	Для упорных подшипников		Для упорно-радиальных подшипников				
	f _c			f_c при			
D_{we} / D_{pw}	при α = 90°	$D_{we}\cos\alpha/D_{pw}$	α = 50°	α = 65°	α = 80°		
0,21	207,2	0,21	183,2	-	-		
0,22	209,4	0,22	182,6	-	-		
0,23	211,5	0,23	181,8	-	-		
0,24	213,5	0,24	180,9	-	-		
0,25	215,4	0,25	179,8	-	-		
0,26	217,3	0,26	178,7	-	-		
0,27	219,1	-	-	-	-		
0,28	220,9	-	-	-	-		
0,29	222,7	_	-	-	-		
0,30	224,3	-	-	-	_		

 Π р и м е ч а н и я : 1. Коэффициент f_c для промежуточных значений D_{we} / D_{pw} или $D_{we}\cos\alpha$ / D_{pw} определяют линейным интерполированием.

- 2. Значения f_c при $\alpha = 50^\circ$ применимы для углов контакта $45^\circ < \alpha < 60^\circ$.
- 3. Значения f_c при $\alpha = 65^\circ$ применимы для углов контакта $60^\circ \le \alpha < 75^\circ$.
- 4. Значения f_c при $\alpha = 80^\circ$ применимы для углов контакта 75° $\leq \alpha < 90^\circ$.

Комплекты подшипников. При расчете базовой динамической радиальной грузоподъемности для двух одинаковых шариковых радиальных однорядных подшипников, установленных рядом на одном и том же валу, эту пару подшипников рассматривают как один двухрядный радиальный подшипник.

При расчете базовой динамической радиальной грузоподъемности для двух одинаковых шариковых и роликовых радиальоднорядных но-упорных подшипников, смонтированных рядом на одном и том же валу (парный монтаж) по схеме "широкий торец к широкому" или "узкий торец к узкому" так, что они работают как один узел, эту пару рассматривают как один двухрядный радиально-упорный подшипник. Если подшипниковый узел составляют два самостоятельных подшипника, которые заменяют независимо друг от друга, то приведенное указание к ним не применимо.

Базовую динамическую радиальную грузоподъемность для двух или более одинаковых шариковых и роликовых радиальноупорных однорядных подшипников, роликовых упорных одинарных подшипников, точно изготовленных и смонтированных рядом на одном и том же валу (парный или комплектный монтаж) по схеме "тандем" (последовательно) так, что они работают как один узел, определяют умножением числа подшипников в степени 0,7 (для шариковых) или 7/9 (для роликовых) на базовую динамическую грузоподъемность одного подшипника. Приведенное указание не применимо в случае, когда подшипниковый узел составляют подшипники, которые заменяют независимо друг от друга.

Формулы для расчета эквивалентной динамической радиальной P_r (осевой P_a) нагрузки

Эквивалентная динамическая радиальная нагрузка:

- для шариковых радиальных, шариковых и роликовых радиально-упорных подшипников при постоянных радиальной F_r и осевой нагрузках F_a :

$$P_r = XF_r + YF_a; (19)$$

- для роликовых радиальных подшипников с углом $\alpha = 0^\circ$ при чисто радиальной нагрузке

$$P_r = F_r \,. \tag{20}$$

Эквивалентная динамическая осевая нагрузка: - для шариковых и роликовых упорнорадиальных подшипников с углом $\alpha \neq 90^{\circ}$ при постоянной радиальной и осевой нагрузках

$$P_a = XF_r + YF_a; (21)$$

- для шариковых и роликовых упорных подшипников с углом $\alpha = 90^{\circ}$ при чисто осевой нагрузке

$$P_a = F_a. (22)$$

В приведенных формулах обозначены: F_r - радиальная нагрузка на подшипник или радиальная составляющая фактической нагрузки, действующей на подшипник, H; F_a - осевая нагрузка на подшипник или осевая составляющая фактической нагрузки, действующей на подшипник, H.

Значения коэффициентов *X* динамической радиальной нагрузки и *Y* динамической осевой нагрузки даны в табл. 64-67.

64. Значения коэффициентов X и Удля шариковых радиальных и радиально-упорных подпинников

			X	Y	X	Y	X	Y	
От	Относительная осевая нагрузка		для однор подщипн		для двухрядных подшипников				e
			F_a / F_r		F_a /	$F_r \leq e$	F_a /	F _r > e	
			Шариковые ра	г диальные	подшип	ники	· .		
$f_0 F_a$	/ C _{or}	$F_a / (iZD_w^2)$							
	72	0,172		2,30				2,30	0,19
	345	0,345		1,99				1,99	0,22
0,6	89	0,689		1,71				1,71	0,26
1,0	030	1,030		1,55				1,55	0,28
	380	1,380	0,56	1,45	1,0	0	0,56	1,45	0,30
2,0		2,070		1,31				1,31	0,34
3,4	150	3,450		1,15		!		1,15	0,38
5,1		5,170		1,04	ļ			1,04	0,42
6,8	390	6,890		1,00	<u> </u>			1,00	0,44
		Шај	риковые радиа	льно-упор	ные поді	шипники			
$f_0 i F_a$	/ C _{or}	$F_a / (ZD_w^2)$							
$\alpha = 5^{\circ}$	0,173	0,172			ĺ	2,78		3,74	0,23
	0,346	0,345	Использую	т значе-	İ	2,40		3,23	0,26
	0,692	0,689	ния <i>X</i> , Y и е			2,07		2,78	0,30
	1,040	1,030	нимые к од	•	ĺ	1,87		2,52	0,34
	1,390	1,380	ным радиа шариковы		1,0	1,75	0,78	2,36	0,36
	2,080	2,070	шипни			1,58		2,13	0,40
	3,460	3,450				1,39		1,87	0,45
	5,190	5,170				1,26		1,69	0,50
	6,920	6,890				1,21		1,63	0,52
α =10°	0,175	0,172		1,88		2,18		3,06	0,29
	0,350	0,345		1,71		1,98		2,78	0,32
	0,700	0,689		1,52		1,76		2,47	0,36
	1,050	1,030		1,41		1,63		2,29	0,38
	1,400	1,380	0,46	1,34	1,0	1,55	0,75	2,18	0,40
	2,100	2,070	-	1,23	<u> </u>	1,42		2,00	0,44
	3,500	3,450		1,10		1,27		1,79	0,49
	5,250	5,170		1,01		1,17		1,64	0,54
	7,000	6,890		1,00		1,16		1,63	0,54

Продолжение табл. 64

			X	Y	X	Y	Χ	Y	
Отн	оситель нагр	ная осевая узка		для однорядных подшипников		для двухрядных подшипников			
	•		F_a / F_r	> e	F_a /	$F_r \leq e$	F_a / I	$F_{r} > e$	
α =15°	0,178	0,172		1,47		1,65		2,39	0,38
	0,357	0,345		1,40	i	1,57		2,28	0,40
	0,714	0,689		1,30		1,46		2,11	0,43
	1,070	1,030		1,23		1,38		2,00	0,46
	1,430	1,380	0,44	1,19	1,0	1,34	0,72	1,93	0,47
	2,140	2,070		1,12		1,26		1,82	0,50
	3,570	3,450		1,02		1,14		1,66	0,55
	5,350	5,170	5	1,00	<u> </u>	1,12		1,63	0,56
	7,140	6,890		1,00		1,12		1,63	0,56
α =20°	-	-	0,43	1,00		1,09	0,70	1,63	0,57
$\alpha = 25^{\circ}$	-	-	0,41	0,87		0,92	0,67	1,41	0,68
$\alpha = 30^{\circ}$	-	-	0,39	0,76		0,78	0,63	1,24	0,80
$\alpha = 35^{\circ}$	-	-	0,37	0,66	1,0	0,66	0,60	1,07	0,95
α =40°	-	-	0,35	0,57		0,55	0,57	0,93	1,14
α =45°	-	-	0,33	0,50		0,47	0,54	0,81	1,34
Шарик	овые сам	юустанавли-	0,40	0,4×	1,0	0,42×	0,65	0,65×	1,5×
вающие	вающиеся подшипники			×ctgα		×ctga		×ctgα	×tgα
Однорядные радиальные разъемные шариковые под- шипники (магнетные)		0,50	2,50	-	-	-	-	0,2	

Примечания: 1. Допустимое максимальное значение относительной осевой нагрузки зависит от конструктивных параметров подшипников (значения внутреннего зазора и глубины желоба дорожки качения). Формулу для вычисления относительной осевой нагрузки выбирают в зависимости от имеющейся информации.

- 2. Для однорядных подшипников при F_a / $F_r \le e$: X=1; Y=0; здесь e предельное значение отношения F_a / F_r , определяющее значения коэффициентов X и Y.
- 3. Значения X, Y и е для относительных осевых нагрузок и/или углов контакта, не указанных в таблице, определяют линейным интерполированием.
 - 4. Значения f_0 , C_{or} см. выше.

65. Значения коэффициентов X и Y для шариковых упорных и упорно-радиальных подшипников

	X	Y	X	Y	X	Y	
α, °	для одина подшипн	- ,	дл	я двойных поди	иипников		e
	F_a / F_r	> e	F_a / I	$F_r \leq e$	F_a / F_r		
45	0,66		1,18	0,59	0,66		1,25
50	0,73		1,37	0,57	0,73		1,49
55	0,81		1,60	0,56	0,81		1,79
60	0,92	1,0	1,90	0,55	0,92	1,0	2,17
65	1,06		2,30	0,54	1,06		2,68
70	1,28		2,90	0,53	1,28		3,43

					_		
	X	Y	X	Y	X	Y	T
α, °	для одинарн подшипник		Д	ия двойных поді	шипников		e
	$F_a / F_r >$	e	F_a / I	$F_r \leq e$	$F_a / F_r >$	е	
75	1,66		3,89	0,52	1,66		4,67
80	2,43	1,0	5,86	0,52	2,43	1,0	7,09
85	4,80		11,75	0,51	4,80		14,28
α≠90	1,25tgα× ×(1 - 2sinα/3)	1,0	20tgα/13× ×(1 - sinα/3)	10/13× ×(1 - sinα/3)	1,25tgα× ×(1 - 2sinα/3)	1,0	1,25tgα

Продолжение табл. 65

Примечания: 1. Значения X, Y и e для углов α контакта, не указанных в таблице, определяют линейным интерполированием.

- 2. Отношение $F_q / F_r \le e$ не применимо для одинарных подшипников.
- 3. В упорно-радиальных подшипниках $\alpha > 45^{\circ}$. Значения при $\alpha = 45^{\circ}$ даны для обеспечения интерполирования значений X, Y и e в диапазоне углов α контакта 45 ... 50° .

66. Значения коэффициентов X и Y для роликовых радиально-упорных подшипников ($\alpha \neq 0^\circ$)

Тип подшипника	X	Y	X	Y	e	
	$F_a / F_r \le e$		$F_a / F_r > e$		<u> </u>	
Однорядные	1,0	0	0,4	0,4 ctgα	1,5 tgα	
Двухрядные	1,0	0,45 ctgα	0,67	0,67 ctgα	1,5 tgα	

67. Значения коэффициентов X и Y для роликовых упорно-радиальных подшипников ($\alpha \neq 90^\circ$)

Тип подшипника	Х	Υ	X	Y	e	
	$F_a / F_r \le e$		$F_a / F_r > e$			
Одинарные	-	-	tgα	1,0	1,5 tgα	
Двойные	1,5 tgα	0,67	tgα	1,0	1,5 tgα	

П р и м е ч а н и е . Отношение $F_a / F_r \le e$ не применимо для одинарных подшипников.

Комплект подшипников. При расчете динамической эквивалентной радиальной нагрузки для двух одинаковых шариковых и роликовых радиально-упорных однорядных подшипников, смонтированных рядом на одном и том же валу (парный монтаж) по схеме "широкий торец к широкому" или "узкий торец к узкому" так, что они работают как один узел, рассматриваемых поэтому как один двухрядный радиально-упорный подшипник, используют значения X и Y для двухрядных подшипников.

При расчете динамической эквивалентной радиальной нагрузки для двух или более одинаковых однорядных шариковых радиальных, шариковых и роликовых радиально-упорных подшипников, смонтированных рядом на одном и том же валу (парный или комплектный монтаж) по схеме "тандем" так, что они работают как один узел, используют значения X и Y для однорядного подшипника. Для шариковых подшипников относительную осевую нагрузку (табл. 60) определяют при условии, что i=1, а значения F_a и C_{or} относятся только к одному из подшипников, даже если F_r и F_a , относящиеся к общим нагрузкам, используют для расчета эквивалентной нагрузки всего узла.

РАСЧЕТНЫЙ РЕСУРС ПОДШИПНИКА

Расчетным показателем долговечности подшипника служит базовый ресурс L_{10} , соответствующий 90%-й надежности. Имеется в виду, что используют обычные материалы, технологию производства и условия эксплуатации.

Однако во многих случаях желательно вычислить ресурс для более высоких уровней надежности или с учетом специальных свойств подшипников и условий эксплуатации. В таких случаях выполняют расчет скорректированного ресурса.

Базовый расчетный ресурс L_{10} в миллионах оборотов определяют при 90%-ной надежности (отсюда в обозначении индекс 10 = 100 - 90):

$$L_{10} = \left(\frac{C}{P}\right)^k,$$

где C - базовая динамическая грузоподъемность подшипника (радиальная C_r или осевая C_a), H; P - эквивалентная динамическая нагрузка (радиальная P_r или осевая P_a). H; k - показатель степени, равный в соответствии с результатами экспериментов: k=3 для шариковых и k=10/3 для роликовых подшипников .

Формула расчета ресурса справедлива, если P_r (или P_a), а при переменных нагрузках $P_{r \max}$ (или $P_{a \max}$), не превышает $0.5\,C_r$ (или $0.5\,C_a$). Применимость формулы ограничена также частотами вращения от $10\,$ об/мин до предельных по каталогу.

По приведенной формуле вычисляют базовый расчетный ресурс L_{10} для подшип-

ников, изготовленных из обычных подшипниковых сталей и эксплуатируемых при нормальных условиях (правильной установке подшипника, правильно выбранном способе смазывания, защите от проникания инородных тел и др.).

При отличии свойств материала или условий эксплуатации от обычных, а также при повышенных требованиях к надежности определяют скорректированный расчетный ресурс L_{sa} в миллионах оборотов:

$$L_{sa} = a_1 \ a_2 \ a_3 \ L_{10} \,, \tag{23}$$

где a_1 - коэффициент, корректирующий ресурс в зависимости от надежности P_t (табл. 68); a_2 - коэффициент, корректирующий ресурс в зависимости от особых свойств подшипника; a_3 - коэффициент, корректирующий ресурс в зависимости от условий работы подшипника.

Скорректированный расчетный ресурс подшипника в часах

$$L_{sah} = 10^6 L_{sa} / \left(60n\right),\,$$

где n - частота вращения кольца, об/мин.

Расчет подшипников качения при повышенной вероятности безотказной работы выполняют для ответственных узлов при необходимой надежности 91-99%. Вместо индекса s в обозначении ресурса записывают значение разности $(100-P_t)$, где P_t надежность при определении ресурса. Так, при 90%-ной надежности - $L_{10a}(L_{10ah})$, при 97%-ной - $L_{3a}(L_{3ah})$.

68. Значения	коэффициента	a 1
--------------	--------------	------------

Надежность Р, %	90	95	96	97	98	99
Обозначение ресурса	L _{10a}	L_{5a}	L_{4a}	L_{3a}	L_{2a}	L_{1a}
Значения коэффициента a ₁	1	0,62	0,53	0,44	0,33	0,21

Подшипник приобретает особые свойства, что выражается в изменении ресурса, вследствие применения специальных материалов (например, сталей с особенно низким содержанием неметаллических включений) или специальных процессов производства, или специальной конструкции. Значения коэффициента a_2 устанавливает изготовитель подшипников.

Эксплуатационные условия, которые дополнительно учитывают с помощью коэффициента a_3 , - это соответствие вязкости смазочного материала требуемому
значению (с учетом частоты вращения и
температуры), наличие в смазочном материале инородных частиц, а также условий, вызывающих изменение свойств материала деталей подшипника (например, вы-

сокая температура вызывает снижение твердости).

Вычисление базового ресурса основано на том, что толщина масляной пленки в зонах контакта тело качения – дорожка качения равна или немного больше суммарной шероховатости поверхностей контакта. При этом $a_3 = 1$.

Рекомендации по значению коэффициента a_3 для других условий дает изготовитель подшипников.

При выборе типоразмера подшипников и расчете скорректированного ресурса для конкретных условий эксплуатации предполагают, что подшипники соответствуют необходимому классу точности и обеспечены требуемые прочность и жесткость валов и корпусов.

Применение в формуле расчета скорректированного ресурса значений $a_2 > 1$ и $a_3 > 1$ должно быть строго обосновано.

ВЫБОР И РАСЧЕТ ПОДШИПНИКОВ КАЧЕНИЯ

Определение сил, нагружающих подшипники

Определение радиальных реакций. Вал на подшипниках, установленных по одному в опоре, условно рассматривают как балку на шарнирно-подвижных опорах или как балку с одной шарнирно-подвижной и одной шарнирно-неподвижной опорой. Радиальную реакцию F_r подшипника считают приложенной к оси вала в точке пересечения с ней нормалей, проведенных через середины контактных площадок. Для радиальных подшипников эта точка расположена на середине ширины подшипника. Для радиально-упорных подшипников расстояние а между этой точкой и торцом подшипника может быть определено графически (рис. 25) или аналитически:

подшипники шариковые радиальноупорные однорядные

$$a = 0.5 B + 0.5(d + D) \operatorname{tg}\alpha;$$

подшипники роликовые конические однорядные

$$a = 0.5[T + (d + D)e/3].$$

Ширину B кольца, монтажную высоту T, коэффициент e осевого нагружения, угол

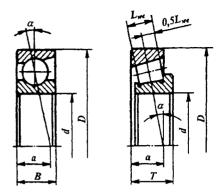


Рис.25.Расположение точки приложения радиальной реакции в радиально-упорных полициниках

 α контакта, а также диаметры d и D принимают по каталогу.

Реакции опор определяют из уравнения равновесия: сумма моментов внешних сил относительно рассматриваемой опоры и момента реакции в другой опоре равна нулю.

В ряде случаев направление вращения может быть переменным или неопределенным, причем изменение направления вращения может привести к изменению не только направления, но и значений реакций опор. При установке на концы валов соединительных муфт направление силы на вал от муфты неизвестно. В таких случаях при расчете реакций рассматривают наиболее опасный вариант. Возможная ошибка при этом приводит к повышению надежности.

Определение осевых реакций. При установке вала на двух радиальных шариковых или радиально-упорных подшипниках нерегулируемых типов осевая сила F_a , нагружающая подшипник, равна внешней осевой силе F_A , действующей на вал. Силу F_A воспринимает тот подшипник, который ограничивает осевое перемещение вала под действием этой силы.

При определении осевых сил, нагружающих радиально-упорные подшипники регулируемых типов, следует учитывать осевые силы, возникающие под действием радиальной нагрузки *F*, вследствие наклона контактных линий. Значения этих сил зависят от типа подшипника, угла контакта, значений радиальных сил, а также от того, как отрегулированы подшипники (см. рис. 22, *а-в*). Если подшипники собраны с

большим зазором, то всю нагрузку воспринимает только один или два шарика или ролика (рис. 22, а). Осевая составляющая нагрузки при передаче ее одним телом качения равна F_r tg α . Условия работы подшипников при таких больших зазорах неблагоприятны, и поэтому такие зазоры недопустимы. Обычно подшипники регулируют так, чтобы осевой зазор при установившемся температурном режиме был бы близок к нулю. В этом случае под действием радиальной нагрузки F_r находятся около половины тел качения (рис. 22, б), а суммарная по всем нагруженным телам качения осевая составляющая из-за наклона контактных линий равна е' F, и представляет собой минимальную осевую силу, которая должна действовать на радиальноупорный подшипник при заданной радиальной силе:

$$F_{a\min} = e'F_r . (24)$$

Для шариковых радиально-упорных подшипников с углом контакта $\alpha < 18^\circ$ $F_{a\min} = e'F_r$, где e' - коэффициент минимальной осевой нагрузки. В подшипниках такого типа действительный угол контакта отличается от начального и зависит от радиальной нагрузки F_r и базовой статической грузоподъемности C_{or} Поэтому коэффициент e' определяют по формулам:

для подшипников с углом контакта $\alpha = 12^{\circ}$

$$e' = 0.563 (F_r/C_{or})^{0.195}$$
; (25)

для подшипников с углом контакта $\alpha = 15^{\circ}$

$$e' = 0.579 (F_r/C_{or})^{0.136}$$
 (26)

Для шариковых радиально-упорных подшипников с углом контакта $\alpha \ge 18^{\circ}$ e' = e и $F_{a \min} = eF_r$. Значения коэффициента e осевого нагружения принимают по табл. 64.

Для конических роликовых: $e' = 0.83 \ e$ и $F_{a \min} = 0.83 \ e$ F_r . Значения коэффициента e принимают по каталогу.

Под действием силы $F_{a \, \mathrm{min}}$ наружное кольцо подшипника поджато к крышке корпуса. При отсутствии упора кольца в крышку оно будет отжато в осевом направлении, что приведет к нарушению нормальной работы подшипника. Для обеспе-

чения нормальных условий работы осевая сила, нагружающая подшипник, должна быть не меньше минимальной: $F_a \geq F_{a \min}$. Это условие должно быть выполнено для каждой опоры.

Если $F_a \ge F_{a \, \text{min}}$, то более половины или все тела качения подшипника находятся под нагрузкой (см. рис. 22, θ). Жесткость опоры с ростом осевой нагрузки увеличивается, поэтому в некоторых опорах, например в опорах шпинделей станков, применяют сборку с предварительным натягом.

Для нормальной работы радиальноупорных подшипников необходимо, чтобы в каждой опоре осевая сила, нагружающая подшипник, была бы не меньше минимальной:

$$F_{a1} \ge F_{a1 \min}$$
 w $F_{a2} \ge F_{a2 \min}$.

Кроме того, должно быть выполнено условие равновесия вала - равенство нулю суммы всех осевых сил, действующих на вал. Например, для схемы по рис. 26 имеем

$$F_A + F_{a1} - F_{a2} = 0.$$

Пример нахождения осевых реакций опор. В представленной на рис. 26 расчетной схеме обозначены: F_A и F_R - внешние осевая и радиальная нагрузки, действующие на вал; F_{r1} и F_{r2} - радиальные реакции опор; F_{a1} и F_{a2} - осевые реакции опор.

Решение может быть найдено при совместном удовлетворении трех уравнений:

- из условия $F_a \ge F_{a \min}$ в каждой опоре с учетом (24) следует:

$$F_{a1} \ge e'_1 F_{r1}$$
, $F_{a2} \ge e' F_{r2}$.

- из условия равновесия вала под действием осевых сил следует:

$$F_A + F_{a1} - F_{a2} = 0 \ .$$

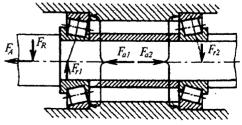


Рис. 26. Схема нагружения вала и опор с радиально-упорными регулируемыми подшипниками

Для нахождения решения применяют метод попыток, предварительно осевую силу в одной из опор принимая равной минимальной.

1. Пусть, например, $F_{a1} = e'_1 F_{r1}$.

Тогда из условия равновесия вала имеем

$$F_{a2} = F_A + F_{a1} = F_A + e'_1 F_{r1}$$
.

Проверяем выполнение условия $F_a \geq F_{a \, \text{min}}$ для второй опоры. Если при этом $F_{a2} \geq e_2' \; F_{r2}$, то осевые силы найдены правильно. Если $F_{a2} < e_2' \; F_{r2}$ (что недопустимо), то нужно предпринять вторую попытку.

2. Следует принять: $F_{a2} = e_2^{'} \, F_{r2}$. Тогда из условия равновесия вала имеем

$$F_{a1} = F_{a2} - F_A = e_2' F_{r2} - F_A$$
.

При этом условие $F_{al} \ge e'_l F_{rl}$ будет обязательно выполнено.

Подбор подшипников

Основной критерий работоспособности и порядок подбора подшипников зависит от значения частоты вращения кольца. Подшипники выбирают по статической грузоподъемности, если они воспринимают внешнюю нагрузку в неподвижном состояили при медленном (n ≤ 10 об/мин). Подшипники, работающие при n > 10 об/мин, выбирают по динамической грузоподъемности, рассчитывая их ресурс при требуемой надежности. Подшипники, работающие при частоте вращения n > 10 об/мин и резко переменной нагрузке, также следует проверять на статическую грузоподъемность.

Предварительно назначают тип и схему (см. выше). установки подшипников Подбор подшипников выполняют для обеих опор вала. В некоторых изделиях, например в редукторах, для обеих опор применяют подшипники одного типа и одного размера. Тогда подбор выполняют по наиболее нагруженной опоре. Иногда из соотношения радиальных и осевых сил нельзя заранее с уверенностью сказать, какая опора более нагружена. Тогда расчет ведут параллельно для обеих опор до получения значений эквивалентных нагрузок, по которым и определяют более нагруженную опору.

Расчет подшипников на статическую грузоподъемность

Значения базовой статической грузоподъемности для каждого подшипника заранее подсчитаны по формулам (1)-(4) и указаны в каталоге.

При расчете на статическую грузоподъемность проверяют, не будет ли статическая эквивалентная нагрузка на подшипник превосходить статическую грузоподъемность, указанную в каталоге:

$$P_{or} \leq C_{or}$$
 или $P_{oa} \leq C_{oa}$.

При выборе и расчете подшипников следует иметь в виду, что допустимая статическая эквивалентная нагрузка P_o может быть меньше, равна или больше базовой статической грузоподъемности. Значение этой нагрузки зависит от требований к плавности хода, малошумности и к моменту трения, а также и от действительной геометрии поверхностей контакта. Чем выше перечисленные требования, тем меньше значение допустимой статической эквивалентной нагрузки.

Если не требуется высокая плавность хода, то возможно кратковременное повышение $P_{or}(P_{oa})$ до $2C_{or}(2C_{oa})$. При повышенных требованиях к плавности хода, малошумности и к стабильности момента трения рекомендуют уменьшить допускаемую статическую эквивалентную нагрузку $P_{or}(P_{oa})$ до C_{or} / $S_0(C_{oa}$ / $S_0)$. Коэффициент запаса S_0 = 1,5 для упорных подшипников крановых крюков и подвесов; S_0 = 2 для приборных прецизионных поворотных устройств; S_0 = 4 для ответственных тяжелонагруженных опор и поворотных кругов.

Пример. Проверить пригодность подшипника 210 для следующих условий работы: вращение медленное (до 1 об/мин) эпизодическое при действии нагрузки с составляющими: радиальной $F_r = 9000$ Н и осевой $F_a = 1600$ Н; требования к малошумности и плавности хода - высокие.

Решение. Базовая статическая радиальная грузоподъемность подшипника 210 по каталогу $C_{or} = 19800$ Н. Для шарикового радиального однорядного подшипника в соответствии с табл. 59 $X_0 = 0.6$ и $Y_0 = 0.5$. Подставив в (5) и (6), получим

$$P_{or} = X_0 F_r + Y_0 F_a =$$

= 0,6 · 9000 + 0,5 · 1600 = 6200 H;

$$P_{or} = F_r = 9000$$
 H.

Принимаем наибольшее значение $P_{or}=9000$ Н. Для шариковых подшипников с высокими требованиями к малошумности и плавности хода можно принять $S_0=2$. Для таких условий работы должно выполняться соотношение $P_{or} \leq C_{or} \ / \ S_0$. После подстановки получим:

$$9000 < 19800/2 = 9900.$$

Следовательно, для данных условий работы подшипник 210 пригоден.

Расчет подшипников на заданный ресурс

Исходные данные: F_{r1} , F_{r2} - радиальная нагрузка (радиальная реакция) каждой опоры двухопорного вала, Н: F_A - внешняя осевая сила, действующая на вал, Н; n - частота вращения кольца (как правило, частота вращения вала), об/мин; d - диаметр посадочной поверхности вала, который берут из компоновочной схемы, мм; L'_{sah} - требуемый ресурс при необходимой вероятности безотказной работы подшипника соответственно в млн. об. или в ч; режим нагружения; условия эксплуатации подшипникового узла (возможная перегрузка, рабочая температура и др.).

Условия работы подшипников весьма разнообразны и могут различаться по величине кратковременных перегрузок, рабочей температуре, вращению внутреннего или наружного кольца и др. Влияние этих факторов на работоспособность подшипников учитывают введением в расчет эквивалентной динамической нагрузки (19) - (22) дополнительных коэффициентов.

Подбор подшипников качения выполняют в такой последовательности.

- Предварительно назначают тип и схему установки подшипников.
- 2. Для назначенного подшипника из каталога выписывают следующие данные:
- для шариковых радиальных и радиально-упорных с углом контакта $\alpha < 18^{\circ}$ значения базовых динамической C_r и статической C_{or} радиальных грузоподъемностей;

- для шариковых радиально-упорных с углом контакта $\alpha \ge 18^\circ$ значение C_n а из табл. 64 значения коэффициентов X радиальной, Y осевой нагрузок, коэффициента e осевого нагружения:
- для конических роликовых значения C_p , Y и e, а также принимают X=0,4 (табл. 66).
- 3. Из условия равновесия вала и условия ограничения минимального уровня осевых нагрузок на радиально-упорные подшипники определяют осевые силы F_{a1} и F_{a2} .
- **4.** Для подшипников шариковых радиальных, а также шариковых радиальноупорных с углом контакта $\alpha < 18^\circ$ по табл. 64 в соответствии с имеющейся информацией находят значения X, Y и e в зависимости от

$$f_0 F_a/C_{or}$$
 или $F_a/\left(i\,z\,D_w^2\right)$.

5. Сравнивают отношение $F_a/(VF_r)$ с коэффициентом e и окончательно принимают значения коэффициентов X и Y: при $F_a/(VF_r) \le e$ принимают X=1 и Y=0, при $F_a/(VF_r) > e$ для подшипников шариковых радиальных и радиально-упорных окончательно принимают записанные ранее (в п. 2 и 4) значения коэффициентов X и Y.

Здесь V - коэффициент вращения кольца: V=1 при вращении внутреннего кольца подшипника относительно направления радиальной нагрузки и V=1,2 при вращении наружного кольца.

Для двухрядных конических роликовых подшипников значения X, Y и e - по табл. 66.

- Вычисляют эквивалентную динамическую нагрузку:
- радиальную для шариковых радиальных и шариковых или роликовых радиально-упорных

$$P_r = (V X F_r + YF_a)K_{\mathbf{B}}K_{\mathbf{T}}; \qquad (27)$$

 радиальную для роликовых радиальных подшипников:

$$P_r = F_r V K_{\rm B} K_{\rm T}; \qquad (28)$$

- *осевую* для шариковых и роликовых упорных подшипников:

$$P_a = F_a K_b K_T; (29)$$

- *осевую* для шариковых и роликовых упорно-радиальных подшипников

$$P_a = (XF_r + YF_a)K_BK_T. (30)$$

Значение коэффициента $K_{\rm B}$ безопасности принимают по табл. 69, а температурного коэффициента $K_{\rm T}$ - в зависимости от рабочей температуры $t_{\rm pa6}$ подшипника:

$$t_{\text{pa6}}, {}^{\circ}\text{C} \dots \leq 100$$
 125 150 175 200 225 250 $K_{\text{T}} \dots \dots 1,0$ 1,05 1,10 1,15 1,25 1,35 1,4

69. Рекомендуемые значения коэффициентов безопасности

Характер нагрузки	КБ	Область применения
Спокойная нагрузка без толчков	1,0	Маломощные кинематические редукторы и приводы. Механизмы ручных кранов, блоков. Тали, кошки, ручные лебедки. Приводы управления
Легкие толчки; кратковременные перегрузки до 125% номинальной нагрузки	1,0-1,2	Прецизионные зубчатые передачи. Металлорежущие станки (кроме строгальных, долбежных и шлифовальных). Гироскопы. Механизмы польема кранов. Электротали и монорельсовые тележки. Лебедки с механическим приводом. Электродвигатели малой и средней мощности. Легкие вентиляторы и воздуходувки
Умеренные толчки; вибрационная нагрузка; кратковременные перегрузки до 150% номинальной нагрузки	1,3-1,5	Зубчатые передачи. Редукторы всех типов. Механизмы передвижения крановых тележек и поворота кранов. Буксы рельсового подвижного состава. Механизмы поворота кранов
То же, в условиях повы- шенной надежности	1,5-1,8	Механизмы изменения вылета стрелы кранов. Шпиндели шлифовальных станков. Электрошпиндели
Нагрузки со значительными толчками и вибрациями; кратковременные перегрузки до 200% номинальной нагрузки	1,8-2,5	Зубчатые передачи. Дробилки и копры. Кривошипношатунные механизмы. Валки и адъюстаж прокатных станов. Мощные вентиляторы и эксгаустеры
Нагрузка с сильными ударами; кратковременные перегрузки до 300% номинальной нагрузки	2,5-3,0	Тяжелые ковочные машины. Лесопильные рамы. Рабочие роликовые конвейеры крупносортных станов, блюмингов и слябингов. Холодильное оборудование

Для работы при повышенных температурах применяют подшипники со специальной стабилизирующей термообработкой или изготовленные из теплостойких сталей.

Для подшипников, работающих при переменных режимах нагружения, задаваемых циклограммой нагрузок и соответствующими этим нагрузкам частотами вращения (рис. 27), вычисляют эквивалентную динамическую нагрузку при переменном режиме нагружения

$$P_{\rm E} = \sqrt[3]{\frac{P_1^3L_1 + P_2^3L_2 + \ldots + P_n^3L_n}{L_1 + L_2 + \ldots + L_n}} \ ,$$

где P_i и L_i - постоянная эквивалентная нагрузка (радиальная или осевая) на i-м режиме и продолжительность ее действия в млн. об. Если L_i задана в ч- L_{hi} , то ее пересчитывают на млн. об. с учетом частоты вращения n_i , об/мин:

$$L_i = 60 n_i L_{hi} / 10^6$$
.

Если нагрузка на подшипник изменяется по линейному закону от P_{\min} до P_{\max} , то эквивалентная динамическая нагрузка

$$P_{\mathbf{E}} = \left(P_{\min} + 2P_{\max}\right)/3.$$

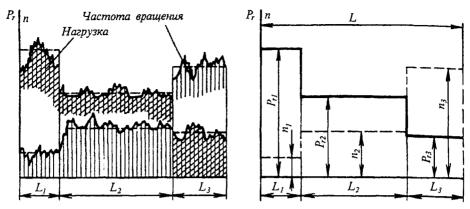


Рис. 27. Аппроксимация нагрузок и частот вращения

Известно, что режимы работы машин с переменной нагрузкой сведены к шести типовым режимам нагружения (см. ГОСТ 21354-87. Передачи зубчатые цилиндрические эвольвентные внешнего зацепления. Расчет на прочность): 0 - постоянному; I - тяжелому; II - среднему равновероятному; III - среднему нормальному; IV - легкому; V - особо легкому.

Для подшипников опор валов зубчатых передач, работающих при типовых режимах нагружения, расчеты удобно вести с помощью коэффициента эквивалентности $K_{\rm E}$:

При этом по известным максимальным, длительно действующим силам $F_{r1 \, \mathrm{max}}$, $F_{r2 \, \mathrm{max}}$, $F_{A \, \mathrm{max}}$ (соответствующим максимальному из длительно действующих вращающему моменту) находят эквивалентные нагрузки [3]:

$$F_{r1} = K_{E}F_{r1 \text{ max}}, F_{r2} = K_{E}F_{r2 \text{ max}},$$

$$F_{A} = K_{E}F_{A \text{ max}},$$

по которым в соответствии с пп. 2-6 (см. стр. 126) ведут расчет подшипников, как при постоянной нагрузке.

7. Определяют скорректированный по уровню надежности и условиям применения расчетный ресурс подшипника, ч:

$$L_{sah} = a_1 a_{23} \left(\frac{C}{P}\right)^k \frac{10^6}{60n}, \tag{31}$$

где C - базовая динамическая грузоподъемность подшипника (радиальная C_r или осе-

вая C_a), H; P - эквивалентная динамическая нагрузка (радиальная P_r или осевая P_a , а при переменном режиме нагружения P_{E_r} или P_{Ea}), H; k - показатель степени: k = 3 для шариковых и k = 10/3 для роликовых подшипников; n - частота вращения кольца, об/мин; a_1 - коэффициент, корректирующий ресурс в зависимости от необходимой належности (табл. 68); a_{23} - коэффициент, характеризующий совместное влияние на ресурс особых свойств подшипника и условий его эксплуатации (табл. 70).

Базовый расчетный ресурс подтверждают результатами испытаний подшипников на специальных машинах и в определенных условиях, характеризуемых наличием гидродинамической пленки масла между контактирующими поверхностями колец и тел качения и отсутствием повышенных перекосов колец подшипника. В реальных условиях эксплуатации возможны отклонения от этих условий, что приближенно и оценивают коэффициентом a_{23} .

При выборе коэффициента *а*₂₃ различают следующие условия применения подшипника:

- 1 обычные (материал обычной плавки, наличие перекосов колец, отсутствие надежной гидродинамической пленки масла и наличие в нем инородных частиц);
- 2 характеризующиеся наличием упругой гидродинамической пленки масла в контакте колец и тел качения (параметр $\Lambda \ge 2,5$); отсутствие повышенных перекосов в узле; сталь обычного изготовления;
- 3 то же, что в п.2, но кольца и тела качения изготовлены из стали электрошлакового или вакуумно-дугового переплава.

70.	Рекомендуемые	значения	коэффициента	a 73
	- amoundary ourse	ATTA NOTHING	**************************************	

Подшипники	Значения коэффициента a_{23} для условий применения			
	1	2	3	
Шариковые (кроме сферических)	0,7 0,8	1,0	1,2 1,4	
Роликовые с цилиндрическими роликами, шариковые сферические двухрядные	0,5 0,6	0,8	1,0 1,2	
Роликовые конические	0,6 0,7	0,9	1,1 1,3	
Роликовые сферические двухрядные	0,3 0,4	0,6	0,8 1,0	

71. Рекомендуемые значения расчетных ресурсов для машин и оборудования

Машины, оборудование и условия их эксплуатации	Ресурс, ч
Приборы и аппараты, используемые периодически (демонстрационная аппаратура, бытовая техника, приборы)	300 3000
Механизмы, используемые в течение коротких периодов времени (сельскохозяйственные машины, подъемные краны в сборочных цехах, легкие конвейеры, строительные машины и механизмы, электрический ручной инструмент)	30008000
Ответственные механизмы, работающие с перерывами (вспомогательные механизмы на силовых станциях, конвейеры для поточного производства, лифты, нечасто используемые металлообрабатывающие станки)	8000 12000
Машины для односменной работы с неполной нагрузкой (стационарные электродвигатели, редукторы общепромышленного назначения)	10000 25000
Машины, работающие с полной нагрузкой в одну смену (машины общего машиностроения, подъемные краны, вентиляторы, распределительные валы, конвейеры, полиграфическое оборудование)	~25000
Машины для круглосуточного использования (компрессоры, шахтные подъемники, стационарные электромашины, судовые приводы, текстильное оборудование)	≥40000
Непрерывно работающие машины с высокой нагрузкой (оборудование бумагоделательных фабрик, энергетические установки, шахтные насосы, оборудование торговых морских судов, карусельные печи)	~100000

Здесь Λ - параметр режима смазки - характеризует гидродинамический режим смазки подшипника (относительную толшину смазочной пленки). Расчет Λ приведен, например, в [1, 2].

Формулы расчета ресурса справедливы при частотах вращения свыше 10 об/мин до предельных по каталогу, а также если P_r (или P_a), а при переменных нагрузках $P_{r\max}$ (или $P_{a\max}$) не превышают $0.5C_r$ (или $0.5C_a$).

8. Оценивают пригодность намеченного типоразмера подшипника. Подшипник

пригоден, если расчетный ресурс больше или равен требуемому:

$$L_{sah} \geq L'_{sah}$$
.

В некоторых случаях в одной опоре устанавливают два одинаковых радиальных или радиально-упорных однорядных подшипника, образующих один подшипниковый узел. При этом пару подшипников рассматривают как один двухрядный подшипник. При определении ресурса по формуле п. 7 вместо C_r подставляют базовую динамическую радиальную грузоподът

емность $C_{r\,{
m cym}}$ комплекта из двух подшилников: для шарикоподшипников $C_{r\,{
m cym}}=1,625~C_r$, для роликоподшипников $C_{r\,{
m cym}}=1,714~C_r$ Базовая статическая радиальная грузоподъемность такого комплекта равна удвоенной номинальной грузоподъемности одного однорядного подшипника $C_{0r\,{
m cym}}=2\,C_{or}$

 Π ри определении эквивалентной нагрузки P_r значения коэффициентов X и Y принимают как для двухрядных подшипников: для шарикоподшипников по табл. 64; для роликоподшипников - по табл. 66.

Рекомендуемые значения ресурсов подшипников различных машин приведены в табл. 71.

Пример 1. Подобрать подшипники качения для опор выходного вала цилиндрического зубчатого редуктора (рис. 28). Частота вращения вала n = 120 об/мин. Требуемый ресурс при вероятности безотказной работы 90%: $L'_{10ah} = 25000$ ч. Диаметр посадочных поверхностей вала d = 60 мм. Максимальные, длительно действующие силы: $F_{r1 \text{ max}} = 6400$ H, $F_{r2 \text{ max}} = 6400$ H, $F_{A \text{ max}} = 2900$ Н. Режим нагружения - II (средний равновероятный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные. Ожидаемая температура работы $t_{pab} = 50$ °C.

Решение. 1. Для переменного типового режима нагружения II коэффициент эквивалентности $K_{\rm E}=0.63$ (см. п.6).

Вычисляем эквивалентные нагрузки, приводя переменный режим нагружения к эквивалентному постоянному:

$$F_{r1} = K_E F_{r1 \, \text{max}} = 0.63 \cdot 6400 = 4032$$
 H;

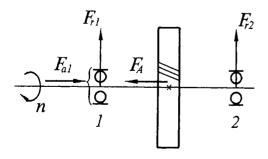


Рис. 28. Расчетная схема к примеру 1

$$F_{r2} = K_E F_{r2 \text{ max}} = 0.63 \cdot 6400 = 4032 \text{ H};$$

 $F_A = K_E F_{A \text{ max}} = 0.63 \cdot 2900 = 1827 \text{ H}.$

- 2. Предварительно назначаем шариковые радиальные подшипники легкой серии 212. Схема установки подшипников: 2a (см. рис. 24) обе опоры фиксирующие; каждая фиксирует вал в одном направлении.
- 3. Для принятых подшипников по каталогу находим: $C_r = 52000$ H, $C_{or} = 31000$ H, d = 60 мм, D = 110 мм, $D_w = 15,88$ мм.
- 4. Для радиальных шарикоподшипников из условия равновесия вала следует: $F_{a1} = F_A = 1827$ Н, $F_{a2} = 0$. Дальнейший расчет выполняем для более нагруженного подшипника опоры I.
- 5. По табл. 58 для отношения $D_w \cos \alpha / D_{pw} = 15,88 \cos 0^\circ / 85 = 0,19$ находим значение $f_0 = 14,2$; здесь $D_{pw} = 0.5(d+D) = 0.5(60+110) = 85$ мм. Далее по табл. 64 определяем значение коэффициента e для отношения $f_0F_{a1} / C_{or} = 14,2 \times 1827 / 31000 = 0.837 : <math>e = 0.27$.
- 6. Отношение F_a / F_r = 1827 / 4032 = 0,453 , что больше e=0,27. По табл. 64 для отношения f_0F_{a1} / C_{or} = 0,837 принимаем X=0,56, Y=1,64.
- 7. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V=1 (вращение внутреннего кольца); $K_{\overline{b}}=1,4$ (см. табл. 69); $K_{\overline{1}}=1$ ($t_{pa6}<100$ °C)

$$P_r = (1 \cdot 0.56 \cdot 4032 + 1.64 \cdot 1827) \ 1.4 \cdot 1 = 7356 \ H.$$

8. Расчетный скорректированный ресурс подшипника по формуле (31) при $a_1 = 1$ (вероятность безотказной работы 90%, табл. 68), $a_{23} = 0,7$ (обычные условия применения, табл. 70), k = 3 (шариковый подшипник)

$$L_{10ah} = a_1 a_{23} \left(\frac{C_r}{P_r}\right)^k \frac{10^6}{60 n} =$$

$$= 1 \cdot 0.7 \left(\frac{52000}{7356}\right)^3 \frac{10^6}{60 \cdot 120} = 34344 \text{ y.}$$

9. Так как расчетный ресурс больше требуемого: $L_{10ah} > L'_{10ah}$ (34344 > 25000),

то предварительно назначенный подшипник 212 пригоден. При требуемом ресурсе надежность выше 90%.

Пример 2. Подобрать подшипники для опор вала редуктора привода цепного конвейера (рис. 29). Частота вращения вала n=200 об/мин. Требуемый ресурс при вероятности безотказной работы $L'_{10ah} = 20000$ ч. Диаметр посадочных поверхностей вала d = 45 мм. Максимальные, плительно действующие силы: = 9820 H, $F_{r2 \text{ max}} = 8040$ H, $F_{A \text{ max}} =$ = 3210 H. Режим нагружения - III (средний нормальный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. применения подшипников обычные. Ожидаемая температура работы $t_{\rm pa6} = 45 \,{}^{\circ}{\rm C}.$

Решение. 1. Для переменного типового режима нагружения III коэффициент эквивалентности $K_E = 0.56$ (см. п.6).

Вычисляем эквивалентные нагрузки, приводя переменный режим нагружения к эквивалентному постоянному:

$$F_{r1} = K_E F_{r1 \text{ max}} = 0.56 \cdot 9820 = 5499 \text{ H};$$

 $F_{r2} = K_E F_{r2 \text{ max}} = 0.56 \cdot 8040 = 4502 \text{ H};$
 $F_{A} = K_F F_{A \text{ max}} = 0.56 \cdot 3210 = 1798 \text{ H}.$

- 2. Предварительно назначаем конические роликовые подшипники легкой серии 7209А. Схема установки подшипников: 2a (см. рис. 24) обе опоры фиксирующие: каждая фиксирует вал в одном направлении.
- 3. Для принятых подшипников из каталога находим: $C_r = 62700 \text{ H}, e = 0,4, Y = 1,5.$
- 4. Минимально необходимые для нормальной работы радиально-упорных подшипников осевые силы:

$$F_{a1_{\min}} = 0.83 e F_{r1} = 0.83 \cdot 0.4 \cdot 5499 = 1826 \text{ H},$$

 $F_{a2_{\min}} = 0.83 e F_{r2} = 0.83 \cdot 0.4 \cdot 4502 = 1495 \text{ H}.$

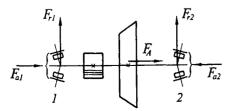


Рис. 29. Расчетная схема к примеру 2

Находим осевые силы, нагружающие подшипники.

Примем $F_{a1}=F_{a1\,\,\mathrm{min}}=1826\,$ H; тогда из условия равновесия вала следует: $F_{a2}==F_{a1}+F_A=1826+1798=3624\,$ H, что больше $F_{a2\,\,\mathrm{min}}=1495\,$ H, следовательно, осевые реакции опор найдены правильно.

5. Отношение F_{al} / F_{rl} = 1826 / 5499 = = 0,33, что меньше e = 0,4. Тогда для опоры I: X = 1, Y = 0.

Отношение F_{a2} / F_{r2} = 3624 / 4502 = = 0,805, что больше e = 0,4. Тогда для опоры 2: X = 0,4, Y = 1,5.

6. Эквивалентная динамическая радиальная нагрузка для подшипников при V=1; $K_{\rm B}=1,4$ (см. табл. 69) и $K_{\rm T}=1$ ($t_{\rm pa6}<100$ °C) в опорах I и 2:

$$P_{r1} = F_{r1} K_{\rm B} K_{\rm T} = 5499 \cdot 1, 4 \cdot 1 = 7699 \text{ H};$$

$$P_{r2} = (VXF_{r2} + YF_{a2})K_{\rm B}K_{\rm T} = (1 \cdot 0, 4 \cdot 4502 + 1, 5 \cdot 3624)1, 4 \cdot 1 = 10132 \text{ H}.$$

7. Для подшипника более нагруженной опоры 2 вычисляем по формуле (31) расчетный скорректированный ресурс при $a_1 = 1$ (вероятность безотказной работы 90%, табл. 68), $a_{23} = 0.6$ (обычные условия применения, табл. 70) и k = 10/3 (роликовый подшипник)

$$L_{10ah} = a_1 a_{23} \left(\frac{C_r}{P_r}\right)^k \frac{10^6}{60n} =$$

$$= 1 \cdot 0,6 \left(\frac{62700}{10132}\right)^{10/3} \frac{10^6}{60 \cdot 200} = 21622 \text{ y.}$$

8. Так как расчетный ресурс больше требуемого: $L_{10ah} > L_{10ah}'$ (21622 > 20000), то предварительно назначенный подшилник 7209A пригоден. При требуемом ресурсе надежность несколько выше 90%.

Пример 3. Подобрать подшипники для опор вала червяка (рис. 30). Частота вращения вала 920 об/мин. Требуемый ресурс при вероятности безотказной работы 90%: $L_{10ah}' = 2000$ ч. Диаметр посадочных поверхностей вала d=30 мм. Максимальные, длительно действующие силы: $F_{r1\, \text{max}} = 1000 \, \text{H}, \; F_{r2\, \text{max}} = 1200 \, \text{H}, \; F_{A\, \text{max}} = 2200 \, \text{H}.$

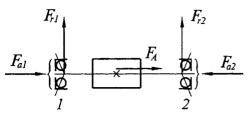


Рис. 30. Расчетная схема к примеру 3

Режим нагружения - 0 (постоянный). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные. Ожидаемая температура работы $t_{\rm pa6} = 65$ °C.

Решение. 1. Для типового режима нагружения 0 коэффициент эквивалентности $K_E = 1,0$.

Вычисляем эквивалентные нагрузки: $F_{r1} = K_E F_{r1 \, \text{max}} = 1.0 \cdot 1000 = 1000$ H; $F_{r2} = K_E F_{r2 \, \text{max}} = 1.0 \cdot 1200 = 1200$ H; $F_A = K_E F_{A \, \text{max}} = 1.0 \cdot 2200 = 2200$ H.

- 2. Предварительно назначаем шариковые радиально-упорные подшипники легкой серии 36206, угол контакта $\alpha = 12^\circ$. Схема установки подшипников: 2a (см. рис. 24) обе опоры фиксирующие; каждая фиксирует вал в одном направлении.
- 3. Для принятых подшипников из каталога находим: $C_r = 22000$ H, $C_{or} = 12000$ H, d = 30 мм, D = 62 мм, $D_w = 9,53$ мм.
- 4. Минимально необходимые для нормальной работы радиально-упорных подшипников осевые силы в соответствии с формулами (24), (25):

для опоры 1

$$e' = 0.563 (F_r/C_{or})^{0.195} =$$

= 0.563(1000 / 12000)^{0.195} = 0.347;

$$F_{a1 \min} = e' F_{r1} = 0.347 \cdot 1000 = 347$$
 H,

для опоры 2

$$e' = 0.563 (F_r/C_{or})^{0.195} =$$

$$= 0.563 (1200 / 12000)^{0.195} = 0.359;$$

$$F_{a2 \min} = e' F_{r2} = 0.359 \cdot 1200 = 431 \text{ H}.$$

Находим осевые силы, нагружающие подшипники.

Примем $F_{a1} = F_{a1\, \mathrm{min}} = 347$ H, тогда из условия равновесия вала следует: $F_{a2} = F_{a1} + F_A = 347 + 2200 = 2547$ H, что больше $F_{a2\, \mathrm{min}} = 431$ H, следовательно, осевые реакции опор найдены правильно.

5. Дальнейший расчет выполняем для более нагруженной опоры 2. По табл. 68 для отношения $D_w \cos \alpha / D_{pw} = 9,53 \times 0.000$ х соз $12^\circ/46 = 0,2$ находим значение $f_0 = 14$, здесь $D_{pw} = 0.5(d+D) = 0.5(30+62) = 0.000$ на отношения $f_0 = 14$. Далее по табл. 64 определяем значение коэффициента e для отношения $f_0 i F_{a2} / C_{or} = 14 \cdot 1 \cdot 2547 / 12000 = 2,97: <math>e = 0.49$ (определено линейным интерполированием для промежуточных значений "относительной осевой нагрузки" и угла контакта).

Отношение $F_{a2}/F_{r2}=2547/1200=2,12$, что больше e=0,49. Тогда для опоры 2 (табл. 64): X=0,45; Y=1,11 (определено линейным интерполированием для значений "относительной осевой нагрузки" 2,97 и угла контакта 12°).

6. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V=1; $K_{\rm B}=1,3$ (см. табл. 69) и $K_{\rm T}=1$ ($t_{\rm pa6}<<100$ °C)

$$P_{r2} = (YXF_{r2} + YF_{a2})K_{B}K_{T} =$$

= $(1 \cdot 0.45 \cdot 1200 + 1.11 \cdot 2200) 1.3 \cdot 1 = 3877 \text{ H}.$

7. Расчетный скорректированный ресурс при $a_1 = 1$ (вероятность безотказной работы 90%, табл. 68), $a_{23} = 0,7$ (обычные условия применения, табл. 70) и k = 3 (шариковый подшипник)

$$L_{10ah} = a_1 a_{23} \left(\frac{C_r}{P_r}\right)^k \frac{10^6}{60n} =$$

$$= 1 \cdot 0, 7 \left(\frac{22000}{3877}\right)^3 \frac{10^6}{60 \cdot 920} = 2317 \text{ y.}$$

8. Так как расчетный ресурс больше требуемого: $L_{10ah} > L_{10ah}'$ (2317 > 2000), то предварительно назначенный подшипник 36206 пригоден. При требуемом ресурсе надежность несколько выше 90%.

Пример 4. Вычислить скорректированный расчетный ресурс роликовых кониче-

ских подшипников 1027308А фиксирующей опоры вала червяка (рис. 31). Частота вращения вала n=970 об/мин. Вероятность безотказной работы 95%. Максимальные, длительно действующие силы: $F_{r\, max}=3500$ H, $F_{A\, max}=5400$ H. Режим нагружения - I (тяжелый). Возможны кратковременные перегрузки до 150% номинальной нагрузки. Условия применения подшипников - обычные. Ожидаемая температура работы $t_{pa6}=85$ °C.

Решение. 1. Для переменного типового режима нагружения I коэффициент эквивалентности $K_E = 0.8$ (см. п.6).

Вычисляем эквивалентные нагрузки, приволя переменный режим нагружения к эквивалентному постоянному:

$$F_r = K_E F_{r \text{ max}} = 0.8 \cdot 3500 = 2800 \text{ H};$$

$$F_A = K_E F_{A \text{ max}} = 0.8 \cdot 5400 = 4320 \text{ H}.$$

- 2. Для роликоподшипника конического с большим углом конусности условное обозначение 1027308A по каталогу $C_r = 69300$ H, e = 0.83.
- 3. Подшипниковый узел фиксирующей опоры червяка образуют два одинаковых роликовых радиально-упорных конических подшипника, которые рассматривают как один двухрядный подшипник, нагруженный силами F_r и $F_a = F_A$. Для комплекта из двух роликоподшипников имеем $C_{r\, \text{сум}} = 1,714\,C_r = 1,714\cdot69300 = 118780 \,\text{H}.$
- 4. Отношение $F_a/F_r = 4320/2800 = 1,543$, что больше e=0,83. Определим значение угла контакта α (табл. 66):

$$\alpha = arctg(e/1,5) = arctg(0,83/1,5) = 28,96$$
°.

Тогда для двухрядного роликового радиально-упорного подшипника:

$$X = 0.67$$
:

$$Y = 0.67$$
ctg $\alpha = 0.67$ ctg 28.96 °= 1.21.

5. Эквивалентная динамическая радиальная нагрузка по формуле (27) при V=1; $K_{\rm B}=1,4$; $K_{\rm T}=1$

$$P_r = (VXF_r + YF_a)K_BK_T =$$

= $(1 \cdot 0.67 \cdot 2800 + 1.21 \cdot 4320)1.4 \cdot 1 = 9945 \text{ H}.$

6. Расчетный скорректированный ресурс при $a_1 = 0,62$ (вероятность безотказной

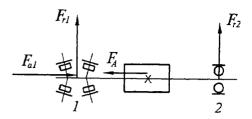


Рис. 31. Расчетная схема к примеру 4

работы 95%, табл. 68), $a_{23} = 0,6$ (табл. 70) и k = 10/3 (роликовый подшипник)

$$\begin{split} L_{10ah} &= a_1 a_{23} \bigg(\frac{C_{r\,\text{c ym}}}{P_r} \bigg)^k \frac{10^6}{60\,n} = \\ &= 0.62 \cdot 0.6 \bigg(\frac{118780}{9945} \bigg)^{10/3} \frac{10^6}{60 \cdot 970} = 24688 \text{ y.} \end{split}$$

Расчет допустимой осевой нагрузки для роликовых радиальных подшипников

Роликоподшипники с короткими цилиндрическими роликами, как правило, применяют только для восприятия радиальных сил. Способность роликовых радиальных подшипников выдерживать осевые нагрузки зависит от конструкции подшипника и качества их исполнения.

Подшипники типов 12000, 42000, 62000 и 92000 помимо радиальной могут также воспринимать бортиками колец и торцами роликов относительно небольшие осевые нагрузки, которые в определенных допустимых пределах не вызывают снижения расчетного ресурса, при вычислении которого учитывают лишь радиальные силы. Это обусловлено тем, что радиальные силы воспринимают образующие роликов, контактирующие с дорожками качения колец, тогда как осевые силы действуют на борта колец и торцовые поверхности роликов.

При этом важную роль имеют характер нагрузки, частота вращения и смазывание подшипника.

Допустимую осевую нагрузку [F_a] можно определить по формулам:

- для подшипников серий диаметров 1, 2, 3 и 4

$$[F_a] = k_A C_{or} [1,75 - 0.125 k_B n(D - d)];$$

6

- для подшипников серий диаметров 5 и

$$[F_a] = k_A C_{or} [1.16 - 0.08 k_B n(D - d)],$$

где k_A и k_B - коэффициенты, значения которых приведены в табл. 72 и 73; C_{or} - статическая грузоподъемность, H; n - наибольшая частота вращения, об/мин; D и d - соответственно наружный диаметр и диаметр отверстия подшипника.

При малых частотах вращения допустимы случайные кратковременные нагрузки большей величины, но не выше 40% статической грузоподъемности подшипника.

72. Значения коэффициента k_A

Условия работы подшипника, смазочный материал (примеры применения)	k _A
Постоянная осевая сила при высокой частоте вращения и высокой температуре, высокотемпературные масла (не рекомендуется применять роликоподшипники с цилиндрическими роликами)	0
Переменная осевая сила и умеренная температура, пластичный смазочный материал - тяговые электродвигатели	0,02
Непродолжительная осевая сила и низкая температура, жидкий сма- зочный материал - коробки передач автомобилей:	
главная передача	0,1
вал шестерни заднего хода	0,2
Случайная осевая сила и низкая температура, пластичный смазочный материал - блоки, электротали, кран-балки	0,2

73. Значения коэффициента k_B

Серия подшипника по диаметру (третья цифра справа в условном обозначении)	k _B
1, 2, 5	8,5 · 10 ⁻⁵
3, 6	7 10-5
4	6 · 10 ⁻⁵

ТРЕНИЕ В ПОЛШИПНИКАХ

Энергетические потери в подшипниках складываются в основном из потерь на трение, возникающих вследствие проскальзывания в местах контакта тел качения с кольцами и сепаратором, несовершенной упругости материала тел качения и колец и механических потерь в смазочном материале. Переходя в теплоту, эти потери вызывают повышение температуры подшипниковых узлов. Они не являются постоянными во времени и определяются конструкцией подшипника, режимами его работы и смазки. Мощность (Вт), расходуемая на преодоление трения в подшипнике,

$$P_{\rm Tp} = 0.1047 T_{\rm Tp} n ,$$

где $T_{\rm Tp}$ - момент трения, Н·м; n - частота вращения, об/мин.

Приближенно оценить момент трения при действии результирующей нагрузки, не превышающей 10-20% динамической грузоподъемности, можно по формуле

$$T_{\rm Tp} = f_{\rm Tp} F_{\rm pes} d/2$$
,

где $f_{\rm Tp}$ - приведенный коэффициент трения (в зависимости от условий работы и типа подшипника $f_{\rm Tp}=0,001$ -0,02; для подшипников с пластичным смазочным материалом значения $f_{\rm Tp}$ приведены в табл. 74); $F_{\rm pes}=\sqrt{F_r^2+F_a^2}$ - результирующая нагрузка на подшипник, H;d - диаметр отверстия подшипника, мм.

74. Значения коэффициента f_{rp}

	-
Тип подшипника	f_{Tp}
Шариковый:	
радиальный	0,0020
сферический	0,0015
радиально-упорный и упорный	0,0030
Роликовый:	
с короткими цилиндрическими роликами	0,0020
с длинными цилиндрическими роликами	0,0040
радиальный сферический	0,0040
игольчатый	0,0080
конический	0,0080

При более точных расчетах момент трения определяют как сумму составляющих $T_{\rm HI}$ от нагрузки и $T_{\rm CM}$ от смазочного материала

$$T_{\rm TP} = T_{\rm HF} + T_{\rm CM}$$

Составляющая момента трения, обу-

$$T_{\rm HF} = f_1 F_1 D_{\rm pw}$$

Здесь f_1 - коэффициент, зависящий от конструкции подшипника и нагрузки. Его значения для роликовых подшипников приведены в табл. 75.

75. Значения коэффициента f_1 для роликовых подшинников

Тип роликового подшипника	fı
Радиальный с цилиндриче- скими роликами:	
с сепаратором	0,0002-0,0004
без сепаратора	0,00055
Радиальный сферический	0,0001-0,0006
Конический	0,0003-0,0004
Упорный с цилиндрически- ми роликами	0,0015
Упорный сферический	0,0003-0,0005

Для шарикоподшипников

$$f_1 = k_1 (P_0 / C_0)^k$$
,

где P_0 - статическая эквивалентная нагрузка (P_{0r} или P_{0a}); C_0 - статическая грузоподъемность (C_{0r} или C_{0a}). Значения коэффициентов k_1 и k приведены в табл. 76.

Условная нагрузка F_1 зависит от значения и направления нагрузки на подшипник

76. Значения коэффициентов k_1 и k

Тип шарикового подшипника	Началь- ный угол контакта, °	k ₁	k
Радиальный	0	0,0007	0,55
Радиально-упорный	26	0,0010	0,33
Радиально-упорный	36	0,0010	0,33
Упорный	90	0,0010	0,33
Сферический	10	0,0003	0,40

Для шариковых подшипников

$$F_1 = 1,1 F_a \ / \ e - 0,1 F_r \$$
при условии $F_1 \ge F_r \ .$

Для радиально-упорных роликоподшипников

$$F_1 = 1.2F_a / e$$
 при условии $F_1 \ge F_r$.

Для упорных и упорно-радиальных шарико- и роликоподшипников

$$F_1 = F_a$$
.

Коэффициент е для радиальных и радиально-упорных шарикоподшипников определяют по табл. 64, а для остальных - по каталогу.

Момент $T_{\rm HI}$ доминирует в суммарном моменте трения у медленно вращающихся тяжелонагруженных подшипников.

Составляющая момента трения, обусловленная гидродинамическими потерями в смазочном материале, Н-м:

$$T_{\text{cM}} = 0.979 \cdot 10^{-10} f_{c \text{ M}} (vn)^{2/3} D_{pw}^3$$

 $\text{при } vn > 2000 ;$

$$T_{\rm cm} = 1,55 \cdot 10^{-8} f_{\rm c \ m} D_{\it pw}^3$$
 при $\it vn \leq 2000$,

где v - кинематическая вязкость смазочного материала, мм 2 /с; n - частота вращения, об/мин; D_{pw} - диаметр окружности, проходящей по центрам тел качения, мм; $f_{\rm cm}$ - коэффициент, зависящий от типа подшипника и способа смазывания, табл. 77.

Кинематическую вязкость пластичных смазочных материалов принимают по маслу, на основе которого изготовляют этот материал. Формула справедлива для масел с плотностью около 0,9 г/см³.

Для роликовых подшипников с короткими цилиндрическими роликами, работающих под действием радиальной и осевой сил, следует учитывать составляющую T_6 момента трения, обусловленную трением ролика о направляющий борт:

$$T_{\rm Tp} = T_{\rm Hf} + T_{\rm CM} + T_{\rm 6},$$

где $T_6 = f_6 F_a D_{pw}$, а коэффициент f_6 (табл. 78) зависит от смазочного материала и конструкции подшипника.

		Способ смазывани	. F.
Тип подшипника	Масляный туман*	Масляная ванна или пластичный смазочный материал	Масляная ванна (вертикальный вал) или циркуляционное смазывание
Шариковый:			
радиальный, сферический,	0,7-1	1,5-2**	3-4
упорный			
радиально-упорный:	İ		
однорядный	1,7	3	6
двухрядный	3	6	9
Роликовый:		1	
радиальный цилиндрический:			
с сепаратором	1,5-2	2-3	4-6***
без сепаратора	-	5	-
радиальный сферический	2-3	4-6	8-12
конический	2-3	6	8-10
упорный:			i
цилиндрический	-	4	8

77. Значения коэффициента $f_{\text{см}}$ при различных способах смазывания

- Меньшие значения относятся к легким, большие к тяжелым размерным сериям.
- ** Может возрастать до 5 при пластичном смазочном материале.
- *** Может снижаться до 2 для горизонтального вала при циркуляционном смазывании.

78. Значения коэффициента f6

сферический

Конструктивное исполнение радиального роликового подшипника с	Смазоч матер	
короткими цилиндрически- ми роликами	пла- стичный	жид- кий
С сепаратором:		
с модифицированным контактом ролика	0,003	0,002
с направляющим бортом обычной конструкции	0,009	0,006
Без сепаратора, однорядный	0,006	0,003

Приближенно определить момент трогания подшипника можно по формуле

$$T_{\Pi} = f_{\Pi} T_{H\Gamma}$$

где $f_{\rm fi}=4$ для конических роликоподшипников с большим углом контакта: $f_{\rm fi}=8$ для упорных сферических роликоподшипников; $f_{\rm fi}=2$ в остальных случаях.

Изложенные методы не учитывают потери на трение в уплотнениях закрытых подшипников, которые могут быть значительными.

ПРЕДЕЛЬНАЯ ЧАСТОТА ВРАЩЕНИЯ

6-8

Под предельной понимают наибольшую допустимую частоту вращения, при превышении которой не может быть обеспечен расчетный ресурс подшипника. Для оценки предельной частоты вращения используют скоростной параметр $(D_{pw} n)$, наименьшие значения которого в зависимости от типа подшипника и вида смазочного материала приведены в табл. 79. Подбором конструкции, условий нагружения, смазывания и охлаждения значения скоростного параметра могут быть увеличены в 1,5-3 раза.

Предельную частоту вращения $n_{\rm np}$ определяют по формуле

$$n_{\rm np} = \left(D_{pw} n\right) K / D_{pw} .$$

Здесь K - коэффициент, учитывающий влияние воспринимаемой подшипником нагрузки, оцениваемой по значению ресурса L_h , рис. 32. Как видно, для крупных подшипников $n_{\rm np}$ существенно снижается с увеличением габаритных размеров.

Для подшипников сверхлегких и особолегких серий диаметров предельная частота вращения может быть увеличена на 10% по сравнению с рассчитанной по формуле.

Тип подшипника	Значения D_{pw} гля смазочног	
	пластичного	жидкого
Шариковый:		
радиальный однорядный	4,5.105	5,5·10 ⁵
радиальный однорядный с защитными шайбами	4,0.105	•
радиальный однорядный с уплотнениями	4,0.105	-
радиальный сферический двухрядный	4,0.105	5,5·10 ⁵
радиально-упорный однорядный с углом контакта до 26°	4,0.105	5,5·10 ⁵
упорный однорядный	1,3.105	1,8.105
Роликовый:		•
радиальный с короткими цилиндрическими роликами	3,5.105	4,0·10 ⁵
конический однорядный	2,5.105	3,0.105
конический двухрядный	2,0.105	2,5·10 ⁵
конический четырехрядный	1,5.105	2,0.105
	1 1	

79. Значения скоростного параметра D_{pw} n

 Π р и м е ч а н и я : 1. Значения приведены для подшипников со стальным штампованным сепаратором, работающих при температуре не выше 100 °C.

2. При угле контакта 36° для радиально-упорных шариковых подшипников скоростной параметр снижается на 25%.

Тип подшипника определяет кинематику и потери на трение. Наиболее быстроходными являются прецизионные радиальные и радиально-упорные шарикоподшипники легких и сверхлегких серий. Подшипники тяжелых серий менее быстроходны. Для нормальных частот вращения применяют в основном подшипники класса точности 0 со стальными штампованными сепараторами.

В таблицах технических характеристик приводят значения предельных частот вращения для подшипников класса точности 0 с обычными для данных типов конструкциями сепараторов.

При повышенных частотах используют подшипники высокой точности с массивными, в основном латунными, бронзовыми текстолитовыми сепараторами. Для высокоскоростных узлов ведущие фирмы уже производят подшипники с телами качения из керамических материалов, которые вследствие малой плотности и высокой прочности, термо- и износостойкости, коррозионной стойкости являются весьма перспективными. В подшипниках с шариками из керамики на основе нитрида кремния Si₃N₄ меньше тепловыделение (вследствие меньшего коэффициента трения), меньшие цен-

тробежные нагрузки от тел качения, что позволяет повысить в 1,5-2 раза ресурс высокоскоростных узлов различных машин.

При проектировании быстроходного узла следует учитывать изменение зазора в подшипнике, возникающее вследствие перепада температур между наружным и внутренним кольцами. Уменьшение зазора может быть особенно значительным вследствие повышенного скольжения при быстром разгоне подшипника с пластичным смазочным материалом.

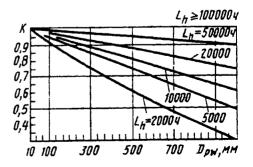


Рис. 32. Зависимость коэффициента K, учитывающего влияние нагрузки, от ресурса L_h и диаметра $D_{\mu\nu}$

Для повышения предельной частоты вращения решающее значение имеют смазочный материал и охлаждение подшипника. Желательно, чтобы подшипник работал в условиях жидкостного трения. Если используют пластичный смазочный материал или минеральное масло с вязкостью при рабочей температуре не ниже $12 \text{ мм}^2/\text{c}$, а скоростной параметр $(D_{pw} n) \ge 300000 \text{ мм} \times \text{хоб/мин}$, то наличие гидродинамического режима обеспечено заведомо.

Смазочный материал высокоскоростных подшипников должен обладать пониженной вязкостью и хорошими антикоррозионными свойствами. Способы его подвода

могут быть различны: циркуляционное смазывание, масляным туманом и др.

Необходимым условием достижения высокой частоты вращения является правильно выбранный предварительный натяг. При недостаточных натягах неизбежна повышенная вибрация, а при чрезмерно больших - повышенное тепловыделение, неоправданное снижение ресурса подшипника

ПОКАЗАТЕЛИ КАЧЕСТВА

В табл. 80 перечислены основные показатели качества подшипников качения, номенклатура которых установлена ГОСТ 4.479-87.

80. Основные показатели качества подшипников качения

Наименование показателя качества	Обозначение показателя	Наименование характеризуемого свойства			
Показател	и назначения				
Динамическая грузоподъемность, Н	С	Нагрузочная способность в динамике			
Уровень вибрации, дБ (по ГОСТ 23941-79)	N	Колебания механические			
Показател	ь надежности				
Установленная безотказная наработка, ч	T_{y}	Безотказность			
Показатели экономного использования материалов и энергии					
Удельная материалоемкость, г/Н	М	Рациональность использова- ния материалов			
Удельное энергопотребление при трогании, мН·м/Н	$artheta_{ au}$	Рациональность конструкции и качество исполнения			
Удельное энергопотребление при вращении, мН·м/Н	$artheta_{\mathtt{B}}$	То же			

Термины, используемые в табл. 80:

- удельная материалоемкость отношение массы подшипника к динамической грузоподъемности;
- удельное энергопотребление при трогании отношение момента трения, который необходимо преодолеть для начала вращения подшипника, к динамической грузоподъемности;
- удельное энергопотребление при врашении - отношение момента трения при установившемся вращении подшипника к динамической грузоподъемности;
- установленная безотказная наработка минимальное значение наработки, в течение которой изготовитель гарантирует безотказную работу подшипника при соблюдении регламентированных условий транспортирования, хранения, монтажа и эксплуатации.

ПОСАДКИ КОЛЕЦ ПОДШИПНИКОВ НА ВАЛ И В КОРПУС

Поля допусков и посадки

Установлены следующие обозначения полей допусков на посадочные диаметры колец подшипника по классам точности (ГОСТ 3325-85):

- для среднего диаметра отверстия подшипников - Ld_m , L0, L6, ..., L2, LT, где Lобозначение основного отклонения для среднего диаметра отверстия подшипника; Ld_m - общее обозначение поля допуска на средний диаметр d_m отверстия подшипника (рис. 33); L0, L6, ..., L2, LT - обозначение полей допусков для среднего диаметра отверстия по классам точности 0, 6, ..., 2, Tподшипников (ГОСТ 520-89);

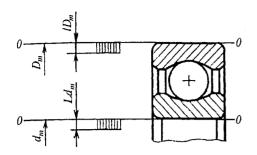


Рис. 33. Схема расположения полей допусков на средние наружный диаметр и диаметр отверстия подшипника

- для среднего наружного диаметра подшипников - ID_m , IO, I

Установлены поля допусков для диаметров посадочных поверхностей валов и корпусов (табл. 81), а для соединения подшипников с валами (осями) и корпусами - посадки (табл. 82), определяемые сочетаниями полей допусков на сопрягаемые детали в зависимости от классов точности подшипников. Выбор посадок подшипников качения на вал и в отверстие корпуса осуществляют в соответствии с требованиями к точности и необходимой плотности соединения колец с посадочными поверхностями.

Условные обозначения посадок подшипников указывают на сборочных чертежах и в нормативно-технической документации.

Пример обозначения посадки подшипника качения класса точности 0 на вал с номинальным диаметром 50 мм, с полем допуска k6 по ГОСТ 25347-82:

Ø50L0/k6 или Ø50L0-k6;

то же в отверстие корпуса с номинальным диаметром 90 мм, с полем допуска H7: $\varnothing 90\,HT/10$ или $\varnothing 90\,HT-10$.

Допускается на сборочных чертежах подшипниковых узлов указывать только размер, поле допуска или предельные отклонения сопряженной с подшипником детали: Ø50k6; Ø90H7.

Основные указания по выбору посадок для колец подшипников

Выбор посадок подшипников на вал и в отверстие корпуса производят в зависимости от вида нагружения, т.е. от того, вращается или не вращается данное кольцо относительно действующей на него радиальной нагрузки, а также от величины, направления и интенсивности действующих нагрузок.

Под радиальной нагрузкой следует понимать равнодействующую всех радиальных сил, воздействующих на подшипник или тела качения.

В соответствии с условиями работы различают следующие основные виды нагружения колец подшипника: местное, циркуляционное и колебательное.

Местное нагружение кольца - нагружение, при котором действующая на подшипник результирующая радиальная нагрузка постоянно воспринимается одним и тем же ограниченным участком дорожки качения этого кольца (в пределах зоны нагружения) передается соответствующему участку посадочной поверхности вала или корпуса. Кольцо может быть неподвижно относительно действующей на него нагрузки или кольцо и нагрузка участвуют в совместном вращении. На рис. 34 представлены случаи местного нагружения колец (а - наружного, б - внутреннего) с соответствующими эпюрами нормальных напряжений на посадочных поверхностях.

Циркуляционное нагружение кольца - нагружение, при котором действующая на подшипник результирующая радиальная нагрузка воспринимается и передается телами качения дорожке качения в процессе вращения последовательно по всей ее дли-

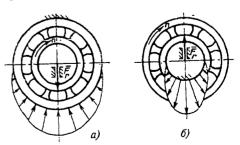


Рис. 34. Эпюры нормальных напряжений на посадочных поверхностях и случаи местного нагружения наружного кольца (а) и внутреннего кольца (б)

81. Поля допусков на диаметры посадочных поверхностей валов и отверстий корпусов

19.								Поля д	юпуско	в ддя о	Поля допусков для основных отклонений	х откло	нений							
гэтигл	၁	Į.	50	ء ا	.sc	·	<u>×</u>	E .	u	a	-	В	G	H	Sf	ſ	×	Σ	z	۵
KBS						для вала	тла							1 15	я отвер	для отверстия корпуса	эрпуса			
٣				h3	įs3															
4			84	h4	js4		k4	m4	n4				G	H4	JS4		K4	M4		
2			85	h5	żs <u>í</u>	(5)	22	m5	n5	p5			GS	H5	JS5		K5	M5	S _S	
9		99	98	ру Р	9sf	(95)	k 6	9m	9u	9d	92		9 <u>5</u>	9H	9Sf	(Je)	K6	9W	9N	P6
7		и		Ъ7				_			L2		G7	H7	JS7	(7)	Κ7	M7	Z Z	P7
∞	န္	82		h8								E8		H8			_			
6	(e ₉)	63		P9								(E3)		(6H)						
10			:	(h10)																

Примечания:

1. В скобках приведены поля допусков ограниченного применения.

2. Под посадку шариковых и роликовых подшипников на закрепительных или стяжных втулках предельные отклонения валов устанавли-вают по h8, h9 и h10.

3. При применении полей допусков Н7, Н8, Н9 необходима селективная сборка с целью исключения проворота наружного кольца подшипника.

82. Посадки подшипинков качения на вал и в отверстие корпуса по классам точности для основных отклонений

		ď	2 2	
		z	٤le	
	8	Σ	M7 8	
	сориус	×	K7	
	отверстия корпуса	5	(J2)	
	отве	Sf	JS7 10	
		H	H7 10	H8 /0
		Ŋ	52	
		E		8 Q
		L	2/2	100
		Р	218	
•		t.	07 <u>1</u>	
	<u>.</u>	E	2 9	
		×	3/2	
	вала	Ĝ	31/2	
		sí	3 %	
		स	2 2	5 5
		50	62 ěř	
		4	67 78	3 5
		ပ	$\left(\frac{69}{07}\right)$	68 E8
	Классы точности	подшипников по ГОСТ 520-89	9и0	

!		1	1		Ī	l	I
	<u>74</u>			P6 15	P6 14		
	N7 16			N6 15	N6 14		S S
	M7 16			M6 15	M6 14	M4	M5
	K7 77			K6 15	K6	K4	K5
	$\left(\frac{17}{16}\right)$			$\left(\frac{J6}{l5}\right)$	$\left(\frac{J6}{/4}\right)$		
	1S7 91			JS6 15	JS6 74	158	JS5 12
	H7 16	H8 /6	(HB)	H6 15	H6	H4	H5
	<u>G7</u>			G6 15	G6 14	G4 22	G5 12
$\left(\frac{E9}{10}\right)$		E8 16					
	9 <u>1</u> 97	<u>L¹</u> 97					
	9d 97						
	9u 97			<u>1.5</u> n5	4 <u>7</u> Sn		12 4
	9 <u>m</u>			L.5 m5	ZZ m		1.2 m4
	F6			15 15 15	7 3		3 3
	$\left(\frac{L\delta}{\delta \tilde{l}}\right)$			$\left(\frac{\xi\xi}{\xi\zeta}\right)$	(Z)		
	97 <u>1</u> 98 <u>f</u>			1.5 js5	1.4 js5	1.2 Esi	1.2 1.24
	92 94 129	57 174		15 h5	7 3	h3 [12	21 2
	98 97			21 85	Z S		g4
3 8 3 6	3 8	3 2	3 8				
	9и0			5и4		2	

ваны подшипники классов точности 0 или 6, то допускается обработку вала и корпуса производить соответственно по 6-му и 7-му квалите-4. Для подшипников классов точности 5, 4 и 2 допускается производить обработку вала и отверстия корпуса соответственно по 6-му и 5-му Примечания: 1. Если по условиям работы в узлах вместо примененных подшипников классов точности 5 и 4 могут быть использоквалитетам при условии обеспечения посадки колец и технических требований к посадочным поверхностям, установленных для соответсттам. 2. В скобках даны поля допусков ограниченного применения. 3. Жирным шрифтом выделены посадки для основных типов соединений. вующих классов точности подшипников.

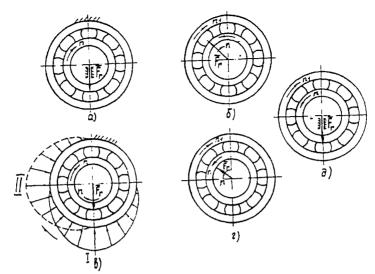


Рис. 35. Случаи циркуляционного нагружения внутреннего кольца (a, δ) , наружного кольца (s, ϵ) , обоих колец (∂)

не, а следовательно, и всей посадочной поверхности вала или корпуса. Такое нагружение имеет место, например, когда кольцо вращается относительно постоянной по направлению радиальной нагрузки, а также когда нагрузка вращается относительно неподвижного или подвижного кольца (рис. 35). На этом рисунке представлены случаи циркуляционного нагружения внутреннего кольца (рис. 35, a и δ), наружного кольца (рис. 35, θ и ϵ), обоих колец (рис. 35, д). Показана также эпюра нормальных напряжений на посадочной поверхности корпуса (рис. 35, в), перемещающаяся по мере вращения нагрузки F_r с частотой вращения п.

Колебательное нагружение - нагружение, при котором неподвижное кольцо подшипника подвергается одновременному воздействию радиальных нагрузок: постоянной по направлению $\overline{F_r}$ и вращающейся $\overline{F_c}$, меньшей или равной по величине $\overline{F_r}$. Их равнодействующая совершает периодическое колебательное движение, симметричное относительно направления $\overline{F_r}$, причем она периодически воспринимается последовательно через тела качения зоной нагружения кольца и передается соответствующим ограниченным участкам посадочной поверхности.

Такое нагружение возникает, например, на неподвижном наружном кольце, когда

на него воздействует через вал постоянная нагрузка $\overline{F_r}$, а внутреннее кольцо вращается совместно с приложенной к нему нагрузкой $\overline{F_c}$, возникающей от дисбаланса

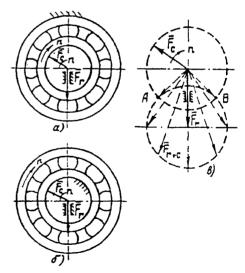


Рис. 36. Случаи колебательного нагружения наружного кольца при циркуляционном нагружении внутреннего кольца (а), внутреннего кольца при циркуляционном нагружении наружного кольца (б); круговая диаграмма изменения равнодействую-

щей силы \overline{F}_{r+c} при $\left|\overline{F}_r\right| > \left|\overline{F}_c\right|$ (6)

(рис. 36, a). При вращении наружного кольца совместно с нагрузкой \overline{F}_c колебательное нагружение возникает на неподвижном внутреннем кольце (рис. 36, δ).

Равнодействующая изменяется от $\left| \overline{F_r} \right| + \left| \overline{F_c} \right|$ до $\left| \overline{F_r} \right| - \left| \overline{F_c} \right|$ и колеблется по направлению за один оборот вала в пределах угла, ограниченного точками A и B на круговой диаграмме (рис. 36, ϵ), симметрично относительно линии действия силы $\overline{F_r}$. При $\left| \overline{F_r} \right| = \left| \overline{F_c} \right|$ равнодействующая изменяется от 0 до 2 $\left| \overline{F_r} \right|$.

Если нагрузка постоянного направления меньше вращающейся, т.е. $\left| \vec{F}_r \right| < \left| \vec{F}_c \right|$, равнодействующая вращается, изменяясь по значению и направлению от $\left| \vec{F}_r \right| + \left| \vec{F}_c \right|$ до $\left| \vec{F}_c \right| - \left| \vec{F}_r \right|$ (круговая диаграмма, рис. 37, ϵ). В этом случае кольца являются либо местно нагруженными (внутреннее на рис. 37, ϵ ; наружное на рис. 37, ϵ), либо циркуляционно нагруженными (наружное на рис. 37, ϵ), в зависимости от схемы приложения сил.

При "неопределенном нагружении", например когда нагрузка на подшипники качения вала приложена одновременно от силы натяжения ремня и от кривошипно-

шатунного привода, кольца подшипников вала устанавливают, как при циркуляционном виде нагружения.

В табл. 83 приведены виды нагружения колец подшипников качения при радиальных нагрузках в зависимости от условий работы.

Рис. 37. Случаи местного нагружения внутреннего кольца при циркуляционном нагружении наружного кольца (а), циркуляционного нагружения внутреннего кольца при местном нагружении наружного (б); круговая диаграмма изменения равнодействующей

силы
$$\overline{F}_{r+c}$$
 при $\left|\widehat{F}_r\right| < \left|\overline{F}_c\right|$ (в)

83. Виды нагружения колец подшипников качения

Условия раб	оты	Виды нагружения кольца		
Характеристика нагрузок	Вращающееся кольцо	внутреннего	наружного	
Постоянная по направлению	Внутреннее Наружное	Циркуляционное Местное	Местное Циркуляционное	
Постоянная по направлению и	Внутреннее	Циркуляционное	Колебательное	
вращающаяся, меньшая постоянной по значению	Наружное	Колебательное	Циркуляционное	
Постоянная по направлению и	Внутреннее	Местное	Циркуляционное	
вращающаяся, большая постоянной по значению	Наружное	Циркуляционное	Местное	
Постоянная по направлению	Внутреннее и наружное	Циркуляционное	Циркуляционное	
Вращающаяся с внутренним кольцом	кольцо в одном или противоположном	Местное	Циркуляционное	
Вращающаяся с наружным кольцом	направлениях	Циркуляционное	Местное	

Другим фактором, определяющим характер посадки, ее плотность является интенсивность и динамика нагружения. По интенсивности нагружения подшипниковых узлов, определяемой отношением эквивалентной радиальной нагрузки P_r и радиальной динамической грузоподъемности C_r , режимы их работы подразделяют на легкий, нормальный, тяжелый и режим "особые условия" (табл. 84).

К режиму "особые условия" относят условия эксплуатации подшипников, работающих при ударных и вибрационных нагрузках (в железнодорожных и трамвайных буксах, на коленчатых валах двигателей, в узлах дробилок, прессов, экскаваторов и т.п.). Посадки подшипников при этом режиме выбирают, как для тяжелого режима работы, независимо от отношения P_n/C_r

84. Режимы работы подшипников качения

Режим работы подшипника	Отношение эквивалент- ной нагрузки P_r к дина- мической грузополъем- ности C_r
Легкий	$P_r/C_r \le 0.07$
Нормальный	$0.07 < P_r/C_r \le 0.15$
Тяжелый	$P_r/C_r > 0.15$
Особые условия	-

Большим значениям отношения P_{r}/C_{r} должны соответствовать более плотные посадки.

При выборе посадок следует учитывать также перепад температур между валом и корпусом, монтажные и контактные деформации колец, влияющие на рабочий зазор в подшипнике, материал и состояние посадочных поверхностей вала и корпуса, условия монтажа.

Многолетней практикой применения подшипников установлено, что соединение с валом или корпусом колец, вращающихся относительно нагрузки, должно осуществляться обязательно с натягом, исключающим проворачивание и обкатывание кольцом сопряженной детали. При недостаточном натяге и циркуляционном нагружении между кольцом и посадочной поверхностью может появиться зазор в разгруженной зоне, что приводит к обкатыванию кольцом сопряженной поверхности, ее развальцовке, контактной коррозии, истиранию, снижению точности вращения и разбалансировке.

При высоких частотах вращения применяют посалки с меньшим натягом.

относительно Посалки неподвижных нагрузки колец, назначают более своболными, допускающими наличие небольшого зазора, так как обкатывание кольцами сопряженных деталей в этом случае не про-Нерегулярное проворачивание исхолит. невращающегося кольца порядка одного оборота в сутки полезно, так как при этом изменяется положение его зоны нагружения, что способствует повышению долговечности подшипника. Кроме того, такое сопряжение облегчает осевые перемещения колец при монтаже, при регулировании зазоров в подшипниках и при температурных деформациях.

Посадки подшипников отличаются от обычных расположением и значением полей допусков на посадочные поверхности Подшипник является основным комплектующим изделием, не подлежащим в процессе сборки дополнительной доводке. Требуемые посадки в соединении колец получают назначением соответствующих полей допусков на диаметры вала или отверстия в корпусе. Особенностью является то, что в подшипниках качения поле допуска на диаметр отверстия внутреннего кольца располагают не вверх от нулевой линии (не "в плюс"), а вниз ("в минус"), рис. 33. Этим гарантируют получение натягов в соединениях внутреннего кольца с валами, имеющими поля допусков k, n и m. Поле допуска на диаметр наружного кольца располагают как обычно - "в минус" или "в тело детали".

Посадки колец шариковых и роликовых радиальных подшипников на вал и в отверстие корпуса в зависимости от вида нагружения выбирают в соответствии с табл. 85.

Посадки шариковых и роликовых радиально-упорных подшипников на вал и в отверстие корпуса выбирают в соответствии с табл. 86.

Для тугих колец упорных шариковых и роликовых подшипников применяют посадки L0/js6(L0/j6) или L6/js6(L6/j6).

Часто выбор посадок осуществляют методом аналогий, ориентируясь на аналогичные, длительно работающие проверенные узлы, близкие по конструкции, назначению и условиям эксплуатации.

В табл. 87-89 приведены рекомендуемые посадки шариковых и роликовых подшипников различных типов в зависимости от вида нагружения, режима работы и диаметра отверстия.

85. Посадки колец радиальных подшипников для различных видов нагружения

внутреннего на вал		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L6 L6 L6 IS JS6 JS7 H6 H7 H9 G7 g6 f7 f8 f6 f6 f6 f6 f6 f6	JSS H5 H8 I2 I6 H9 H9	K7 10	L4 L6 L4 L6 L6<	L2 L2 NS M5 K5 K4 js4 72 72 72	1SS 1S7 15 10	1 <u>SS</u> 1 <u>S7</u> 1 <u>S7</u>	354
внутренн		3 2	3 2		2 %	97 gu				
		ম্বাহ	2 ₹	2 2	김동	7 E	12 4			
		9] jst	2 Sé		3/2	3/5		2 8	37 28	
		2.1 Ssi	4 Z	122 js4	3 5	7 5	김물	राह्य	4 8	[7]
Виды	колец		Местное			Циркуляционное			Колебательное	

Примечания: 1. При частотах вращения, превышающих предельные, для местно нагруженных колец радиальных шариковых и роликовых подшипников следует производить обработку посадочных мест вала и корпуса под посадку с полем допуска, расположенным симметрично относительно номинального диаметра по табл. 81.

2. Допускается при необходимости применение полей допусков ј5, ј6, Ј6, Ј7 ограниченного применения.

2	
4	
₹.	
3	
-	
ਬ	
_	
Š	
8	
3 0	
۳	
=	
Ξ	
冥	
¥	
Ę	
Ē	
Ξ	
вида на	
₹	
æ	
Ħ	
<u>ت</u>	
CTM	
8	
ž	
5	
BMC	
ã	
~	
HKOB B	
пшипников	
ξ	
дшипни	
Ξ	
≣	
o	
₹	
BELX	
HKO	
JIHKOBI	
0	
_	•
Ξ	
쏯	
8	
2	
Ξ	
ā	•
Ξ	
HPIX	
2	
좆	•
фошу-	
ج	۰
2	
3	
215	
H	
DAMES	
1	
ЯПКИ	
7	
ಭ	
H	
Ξ.	
86.	
٠	

c									
Вид нагружения и способ регулировки	<u></u>	Внутреннего кольца на вал	кольца на в	ал		Наружн	Наружного кольца в корпус	з корпус	
Циркуляционное нагружение колец подшипников при от-	07 94	1.0 m6	07 9x	07 9s(Z 0	M7 /0	K7 10	187	P7 0
сутствии регулировки	2 92	Te m6	2 2	16 js6	N / 9/	M7 16	K7 16	JS7 16	P7 16
Циркуляционнос нагружение регулирусмых колец			07 58 98 98 98				1S7 10 1S7 16		
Нерегулируемые и регулируемые местно нагруженные кольца, не перемещающиеся относительно посадочной поверхности	112 112			170 ; 170 ;	M7 10 7M 76		K7 10 ; K7 16 ;		H7; H7 16
Местно нагруженные регули- руемые кольца	91 194 194		; 98 ; 97 ; 98 ; 97	2 12 15 15 15 15 15 15 1			$\frac{H7}{10}$;		

87. Рекомендуемые посадки шариковых и роликовых подшипников на вал

Условия, Подшипники с отверстиями диаметров, мм определяющие выбор посадки	ния Режим работы радиальные радиально-упорные и подшипниковых узлов посанки	шариковые роликовые роликовые роликовые	Легкий или нор- Подшипники всех диаметров Ролики ленточных конвейеров и $L0/g6$; $L6/g6$ авет-мальный, грузов, барабаны самописцев, опоравных передач
товия, е выбор поса			Легкий или мальный, $P \le 0,07$ С
Ус	Вид нагружения внугреннего	кольца	$egin{array}{ll} Mecтноe & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Местное (вал не вращает- ся)	Местное Нормальный или (вал не вращает- $178 \times 15C$ ся) $0.07C < P \le 0.15C$	Под	Подшипники всех диаметров	эх диаметро		Передние и задние колеса автомо- L0/g6; L6/g6; билей и тракторов, колеса вагоне- L0/f7; L6/f7; ток, самолетов и т.п. Валки мелко- L0/h6; L6/h6 сортных прокатных станов	L0/g6; L6/g6; L0/f7; L6/f7; L0/h6; L6/h6
						Блоки грузоподъемных машин, ролики рольгангов, валки станов для прокатки труб, крюковые обоймицы кранов	L0/h6; L6/h6
			До 50	0		Гиромоторы и малогабаритные электромашины, приборы, внутри-шлифовальные шпиндели, электрошинидели, турбохолодильники	L5/js5; L4/js5; L2/js4; L5/h5; L4/h5; L2/h4; L2/js3; L2/h3
	Легкий или нор- мальный, 0,07С < Р ≤ 0,15С	До 40	До 40	До 100	До 40	Сельскохозяйственные машины, иентрифуги, турбокомпрессоры, газотурбинные двигатели, центробежные насосы, вентиляторы, элек-	
		До 100	До 100	Свыше 100	До 100	тромоторы, редукторы, коробки скоростей станков, коробки передач автомобилей и тракторов	L5/K5; L4/K5; L2/K4; L0/K6; L6/K6; L0/js6; L6/js6
			До 250	20			L0/m6; L6/m6
Циркуля- ционное (вал вращается)		До 100	До 40	До 100	До 100	Электродвигатели мощностью до 100 кВт, турбины, кривошипно- шатунные механизмы, шпиндели металлорежущих станков, крупные	L5/k5; L4/k5; L2/k4; L0/k6; L6/k6; L0/js6; L6/js6
	Нормальный или тяжелый 0,07С < Р ≤ 0,15С	Свыше 100	До 100	Свыше 100	До 180	редукторы. Редукторы вспомога- тельного оборудования прокатных станов	L5/m5; L4/m5; L2/m4; L0/m6; L6/m6
		1	До 250	1	До 250		L5/n5; L4/n5; L2/n4; L0/n6; L6/n6; L0/p6; L6/p6
	Тяжелая и удар- ная нагрузка,		50 ÷ 140			Железнодорожные и трамвайные буксы, буксы тепловозов и электровозов, коленчатые валы двигателей,	L0/m6; L6/m6; L0/n6; L6/n6
	2010		140 ÷ 200	1	1	электродвигатели мощностью свыше L0/m6; L6/m6 100 кВт, (см. продолжение стр. 148)	L0/m6; L6/m6

Продолжение табл. 87

Усл определяющие	Условия, определяющие выбор посадки	Подшипники с отв	Подшипники с отверстиями диаметров, мм		
Вид нагружения внутреннего	Режим работы	радиальные	радиально-упорные	Примеры машин и подшипниковых узлов	Рекомендуемые посадки
кольца		шариковые роликов	шариковые роликовые шариковые роликовые		
		_ 200 ÷ 250	1	(см. начало стр. 147) крупные тяго- L0/r6; L6/r6; вые электродвигатели, ходовые ко- L0/r7; L6/r7	L0/r6; L6/r6; L0/r7; L6/r7
	Tawonag u yann			леса мостовых кранов, ролики рольгантов тяжелых станов, дро-	
Циркуля-	ı,			бильные машины, дорожные маши-	
ционное (вал вращается)	7 > 0,13C				
				ционные конвейеры	
		Подшипники на втулках	Подшипники на закрепительно-стяжных втулках всех диаметров	жело	Поля допусков вала h8; h9
				металлургических конвейерных устройств, некоторые узлы сельхоз-машин	
	Нормальный,	Подшипники на за	Тодшипники на закрепительных втулках всех	Трансмиссионные и контрпривод- Поля допусков	Поля допусков
	$0.07C < P \le 0.15C$	H	диаметров	ные валы и уэлы, сельскохозяист- вала пу, пто венные машины	Balla 119, 1110

88. Посадки упорных подшипников

определяющие выбор посадки	Подшипники с отверстиями диаметров, мм	Примеры машин	Рекомендуемые
Вид нагружения Режим работы		и подшинниковых уэлов	
Натрузки осевые	Подшипники всех диаметров	Узлы с одинарными упорными подшипниками	L0/js6; L6/js6
		Узлы с двойными упорными под- шипниками	L0/js6; L6/js6

L0/k6; L6/k6	упшипниках	_	LO/mo; Lo/mo	
CCC	До 200	имвили применен об	200 + 250	
	Ucuson overest	пагрузка оссвая	и радиальная	
		Колеовтельное	нагружение	

Примечания: 1. Допускается при необходимости для узлов с упорными подшилниками вместо 185, 186 использование полей 15, 16 ограниченного применения.

2. Для двойных упорных подшипников с отверстием диаметром более 150 мм допускается применение посадок L0/k6; L6/k6.

89. Рекомендуемые посадки шарнковых и роликовых подшинников в корпус

Dovostatimise Dovostika		вв, башенных Р7/ю; Р7/к; Р6/15 ин	в комбайнов, JS7/Ю; JS7/К; К7/Ю; К7/К	ролики роль- мостовых и их обоймиц и ва кранов	сов M6/15; M6/44; K6/15; K6/14	Электродвигатели, центробежные насосы, вентиляторы, 1S6/I5; JS6/I4; JS7/I0; JS7/I6 центрифуги, шпиндели быстроходных металлорежущих станков. турбохолодильники, уэлы с радиально- упорными шарикоподшипниками	Коробки передач, задние мосты автомобилей и тракто- М7/Ю; М7/Ю; К7/Ю; К7/Ю; ЈS7/Ю; ров, подшипниковые узлы на конических роликовых ЈS7/Ю	ы, железнодо- н7/ю; Н7/ю; 17/ю; 17/ю; 17/ю
	Примеры машин и подшипниковых узлов	Тяжелый при тонкостен- Колеса самолетов, автомобилей, тракторов, башенных $P7/R0$; $P7/R$; $P6/I5$ ных хорпусах. $P>0.15C$ кранов, велущие барабаны гусеничных машин	Ролики ленточных конвейеров, барабанов комбайнов, JS7/Ю; JS7/Ю; K7/Ю; K7/Ю валики станов для прокатки труб	ный или тяже- Передние колеса автомобилей и тягачей, ролики роль- $N7/R$; $N7/R$; $M7/R$; M	Нормальный или тяже- Шпиндели тяжелых металлорежущих станков лый (для точных узлов), 0.07 $C < P \le 0.15C$	Электродвигатели, центробежные насосы, вентиляторы, центрифуги, шпиндели быстроходных металлорежущих станков. турбохолодильники, узлы с радиально-упорными шарикоподшипниками	Коробки передач, задние мосты автомобилей и тракто- М7/Ю; ров, подшипниковые узлы на конических роликовых JS7//6 подшипниках	Нормальный или тяже- Уэлы общего машиностроения, редукторы, железнодо- $H7/\hbar M$; $H7$
Условия, определяющие выбор посадки	Режим работы	Гяжелый при тонкостен- ных корпусах. <i>P</i> > 0,15 <i>C</i>	Нормальный, 0,07С < P ≤ 0,15С	Нормальный или тяжелый, 0,07С < Р ≤ 0,15С	Нормальный или тяже- лый (для точных узлов), 0.07 С < P ≤ 0.15 С	Нормальный, 0,07С < Р ≤ 0,15С	Нормальный или тяже- лый (перемещение вдоль оси отсутствует), $0.07 C < P \le 0.15 C$	Нормальный или тяже- лый, P > 0,15С
Условия, определян	Вид нагружения наружного кольца		Циркуляционное (вращается корпус) (Местное (вращается вал)	

Продолжение табл. 89

Venonua onnene	Venobug offine temporary		
Вид нагружения наружного кольца	Режим работы	Примеры машин и подшипниковых узлов	Рекомендуемвя посадка
Местное (вращается вал)	Легкий или нормальный, $P \le 0.07C$	или нормальный, Быстроходные электродвигатели, оборудование бытовой H7/Ю; H7/К; H6/І5; H6/І4; H5/І2; техники	H7//0; H7//6; H6//5; H6//4; H5//2; JS7//0; JS7//6; JS6//5; JS6//4; JS5//2
Местное или колеба- тельное (вращается вал)	Нормальный или тяже- Шпиндели лый, 0,07С < Р ≤ 0,15С двигателей	Шпиндели шлифовальных станков, коленчатые валы К6/15; К6/14; К5/12; JS6/15; JS6/14; двигателей	K6/15; K6/14; K5/12; JS6/15; JS6/14; JS5/12
	Легкий или нормальный, $0.07C < P \le 0.15C$	ли нормальный, Трансмиссионные валы, молотилки, машины бумажной $1S7/R$; $1S7/R$; $H7/R$; $H7/R$	JS7/N; JS7/K; H7/N; H7/K
Местное (вращается вал). Нагрузка ис- ключительно осевая	Нормальный, 0,07 <i>C < P</i> ≤ 0,15 <i>C</i>	Все типы узлов с упорными подшипниками	H8/N; H8/K
	Тяжелый, <i>P</i> > 0,15 <i>C</i>	Уэлы с шариковыми упорными подшипниками	H8/N; H8/K; H9/N; H9/K; H6/I5; H6/A
		Узлы с упорными подшипниками на конических роли- G7/10; G7/16; G6/15; G6/14 ках	G7/N; G7/K; G6/I5; G6/14
Местное (вращается вал)	Тяжелый или нормальный, $0.07C < P \le 0.15C$	нормаль- Узлы со сферическими упорными роликовыми под- з 0,15 <i>С</i> шипниками:	
		общего применения	187/10; 187/16
Циркуляционное (вращается корпус)	Тяжелый, $P>0,15C$	тяжелых металлорежущих станков (карусельные)	K7/N; K7/K
		вертикальных валов турбин	M7/10; M7/16
Применения			

Примечания:

Допускается при необходимости вместо JS6, JS7 использование полей допусков ограниченного применения J6, J7.
 В случае применения разъемных корпусов посадки должны быть выбраны с зазором (поля допусков на диаметр отверстий корпусов Н7, H6, G7, G6).

ОСНОВНЫЕ РЕКОМЕНДАЦИИ ПО КОНСТРУИРОВАНИЮ

Конструкция изделия должна быть приспособлена к удобной сборке, точной установке и разборке подшипниковых узлов: высота заплечиков должна быть меньше толщины кольца подшипников по бортику, на валах при необходимости должны быть примыкающие к заплечикам продольные пазы для лапок съемника, в корпусах - свободное пространство для размещения тяг съемника или отверстия для демонтажа наружных колец.

Коэффициенты линейного расширения материала сопрягаемых деталей не должны значительно отличаться во избежание появления повышенных натягов-зазоров при изменении температуры работы узлов. С этой целью в силуминовых корпусах устанавливают стальные втулки.

Посадочные поверхности валов и корпусов должны иметь галтели или заходные фаски с малым углом конусности для обеспечения хорошего предварительного центрирования, уменьшения среза и смятия микронеровностей, плавного увеличения силы запрессовки при сборке.

В разъемных корпусах в результате старения литья или дефектов механической обработки возможно искажение формы отверстия, при котором металл в зоне разъема выпучивает в сторону отверстия и зажимает ("закусывает") наружное кольцо подшипника. Явление это проявляется через довольно длительное время после сборки.

Для предотвращения закусывания всякое посадочное разъемное гнездо следует выполнять с развалкой в плоскости разъема. Развалка заключается в снятии шабрением слоя металла толщиной a у плоскости разъема, сходящего на нет на ширине b (рис. 38). В гнездах крупногабаритных подшипников вместо шабровки применяют расшлифовку пневматической или электрической шлифовальной машиной. Величины развалки в зависимости от диаметра b расточки в корпусе указаны в табл. 90.

Нельзя устанавливать кольцо подшипника с натягом, но без упора в сопряженную деталь, так как при этом биение торца, образовавшееся в процессе напрессовки, может значительно превосходить допустимые значения. Нельзя также применять заплечики или дистанционные кольца непостаточной высоты.

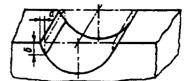


Рис. 38. Развалка (расшабривание) боковых площадок посадочных поверхностей частей разъемного корпуса

90. Размеры а и б развалки отверстия разъемного корпуса, мм

Диаметр <i>D</i>	а	б
До 120	0,10	10
Св. 120 до 260	0,15	15
» 260 » 400	0,20	20
» 400 » 700	0,30	30
» 700 » 1000	0,40	40

Размеры сопрягаемых с подшипниками элементов вала и корпуса должны обеспечивать надежную опору колец подшипников при восприятии осевых сил и возможность применять при их демонтаже пресс или механические съемники, которые закватывают лапами выступающую над заплечиком вала или отверстия корпуса часть кольца.

Размеры заплечиков должны соответствовать ГОСТ 20226-82 (см. стр. 177).

Радиусы галтелей валов и корпусов у посадочных мест (см. стр. 173) должны обеспечить надежное прилегание торца к опорной поверхности заплечика вала или корпуса. Необходимо также обеспечить перпендикулярность опорной поверхности заплечика вала или корпуса к общей оси (см. стр. 165).

При достаточном запасе прочности вала или стенок корпуса, когда концентрация напряжений в местах изменения сечений не является опасной, вместо галтелей можно применять проточки по ГОСТ 8820. В особо ответственных узлах, где концентрация напряжений в местах изменения сечений должна быть сведена к минимуму, упор торца кольца подшипника осуществляют через специальную упорную шайбу, при наличии которой переход сечений вала может быть выполнен по пологому конусу.

Если высота заплечика вала недостаточна и не обеспечивает надежного упора внутреннего кольца подшипника, приме-

Диаметр		Для п	одшип	ников	серии		Диаметр	Для подшипников серии					
вала <i>d</i>	леп	кой	сред	іней	жет	елой	вала <i>d</i>	лег	кой	сред	ней	тяж	елой
	d_1	ь	d_1	ь	d_1	b		d_1	b	d_1	b	d_1	b
30	36	4	37	4	40	5	75	85	5	88	6	90	8
35	42	4	44	5	46	6	80	90	6	95	8	100	10
40	47	4	49	5	51	6	85	95	6	100	8	105	10
45	52	4	54	5	56	6	90	100	6	105	8	110	10
50	57	4	60	5	63	8	95	110	8	110	8	115	10
55	64	5	65	5	68	8	100	115	8	115	8	120	10
60	71	5	72	6	75	8	105	120	8	120	8	130	13
65	75	5	78	6	80	8	110	125	8	130	10	135	13
70	80	5	82	6	85	8	120	135	8	140	10	145	13

91. Рекомендуемые размеры упорных колец, мм

няют упорные кольца, устанавливаемые на валу. Рекомендуемые размеры - наружные диаметры d_1 и ширины b - упорных колец даны в табл. 91 [1].

Основные способы обеспечения соосности посадочных мест:

- размещение подшипниковых опор в общем корпусе или фиксация отдельно стоящих корпусов при помощи контрольных штифтов на общем основании с растачиванием отверстий под наружные кольца подшипников с одного установа и за один проход;
- окончательная обработка посадочных мест на валах с одного установа на станке;
- применение в опорах самоустанавливающихся сферических шарико- или роликоподшипников, если это не противоречит требованиям к жесткости узла; при применении самоустанавливающихся подшипников на многоопорных валах допустим поворот лишь на 2-3° того или иного корпуса вокруг центра самоустановки подшипника.

Для обеспечения нормальной сборки и разборки подшипникового узла при проектировании необходимо:

- предусмотреть фаски на конце шейки вала и у расточки корпуса;
- обеспечить нормальную последовательность монтажа всех деталей узла, возможность регулирования зубчатых зацеплений и других элементов узла, а также зазоров в самих подшипниках;
- обеспечить возможность применения для снятия подшипника с посадочного места механических и других специальных

съемников или осуществление демонтажа подшипника с помощью пресса;

- предусмотреть в случае увеличения высоты заплечиков на валах и в корпусах специальные пазы под лапы съемников, расположенные под углом 120°, а в глухих корпусах - резьбовые отверстия, через которые при помощи болтов подшипник выпрессовывают из корпуса.

РЕКОМЕНДАЦИИ ПО МОНТАЖУ ПОДШИПНИКОВ КАЧЕНИЯ

Хранить расконсервированные подщилники более двух часов без защиты от коррозии не допускается.

Сопрягаемые с подшипником поверхности валов и корпусов перед монтажом подшипников должны быть тщательно промыты, протерты, просушены и смазаны тонким слоем смазочного материала, каналы для подвода смазочного материала должны быть продуты и очищены.

Во избежание защемления подшипников при монтаже в разъемных корпусах допускается иметь фаски в местах стыка их посадочных поверхностей.

При монтаже подшипника силу запрессовки следует прикладывать непосредственно к запрессовываемому кольцу - внутреннему при монтаже на вал и наружному при монтаже в корпус. Запрещается проводить монтаж таким образом, чтобы сила передавалось с одного кольца через тела качения на другое. Не допускается приложение монтажных сил к сепаратору.

При монтаже подшипников открытого типа с цилиндрическим отверстием на вал с натягом подшипник целесообразно предварительно нагреть в масляной ванне. Для этого подшипник погружают в ванну с чистым минеральным маслом, обладающим высокой температурой вспышки, нагретым до 80-90 °C, и выдерживают в течение 10-15 мин.

При монтаже подшипников с защитными шайбами и постоянно заложенным смазочным материалом их нагрев до той же температуры проводят в термостате.

Для монтажа крупногабаритных подшипников (с отверстием диаметром более 300 мм) целесообразно применение гидравлического распора, обеспечивающего наиболее качественную установку подшипника: отсутствие каких-либо повреждений монтажных поверхностей и высокую производительность. Этот способ целесообразен также для монтажа подшипников с внутренним коническим отверстием диаметром более 120 мм.

При установке подшипника в корпус с натягом рекомендуют предварительно охдадить подшипник (жидким азотом или сухим льдом) либо нагреть корпус.

Наиболее целесообразны способы монтажа, при которых реализуют одновременное и равномерное давление по всей окружности монтируемого кольца. При таких способах не возникает перекос монтируемого кольца.

Для осуществления подобных способов применяют монтажные стаканы: трубы из мягкого металла, внутренний диаметр которых несколько больше диаметра отверстия кольца, а наружный - немного меньше наружного диаметра кольца. На свободном конце трубы устанавливают заглушку со сферической наружной поверхностью, к которой и прикладывают силу при монтаже. В монтажных стаканах предусматривают отверстие для свободного выхода воздуха из внутренней полости стакана при запрессовке подшипника на вал.

На рис. 39 показаны возможные способы установки подшипников.

Осевую силу при монтаже создают с помощью механических или гидравлических прессов. Если вал, на котором монтируют подшипник, имеет резьбовой конец, то подшипник можно монтировать с помощью трубы, подобной описанной выше (но без заглушки), к которой прикладывают

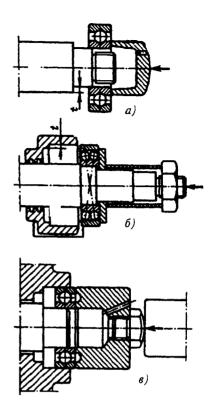


Рис. 39. Установка подпинников на вал (a), в корпус (6), одновременно на вал и в корпус (6)

осевую силу путем вращения специальной гайки с крупной резьбой относительно промежуточной втулки, навинченной на резьбовой конец вала (рис. 39, 6). При отсутствии гидравлических и механических приспособлений при единичном производстве и монтаже с небольшими натягами подшипников малых размеров может быть допущено нанесение несильных ударов молотком через монтажный стакан с заглушкой. Нельзя наносить удары непосредственно по кольцу.

При любых способах монтажа, особенно при монтаже с помощью молотка, необходимо тщательно следить за обеспечением равномерного, без перекоса, осевого перемещения кольца. Наличие перекоса при монтаже приводит к образованию задиров на посадочной поверхности, неправильной установке подшипника, сокращающей его ресурс, а в отдельных случаях - к разрыву монтируемого кольца.

Двухрядные сферические шариковые и роликовые подшипники с коническим от-

верстием устанавливают на цилиндрическом валу с помощью закрепительных и стяжных втулок, а на валах с конической шейкой непосредственно. Монтаж подшипников с отверстием до 70 мм и нормальными натягами выполняют с помощью монтажной втулки, навертываемой на резьбовой конец вала. Нажимная часть воздействует на торец закрепительной втулки или непосредственно на торец внутреннего кольца (при монтаже без закрепительных и стяжных втулок).

Подшипники диаметром свыше 70 мм следует монтировать гидравлическими методами. Так как по мере осевого продвижения закрепительной втулки внутреннее кольцо деформируется (расширяется), радиальный зазор в подшипнике уменьшается. Радиальный зазор необходимо контролировать с помощью шупа. Допустимое минимальное значение $\Delta_{\min c6}$ радиального зазора, мм, после сборки узла для подшипников, изготовленных с зазорами нормальной группы по ГОСТ 24810-81, ориентировочно может быть определено по формуле:

 $\Delta_{\min cf} \approx d/3000$,

где d - номинальный диаметр отверстия подшипника, мм.

При монтаже двухрядных сферических подшипников с коническим отверстием кольца могут деформироваться и изменять форму поверхностей качения. В этих случаях, особенно при d > 100 мм, следует измерять при монтаже (и после монтажа) радиальный зазор щупом не только в вертикальной плоскости, но также в горизонтальной осевой плоскости подшипника. Зазор определяют как среднее арифметическое трех измерений в каждой из плоскостей (с поворотом последовательно на 120°).

Крупногабаритные (d > 300 мм) сферические роликовые подшипники целесообразно перед монтажом разогреть до 60-70 °C.

В процессе установки подшипников (особенно воспринимающих осевые силы), там где это возможно, с помощью шупа или по световой щели следует убедиться в плотном и правильном (без перекосов) прилегании торцов колец подшипника к торцам заплечиков. Такой же проверке должны быть подвергнуты противоположные торцы подшипников и торцы прижимающих их в осевом направлении деталей.

Необходимый осевой зазор радиальноупорных и упорных подшипников устанавливают осевым смещением наружного или внутреннего колец с помощью прокладок, гаек, распорных втулок. Для проверки осевого зазора в собранном узле к торцу выходного конца вала подводят измерительный наконечник индикатора, укрепленного на жесткой стойке. Осевой зазор определяют по разнице показаний индикатора при крайних осевых положениях вала. Вал смещают в осевом направлении до плотного контакта тел качения с поверхностью качения соответствующего наружного кольца.

Для повышения точности вращения, особенно в быстроходных узлах, например электрошпинделях для шлифования, зазоры в радиально-упорных подшипниках выбирают, создавая стабильный натяг, обеспечивающий точное фиксирование тел качения на дорожках качения. Этого достигают приложением к невращающемуся кольцу подшипника осевой силы с помощью одной или нескольких тарированных пружин.

Необходимо проверить правильность взаимного расположения подшипников в опорах одного вала.

Вал после монтажа должен вращаться от руки легко, свободно и равномерно.

После завершения сборочных операций и введения в подшипниковые узлы смазочного материала, предусмотренного технической документацией, следует проверить качество монтажа подшипников пуском сборочной единицы на низких оборотах без нагрузки. При этом прослушивают шум вращающихся подшипников с помощью стетоскопа или трубы. Правильно смонтированные и хорошо смазанные подшипники при работе создают ясный, непрерывный и равномерный шум.

Появление резкого шума может свидетельствовать о неправильном монтаже, перекосах, повреждениях от применения ударного инструмента, неравномерный шум - о попадании посторонних частиц в подшипник, шум металлического тона - о недостаточном зазоре в подшипнике.

Комплексным показателем качества и стабильности работы подшипникового узла является его температура. Причиной повышенной температуры может быть малый зазор (или чрезмерно большой натяг) в подшипнике, недостаток смазочного материала, увеличенный момент трения вследствие повышенного взаимного перекоса колец.

Для оценки текущего состояния работающих подшипниковых узлов без останова и разборки изделия и для своевременного обнаружения первых признаков начала разрушения (выкрашивания на рабочих поверхностях колец и тел качения) наиболее целесообразно применение методов и приборов виброакустической диагностики и особенно приборов для оценки ударной вибрации. Методика диагностики приведена в ГОСТ Р 50891-96 (приложение В).

СМАЗЫВАНИЕ ПОДШИПНИКОВ

Смазочный материал в подшипниках качения применяют в целях снижения трения скольжения и изнашивания в контакте тел качения с кольцами, сепаратором и сепаратора с направляющими бортиками колец. Он предохраняет тела качения, кольца и сепаратор от непосредственного контакта и коррозии, обеспечивает отвод теплоты.

Смазывание подшипников выполняют с помощью пластичных смазочных материалов и жидких масел. В некоторых случаях используют твердые смазочные материалы.

Выбор вида смазочного материала зависит от условий эксплуатации и главным образом от температуры подшипника, частоты вращения, действующих нагрузок, конструкции подшипника и подшипникового узла. При этом должны быть учтены специальные требования к моменту трения, сроку службы смазочного материала.

Для смазывания подшипников качения, работающих в обычных условиях, преимущественно применяют пластичные смазочные материалы, которые по сравнению с маслами обладают следующими достоинствами: не требуют сложных уплотнительных устройств, имеют более высокие свойства защиты от коррозии, более экономичны.

Однако применение жидких смазочных материалов позволяет снизить момент трения, увеличить предельную частоту вращения в 1,2-1,5 раза. С их помощью происходит отвод теплоты и удаление продуктов износа. В узлах с упорно-радиальными роликовыми подшипниками предпочтительно применение жидких смазочных материалов.

Для подшипников, работающих в условиях, при которых жидкие и пластичные смазочные материалы неприменимы (например, вакуум, высокие и низкие температуры, агрессивные среды, радиоактивное излучение, оборудование пищевой и тек-

стильной промышленности, оптические системы), используют твердые смазочные материалы.

Пластичные смазочные материалы состоят в основном из жидкой основы, загустителя и присадок, улучшающих эксплуатационные характеристики. Загуститель, на долю которого приходится 8-25% всей массы смазочного материала, образует трехмерный каркас, в ячейках которого удерживается масло. Поэтому при небольших нагрузках пластичный смазочный материал ведет себя как твердое тело; не растекается под действием собственных сил тяжести, удерживается на наклонных и вертикальных поверхностях. Природа и свойства загустителя оказывают больщое влияние на эксплуатационные свойства смазочного материала.

Для подшипников применяют смазочные материалы на кальциевом, натриевом и литиевом загустителях. В качестве дисперсионной среды применяют минеральные и синтетические масла, а также их смеси.

Наиболее употребительные пластичные смазочные материалы и их основные эксплуатационные характеристики приведены в табл. 92, 93. Действующая на подшипник нагрузка и химическое старение ограничивают срок службы пластичных смазочных материалов.

Различают смазывание с постоянным количеством смазочного материала, рассчитанным на весь срок службы подшипника, и с периодическим добавлением и сменой смазочного материала. В первом случае срок службы смазочного материала равен или больше срока службы подшипников или цикла ремонта машин с вмонтированными в них подшипниками. К этому вилу смазывания относятся закрытые подшипники, заполненные смазочным материалом при изготовлении. В подшипниках закрытого типа в основном используют смазочные материалы: ЦИАТИМ-201, Литол-24, ОКБ-122-7, ЦИАТИМ-221, ВНИИНП-207. Эти же сорта могут быть рекомендованы для обычных подшипников.

В процессе эксплуатации подшипника запас пластичного смазочного материала при необходимости пополняют или заменяют. Время работы подшипника на одной закладке смазочного материала может изменяться в широком диапазоне.

Периодичность замены смазочного материала определяется в основном частотой

92. Характеристики пластичных смазочных материалов общего назначения для подпинников качения

Смазочный материал	Динамическ Па·с, пр		Предел пр Па, пр		Рабочая температура,	Заменитель
	-15	0	50	80	°C	
Для	нормальных т	емператур (ги	дратировани	ные кальци	евые солидолы)
Солидолы син- тетические:						
пресс-солидол С	250 ÷ 600	≤ 100	≥ 100	-	-40 ÷ 50	Солидол УС-1
солидол С	300 ÷ 1000	≤ 200	≥ 200	-	-30 ÷ 70	Солидол УС-2, пресс- солидол С
Солидолы жи- ровые:						
пресс-солидол УС-1	150 ÷ 350	≤ 100	≥ 100	-	-40 ÷ 50	Пресс- солидол С
солидол УС-2	300 ÷ 600	≤ 250	≥ 200	-	-30 ÷ 70	Солидол С
Д	ля повышенны	к температур	(натриевые	и натриево	-кальциевые)	
Консталины жировые:						
консталин УТ-1	800 ÷ 1200	250 ÷ 500	300 ÷ 600	150 ÷ 300	-20 ÷ 120	Автомобиль- ный
консталин УТ-2	800 ÷ 1500	250 ÷ 500	1600	800	-20 ÷ 120	- " -
Автомобильный	500 ÷ 700	200	≥ 180	100 ÷ 250	-20 ÷ 100	Консталин УТ-1
	Для	повышенных	температур	(литиевые))	
вниинп-242	400 ÷ 1000	≤ 500	450 ÷ 650	≥ 100	-40 + 110	Литол-24, ЭШ-176
ЭШ-176	1200 ÷ 1700	500 ÷ 800	≥ 250	150 ÷ 400	-25 + 110	Литол-24, ВНИИНП- 242

92. Характеристики разных пластичных смазочных материалов для подшипников качения

Смазочный материал	Динамическ Па-с, п	ая вязкость, ри <i>t</i> , °C	Предел пј Па, пр		Рабочая температура,	Заменитель						
	-15	0	50	80	°C							
Многоцелевые												
Литол-24	800 ÷ 1500 (при 30 °C)	80 ÷ 120 (при 20 °C)	400 ÷ 600	≥ 150	-40 + 130	Фиол-3						
Фиол-1	230 ÷ 600 (при -20 °C)	50 ÷ 100 (при 20 °C)	200 ÷ 250	≥ 100	-40 ÷ 120	Фиол-2, Литол-24						
Фиол-2	400 ÷ 800 (при -20 °C)	80 ÷ 120 (при 20 °C)	200 ÷ 250	≥ 120	-40 ÷ 120	Фиол-3, Литол-24						

Продолжение табл. 93

	Tipoowskenae mawi. 33											
Смазочный материал	Динамическа Па·с, пр		Предел пр Па, пр		Рабочая температура,	Заменитель						
	-15	0	50 80		°C							
Фиол-3	800 ÷ 1500 (при -30°C)	100 ÷ 150 (при 20 °C)	400 ÷ 600	≥ 200	-40 ÷ 130	Литол-24, Фиол-2						
Фиол-2м	420 ÷ 800 (при -20°C)	80 ÷ 120 (при 20 °C)	300 ÷ 450	≥ 100	-40 ÷ 120	Литол-24 (с 2 % MoS ₂)						
		Высоко	гемпературн	ые								
Униол-1	1000 ÷ 2000 (при -30°C)	15 ÷ 30 (при 80 °C)	250 ÷ 600		-30 ÷ 150 (кратковре- менно до 180)	Литол-24 (до 130°C)						
циатим-221	≤ 800 (при -50°C)	10 ÷ 30 (при 80 °C)	≥ 120	100 ÷ 150	-60 ÷ 160 (кратковре- менно до 180)	вниинп-207						
вниинп-257	200 (при -50°C)	29 (при 20 °C)	80 ÷ 100 (при 20 °C)	≥ 80 (при 50°C)		вниинп-274						
вниинп-274	290 (при -50°C)	30 ÷ 60 (при 20 °C)	200 ÷ 350 (при 20 °C)	≥ 110 (при 50°C)	-80 ÷ 130	вниинп-257						
		Гиро	скопически	•								
вниинп-228	3000 (при -50 °C)	15 ÷ 25 (при 20°C)	50 ÷ 150 (при 20 °C)	50 ÷150 (при 50 °C	-45 ÷ 150	-						
вниинп-260	4000 (при -30 °C)	20 ÷ 40 (при 20 °C)	110 ÷ 170 (при 20 °C)	50 ÷ 180 (при 50 °C	-20 ÷ 180	-						
		Инду	/стриальные	;								
Сиол	200 (при -20 °C)	-	140 ÷ 180	-	-30 ÷ 130	ЦИАТИМ-20						
		Желе	знодорожны	ie								
Железнодорож- ный ЛЗ-ЦНИИ	1100 (при -30°C)	10 ÷ 20 (при 80 °C)	≥ 200	200 ÷ 300	-40 ÷ 110	ЖРО						
Для роликовых подшипников ЖРО	-30 °C)	60 ÷ 80 (при 80 °C)		150 ÷ 250	-50 ÷ 120	Литол-24						
	•	Специализиров										
ЛЗ-31	500 (при -15°C)	75 (при 80°C)		250 ÷ 350		-						
№ 158	1000 (при -15°C)	30 (при 80 °C)	> 120	50 ÷ 100	-30 ÷ 100	Литол-24						
ВНИИНП-207	≤ 1400 (при -30 °C)	55 (при 50°C)	200 + 250	70 + 110	-60 ÷ 180 (кратковре- менно до 200)	ЦИАТИМ-221						

Продолжение табл. 93

Смазочный материал		ая вязкость, ри <i>t</i> , °C	Предел п Па, пр	рочности, и <i>t</i> , °C	Рабочая температура,	Заменитель
	-15	0	50	80	°C	
вниинп-231	≤ 550 (при -40 °C)	10 ÷ 50 (при 80 °C)	250 ÷ 400	> 100	-60 ÷ 250 (кратковре- менно до 300)	-
вниинп-246	≤ 500 (при -40 °C)	95 (при 50°C)	250 ÷ 500	70 ÷ 250	-60 ÷ 200 (кратковре- менно до 250)	-
	(Специализиров	анные автог	мобильные		
ПФМС-46	1000 ÷ 1500	10 ÷ 30 (при 80 °C)	100 ÷ 150	80 ÷ 150	-30 ÷ 300 (кратковре - менно до 400)	вниинп-231
Графитол	250 ÷ 600 (при 0 °C)	35 (при 80°C)	200 ÷ 500	200 ÷ 600	-15 ÷ 160	-
Силикон	≤ 550 (при 0 °C)	67,5 (при 80°C)	≥ 500	300 ÷ 500	-40 ÷ 160	-
		Низкот	емпературн	ые		
ЦИАТИМ-201	2500 ÷ 3500 (при -60 °C)	80 ÷ 170 (при 0 °C)	250 ÷ 500	130 ÷ 250	-60 ÷ 90	ЦИАТИМ-203
ЦИАТИМ-203	2000 ÷ 4000 (при -50 °C)	100 ÷ 300 (при 0 °C)	≥ 250	150 ÷ 300	-50 ÷ 100	ЦИАТИМ-201
MC-70	2500 ÷ 5000	≤ 230	100 ÷ 300	≤ 50	-50 + 65	ЦИАТИМ-201
		Для электроме	ханических	приборов		
ОКБ-122-7	≤ 1800 (при - 30 °C)	190 (при 20°C)	1000 ÷ 1500 (при 20°C)	≥ 150 (при 50 °C)	-40 + 120	ЦИАТИМ-202, ЦИАТИМ-201
ЦИАТИМ-202	≤ 1500 (при -30 °C)	50 ÷ 80 (при 20 °C)	200 ÷ 300 (при 20°C)	≥ 120 (при 50°C)	-40 + 120	ОКБ-122-7

вращения подшипника, его габаритами, конструкцией, сортом смазочного материала, эффективностью уплотнений.

Приближенно период $t_{\rm g}$, ч, между добавлением смазочного материала можно определить по формуле

$$t_{\pi} = 10^6 \ \text{K} / \left(n \sqrt{d} \right) - C ,$$

где n - частота вращения, об/мин; d - диаметр отверстия подшипника, мм;

K, C - коэффициенты, зависящие от конструкции подшилника (табл. 94).

Количество смазочного материала в подшипнике определяется конструкцией

подшипника и частотой его вращения. Для медленно вращающихся подшипников (отношение рабочей частоты вращения к предельной $n/n_{\rm np} < 0,2$) допустимо полное заполнение смазочным материалом подшипника и свободного пространства корпуса. При более высокой частоте вращения $(n/n_{\rm np} = 0,2...0,8)$ свободное пространство в корпусе должно быть заполнено на 50... 25%, а при $n/n_{\rm np} > 0,8$ - не заполнено, заполняется только подшипник.

При прочих равных условиях стойкость смазочного материала в цилиндрических роликоподшипниках в 2 раза ниже, чем в

Тип подшипника	K	С
Радиальные шариковые и роликовые особо легких и легких серий диаметров	75	
Радиально-упорные шариковые легких серий диаметров и ради- альные шариковые и роликовые средних серий диаметров	64	18
Радиально-упорные шариковые средних серий диаметров, ради- альные шариковые и роликовые тяжелых серий диаметров	53	
Двухрядные сферические роликовые и радиально-упорные конические роликовые легкой серии диаметров	21	
Радиально-упорные конические роликовые средней серии диамет- ров	19	7
Двухрядные сферические роликовые средней серии диаметров и радиально-упорные конические роликовые тяжелой серии диаметров	16	

94. Значения коэффициентов К и С

шарикоподшипниках, а в конических и сферических роликовых - в 10 раз.

В качестве жидкого смазочного материала для подшипников в большинстве случаев используют очищенные минеральные (нефтяные) масла.

Жидкие синтетические масла (диэфирные, полиалкиленгликолевые, фтористоуглеродные, силиконовые) по сравнению с минеральными, имеют лучшие показатели по стабильности, вязкости и температуре застывания. Их применяют при крайне высоких или низких температурах и высоких частотах вращения.

Силиконовые масла используют при незначительных нагрузках, C/P > 40. Основным недостатком синтетических смазочных материалов является более низкая стойкость при высоком давлении и более высокая стоимость.

В табл. 95 приведены основные эксплуатационные характеристики масел, применяемых для смазывания подшипников качения

При выборе отдают предпочтение маслу, применяемому в сопряженных узлах (подшипники и зубчатые колеса смазывают обычно из общей масляной ванны). Применение масел с большей вязкостью целесообразно при больших нагрузках и малых скоростях.

При выборе масла необходимо учитывать размеры подшипника, действующую на него нагрузку и частоту вращения, а также его рабочую температуру. Рабочей температурой считается температура, которую можно измерить при работе узла на неподвижном кольце подшипника.

Для средних и крупных шарико- и роликоподшипников (кроме роликовых сфе-

рических, упорных и конических) при нормальных атмосферном давлении и температуре, невысоких нагрузках (C/P > 10) и отношении рабочей частоты вращения к предельной $n/n_{\rm пp} < 0,67$ используют смазочное масло с рабочей кинематической вязкостью менее $12~{\rm mm}^2/{\rm c}$.

Для быстроходных и малонагруженных подшипников допустимо применение масел меньшей вязкости. При этом предпочтительно применять масла с присадками, защищающими подшипники от коррозии и старения.

Для подшипников, работающих при высоких нагрузках (C/P < 10), целесообразно применять противозадирные присадки. При смазывании масляным туманом используемое масло должно обеспечивать хорошее образование тумана и стойкость к окислению.

Для выбора масла в соответствии с требованиями условий эксплуатации целесообразно пользоваться номограммами (рис. 40 и 41). По среднему диаметру d_m , мм, подшипника и частоте вращения n, об/мин, определяют требуемую вязкость v_1 , мм²/с, масла при рабочей температуре t (рис. 40), а затем - первоначальную v при обычно принятой при определении вязкости масла температуре 40 °C (рис. 41).

Пример. Определить вязкость масла для смазывания подшипника со средним диаметром $d_m = 380$ мм при частоте вращения n = 500 об/мин и рабочей температуре узла t = 70 °C.

Решение. По номограмме рис. 40 определяем, что при $d_m = 380$ мм и n = 500 об/мин вязкость v_1 масла при рабочей температуре узла должна быть не ниже

95. Основные эксплуатационные характеристики масел для подпиниников качения

Марка масла	Стандарт или		ская вязкость, емпературе, °C	Темпер	ратура, °С
	ТУ	40	100	вспышки	застывания
		Индустриал	вные масла		
И-5А	1	6 ÷ 8	-	140	-25
И-8А		9 ÷ 11	-	150	-20
И-12A		13 ÷ 17	-	170	-30
И-20A	ГОСТ 20799	29 ÷ 35	-	200	-15
И-30А		41 ÷ 51	-	210	-15
И-40А		61 ÷ 75	-	220	-15
И-50A		90 ÷ 110	-	225	-15
			' ные масла		
MC-14	1	1	14	215	-30
MC-20	ГОСТ 21743	-	20,5	265	-18
MK-22			22	250	-14
	•	Автомобилі			
$M-8-B_1$	1		8 1	200	-25
$M-8-\Gamma_1$			8	210	-30
$M-6_3/10-\Gamma_1$			10	210	-30
M-12-Γ ₁	ГОСТ 17479.1	~	12	220	-25
$M-8-\Gamma_2$			8	200	-25
$M-10-\Gamma_2$			11	205	-15
$M-8-\Gamma_2K$	ļ.		8	200	-30
$M-10-\Gamma_2K$			11	200	-15
		Трансмиссио	онные масла		
TM-3-9			10	128	-40
TM-3-18	ΓΟCT 17479.2		15	180	-20
TM-5-18		110 ÷ 120*	17	200	-25
ТСп-15К			16	180	-25
ТСп-14ГИП			14	180	-25
ТС₃-9ГИП	OCT 88-10- 1158-78		9	160	-50
ТСГИП	1100 / 0		21 - 32	_	-20
ТМ5-2рк	ТУ38.101844-80		12	180	-45
•		Турбинны	•	200	
T ₂₂		20 ÷ 23*	- 1	180	-15
T ₃₀		28 ÷ 32*	_	180	-10
T ₄₆		44 ÷ 48*	_	195	-10
T ₅₇ (турбо- редукторное)		55 ÷ 59*	-	195	-
,	· '	і Гурбинные масл	! на с присадками	!	
Tn-22	ļ I	28,8 ÷ 35,2	_ 1	186	-15
Tn-30	ГОСТ 9972	41,4 ÷ 50,6	_	190	-13 -10
Тп-46		$61,2 \div 74,8$	_	1	
		31,2 - 14,0		220	-10

Продолжение табл. 95

Марка масла	Стандарт или	Кинематичес мм²/с, при те	кая вязкость, мпературе, °C	Темпер	атура, °С						
	ТУ	40	100	вспышки	застывания						
		Прибори	ые масла								
мвп	FOCT 1805	6,5 ÷ 8,0*	-	125	-60						
Легированные масла											
ИГП-18		7 ÷ 9*		-	_						
NLU-38	ТУ 38101413	28 ÷ 31*	-	-	-						
	Легированные масла с противозадирной присадкой										
ИСп-40	ТУ 38101238	34,2 ÷ 40,5*		-	-						
ИСп-110	1	109,5 ÷ 118,5*		-	-						
		Синтетиче	ские масла								
Смазочное 132-08	ΓΟCT 18375	45 ÷ 57 при 20 °C	-	173	-70						
ВНИИНП- 50-1-4ф	ГОСТ 13076		3,2	204	-60						
ипм-10			3,0	190	-50						
МП 605			14 ÷ 20	200	-60						
вниинп-7			7,5 ÷ 8	210	-60						

^{*} Значения кинематической вязкости указаны при эталонной температуре 50 °C

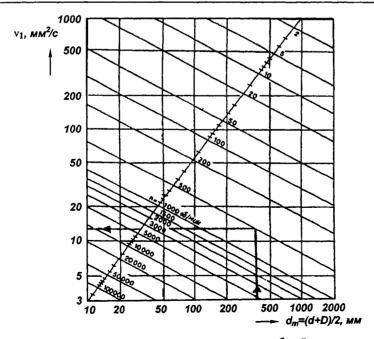


Рис. 40. Номограмма для определения вязкости v_1 масла при рабочей температуре по среднему диаметру d_m подшипника и частоте n его вращения

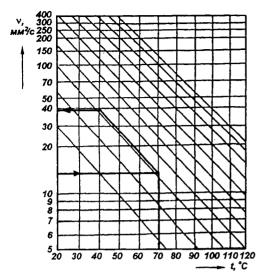


Рис. 41. Номограмма для определения первоначальной вязкости v масла, обеспечивающей требуемую вязкость v₁ при рабочей температуре *t*

13 мм²/с. По номограмме рис. 41 находим, что при рабочей температуре t=70 °C вязкость $v_1=13$ мм²/с будет у масла, имеющего при температуре t=40 °C вязкость v=38 мм²/с.

Для большинства подшипников средних габаритов (кроме роликовых сферических, конических и роликовых упорных), работающих при нормальных условиях, рекомендуется применять масла с кинематической вязкостью при рабочей температуре $v = 12 \text{ мм}^2/\text{c}$; для роликовых конических и сферических - $v = 20 \text{ мм}^2/\text{c}$; для роликовых упорных - $v = 30 \text{ мм}^2/\text{c}$. Масла с вязкостью менее $12 \text{ мм}^2/\text{c}$ используют для высокоскоростных малогабаритных подшипников, особенно когда требуются небольшие пусковые моменты.

Если частота вращения подшипника не превышает 10 об/мин, то применяют масла более высокой вязкости. Это относится также к тяжелонагруженным подшипникам и подшипникам, работающим при высокой температуре. При значительных потерях на трение скольжения следует применять масла с противозадирными присадками.

Для крупных медленно вращающихся подшипников (бессепараторные, конические, сфероконические роликоподшипники) следует применять высоковязкие масла. При $D_{pw}n \le 1000$ мм-об/мин кинематиче-

ская вязкость масла должна быть $v = 300 \dots 500 \text{ мм}^2/\text{с}$ (при 50 °C), а при $D_{pw}n = 1000 \dots 10000 \text{ мм} \cdot \text{об/мин кинематическая вязкость масла должна быть <math>v = 150 \dots 300 \text{ мм}^2/\text{c}$.

Для высокоскоростных подшипников, работающих в условиях низких температур, необходимо применять масла низкой вязкости.

Срок службы масла определяется не только продолжительностью его работы в узле, но и естественным старением, особенно при попадании в него пыли и воды. Браковочными признаками служат увеличенное кислотное число (более 5 мг КОН на 1 кг масла), повышенное содержание воды (более 1%) и наличие механических примесей (более 0,5%).

Интервал смены масла зависит от условий работы подшипника, качества масла и мер по его сохранению, а также от его количества. Для подшипников, работающих в масляной ванне при температуре до +50 °C и достаточно защищенных от внешних загрязнений, масло можно заменять один раз в год. При тяжелых условиях работы и температуре +100 °C масло необходимо заменять не реже чем один раз в три месяца.

Способ подачи жидкого смазочного материала зависит от конструкции всего механизма и размещения в нем подшипникового узла, расположения вала с подшипниками (горизонтальное, вертикальное), частоты вращения подшипников, назначения механизма, требований к надежности смазочной системы, доступности мест обслуживания, межремонтного периода и других условий эксплуатации.

Наиболее распространенные в подшипниковых узлах системы подачи масла: масляная ванна; с помощью фитилей и разбрызгивания; с помощью винтовых канавок, конических насадок, дозирующих масленок, периодическим впрыскиванием; масляным туманом; воздушно-масляная.

Масло к подшипникам может подаваться без циркуляции его в узле и с циркуляцией (замкнутой или проточной).

Для подшипников, работающих при умеренных частотах вращения и горизонтальном расположении вала, применяют наиболее простые способы смазывания разбрызгиванием и с помощью масляной ванны. В последнем случае масло заливают в корпус так, чтобы его уровень был несколько ниже центра нижнего шарика или

ролика. Если при разбрызгивании на подшипник подается слишком много масла от зубчатых передач, можно использовать маслоотражательные устройства.

Узел с вертикальным расположением вала можно смазывать с помощью конической насадки, расположенной в масляной ванне и подающей масло к подшипнику под действием центробежных сил, а также с помощью выполненных на валу винтовых канавок.

Смазывание с помощью капельных дозирующих масленок применяют для подшипниковых узлов как с горизонтальным, так и с вертикальным расположением вала. Как и при смазывании масляным туманом, этот способ обеспечивает удаление продуктов износа, а отработавшее масло повторно не используют.

В простейших случаях используют фитильное смазывание, обеспечивающее подачу масла в небольших дозированных количествах, причем фитиль выполняет роль надежного фильтра. Чаще фитиль располагают прилегающим к конусной шайбе на валу, распыляющей при своем вращении подсасываемое масло. Фитильное смазывание применяют для подшипников малых и средних размеров. Оно обеспечивает циркуляцию смазочного материала и вымывание продуктов износа, может быть использовано при вертикальном и горизонтальном положениях вала для подшипников, работающих при частотах вращения выше предельной.

Недостатками фитильного смазывания являются незначительная подача масла и малый отвод теплоты. Лучшими противоизносными качествами по сравнению с фитилями из ниток обладают фитили из фетра.

При фитильном смазывании кинематическая вязкость масла должна быть не более $55 \text{ мм}^2/\text{c}$.

В случае когда подшипник работает при высокой частоте вращения и значительных нагрузках, рекомендуют применять циркуляционное смазывание. При этом масло под давлением через форсунки подают в подшипник, затем его очищают, охлаждают и снова подают к подшипнику.

Смазывание масляным туманом, основанное на принципе пульверизации, в настоящее время находит самое широкое применение как для подшипниковых узлов, работающих при высокой частоте вращения (шлифовальные шпиндели и др.), так и для тяжелонагруженных узлов (подшипниковые

опоры листопрокатных станов). Масляный туман образуют капельки масла диаметром 1 ... 2 мкм, распыленные в воздухе.

Преимущество смазывания масляным туманом заключается в минимальном расходе масла при интенсивном воздушном охлаждении подшипника. Кроме того, избыточное давление воздуха внутри подшипникового узла предохраняет опору от попадания в нее загрязнений извне.

Масляно-воздушные смазочные системы имеют преимущества по сравнению со смазыванием масляным туманом: более крупные капельки масла лучше налипают на поверхность подшипника и остаются на его рабочих поверхностях, и только незначительная часть масла с воздушным потоком попадает в окружающую среду. В масляновоздушной смазочной системе масло периодически импульсным насосом подают в установку для образования масляновоздушной смеси, которую затем впрыскивают в подшипник.

Для подшипников, работающих в условиях вакуума, коррозионных сред и высоких температур, а также при необходимости сохранения чистоты окружающей среды применяют твердые смазочные материалов Возможно использование этих материалов в виде порошков, тонких покрытий или в виде самосмазывающегося конструкционного материала для изготовления сепараторов. Смазочный материал может быть размещен в специальных камерах и емкостях в самом полшипнике.

Наибольшее распространение в качестве твердых смазочных материалов имеют дисульфид молибдена, дисульфид вольфрама, графит, фторопласт, а также составленные на их основе композиции. Выпускают твердые смазочные материалы в виде порошков, паст, коллоидно-диспергированных или суспензированных в жидкостях и добавляемых в смазочные материалы или непосредственно наносимых на детали подшипников, в виде брикетов, применяемых для изготовления сепараторов. Применяют также металлические покрытия из свинца, серебра, никеля, кобальта, индия, золота.

Недостатками твердых смазочных материалов являются сравнительно высокие энергетические потери и повышенный износ. Одна из основных причин выхода из строя подшипников с твердыми смазочными материалами - разрушение сепаратора, которое наступает вследствие попадания

продуктов износа на дорожки качения колец и износа перемычек. Как правило, подшипники с твердыми смазочными материалами имеют значительные ограничения по частотам вращения и нагрузкам.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К ПОСАДОЧНЫМ ПОВЕРХНОСТЯМ ВАЛОВ И КОРПУСОВ

Общие требования к посадочным поверхностям

Технические требования к посадочным поверхностям валов и корпусов обусловлены малыми размерами площадок контакта тел качения с поверхностями качения колец и малой длиной посадочной поверхности колец относительно их диаметров.

Расчетный ресурс подшипника качения может быть обеспечен только при правильном сопряжении его колец с валом и корпусом, т.е. при правильном выборе посадок, соблюдении требований к шероховатости, размерной точности, отклонениям формы и расположения посадочных мест.

Большое значение имеет правильность геометрических форм посадочных поверхностей, так как кольца подшипников являются тонкостенными деталями и при посадках с натягом деформируются, принимая форму посадочного места.

Необходимо обеспечить точность положения колец подшипников относительно оси вращения, обусловливаемую в основном отсутствием перекосов. Геометрические оси колец подшипников не должны значительно отклоняться по направлению от оси вращения вала.

Должны быть также предприняты конструктивные меры для обеспечения правильного монтажа, демонтажа и необходимого обслуживания подшипников в эксплуатации.

Технические требования к посадочным поверхностям валов и корпусов регламентированы ГОСТ 3325-85 и распространяются на подшипниковые узлы машин, механизмов и приборов, посадочные поверхности и опорные торцы которых предназначены для монтажа подшипников качения с номинальным диаметром отверстия до 2500 мм, отвечающие совокупности следующих условий:

- валы сплошные или полые толстостенные:
 - корпуса толстостенные;
- материалы валов и корпусов сталь или чугун;
- нагрев подшипников при работе до $100~^{\circ}\mathrm{C}$ включительно.

Под толстостенными понимают валы и корпуса с соотношением диаметров:

 $d/d_{\theta} \ge 1,25$ - для валов;

 $D_{\rm K}/D \ge 1,25$ - для корпусов,

где d - диаметр отверстия подшипника;

 d_b - диаметр отверстия вала;

 D_{κ} - наружный диаметр корпуса;

D - наружный диаметр подшипника.

ГОСТ 3325-85 стандарт устанавливает поля допусков, посадки, требования по шероховатости, отклонениям формы и расположения посадочных поверхностей подподшипники и опорных торцовых поверхностей, значения допустимых углов взаимного перекоса колец и рекомендации по монтажу подшипников качения.

Шероховатость посадочных и опорных торцовых поверхностей

Посадочные поверхности под подшипники и торцовые поверхности заплечиков валов и корпусов должны быть тщательно обработаны во избежание смятия и среза микронеровностей в процессе запрессовки и эксплуатации, а также появления коррозии.

Параметры шероховатости Ra и Rz посадочных поверхностей под подшипники на валах и в корпусах из стали, а также опорных торцов заплечиков не должны превышать значений, указанных в табл. 96.

Параметр шероховатости *Ra* посадочных поверхностей валов для подшипников на закрепительных или стяжных втулках не должен превышать 2,5 мкм.

Допускается значение параметра шероховатости *Ra* посадочных поверхностей и опорных торцов заплечиков *в чугунных корпусах* принимать не более 2,5 мкм для диаметров сопряжений до 80 мм и параметра *Rz* не более 20 мкм для диаметров свыше 80 мм при установке подшипников классов точности 0 и 6 и при условии обеспечения заданного ресурса работы подшипникового узла.

	Классы точности	Значения, мкм, не более, для номинальных диаметров подшипников						
Посадочные поверхности	подшипников по ГОСТ 520-89	до 80 мм	до 80 мм св. 80 до 500 мм до					
			Rz					
Валов	0	1,25	2,50	(5,0)	20,0			
	6 и 5	0,63	1,25	2,5	-			
	4	0,32	0,63	-	-			
	2	0,16	0,32	-	-			
Отверстий корпусов	0	1,25	2,50	(5,0)	20,0			
	6,5 и 4	0,63	1,25	2,5	-			
	2	0,32	0,63	-	-			
Опорных торцов	0	2,50	2,50	(5,0)	20,0			
заплечиков валов	6,5 и 4	1,25	2,50	(5,0)	20,0			
и корпусов	2	0,63	0,63	_	-			

96. Параметры шероховатости посадочных поверхностей валов и корпусов из стали

 Π р и м е ч а н и я . 1. В скобках указаны значения параметра шероховатости Ra, применение которого менее предпочтительно.

2. В технически обоснованных случаях по согласованию потребителей с изготовителями для номинальных диаметров валов до 10 мм под подшипники класса точности 2 допускается шероховатость посадочной поверхности вала до 0,32 мкм.

Допускается значение параметра шероховатости *Ra* посадочных мест и опорных торцов заплечиков на валах и в корпусах, выполненных *из стали*, для малонагруженных подшипников класса точности 0, принимать не более 2,5 мкм для диаметров сопряжений до 80 мм и *Rz* не более 20 мкм для диаметров более 80 мм.

К малонагруженным относят подшипники, работающие с частотой вращения, не превышающей 0,05 предельной $n_{\rm пр}$, при радиальной нагрузке $F_{\rm r}$, не превышающей 0,05 радиальной динамической грузоподъемности $C_{\rm r}$, и при коэффициенте безопасности $K_{\rm b}=1$.

Отклонения формы посадочных и опорных торцовых поверхностей

Отклонения формы посадочных поверхностей вала и корпуса могут передаваться на поверхности качения подшипников, искажая их и вызывая повышенный уровень вибрации и изнашивание.

Показатели отклонений формы - отклонение от круглости, отклонение профиля

продольного сечения, непостоянство диаметра в поперечном и продольном сечениях. Допуски формы посадочных мест валов (осей) и отверстий корпусов в радиусном измерении (допуск круглости, допуск профиля продольного сечения) и в диаметральном измерении (допуски непостоянства диаметра в поперечном и продольном сечениях) не должны превыщать значений, указанных в табл. 97 и 98.

В технически обоснованных случаях по согласованию потребителей с изготовителями для номинальных диаметров валов до 10 мм под подшипники класса точности 2 разрешается допуски круглости и профиля продольного сечения выдерживать до 0,6 мкм или допуски непостоянства диаметра в поперечном и продольном сечениях до 1,2 мкм.

Выбор параметров контроля отклонений формы в радиусном или диаметральном измерениях осуществляет разработчик изделия.

Определение допуска круглости и допуска профиля продольного сечения - по ГОСТ 24642-81.

97. Допуски формы посадочных поверхностей валов, мкм, не более

Интервалы	Допуск			Допуск профиля продольного		Допуск непостоянства диаметра в сечении						
номинальных	K	руглост	LN	•	сечения	I	по	перечн	ом	продольном		
диаметров d, мм		Классы точности подшипников										
	0,6	5,4	2	0,6	5,4	2	0,6	5,4	2	0,6	5,4	2
От 0,6 до 2,5	1,5	0,7	0,4	1,5	0,7	0,4	3	1,4	0,8	3	1,4	0,8
Св. 2,5 до 3	1,5	0,7	0,4	1,5	0,7	0,4	3	1,4	0,8	3	1,4	0,8
» 3 » 6	2,0	0,8	0,5	2,0	0,8	0,5	4	1,6	1,0	4	1,6	1,0
» 6 » 10	2,5	1,0	0,5	2,5	1,0	0,5	5	2,0	1,0	5	2,0	1,0
» 10 » 18	3,0	1,3	0,6	3,0	1,3	0,6	6	2,6	1,2	6	2,6	1,2
» 18 » 30	3,5	1,5	0,8	3,5	1,5	0,8	7	3,0	1,6	7	3,0	1,6
» 30 » 50	4,0	2,0	1,0	4,0	2,0	1,0	8	4,0	2,0	8	4,0	2,0
» 50 » 80	5,0	2,0	1,0	5,0	2,0	1,0	10	4,0	2,0	10	4,0	2,0
» 80 » 120	6,0	2,5	1,2	6,0	2,5	1,2	12	5,0	2,4	12	5,0	2,4
» 120 » 180	6,0	3,0	1,5	6,0	3,0	1,5	12	6,0	3,0	12	6,0	3,0
» 180 » 250	7,0	3,5	1,7	7,0	3,5	1,7	14	7,0	3,4	14	7,0	3,4
» 250 » 315	8,0	4,0	-	8,0	4,0	-	16	8,0	-	16	8,0	-
» 315 » 400	9,0	4,0	-	9,0	4,0	-	18	8,0	-	18	8,0	-
» 400 » 500	10,0	-	-	10,0	-	-	20	_	_	20	-	

98. Допуски формы посадочных поверхностей отверстий корпусов, мкм, не более

Интервалы		Допуск			Допуск профиля продольного		Допуск непостоянства диаметра в сечении					
номинальных	к	руглост	LN	(сечения	Ŧ	по	перечн	ом	пр	одольн	ом
диаметров $\it D$, мм		Классы точности подшипников										
	0,6	5,4 2 0,6 5,4 2 0,6 5,4 2 0,6 5,4									5,4	2
От 0,6 до 2,5	-	-	-	-	-	-	-	-	-		-	-
Св. 2,5 до 3	2,5	1,0	0,5	2,5	1,0	0,5	5	2,0	1,0	5	2,0	1,0
» 3 » 6	3,0	1,3	0,6	3,0	1,3	0,6	6	2,6	1,2	6	2,6	1,2
» 6 » 10	4,0	1,5	0,8	4,0	1,5	0,8	8	3,0	1,6	8	3,0	1,6
» 10 » 18	4,5	2,0	1,0	4,5	2,0	1,0	9	4,0	2,0	9	4,0	2,0
» 18 » 30	5,0	2,0	1,0	5,0	2,0	1,0	10	4,0	2,0	10	4,0	2,0
» 30 » 50	6,0	2,5	1,4	6,0	2,5	1,4	12	5,0	2,8	12	5,0	2,8
» 50 » 80	7,5	3,0	1,6	7,5	3,0	1,6	15	6,0	3,2	15	6;0	3,2
» 80 » 120	9,0	3,5	2,0	9,0	3,5	2,0	18	7,0	4,0	18	7,0	4,0
» 120 » 180	10,0	4,0	2,2	10,0	4,0	2,2	20	8,0	4,4	20	8,0	4,4
» 180 » 250	11,5	5,0	2,5	11,5	5,0	2,5	23	10,0	5,0	23	10,0	5,0
» 250 » 315	13,0	5,3	3,0	13,0	5,3	3,0	26	10,6	6,0	26	10,6	6,0
» 315 » 400	14,0	6,0	4,0	14,0	6,0	4,0	28	12,0	8,0	28	12,0	8,0
» 400 » 500	16,0	-	-	16,0	-	-	32	-	-	32	-	-

Непостоянство диаметра в поперечном сечении посадочной поверхности - разность наибольшего и наименьшего единичных диаметров, измеренных в одном и том же поперечном сечении.

Непостоянство диаметра в продольном сечении посадочной поверхности - разность между наибольшим и наименьшим диаметрами, измеренными в одном и том же пролольном сечении.

Допуск непостоянства диаметра в поперечном сечении - наибольшее допустимое непостоянство диаметра в поперечном сечении.

Допуск непостоянства диаметра в продольном сечении - наибольшее допустимое непостоянство диаметра в продольном сечении.

Значения непостоянства диаметра в поперечном и продольном сечениях установлены в табл. 97 и 98 из расчета: половина допуска на диаметр посадочной поверхности при посадке подшипников классов точности 0 и 6, треть допуска - при посадке подшипников классов точности 5 и 4, четверть допуска - при посадке подшипников класса точности 2.

Допуски непостоянства диаметра в поперечном и продольном сечениях посадочных поверхностей отверстий чугунных корпусов под подшипники класса точности 0, а также валов и отверстий корпусов малонагруженных подшипников разрешается принимать равными 3/4 допуска на диаметр.

Допуски непостоянства диаметра в поперечном и продольном сечениях посадочных поверхностей валов, предназначенных для посадки подшипников на закрепительных или стяжных втулках, не должны превышать 1/4 допусков на диаметр посадочной поверхности, соответствующих полям допусков h8, h9, h10, установленных для вала.

Отклонения от постоянства диаметра определяют в трех сечениях по длине и в четырех плоскостях каждого сечения.

Торцовые биения опорных торцов заплечиков валов и корпусов не должны превышать значений, указанных в табл. 99 и 100. В результате измерения торцового биения при повороте вала или детали на 360° вокруг продольной оси выявляют форму торца - волнистость, неплоскостность (вогнутость или выпуклость) и его расположение - отклонение от перпендикулярности к оси (перекос торца).

Допуски на диаметр конических шеек валов с конусностью 1:12, предназначенных для посадки подшипников с коническим отверстием, и допуски угла конуса AT_D , определяемого как разность диаметров вала, расположенных друг от друга на расстоянии, составляющем 0,7 ширины внутреннего кольца монтируемого подшипника, должны соответствовать указанным в табл. 101.

99. Допуски торцового биения заплечиков валов, мкм, не более

Инте	ервалы	номина	льных		Класс точности подшипника							
	-	ров <i>d</i> , м		0	6	5	4	2				
От	1	до	3	10	6	3	2,0	1,2				
Св.	3	до	6	12	8	4	2,5	1,5				
»	6	»	10	15	9	4	2,5	1,5				
»	10	»	18	18	11	5	3,0	2,0				
»	18	»	30	21	13	6	4,0	2,5				
»	30	»	50	25	16	7	4,0	2,5				
»	50	»	80	30	19	8	5,0	3,0				
»	80	»	120	35	22	10	6,0	4,0				
»	120	»	180	40	25	12	8,0	5,0				
»	180	»	250	46	29	14	10,0	7,0				
»	250	»	315	52	32	16	-	-				
»	315	»	400	57	36	18	<u> </u>	-				

Продолжение табл. 99

Инт	Интервалы номинальных				Класс точности подшипника							
12112	диамет			0	6	5	4	2				
Св.	400	до	500	63	40	-	-	-				
»	500	»	630	70	44	-	-	-				
»	630	»	800	80	50	-	-	-				
»	800	»	1000	90	56	-	-	-				
»	1000	»	1250	105	66	-	-	-				
»	1250	»	1600	125	78	-	-	-				
»	1600	»	2000	150	92	-	-	-				
»	2000	»	2500	175	110	- ·	_	-				

100. Допуски торпового биения заплечиков отверстий корпусов, мкм, не более

Инт	ервалы і	юмина	льных		Класс	точности подп	ципника	
	диаметр		-	0	6	5	4	2
От	3 до 6		6	18	12	5	4	2,5
Св.	6	до	10	22	15	6	4	2,5
»	10	»	18	27	18	8	5	3,0
»	18	»	30	33	21	9	6	4,0
»	30	»	50	39	25	11	7	4,0
»	50	»	80	46	30	13	8	5,0
»	80	»	120	54	35	15	10	6,0
»	120	»	180	63	40	18	12	8,0
»	180	»	250	72	46	20	14	10,0
»	250	»	315	81	52	23	16	12,0
»	315	»	400	89	57	25	30	13,0
»	400	»	500	97	63	27	-	-
»	500	»	630	110	70	30	} -	-
»	630	»	800	125	80	35	-	-
»	800	»	1000	140	90	-	-	-
»	1000	»	1250	165	105	_	-	-
»	1250	»	1600	195	125	-		
»	1600	»	2000	230	150	-	-	_
»	2000	»	2500	280	175	-	_	_
»	2500	»	3150	330	210	-	_	_

Примечания. 1. Если по условиям работы в узлах вместо применяемых подшипников классов точности 5 и 4 могут быть использованы подшипники классов точности 0 и 6, технические требования к посадочным и опорным торцам заплечиков вала и отверстия корпуса устанавливают как под посадку подшипников соответственно классов точности 0 и 6 по табл. 99 и 100.

2. Для подшипников, фиксированных в осевом направлении методом вальцовки или кернения, а также для подшипников, установленных с осевым зазором по торцам колец, шероховатость и биения торцов заплечиков валов и отверстий корпусов ГОСТ 3325-85 не регламентирует.

	Инте	рвалі	ы		Для д	иаметра	а вала		Для угла конуса					
	номин иаметр	альн	ых				Класс	точнос	ти подши	пника				
				0	6	5	4	2	0	6	5	4	2	
		До	10	15	9	6	-	-	9	6	4	-	-	
Св.	10	до	18	18	11	8	-	-	11	8	5	_ :	-	
»	18	»	30	21	13	9	6	4	13	9	6	2,5	1,5	
»	30	»	50	25	16	11	7	4	16	11	7	2,5	1,5	
»	50	»	80	30	19	13	8	5	19	13	8 .	3,0	2,0	
»	80	»	120	35	22	15	10	6	22	15	10	4,0	2,5	
»	120	»	180	40	25	18	12	8	25	18	12	5,0	3,0	
»	180	»	250	46	29	20	14	10	29	20	14	7,0	3,5	
»	250	»	315	52	32	23	23	- :	32	23	16	8,0	-	
»	315	»	400	57	36	25	25	-	36	25	18	9,0	-	
»	400	»	500	63	40	27	27	-	40	27	20	10,0	-	
»	500	»	630	70	44	-	-	-	44	30	-	- '	-	
»	630	»	800	80	-	-	-	-	50	-	-	-	-	
»	800	»	1000	90	-	-	-	-	56	-	-	-	-	
»	1000	»	1250	105	-	-	-	-	66	-	-	-	-	
»	1250	»	1600	125	-	-	_	-	78	_	-	_	-	

101. Допуски на диаметр конической шейки вала, мкм, не более

 Π р и м е ч а н и е . Все отклонения допускаются только на "плюс" от номинального размера.

Допустимые углы взаимного перекоса колец подшипников качения

Относительный перекос наружного и внутреннего колец подшипников увеличивает сопротивление вращению вала, приводит к неравномерному распределению напряжений по плошадке контакта, снижает ресурс подшипников.

Суммарное допустимое отклонение от соосности колец, вызванное неблагоприятным сочетанием всех видов погрешностей обработки, сборки и деформации подшипников, вала и деталей корпуса под действием нагрузок, оценивают предельно допустимым углом θ_{max} взаимного перекоса меж-

ду осями внутреннего и наружного колец подшипников качения, смонтированных в подшипниковых узлах.

В качестве предельно допустимого принимают наибольший угол θ_{max} взаимного перекоса колец подшипников, при котором может быть обеспечен ресурс не ниже требуемого.

Значения углов θ_{max} для различных типов подшипников классов точности 0 и 6 приведены в табл. 102.

По согласованию предприятияизготовителя с потребителем для высокоточных подшипниковых узлов допустимые углы перекоса могут быть уменьшены по сравнению со значениями, указанными в табл. 102.

102. Предельно допустимые углы θ_{max} взаимного перекоса колец подшилников

Тип подшипников	$\theta_{ ext{max}}$
Радиальные однорядные шариковые (при радиальном нагружении) с	
радиальным зазором:	0.
нормальным	8′
по 7-му ряду	12′
по 8-му ряду	16'
Радиально-упорные шариковые однорядные с углами контакта:	
$\alpha = 12^{\circ}$	6′
$\alpha = 26^{\circ}$	5′
$\alpha = 36^{\circ}$	4′
Упорно-радиальные шариковые с углом контакта α = 45 60°	4'
Упорные шариковые с углом контакта α = 90°	2'
Радиальные с цилиндрическими роликами:	
с короткими и длинными без модифицированного контакта	2'
с модифицированным контактом	6′
Конические с роликами:	
без модифицированного контакта	2'
с небольщим модифицированным контактом	4'
Конические с модифицированным контактом на наружном кольце	8′
Упорные с цилиндрическими или коническими роликами	1'
Игольчатые роликовые:	
однорядные	1'
однорядные с модифицированным контактом	4′
многорядные	1'
Шариковые радиальные сферические двухрядные по ГОСТ 5720-75	4°
Роликовые радиальные сферические однорядные по ГОСТ 24954-81	3°
Роликовые радиальные сферические двухрядные по ГОСТ 5721-75	2°
Роликовые упорные сферические по ГОСТ 9942-80	3°

П р и м е ч а н и е . Эксплуатационный перекос колец не должен превышать $0.7~\theta_{\text{max}}$.

Отклонения расположения посадочных и опорных поверхностей вала и корпуса

С целью ограничения взаимного перекоса колец подшипников на чертежах задают допуски расположения посадочных поверхностей вала и корпуса. Перекос колец могут вызвать:

- отклонения от соосности посадочных поверхностей вала и корпуса;
- отклонения от перпендикулярности опорных торцов вала и корпуса;
- деформации вала, корпуса и деталей подшипника в работающем узле. Допуски расположения поверхностей двух опор

подшипниковых узлов задают относительно общей оси.

Общая ось - прямая, проходящая через точки пересечения осей двух посадочных поверхностей для подшипников качения с их средними сечениями. Вследствие неизбежных погрешностей общая ось, например вала, не совпадает с осью вращения заготовки при его изготовлении.

Кольцо подшипника, устанавливаемое с натягом, должно плотно прилегать торцом к опорной поверхности по всей окружности. Так как кольца обладают сравнительно небольшой жесткостью, то расположение торца подшипника при этом повторяет расположение опорного торца.

Если пренебречь погрешностями формы опорного торца, то отклонение от перпендикулярности можно контролировать по торцовому биению заплечиков (табл. 99, 100).

В ГОСТ 3325 рассмотрен простейший случай монтажа подшипников, когда торцы колец непосредственно прилегают к заплечикам вала или корпуса. Очень часто кольпо подшипника своим торцом упирают не в заплечик вала или корпуса, а в промежуточную деталь: дистанционное крышку и т.д. В этом случае нормы, ограничивающие отклонение от перпендикулярности (табл. 99, 100), следует относить к опорному торцу детали, прилегающей к базовому торцу подшипника. Фактическое отклонение опорного торца может быть найдено в результате суммирования погрешностей изготовления всех сопряженных деталей подшипникового узла, численные значения которых должны быть назначены как некоторая доля от общей величины допустимой погрешности. Допуски расположения поверхностей деталей в общем случае определяют вероятностным расчетом в зависимости от конкретной конструктивной схемы [4].

За основу при назначении допусков расположения посадочных поверхностей вала и корпуса в соответствии с ГОСТ 3325-85 принимают предельно допустимый угол θ_{max} взаимного перекоса колец подшипников.

Угол взаимного перекоса колец, вызванный деформацией валов и корпусов в работающем узле $\theta_{\text{д}}$, не должен превышать $\theta_{\text{д}} \leq 0.2\theta_{\text{max}}$.

За допустимый угол $\theta_{\text{T}} = \theta_{\text{B}} + \theta_{\text{K}}$ перекоса осей вала и корпуса от технологических погрешностей их обработки и сборки принимают не более половины угла θ_{max} взаимного перекоса колец подшипников: $\theta_{\text{T}} \leq \theta_{\text{max}}/2$.

Угол перекоса $\theta_{\rm B}$, вызываемый погрешностями обработки вала, не должен превышать $\theta_{\rm B} \le \theta_{\rm T}/3$, а угол перекоса $\theta_{\rm K}$, вызываемый погрешностями обработки и сборки корпуса, не должен превышать $\theta_{\rm K} \le 2\theta_{\rm T}/3$.

Допускается в обоснованных случаях перераспределять между собой по значению углы перекоса θ_{T} и $\theta_{\text{д}}$ при условии, что $(\theta_{\text{T}}+\theta_{\text{д}})\leq 0.7\theta_{\text{max}}.$

Углы перекоса θ_{T} , θ_{B} , θ_{K} не должны превышать значений, указанных в табл. 103.

Допуски соосности в диаметральном выражении посадочных поверхностей относительно общей оси определяют по формулам:

для вала: $\varnothing T_{pc}^{B} = B \operatorname{tg} \theta_{B}$;

для корпуса: $\varnothing T_{pc}^{\kappa} = B \operatorname{tg} \theta_{\kappa}$.

При длине $B=B_1=10$ мм посадочного места они должны соответствовать значениям, приведенным в табл. 103. При другой длине $B=B_2$, мм, посадочного места для получения соответствующих допусков соосности следует табличные значения умножить на $0.1B_2$.

На рис. 42 и 43 показаны обозначения допусков соосности относительно общей оси (базы A, B) посадочных мест соответственно вала и корпуса.

Разрешается вместо допуска соосности указывать допуск радиального биения посадочных мест относительно тех же баз.

Контроль плоскостности и отклонения от перпендикулярности торцов заплечиков вала и корпуса рекомендуют в отдельных случаях проводить с помощью набора

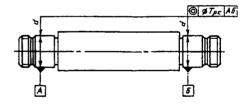


Рис. 42. Обозначение допуска соосности посадочных мест вала относительно общей оси

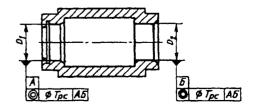


Рис. 43. Обозначение допуска соосности посадочных мест корпуса относительно общей оси

103. Допустимые углы $\theta_{\rm r},~\theta_{\rm s},~\theta_{\rm k}$ взаимного перекоса колец от погрешностей обработки и допуски $\varnothing T_{pc}^{\rm B}$, $\varnothing T_{pc}^{\rm K}$ (мкм) соосности посадочных поверхностей вала и корпуса в подшипниковых узлах различных типов

Тип подшипника	$\theta_{\mathtt{T}}$	$\theta_{\mathtt{B}}$	θ_{κ}	$\varnothing T_{pc}^{B}$	ØT _{pc} ^K
Радиальные однорядные шариковые (при радиальном нагружении) с радиальным зазором:					
нормальным	4'	1' 20"	2' 40''	4,0	8,0
по 7-му ряду	6'	2'	4'	6,0	12,0
по 8-му ряду	8′	2′ 40′′	5′ 20′′	8,0	16,0
Радиально-упорные шариковые однорядные с углами контакта:					
$\alpha = 12^{\circ}$	3′	1'	2'	3,0	6,0
$\alpha = 26^{\circ}$	2′ 30″	50"	1' 40"	2,4	4,8
α = 36°	2'	40′′	1′ 20″	2,0	4,0
Упорно-радиальные шариковые с углом контакта $\alpha = 45 \dots 60^{\circ}$	2'	40"	1′ 20′′	2,0	4,0
Упорные шариковые с углом контакта $\alpha = 90^{\circ}$	l'	20''	40"	1,0	2,0
Радиальные с цилиндрическими роликами: с короткими и длинными без модифицированного контакта	1'	20′′	40''	1,0	2,0
с модифицированным контактом	3'	1'	2'	3,0	3,0
Конические с роликами:					
без модифицированного контакта	1'	20"	40′′	1,0	2,0
с небольшим модифицированным контактом	2'	40′′	1′ 20′′	2,0	4,0
Конические с модифицированным контактом на наружном кольце	4′	1′ 20″	2′ 40′′	4,0	8,0
Упорные с цилиндрическими или коническими роликами	30′′	10"	20′′	0,5	1,0
Игольчатые роликовые:					
однорядные	30″	10"	20″	0,5	1,0
однорядные с модифицированным контактом	2′	40′′	1′ 20′′	2,0	4,0
многорядные	30''	10"	20"	0,5	1,0
Шариковые радиальные сферические двух- рядные по ГОСТ 5720-75	6′	2′	4′	6,0	12,0
Роликовые радиальные сферические однорядные по ГОСТ 24954-81	6'	2′	4'	6,0	12,0
Роликовые радиальные сферические двух- рядные по ГОСТ 5721-75	6'	2′	4′	6,0	12,0
Роликовые упорные сферические по ГОСТ 9942-80	6′	2'	4′	6,0	12,0

фальшколец (или щаблонов) или по краске. Одно из колец набора должно прилегать к посадочной поверхности вала или отверстия корпуса, а своим торцом прилегать к опорному торцу заплечика без просвета (визуальная оценка).

Закрепительные и стяжные втулки, а также гайки с резьбой диаметром свыше 190 мм, поставляемые в комплекте, допускается изготовлять с метрической резьбой.

Значения торцового биения S_d узкого торца гайки для закрепительных точеных втулок относительно резьбы должны быть не более указанных в табл. 104.

104. Значения торцового биения S_d узкого торца гайки, мм, не более

	Ho	мин	альні	ый	Резьба			
			резь d, мi	метри- ческая	трапе- цеидаль- ная			
От	10	до	50	0,100	-			
Св.	50	*	120	»	0,125	-		
*	120	*	200	»	0,150	-		
*	200	*	240	»	0,150	0,150		
*	240	*	400	»	0,175	0,175		
*	400	*	630	»	0,200	0,200		
*	630			0,250	0,250			

Предельные радиусы галтелей вала и корпуса

Основные размеры монтажных фасок колец подшипников и наибольшие предельные радиусы галтелей вала и корпуса установлены ГОСТ 3478-79 для радиальных, радиально-упорных, упорных шариковых и роликовых подшипников качения (рис. 44, 45 и табл. 105-107).

На рис. 44 и 45 обозначены: A - торцовая поверхность; B - теоретическая окружность (с радиусом r_{smin}), за предел которой не должен выступать материал кольца; B - поверхность отверстия или наружная поверхность подшипника; r_{nom} - номинальный размер координаты фаски; r_{smin} - наименьший предельный размер координаты фаски; r_{smax} - наибольший предельный размер координаты фаски; r_{asmax} - наибольший предельный размер радиуса галтеля вала (рис. 45, a) или корпуса (рис. 45, b).

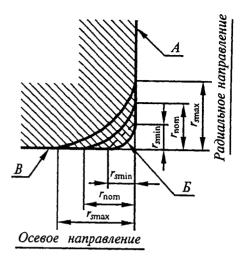


Рис. 44. Размеры монтажных фасок колец подшилников

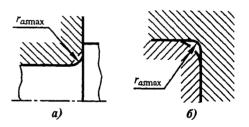


Рис. 45. Предельные размеры радиусов галтелей вала (a) и корпуса (b)

По согласованию с потребителем фаски подшипников допускается изготовлять прямыми под углом 45° и с координатами, указанными в табл. 105-107.

Допускается изготовлять подшипники с симметричными фасками в осевом и радиальном направлениях.

Контур фаски не должен выходить за предел теоретической окружности радиусом r_{smin} , сопрягающейся с поверхностями торца и отверстия (или наружной поверхностью) кольца.

Форма поверхности не регламентируется.

Размеры координат фасок упорных подшипников по табл. 107 установлены на фаски:

- наружной поверхности свободного кольца и поверхности отверстия тугого кольца одинарного подшипника со стороны наружного торца;

105. Размеры координат монтажных фасок шариковых и роликовых радиальных, шариковых радиально-упорных подшипников и радиуса галтеля вала и корпуса, мм

r_{nom}	$r_{ m smin}$		d	$r_{ m smax}$ в напра	влении	ramax	
IOII	3	Св.	До	радиальном	осевом		
0,1	0,05		-	0,1	0,2	0,05	
0,15	0,08	-	-	0,16	0,3	0,08	
0,2	0,1	-	-	0,2	0,4	0,1	
0,3	0,15	-	-	0,3	0,6	0,15	
0,4	0,2	-	-	0,5	0,8	0,2	
0,5	0,3	_	40	0,6	1,0	0,3	
0,5	0,3	40	_	0,8	1,0	0,3	
1,0	0,6	-	40	1,0	2,0	0,6	
1,0	0,6	40	-	1,3	2,0	0,6	
1,5	1,0	-	50	1,5	3,0	1,0	
1,5	1,0	50	-	1,9	3,0	1,0	
2,0	1,1	-	120	2,0	3,5	1,1	
2,0	1,1	120	-	2,5	4,0	1,1	
2,5	1,5	-	120	2,3	4,0	1,5	
2,5	1,5	120] - [3,0	5,0	1,5	
3,0	2,0	-	80	3,0	4,5	2,0	
3,0	2,0	80	220	3,5	5,0	2,0	
3,0	2,0	220	-	3,8	6,0	2,0	
3,5	2,1	-	280	4,0	6,5	2,1	
3,5	2,1	280	-	4,5	7	2,1	
-	2,5	-	100	3,8	6	2,5	
-	2,5	100	280	4,5	6	2,5	
-	2,5	280	-	5,0	7	2,5	
4,0	3,0	-	280	5,0	8	3,0	
4,0	3,0	280	-	5,5	8	3,0	
5,0	4,0	-	-	6,5	9	4,0	
6,0	5,0	-	-	8,0	10	5,0	
8,0	6,0	-	-	10,0	13	6,0	
10	7,5	-	-	12,5	17	7,5	
12,0	9,5	-	_	15	19	9,5	
15,0	12	-	-	18	24	12	
18,0	15	-	-	21	30	15	
22,0	19	-	-	25	38	19	

 Π р и м е ч а н и е . Для подшипников с шириной колец до 2 мм включительно $r_{\rm snax}$ в осевом направлении принимают равным $r_{\rm snax}$ в радиальном направлении.

106. Размеры координат монтажных фасок со стороны широкого торца внутреннего и наружного колец роликовых конических подшинников и раднуса галтеля вала и корпуса, мм

$r_{\rm nom}$	$r_{\rm smin}$	d ил	пи <i>D</i>	r _{smax} в наг	правлении	r_{asmax}	
Hom		Св.	До	радиальном	осевом		
0,5	0,3	-	40	0,7	1,4	0,3	
0,5	0,3	40	-	0,9	1,6	0,3	
0,8	0,5	-	-	1,2	1,2	0,5	
1,0	0,6	-	40	1,1	1,7	0,6	
1,0	0,6	40	-	1,3	2,0	0,6	
1,2	0,9	-	-	1,7	1,7	0,9	
1,5	1,0	_	50	1,6	2,5	1,0	
1,5	1,0	50	-	1,6	2,5	1,0	
2,0	1,5	-	120	1,9	3,0	1,0	
2,0	1,5	120	250	2,3	3,0	1,5	
2,0	1,5	250	-	2,8	3,5	1,5	
2,5	2,0	-	120	3,5	4,0	2,0	
2,5	2,0	120	250	2,8	4,0	2,0	
2,5	2,0	250	-	3,5	4,5	2,0	
3,0	2,5	- '	120	4,0	5,0	2,5	
3,0	2,5	120	250	3,5	5,0	2,5	
3,0	2,5	250	-	4,0	5,5	2,5	
3,5	3,0	-	120	4,5	6,0	3,0	
3,5	3,0	120	250	4,0	5,5	3,0	
3,5	3,0	250	400	4,5	6,5	3,0	
3,5	3,0	400	-	5,0	7,0	3,0	
4,0	4,0	-	120	5,5	7,5	4,0	
4,0	4,0	120	250	5,0	7,0	4,0	
4,0	4,0	250	400	5,5	7,5	4,0	
4,0	4,0	400	-	6,0	8,0	4,0	
5,0	5,0	-	180	6,5	8,5	5,0	
5,0	5,0	180	-	6,5	8	5,0	
6,0	6,0	-	180	7,5	9	6,0	
6,0	6,0	180	-	7,5	10	6,0	
				9,0	11	6,0	

 поверхности отверстия среднего тугого кольца двойного подшипника со стороны обоих торцов.

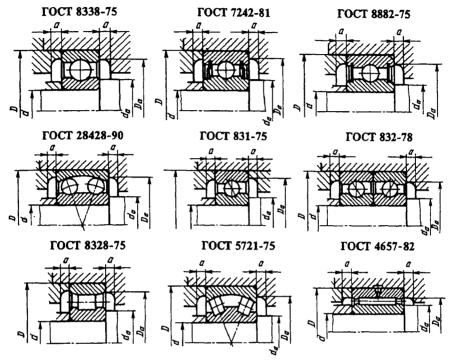
Значения r_{smin} , r_{smax} и r_{asmax} , приведенные в табл. 105-107, применяют при новом проектировании подшипников и по заказу

потребителя. В остальных случаях применяют значения r_{smin} , r_{smax} и r_{asmax} , привеленные в табл. 108.

Радиусы галтелей валов и корпусов проверяют радиусомерами или специальными шаблонами.

107. Размеры координат монтажных фасок шариковых и роликовых упорных одинарных и двойных подшипников и раднуса галтеля вала и корпуса, мм

$r_{\rm noin}$	r _{smin}	r _{smax} *	r _{asmax}	$r_{ m nom}$	r _{smin}	r _{smax} *	r _{asmax}
0,10	0,05	0,10	0,05	3,5	2,1	4,5	2,1
0,15	0,08	0,16	0,08	4,0	3,0	5,5	3,0
0,2	0,10	0,2	0,10	5,0	4,0	6,5	4,0
0,3	0,15	0,3	0,15	6,0	5,0	8,'0	5,0
0,4	0,2	0,5	0,2	8,0	6,0	10,0	6,0
0,5	0,3	0,8	0,3	10,0	7,5	12,5	7,5
1,0	0,6	1,5	0,6	12	9,5	15	9,5
1,5	1,0	2,2	1,0	15	12	18	12
2,0	1,1	2,7	1,1	18	15	21	15
2,5	1,5	3,5	1,5	22	19	25	19
3,0	2,0	4,0	2,0				


^{*} Относится к радиальному и осевому направлениям.

108. Размеры координат монтажных фасок подшипников и наибольшие предельные радиусы галтелей вала и корпуса, мм

r _{nom}	r _{smin}	r _{smax}	r _{asmax}	$r_{ m nom}$	r _{smin}	$r_{ m smax}$	r _{asmax}
0,2	0,1	0,4	0,1	3,0	2,3	4,0	2,0
0,3	0,2	0,5	0,2	3,5	2,5	4,5	2,0
0,4	0,2	0,7	0,2	4,0	3,0	5,2	2,5
0,5	0,3	0,8	0,3	5,0	3,7	6,3	3,0
0,8	0,5	1,2	0,5	6,0	4,7	7,5	4,0
1,0	0,7	1,5	0,6	8,0	6,0	10,0	5,0
1,2	0,9	1,7	0,8	10,0	7,5	12,5	6,0
1,5	1,1	2,1	1,0	12,0	9,5	15,0	8,0
2,0	1,3	2,7	1,0	15,0	12,0	19	10
2,5	1,8	3,3	1,5	18,0	14,0	23	12

ЗАПЛЕЧИКИ ДЛЯ УСТАНОВКИ ПОДШИПНИКОВ КАЧЕНИЯ (по ГОСТ 20226-82)

109. Радиальные и радиально-упорные подшипники качения

Шариковые подшипники серии диаметров 8, серии по ширине 1 по ГОСТ 8338-75. Роликовые подшипники серии диаметров 8, серии по ширине 4 по ГОСТ 4657-82.

Размеры, мм

ď	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее	d	D	<i>d_a</i> , не менее	d_a , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
6	13	7,3	7,5	11,8	-		55	72	57,0	60,0	70,0	67,0	
8	16	9,8	10,0	14,0	13,7		60	78	62,0	64,0	76,0	74,0	
9	17	10,8	11,0	15,0	-	1,8	65	85	69,0	70,0	81,0	80,5	
10	19	12,0	12,5	17,0	-		75	95	79,0	80,0	91,0	89,0	1
]	}					80	100	84,0	85,0	96,0	94,5	1
							85	110	90,0	90,5	105	100	3,0
17	26	19,0	19,5	24,0	23,8		90	115	95,0	96,0	110	109	ļ
20	32	22,0	23,0	30,0	28,0		95	120	100	102	115	113	ļ
30	42	32,0	32,5	40,0	39,0		100	125	105	107	120	-	
35	47	37,0	37,5	45,0	43,5	2,0	105	130	110	112	125	124	1
40	52	42,0	43,0	50,0	49,0		110	140	115	118	135	133	
45	58	47,0	48,0	56,0	54,5		120	150	125	127	145	144	
50	65	52,0	54,0	63,0	61,2	}	130	165	135	137	159		4,0

Шариковые подшипники серии диаметров 9, серии по ширине 1 по ГОСТ 10058-75, 831-75, ГОСТ 7242-81, ГОСТ 8338-75

Роликовые подшипники серии диаметров 9, серии по ширине 1 по ГОСТ 8328-75 и серии по ширине 4 по ГОСТ 4657-82

Размеры, мм

d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее	d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
5,0	13	6,6	-	11,5	11,0								
6,0	15	7,8	8,2	13,0	-		55,0	80	50	61,0	75,0	74,0	
7,0	17	9,0	9,5	15,0	-		60,0	85	65	66,0	84,0	79,0	
8,0	19	9,8	-	17,0	-	1,8	65,0	90	70	70,0	85,0	84,0	
9,0	20	11	-	18,0	-		70,0	100	75	78,0	95,0	94,0	
10,0	22	12	13	20,0	-		75,0	105	80	83,0	100	98,0	
12,0	24	14	15	22,0	-		80,0	110	85	88,0	103	103,0	
15,0	28	17	18,0	26,0	25,0		85,0	120	91	98,0	114	111,5	3
17,0	30	19	21,0	27,0	-		90,0	125	96	99,0	119	116,5	
20,0	37	22	23,0	35,0	33,5	2,0	95,0	130	101	110	124	122,0	
25,0	42	27	28,5	40,0	38,5		100,0	140	106	113	134	131,5	
30,0	47	32	33,5	45,0	43,5		105,0	145	111	114	139	136,5	
35,0	55	39	40,5	51,0	50,0		110,0	150	116	123	144	141,0	
40,0	62	44	46,5	58,0	56,5		120,0	165	127	133	159	155,0	
45,0	68	49	50,5	64,0	63,2								
50,0	72	54	56,5	68,0	67,0								

Шариковые подшипники серии диаметров 1, серии по ширине 7 по ГОСТ 8338—75

Размеры, мм

d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a,</i> не менее	а, не менее	d	D	<i>d_a,</i> не менее	<i>d_a,</i> не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	<i>а</i> , не менее
12	28	14	15,5	26	25		55	90	59	65,0	86	80	
15	32	17	18,5	30	28		60	95	64	70,0	91	85	
17	35	19	21,0	33	31		65	100	69	75,0	96	90	
20	42	22	26,0	40	36		70	110	74	82,0	106	101	
25	47	27	31,5	43	42	2	75	115	79	85,0	111	106	3
30	55	32	37,0	53	50		80	125	84	88,0	121	116	
35	62	37	43,0	60	56		85	130	89	92,0	126	121	
40	68	42	47,0	66	62		90	140	95	100	135	130	
45	75	49	54,0	71	66		95	145	100	105	140	134	
50	80	54	59,0	76	72		100	150	105	110	145	139	

Продолжение табл. 109

Шариковые подшипники серии диаметров 1, серии по ширине 0 по ГОСТ 8338-75, 7242-81, 831-75, 832-78

Роликовые подшипники серии диаметров 1, серии по ширине 0 по ГОСТ 8328-75, 5721-75 и серии по ширине 4 по ГОСТ 4657-82

Размеры, мм

d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее	d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
6	17	7,8	-	15,2	-		55	90	60	62,5	84,0	_	i
7	19	9,0	9,0	17,0	-		60	95	65	68,0	88	-	
8	22	10	10,0	20,0	-	1,8	65	100	70	73,0	93	-	
9	24	11	12,0	22,0	20		70	110	75	78,0	103	-	
10	26	12	12,5	24,0	23		75	115	80	83,0	108	-	
12	28	14	14,5	26,0	25		80	125	85	90,0	118	_	
15	32	17	18,0	30,0	29		85	130	90	95,0	123	123	3,0
17	35	19	20,0	33,0	30		90	140	96	100	132	130	
20	42	24	24,5	38,0	-		95	145	102	105	137	135	
25	47	28	29,0	43,0	-	2,0	100	150	106	110	142	139	
30	55	34	35,0	50,0	-		105	160	113	115	151	149	
35	62	39,5	39,5	57,0	-		110	170	118	121	161	159	
40	68	44	46,0	63,0	-								
45	75	49,0	51,5	70,0	_								
50	80	54	56,5	75,0	-					ł			

Шариковые подшинники серии диаметров 2 (5), серии по ширине 0 по ГОСТ 8338-75, 7242-81, 28428-90, 831-75, 882-75, 832-78, 10058-75, 8995-75
Родимовые подшинники серии диаметров 2 (5), 2 серии по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по ГОСТ 8338-75, 2011 по ширине 0 по по по ширине 0 по по ширине 0 по по по ширине 0 по по ширине

Роликовые подшипники серии диаметров 2 (5), 2 серии по ширине 0 по ГОСТ 8328-75, 5721-75, 5377-79

Размеры, мм

_	d	D	<i>d_a,</i> не менее	<i>d_a,</i> не более	<i>D_a</i> , не более	<i>D_a,</i> не менее	а, не менее	đ	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
	5	16	6,5	7,0	14,0	-		55	100	62,0	65,0	91	-	
	6	19	8,2	8,5	17,0	-		60	110	67,0	71,0	101	-	
	7	22	10,2	10,5	19,5	-		65	120	72,0	77,0	111	-	
	8	24	10,2	10,5	22,0	- 1	1,8	70	125	77,0	82,0	116	-	
	9	26	12,0	12,5	22,5	- 1		75	130	82,0	85,0	121	- '	ł
	10	30	14,0	14,4	26,0	-		80	140	90,0	92,0	130	-	
	12	32	16,0	17	28	-		85	150	95,0	99,0	140	-	
	15	35	19,0	20,0	31	-		90	160	100	105	150	-	3,0
	17	40	21,0	22,0	36	-		95	170	107	111	158	155	
	20	47	25,0	26,0	42	-		100	180	112	117	168	162	ŀ
	25	52	30,0	30,5	47	-		105	190	117	122	178	175	
	30	62	35,0	37,0	57	-	2,0	110	200	122	125	188	184	l
	35	72	42,0	- 1	65			i		1		1		
	40	80	47,0	48,0	73	-				1		İ	1	
	45	85	52,0	53,0	78	-)				
_	50	90	57,0	58,0	83	-								

Продолжение табл. 109

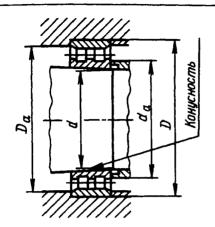
Шариковые подшипники серии диаметров 3 (6), серии по ширине 0 по ГОСТ 8338-75, 7242-81, 831-75, 832-78, 28428-90, 8882-75, 8995-75

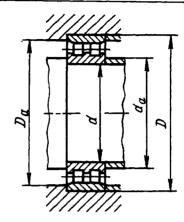
Роликовые подшипники серии диаметров 3 (6), серии по ширине 0 по ГОСТ 8328-75, 5721-75, 5377-79.

Размеры, мм

ď	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее	d	D	<i>d_a</i> , не менее	<i>d_a</i> , не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
4	16	6,2	6,5	13,4	-		55	120	65,0	67,0	110	109	
5	19	7,2	7,5	15,8	-	1,8	60	130	72,0	75,0	118	115	
10	35	14,0	15,0	30,8	-		65	140	76,0	78,0	128	125	
12	37	17,0	17,0	32,0	-		70	150	81,0	85,0	138	136	
15	42	20,0	28,5	36,0	-		75	160	86,0	93,0	148	144	
17	47	23,0	23,0	41,2	40		80	170	91,0	99,0	158	155	
20	52	26,0	27,0	45,0	-		85	180	98,0	103	166	163	3,0
25	62	31,0	33,0	55,0	-		90	190	103	111	176	172	
30	72	36,0	38,9	65,0	-	2,0	95	200	109	119	186	180	
35	80	42,0	44,0	71,0	-		100	215	113	125	201	195	
40	90	47,0	51,0	81,0	80		105	225	119	132	211	205	
45	100	' 52,0	56,0	91,0	89		110	240	124	135	226	215	
50	110	60,0	63,0	99,0	98								

Шариковые подшипники серии диаметров 4, серии по ширине 0 по ГОСТ 8338-75, 831-75 и 832-78, ГОСТ 2893-82

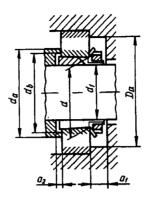

Роликовые подшипники серии диаметров 4, серии по ширине 0 по ГОСТ 8328—75.


Размеры, мм

d	D	<i>d_a</i> , не менее	<i>d_a,</i> не более	<i>D_a</i> , не более	<i>D_a,</i> не менее	<i>а</i> , не менее	d	D	<i>d_a</i> , не менее	<i>d_a,</i> не более	<i>D_a</i> , не более	<i>D_a</i> , не менее	а, не менее
17	62	24,0	_	53	-		65	160	78,0	83	146	141	
20	72	27,0	-	63	-		70	180	85,0	93	164	157	
25	80	34,0	36	70	66		75	190	90,0	98	174	166	
30	90	39,0	41	80	77	2	80	200	95,0	105	184	176	
35	100	44,0	47	90	86		85	210	105	108	190	185	3
40	110	50,0	55	97	95		90	225	110	117	205	200	
45	120	55,0	60	107	104		95	240	115	125	220	210	
50	130	63,0	68	116	114		100	250	120	130	230	220	
							105	260	125	135	240	230	
55	140	68,0	71	126	122	3							

110. Роликовые радиальные многорядные подпининики с короткими цилиндрическими роликами по ГОСТ 7634—75

Размеры, мм



Серия диаметров 1, серия ширин 3

	образ данногров 1, серви ширии 3												
d	D	d_a	I) _a	ď	D	d_a) _a				
		наим.	наим.	наиб.			наим.	наим.	наиб.				
30	55	35	49	50	130	200	139	184	191				
35	62	40	56	57	140	210	150	194	200				
40	68	45	62	63	150	225	162	208	213				
45	75	50	69	70	160	240	172	222	228				
50	80	55	74	75	170	260	182	239	248				
55	90	62	82	84	180	280	192	258	268				
60	95	67	87	88	190	290	202	268	278				
65	100	72	92	93	200	310	212	285	298				
70	110	77	102	103	220	340	234	313	326				
75	115	82	107	108	240	360	254	333	346				
80	125	87	115	118	260	400	278	367	382				
85	130	92	120	123	280	420	298	388	402				
90	140	98	129	132	300	460	318	421	442				
95	145	103	134	137	320	480	338	442	462				
100	150	108	139	142	340	520	362	477	498				
105	160	114	148	151	360	540	382	497	518				
.110	170	119	157	161					}				
120	180	129	167	171									

111. Шариковые и роликовые радиальные подшинники на закрепительных втулках по ГОСТ 24208—80

Размеры, мм

Шариковые подшинники типа 111200

d	d_1	Закрепи	тельная втулка	серии Н2	Серия диаметров 2, серия ширин 0	
		<i>d_b</i> наим.	<i>d_a</i> наиб.	<i>a</i> ₁ наим.	<i>а</i> ₂ наиб.	
20	17	23	28	12	5	
25	20	28	33	13	5	
30	25	33	38	13	5	
35	30	38	43	15	5	
40	35	43	49	16	5	
45	40	48	54	18	5	
50	45	53	60	19	5	
55	50	60	67	19	6	
60	55	64	72	21	5	
65	60	70	78	22	5	
70	60	75	83	22	5	
75	65	80	88	23	5	
80	70	85	94	26	5	
85	75	90	99	27	6	
90	80	95	104	27	6	
100	90	106	115	29	7	
110	100	116	125	30	7	

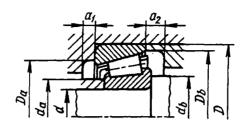
 Π р и м е ч а н и е . Размер D_{α намб принимается по табл. 109 для серий диаметров 2 и 2(5).

Шариковые и роликовые подшинники типов 111500, 113500, 111300

d	d_1	Закрепите	льная втулка	серии Н3	Серия диаметров 2 (5), серия ширин 1	Серия диаметров 3, серия ширин 0
		d_b наим.	<i>d_a</i> наиб.	<i>a</i> ₁ наим.	<i>a</i> ₂ ная	IM.
20	17	23	28	12	5	8
25	20	28	33	13	5	6
30	25	33	38	13	5	6
35	30	39	44	15	5	8

Продолжение табл. 111

d	d d_1	Закрепите:	льная втулка	а серии Н3	Серия диаметров 2 (5), серия ширин 1	Серия диаметров 3, серия ширин 0
		<i>d_b</i> наим.	<i>d_a</i> наиб.	а1 наим.	<i>a</i> ₂ наи	IM-
40	35	44	49	16	5	5
45	40	50	55	18	8	5
50	45	55	60	19	10	5
55	50	60	65	19	10	6
60	55	65	72	21	8	5
65	60	70	77	22	8	5
70	60	75	83	22	10	5
75	65	80	88	23	12	5
80	70	85	94	26	12	5
85	75	91	100	27	12	6
90	80	96	105	27	10	6
100	90	108	118	29	8	7
110	100	118	128	30	6	9


Примечание. Размер D_{a наиб. принимается по табл. 109 - D_a , не более.

Шариковые и роликовые подшипники типов 3113100, 111200, 111300

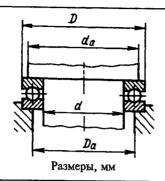
d	d d_1	Закрепит	ельная втул Н30	тка серии	Серия диаметров 1, серия ширин 3	Серия диамет- ров 2, серия ширин 0	Серия диаметров 3, серия ширин 0
		d_b наим.	d_a наиб.	<i>а</i> 1 наим.		<i>а</i> 2 наим.	
120	110	127	135	31	7	13	-
130	115	137	145	32	8	20	-
140	125	147	157	33	8	19	-
150	135	158	168	35	8	19	-
160	140	168	178	38	8	20	-
170	150	179	189	39	8	23	-
180	160	189	200	40	8	30	7
190	170	199	210	43	9	30	6
200	180	210	222	44	10	34	12
220	200	231	243	53	12	37	14
240	220	251	265	58	11	31	8
260	240	272	286	58	13	37	-
280	260	292	306	62	12	38	-
300	280	313	329	66	12	-	-
320	300	334	350	69	13	-	-
340	320	355	373	72	14	-	-
360	340	375	393	72	14	-	-
380	360	396	414	76	15	-	! -
400	380	417	437	80	15	-	_
420	400	437	457	80	16	-	-
440	410	458	480	91	17	-	-
460	480	478	500	91	17	-	-
480	450	499	520	91	18	-	-
_500	470	519	540	99	18	-	

Примечание. Размер D_{a нан6. принимается по табл. 109— D_a , не более.

112. Роликовые подшинники по ГОСТ 27365-87 и ТУ 37006.162-89

Размеры, мм

d	D	<i>d_b</i> , не менее	<i>d_b</i> , не более	d_a , не более	<i>D_a</i> , не менее	<i>D_a</i> , не более	D_b , не менее	<i>a</i> ₁ , не менее	a ₂ , не менее
		<u> </u>		Сер	ня диамет	ров 9			
35	55	40	43	40	48,5	50	53,0		3,0
40	62	45	49	45	55,0	57	60,0		4,0
45	68	50	55	50	61,0	63	65,4		4,5
50	72	55	60	55	65,0	67	69,4		4,5
55	80	62	66	60	71,5	74	77,5	3	
60	85	67	72	65	76,0	79	82,8		4,5
65	90	72	76	70	81,0	84	87,8		
70	100	78	84	75	91,0	94	97,5		
80	110	88	94	85	99,5	104	107,5	4	6,0
85	120	92	101	92	107	113	116,5		7,0
90	125	100	106	98	113	118	122,0	5	
100	140	108	116	108	128	133	137,0		7,0
105	145	115	122	112	133	138	142,0	6	
110	150	120	128	118	136	143	146,0		
				Сер	ия диамет	ров 1		·	•
30	55	36	40	35	47,5	49	52,0	3	4,5
35	62	41	47	40	54,0	56	59,0	3	4,5
40	68	46	53	45	60,0	62	65,0	4	4,5
45	75	51	57	50	66,0	69	72,0	4	4,5
50	80	56	62	55	71,0	74	77,0	4	4,5
55	90	62	69	61	80,0	83	86,0	4	5,5
65	100	72	78	71	90,0	92	97,0	4	5,5
70	110	77	85	76	98,0	102	105,0	5	6,0

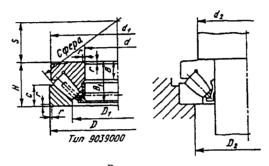

Продолжение табл. 112

d	D	<i>d_b</i> , не менее	<i>d_b</i> , не более	<i>d_a</i> , н боле) _a , не иенее	D_a , не более	<i>D_b</i> , не менее			<i>а</i> ₂ , не менее
75 80 85 90 100 110	115 125 130 140 150 170	82 87 92 99 109 120	90 95 105 108 117 135	92 92 99 109	82 87 92 99 109 120		108 118 122 130 140 160	110,0 120,0 125,0 134,0 144,0 163,0		5 6 6 6 6 6 7	7,0 7,0 7,0 8,0 8,0 9,0
									Серия д	иаметрог	3
d	D	d_b ,	d_b ,	d_a ,			D_b ,	2	!		(5)
		не менее	не более	не более	не менее	не более	не ме- нее	<i>a</i> ₁ , не менее	<i>а</i> ₂ , не менее	<i>a</i> ₁ , не менее	<i>a</i> ₂ , не менее
	Серия диаметров 2, (5)										
15 17 20 25 30	35 40 47 52 62	20 23 26 31 36	24 26 30 35 41	19,0 23,0 26,0 31,0 37,0	30 33 39 43 52	41 46 55	32,0 37,0 43,0 48,0 57,0	2 3 3 3 3	3,0	3	- - - 4,0
35 40 45 50	72 80 85 90	42 47 52 57	48 55 61 65	43,0 48,0 53,0 58,0	61 68 73 78	65 72 78 82	67,0 75,5 80,0 86,5	4	3,0 3,5 4,5 4,5	4	5,0 5,5 5,5 5,5
55 60	100 110	64 69	72 79	63,0 69,0	87 95	90 100	94,0 105,5	5	4,5 4,5	5	5,5
65 70 75 80	120 125 130 140	74 79 84 90	86 90 96 105	75,0 80,0 85,0 90,0	105 108 113 122	110 115 120 130	113,0 118,0 124,0 132,0	6	4,5 5,0 5,0 6,0	6	5,5 6,0 6,0 7,0
85 90 100	150 160 180	96 100 112	110 117 135	95,0 102 114	132 138 155	140 150 165	141,0 150,0 168,0	6 7 7	6,0 6,0 8,0	7	8,5 8,5 10
110 120	200 215	122 132	145 160	125 135	171 187	185 200	187,0 201,0	9	9,0 9,0	9	10 11,5

Продолжение табл. 112

									Серия ді	иаметров	
d	D	d_b ,	d_b ,	d_a ,	D_a ,	D_a ,	\dot{D}_b ,		3		(6)
-	_	не менее	не более	не более	не менее	не более	не ме- нее	<i>a</i> ₁ , не менее	<i>a</i> ₂ , не менее	<i>a</i> ₁ , не менее	<i>a</i> ₂ , не менее
				Co	ерия диа	іметров	3, (6)				
17	47	23	31	25	39	41	42,0		3,0	2	4,0
20	52	27	33	27	43	45	47,0	3	3,0	3	4,0
25	62	32	41	33	53	55	57,0		3,0	3	5,0
30	72	37	47	38	61	65	66,0		4,5	5	5,5
									,		Í
						-					
35	80	44	53	43	68	71	74,0		4,5	5	7,5
40	90	49	60	50	76	80	82,0		5,0	5	8,0
45	100	54	68	56	85	90	92,0	5	5,0	5	8,0
50	110	60	74	62	94	100	102		6,0	5	9,0
55	120	65	81	67	103	110	111		6,5	5	10,5
60	130	72	90	73	112	118	120		7,5	6	11,5
						}					
65	140	77	96	80	121	128	130		8,0	6	12,0
70	150	82	100	85	129	138	140		8,0	7	12,0
75	160	87	108	91	138	148	149	6	9,0	7	13,0
80	170	92	118	97	147	158	159		9,5	7	13,5
85	180	99	125	102	155	166	167	_	10,5		14,5
90	190	104	130	108	163	175	176	7	10,5	12	14,5
100	215	114	147	121	183	200	197		12,5		17,0
		ļ	 		<u> </u>						
110	240	124	165	135	205	220	222	14	12.5	14	19,5
120	260	134	175	145	219	235	1	14	12,5	14	19,5
120	200	134	1/3	143	1 219	233	239	14	13,5	14	13,3
	L	L	l	L	L	L	L	L	L	<u> </u>	L

113. Шариковые упорные одинарные подшининки (по ГОСТ 7872-89)


		Серия										
d	ди	аметрон высот 1			аметрог высот 1		Д	аметрон высот 1		ди	аметров высот 1	2,
	D	<i>d_a</i> , наим.	<i>D_a,</i> наиб.	D	<i>d_a</i> , наим.	<i>D_a</i> , наиб.	D	<i>d_a,</i> наим.	<i>D_a</i> , наиб.	D	<i>d_a</i> , наим.	<i>D_a</i> , наиб.
10	24	19	15	26	20	16	_	-	-	-	-	-
12	26	21	17	28	22	18	-	- '	-	-	-	-
15	28	23	20	32	25	22	-		-	-	-	-
17	30	25	22	35	28	24	-	-	-	-	-	-
20	35	29	26	40	32	28	-	-	-	-	1 -	-
25	42	35	32	47	38	34	52	41	36	60	46	39
30	47	40	37	52	43	39	60	48	42	70	54	46
35	52	45	43	62	51	46	68	55	48	80	62	53
40	60	52	48	68	57	51	78	63	55	90	70	60
45	65	57	53	73	62	56	85	69	61	100	78	67
50	70	62	58	78	67	61	95	77	68	110	86	74
55	78	69	64	90	76	69	105	85	75	120	94	81
60	85	75	70	95	81	74	110	90	80	130	102	88
65	90	80	75	100	86	79	115	95	85	140	110	95
70	95	85	80	105	91	84	125	103	92	150	118	102
75	100	90	85	110	96	89	135	111	99	160	125	110
80	105	95	90	115	101	94	140	116	104	170	133	117
85	110	100	95	125	109	101	150	123	111	180	141	124
90	120	108	102	135	117	108	155	129	116	190	149	131
100	135	121	114	150	130	120	170	142	128	210	165	145
110	145	131	124	160	140	130	190	158	142	230	181	159
120	155	141	134	170	150	140	210	173	157	250	197	173
130	170	154	146	190	166	154	225	186	169	270	213	187
140	180	164	156	200	176	164	240	199	181	280	223	197

В технически обоснованных случаях допускается увеличивать диаметры заплечиков валов и уменьшать диаметры заплечиков корпусов по согласованию с разработчиком конструкторской документации на подшипники качения. Для безбортовых колец подшипников, а также для малогабаритных подшипников при конструировании узлов в случае необходимости рекомендуются демонтажные пазы для съема колец.

Биение заплечиков и шероховатость поверхности — по ГОСТ 3325—85.

114. Роликовые упорно-радиальные сферические подпинники (по ГОСТ 9942-90)

Эквивалентная осевая нагрузка на подшипник ($F_r \le 0.55 F_a$) : динамическая $P = F_a + 1.2 F_r$; статическая $P_0 = F_a + 2.7 F_r$

Размеры,	MM
----------	----

Обозначение подшипников	d	D_1	D	<i>d</i> 1	H	<i>B</i> ₁	В	с	S	r	
		Ле	гкая сері	ія диамет	ров 2, сер	рия ширин	19				
9039280	400	460	540	526	85	81	27	42	212	5	
Средняя серия диаметров 3, серия ширин 9											
9039352	260	329	420	405	95	91	32	45	148	6	
9039364	320	399	500	482	109	105	37	53	180	6	
9039388	440	548	680	655	145	140	49	70	245	8	
		Тяэ	келая сер	рия диаме	тров 4, се	ерия шири	н 9				
9039412	60	89	130	123	42	39,5	15	20	38	2,5	
9039414	70	103	150	142	48	45,5	17	23	44	3	
9039415	75	109	160	152	51	48	18	24	47	3	
9039417	85	125	180	170	58	55	21	28	54	3,5	
9039420	100	146	210	200	67	64	24	32	62	4	
9039428	140	199	280	268	85	81	31	41	86	5	
9039436	180	245	360	305	109	105	39	60	82	6	
9039452	260	354	480	460	132	127	48	64	154	8	
90394/500	500	661	870	830	224	216	81	107	290	12	

Продолжение табл. 114

	Ориенти	гровочные р	асчетные параметры		·	i	
Обозначение подшипников		дъемность, кН	$n_{\rm np}, { m Muh}^{-1}, { m пpu}$ жидком смазочном	Масса, кг	<i>d</i> ₂ , не менее	<i>D</i> ₂ , не более	
	С	C_0	материале				
		Легкая се	грия диаметров 2, сери	я ширин 9			
9039280	133	342	630	56,6	460	500	
		Средняя с	1я ширин 9	'			
9039352	2200	3130	630	52,6	330	374	
9039364	2880	4620	500	83	400	449	
9039388 4000 7320		500	196	548	614		
		Тяжелая с	ерия диаметров 4, сери	ия ширин 9			
9039412	267	368	1600	2,86	90	109	
9039414	327	454	1600	4,31	105	126	
9039415	350	500	1600	5,24	115	134	
9039417	400	600	1250	7,45	130	153	
9039420	540	826	1000	11,6	150	178	
9039428	900	1750	800	25,5	205	239	
9039436	1500	3000	800	52,5	260	307	
9039452	2230	4790	500	112	360	419	
90394/500	6220	15100	250	583	670	765	

Пример обозначения подшипника 90394/500:

Подшипник 90394/500 ГОСТ 9942-90

ОПОРЫ ВАЛОВ ЗУБЧАТЫХ ПЕРЕДАЧ*

Обозначения:

 d_{w1} и d_{w2} - начальные диаметры цилиндрических колес или средние диаметры начальных конусов конических колес;

R - нормальная сила, действующая в зацеплении, H;

Р - окружная сила в зацеплении, Н;

Т - радиальная сила в зацеплении, Н;

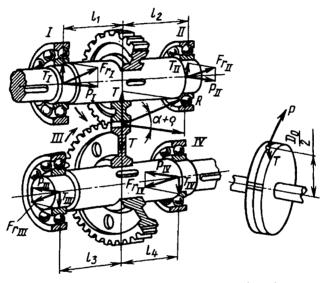
А - осевая сила в зацеплении, Н;

 z_1 и z_2 - число зубьев колес;

^{*} В разделе "Опоры валов зубчатых передач" обозначения параметров соответствуют обозначениям, приведенным в справочниках [1], [2].

 α - угол зацепления в плоскости, перпендикулярной к боковой поверхности зуба; ρ - угол трения скольжения между зубьями (для большинства случаев принимают равным 3°);

 F_{rI} , F_{rII} , F_{rIII} - радиальные нагрузки на подшипники, H; β - угол наклона зуба;

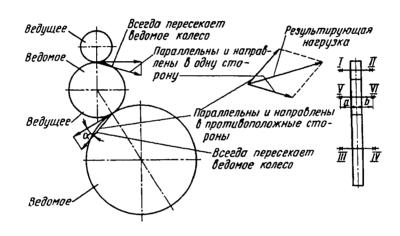

 δ_{1} , и δ_{2} - углы начальных конусов зубчатых колес конической передачи;

 τ - угол подъема винтовой линии червяка; h - высота хода винтовой линии червяка:

 F_a - осевая нагрузка на подшипник, Н.

Формулы для расчета нагрузок на опоры валов приведены в табл. 115-125.

115. Формулы для определения нагрузок на опоры прямозубой цилиндрической зубчатой передачи

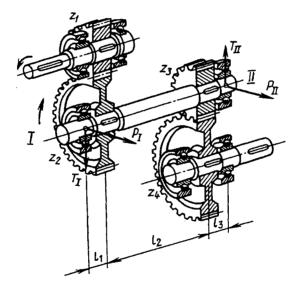

 $T = P \operatorname{tg}(\alpha + \rho)$

Номер	Pea	кция	Результирующая
опоры	от окружной силы <i>Р</i>	от радиальной силы T	нагрузка на опору
I	$P_I = P \frac{l_2}{l_1 + l_2}$	$T_I = T \frac{l_2}{l_1 + l_2}$	$F_{rI} = \sqrt{P_I^2 + T_I^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{l_2}{l_1 + l_2}$
II	$P_{II} = P \frac{l_1}{l_1 + l_2}$	$T_{II} = T \frac{l_1}{l_1 + l_2}$	$F_{rII} = \sqrt{P_{II}^2 + T_{II}^2} = \frac{P}{\cos(\alpha + \rho)} \frac{l_1}{l_1 + l_2}$
III	$P_{III} = P \frac{l_4}{l_3 + l_4}$	$T_{III} = T \frac{l_4}{l_3 + l_4}$	$F_{rIII} = \sqrt{P_{III}^2 + T_{III}^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{l_4}{l_3 + l_4}$

Продолжение табл. 115

Номер опоры	Pea	кция	Результирующая
	от окружной силы Р	от радиальной силы <i>Т</i>	нагрузка на опору
IV	$P_{IV} = P \frac{l_3}{l_3 + l_4}$	$T_{IV} = T \frac{l_3}{l_3 + l_4}$	$F_{rIV} = \sqrt{P_{IV}^2 + T_{IV}^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{l_3}{l_3 + l_4}$

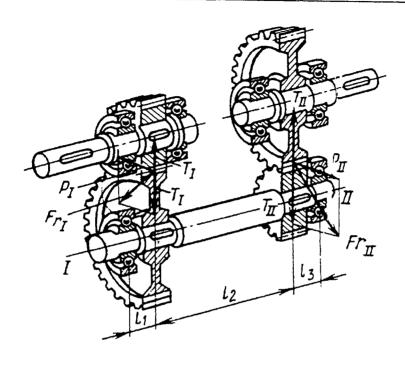
116. Формулы для определения нагрузки на опоры вала промежуточного колеса прямозубой цилиндрической передачи



$F_{rV} = 2P \frac{b}{a+b}$
$F_{r VI} = 2P \frac{b}{a+b}$
$F_{rV} = 2P \frac{\cos\left[\frac{2(\alpha + \rho) + \varphi}{2}\right]}{\cos(\alpha + \rho)} \frac{b}{a + b}$ $F_{rVI} = 2P \frac{\cos\left[\frac{2(\alpha + \rho) + \varphi}{2}\right]}{\cos(\alpha + \rho)} \frac{b}{a + b}$

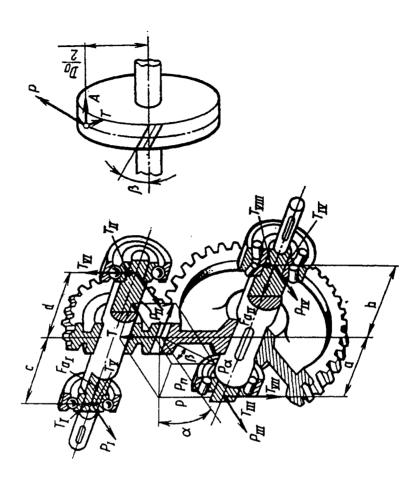
Продолжение табл. 116

Схема передачи	Результирующая нагрузка на опору
	$F_{rV} = 2P \frac{\cos\left[\frac{2(\alpha + \rho) - \phi}{2}\right]}{\cos(\alpha + \rho)} \frac{b}{a + b}$ $F_{rVI} = 2P \frac{\cos\left[\frac{2(\alpha + \rho) - \phi}{2}\right]}{\cos(\alpha + \rho)} \frac{a}{a + b}$


117. Нагрузки на опоры промежуточного вала прямозубой двухступенчатой цилиндрической передачи

$$T_{I} = P_{1} \operatorname{tg} (\alpha + \rho);$$
 $T_{II} = P_{2} \operatorname{tg} (\alpha + \rho)$

№	Pear	Результирующая нагрузка на опоры	
опоры	от окружных сил <i>Р</i>		
I	$P_{I} = \frac{P_{1}(l_{2} + l_{3}) + P_{2}l_{3}}{l_{1} + l_{2} + l_{3}}$	$T_{I} = \frac{T_{1}(l_{2} + l_{3}) - T_{2}l_{3}}{l_{1} + l_{2} + l_{3}}$	$F_{rI} = \sqrt{P_I^2 + T_I^2}$
II	$P_{II} = \frac{P_1 l_1 + P_2 (l_1 + l_2)}{l_1 + l_2 + l_3}$	$T_{II} = \frac{T_1 l_1 - T_2 (l_1 + l_2)}{l_1 + l_2 + l_3}$	$F_{rII} = \sqrt{P_{II}^2 + T_{II}^2}$


118. Формулы для расчета нагрузки на опоры промежуточного вала прямозубой двухступенчатой соосной цилиндрической передачи

$$T_I = P_1 \operatorname{tg} (\alpha + \rho);$$

 $T_{II} = P_2 \operatorname{tg} (\alpha + \rho)$

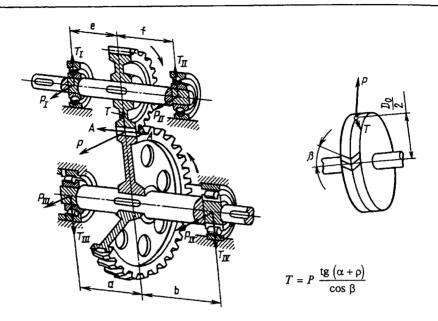
№	Pear	Результирующая	
	от окружных сил <i>Р</i> от радиалы		нагрузка на опоры
I	$P_{I} = \frac{P_{1}(l_{2} + l_{3}) - P_{2}l_{3}}{l_{1} + l_{2} + l_{3}}$	$T_{I} = \frac{T_{1}(l_{2} + l_{3}) + T_{2}l_{3}}{l_{1} + l_{2} + l_{3}}$	$F_{rI} = \sqrt{P_I^2 + T_I^2}$
II	$P_{II} = \frac{P_2(l_1 + l_2) - P_1 l_1}{l_1 + l_2 + l_3}$	$T_{II} = \frac{T_2(l_1 + l_2) + T_1 l_1}{l_1 + l_2 + l_3}$	$F_{rII} = \sqrt{P_{II}^2 + T_{II}^2}$

119. Формулы для расчета нагрузок на опоры зубчатой цилиндрической передачи с косыми зубьями (валы параллельны)

Осевая Силы T_V и T_{VI} , а также T_{VII} и T_{VIII} реакция от силы А воспринимается тольнаправлены. ко одной из опор вала противоположно

$$T = P \frac{\operatorname{tg}\left(\alpha + \rho\right)}{\cos\beta};$$

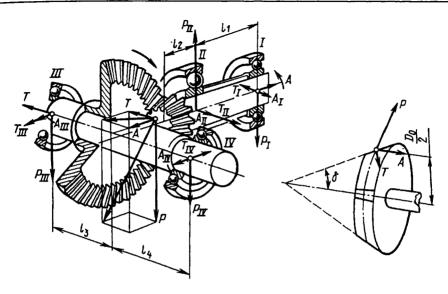
$$D_0 = d_{\mathcal{W}}$$


 $A = P \text{ tg } \beta$;

$$D_0 = d_{\mathbf{w}}$$

Продолжение табл. 119

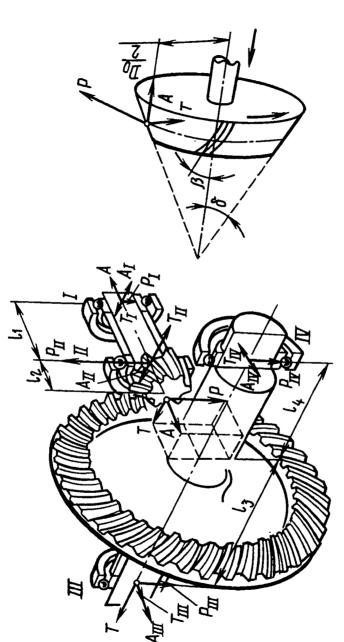
	Неопределенное	или переменное	направление	вращения	$F_{rI} = \sqrt{P_f^2 + \left(T_f + T_V\right)^2}$	$F_{TII} = \sqrt{P_{II}^2 + (T_{II} + T_{VI})^2}$	$F_{III} = \sqrt{P_{III}^2 + (T_{III} + T_{VI})^2}$	$=\sqrt{P_{IV}^2+\left(T_{IV}+T_{VIII}\right)^2}$
	олеса	правое	эй стрелки	против	$= \sqrt{P_I^2 + \left(T_I + T_V\right)^2}$	$F_{r,II} = \sqrt{P_{II}^2 + (T_{II} - T_{VI})^2}$	$F_{TIII} = \sqrt{P_{III}^2 + (T_{III} - T_{VII})^2}$	$F_{TIV} = \sqrt{P_{IV}^2 + \left(T_{IV} + T_{VIII}\right)^2}$
Результирующая нагрузка	а ведущего к	левое	гельно часово	по	$= P_f^2 + ($	$F_{r,II} = \sqrt{P_{II}^2 + (T_{II})}$	$F_{TIII} = $ $= \sqrt{P_{III}^2 + \left(T_{III}\right)}$	$F_{TIV} = \sqrt{P_{IV}^2 + \left(T_{IV}\right)}$
Результирую	Направление зуба ведущего колеса	левое	при вращении относительно часовой стрелки	против	$r = \frac{1}{\Gamma_I - T_V)^2}$	$=\frac{1}{I_{I}+T_{VI})^{2}}$	$F_{III} = \sqrt{P_{III}^2 + \left(T_{III} + T_{VII}\right)^2}$	$F_{IIV} = \sqrt{P_{IV}^2 + (T_{IIV} - T_{VIII})^2}$
	Нап	правое	при вращ	ПО	$F_{rI} = \sqrt{P_I^2 + \left(T_I - T_V\right)^2}$	$F_{III} = \sqrt{P_{II}^2 + (T_{II} + T_{VI})^2}$	$= \sqrt{P_{III}^2 + \left(T_{III}\right)}$	$F_{rIV} = \sqrt{P_{IV}^2 + \left(T_{IV}\right)}$
19		от осевой	силы А		$T_{V} = A \frac{d_{w1}}{2(c+d)}$	$T_{VI} = A \frac{d_{wl}}{2(c+d)}$	$T_{VII} = A \frac{d_{w2}}{2(a+b)}$	$T_{VIII} = A \frac{d_{w2}}{2(a+b)}$
Нагрузка на опоры		от радиальной	силы T		$T_{J} = T \frac{d}{c + d}$	$T_{II} = T \frac{c}{c+d}$	$T_{III} = T \frac{b}{a+b}$	$T_{IV} \approx T \frac{a}{a+b}$
		от окружной	силы Р		$P_I = P \frac{d}{c + d}$	$P_{II} = P \frac{c}{c+d}$	$P_{III} = P \frac{b}{a+b}$	$P_{JV} = P \frac{a}{a+b}$
		ž	опоры		1	"	111	Al


120. Формулы для расчета нагрузок на опоры зубчатой пилиндрической передачи с шевронным зубом

Силы А взаимно уравновещиваются

		Нагј	рузки на опоры
№ опоры	от окружной силы <i>Р</i>	от радиальной силы <i>Т</i>	результирующая
I	$P_I = P \frac{f}{e+f}$	$T_I = T \frac{f}{e+f}$	$F_{rI} = \sqrt{P_I^2 + T_I^2} = P \frac{f}{e+f} \sqrt{1 + \left[\frac{tg(\alpha + \rho)}{\cos \beta}\right]^2}$
II	$P_{II} = P \frac{e}{e+f}$	$T_{II} = T \frac{e}{e+f}$	$F_{r II} = \sqrt{P_{II}^2 + T_{II}^2} = P \frac{e}{e + f} \sqrt{1 + \left[\frac{tg (\alpha + \rho)}{\cos \beta}\right]^2}$
III	$P_{III} = P \frac{b}{a+b}$	$T_{III} = T \frac{b}{a+b}$	$F_{rIII} = \sqrt{P_{III}^2 + T_{III}^2} = P \frac{b}{a+b} \sqrt{1 + \left[\frac{tg(\alpha+\rho)}{\cos\beta}\right]^2}$
IV	$P_{IV} = P \frac{a}{a+b}$	$T_{IV} = T \frac{a}{a+b}$	$F_{rIV} = \sqrt{P_{IV}^2 + T_{IV}^2} = P \frac{a}{a+b} \sqrt{1 + \left[\frac{tg(\alpha+\rho)}{\cos\beta}\right]^2}$

121. Нагрузки на поры зубчатой конической прямозубой передачи (валы взаимно перпендикулярны)



Угол δ относится к ведущему колесу. Сила T действует перпендикулярно, а сила A - параллельно оси ведущего колеса

$$T=P$$
 tg $(\alpha + \rho)\cos\delta$;
 $A=P$ tg $(\alpha + \rho)\sin\delta$;
 $D_0=d_w$

	Нагрузки на опоры				
№ опоры	от окружной силы Р	от радиальной силы <i>Т</i>	от силы А	результирующая	
I	$P_I = P \frac{l_2}{l_1}$	$T_I = T \frac{l_2}{l_1}$	$A_I = A \frac{d_{w1}}{2l_1}$	$F_{rI} = \sqrt{P_I^2 + \left(T_I - A_I\right)^2}$	
II	$P_{II} = P \frac{l_1 + l_2}{l_1}$	$T_{II} = T \frac{l_1 + l_2}{l_1}$	$A_{II} = A \frac{d_{w1}}{2l_1}$	$F_{rII} = \sqrt{P_{II}^2 + \left(T_{II} - A_{II}\right)^2}$	
III	$P_{III} = P \frac{l_4}{l_3 + l_4}$	$T_{III} = T \frac{d_{w2}}{2(l_3 + l_4)}$	1	$F_{rIII} = \sqrt{P_{III}^2 + \left(T_{III} + A_{III}\right)^2}$	
IV	$P_{IV} = P \frac{l_3}{l_3 + l_4}$	$T_{IV} = T \frac{d_{w2}}{2(l_3 + l_4)}$	$A_{IV} = A \frac{l_3}{l_3 + l_4}$	$F_{rIV} = \sqrt{P_{IV}^2 + \left(T_{IV} - A_{IV}\right)^2}$	

122. Формулы для расчета сил, действующих в зацеплении, и нагрузки на опоры зубчатой конической передачи с круговыми зубьями (валы взанмно перпендикулярны)

утол начального конуса ведущего колеса.

 d_{w1} и d_{w2} - средние диаметры начальных конусов ведущего и ведомого колес.

Осевые нагрузки от сил Т и А воспринимаются одной из опор каждого вала

$$D_0 = d_{\mathbf{w}}$$

123. Реакции в результирующие нагрузки на опоры червячной передачи

на червячном валу $F_{aI}=P$ или $F_{aII}=P$, на валу червячного колеса $F_{aIII}=Q$ или $F_{aIV}=Q$. Окружная сила Q червяка определяется как Коэффициент трения для пары сталь - бронза f = 0.02 + 0.03, для пары чугун - чугун Осевые нагрузки F_a воспринимаются одной сила Р для цилиндрических зубчатых колес. из опор: f = 0, 1.

$$P = Q \frac{\cos \alpha \cos \tau - f \sin \tau}{\cos \alpha \sin \tau + f \cos \tau}$$

$$\lg \tau = \frac{h}{2\pi r_1} = \frac{z_1 r}{2\pi r_1}$$

7

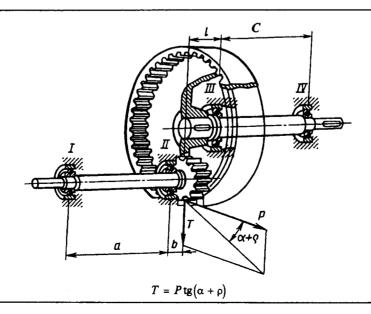
где т - угол подъема винтовой линии червя-

 и - ходовая высота подъема винтовой линии червяка;

f - шаг по оси червяка;

21 - число заходов червяка

Продолжение табл. 123


Результирующая нагрузка при правой нарезке	червяка и вращении по часовой стрелке	$F_{r,I} = \sqrt{Q_I^2 + (T_I - P_I)^2}$	$F_{r II} = \sqrt{Q_{II}^2 + (T_{II} + P_{II})^2}$	$F_{r \ III} = \sqrt{P_{III}^2 + \left(T_{III} - Q_{III}\right)^2}$	$F_{IJV} = \sqrt{P_{IV}^2 + \left(T_{IV} + Q_{IV}\right)^2}$
	от силы Р	$P_I = P \frac{r_1}{l_1 + l_2}$	$P_{II} = P \frac{r_1}{l_1 + l_2}$	$P_{III} = P \frac{l_4}{l_3 + l_4}$	$P_{IV} = P \frac{l_3}{l_3 + l_4}$
Реакция	от силы Т	$T_I = T \frac{l_2}{l_1 + l_2}$	$T_{II} = T \frac{l_1}{l_1 + l_2}$	$T_{III} = T \frac{l_4}{l_3 + l_4}$	$T_{IV} = T \frac{l_3}{l_3 + l_4}$
	от силы Q	$Q_I = Q \frac{l_2}{l_1 + l_2}$	$Q_{II} = Q \frac{l_1}{l_1 + l_2}$	$Q_{III} = Q \frac{r_2}{l_3 + l_4}$	$Q_{IV} = Q \frac{r_2}{l_3 + l_4}$
2	опоры	1	11	111	AI

124. Результирующие нагрузки на опоры червячной передачи при правой и левой нарезке*

	Результирующая нагрузка				
№ опоры	при правой нарезке	при левой нарезке червяка и вращении			
	червяка и вращении про- тив часовой стрелки	по часовой стрелке	против часовой стрелки		
I	$F_{rI} = \sqrt{Q_I^2 + \left(T_I + P_I\right)^2}$	$F_{rI} = \sqrt{Q_I^2 + \left(T_I + P_I\right)^2}$	$F_{rI} = \sqrt{Q_I^2 + \left(T_I - P_I\right)^2}$		
II	$F_{rII} = \sqrt{Q_{II}^2 + \left(T_{II} - P_{II}\right)^2}$	$F_{rII} = \sqrt{Q_{II}^2 + \left(T_{II} + P_{II}\right)^2}$	$F_{r II} = \sqrt{Q_{II}^2 + \left(T_{II} + P_I\right)^2}$		
III	$F_{rIII} = = \sqrt{P_{III}^2 + \left(T_{III} + Q_{III}\right)^2}$	$F_{rIII} = = \sqrt{P_{III}^2 + \left(T_{III} - Q_{III}\right)^2}$	$F_{rIII} = $ $= \sqrt{P_{III}^2 + \left(T_{III} + Q_{III}\right)^2}$		
IV	$F_{r IV} = $ $= \sqrt{P_{IV}^2 + (T_{IV} - Q_{IV})^2}$	$F_{rIV} = $ $= \sqrt{P_{IV}^2 + \left(T_{IV} + Q_{IV}\right)^2}$	$F_{r IV} =$ $= \sqrt{P_{IV}^2 + (T_{IV} - Q_{IV})^2}$		

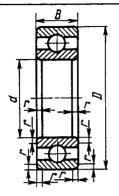
^{*} Определение реакций для опор по табл. 123.

125. Нагрузки на опоры зубчатой цилиндрической передачи с прямыми зубъями (внутреннее зацепление)

Продолжение табл. 125

N₂		Нагрузка на опоры	
опоры	от окружной силы <i>Р</i>	от радиальной силы T	результирующая
I	$P_I = P \frac{b}{a}$	$T_I = T \frac{b}{a}$	$F_{rI} = \sqrt{P_I^2 + T_I^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{b}{a}$
II	$P_{II} = P \frac{a+b}{a}$	$T_{II} = T \frac{a+b}{a}$	$F_{rII} = \sqrt{P_{II}^2 + T_{II}^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{a+b}{a}$
III	$P_{III} = P \frac{l+c}{c}$	$T_{III} = T \frac{l+c}{c}$	$F_{rIII} = \sqrt{P_{III}^2 + T_{III}^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{l + c}{c}$
IV	$P_{IV} = P \frac{l}{c}$	$T_{IV} = T \frac{l}{c}$	$F_{rIV} = \sqrt{P_{IV}^2 + T_{IV}^2} =$ $= \frac{P}{\cos(\alpha + \rho)} \frac{I}{c}$

РАЗМЕРЫ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОДШИПНИКОВ


В табл, 126-142 приведены в основном подшипники с внутренним диаметром d до 100-120 мм, но соответствующие ГОСТы предусматривают значения d меньше и свыше 100-120 мм, а также некоторые

промежуточные размеры *d*. Таблицы являются ограничительными относительно ГОСТ и в части серий подшипников.

Значения предельной частоты вращения $n_{\rm пред}$ указаны в таблицах для случаев применения в подшинниках пластичного смазочного материала.

При применении жидкого смазочного материала значение предельной частоты вращения $n_{\text{пред}}$ увеличивают приблизительно на 20%.

126. Шариковые радиальные однорядные подшинники (по ГОСТ 8338-75)

- d номинальный диаметр отверстия внутреннего кольца;
- D номинальный диаметр наружной цилиндрической поверхности наружного кольца;
 B - номинальная ширина подшипника;
- r номинальная координата монтажной фаски.

Размеры, мм

Обозначение	d	D	В	r	Шат	рики	Macca,	С, Н	C ₀ , H	n*пред·10-3,
подшипников					D_{w}	z	кг			мин ⁻¹
	C	Сверхл	егкая	серия	диаметр	ов 9, нор	мальная се	рия ширин	1	
1000093	3	8	3	0,3	1,59	6	0,0007	560	186	43
1000094	4	11	4	0,3	2	7	0,0025	950	340	40
1000095	5	13	4	0,4	2	8	0,0025	1 080	390	38
1000096	6	15	5	0,4	2,38	8	0,0040	1 470	555	38
1000097	7	17	5	0,5	3	7	0,0050	2 020	777	36
1000098	8	19	6	0,5	3	8	0,0080	2 240	880	34
1000099	9	20	6	0,5	3,5	7	0,0080	2 680	1 050	32
1000900	10	22	6	0,5	3,97	7	0,0090	3 340	1 350	30
1000901	12	24	6	0,5	3,97	7	0,010	3 390	1 350	28
1000902	15	28	7	0,5	3,18	12	0,017	3 480	1 480	22
1000903	17	30	7	0,5	3,5	11	0,018	3 640	1 650	20
1000904	20	37	9	0,5	5	10	0,035	6 550	3 040	18
1000905	25	42	9	0,5	5	12	0,042	7 320	3 680	15
1000906	30	47	9	0,5	5	13	0,049	7 590	3 990	13
1000907	35	55	10	1,0	5,95	13	0,086	10 400	5 650	11
1000908	40	62	12	1,0	6,35	14	0,11	12 200	6 920	10
1000909	45	68	12	1,0	7,14	13	0,15	14 300	8 130	9
1000911	55	80	13	1,5	6,35	18	0,19	16 000	10 000	7,5
1000912	60	85	13	1,5	7,14	19	0,26	16 400	10 600	6,3
1000915	75	105	16	1,5	8,73	18	0,38	24 300	16 800	-5,6

Предусмотрены d = 1, 2, 80 + 340 мм.

Особолегкая се	рия диаметт	оов 1. узкая	серия п	OPODRO 7
O COCCUION CO	here werening	POD KS JOHES	· copian in	uspeus /

				•			•	-		
7000101	12	28	7	0,5	4,76	8	0,018	5 070	2 240	26
7000102	15	32	8	0,5	4,76	8	0,025	5 590	2 500	22
7000103	17	35	8	0,5	5,16	9	0,036	6 050	2 800	19
7000104	20	42	8	0,5	-	-	0,06	7 020	3 400	-
7000105	25	47	8	0,5	5,56	11	0,06	7 610	4 000	14

Продолжение табл. 126

Обозначение	d	D	В	r	Шар	ики	Macca,	С, Н	C ₀ , H	n * _{пред} -10-3,
подшипников					D_{w}	z	Kľ			мин-1
7000106	30	55	9	0,5	5,56	14	0,10	11 200	5 850	12
7000107	35	62	9	0,5	5,56	15	0,11	12 400	6 950	10
7000108	40	68	9	0,5	6,35	16	0,13	13 300	7 800	9,5
7000109	45	75	10	1,0	6,35	17	0,17	15 600	9 300	9,0
7000110	50	80	10	1,0	6,35	18	0,18	16 300	10 000	8,5
7000111	55	90	11	1,0	7,14	17	0,28	17 000	11 700	7,5
7000112	60	95	11	1,0	7,14	18	0,29	18 600	12 400	6,7
7000113	65	100	11	1,0	7,14	19	0,34	19 000	13 100	6,3
7000114	70	110	13	1,0	7,94	18	0,45	22 200	15 300	6,0

Предусмотрены $d = 75 \div 280$ мм.

Особолегкая серия диаметров 1, нормальная серия ширин 0

								_		
16	6	17	6	0,5	-	-	0,008	2 200	860	-
17	7	19	6	0,5	3,97	6	0,009	2 200	1 160	34
18	8	22	7	0,5	3,97	7	0,012	3 250	1 340	32
100	10	26	8	0,5	4,76	7	0,019	4 620	1 960	30
101	12	28	8	0,5	4,76	8	0,022	5 070	2 240	26
104	20	42	12	1,0	6,35	9.	0,07	9 360	4 500	17
105	25	47	12	1,0	6,35	10	0,08	11 200	5 600	15
106	30	55	13	1,5	7,14	11	0,12	13 300	6 800	12
107	35	62	14	1,5	7,94	11	0,16	15 900	8 500	10
108	40	68	15	1,5	7,94	12	0,19	16 800	9 300	9,5
109	45	75	16	1,5	8,73	13	0,24	21 200	12 200	9,0
110	50	80	16	1,5	8,73	12	0,25	21 600	13 200	8,5
111	55	90	18	2,0	10,32	13	0,39	28 100	17 000	7,5
112	60	95	18	2,0	11,11	12	0,39	29 600	18 300	6,7
113	65	100	18	2,0	10,32	15	0,45	30 700	19 600	6,3
114	70	110	20	2,0	12,3	13	0,60	37 700	24 500	6,0
115	75	115	20	2,0	12,3	14	0,66	39 700	26 000	5,6
116	80	125	22	2,0	13,5	14	0,85	47 700	31 500	5,3
117	85	130	22	2,0	13,5	14	0,91	49 400	33 500	5,0
118	90	140	24	2,5	14,3	15	1,20	57 200	39 000	4,8
120	100	150	24	2,5	14,3	15	1,29	60 500	41 500	4,3

Предусмотрены $d = 105 \div 360$ мм.

Легкая серия диаметров 2, узкая серия ширин 0

23 24 25 26 27 29	3 4 5 6 7 9	10 13 16 19 22 26	4 5 5 6 7 8	0,3 0,4 0,5 0,5 0,5 1,0	1,59 2,38 3,18 3,97 3,97 4,76	7 6 6 7 7	0,0016 0,003 0,003 0,008 0,013 0,019 0,030	490 900 1 480 2 170 3 250 4 620 5 900	217 415 740 1 160 1 350 1 960 2 650	40 38 36 32 30 26 24
27	7	22	7	0,5	3,97	7	0,013			
29 200	10	30	9	1,0	5,95	6	0,030			
201 202	12 15	32 35	10 11	1,0 1,0	5,56 5,95	7 8	0,037 0,045	7 800	3 550	19
203 204	17 20	40 47	12 14	1,0 1,5	7,14 7,94	7 8	0,060 0,10	9 560 12 700	4 500 6 200	17 15

Продолжение табл. 126

Обозначение	d	D	В	r	Шаг	ики	Macca,	С, Н	C ₀ , H	n *пред · 10-3,
подшипников					D_{w}	z	кг			мин-1
205	25	52	15	1,5	7,94	9	0,12	14 000	6 950	12
206	30	62	16	1,5	9,53	9	0,20	19 500	10 000	10
207	35	72	17	2,0	11,11	9	0,29	25 500	13 700	9
208	40	80	18	2,0	12,7	9	0,36	32 000	17 800	8,5
209	45	85	19	2,0	12,7	9	0,41	33 200	18 600	7,5
210	50	90	20	2,0	12,7	10	0,47	35 100	19 800	7,0
211	55	100	21	2,5	14,29	10	0,60	43 600	25 000	6,3
212	60	110	22	2,5	15,88	10	0,80	52 000	31 000	6,0
213	65	120	23	2,5	16,67	10	0,98	56 000	34 000	5,3
214	70	125	24	2,5	17,46	10	1,08	61 800	37 500	5,0
215	75	130	25	2,5	17,46	11	1,18	66 300	41 000	4,8
216	80	140	26	3,0	19,05	10	1,40	70 200	45 000	4,5
217	85	150	28	3,0	19,84	11	1,80	83 200	53 000	4,3
218	90	160	30	3,0	22,23	10	2,2	95 600	62 000	3,8
220	100	180	34	3,5	25,4	10	3,2	124 000	79 000	3,4

Предусмотрены $d = 105 \div 280$ мм.

Свелияя	CENTIG	лиаметров	3.	Vakad	cenua	ширин	A

34	1 4	16	5	0,5	3,18	6	0,005	1 450	740	35
35	5	19	6	0,5	3,97	6	0,008	2 190	1 160	32
	10	35	11			6	1 ′	8 060	3 750	
300				1,0	7,14		0,05		I .	20
301	12	37	12	1,5	7,94	6	0,06	9 750	4 650	19
302	15	42	13	1,5	7,94	7	0,08	11 400	5 400	17
303	17	47	14	1,5	9,53	6	0,11	13 500	6 650	16
304	20	52	15	2,0	9,53	7	0,14	15 900	7 800	13
305	25	62	17	2,0	11,51	7	0,23	22 500	11 400	11
306	30	72	19	2,0	12,3	8	0,34	28 100	14 600	9
307	35	80	21	2,5	14,29	7	0,44	33 200	18 000	8,5
308	40	90	23	2,5	15,08	8	0,63	41 000	22 400	7,5
309	45	100	25	2,5	17,46	8	0,83	52 700	30 000	6,7
310	50	110	27	3,0	19,05	8	1,08	61 800	36 000	6,3
311	55	120	29	3,0	20,64	8	1,35	71 500	41 500	5,6
312	60	130	31	3,5	22,23	8	1,70	81 900	48 000	5,0
313	65	140	33	3,5	23,81	8	2,11	92 300	56 000	4,8
314	70	150	35	3,5	25,4	8	2,60	104 000	63 000	4,5
315	75	160	37	3,5	26,99	8	3,10	112 000	72 500	4,3
316	80	170	39	3,5	28,58	8	3,60	124 000	80 000	3,8
317	85	180	41	4,0	30,16	8	4,30	133 000	90 000	3,6
318	90	190	43	4,0	31,75	8	5,10	143 000	99 000	3,4
320	100	215	47	4,0	36,51	8	7,00	174 000	132 000	3,0

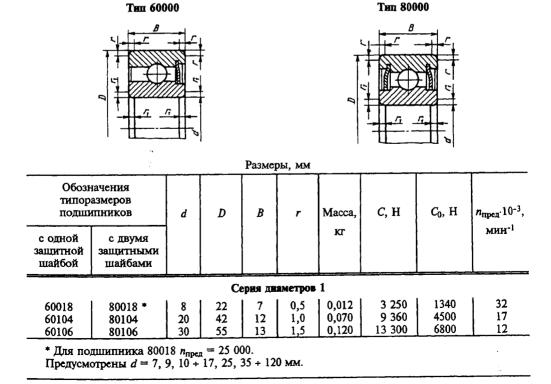
Предусмотрены $d = 110 \div 150$ мм.

T	GWE TOG	cenua	лиаметнов	4	Varag	Cenua	WINDING WILL	Λ

403	17	62	17	2,0	12,7	6	0,27	22 900	11 800	12
405	25	80	21	2,5	16,67	6	0,5	36 400	20 400	9
406	30	90	23	2,5	19,05	6	0,72	47 000	26 700	8,5
407	35	100	25	2,5	20,64	6	0,93	55 300	31 000	7,0

Продолжение табл. 126

Обозначение	d	D	В	r	Шар	ики	Macca,	С, Н	C ₀ , H	n*пред 10-3,
подшипников					D_{w}	z	кг			мин-1
408	40	110	27	3,0	22,23	6	1,20	63 700	36 500	6,7
409	45	120	29	3,0	23,02	7	1,52	76 100	45 500	6,0
410	50	130	31	3,5	25,4	7	1,91	87 100	52 000	5,3
411	55	140	33	3,5	26,99	7	2,3	100 000	63 000	5,0
412	60	150	35	3,5	28,58	7	2,8	108 000	70 000	4,8
413	65	160	37	3,5	30,16	7	3,4	119 000	78 000	4,5
414	70	180	42	4,0	34,93	7	5,3	143 000	105 000	3,8
416	80	200	48	4,0	38,1	7	7,0	163 000	125 000	3,4
417	85	210	52	5,0	39,69	7	8,0	174 000	135 000	3,2
418	90	225	54	5,0	<u> </u>		11,4	186 000	146 000	


* При пластичном смазочном материале.

Примечание. Масса подшипников рассчитана с сепаратором, штампованным из стального листа при плотности стали 7,85 кг/дм³.

Пример обозначения шарикового радиального подшипника особолегкой серии диаметров 1, серии ширин 0 с d=50 мм, D=80 мм, B=16 мм:

Подшипник 110 ГОСТ 8338-75

127. Шариковые радиальные однорядные подшишники с защитными шайбами (по ГОСТ 7242—81)

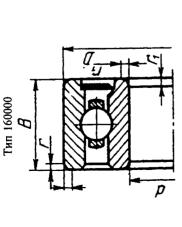
Продолжение табл. 127

типор	ачения азмеров ипников	đ	D	В	r	Масса,	С, Н	<i>C</i> ₀, H	л _{пред} ·10-3,
с одной защитной шайбой	с двумя защитными шайбами					KT			мин ⁻¹
			Ce	рия ди	аметров	2			
60024	80024	4	13	l 5	0,3	0,004	900	415	l 38
60025	80025	5	16	5	0,5	0,006	1 480	740	36
60026	80026	6	19	6	0,5	0,010	2 170	1 160	32
60027	80027	7	22	7	0,5	0,013	3 250	1 350	30
60029	80029	9	26	8	1,0	0,019	4 620	1 960	26
60200	80200	10	30	9	1,0	0,030	'5 900	2 650	24
60201	80201	12	32	10	1,0	0,037	6 890	3 100	22
60202	80202	15	35	11	1,0	0,045	7 800	3 550	19
60203	80203 *1	17	40	12	1,0	0,065	9 560	4 500	17
60204	80204	20	47	14	1,5	0,106	12 700	6 200	15
60205	80205	25	52	15	1,5	0,12	14 000	6 950	12
60206	80206 *2	30	62	16	1,5	0,19	19 500	10 000	10
60207	80207	35	72	17	2,0	0,29	25 500	13 700	9,0
60208	80208 *3	40	80	18	2,0	0,36	32 000	17 800	9,0 8,5
60209	80209	45	85	19	2,0	0,41	33 200	18 600	7,5
60210	80210	50	90	20	2,0	0,46	35 100	19 800	7,0
60212	80212	60	110	22	2,5	0,80	52 000	31 000	6,0
60214	80214	70	125	24	2,5	1,06	61 800	37 500	5,0
60218	80218	90	160	30	3,0	2,20	95 600	62 000	-
60220	80220	100	180	34	3,5	3,16	124 000	79 000	3,4

^{*1} Для подшипника 80203 $n_{\text{пред}} = 12500$ мин-1.

Серия диаметров 3

60302	80302	15	42	13	1,5	0,08	11 400	5 400	17
60303	80303	17	47	14	1,5	0,11	13 500	6 650	16
60305	80305	25	62	17	2,0	0,23	22 500	11 400	11
60306	80306	30	72	19	2,0	0,34	28 100	14 600	9
60307	80307	35	80	21	2,5	0,44	33 200	18 000	8,5
60308	80308	40	90	23	2,5	0,64	41 000	22 400	7,5
60309	80309	45	100	25	2,5	0,80	52 700	30 000	6,7
60310	80310	50	110	27	3,0	1,08	61 800	36 000	6,3
60311	80311	55	120	29	3,0	1,37	71 500	41 500	5,6
60314	80314	70	150	35	3,5	2,50	104 000	63 000	4,5


Примечание. Стандарт распространяется на шариковые радиальные подшипники с защитными шайбами серий диаметров: 1; 2; 3 и 9.

Пример обозначения подшипника шарикового радиального однорядного, с одной защитной шайбой, легкой серии диаметров 2 с d=6 мм, D=19 мм и B=6 MM:

^{*2} Для подшипника 80206 $n_{\rm npeq}=8000$ мин⁻¹. *3 Для подшипника 80208 $n_{\rm npeq}=6300$ мин⁻¹. Предусмотрены d=3, 55, 65, 75, 80, 85, 110 ÷ 140 мм.

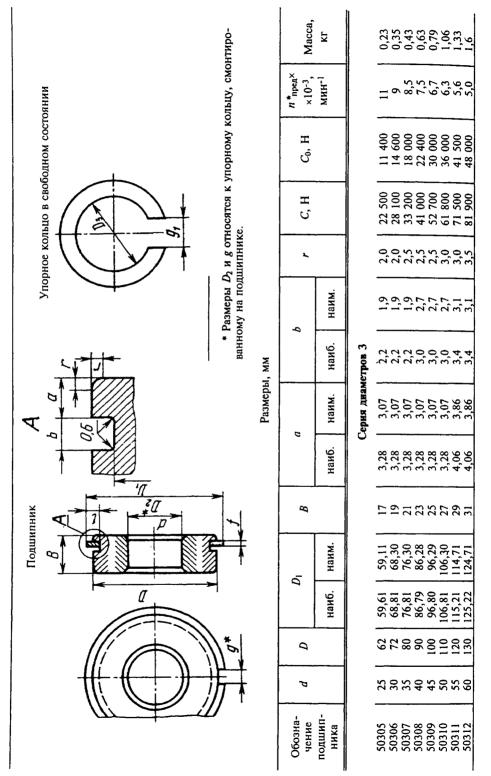
128. Шаряковые радиальные однорядные подшипники с уплотнением (по ГОСТ 8882--75)

Тип 180000

ij

Подшипники типа 160000 допускается изготовлять с кольцами от подшипников типа

Размеры, мм


нрин
серия
Ś
Z
тров 2
днаме
Серия

Обозн	Обозначения подшипнико диаметров 2 и 5 для ти	значения подшипников диаметров 2 и 5 для тип	в серий пов	p	Q	В для серий диаметров	для серий (иаметров	,		Macca,	C, H	С ₀ , н	С, Н	С, Н	$n_{\rm npe, q} \cdot 10^{-3}$,
160	000091	180	000			2	5			Kr	серия 2	серия 2	серия 5	серия 5	мин-і
160200	160500	180200	180500	02	99	6	41	1.0	0.5	0,05	5 900	2 650	5 900	2 650	1
160201	160501	180201	180501	12	32	0.7	14	1.0	0,5	90,0	068 9	3 110	068 9	3 100	15
160202	160502	180202	180502	15	35	=	4	0.1	0,5	90,0	7 800	3 550	7 800	3 550	ì
160203	160503	180203	180503	17	40	12	91	1,0	0,1	80,0	9 560	4 500	095 6	4 500	12
160204	160504	180204	180504	20	47	14	81	1,5	1,5	0,14	12 700	6 200	12 700	6 200	10
160205	160505	180205	180505	25	52	15	18	1,5	1,5	0,15	14 000	6 950	14 000	056 9	8,5
160208	160508	180208	180508	40	80		23	2,0	2,0	0,45	32 000	17 800	32 000	17 800	5,6

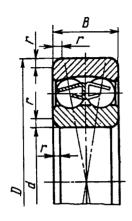
Пример обозначения однорядного радиального шарикового содним углотнением подшипника серии диаметpob 2 c d = 25 MM, D = 52 MM; B = 15 MM:

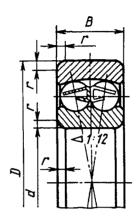
Подшиник 160205 ГОСТ 8882—75

129. Радиальные однорядные шарикоподшипники со стопорной канавкой на наружном кольце н кольца упорные по ГОСТ 2893-82

Продолжение табл. 129

n*mpea× ×10-3, Macca,				6,7 5,3 1,88 4,8 2,80			81	(отклонение по H14)		2.6	3,6	3,6	3,6	3,6	3,6	5,3	5.3	5,3	
С, н				52 000 70 000			8	<u>8</u>		4	5	5	5	5	5	7	7	7	
г, С, Н			47	5 87 100 5 108 000				наим.	4	1.60	1,60	1,60	2,36	2,36	2,36	2,72	2,72	2,72	
	наим.			3,1 3,5 3,1 3,5 3,1 3,5	ИИНКО.		f	наиб.	Средняя серия диаметров 3, тяжелая серия диаметров			-		2,46					
9	наиб.	етров 4	3,0	3,4,6,	бодном сост	MM			гжелая сери		_	_		-	7		2	2	
a	наим.	Серия диаметров 4	3,07	3,86	пьца в своб	Размеры, мм	1	наим.	етров 3, тя	3,89	4,70	4,70	4,70	4,70	4,70	7,06	7,06	7,06	
	наиб.		3,28	4,06	Упорные кольца в свободном состоянии			наиб.	серия диам	4,04	4,85	4,85	4,85	4,85	4,85	7,21	7,21	7,21	
В			23	32 32	,			ż	Средняя		9	9			_	~	<u>~</u>	_	
D_1	наим.		86,28	124,71			Dz	наим.		58,	(22)	75,	85,	95,4	105,	113,	123,	143,	
7	наиб.		86,79	125,22				наиб.		9,65	68,2	76,2	86,2	96,2	106,2	114,6	124,6	144,5	
Q			8 2	130							9	9	<u>-</u>	<u>~</u>	<u> </u>	_			
p			30	0,09			la Di			67,	78,	98	96	106,5	116,	129,	139,	159,	
Обозна- чение	подшип- ника		50406 50408	50410 50412			Q			62	72	08	8	100	011	120	130	150	


40 MM, H ø ပ Обозначение радиального однорядного шарикоподшилника со стопорной канавкой на наружном кольце серии 3 = 90 мм, $B \approx 23$ мм:


Подшиник 50308 ГОСТ 2893-82

130. Радиальные сферические двухрядные шарикоподшинники (по ГОСТ 28428—90)

Тип 1000 с цилиндрическим отверстием

Тип 111000 с коническим отверстием

Размеры, мм

	ачения пников па	d	D	В	r	Шар	ики	С, Н	C ₀ , H	n _{пред} ·10-3, мин ⁻¹	Macca *, кг
1000	111000					D_{w}	z		<u>.</u>		
				Сер	ия диа	іметров	2, сери	я ширин О			
1005		5	19	6		3,18	8	2 150	540	32	0,009
1006		6	19	6		3,18	8	2 150	540	32	0,009
1007	-	7	22	7	0,5	3,18	10	2 650	655	30	0,014
1008		8	22	7		3,18	10	2 650	655	30	0,014
1009		9	26	8		3,97	9	3 900	930	26	0,022
1200		10	30	9		4,76	9	5 530	1 370	24	0,033
1201	_	12	32	10	1,0	4,76	10	5 590	1 500	22	0,040
1202		15	35	11		5,56	10	7 410	2 040	19	0,050
1203		17	40	12		5,56	12	7 930	2 420	18	0,073
1204	111204	20	47	14		6,35	12	9 950	3 180	15	0,12
1205	111205	25	52	15	1,5	6,14	12	12 100	4 000	13	0,14
1206	111206	30	62	16		7,94	14	15 600	5 800	10	0,22
1207	111207	36	72	17		7,94	16	15 900	6 600	9	0,32
1208	111208	40	80	18		8,73	17	19 000	8 550	8,5	0,42
1209	111209	45	85	19	2,0	9,53	16	21 600	9 600	7,5	0,47
1210	111210	50	90	20		9,53	18	22 900	10 800	7,0	0,53

Продолжение табл. 130

Обозна подши ти	пников	d	D	В	r	Шар	ики	С, Н	C ₀ , H	л _{пред} ·10 ^{-?} , мин ⁻¹	Macca *,
1000	111000					D_{w}	z				
1211 1212	111211 111212	55 60	100 110	21 22		10,32 11,11	19 19	26 500 30 200	13 300 15 500	6,3 5,6	0,71 0,90
1213	111213	65	120	23	2,5	11,11	21	31 200	17 200	5,3	1,15
1214	111214	70	125	24		11,9	20	34 500	18 700	5,0	1,26
1215	111215	75	130	25		12,7	20	39 000	21 500	4,8	1,36
1216 1217	111216 111217	80 85	140 150	26 28	3,0	12,7 14,29	22 21	39 700 48 800	23 500 28 500	4,5 4,0	1,67 2,10
1218	111218	90	160	30		15,86	19	57 200	32 000	3,8	2,52
1220 1222	111220 111222	100 110	180 200	34 38	3,5	17,46 19,84	20 20	68 900 88 400	40 500 52 000	3,4 3,0	3,70 5,15
	'		'	•	C	ерия ди	аметрог	s 5		ı	1
1506	111506	30	62	20	1,5	7,94	14	15 300	5 700	9,5	0,26
1507	111507	35	72	23	2,0	9,53	14	21 600	8 200	8,5	0,40
1508	111508	40	80	23	2,0	9,53	16	22 500	9 450	7,5	0,50
1509	111509	45	85	23	2,0	9,53	18	23 400	10 700	7,0	0,54
1510	111510	50	90	23	2,0	9,53	19	23 400	11 500	6,3	0,59
1511	111511	55	100	25	2,5	-	-	26 500	13 400	_	0,81
1512	111512	60	110	28	2,5	-	-	33 800	16 600		1,09
1513	111513	65	120	31	2,5	-	-	43 600	21 600	_	1,46
					C	ерия ди	аметроі	s 3			
1300		10	35	11	1,0	5,56	9	7 250	2 000	18	0,06
1301		12	37	12		6,35	9	9 360	2 600	18	0,07
1302		15	42	13	1,5	6,35	10	9 560	2 800	17	0,09
1303		17	47	14		7,14	11	12 500	3 660	14	0,13
1304	111304	20	52	15		7,14	12	12 500	3 660	12	0,16
1305	111305	25	62	17	2,0	8,73	12	17 800	6 000	9,5	0,26
1306	111306	30	72	19		9,53	13	21 200	7 700	9,0	0,39
1307	111307	35	80	21		10,32	14	25 100	9 800	7,5	0,51
1308	111308	40	90	23	2,5	11,11	15	29 600	12 200	6,7	0,71
1309	111309	45	100	25		12,7	15	37 700	15 900	6,3	0,96

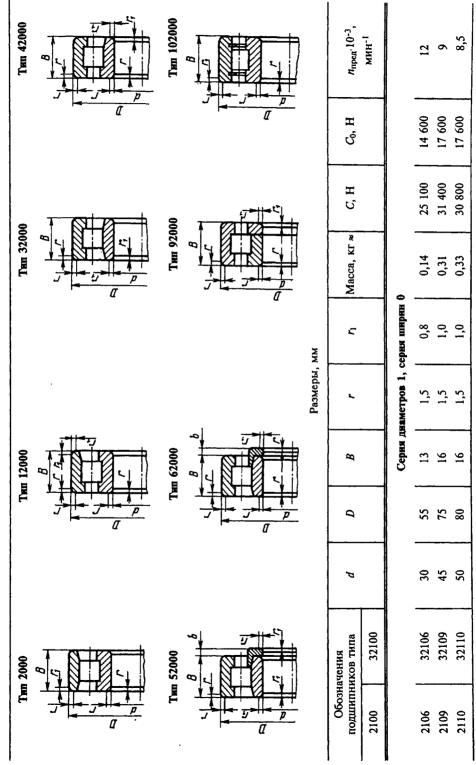
Продолжение табл. 130

Обозна подши ти		đ	D	В	r	Шаг	рики	С, Н	C ₀ , H	n _{пред} ·10 ⁻³ , мин ⁻¹	Macca *,
1000	111000					D_{w}	z				
1310	111310	50	110	27	3,0	14,29	13	43 600	17 500	5,6	1,21
1311	111311	55	120	29		15,08	15	50 700	22 500	5,0	1,58
1312	111312	60	130	31	3,5	15,88	16	57 200	26 500	4,5	1,96
1313	111313	65	140	33		16,67	16	61 800	29 500	4,3	2,5
1314	111314	70	150	35		18,26	16	74 100	35 500	4,0	3,0
1315	111315	75	160	37		19,05	16	79 300	38 500	3,8	3,6
1316	111316	80	170	39		20,64	16	88 400	42 000	3,6	4,2
1317	111317	85	180	41	4,0	21,43	16	97 500	48 500	3,4	5,0
1318	111318	90	190	43		23,81	15	117 000	56 000	3,2	5,8
1320	111320	100	215	47		26,99	15	133 600	64 000	2,8	8,3
					C	ерия ди	аметроі	в 6			
1605 1606	111605	25 30	62 72	24 27	2,0	10,32 11,91	11 11	24 200 31 200	7 500 10 000	9,5 8,5	0,34 0,50
1607	111607	35	80	31	2,5	13,49	11	39 700	12 900	7,0	0,68
1608	111608	40	90	33		14,29	12	44 900	15 700	6,3	0,93
1609	111609	45	100	36		15,08	12	54 000	19 400	5,6	1,23
1610	111610	50	110	40	3,0	17,46	12	63 700	23 600	5,3	1,61
1611	111611	55	120	43		19,05	12	76 100	28 000	4,5	2,10
1612	111612	60	130	46	3,5	20,64	12	87 100	33 000	4,0	2,60
1613	111613	65	140	48		21,43	13	95 600	38 500	3,6	3,20
1614	111614	70	150	51		23,02	13	111 000	44 500	3,2	3,92
1616	111616	80	170	58		26,99	13	135 000	58 000	2,6	6,10

Пример обозначения двухрядного сферического радиального шарикового подшипника типа 1000, серии диаметров 3 с d=35 мм, D=80 мм, B=21 мм:

Подшипник 1307 ГОСТ 28428-90

^{*} Масса приведена для подшипников типа 1000.


Продолжение табл. 130

	— Т					Расчетные	Tanal (ern)	· · · · · · · · · · · · · · · · · · ·	
	нчения Пников	Шар	ики	—— —т			параметры		
ти				e	<u> </u>	<i>'</i>	Y_0	λ	(
1000	111000	D_{w}	z		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
			J	Тегкая сер	ия диамет	ров 2			
1005		3,18	8	0,34	1,87	2,90	1,96	1	
1006		3,18	8	0,34	1,87	2,90	1,96		
1007		3,18	10	0,33	1,89	2,92	1,98		
1008		3,18	10	0,33	1,89	2,92	1,98		
1009		3,97	9	0,33	1,87	2,89	1,95		
1200	l	4,76	9	0,32	1,96	3,03	2,05		
1201	-	4,76	10	0,33	1,88	2,92	1,97		
1202		5,56	10	0,33	1,90	2,94	1,99	1	
1203		5,56	12	0,31	2,05	3,18	2,15		
1204	111204	6,35	12	0,27	2,31	3,57	2,42	Ì	
1205	111205	6,14	12	0,27	2,32	3,60	2,44		
1206	111206	7,94	14	0,24	2,58	3,99	2,70		
1207	111207	7,94	16	0,23	2,74	4,24	2,87		
1208	111208	8,73	17	0,22	2,87	4,44	3,01		
1209	111209	9,53	16	0,21	2,97	4,60	3,11		
1210	111210	9,53	18	0,21	3,13	4,85	3,28	1,0	0,65
1211	111211	10,32	19	0,20	3,20	5,00	3,39		
1212	111212	11,11	19	0,19	3,40	5,27	3,57		
1213	111213	11,11	21	0,17	3,70	5,73	3,88		
1214	111214	11,9	20	0,18	3,50	5,43	3,68		
1215	111215	12,7	20	0,18	3,60	5,57	3,77		
1216	111216	12,7	22	0,16	3,90	6,10	4,13		
1217	111217	14,29	21	0,17	3,69	5,71	3,87		
1218	111218	15,86	19	0,17	3,76	5,82	3,94		
1220	111220	17,46	20	0,17	3,63	5,63	3,81		
1222	111222	19,84	20	0,17	3,64	5,64	3,82		
				Серия	диаметров	5			
1506	111506	7,94	14	0,39	1,59	2,47	1,68	!	
1507	111507	9,53	14	0,37	1,69	2,62	1,77		
1508	111508	9,53	16	0,33	1,90	2,94	1,99		İ
1509	111509	9,53	18	0,31	2,06	3,19	2,16		0.55
1510	111510	9,53	19	0,29	2,20	3,41	2,31	1,0	0,65
1511	111511	-	-	-	-	-	-	Ì	
1512	111512	-	-	-	-	-	i -		
1513	111513	-	-	_	<u> </u>				<u> </u>

Продолжение табл. 130

Обозн	ачения					Расчетные	параметр	ы	
	пников па	Шар	оики	e		Y	<i>Y</i> ₀		X
1000	111000	D_{w}	z		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
_	_			Серия	диаметров	3			
1300		5,56	9	0,33	1,91	2,96	2		
1301	_	6,35	9	0,35	1,81	2,80	1,90		
1302 1303		6,35 7,14	10 11	0,33 0,33	1,89 1,92	2,92 2,97	1,98 2,01		
1304 1305	111304 111305	7,14 8,73	12 12	0,29 0,28	2,17 2,26	3,35 3,49	2,27 2,36		
1305	111305	9,53	13	0,28	2,46	3,80	2,58		
1307	111307	10,32	14	0,25	2,57	3,98	2,69		
1308	111308	11,11	15	0,23	2,61	4,05	2,74		
1309	111309	12,7	15	0,25	2,54	3,93	2,66		
1310	111310	14,29	13	0,24	2,68	4,14	2,80	1,0	0,65
1311	111311	15,08	15	0,23	2,70	4,17	2,82		
1312	111312	15,88	16	0,23	2,80	4,33	2,93		
1313	111313	16,67	16	0,23	2,79	4,31	2,92		
1314	111314	18,26	16	0,22	2,81	4,35	2,95		
1315	111315	19,05	16	0,22	2,84	4,39	2,97		
1316	111316	20,64	15	0,22	2,92	4,52	3,06		
1317	111317	21,43	16	0,22	2,90	4,49	3,04		
1318	111318	23,81	15	0,22	2,82	4,36	2,95		
1320	111320	26,99	15	0,24	2,67	4,14	2,80		
1.60.5	1		1		диаметров				1
1605 1606	111605	10,32	11	0,47	1,34	2,07	1,40		
1000	111606	11,91	11	0,44	1,43	2,22	1,50		
1607	111607	13,49	11	0,46	1,36	2,11	1,43		
1608	111608	14,29	12	0,43	1,46	2,25	1,52		
1609	.111609	15,08	12	0,42	1,51	2,33	1,58		
1610	111610	17,46	12	0,43	1,48	2,29	1,55	1,0	0,65
1611	111611	19,05	12	0,41	1,52	2,35	1,60		
1612	111612	20,64	12	0,41	1,56	2,41	1,63		
1613	111613	21,43	13	0,38	1,65	2,55	1,73		
1614	111614	23,02	13	0,38	1,68	2,59	1,76		
1616	111616	26,99	13	0,37	1,68	2,61	1,76		

131. Роликовые радивальные подшининия с короткими цилиндрическими роликами (по ГОСТ 8328—75)

Продолжение табл. 131

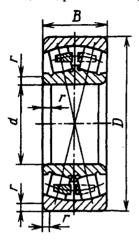
ипред 10-3,	MKH-I	1,5	6,3	0,9	5,3	4,8		л _{пред} . 10-3,	мин-1		19	17	15	12	10	6	8,5	7,5	7,0	6,3	5,6	5,3	5,0	4,8
С, н		23 600	26 500	36 000	44 000	26 000		С, Н			6 400	7 100	12 600	15 200	19 600	26 500	29 500	35 000	37 500	49 000	53 500	99 200	71 000	81 500
С, Н		34 700	38 000	56 100	000 99	006 08		C*, H			12 500	17 200	25 100	28 600	38 000	48 400	53 900	60 500	64 400	84 200	93 500	106 000	119 000	130 000
Масса, кг ≈		0,45	0,51	0,70	1,00	1,35		Масса, кг ≈			0,07	0,07	0,11	0,13	0,20	0,29	0,37	0,43	0,48	0,64	0,82	1,05	1,15	1,25
7		5,1	1,5	5,1	5,1	7,0		5		ширин 0	0,5	5,0	1,0	0,1	1,0	0,1	2,0	2,0	2,0	2,0	2,5	2,5	2,5	2,5
								1		серня	0,1	1,0	1,5	1,5	1,5	2,0	2,0	2,0	2,0	2,5	2,5	2,5	2,5	2,5
		2,0	2,0	2,0	2,0	2,5		В		Серия диаметров 2,	=	12	14	15	16	17	<u>«</u>	19	70	21	22	23	24	25
								a		диаме	35	4	47	52	62	72	8	85	8	001	011	120	125	130
B		17	81	20	22	24		p		Сериз	15	17	20	25	30	35	9	45	20	55	9	65	70	75
q		06	100	011	125	140			102200		1	102203	102204	102205	102206	102207	102208	102209	102210	102211	102212	102213	102214	102215
							MM.	тников типа	92200		1	92203	92204	92205	92206	92207	92208	92209	92210	92211	92212	92213	92214	92215
p		55	65	0/	80	06	95 + 500 мм.		42200		42202	42203	42204	42205	42206	42207	42208	42209	42210	42211	42212	42213	42214	42215
ия 3 типа	32100	32111	32113	32114	32116	32118	d = 20,95	Обозначения подши	32200		32202	32203	32204	32205	32206	32207	32208	32209	32210	32211	32212	32213	32214	32215
Обозначения подшипников типа				 -			Предусмотрены $d =$	Обознач	12200		12202	12203	12204	12205	12206	12207	12208	12209	12210	12211	12212	12213	12214	12215
Оподп	2100	2111	2113	2114	2116	2118	Преду		2200		2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215

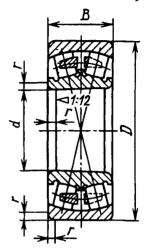
Продолжение табл. 131

																					
ипред. 10-3,	MKH ⁻¹	4,5	4,3	3,8	3,4		ппред 10-3,	мин-1		5,6	8,5	8,0	6,7	6,3	5,6	5,0	4,8	4,5	4,0	3,8	3,6
Co.*, H		87 000	108 000	120 000	170 000		С*, Н			23 200	26 000	35 000	44 500	26 000	70 500	87 500	000 86	107 000	124 000	149 000	163 000
-							H,£			40 200	51 200	64 400	80 900	000 66	110 000	138 000	151 000	183 000	205 000	242 000	260 000
C * H		138 000	165 000	183 000	251 000		Macca,	KΓ ≈		0,24	0,36	0,48	99,0	0,87	1,15	1,45	1,85	2,25	2,75	3,25	3,9
Macca, Kr ≈		1,50	1,90	2,30	3,40		r = r			2,0	2,0	2,5	2,5	2,5	3,0	3,0	3,5	3,5	3,5	3,5	3,5
		0			5		p		0 HH	4	5	9	7	7	∞	6	6	9	01	Ξ	=
		3,0	3,0	3,0	3,5		В	•••	ими в	17	61	21	23	25	27	29	31	33	35	37	39
		3,0	3,0	3,0	3,5		l a		серия	62	72	- 08	8	001	011	120	130	- 140	051	091	170
В		97	28	30	34		-		ров 3,	_				<u>=</u>	=			<u> </u>	- 15	9 <u>1</u>	-12
q		140	150	160	180		P		намет	25	30	35	40	45	20	55	09	65	5	75	80
p		08	85	8	100	:		102300	Серия диаметров 3, серия ширин	102305	102306	102307	102308	102309	102310	102311	102312	102313	102314	102315	102316
	102200	102216	1	1	_	:	па	92300		92305	92306	92307	92308	92309	92310	92311	92312	92313	92314	92315	92316
иков типа	92200	92216	92217	92218	92220	CTb. M.	ников ти	62300		62305	62306	62307	62308	62309	62310	62311	62312	62313	62314	62315	62316
шипник	42200	42216	42217	42218	42220	одъемност 05÷320 мм.	я подшиг	42300		42305	42306	42307	42308	42309	42310	42311	42312	42313	42314	42315	42316
Обозначения подшипн	32200	32216	32217	32218	32220	ая грузоп ны d = 1	Обозначения подшипников типа	32300		32305	32306	32307	32308	32309	32310	32311	32312	32313	32314	32315	32316
Обознач	12200	12216	12217	12218	12220	* Повышенная грузоподъемность. Предусмотрены $d = 105+320$ мм.	Ö	12300		12305	12306	12307	12308	12309	12310	12311	12312	12313	12314	12315	12316
	2200	2216	2217	2218	2220	эd П *		2300		2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316

۰	$\overline{}$
Ć	\sim
١	~
	9
١	ci.
	\boldsymbol{z}
	7
	~
	e
	3
	z
	o,
	¥
	2
	8
	$\tilde{\sigma}$
	ĕ
	ã.
١	$\overline{}$

<u>U</u>								11	ЭДШ	ипн	NIK	и											
	n 10-3	MKH ⁻¹	3,4	3.2	2,8	2,4		10-3	"inpca" to ', MMH-1		6	. ∞	7	6,3	5,6	5,0	8,8	4,3	4,0	3,8	3,4	3,2	
•	H S		190 000	206 000	250 000	310 000		H *5			34 500	46 500	61 000	75 000	95 000	114 000	143 000	160 000	180 000	200 000	245 000	265 000	
	± δ		297 000	319 000	391 000	468 000		∄	;		26 100	73 700	91 300	112 000	138 000	161 000	201 000	224 000	251 000	275 000	330 000	358 000	
	Macca.	KΓ≈	4,5	5.4	7.7	10,5		Macca	KΓ ≈		0,34	0,50	0,70	96,0	1,25	1,70	2,1	2,7	3,25	3,95	4,85	5,85	1
	7 = 7		4,0	4.0	4,0	4,0		11 1			2,0	2,0	2,5	2,5	2,5	3,0	3,0	3,5	3,5	3,5	3,5	3,5	4
	q		12	12	13	4		4	·	ин 0	ı	1	j			∞	6	6	10	01	Ξ	11	
	В		41	43	47	50		8		диш кис	24	27	31	33	36	40	43	46	48	51	55	58	
	a		180	190	215	240		Q		B 6, cel	62	72	80	06	100	110	120	130	140	150	091	170	
	p		85	8	100	110		q		аметро	23	30	35	40	45	20	55	09	65	2	75	80	
		102300	102317	102318	i	ı			92600	Серия диаметров 6, серия ширин 0	92605	93606	92607	80976	60976	92610	92611	92612	92613	92614	92615	92616	1
	ипа	92300	92317	92318	92320	92322	Ž.	ша	62600		1	I	J	1	1	62610	62611	62612	62613	62614	62615	91929	
	ипников типа	62300	62317	62318	62320	62322	ость. 20 ÷ 300 мм.	ипников типа	52600		1	1		ı	1	52610	52611	52612	52613	52614	52615	52616	1
	ишдоп к	42300	42317	42318	42320	42322	юдъемно 15, 17, 12	я подшиг	42600		42605	42606	42607	42608	42609	42610	42611	42612	42613	42614	42615	42616	1
	Обозначения подш	32300	32317	32318	32320	32322	ая грузоп ены <i>d</i> =	Обозначения подши	32600		32605	32606	32607	32608	32609	32610	32611	32612	32613	32614	32615	32616	
	00	12300	12317	12318	12320	12322	* Повышенная грузоподъемность. Предусмотрены $d=15, 17, 120$ +	90	12600		12605	12606	12607	12608	12609	12610	12611	12612	12613	12614	12615	12616	
		2300	2317	2318	2320	2322	П * Пр		2600		2605	5606	2607	2608	5609	2610	2611	2612	2613	2614	2615	2616	


Продолжение табл. 131


	8	Обозначения подшипников типа	и подшип	іников ти	та		P	q	В	P	7 = 7	Macca,	Э, H	С, н	лпред. 10-3,
2600	12600	32600	42600	52600	62600	92600	-					KT ≈			мин-1
2617	12617	32617	42617	52617	62617	92617	85	180	09	12	4,0	09'9	ı	1	3,0
2618	12618	32618	42618	52618	62618	92618	8	190	64	12	4,0	7,90	440 000	325 000	2,8
2620	12620	32620	42620	52620	62620	92620	801	215	73	13	4,0	12,00	583 000	450 000	2,4
* IIo	* Повышенная грузоподъемность. Предусмотрены $d=20,\ 110+300$	я грузопо. к $d = 20$,	цъемность. 110 + 300 мм.	ь.) мм.											
	8	Обозначения подшипников типа	подшип	ников ти	ша		p	q	В	P	r = r ₁	Macca,	G, H	С, Н	ипред. 10-3,
2400	32400	42400	62400	92400		102400		-				Kľ ≈			мин-1
						Серня диаметров 4, серня ширин	аметро	8 4, cep	ня шир	0 18					
2408	32408	42408	62408	92408		102408	40	110	27	∞	<u>س</u>	1,30	008 96	27 000	ì
2409	32409	42409	62409	92409		102409	45	120	53	∞	т.	1,65	106 000	69 500	5,6
2410	32410	42410	62410	92410		102410	20	130	31	6	3,5	2,0	130 000	86 500	5,0
2411	32411	42411	62411	92411		102411	55	140	33	01	3,5	2,5	142 000	86 500	4,8
2412	32412	42412	62412	92412		102412	09	150	35	10	3,5	3,0	168 000	106 000	4,3
2413	32413	42413	62413	92413		102413	65	160	37	11	3,5	3,6	183 000	127 000	4,0
2414	32414	42414	62414	92414		102414	70	180	42	12	4	5,25	229 000	163 000	3,6
2415	32415	42415	62415	92415		102415	75	190	45	13	4	6,25	264 000	173 000	3,4
2416	32416	42416	62416	92416		102416	80	200	48	13	4	7,3	303 000	200 000	3,2
2417	32417	42417	62417	92417		ı	85	210	52	14	5	8,7	319 000	228 000	3,0
2418	32418	42418	62418	92418		ı	96	225	54	14	5	5,01	385 000	260 000	2,8
2420	32420	42420	62420	92420	_	-	100	250	58	91	5	14,0	429 000	320 000	2,4
Пред	Предусмотрены $d = 30, 35,$	d = 30,		105 + 240 мм.											
При	Пример о	обозначени	5	подшипника	тника	типа 32100 с $d=30$ мм; $D=55$ мм; $B=13$ мм:	100 c d	= 30 M	м; D =	55 MM;	B = 13	MM:			
						Подшипник 32106 ГОСТ 8328—75	чик 321	DO FOC	T 8328-	-75					

132. Родиковые радиальные сферические двухрядные подшилники (по ГОСТ 5721—75)

Тип 3000 с цилиндрическим отверстием

Тип 113000 с коническим отверстием

Размеры, мм

	начение ников типа	d	D	В	r	Macca,	С, Н	C ₀ , H	n _{пред} .10-3,
3000	113000					KΓ≈			мин ⁻¹
			Серг	я днаме	тров 5,	серня шиј	онн О		
3508	113508	40	80	23	2,0	0,58	57 000	33 300	4,5
3509	113509	45	85	23	2,0	0,60	64 000	35 000	4,3
3514	113514	70	125	31	2,5	1,67	132 000	93 800	2,6
3516	113516	80	140	33	3,0	2,20	160 000	118 000	2,2
3518	113518	90	160	40	3,0	3,55	216 000	159 000	1,9
3520	113520	100	180	46	3,5	5,20	275 000	212 000	1,8
3522	113522	110	200	53	3,5	7,50	355 000	276 000	1,7
3524	113524	120	215	58	3,5	9,30	415 000	325 000	1,6

Предусмотрены $d = 130 \div 400$ мм.

Cenua	лиаметнов	6 cenua	типрии Л

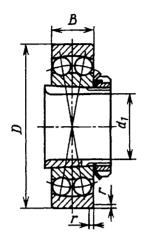
3608	113608	40	90	33	2,5	1,03	95 000	64 900	4,3
3609	113609	45	100	36	2,5	1,4	114 000	74 800	3,8
3610	113610	50	110	40	3,0	1,9	150 000	101 000	3,4
3611	113611	55	120	43	3,0	2,4	170 000	118 000	3,0
3612	113612	60	130	46	3,5	3,1	196 000	128 000	2,8
3613	113613	65	140	48	3,5	3,7	220 000	142 000	2,4
3614	113614	70	150	51	3,5	4,35	270 000	181 000	2,2
3615	113615	75	160	55	3,5	5,4	300 000	207 000	2,0
3616	113616	80	170	58	3,5	6,6	325 000	227 000	1,9
3617	113617	85	180	60	4,0	7,4	365 000	270 000	1,8

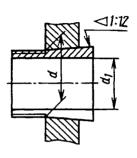
Продолжение табл. 132

	начение ников типа	d	D	В	r	Macca,	С, Н	C ₀ , H	n _{пред} ·10-3,
3000	113000					KT ≈			мин-1
3618	113618	90	190	64	4,0	9,3	400 000	300 000	1,8
3620	113620	100	215	73	4,0	13,0	520 000	410 000	1,7
3622	113622	110	240	80	4,0	18,2	610 000	470 000	1,5

Предусмотрены $d = 120 \div 400$ мм.

	ачение			Расчетные	параметры		
подшипн	иков типа			Y		λ	ζ
3000	113000	е	$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$	<i>Y</i> ₀	$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
		Сери		5, серия шир	мн О		
3508	113508	0,321	2,1	3,13	2,06		İ
3509	113509	0,293	2,26	3,36	2,21		
3514	113514	0,270	2,51	3,74	2,46		
3516	113516	0,25	2,68	4	2,63	1,0	0,67
3518	113518	0,27	2,54	3,77	2,48		
3520	113520	0,27	2,47	3,68	2,41		
3522	113522	0,28	2,39	3,55	2,33		
3524	113524	0,29	2,38	3,51	2,31		
		Серия	я диаметров	6, серия шир	ин О		
3608	113608	0,42	1,61	2,4	1,58		
3609	113609	0,41	1,67	2,5	1,62		•
3610	113610	0,42	1,62	2,42	1,59		
3611	113611	0,41	1,66	2,47	1,62		
3612	113612	0,4	1,68	2,5	1,64		
3613	113613	0,37	1,8	2,69	1,77		
3614	113614	0,37	1,81	2,7	1,78	1,0	0,67
3615	113615	0,38	1,78	2,65	1,74		
3616	113616	0,36	1,88	2,81	1,84		
3617	113617	0,37	1,84	2,74	1,8		
3618	113618	0,37	1,83	2,72	1,79		
3620	113620	0,37	1,81	2,7	1,77		
3622	113622	0,37	1,83	2,72	1,79		


Пример обозначения двухрядного сферического радиального роликового подшипника средней серии диаметров 6, широкой серии ширин 0 с d=110 мм, D=240 мм, B=80 мм:


Подшипник 3622 ГОСТ 5721-75

133. Шариковые двухрядные подпинники с закрепительными втулками (по ГОСТ 8545—75)

Тип 11000

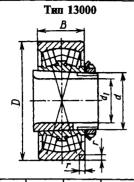
Закрепительная втулка

Размеры, мм

Обозна подши для с диам	тников ерии	d_1	đ	D	рии	я се- диа- ров	r	Шар	ики	С, Н	C ₀ , H	n _{пред} ·10 ⁻³ , мин ⁻¹	Масса, кт
2; 3	5; 6	<u> </u>			2; 3	5; 6		D_{w}	z				
				Ce	рия ди	аметр	ов 2 н	5, cep	RIO RH	прила О			
11204	_	20	25	52	15	-	1,5	6,14	12	12 100	4 000	13,0	0,21
11205	11505	25	30	62	16	20	1,5	7,94	14	15 600	5 800	10,0	0,31
11206	11506	30	35	72	17	23	2,0	7,94	16	15 900	6 600	9,0	0,45
11207	11507	35	40	80	18	23	2,0	8,73	17	19 000	8 550	8,5	0,61
11208	11508	40	45	85	19	23	2,0	9,53	16	21 600	9 600	7,5	0,71
11209	11509	45	50	90	20	23	2,0	9,53	18	22 900	10 800	7,0	0,81
11210	11510	50	55	100	21	25	2,5	10,32	19	26 500	13 300	6,3	1,04
11211*	_	55	60	110	22	–	2,5	11,11	19	30 200	15 500	5,6	1,29
11212*	11512	60	65	120	23	31	2,5	11,11	21	31 200	17 200	5,3	1,61
11213	_	65	75	130	25	-	2,5	12,70	20	39 000	21 500	4,8	2,2
11214	11514	70	80	140	26	33	3,0	12,70	22	39 700	23 500	4,5	2,7
11215	_	75	85	150	28	-	3,0	14,29	21	48 800	28 500	4,0	3,3
11216*	11516	80	90	160	30	40	3,0	15,86	19	57 200	32 000	3,8	3,9
11217	-	85	95	170	32	-	3,5	-	_	63 700	37 000	3,6	4,6
11218	11518	90	100	180	34	46	3,5	17,46	20	68 900	40 500	3,4	5,5
11220		100	110	200	38	_	3,5	19,84	20	74 100	44 000	3,0	7,4

Продолжение табл. 133

Обозна подшит для с диаме	тников ерии	d_1	d	D	рии	я се- диа- ров	r	Шар	ики	С,	н	C_0 , 1	н	n _{пред} ·10 мин⁻¹		Macca, Kr
2; 3	5; 6				2; 3	5; 6		D_{w}	z		}					
				Ce	рия ди	аметро	ов 3 и	6, сер	HI DIE	рин ()	***				
11305	11605	25	30	72	19	27	2,0	9,53	13	21	200	7 7	00	9,0		0,5
11306	11606	30	35	80	21	31	2,5	10,32	14	25	100	9 8	00	7,5		0,67
11307	11607	35	40	90	23	33	2,5	11,11	15	29	600	12 2	00	6,7		0,91
11308	11608	40	45	100	25	36	2,5	12,70	15	37	700	15 9	00	6,3		1,19
11309	11609	45	50	110	27	40	3,0	14,29	13	43	600	17 5	00	5,6		1,49
11310	11610	50	55	120	29	43	3,0	15,08	15	50	700	22 5	00	5,0		1,91
11311*	11611	55	60	130	31	46	3,5	15,88	16	57	200	26 5	00	4,5		2,3
11312	11612	60	65	140	33	48		16,67	16	61	800	29 5	00	4,3		2,9
11313	-	65	75	160	37	_		19,05	16	79	300	38 5	500	3,8		4,4
11314	11614	70	85	170	39	58		20,64	15	i .	400	42 0	00	3,6		5,2
11316	11616	80	90	190	43	64		23,81	15	i	000	56 0		3,2		7,1
11318	11618	90	100	215	47	73	4,0	26,99	15	1	000	72 0		2,8		10,0
11320	-	100	110	240	50		4,0	28,58	17	163	000	91 5	500	2,0		14,18
					L]	Расчет	пные	пара	аметр	ы			
	начения ипнико		Ша	рики		e	ŀ	3	Y			<i>Y</i> ₀		λ		
1	ипа	Γ,					F	<u>²</u> ≤ e	$\frac{F_a}{F_r}$				1	$\frac{a}{r} \leq e$	F	1 > e
) _w , мм	z			$ F_i$		F	^			1	r	F	-
		подщипников типа ————————————————————————————————————					ш.		17				<u> </u>	r		
					Л	ская с	<u> </u>						<u>i</u>	<u>r</u>		
11	204	1	6,14	12		0,27	ерия 2	днамет 2,32	ров 2 3,6	60		41	<u> </u>	<u>r </u>		
11	205		7,94	14	2	0,27 0,24	ерия 2 2	диамет 2,32 2,58	ров 2 3,6 3,9	i0 19	2,	7		<u>/ </u>		
11 11	205 206		7,94 7,94	14	2 4 6	0,27 0,24 0,23	ерия 2	д намет 2,32 2,58 2,74	ров 2 3,6 3,9 4,2	60 19 14	2, 2,	7 87		<u>r</u>		
11 11 11	205 206 207		7,94 7,94 8,73	14	2 4 6 7	0,27 0,24 0,23 0,22	ерня 2 2 2	диамет 2,32 2,58 2,74 2,87	ров 2 3,6 3,9 4,2 4,4	60 19 14 14	2, 2, 3,	7 87 01		<i>r</i>		
11 11 11 11	205 206 207 208		7,94 7,94 8,73 9,53	14 10 13	2 4 6 7 6	0,27 0,24 0,23 0,22 0,21	ерия <i>(</i>	2,32 2,58 2,74 2,87 2,97	ров 2 3,6 3,9 4,2 4,4 4,6	60 19 14 14	2, 2, 3, 3,	7 87 01 11		,		
11 11 11 11	205 206 207 208 209		7,94 7,94 8,73 9,53 9,53	14 10 11 10	2 4 5 7 6 8	0,27 0,24 0,23 0,22 0,21 0,21	ерня 2 2 2 2 2	2,32 2,58 2,74 2,87 2,97 3,13	ров 2 3,6 3,9 4,2 4,4 4,6 4,8	60 19 14 14	2, 2, 3, 3,	7 87 01 11 28		,		
11 11 11 11 11	205 206 207 208 209 210	1	7,94 7,94 8,73 9,53 9,53 0,32	14 10 11 10 11	2 4 6 7 6 8 9	0,27 0,24 0,23 0,22 0,21 0,21 0,2	ерия ; 2 2 2 2 3	2,32 2,58 2,74 2,87 2,97 3,13 3,20	ров 2 3,6 3,9 4,2 4,4 4,6 4,8	60 19 14 14 160 15	2, 2, 3, 3, 3,	7 87 01 .11 .28 .39			- 1	
11 11 11 11 11 11	205 206 207 208 209	1 1	7,94 7,94 8,73 9,53 9,53	14 10 11 10	2 4 6 7 6 8 9 9 9	0,27 0,24 0,23 0,22 0,21 0,21	ерия 2 2 2 2 2 3	2,32 2,58 2,74 2,87 2,97 3,13	ров 2 3,6 3,9 4,2 4,4 4,6 4,8	60 19 14 14 160 15	2, 2, 3, 3, 3, 3,	7 87 01 11 28		1,0		0,65
11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213	1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70	14 10 11 10 11 11 11 12 2 2	2 4 6 7 6 8 9 9	0,27 0,24 0,23 0,22 0,21 0,21 0,2 0,19 0,17 0,18	ерия (2) (2) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5	60 99 14 14 160 15 17	2, 2, 3, 3, 3, 3, 3,	7 87 01 11 28 39 57 88 77				0,65
11 11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213 214	1 1 1 1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70 2,70	14 16 16 18 19 19 2 20 22	2 4 5 7 6 8 9 9 1 1 0 2	0,27 0,24 0,23 0,22 0,21 0,2 0,19 0,17 0,18 0,16	ерия (2) (2) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60 3,90	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5 6,1	60 99 24 44 60 65 7 7 7	2, 2, 3, 3, 3, 3, 3, 4,	7 87 01 11 28 39 57 88 77				0,65
11 11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213 214 215	1 1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70 2,70 4,29	14 16 11 16 18 19 2 2 2 2 2	2 4 5 7 6 8 9 1 1 0 2	0,27 0,24 0,23 0,22 0,21 0,2 0,2 0,19 0,17 0,18 0,16 0,17	ерия (2) 22 22 23 33 33 33	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60 3,90 3,60	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5 6,1	60 19 14 14 16 16 17 17 17 10	2, 2, 3, 3, 3, 3, 3, 4,	7 87 01 11 28 39 57 88 77 13				0,65
11 11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213 214 215 216	1 1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70 2,70	14 16 16 18 19 19 2 20 22	2 4 5 7 6 8 9 1 1 0 2	0,27 0,24 0,23 0,22 0,21 0,2 0,19 0,17 0,18 0,16	ерия (2) 22 22 23 33 33 33	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60 3,90	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5 6,1	60 19 14 14 16 16 17 17 17 10	2, 2, 3, 3, 3, 3, 3, 4,	7 87 01 11 28 39 57 88 77				0,65
11 11 11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213 214 215 216 217	1 1 1 1 1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70 2,70 4,29 5,86	14 10 11 10 11 11 11 12 2 2 2 2 11	2	0,27 0,24 0,23 0,22 0,21 0,2 0,2 0,19 0,17 0,18 0,16 0,17	ерия 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60 3,90 3,60	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5 6,1	60 19 14 14 16 16 17 17 17 10	2, 2, 3, 3, 3, 3, 3, 4,	7 87 01 11 28 39 57 88 77 13				0,65
11 11 11 11 11 11 11 11 11	205 206 207 208 209 210 211 212 213 214 215 216	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,94 7,94 8,73 9,53 9,53 0,32 1,11 1,11 2,70 2,70 4,29	14 16 11 16 18 19 2 2 2 2 2	2 4 6 6 7 6 6 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,27 0,24 0,23 0,22 0,21 0,2 0,2 0,19 0,17 0,18 0,16 0,17	ерия 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2,32 2,58 2,74 2,87 2,97 3,13 3,20 3,40 3,70 3,60 3,90 3,60	3,6 3,9 4,2 4,4 4,6 4,8 5 5,2 5,7 5,5 6,1	60 19 14 14 16 16 17 17 17 10	2, 2, 3, 3, 3, 3, 3, 4,	7 87 01 11 28 39 57 88 77 13				0,65

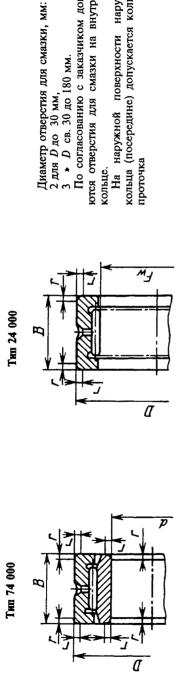

Продолжение табл. 133

					Расчетные	параметр	ы	
Обозначения подшипников	Шар	ики	e		Υ	<i>Y</i> ₀	_	X
типа	D_{w} , mm	z		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$		$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
			Серия	диаметров	5	-		
11505	6,14	12	0,39	1,59	2,47	1,67		
11506	7,94	16	0,37	1,69	2,62	1,77		
11507	8,73	17	0,33	1,90	2,94	1,99		
11508	9,53	16	0,31	2,06	3,19	2,16		
11509	9,53	18	0,29	2,20	3,41	2,31	1,0	0,65
11510	10,32	19	_		_	_	'	-,
11512	11,11	21	_	_	_			
11514	12,70	22	0,25	2,49	3,85	2,61		
11514	15,86	19			_			
11518	17,46	20	_			_		
11310	[17,10]	20	Серия	і диаметров	3	<u>l</u>	1	
11205	9,53	13	0,26	2,46	3,80	2,58	1 1	
11305 11306	10,32	14	0,26	2,40	3,98	2,69		
11307	11,11	15	0,23	2,61	4,05	2,74		
11307	12,70	15	0,25	2,54	3,93	2,66		
11309	14,29	13	0,23	2,68	4,14	2,80		
11310	15,08	15	0,24	2,70	4,17	2,82		
11311	15,88	16	0,23	2,80	4,33	2,93	1,0	0,65
11312	16,67	16	0,23	2,79	4,31	2,92	1,0	0,05
11312	19,05	16	0,23	2,79	4,39	2,97		
11314	20,64	15	0,22	2,92	4,52	3,06		
11316	23,81	15	0,22	2,82	4,36	2,95		
11318	26,99	15	0,22	2,67	4,14	2,80		
11320	28,58	17	0,24	2,83	4,38	2,97		
11525	1 20,50 1	1,	•	диаметров		2,7,	!!!	l
	1 1						1	ì
11605	9,53	13	0,44	1,43	2,22	1,50		
11606	10,32	14	0,46	1,36	2,11	1,43		
11607	11,11	15	0,43	1,46	2,25	1,52		
11608	12,7	15	0,42	1,51	2,33	1,58		
11609	14,29	13	0,43	1,48	2,29	1,55		<u></u>
11610	15,08	15	0,41	1,52	2,36	1,60	1,0	0,65
11611	15,88	16	0,41	1,56	2,41	1,63		
11612	16,67	16	0,38	1,65	2,55	1,73		
11614	20,64	15	0,37	1,68	2,61	1,76		
11616	23,81	15	_	-	-	_		
11618	26,99	15	<u></u>	<u> </u>	<u> </u>		<u> </u>	

Пример обозначения двухрядного сферического радиального шарикового подшипника легкой серии диаметров 2 с $d_1=30\,$ мм, $d=35\,$ мм, $D=72\,$ мм, $B=17\,$ мм:

Подшипник 11206 ГОСТ 8545-75

134. Роликовые двухрядные подшинники с закрепительными втулками (по ГОСТ 8545-75)


Закрепительная втулка приведена в табл. 133.

Обозначение подшипников	d_1	ď	D	В	r	С, Н	C ₀ , H	n _{пред} ·10-3, мин ⁻¹	Macca, kr
			Серия	диамет	ров 5, с	ерия ширі	и 0		
13514 13516 13518 13520 13522	70 80 90 100 110	80 90 100 110 120	140 160 180 200 215	33 40 46 53 58	3,0 3,0 3,5 3,5 3,5	160 000 216 000 275 000 355 000 415 000	118 000 159 000 212 000 275 000 325 000	1,9 1,8 1,7	3,2 4,8 6,7 9,6 11,3
			Серия	диамет	ров 6, с	ерия ширі	ua 0		
13611 13613 13614 13616 13618 13620 13622	55 65 70 80 90 100 110	60 75 80 90 100 110 120	130 160 170 190 215 240 260	46 55 58 64 73 80 86	3,5 3,5 3,5 4,0 4,0 4,0 4,0	196 000 300 000 325 000 	128 000 207 000 227 000 410 000 470 000 565 000	2,0 1,9 — 1,7 1,5	3,5 6,3 7,7 10,3 15,0 20,3 26,7
	T				Расче	тные пара	метры		
Обозначение					Y	T		X	
подшипников		e	$\frac{F_a}{F_r}$	≤e	$\frac{F_a}{F_r}$	» e	<i>Y</i> ₀	$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
			Серия	днамет	ров 5, с	ерия шири	na 0		
13514 13516 13518 13520 13522),25),27),27),28),29	2, 2, 2,	68 54 47 39 36	4,0 3,7 3,6 3,5 3,5	7 8 5	2,63 2,48 2,41 2,33 2,31	1,0	0,67
		C	ерня ді	аметро	B 6,	серия ши	рин О		
13611 13613 13614 13616 13618 13620	0),40),36),37),37	1, 1, 1, 1,	68 - 88 - 81 83	2,5 2,8 	0 2	1,64 1,84 1,77 1,79	1,0	0,67
13622		,36		85	2,7	6	1,81		

Пример обозначения двухрядного сферического радиального роликового подшипника средней серии диаметров 6 с d=65 мм; D=160 мм; B=55 мм:

Подшипник 13613 ГОСТ 8545-75

135. Роликовые радиальные игольчатые подпипники (по ГОСТ 4657--82)

кольце. На наружной поверхности наружного кольца (посередине) допускается кольцевая

Обозн	Обозначения			$F_{\mathbf{w}}$								Масса, кг	a, KT
подшипн	подшипников типа	g	Номинал	Откл	Отклонения	a	В		С, Н	С, н	ипред 10-3,	ТИП	п
74000	24000			верхн.	нижн.						мин-1	74 000	24 000
					Серия диаметров 9, серия ширин 4	метров	9, серия	и ширин	4				
4074904	4024904	70	25	+0,033	+0,020	37	17	0,5	19 000	15 300	6,3	0,08	90,0
4074905	4024905	25	30	+0,033	+0,020	42	17	0,5	21 000	17 000	5,0	0,1	0,07
4074918	4024918	8	105	+0,058	+0,036	125	35	2,0	104 000	124 000	2,0	1,57	0,94
4074920	4024920	100	115	+0,058	+0,036	140	6	2,0	106 000	132 000	1,6	2,31	1,51
Ļ		071											

Предусмотрены d = 110 + 160 мм.

					Серня днаметров 1, серня ширин	етров 1,	серия ,	ширин 4					
4074103	4024103	17	24	+0,033	+0,020	35	18	0,5	19 300	10 600	6,7	0,10	70,0
4074104	4024104	22	28			42	22	0,1	22 000	17 900	6,3	0,18	0,12

Продолжение табл. 135

Обозн	Обозначения			F								Масс	Масса, кг
подшипн	подшипников типа	р	Номинал	OTICIL	Отклонения	q	В	١.	C, H	С, н	ипред 10-3,	Ė	ТИП
74000	24000			верхн.	нижн.						мин-1	74 000	24 000
4074105	4024105	25	34			47	22	1,0	25 000	21 700	5,0	0,20	0,13
4074106	4024106	30	40	+0,041	+0,025	55	25	1,5	30 000	29 500	4,5	0,31	0,20
4074107	4024107	35	46			62	27	1,5	37 200	38 200	4,0	0,42	0,27
4074108	4024108	40	52			89	28		40 800	43 500	3,4	0,50	0,31
4074109	4024109	45	58	+0,049	+0,030	75	30	1,5	42 000	54 500	3,2	0,63	0,39
4074110	4024110	50	62			80	30		45 000	58 000	2,6	0,69.	0,44
4074111	4024111	55	70			06			29 000	72 000	2,6	0,97	09'0
4074112	4024112	09	75	+0,049	+0,030	95	35	2,0	62 000	77 500	2,2	1,13	69'0
4074113	4024113	65	80			100	-		000 59	82 500	2,0	1,19	0,73
4074114	4024114	02	88			110	40		000 68	117 000	1,8	1,74	1,04
4074115	4024115	75	92	+0,058	+0,036	115	40	2,0	92 000	122 000	1,6	1,80	1,10
4074116	4024116	80	100			125	45		97 500	132 000	1,3	2,46	1,46

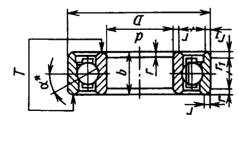
Пример обозначения роликового радиального игольчатого подшипника типа 74000 серии диаметров 1, серии ширин 4 с d = D = 80 MM, B = 30 MM:

50 MM,

Подшипник 4074110 ГОСТ 4657-82

ГОСТ 4657—82 предусматривает и другие типы подшипников.

Технические требования. Предельные отклонения диаметра дорожек качения на валу подшипников типа 24000 — по h5. Твердость поверхности дорожек качения на валу под подшипники типа 24000 должна быть не менее 61HRC_э.


Параметры шероховатости поверхности дорожек качения на валу под подшипники типа 24000 должны быть. *Ra ≤* 0,32 мкм.

Съсмные детали комплектных и некомплектных подшипников могут быть невзаимозаменяемыми.

Подшипники типа 24000 поставляют с невзаимозаменяемыми деталями в разобранном виде. Чтобы детали не перепутать, на коробках с роликами и на наружной цилиндрической поверхности колец наносят номер комплекта. Кольца и комплект упакованных роликов вкладывают в одну общую коробку.

136. Шариковые радиально-упорные однорядные подшинники (по ГОСТ 831-75)

Типы 36000, 46000, 66000

 α^* — угол контакта, равный углу между линией действия результирующей нагрузки на тело качения и плоскостью, перпендикулярной оси подшилника. Для подшилника типа 36000K6 угол $\alpha=15^\circ$; типа 46000 - $\alpha=26^\circ$; типа 66000 - $\alpha=36^\circ$.

Размеры, мм

						•						
Обозн	Обозначения подшипников типа	p	q	b = T		5	Шар	Шарики	Масса, кт С, Н	С, Н	С, Н	л _{пред} .10-3, мин-1
36000	46000						D,	2				
					Серия	наметров	Серия диаметров 1, серия ширин 0	пирин 0				
36100K6	1	01	56	•		- 6	4,76	6	0,020	3900	2200	34
36101K6		12	28	0	د,٥	د, ۷	4,76	6	0,025	4250	2450	34
36103K6	1	17	35	10	5,0	6,0	5,16	11	0,04	5700	3600	28
36104K6		70	42	12	1.0	0.5	6.35	Π	0.02	7800	5200	22

Обозі	Обозначения подшипников типа	_	p	q	b = T	1.		1	Шарики	Ma	Масса, кг	C, H	С0, Н	ипред 10	л _{пред} . 10 ⁻³ , мин ⁻¹
36000	46000							$D_{\rm w}$		2					
	46106	,,	30	55	13			7,14		81	0,12	14 500	7 880		1
	46108	~	40	89	15	1,5	8,0	7,94		91	0,20	18 900	11 100		10
	46109	<u> </u>	45	7.5	16		· <u>·</u>	8,31		91	0,25	22 500	13 400		6
	46111	_	55	8	18			10,30		81	0,40	32 600	21 100		7,5
	46112	~~	09	95				11,11		81	0,42	37 400	24 500		7,0
1	46114		70	110	70	2,0	1,0	12,30		61	0,62	46 100	31 700	 	6,3
	46115		75	115				12,30		20	99,0	47 300	33 400		5,6
	46116	٠,٥	08	125	22			13,49		70	98,0	26 000	40 100		5,3
	46117		85	130				13,49		21	0,92	57 400	42 100	· · · · · · · · · · · · · · · · · · ·	5,0
	46118		8	140	24	2,5	1,2	14,29	-	21	1,19	63 500	47 200		4,8
	46120		001	150				15,08		22	1,29	71 500	55 100		4,3
Обозначения подшипников типа	ения сов типа	p	q	b = T	`		Шарики	ТКИ	С, Н, д	С, Н, для типа	Ю, Н	С ₀ , Н, для типа	л _{пред} .10-3, мин-1	3, мин-1	Масса, кг
36000	46000						D _w	2	36000	46000	36000	46000	36000	46000	
						Серия д	наметро	в 2, сери	Серия диаметров 2, серия ширин 0	0					
36201K6	١	12	32	01			5,50	6	2500	1	3350	i	24	1	0,04
36202K6	46202	15	35	=	0,1	5,0	5,95	01	0009	8520	3750	3650	24	81	0,05
36203K6	46203	11	40	12			7,10	01	9200	1	5750	1	81	1	0,07
-													-		

Продолжение табл. 136

Macca, Kr		0,110	0,135	0,200	0,29	0,37	0,42	0,48	0,63	08'0	1,00	1,10	1,21	1,48	1,84	2,26	3,32	
3, мин-1	46000	15	=	01	6	∞	7	6,3	6,3	5,6	5,3	ı	5,0	4,3	4,0	3,6	3,2	
л _{пред} 10-3, мин-1	36000	91	13	=	10	9,5	0'6	8,0	7.0	6,3	1	0,9	l	5,6	5,0	4,8	1	
Со, Н, для типа	46000	7 640	8 340	12 000	16 400	21 400	23 100	24 900	31 500	38 800	45 900	1	53 800	000 09	65 100	76 200	107	000
Ç, H,	36000	7 450	8 000	12 000	15 300	20 400	25 500	28 500	34 500	42 500	ı	52 000	65 500	65 500	76 500	85 000	1	
С, Н, для типа	46000	14 800	15 700	21 900	29 000	36 800	38 700	40 600	50 300	008 09	69 400	1	78 400	87 900	94 400	111 000	148 000	
С, Н, д	36000	11 900	12 400	16 300	20 000	27 000	32 000	35 500	41 500	20 000		000 09	73 500	73 500	81 500	000 06	I	
Шарики	2	11	12	12	12	12	13	14	14	14	15	15	16	15	15	14	15	
IIIaj	D _w	7,94	7,94	9,53	11,11	12,70	12,70	12,70	14.29	15,88	16,67	17,46	17,46	19,05	19,84	22,23	25,44	
5	•		8,0			1,0					1,2				1,5		2,0	
			2,1			2,0					2,5				3,0		3,5	
b = T		14	15	16	17	81	61	20	21	22	23	24	25	26	28	30	34	
·		47	22	62	72	80	85	06	100	110	120	125	130	140	150	160	180	
p		20	22	30	35	40	45	20	55	09	65	70	75	80	85	06	100	
тчения «Ков типа	46000	46204	46205	46206	46207	46208	46209	46210	46211	46212	46213	46214	46215	46216	46217	46218	46220	
Обозначения подшипников типа	36000	36204K6	36205K6	36206K6	36207K6	36208K6	36209K6	36210K6	36211K6	36212K6	36213K6	36214K6	36215K6	36216K6	36217K6	36218K6	36220K6	

Обозначения	p	q	b = T	` `	۲	Шарики	ики	С, Н	С, н	лпред. 10-3, МИН ⁻¹	Масса, кг
подшипников						$D_{\mathbf{w}}$	2				
					Серия	циаметро	з, сери	Серия диаметров 3, серия ширин 0			
46305	25	62	17	2,0	1,0	11,51	01	26 900	14 600	6	0,25
46306	30	72	61			12,30	=	32 600	18 300	8	0,38
46307	35	80	21			14,29	=	42 600	24 700	7,3	0,51
46308	40	8	23	2,5	1,2	15,08	12	20 000	30 100	6,3	69'0
46309	45	100	25			17,46	=	61 400	37 000	5,6	0,93
46310	50	110	27	3,0	1,5	60,61	11	71 800	44 000	5,0	1,20
46312	09	130	31			22,23	12	100 000	65 300	4,3	1,94
46313	99	140	33	3,5		23,81	12	113 000	75 000	4,0	2,38
46314	70	150	35		2,0	25,40	12	127 000	85 300	3,6	2,89
46318	06	190	43	4,0		31,75	12	165 000	122 000	2,8	5,65
46320	100	215	47	-		36,51	12	213 000	177 000	2,4	8,04
•					Серия	днаметро	в 4, серия	Серия диаметров 4, серия ширин 0			
66407	35	1000	25	2,5	1,2	1	1	ı	l	1	1,05
66408	40	110	27			20,64	01	72 200	42 300	4,3	1,37
66409	45	120	59	3,0	2,1	23,02	01	81 600	47 300	4,0	1,75

Обозначения	p	q	b = T	`	-	Шарики	ики	С, Н	С, н	ипред:10-3, мин-1	Масса, кг
подшипников						D,	2				
66410	05	130	31	3,5	2,0	24,61	01	006 86	001 09	2,8	2,17
66412	09	150	35			26,99	01	125 000	79 500	2,2	3,37
66414	70	180	42	4,0	2,0	36,51	01	152 000	109 000	1,4	5,7
66418	06	225	54	5,0	2,5	41,28	01	208 800	162 000	1,2	12,0
								-	_		

Предельные отклонения монтажной высоты Тподшипника

Размеры, мм

				Ш	редельнь	le orkno	чения мс	нтажной	і высоты	Т для по	одшипни	Предельные отклонения монтажной высоты $\it T$ для подшипников типов	98		
Номинальнь	Іоминальные диаметры	ε	6200	46	46100	46200	000	46300	008	00799	000	00£99	00	66400	00
Ø	,	верхн.	нижн.	верхн.	нижн.	верхн.	нижн.	нижн. верхн. нижн.	нижн.	верхн.	нжин.	верхн. нижн. верхн.	нижн.	верхн.	нижн.
Св. 9 до	70		0,25		0,3		0,30		0,40		0,3	1,0	0,3	ı	I
» 20 »	20	+0,1	0,25	0	0,3	0	0,35	0	0,45	0	0,4	1,0	0,35	0,1	0,35
* 50 *	80		0,30		0,4		0,45		09,0		0,4	0,1	0,45	0,1	0,50
* 80 *	180		0,50		9,0		0,70		0,70		9,0	0,1	09'0	0,1	09,0

Пример обозначения однорядного радиально-упорного шарикового подшипника типа 36000, серии диаметров 2 с $\alpha=15^{\circ}$ d=17 мм, D=40 мм и T=12 мм:

Подшипник 36203К6 ГОСТ 831—75

137. Шариковые радиально-упорные сдвоенные подпининики (по ГОСТ 832—78)

Сдвоенные радиально-упорные шариковые подшипники предназначены для фиксации вала и корпуса в радиальном и осевом направлениях.

Типы подшипников в зависимости от углов контакта

Обозначение типов подщипников	Угол контакта		комплектации дшипников	Примечание
236000	12			Наружные кольца обращены друг к
246000	26			другу широкими торцами
266000	36	0		
236000K	15			Внутренние кольца обращены друг к другу узкими торцами
336000	12			Наружные кольца обращены друг к
346000	26		стороннего осе-	другу узкими торцами
366000	36	х	Вого дология	
336000K	15			Внутренние кольца обращены друг к другу широкими торцами
436000	12			Наружные кольца обращены друг к
446000	26	ļ	Комплект одно- стороннего осе-	1.43.4
466000	36	Т	вого действия	
436000K	15			Внутренние кольца обращены друг к другу разноименными торцами

^{*} α — угол контакта, равный углу между линией действия результирующей нагрузки на тело качения и плоскостью, перпендикулярной оси подшипника.

Схема комплектации и рисунок сдвоенного подшипника

Обозначение типов подшипников	Схема ком- плектации подшип- ников	Рисунок сдвоенного подшипника после монтажа	Примечание
236000; 246000; 266000	0		Комплекты подшипников фиксируют вал и корпус в обоих осевых направлениях

Продолжение табл. 137

Обозначение типов подшипников	Схема ком- плектации подшип- ников	Рисунок сдвоенного подшипника после монтажа	Примечание
236000K	0	B a a a	Комплекты подшипников фиксируют вал и корпус в обоих осевых направлениях
336000; 346000; 366000	X	B	Комплекты подшипников воспринимают комбинированные, двусторонние осевые, а также радиальные нагрузки
336000K		B a a a a a a a a a a a a a a a a a a a	Комплекты подшипников типов 236000, 236000К, 246000 и 266000 обеспечивают более жесткую угловую фиксацию вала, чем соответствующие им подшипники типов 336000, 336000К, 346000, 366000

Продолжение табл. 137

Обозначение типов подшипников	Схема ком- плектации подшип- ников	Рисунок сдвоенного подшипника после монтажа	Примечание
436000; 446000; 466000	Т	B a L	Комплекты подшипников фиксируют вал в одном осе- вом направлении
436000 K		B a a a a a a a a a a a a a a a a a a a	,

Основные размеры (мм) и обозначения сдвоенных подшипников

Обозі	начения внут подшипника		-					
236100; 336100; 436100	236100K; 336100K; 446100K	246100; 346100; 446100	266100; 366100; 466100	d	D	В	r	<i>r</i> 1
		Сери	ія днаметров	1, серия	плария О			
00	1 00	ا مما	ı	1		· .		
00	00	00		10	26	16		
01	01	00 01		10 12	26 28	16 16	0,5	0,3
	1				1	1	0,5	0,3

Продолжение табл. 137

				r			1	
	ачения внут подшипника							
236100; 336100; 436100	236100K; 336100K; 446100K	246100; 346100; 446100	266100; 366100; 466100	đ	D	В	r	<i>r</i> 1
04 05	04 05	04 05	_	20 25	42 47	24	1,0	0,3
06 07 — —	06 07 08 09 10	06 07 08 09 10	_	30 35 40 45 50	55 62 68 75 80	26 28 30 32 32	1,5	0,5
Обозн	ачения внут подшипника							
236200; 336200; 436200	236200K; 336200K; 446200K	246200; 346200; 446200	266200; 366200; 466200	đ	D	В	r	r _l
		Серь	я днаметров	2, серия	ширин 0			
01 02 03	01 02 03	01 02 03	00 01 02 03	10 12 15 17	30 32 35 40	18 20 22 24	1,0	0,3
04 05 06	04 05 06	04 05 06	04 05 06	20 25 30	47 52 62	28 30 32	1,5	0,5
07 08 09 10	07 08 09 10	07 08 09 10	07 08 09 10	35 40 45 50	72 - 80 - 85 - 90	34 36 38 40	2,0	1,0
11 12 13 14	11 12 13 14 15	11 12 13 14 15	11 12 13 14	55 60 65 70 75	100 110 120 125 130	42 44 46 48 50	2,5	1,2
16 17 18	16 17 18	16 17 18	16 17 18	80 85 90	140 150 160	52 56 60	3,0	1,5
20	20	20	20	100	180	68	3,5	2,0

Обозначения внутро подшипника		ОВ					
246300; 346300; 446300		266300; 366300; 466300	d	D	В	r	<i>r</i> 1
	C	ерия диаметр	ов 3, серия і	пирин 0			
03		_	17	47	28	1,5	0,5
04			20	52	30		
05		05	25	62	34	2,0	1,0
06		06	30	72	38		
07		07	35	80	42		
08		08	40	90	46	2,5	1,2
09		09	45	100	50		
10		10	50	110	54	3,0	1,5
11		11	55	120	58		
12	-	12	60	130	62		
13		13	65	140	66		
14		14	70	150	70	3,5	
15		15	75	160	74		
16		16	80	170	78		2,0
17		17	85	180	82		
18		18	90	190	86	4,0	
20		20	100	215	94		<u> </u>
Обозначения внутрен диаметра подшипни для типов		d	D		В	r	r_1
266400; 366400; 4664	00						
	Сер	ия диаметров	4, узкая се	рия шири	н 0		
05	!	25	80	4	2		
		30	90		6	2,5	1,2
06 07		35	100	l l	50	۳ - ۲۰	·
			110		54		
08		40		j		3,0	1,5
09		45	120	- -	58		

Обозначения внутреннего диаметра подшипника для типов 266400; 366400; 466400	d	D	В	r	r_1
10 11 12 13	50 55 60 65	130 140 150 160	62 66 70 74	3,5	2,0
14 15 16	70 75 80	180 190 200	84 90 96	4,0	
17 18 20	85 90 100	210 225 250	104 108 116	5,0	2,5

ГОСТ 832—78 предусматривает размеры подшипников, превышающие приведенные в табл. 137.

Пример обозначения комплекта сдвоенного подшипника серии диаметров 2 по схеме T с d=30 мм, с углом контакта $\alpha=12^\circ$:

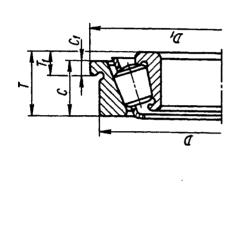
Подшипник 436206 ГОСТ 832-78

То же, со скосом на внутреннем кольце и $\alpha = 15^{\circ}$:

Подшипник 436206К ГОСТ 852-78

Допуск ширины B для сдвоенных подшипников не должен превышать тройного допуска ширины одного однорядного радиально-упорного шарикового подшипника.

Сдвоенные подшипники собираются изготовителем из однорядных радиально-упорных шариковых подшипников одного типоразмера и класса точности и должны поставляться и применяться комплектно.


Предварительный натяг (величина нагрузки в ньютонах) сдвоенных подшипников устанавливается по согласованию с потребителем. Величина предварительного натяга должна быть указана в паспорте подшипника.

На наружных и внутренних цилиндрических посадочных поверхностях колец сдвоенных подшипников в местах наибольшего радиального биения должны быть нанесены стрелки $\rightarrow\leftarrow$, одновременно указывающие, какими торцами должны соприкасаться наружные и внутренние кольца в рабочем состоянии.

Технические требования - по ГОСТ 520-89 (ИСО 199-79; ИСО 492-86).

Технические требования к посадочным местам вала и корпуса для подшипников — по ГОСТ 3325—85.

138. Роликовые конические однорядные подшипники повышенной грузоподъемности ГОСТ 27365--87

3

a

MM	
Размеры,	

sie Obi	
Расчетные параметры $e \mid Y \mid$	
л _{пред} .10-3, мин-1	
C ₀ , H *2	
С, Н 2	
Macca, Kr ≈	
α	
1.2s min *1	
/Is min *1	
B	
T	
C	
В	
Q	
p	
Условное обозначение подшипника	

								d rowwar .	copin desertipos 1, copins mepon 2	7 padum						
2007104A	70	20 42	15	12,0	15	32,781	9,0	9,0	14°	0,101	22 900	15 600	ļ	1	ı	l
20071/22A	22	4	15	11,5	15	34,708		9,0	14° 50′	0,107	23 800	16 600	1	l	ı	ı
2007105A	25	47	15	11,5	15	37,393		9,0	16°	0,117	25 500	18 300	1	1		1
20071/28A	28	52	16	12,0	16	12,0 16 41,991	1,0	1,0	16°	0,150	29 700	21 600	1	1	1	1
2007106A	30	55	17	13,0	17	44,438		1,0	.91	0,175	33 600	24 500	6,7	0,24	2,5	1,38
20071/32A	32	28	17	13,0	17	13,0 17 46,708	1,0	1,0	16° 50′	0,193	34 700	76 000	ŀ)	J	ı
			\int													

7	<	0	,	F		•			Macca,	C H 2	C. H *2	ипред 10-3,	Pa	Расчетные	6) 1
	۵ .	η.	ر	-	ij	, mim s	Zs min	3	KΓ≈	: :	i ŝ	мин-1	в	параметры У	1 Y ₀
(62	18	14,0	81	50,510	0,1	1,0	16°50′	0,224	40 200	30 500	0,9	0,27	2,21	1,22
	89	61	14,5	19	56,897	1,0	1,0	14°10′	0,278	49 500	40 000	5,3	0,33	1,84	1,01
45	75	70	15,5	70	63,248	1,0	1,0	14°40′	0,354	55 000	44 000	4,8	0,30	2,00	1,10
20	80	70	15,5	20	67,841	0,1	0,1	15°45′	0,384	57 200	48 000	I		1	ł
55	06	23	17,5	23	76,505	1,5	1,5	15°10°	0,570	76 500	64 000	4,0	0,33	1,80	66'0
- 09	95	23	17,5	23	80,634	1,5	1,5	.91	0,605	76 500	000 29	ł		ſ	1
65	001	23	17,5	23	85,567	1,5	1,5	17°	0,642	78 100	000 89	3,4	0,38	1,59	0,87
70	110	25	0,61	25	93,633	1,5	1,5	16°10′	0,875	95 200	83 000	3,2	0,29	2,11	1,16
75	115	25	19,0	25	98,358	1,5	1,5	17°	0,921	000 66	88 000	3,0	0,30	2,00	1,10
	125	59	22,0	53	107,334	1,5	1,5	15°45′	1,290	128 000	116 000	2,6	0,34	1,77	0,97
85	130	53	22,0	53	111,788	1,5	1,5	16°25′	1,350	130 000	120 000	1	1	ì	ı
-06	140	32	24,0	32	119,948	2,0	1,5	15°45′	1,760	157 000	146 000	2,2	0,34	1,76	0,97
95	145	32	24,0	32	124,927	2,0	1,5	16°25′	1,850	157 000	146 000	2,2	0,36	1,69	0,93
001	150	32	24,0	32	129,269	2,0	1,5	17°	1,920	161 000	158 000	2,0	0,37	1,62	0,89
						Серия	диаметро	Серия диаметров 2, серия	ширин 0						
17	40	12	=	13,25	31,408	0,1	0,1	12°57'10"	0,081	17 900	12 000	0,6	0,31	16,1	1,05
70	47	14	12	15,25	37,304	1,0	1,0	12°57'10"	0,128	26 000	16 600	8,0	96,0	1,67	0,92
25	52	15	13	16,25	41,135	1,0	1,0	14°02′10″	0,157	29 200	21 000	7,5	96,0	1,67	0,92
30	62	16	14	17,25	49,990	1,0	0,1	14°02′10″	0,240	38 000	25 500	6,3	0,36	1,65	0,91
35	72	17	15	18,25	58,844	1,5	1,5	14°02′10″	0,340	48 400	32 500	5,3	0,37	1,62	0,89
40	80	81	91	19,75	65,730	1,5	1,5	14°02′10″	0,435	58 300	40 000	4,8	0,38	1,56	98'0
45	85	19	16	20,75	70,440	1,5	1,5	15°06′34″	0,499	62 700	20 000	4,5	0,41	1,45	0,80
20	8	70	17	21,75	75,078	1,5	1,5	15°38'32"	995,0	70 400	55 000	4,3	0,37	1,60	0,88

ные стры	γ ₀	08'0 9	1 0,94	1	2 0,89	5 0,85	—–	8 0,76	98,0 9	8 0,81	0,82		1			8 0,87							8 0,81	0,82	5 0,85
Расчетные параметры	λ,	1,46	1,71	1	1,62	1,55	1,43	1,38	1,56	1,48	1,49		1	1,65	1,73	1,58	1,4	1,43	1,67	1,53	1,62	1,55	1,48	1,49	1,55
д	в	0,41	0,35	1	0,37	0,39	0,42	0,43	0,38	0,41	0,40		1	0,37	0,35	0,38	0,42	0,42	0,36	0,39	0,37	0,39	0,41	0,40	0,39
ппред 10-3, мин-1		3,8	3,4	1	3,0	2,8	2,4	2,2	2,0	1,9	6,1		ı	6,3	5,3	4,8	4,5	4,3	3,8	3,4	3,0	2,8	2,6	2,4	2,2
C ₀ , H ² 2		61 000	70 000	78 000	89 000	100 000	114 000	134 000	150 000	156 000	190 000		25 000	37 000	45 000	20 000	000 09	64 000	80 000	100 000	120 000	118 000	130 000	155 000	180 000
C, H *2		84 200	91 300	108 000	119 000	130 000	140 000	165 000	183 000	205 000	233 000		34 100	47 300	009 19	70 400	74 800	76 500	000 66	120 000	142 000	147 000	157 000	176 000	201 000
Macca, Kr ≈		0,732	0,931	1,170	1,300	1,410	1,700	2,140	2,620	3,160	3,810	пирин 0	0,180	0,500	0,458	0,560	0,598	0,644	0,878	1,200	1,580	1,680	1,760	2,180	2,750
α		15°06′34″	15°06′34″	15°06′34″	15°38′32″	16°10′20″	15°38′32″	15°38′32″	15°38'32"	15°38′32″	15°38′32″	Серия диаметров 5, серия ширин 0	13°30′	14°02′10″	14°02′10″	14°02′10″	15°06′34″	15°38'32"	15-06/34"	15°06′34″	15°06′34″	15°38′32″	16°10′20″	15°38′32″	15°38′32″
725 min *1		5,1	1,5	1,5	1,5	1,5	2,0	2,0	2,0	2,5	2,5	днаметро	0,1	1,0	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	2,0	2,0
1. mim *1		2,0	2,0	2,0	2,0	2,0	2,5	2,5	2,5	3,0	3,0	Серия	0,1	1,0	1,5	1,5	1,5	1,5	2,0	2,0	2,0	2,0	2,0	2,5	2,5
E		84,197	91,876	101,934	26,25 105,748	27,25 110,408	28,25 119,169	30,50 126,685	32,50 134,901	34,50 143,385	37,00 151,310		41,331	48,982	57,087	64,715	69,610	74,226	82,837	90,236	99,484	103,765	108,932	117,466	38,50 124,970
7		22,75	23,75	24,75	26,25	27,25	28,25	30,50	32,50	34,50	37,00		19,25	21,25	24,25	24,75	24,75	24,75	26,75	29,75	32,75	33,25	33,25	35,25	38,50
S		18	61	70	21	22	22	24	56	27	59		91	17	19	19	19	19	21	24	27	27	27	78	30
В		21	22	23	24	25	56	28	30	32	34		81	20	23	23	23	23	25	28	31	31	31	33	36
a		001	110	120	125	130	140	150	160	170	180		52	62	72	80	85	8	100	110	120	125	130	140	150
p		55	09	65	70	75	80	85	8	95	001		25	30	35	40	45	20	55	09	65	70	75	80	85
Условное	подшипника	7211A	7212A	7213A	7214A	7215A	7216A	7217A	7218A	7219A	7220A		7505A	7506A	7507A	7508A	7509A	7510A	7511A	7512A	7513A	7514A	7515A	7516A	7517A

Продолжение табл. 138

5	F	E		1		•			Macca,	;	:	nunen.10-3,	P. P.	Расчетные	
d D B C T E rls min	C - T - E	T	¥ 3		√ls min	-	72s min *1	ಕ	KΓ ≈	С, Н "	С ₀ , н	мин-1	III	параметры	130
													в	Y	χ_0
90 160 40 34 42,50 132,615	34 42,50 132,615	42,50 132,615	132,615	132,615		2,5	2,0	15°38'32"	3,490	238 000	193 000	2,0	0,39	1,55	0,85
95 170 43 37 45,50 140,259	37		45,50 140,259	140,259		3,0	2,5	15°38'32"	4,320	264 000	220 000	1,9	0,38	1,56	98'0
100 180 46 39 49,00 148,184	39		49,00 148,184	148,184		3,0	2,5	15°38′32″	5,210	297 000	280 000	1,8	0,40	1,49	0,82
						Серия	днаметро	Серия диаметров 3, серия ширин 0	пирин 0						
15 42 13 11 14,25 33,272				33,272		1,0	1,0	10°45′29″	660'0	21 200	12 700	ı	1	1	l
17 47 14 12 15,25 37,420	15,25	15,25		37,420		1,0	1,0	10°45′29″	0,133	26 000	16 000	ı	1	ı	ŀ
20 52 15 13 16,25 41,318	16,25	16,25		41,318		1,5	1,5	11°18′36″	0,174	31 900	20 000	8,0	0,30	2,03	1,11
25 62 17 15 18,25 50,637	18,25	18,25		50,637		1,5	1,5	11°18'36"	0,273	41 800	28 000	6,7	0,36	1,66	0,92
30 72 19 16 20,75 58,287	20,75	20,75		58,287		1,5	1,5	11°51′35″	0,406	52 800	39 000	9,5	0,34	1,78	86'0
35 80 21 18 22,75 65,769	22,75	22,75		62,769		2,0	1,5	11°51′35″	0,541	68 200	20 000	2,0	0,32	1,88	1,03
40 90 23 20 25,25 72,703	20 25,25	25,25		72,703		2,0	1,5	12°57'10"	0,769	80 900	26 000	4,5	0,28	2,16	1,19
45 100 25 22 27,25 81,780	22 27,25	27,25		81,780		2,0	1,5	12°57′10″	1,020	101 000	72 000	4,0	0,29	2,09	1,15
50 110 27 23 29,25 90,633	23 29,25	29,25		90,633		2,5	2,0	12°57′10″	1,310	117 000	000 06	3,6	0,31	1,94	1,06
55 120 29 25 31,50 99,146	25 31,50	31,50		99,146		2,5	2,0	12°57′10″	1,670	134 000	110 000	3,2	0,33	1,80	66,0
130	26 33,50	33,50		107,769		3,0	2,5	12°57'10"	2,060	161 000	120 000	3,0	0,30	1,97	1,08
140	28 36,00	36,00		116,846		3,0	2,5	12°57'10"	2,550	183 000	150 000	2,6	0,30	1,97	1,08
70 150 35 30 38,00 125,244	30 38,00	38,00		125,244		3,0	2,5	12°57′10″	3,090	209 000	170 000	2,4	0,31	1,94	1,06
75 160 37 31 40,00 134,097	31 40,00	40,00		134,097		3,0	2,5	12°57′10″	3,680	229 000	185 000	2,2	0,33	1,83	1,01
80 170 39 33 42,50 143,174	42,50	42,50		143,174		3,0	2,5	12°57'10"	4,410	255 000	190 000	ı	i	ı	ŀ
85 180 41 34 44,50 150,433	34 44,50	44,50		150,433		4,0	3,0	12°57'10"	5,130	286 000	216 000	1,9	0,31	1,91	1,05
90 190 43 36 46,50 159,061	36 46,50	46,50		190,651		4,0	3,0	12°57'10"	5,930	308 000	236 000	1,8	0,32	1,88	1,03
95 200 45 38 49,50 165,861	49,50	49,50		165,861		4,0	3,0	12°57'10"	6,920	341 000	265 000	l	1	1	ı
100 215 47 39 51,50 178,578	39 51,50	51,50		178,578		4,0	3,0	12°57'10"	8,470	380 000	290 000		0,31	1,88	1,03
Наиментиме эпопеция поэменов к ик	ния размеров г. иг.	Samenor 7, UM	OR 7: WA]						7			

Наименьшие значения размеров r₁ иr₂.
 Значения динамической С и статической C₀ грузопольемностей.

Продолжение табл. 138

Размеры упорного	о борта наружного кольца	
------------------	--------------------------	--

D	D_1		С, для ког	структивн	ой разновиди	ности подш	ипников	
		3007700A	7200A	7500A	3007200A	7300A	1027300A	7600A
40	44	_	3,0	_	_	-		_
42	46	_	_	-	_	3,0		_
47	51	_	3,0	_	_	3,0	_	4,0
52	57	-	3,5	3,5		3,5	-	4,5
62	67	-	3,5	4,0	4,5	4,0	4,0	5,0
65	70	_	-	_	4,5			_
72	77		4,0	4,5	5,0	4,0	4,0	6,0
80	85	4,5	4,0	4,5	5,0	4,5	4,5	6,0
85	90	5,0	4,0	4,5	5,0			_
90	95		4,0	4,5	5,5	4,5	4,5	6,0
95	101	5,0	_	_				_
100	106	5,0	4,5	5,0	6,0	5,0	5,0	7,0
110	116	5,5	4,5	5,0	7,0	5,0	5,0	8,0
120	127	6,0	4,5	6,0	7,0	5,5	5,5	8,0
125	132	6,0	5,0	6,0	7,0	_		_
130	137	6,0	5,0	6,0	7,0	5,5	5,5	8,0
140	147	7,0	5,0	6,0	8,0	6,0	6,0	8,0
150	158	8,0	5,0	7,0	9,0	7,0	7,0	10,0
160	168	9,0	6,0	8,0	10,0	7,0	7,0	10,0
165	173	9,0			_	_		
170	179		6,5	8,0	10,0	7,0	7,0	11,0
175	184	9,0	_	_	-	_	_	
180	190	9,0	7,0	8,0	10,0	8,0	8,0	11,0
190	200		7,0	9,0	11,0	8,0	8,0	11,0
200	210	10,0	7,0	10,0	-	8,0	8,0	11,0
215	225		8,0	11,0		9,0	9,0	12,0
225	236	_	_	_	_	9,5	9,5	12,0
230	241		8,0	11,0	_	_	_	_
240	251	_	_	_	_	9,5	9,5	12,0
250	261	-	9,0	12,0	_	-	_	~
260	272	-	-		_	11,0	11,0	13,0
270	282		9,0	12,0				

При мер условного обозначения однорядного конического роликового подшипника серии диаметров 1, серии ширин 2 с d=70 мм, D=110 мм и T=25 мм

Подшипник 2007114A ГОСТ 27365-87

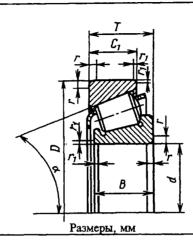
То же, с упорным бортом на наружном кольце:

Подшипник 2067114A ГОСТ 27365-87

То же, с углом контакта $\alpha \ge 20^\circ$ серии диаметров 3, серии ширин 1 с d=70 мм, D=150 мм и T=38 мм:

Подшипник 1027314А ГОСТ 27365-87

То же, с упорным бортом на наружном кольце:


Подшипник 1627314А ГОСТ 27365-87

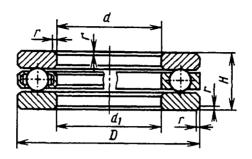
Значения T_1 следует определять по формуле

$$T_1 = T - C + C_1.$$

Предельные отклонения размера T_1 должны соответствовать предельным отклонениям монтажной высоты T.

139. Роликовые конические однорядные подшинники с углом конуса 20—30° (ГОСТ 27365—87)

Серия диаметров 3, серия пирин 1


Обозна- чение подшип- ника	d	D	В	<i>C</i> ₁	Т	r	r _i	α	С, Н	С ₀ , Н	n _{пред} ××10 ⁻ 3, мин ⁻¹	Масса, кт
1027305A	25	62	17	13	18,25	1,5	0,8		35 800	23 200	6,7	0,274
1027306A	30	72	19	14	20,75	1,5	0,8		44 600	29 000	5,6	0,399
1027307A	35	80	21	15	22,75	2,1	1,0		57 200	39 000	5,0	0,533
1027308A	40	90	23	17	25,25	2,0	1,0		69 300	54 000	4,5	0,747
1027309A	45	100	25	18	27,25	2,0	1,0		85 800	60 000	4,0	0,997
1027310A	50	110	27	19	29,25	2,5	1,0		99 000	72 500	3,6	1,270
1027311A	55	120	29	21	31,50	2,5	1,0		114 000	80 000	3,2	1,620
1027312A	60	130	31	22	33,50	3,0	1,0	28°48′39′′	134 000	96 500	3,0	2,010
1027313A	65	140	33	23	36,00	3,0	1,0		154 000	112 000	2,6	2,470
1027314A	70	150	35	25	38,00	3,0	1,0		176 000	127 000	2,4	3,010
1027315A	75	160	37	26	40,00	3,0	1,0		194 000	143 000	2,2	3,540
1027316A	80	170	39	27	42,50	3,0	1,0		212 000	153 000	_	4,200
1027317A	85	180	41	28	44,50	4,0	1,5		229 000	166 000	1,9	5,100
1027318A	90	190	43	30	46,50	4,0	1,5		251 000	183 000	1,8	5,900
1027319A	95	200	45	32	49,50	4,0	1,5		275 000	204 000	1	6,950
1027320A	100	215	51	35	56,50	4,0	1,5		352 000	270 000	_	9,070

Расчетные параметры: e = 0.83; Y = 0.72; $Y_0 = 0.4$.

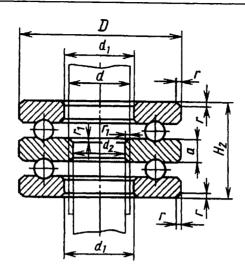
Пример обозначения роликового подшипника серии диаметров 3, серии ширин 1 с d=50 мм, D=110 мм и T=29,25 мм:

Подшипник 1027310 ГОСТ 27365-87

140. Шариковые упорные одинарные подшипники (по ГОСТ 7872—89)

Размеры, мм

Обозначения под- шипников	d	d_1	D	H	r	С, Н	C ₀ , H	л _{пред} .10- ³ , мин ⁻¹	Масса, кг
			Ce	рия ди	аметров	1, серия в	ысот 0		
8100H	10	11	24	9	0,5	10 000	11 800	7,0	0,020
8101H	12	13	26	9	0,5	10 400	12 900	7,0	0,022
8102H	15	16	28	9	0,5	10 600	14 000	6,3	0,024
8103H	17	18	30	9	0,5	11 400	16 600	6,3	0,027
8104H	20	21	35	10	0,5	15 000	22 400	5,6	0,040
8105H	25	26	42	11	1,0	18 000	30 000	4,8	0,060
8106H	30	32	47	11	1,0	19 000	33 500	4,5	0,070
8107H	35	37	52	12	1,0	20 000	39 000	4,3	0,084
8108H	40	42	60	13	1,0	27 000	53 000	3,8	0,124
8109H	45	47	65	14	1,0	28 000	58 500	3,4	0,15
8110 H	50	52	70	14	1,0	29 000	64 000	3,4	0,16
8111 H	55	57	78	16	1,0	30 500	63 000	3,0	0,24
8112H	60	62	85	17	1,5	41 500	95 000	2,6	0,29
8113H	65	67	90	18	1,5	38 000	85 000	2,4	0,34
8114H	70	72	95	18	1,5	40 000	93 000	2,4	0,36
8115H	75	77	100	19	1,5	44 000	104 000	2,2	0,42
8116H	80	82	105	19	1,5	45 000	108 000	2,0	0,43
8117 H	85	87	110	19	1,5	45 500	114 000	2,0	0,46
8118H	90	92	120	22	1,5	45 500	118 000	1,8	0,68
8120H	100	102	135	25	1,5	61 000	160 000	1,7	1,00
8122H	110	112	145	25	1,5	65 500	186 000	1,6	1,08
8124H	120	122	155	25	1,5	65 500	193 000	1,6	1,16
			Ce	рия ди:	метров	2, серия в	ысот 0		
8201H	12	14	28	11	1,0	13 200	16 000	5,6	0,30
8202H	15	17	32	12	1,0	16 600	20 800	5,3	0,05
8204H	20	22	40	14	1,0	22 400	32 000	4,3	0,08
8205H	25	27	47	15	1,0	28 000	42 500	3,8	0,12
8206H	30	32	52	16	1,0	25 500	40 000	3,6	0,14


Продолжение табл. 140

Обозначения под- шипников	d	d_1	D	Н	r	С, Н	C ₀ , H	n _{пред} ·10 ⁻³ , мин ⁻¹	Масса, кг
						25.500	57,000	2.2	0.00
8207H	35	37	62	18	1,5	35 500	57 000	3,2	0,22
8208H	40	42	68	19	1,5	46 500	83 000	2,8	0,27
8209H	45	47	73	20	1,5	39 000	67 000	2,6	0,32
8210H	50	52	78	22	1,5	50 000	90 000	2,4	0,39
8211H	55	57	90	25	1,5	61 000	114 000	2,0	0,61
8212H	60	62	95	26	1,5	62 000	118 000	1,9	0,69
8213H	65	67	100	27	1,5	64 000	125 000	1,8	0,77
8214H	70	72	105	27	1,5	65 500	134 000	1,8	0,81
8215H	75	77	110	27	1,5	67 000	143 000	1,7	0,86
8216H	80	82	115	28	1,5	75 000	160 000	1,7	0,95
8217H	85	87	125	31	1,5	98 000	212 000	1,6	1,30
8218H	90	92	135	35	2,0	120 000	255 000	1,5	1,77
8220H	100	102	150	38	2,0	122 000	270 000	1,3	2,36
8222H	110	112	160	38	2,0	129 000	305 000	1,2	2,57
			Ce	рия ди	аметров	3, серия в	ысот О		
8305H	25	27	52	18	1,5	34 500	46 500	3,4	0,16
8306H	30	32	60	21	1,5	38 000	55 000	2,8	0,27
8307H	35	37	68	24	1,5	50 000	75 000	2,4	0,39
8308H	40	42	78	26	1,5	61 000	95 000	2,0	0,50
8309H	45	47	85	28	1,5	75 000	118 000	1,9	0,69
8310H	50	52	95	31	2,0	88 000	146 000	1,8	1,00
8311 H	55	57	105	35	2,0	102 000	176 000	1,6	1,34
8312H	60	62	110	35	2,0	102 000	176 000	1,6	1,43
8313H	65	67	115	36	2,0	106 000	186 000	1,6	4,57
8314H	70	72	125	40	2,0	137 000	250 000	1,4	2,10
8315H	75	77	135	44	2,5	163 000	300 000	1,2	2,70
8316H	80	82	140	44	2,5	160 000	300 000	1,2	2,80
8318H	90	92	155	50	2,5	196 000	390 000	1,0	3,90
8320H	100	102	170	55	2,5	232 000	475 000	0,95	5,10
8322H	110	112	190	63	3,0	275 000	610 000	0,85	7,90

 Π ример обозначения одинарного упорного шарикового подшилника серии диаметров 1, серии высот 0 с $d=30;\;D=47;\;H=11:$

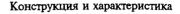
Подшипник 8106Н ГОСТ 7872-89

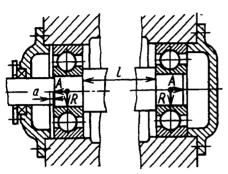
141. Шариковые упорные двойные подшипники (по ГОСТ 7872—89)

Размеры, мм

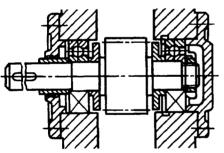
Обозначение подшипников	đ	d_1	d_2	D	H ₂	а	r	С, Н	<i>C</i> ₀, H	n _{пред} ·10 ⁻³ , мин ⁻¹	Macca, kr
				Серия д	намет	оов 2,	, серия	высот 0			
38205H	25	27	20	47	28	7	1,0	28 000	42 500	3,8	0,23
38206H	30	32	25	52	29	7	1,0	25 500	40 000	3,6	0,27
38207H	35	37	30	62	34	8	1,5	35 500	57 000	3,2	0,42
38208H	40	42	30	68	36	9	1,5	46 500	83 000	2,8	0,54
38209H	45	47	35	73	37	9	1,5	39 000	67 000	2,6	0,62
38210H	50	52	40	78	39	9	1,5	50 000	90 000	2,4	0,71
38212H	60	62	50	95	46	10	1,5	62 000	118 000	1,9	1,25
38214H	70	72	55	105	47	10	1,5	65 500	134 000	1,8	1,36
3821 6H	80	82	65	116	48	10	1,5	75 000	160 000	1,7	1,69
38217 H	85	87	70	125	55	12	1,5	98 000	212 000	1,6	2,34
							[

Пример обозначения шарикового упорного двойного подшипника серии диаметров 2 с $d_2=20$ мм, D=47 мм и $H_2=28$ мм:

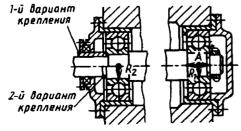

Подшипник 38205Н ГОСТ 7872-89

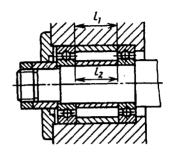

ПРИМЕРЫ КОНСТРУКЦИЙ ПОДШИПНИКОВЫХ УЗЛОВ

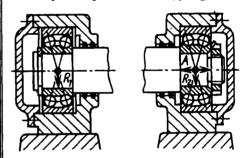
В нижеприведенной таблице оставлено старое обозначение сил. Сила A соответствует F_a ; сила $R-F_c$

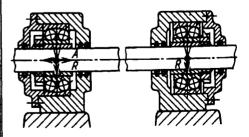

142. Примеры конструкций подшинниковых узлов

Конструкция и характеристика

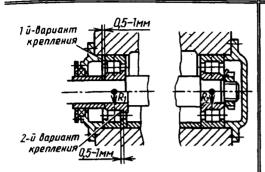



Радиальные шарикоподшипники в общей сквозной расточке корпусов. Зазор $a\approx 12\times 10^{-6}\ tl+0,15$ мм, где t - максимальный возможный перепад температуры вала, °C

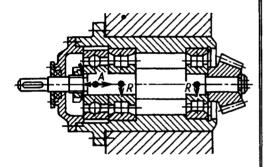

Радиальные шарикоподшипники в сквозных расточках корпусов (в редукторах с цилиндрическими прямозубыми колесами, а также с косозубыми колесами при угле наклона зубьев β до 10°)


Радиальные шарикоподшипники с фланцевым стаканом в сквозных расточках корпусов

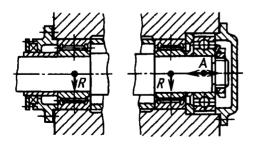
Радиальные шарикоподшипники с распорными втулками равной длины $(l_1 = l_2)$



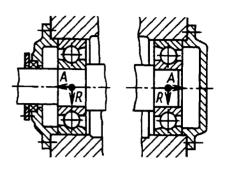
Сферические шарикоподшипники, допускающие несоосность посадочных мест и прогиб вала, в отдельных корпусах



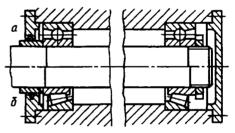
Сферические шарикоподшипники в отдельных корпусах на длинных и гладких валах, устанавливаемые на закрепительных втулках. Допустимы значительные прогибы вала от радиальных нагрузок, а также несоосность посалочных мест полшипников


Конструкция и характеристика

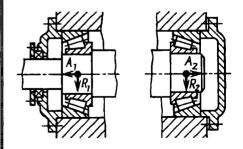
Радиальные роликоподшипники в общей сквозной расточке корпусов



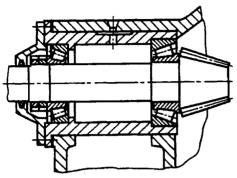
Радиальные роликоподшипники в комбинащии с радиальным шарикоподшипником, разгруженным от внешних радиальных сил и несущим только осевую нагрузку переменного направления, в общем стакане



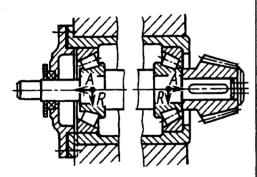
Игольчатые подшипники в комбинации с радиальным шарикоподшипником, разгруженным от внешних радиальных сил и несущим только осевую нагрузку переменного направления


Конструкция и характеристика

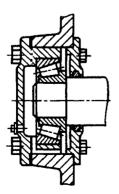
Радиально-упорные шарикоподшипники с узкими торцами наружных колец внутрь в сквозной расточке корпусов, регулируемые набором тонких металлических прокладок между крышками и торцами корпуса



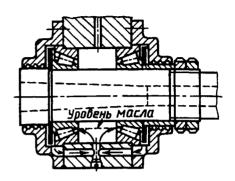
Радиально-упорные подшипники с широкими торцами наружных колец внутрь: *а* — вариант с шариковыми подшипниками; *б* — вариант с коническими роликоподшипниками



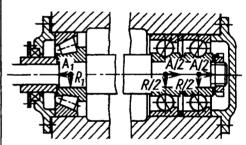
Конические роликоподшипники в сквозной расточке корпусов. Осевая регулировка осуществляется набором металлических прокладок между торцами крышки и корпуса


Конструкция и характеристика

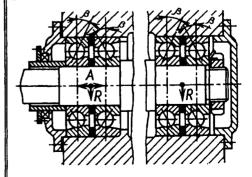
Конические роликоподшипники с регулировкой по внутренним кольцам



Конические роликоподшипники в сквозной расточке корпуса с применением общего фланцевого стакана, допускающего регулировку вала в осевом направлении.

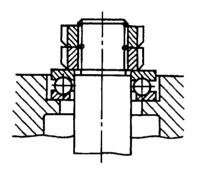


Конический роликоподшипник в глухой крышке, имеющей удлиненную центрирующую часть

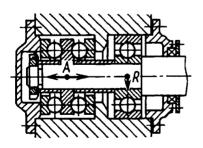

Конструкция и характеристика

Конические роликоподшипники с упорным бортом установлены на горизонтальном валу. Масло циркулирует по трем-четырем каналам, расположенным ниже его уровня

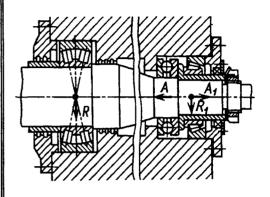
Сдвоенные радиально-упорные шарикоподшипники в комбинации с коническим роликоподшипником, что допускает большие осевые нагрузки, направленные в одну сторону

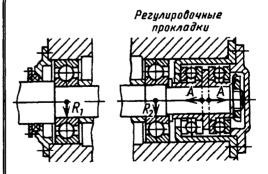

Сдвоенные радиально-упорные шарикоподшипники с установкой между ними комплектовочных колец (или набора прокладок) разной толщины, с помощью которых осу-

Конструкция и характеристика

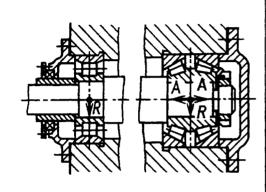

Конструкция и характеристика

ществляется предварительный натяг в парном комплекте подшипников, что, в свою очередь, приводит к равномерному распределению внешних нагрузок между подшипниками комплекта.


По мере износа рабочих поверхностей деталей подшипников осевые и радиальные зазоры могут быть устранены посредством утонышения внутреннего или утолщения наружного комплектовочного кольца (либо изменением толщин прокладок).


Упорный одинарный шарикоподшипник воспринимает осевую нагрузку одного направления

Комбинация двойного упорного и радиального шарикоподшипников. Упорный подшипник воспринимает только осевые нагрузки переменного направления, а радиальный — только радиальные. Осевые зазоры в упорном подшипнике регулируют набором прокладок между крышкой и корпусом



Комбинация конического роликоподшипника с упорным шарикоподшипником, воспринимающим значительные осевые нагрузки одностороннего направления при небольших частотах вращения. Конический роликоподшипник может воспринимать кроме значительных радиальных небольшие осевые нагрузки противоположного направления. Зазоры в обоих подшипниках выбираются при помощи торцовой крышки и набора регулировочных прокладок между крышкой и корпусом

Комбинация двойного упорного и радиального шарикоподшипников в общей сквозной расточке корпуса. Упорные подшипники воспринимают только осевую нагрузку переменного направления, а радиальный — только радиальную

Конструкция и характеристика

Парный комплект конических роликоподшипников в комбинации с радиальным роликоподшипником. Исключается возможность заклинивания подшипников при температурных изменениях длины вала вследствие обеспечения свободного осевого перемещения внутреннего кольца левого подшипника вместе с роликами относительно наружного (плавающая опора)

ТОРЦОВЫЕ КРЫШКИ УЗЛОВ ПОДШИПНИКОВ КАЧЕНИЯ

Торцовые крышки предназначены для герметизации подшипников качения, осевой фиксации подшипников и восприятия осевых нагрузок.

Крышки каждого типа изготовляют двух исполнений: 1 — с креплением винтами;

2 — с креплением болтами.

Допускается изготовление на крышках отверстий для смазки или установки масленок.

При использовании крышек для монтажа подшипников с выступающими элементами сепараторов необходима проверка наличия зазора между крышкой и сепаратором.

Технические требования — по ГОСТ 18514—73. Материал крышек: чугун с механическими свойствами не ниже, чем у чугуна марки СЧ15 по ГОСТ 1412—85. Допускается изготовление крышек из стали по ГОСТ 380—94 и 1050—88.

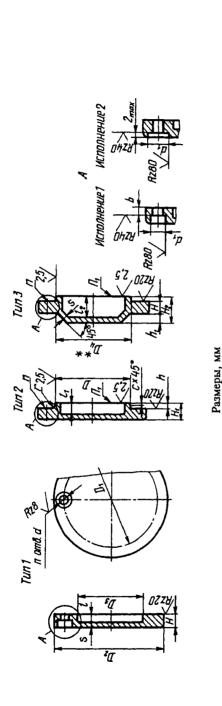
Предельные отклонения размеров отливок — по ГОСТ 26645—85.

Уклоны формовочные — по ГОСТ 3212—80.

Предельные отклонения от параллельности плоскостей Π и Π_1 — по 7 степени точности ГОСТ 24643—81.

Предельные значения торцового биения плоскости Π относительно цилиндрической поверхности диаметром D (поле допуска h9).

Предельные значения радиального бисния поверхностей Π_2 и Π_3 относительно поверхности диаметром D — по 7 степени точности ГОСТ 24643—81.


Неуказанные предельные отклонения размеров обработанных поверхностей: H14; $\pm 1/2$.

Предельные смещения осей отверстий d под крепежные детали от номинального расположения должны быть: для d=4,8 и 5,8 мм — не более 0,2 мм; для остальных размеров d — не более 0,25 мм.

На наружной поверхности крышек должно быть нанесено их условное обозначение (без проставления слова «крышка») по соответствующему стандарту.

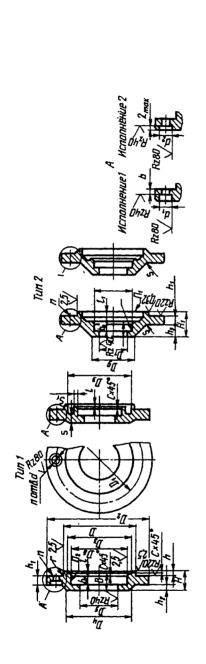
Внутренние необработанные поверхности крышек должны быть покрыты грунтовкой.

143. Торцовые глухие крышки (по ГОСТ 18511-73)

									4	газмеры, мм	Σ										
$D=D_4^{**}$	'a'	70	70	P	79	4	H * H, * H, *	H. *	H, *		,	,	,	h,	,	٥	ر	,	Масс	Масса крышки, кг	ики,
•		1	;	ı			1	Ī				,,	:)	1	•		Тип		Тип 3
13	22	34	6																0,03	0,03	
14			10	4,8	∞	10	9	6	1	6	9	ı	3	١	7	3					
15; 16; 17; 18; 19; 20	25 28	36 40	11 14							<u> </u>	·	*							0,03	0,04	1-1
21; 22; 24; 26;	32 36	45 50	16 18						17			13		5			9,0	0,3	0,07	0,08	0,08
28; 30; 32	42	55	24	5,8	01	12	∞	12		4	∞		4		33	4		-	0,11	0,12	0,13
35; 37	48	99	28						18			14	•	9				•	0,16	0,17	0,19
40; 42	54	70	34															9,0	0,21	0,22	0,23
44; 45; 47	9	78	38	7	12	14	10	15	20	5	01	15	2	5	4	5	9,0	1,0	0,24	0,26	0,27
																				ĺ	

Продолжение табл. 143

ا ي	<u> </u>	2	ತಸ	15	4	3	1,5 1,9 1,9 2,1 2,55	L04879-	
ышки	Тип 3	0,32	⊢—	0,67	0,74	0,83	 	£44,4,8,8,9,0,0,4,4,4,8,8,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	8,6
Масса крышки, кг	Тип 2	0,31	0,38	09,0	0,67	0,75	2,2,2 2,3,0 2,3,0 2,3,0	κ.κ.4.4.4.λ.λ. 4.ν.ο.λ.ο.ζ.ν.	9,3
Mac	Тип 1	0,29	0,36	0,57	0,63	0,71	1,2 1,4 1,6 1,8 2,15 2,15	ωωω444 <i>λ</i> Υλώνλοα4	7,8 8,7
L.					9,0			8,0	
c				0,1			}	9,1	<u></u>
S			~		9		7	∞	01
9				4			2	9	7
h		5	7		∞		6	12	15
ų			S		9		∞	01	12
4		15	17		8		25	32	40
1/1			01		12		16	20	25
7			2		9		∞	01	13
H ₂ *		70	22		56		32	40	50
H, *			15		18		23	28	35
* H			01		12	_	15	18	23
q_2	·		14		50		24	26	32
lp			12		15		81	20	28
q			7		6	-	=	13	17
D ₃		44	48 52	28	62	72 80	98 105 115 130	135 145 155 160 175 200	208 220
P		82	95	105	110	120 130	145 155 165 175 185 195	210 220 230 240 255 265 280	300
l _Q		99	75 78	84	96	001	120 130 140 150 170	180 190 200 210 225 235 235	265 280
$D=D_4**$		50; 52	55; 58; 60; 62	65; 68	70; 72 75	80; 85 90; 95	100 105; 110 115; 120 125; 130 135; 140 145	150; 155 160; 165 170; 175 180 190; 200; 210 215; 220	225; 265 240; 250


* Размеры для справок

* * D_4 назначается для D свыше 20 мм; отклонение D по d 11.

n=3 при D=13+37; n=4 при D=40+75; n=6 при D=80+250. ГОСТ 18511—73 предусматривает D до 310 мм. Пример обозначения торцовой глухой крышки типа 1, исполнения 2, диаметром D=65 мм;

Крышка 12-65 ГОСТ 18511-73 Дополнительные рекомендуемые размеры элементов крышек указаны в табл. 147.

144. Крыппси торцовые с отверстием для макжетного уплотнения (по ГОСТ 18512--73)

¥	
ā	
3Me	

Масса крышки, кг	Тип		0,25				0,29	
Ма крып к	Тип Тип 1 2		0,23 0,25				0,27 0,29	
				```	0,0	<u> </u>		
Ü			9,0	`			0,1	
$S_1$					1			· <del>-</del>
8								
2				0	8,0			
$p_1$				8,0		8,0	8,0	11,0
9				•	4			
B ₁		<u> </u>		5	71			
l ₁ B B ₁ b				13		13	13	15
7				5	2			
1				•	7		_	
h ₃				,	_			
h ₂				I		Ī		2
*1"				9	3			
4				4	C 77			
H ₁ ,				_ {	77			
* H				15		15	15	17
$d_2$					<u> </u>			
$q_1$				12	71			
P				,				
2		Ì	36	36	38	36	40	6
<i>D</i> , <i>D</i> ₈ H12 H9		;	87	28	30	78	32	32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>	13	12	15	18	18
тр вала улки	МвиД, га ипи		4	12	91	4	17	17
Д ₆ Н9		30	32	28	30	30	32	5
D ₅		16	18	13	16	91	18	21
тр вала гулки	или в	15	17	12	15	15	17	20
D4				5			47	
D   D ₁ D ₂ D ₃ D ₄				70 34		38		1
72				2			78	
$D_1$				54			47 60 78	
D Fr			9	5	7		47	

g Š	Тип	0,35	0,47	0,47	0,47	0,70	0,76	0,76
Масса крышки, кг	Тип	0,32	0,44	0,44	44,0	0,62	0,68	0,68
× ×	F	, o	o,	o,		<u> </u>	6	<u>°,</u>
					9,0	_		
2					1,0			
·					1	<del> </del>		
8		000	<u> </u>	0,0	0000	0	00000	0
<i>b</i> 2		8,0 8,0 11,0111,0 11,0111,0	ļ	11,0 11,0	8,0 8,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0 11,0	11,0	8,0 11,0 11,0 11,0 11,0	11,0
p ₁		0,8 0,11 0,11		<u> </u>	0,1,1,1,1	=	11,0	
9			,		4		·	
B ₁		12 15 15		15	2222	15	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15
B		13 15 15		15	13 15 15		15	
17		10 12 12		13	13 13 13	13	0 13 13 13 13 13	15
7				7			е	
h ₃		7 12 12		13	7 13 13 13	01	400000	12
ħ2		7 7 7		2	10000		I	
h h,*				10			12	
				2			9	
H* H ₁ *		22 27 27	78	78	1 8 8 7 7 7	78	75 78 78 78 78 78 78 78 78	30 31
*#		15 17 17	17	81	S1 71 71 71		81	
$d_2$				4			20	
Ιp				12			15	
p				7			6	
র্		04 48 84 84 84	48	50	8 8 8 8 9 1 8 8 9 8 1	62	40 52 62 62 62 62	68 70
<i>D</i> ₈		32 40 40	42	42	84441	52	30 52 52 52 52 52	58 60
<i>D</i> ₇		18 21 21	26	26	22 2 2 2 1 2 2 4 2 1 2 4 2 4 2 1 2 4 2 1 2 4 2 1 2 1	31	26 31 31 31 31	36 41
етр вала етр вала	мвиД Гипи	20 20 20	25	25	25 25 -	30	16 25 30 30 30	35
<i>D</i> ₆ Н9		32 40 42	42	42 52	52 52 52 52 52	52 58 60	40 42 52 58 58 65	58 65
<i>D</i> ₅		18 21 26	26	26 31	18 21 26 31 33	31 36 41	21 26 31 36 39	36 46
ELÀNKN GLĎ BSNS	меиД пип	17 20 25	25	25 30	25 25 30 32	30 35 40	20 25 30 33 38 45	35
$D_4$		20	20	09	09	89	72	72
$D_3$		44	48	52	52	58  58	-	<b>2</b> 1
D2		82	95	95	95	105	110	110
la		99	75	78	78	84	06	8
<i>D</i> h9	1	52	55	09	62	89	72	75

0,80	0,89	0,90 1,00	1,00	1,50	1,80
0,79	62'0	06,0	06'0	1,40 1,50	1,60 1,80
			9,0		
	·	0,1			1,6
		1			
	9				7
		11,0			<u>`</u>
0,11		11,0 11,0 11,0 11,0	11,0 11,0 13,6	11,0 11,0 13,0 13,0	11,0 13,6 13,6
	15 4				17  5
15		15 15 15 18	15 15 18		20 1
12 12 13 13 18 18	91	13 15 18 19	81 61 61	13 16 19 19	19
					-
9 9 10 12 15 15	13	10 12 15 16	15 16 16	7 10 13 13	13
1		m	3		
	12				15
	9				8
27 27 28 30 33 33	31	28 30 33 34	33 34 34	30 36 36	36
81		18 18 18 21	18 18 21		23
	20				24
	15				8.
	6				=
50 50 62 68 75 75	70	52 68 75 80	75 80 80	62 70 80 80	80
40 40 52 58 65 65	09	42 58 65 70	65 70 70	52 60 70 70	92
21 21 36 46 46	41	26 36 46 51	46 51 51	31 41 51 51	51
20 20 30 35 45 45	9	25 35 45 50	50 50	30 40 50 50	50
52 58 60 65 70	58 65	52 60 70 80	09 07 85 85	58 65 80 80	\$ 80 80 80
26 31 36 41 46 51	36 46	31 41 51 56	41 51 61,5	36 46 56 66,5	46 56 71,5
25 30 35 40 45	35 45	30 40 50 55	50 60		45 55 70
08		92		35 100 45 55 65	110
		- 80	08	06	95
100 120 72			130 80	145	155
100			011	100 120 145	105 130
08	85	06	95	100	105

_				подши	111111111111111111111111111111111111111		
:	са ики,	Тип 2	1,80		2,10		2,40
Thomas man and a second	Масса крышки, кг	Тип	1,60		1,80		2,00
	١.			<del></del>	9,0	<del></del>	
	Ü				1,6		
204	ls.		0,0	0,0	6,0		0,0
	87				7		
	\$		11,0 11,0 11,0 13,6				11,0 11,0 13,6 13,6
	- P ₁	<del> </del>	11,0 11,0 13,6 13,6	11,0 13,6 13,6 13,6	11,0 11,0 13,6 13,6 13,6	13,6	11,0 13,0 13,0 13,0
	9			· · · · · · · · · · · · · · · · · · ·	ν,		
	<u>B</u>		22222	8	888822	8	88877
					70	<del></del>	
	~		21 88 29 29 29	2222	22222	8822	18 19 19 22 23
-			0.0101010	1	<u>m</u>	T	
ļ	1,3	······································	9 13 13 15 13	8666	011888888888888888888888888888888888888	23 29 23	12 13 16 19 20
-							
-	ψ ₁ *				15		
-				<del></del>	<u>∞</u>		
	H ₁ *	,	33 33 33	14444	884444	4444	36 39 42 43 43
-	#			<del></del>	23		
-	- 4						
-					<u>8</u>	<del></del>	
}	<u> </u>		80 80 90 90	N000	=	1 0 10 10 10	
-	<u>~~~</u>		L	26 00 00 100 100 100 100 100 100 100 100	95 95 95 95 95 95	100 105 115 115	75 80 90 100 110
-	D ₈		58 70 80 80 80	8888	60 70 85 85 85 85	8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 28 20 20 20 20 20 20 20 20 20 20 20 20 20
	- Р. Тулки Н 12	ส เมเน	36 56 56 56	2999	51 61 61 61	81.18	46 51 56 66,5 75,6
ŀ	enp Bana	меиП.	35 55 55 55 55 55	65 65	900000	8688	45 50 55 65 75
L	D ₆		60 70 85 295 100	05 100 105	65 80 100 105 110	80 95 105 110	70 85 100 110 110
	<i>D</i> ₅ H12		41 51 61,5 71,5 76,5	51 66,5 76,5 81,5	46 56 66,5 76,5 81,5 86,5	56 71,5 81,5 86,5	51 61,5 76,5 86,5 86,5
	тр вала улки	мви∏. га иги	40 50 60 70 75	50 65 75 80	45 55 65 75 80 85	55 70 80 85	55 85 85 85
	<i>D</i> ₄		110		120		125
	D3		95	ł	105		115
L	D ₂		30 155		165		150 175 115
L	Dı		130		140		150
	<i>D</i>		110	115	120	125	130

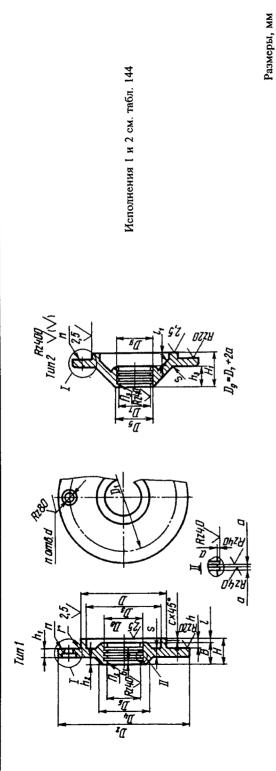
	2,20 2,60	2,90	3,70	
	2,20	2,50	3,50	
	9,6		8,0	
		1,6	i	
0,0	0,9		8,0	8,0
<del></del>	0 9 9 9 9 9	9	8 2 2 2	
13,6	11,0 13,6 13,6 13,6 13,6 13,6	13,6	11,0 13,6 13,6 13,6 13,6	13,6
		13,6		
	٧		9	
20	17 20 20 20 20 20 20	20	17 20 20 20 20 20	20
	20		25	
78 78 78 78 78 78 78 78 78 78 78 78 78 7	19 22 22 26 26 26 26 26	27 28 28	19 22 23 27 27 29	26
	T	e ا		
19 23 23 23	13 18 19 23 23 23	24 25 25	8 14 15 19 21	18
		1	T	
	15		81	
	<u>∞</u>		10	
24 46 46 46	36 41 42 46 46 46 46 46	47 48 48	36 42 43 47 49	46
	- 23	··	78	-
	3 24		7 26	
	18		13 20	
115	80 95 105 116 116 116	121	83 103 113 133 138	∞ _.
L	1			5 118
		110	<u> </u>	80 81,5 105
65 66,5 80 81,5 80 81,5 80 81,5	50 51 60 61,5 70 71.5 80 81,5 80 81,5 80 81,5	85 86,5 95 97 95 97	85 50 51 95 65 66,5 110 75 76,5 125 90 92 135 100 102	81,
,		l .		
85 100 120 125	80 90 95 105 120 120	100 120 130	85 95 110 125 135	95 120
60 61,5 75 76,5 90 92 100 102	55 56 65 66,5 70 71,5 80 81,5 90 92 95 97 100 102	75 76,5 95 97 105 107	85 60 61,5 85 70 71,5 95 85 86,5 110 150 100 102 125 -	70 71,5 90 92
60 75 90 100	55 65 70 80 90 95	75 95 105	60 70 85 100 110	70 90
	135	145	150	
125	125	130	135	135
	<del></del>		<u> </u>	
	160 185	145 170 195	180 210	
135	140	45	150	155

сса ики,	Тип 2			4,40							4.60					_	4.60 5.10					5,50	
Масса крышки, кг	Тип 1			3,90 4,40			-				4.10						4.60					5,00 5,50	
`						8,0									•								
2									9.1														
S		8,0		Τ		-	-		8.0 1.6		Τ		1		8,0				1		-	, o,	
52						∞														<u> </u>			
<b>\$</b>						13,6																	
<i>b</i> ₁									13,6		_												
9						9				_													
B						20																	
8						25																	
1		21	22	26	27	28	28	28	22	27	29	30	30	30	22	23	27	30	30	22	56	28	30
				3	_										<del> </del>					т :			
13		113	7	18	19	20	20	70	7	19	_		22	77	7	15	19	22	-33	7	81	70	22
* h2		<u> </u>				90																	
h h;*						10 18																	
L .							~	~		_	_	_						_	_	T _,			
* H ₁ *		41	4	46	47	3 48	48	48	4	4	4,	<u>~</u>	20	3	4	4	47	5(	35	4	46	48	20
d ₂ H*		<u> </u>				6 28																	
<i>d</i> ₁ <i>d</i>		<u> </u>				20 26																	
A 6		$\vdash$				13 2																	
8	-	86	100	115	120	130	130	30	105	120	135	150	150	150	8	110	130	150	091	2	115	130	160
80 H9		85	90	105	110		120	120	95.1		125 1		135	135	8	1001		35 1	45 1	L	105		
						<u> </u>	<u> </u>	<u> </u>	1			_					=	_	-	1			7
<i>D</i> ₇		61,5	66,5	81,5	86,5	97		97	71,5	86,5	100 102	112	112	112	65 66,5	75 .76,5	92	112	1117	66,5	81,5	97	
rp bana Ynkn	эмвиД, та ипи	09	65	80	85	95	95	95	70	85	8	110	110	110			9	011	115	65	80		
D ₆		96	100	_		130	135	145		105	120	125	135	145	Į.		125		145	8	120	130	135
D ₅		66,5	76,5	5,18	90 92	0.7	12	1117	71,5	81,5	95 97	02	112	117	71,5	36,5	02	112	117	76,5	32	04	12
яляя функти Мэтки	или вт	65	75	80	8	105	101	115	5	08	95	100 102	110	115	6	85	00	110	115	75 76,5	90 92	05	110 112
D4	п			160			1		T		70			_			75 1		_	-			_
D3		<u> </u>	145	=				ī			55 1	· 					<del>[</del> 09			<u> </u>	75	<u></u>	
B			_	220				<u> </u>	<del> </del>		170 200 230 155 170				70 71,5		240 1			_	755 175 100		
la Pi				190							700						012			<del>                                     </del>	- <del>'</del>	3	
d en				091							170						180				100	<u>.</u>	

	ТОГЦ	OBDIE KPDII	HVM A2010F	подшипник
5,50	5,60	5,90	9,60	9,30
5,00	5,10 5,60	5,30 5,90	5,90	8,40 9,30
	8,0	<del></del>	\	
	1,6 0,8		<del></del> ··	
<u> </u>	0,8	8,0	8,0	10,0
	∞ 1 .			<del>                                     </del>
			13,6 13,6 17,5	13,6 13,6 13,6 17,5
	13,6 13,6		1 = = =	
	6 13	· · · · · · · · · · · · · · · · · · ·	<del></del>	Γ .
			20 20 24	20 7 20 7 24
	24 2		1444	<del> </del>
31	T	23 27 30	30.	26 31 28 30 32
3	22 26 26 27 27	4 4 6	14 8 8	3 3 5 5
23	41 81 19	15 19 22	19 22 30	11 11 13 15 21
			<u> </u>	
	81			23
	10	-		12
51 51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	43 47 50	47 50 58	46 48 50 56
	28			35
	26			32
	79		<del></del>	17 28
	<u> </u>			
170	105 115 120	110 130 150	130	115 130 160 180
155	95 105 110	100 120 135	120 135 170	105 120 145 165
127 127	70 71,5 95 80 81,5 105 85 86,5 110	75 76,5 100 90 92 120 10 112 135	92 112 142	10
125	70 80 85	75 76,5 90 92 110 112	0 1 1 0 4	80 81,5 95 97 115 117 135 137
	105 120 135			
22		2,5	92 1	92   107   1112   1117   1
115 117 145 120 122 150	80 81,5 95 97 110 112	85 86,5 110 105 107 130 115 117 145	90 92 120 100 102 125 115 117 145	90 92 120 105 107 130 110 112 135 115 117 145
		10 1	20 1	20 1
	75 1	90	00	08
	200 225 255 175 190	210 235 265 190 210 105 107 130 115 117 145	215 250 280 200 220 100 102 125 115 117 145	225 265 300 208 220 105 107 130 115 117 145
<del></del>	25 2	35 2	50	
-	0 22	0 23	5 25	26
190	70 ₀	210	210	722

* Размеры для справок.

n = 4 при D = 40+75; n = 6 при D = 80+225.


ГОСТ 18512—73 предусматривает D=35; 37 и свыше 225 до 310 мм.

Пример обозначения торцовой крышки с отверстием для манжетного уплотнения типа 1, исполнения 2, диаметром D=68 мм, с диаметром вала или втулки 35 мм:

Крышка 12—68×35 ГОСТ 18512—73

Дополнительные рекомендуемые размеры элементов крышек указаны в табл. 147.

145. Торцевые крышки с жировыми канавками (по ГОСТ 18513-73)



0,29 крышки, кг 1 Macca 0,14 0,20 Тип 0,3 L 9,0 Ç a 7 5 4 3 þ q 6 16 8 10 t ~ 7 43 ١ 42 9 h₁* œ ų 4  $H_1^*$ 56 *H 28 2  $q_2$ 2  $q_1$ 5,8 p Лиамстр вала РД ДД 17 1 Пиаметр вала Мин втупки ДД 12817 122 22 23 Ds 56  $D_4$ 26 30 35 2888 30,8 Ĝ 7 28 7 55 65 8 ã P9

9

0,33	0,33	0,37	0,41	0,52
0,24	0,24	0,28	0,32	0,40
ļ		0,6		
9,0		1,0	1,0	
		7		
		5		
		8		
		4		
		16		
10 12 12	10 12 12	1 1 1 2 2 2 0 2 0	13 13 13 13 13 13 13 13 13 13 13 13 13 1	13
		7		
11 13 13	113	== 2 4		41
		m		
		10		
		5		
26 28 28	26 28 28	26 26 28 29 1	26 26 26 26 28 29 29	53
		81		
		4		
		12		
		7		
17 20 20	17 20 20	717	16 16 16 17 20 25 30	25 30 30
17 20 25	20 25 30	17 20 24 25 28 30 35	17 20 25 28 30 32 35	25 30 35 40
32 33	28 32 32	1   32	28 28 32 33 34 24 25	36 42 42 42
28 32 36	32 36 42	32 33 34 44 45 46 46 46 46	82 32 32 44 44 45 45 45 45 45 45 45 45 45 45 45	36 44 52 52
34	34	38	4	48
70	70	78	82	95
54	54	09	99	75
94	42	47	52	55

	н	_					
	Тип 2	0,55	0,55 0,55 0,55 0,55 0,55	I		0,75	0,82
Масса крышки, кг	Тип 1	0,46	0,46		0,62	89'0	89'0
				9'0			
J J				1,0			
a				2			
8			2			9	
<i>b</i> ₁				<u>س</u>			
9				4			
В				16			
		13 15 15	13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	[	16	13 15 16 16	00000
_			7		-		
h3		14 16 16	11 12 14 19 19	1	14	11 12 14 14 17	8 8 11 11 11 16
h ₂			3			_	
*=			01			12	
ų			\$			9	
H ₁ *		29 31 31	26 29 31		32	29 31 32 32	26 29 34 34 34
H*			81			18	
d ₂		·	14			20	
d ₁			12			15	
p			7			6	
ытулки Втулки Втулки Вала	ици	25 55 55	14 20 25 30 35	ı	40	33 34 40 40 40	28 30 45 45 45
метр вала втулки <u>2</u> 2	ипи	25 30 40	33 30 52 53 30 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	3864	35 45	30 35 40 45 50	20 30 33 38
Sa Carrette		36 46 46	26 32 32 44 46	t	52	42 46 52 52 52	28 28 36 28 28 28
D4		36 42 52	82824	25 58 58	46 58	44 46 52 58 62	\$45 86 86 80
$D_3$			52			58	62
ч			95			105	110
la P			78			84	06
O h9		09	62		65	89	72

0,82		0,95	0,95	1,10
0,68		0,79 0,95	0,79	0,95
		9,0	L	
		0,1		
		2		
		9		
		m		4
		4		
		16		18
81 81 81	16	10 10 10 10 10 10 10 10 10 10 10 10 10 1	16 19 19 19	13 15 18 18 19 21 21
		3		
91 91 16	14	10 11 11 13 16 16 17	14 17 17 17 17	13 15 18 19 21 21
		-		
		2		
		9		
34	32	28 29 31 34 35 35	32 35 35 36	33 33 33 33 33 33 33 33 33 33 33 33 33
		19		21
		50		
		15		
		6		
45 45	04	20 20 30 35 45 45 50 50	40 50 55 55	25 35 45 80 60 60
45 50 55	35 45 55	25 30 35 40 40 50 50 60	35 45 55 70	30 40 50 55 60 65
58	52	32 45 46 58 58 62 62 62	52 62 68 68 68	36 46 58 62 72 72
58 62 68	46 58 68	36 25 25 28 28 27 28 27	46 58 72 82 82	42 52 62 68 72 78
62		72		80
110		120		130
96		100		110
72	75	08	88	06

_								
	са ки,	Тип 2	1,10	1,60	1,80	1,80 1,80 1,80 1,80 1,80		
	Масса крышки, кг	Тип	56,0	1,30 1,60	1,60	1,60		
		· · · · · · · · · · · · · · · · · · ·			9,0	•		
The contract	Ü		0,1		9,1			
Î	a		2		ю			
	s		9		_			
	1 <i>q</i>				4			
	9		4		٧			
	B		18		23			
	1/		18 19 19 22	13 16 19 22 22 22 22	22 22 22 22 22 23 23 23 23 23 23 23 23 2	15 18 19 22 22		
				n				
	h3		18 19 19 22	13 16 19 22 22 22 22 22	19 22 22 22 22	15 18 19 22 22		
	h ₂		ж	8				
	*iq		12	5				
	4		9	∞				
	H,*		36 37 37 40	36 39 44 45 45 45 45	45 45 45 45 45	38 42 42 45 1 45		
	H.		21		26			
	$q_2$		20		24			
	lp		15		18			
	P		6		-			
	та вала улжи С <u>Е</u>	Дизмет или вт	45 50 55 65	30 40 50 60 65 65	50 70 70 70	35 45 50 55 65 70		
	ятья фт. Улки ОД	эмвиД в ији	40 50 60 70	35 45 55 65 70 75 80	45 55 70 75 80	40 50 60 70 75 88		
	D _S		58 62 68 78	44 54 54 54 54 54 54 54 54 54 54 54 54 5	64 80 84 84 84	50 64 70 88 1		
	<i>D</i> 4		52 62 72 82	50 60 70 80 84 90	08 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
	$D_3$		08	06		95		
	Dz		130	145		155		
	^I a		110	100 120 145		130		
	D h9		95	100	110			

2,10	2,10	2,30	2,30
1,90	1,90	2,10	2,10
		9,0	
		1,6	
		E	
		7	
		٧.	
		8	
		25	
22 22 22 22	15 19 19 19 19 19 19 19 19 19 19 19 19 19	22 26 26 26 26 26 26 26	18 19 19 23 23 23 23
	·	<b>6</b>	
2 4 4 4	25 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	28 5 7 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	25 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		٠٠	
		15	
		<u> </u>	
46 47 47	14 4 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	47 47 51 51 51 51	44 4 4 4 4 4 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		78	
		24	
		81	
		=	1
60 65 65 65	40 50 60 75 75 75	65 70 80 80 80 80	45 50 55 65 75 75
50 65 75 80	45 55 65 75 80 85 90	55 70 80 85 90 100	50 60 75 85 85 90 90 100
78 82 82 82	58 68 78 92 92 92	28 88 88 28 88 88 28 88 88	62 68 72 82 92 92
68 82 92 98	62 72 82 92 98 102 108	72 88 98 102 108 118	68 78 92 102 108 113
	105		115
	140 165 105		175
	140		150
115	120	125	130

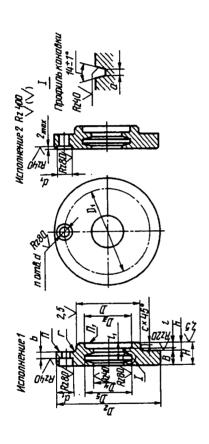
а Си,	Тип 2	2,50	2,50	2,90	3,70
Масса крышки, кг	Тип	2,30	2,30	2,60	3.40
	<u> </u>			9,0	0,8
v				9,1	
a				က	
5			7		∞
lq				ν.	
9			80		9
B			25	<u> </u>	
1/		8882	25 27 27 27 27 27	27 28 28 28 28	19 22 23 27 29 29
_				м	
h ₃		28 28 28 28	2828888	88888	16 19 20 24 26 26
h2		8			5
*1u		115			18
4	ų		œ		10
H ₁ *		47 51 51 51	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	53 53	44 48 44 44 44 44 44 44 44 44 44 44 44 4
*H				28	
$d_2$			24		26
qı			81		20
p			=		13
PICKN 7.IKN € €	Гламги Ля ипи	65 80 80 80	200000000000000000000000000000000000000	85 95 95 95	50 65 75 90 100
₽%	TH NIM	60 75 90 100	55 65 70 80 90 95 100	75 95 105 110	60 70 85 100 110
D _S	ZIKUKI I	8888	68 78 88 88 108 108 108	102	68 82 92 108 118
Pq		78 92 108 118	72 82 88 88 108 112 112	93 122 122 132 132	78 88 102 118 118 128
D ₃			125	130	135
Pz				195	
$D_1$			160 185	170	180 210
<i>D</i> b9		135	140	145	150

3,70	4,10	2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	4,90	5,50						
3,40	4,00		4,70	5,30						
	8,0									
	9,1									
	4									
	∞									
		5								
		9								
25		30								
26 30 30	22 28 28 28 28 28 28	33 33 72 73	30 30 30 30	78 78 78 78						
		4								
23 27 27	23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	24 29 31 32 12	23 55 55 55 55 55 55 55 55 55 55 55 55 55	26 32 32						
111	5		9							
		8								
		01								
51 55 55	51 52 56 58 58 58 58	52 57 59 60 60	52 53 57 60 60	54 58 60						
28	33	34		36						
		26								
		50								
		13								
80 110 110	60 65 80 95 95 95	70 85 100 110 110	62 75 90 110 115	65 80 95						
70 90 115	65 75 80 90 105 110	70 80 95 100 110	70 85 100 110 115	75 90 105						
98 128 128	80 85 100 115 115 115	90 105 120 130 130	85 95 110 130 135	85 100 115						
88 108 132	85 95 100 110 125 135	90 100 115 120 130	90 105 120 130 135	95 110 125						
135	<del></del>	155	091	175						
210	190 220 145		240	190 225 255						
180 210	190	170 200 230	210	225						
155	160	170	180	190						

Продолжение табл. 145

са іки,	Тип 2	5,50		5,80	6,50	6,50 9,20 9,20 9,20
Масса крышки, кт	Тип 1	5,30		5,50	6,20	6,20 8,80 8,80 8,80
				8,0		
0				1,6		
ø				4		
8				∞		8 10 10 10
- lq				9		6 7 7
9		-		9		6 7 7
B				32		32 34 34 34
1/1		31 31 31	22 27 29	23 27 30	27 30 33	26 28 30 32
_				4		
h ₃	,	35	26 31 33	3.23	31 34 37	25 27 29 31
h2	h ₂		· · · · · · · · · · · · · · · · · · ·			
*1 ₁				18		18 23 23 23
ų				10		10 12 12 12
$H_1^*$		62 63 63	54 59 61	55 59 62	59 62 65	62 64 66
$H^*$				36		38 38
d2				26		26 32 32 32
$q_1$				70		78 78 78 78 78
p				13		13 17 17
7.±	NIN BT	115 125 125	85 00	75 90 10	90 110 140	80 95 115 135
rp Bana	ГывиД					
тр вала улки ДД	LINBMCI NIN BT	110 115 120	80 95 110	85 105 115	90 100 115	90 105 110 115
20		135 145 145	90 120 120	95 110 130	130	102 118 138 158
D4		130 135 140	100 115 130	105 125 135	110 120 135	112 128 132 138
<i>D</i> ₃			175	061	200	208
D				265	280	225 265 300 208
$D_1$			225 255	235	250	265
D h9		190	200	210	215	225

* Размеры для справок.


n=3 при D=28+37 мм: n=4 при D=40+75 мм; n=6 при D=80+225 мм.

Пример обозначения торцовой крышки с жировыми канавками типа 1, исполнения 2, диаметром D=65 мм;  $D_6=35$  мм; ГОСТ 18513—73 предусматривает D свыше 225 мм до 310 мм.

Крышка 12- 65 × 35 ГОСТ 18513—73

Дополнительные рекомендуемые размеры элементов крышки указаны в табл. 147.

146. Крышки торцовые с кананкой для уплотиительного кольца (по ГОСТ 11641-73)



Размеры, мм

Масса крышки, кг	0,02	0,03			
		0,3			
c		9,0			
9		7			
a	1,5 1.5 2,0	1,5	2,1		
В		7,5			
11		6,0 7,5			
1		1,5			
h		ო			
H*		6			
$d_2$		01			
$d_1$		∞			
p		4,8			
$D_{5}$	8 9 12	9 10 13	8 6		
D4 H12	8 8	9	5		
Диаметр вала или втулки	4 5 7	8 6 5	4 \$		
D ₃	6 !!				
P	36				
D ₁	22 23				
<i>D h</i> 9 или <i>h</i> 11	13	15	16		

Масса крышки, кг	0,03	0,04	0,04	0,07	0,08	
		0,3			0,3	
v		9,0			9,0	
9		2			3	
a	2,0 1,5 1,5 2,0 2.0	1,5 1,5 2,0 2,0 2,0	2,0	1,5 2,0 2,0 2,0 2,0	2,0	
В	7,5	7			10	
l,		0,0			9,0	
1	1,5	2,0			2	
ų		es .		4		
#1		6		12		
$d_2$		01		12		
$q_1$		∞		10		
P		<b>4</b> , <b>8</b> , <b>.</b>		5,8		
D _S	12 9 12 14	9 10 13 13	12	10 12 13 19 21	12 13 14 19 24 24	
D4 H12	8 6 7 8 8	6 8 9	8	7 8 9 9 11 13	8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Диаметр вала или втулки	7 6 9	5 6 7 8 8	9	6 7 8 10 12	7 8 9 10 112 113	
$D_3$	=	4		91	81	
$D_2$	36	04		45	90	
$D_1$	25	28		32	36	
<i>D 1</i> 19 или <i>d</i> 11	17	61	20	22 24		

0,08		0,17		
		0,3		
		9,0		
		т		
2,0	2.0 2,0 2,0 3,0	2,0 2,0 2,0 3,0	2,0 2,0 2,0 3,0,	2,0 2,0 2,0 3,0 3,0
01			6	
	0,0	9,5		
2			_د	
		4		
		12		
		12		
		10		
		5,8		
13 19 24 24	19 24 28	13 19 24 28	19 21 24 28	14 19 24 28 31
9 10 11 11 16	11 13 16 18	9 11 16 18	113 16 18	10 11 16 18 21
8 9 10 12 15	10 12 15 17	8 10 15 17	10 12 15	9 10 15 17 20
<u>∞</u>	28			
20	55			
30		42		
56	78	30	32	35

			•	•		
Масса крышки, кг	0,18	0,23		0,27	0,31	
	0,3			9,0		
v	9,0	9,0			0,1	
9	3			4		
a	2,0 2,0 3,0 3,0	2,0 3,0 3,0 4,0	2,0 2,0 3,0 4,0	3,0 3,0 4,0 4,0	3,0 3,0 4,0 4,0	
В	6	7 8 8	7 7 8 9	7 8 8 6 9 9 9 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	&	
1,	5,6			12,5		
_	3	8 7 7 9	88 2 4	8 - 7 - 9	7 7 6 6	
ų	4			\$		
#	12			15		
$q_2$	12			4		
$q_1$	10			12		
p	5,8			٢		
D _s	19 21 28 31	24 28 31 36	21 24 31 38	24 28 31 38 43	28 31 38 43 48	
D4 H12	11 13 18 21	16 18 21 26	13 16 21 26	16 18 21 26 31	18 21 26 31 36	
Диаметр вала или втулки	10 12 17 20	15 17 20 25	12 15 20 25	15 17 20 25 30	17 20 25 30 35	
$D_3$	28		<del>2</del> 6	38	4	
$D_2$	65	7.0		78	82	
$D_1$	48	54		09	99	
<i>D h</i> 9 или <i>d</i> 11	37	40	42	47	52	

0,33	0,44	0,44	0,57	0,64			
		9,0	······································				
		1,0					
	4						
	4,0	0, 6, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	4,0	0,4,4,4,0 0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,			
	6	× × 0 0 0 0 0	10	600000000000000000000000000000000000000			
	12,5			15,0			
	9	7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8	0 8 8 8 8 8 7 7			
	5		9				
	15		18				
	4		20				
	12		15				
	7		6				
38 43 53	38 43 48 53	28 31 38 43 43 53	48 58	31 38 43 48 53 58 67 72			
26 31 36 41	26 31 36 41	18 21 26 31 36 41	36 46	21 26 33 34 44 46 51 51			
25 30 35 40	25 30 35 40	17 20 25 30 35 40 45	35 45	20 25 30 35 40 45 50 55			
84	52 52			62			
86			105	110			
7.5	78	78	48 06				
55	09	62	99	72			

Масса крышки, кг	0,64	0,74	0,81	0,91	0,91
1.			9,0	_	
C			1,0		
q			4		
а	4,0 4,0 5,0	4,0 4,0 4,0 4,0 4,0 5,0 5,0	4,0 4,0 4,0 5,0 5,0	4,0 4,0 4,0 4,0	4,0 5,0 5,0 6,0
В	10 10 11	10 10 10 10 10 11	10 10 10 11 11	01 01 01 01	111111111111111111111111111111111111111
1/1			15,0		
,	88 7	88 88 7 7 7	888877	∞ ∞ ∞ ∞	8779
h			9		
##			18		
$d_2$			50		
qi			15		
p			6		
Ds	48 58 72	38 43 53 77 77	48 53 58 67 77	43 48 53 58	53 67 77 89
D4 H12	36 38 38	26 31 36 41 46 51 56	36 41 46 51 56 61,5	31 36 41 46	41 51 61,5 71,5
Диаметр вала или втулки	35 45 55	25 33 34 46 45 50 50 50 50	35 46 45 50 55 60	30 35 40 45	40 50 60 70
$D_3$	64	72	72	80	80
$D_2$	110	120	120	130	130
$D_1$	06	100	001	110	110
<i>D н</i> 9 или d11	75	08	85	8	95

1,04	1,50	1,50	1,70						
9,0									
1,6									
		٧							
4,0 4,0 4,0 5,0 5,0 5,0 6,0	4,0 5,0 6,0 6,0	4,0 4,0 5,0 5,0 6,0 6,0 6,0	5,0 6,0 6,0 6,0						
9 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11	9 10 11 11 11 11	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9===						
		20,5							
14 14 13 13 12 12	4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	448883333	13						
		∞							
		33							
		24							
		81							
		=							
53 53 67 72 82 89 94	58 72 89 94 99	53 88 77 77 77 89 99 99	82 94 104						
36 41 46 51 56 66,5 71,5 76,5	46 56 71,5 76,5 81,5	41 46 51 56 61,5 71,5 76,5 81,5	66,5 76,5 81,5 86,5						
35 40 45 50 50 70 70	45 55 70 75 80	40 45 50 50 70 70 80 85	65 75 80 85						
06	95	\$6	105						
145	155	155	165						
120	130	130	140						
100	105	110	115						

Масса крышки, кг	1,70	06'1	1,90					
		9,0						
v		1,6						
q		5						
а	4,0 5,0 5,0 5,0 6,0 6,0 6,0	5,0 6,0 6,0 6,0 7,0 8,0	5,0 5,0 5,0 5,0 6,0 6,0 7,0 7,0					
В	9 10 11 11 11 12	21 21 21 21 21 21 21	22 22 22 22 22 22 22 22 22 22 22 22 22					
1/	20,5		19,5					
-	13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	110000	1111110000					
ų	œ							
#	23							
$q_2$		24						
qi		18						
p		Ξ						
Ds	58 67 77 77 82 82 94 94 104	72 89 99 104 111 125	67 72 77 82 89 94 104 111 111 115					
<i>D</i> ₄ H12	46 51 56 61,5 66,5 76,5 81,5 86,5	56 71,5 81,5 86,5 92 102	51 56 61,5 66,5 71,5 76,5 86,5 92 92 97					
Диаметр вала или втулки	50 50 53 60 63 63 63 63 63 63 63 63 63 63 63 63 63	55 66 66 67 75 75 75 75 75 75 75 75 75 75 75 75 75						
$D_3$	105	1115						
Dz	165		175					
l _a	140		150					
<i>D h</i> 9 или <i>d</i> 11	120	130						

2,40	2,40	2,80	3,60
	9,0		8,0
	1,6		1,6
	ď		9
5,0 6,0 7,0 8,0	5,0 6,0 6,0 6,0 7,0 7,0 8,0	6,0 7,0 8,0 8,0 8,0	5,0 6.0 6,0 6,0 7,0
12 13 14	21	13 14 15 15	13 14 14 14 15
	19,5		24,0
1100	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01 0 8 8 8	21 4 4 4 E
	œ .		10
	23		28
	24		26
	<u>∞</u>		20
	=		13
77 94 1111 125	72 77 77 88 89 94 99 104 111 116 125 135	94 116 130 135	77 89 94 99 104
61,5 76,5 92 102	56 61,5 66,5 71,5 76,5 81,5 86,5 92 97 102 112	76,5 97 107 112 122	61.5 71.5 76.5 81.5 86.5 92
60 75 90 100	55 60 65 70 75 75 88 88 90 100 110	75 95 105 110	60 70 75 80 85 90
125	125	130	135
185	185	195	210
091	091	170	180
135	140	145	150

Масса крышки, кг	3,60		3,90	3,90	4,10							
		8,0										
o .			1,6									
p			9									
a	7,0 8,0 8,0 8,0	6,0 7,0 8,0 8,0	5,0 6,0 6,0 7,0	8,0 8,0 8,0	6,0 6,0 8,0 8,0 6,0 8,0							
В	15 16 16 16 16	14 15 16 16	13 14 15 15	16 16 16	41 44 41 15 16 16 16							
ly		24,0										
,	22222	13 13 12 12	51 44 13 13	12 12 12	4 4 4 E C C C C C C C C C C C C C C C C							
ų		01										
##		88										
$d_2$		98										
lp			20									
p			13									
sa	116 125 130 135 145	80 111 135 145	82 94 99 111	130 135 145	89 99 104 116 125 130 145							
D4 H12	97 102 107 112 122	71,5 92 112 122	66,5 76,5 81,5 92 97	107 112 122	71,5 81,5 86,5 97 102 107 112							
Диаметр вала или втулки	95 100 105 110 120	95 110 110 120 120 120 120 120 105 110 120 120 120 120 120 120 120 120 120										
$D_3$	135		145		155							
ργ	210		220		230							
Dı	081		061		200							
<i>D h</i> 9 или <i>d</i> 11	150	155	091		170							

4,60	5,20									
	0,8									
	1,6									
	9									
6,0 6,0 7,0 8,0 8,0	6,0 6,0 7,0 7,0 8,0	8,0 10,0	6,0 7,0 8,0 8,0 8,0	~~~~						
14 14 14 15 16 16	14 14 15 16 16	18	15 16 16 16	====						
	24,0			24						
14 14 14 13 12 12	13 13 12 12	12	12 12 12	r r						
	01									
	28									
	26									
	20			50						
	13			13						
89 94 104 111 125 135	94 99 111 116 130	145	99 116 125 135 145	67 72 77 82						
71,5 76,5 88,5 92 102 112	76,5 81,5 92 97 107	122	81,5 97 102 112 122	51 56 61,5 66,5						
70 75 85 90 100 110	75 80 90 95 105	50 55 60 65								
091	175									
240	255	255								
210	225	225								
081	061	061	200							

146
табл.
Продолжение

Масса крышки, кг	5,80	6,80	8,80
		8,0	0,8
v		1,6	1,6
q		9	7
ø	6,0 8,0 8,0	7,0 8,0 8,0 8,0	7,0 7,0 8,0 8,0 8,0
В	14 16 16	15 16 16 16	17 17 18 18 18
l _l		24	30
1	14 12 12	12 12 12 12 12 12 12 12 12 12 12 12 12 1	18 18 17 17
ų		10	12
H.		78	35
$d_2$		26	32
lp		20	28
p		13	17
D _S	104 125 145	111 125 135 145	111 116 130 135 145
<i>D</i> 4	86,5 102 122	92 102 112 122	92 97 107 112
Диаметр вала или втулки	85 100 120	90 100 110 120	90 95 105 110
$D_3$	190	200	208
$D_2$	265	280	300
$D_1$	235	250	265
<i>D h</i> 9 или <i>d</i> 11	210	215	225

* Размеры для справок.

 $\Pi$ ример обозначения торцовой крышки с канавкой для уплотнительного кольца исполнения 2, диаметром D=65 мм,  $D_4 = 36 \text{ MM}$ :

Крышка 2—65 × 36 ГОСТ 11641—73

147. Дополнительные рекомендуемые размеры элементов торцовых крышек узлов подпинников качения

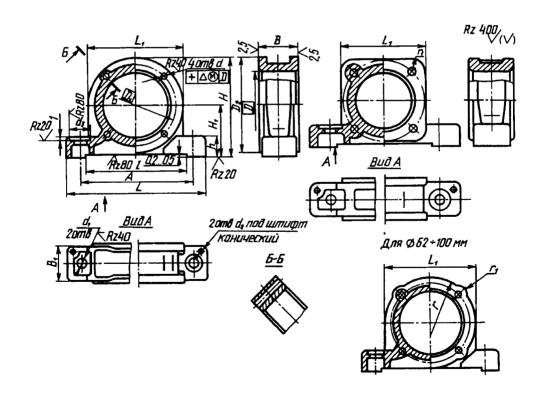
Крышка
по ГОСТ 18511—73
по ГОСТ 18512—73
по ГОСТ 18513—73

Основные размеры различных торцовых крышек узлов подшипников качения приведены в табл. 143—146.

Размеры, мм

Наружный диаметр подшипника	rı	r ₂	<i>r</i> 3	r ₄	<i>r</i> ₅	Наружный диаметр подшипника	erp r ₁		<i>r</i> 3	r ₄	r ₅
13—20	2	2	5	2,5	_	100—145	3	5	12	5,5	3
21—37	2	2	6	3,0	2	150—220	4	6	14	6,5	3
40—62	3	3	8	4,0	2	225—310	4	6	16	8,0	4
65—95	3	4	10	5,0	2						

# КОРПУСА ПОДШИПНИКОВ КАЧЕНИЯ


Корпуса предназначены для применения в оборудовании с раздельной установкой опор валов — при больших длинах валов и в других случаях.

Корпуса подшипников качения изготовляют типов ШМ, УМ, ШБ, УБ, РШ по ГОСТ 13218.1—80 ÷ ГОСТ 13218.10—80 для подшипников с наружным диаметром  $D=47\div400$  мм по ГОСТ 28428—90, ГОСТ 5721—75, ГОСТ 8545—75.

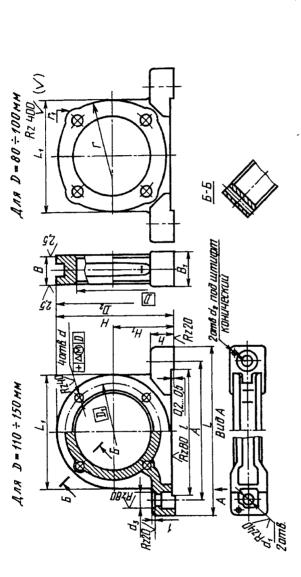
## 148. Корпуса типа ШМ (по ГОСТ 13218.1-80)

Для  $D = 110 \div 150$  мм

Для  $D = 47 \div 52$  мм



Размеры, мм


Теоретическая масса, кт	0,490	0,497	0,794	1,080	1,490	2,080	2,570	3,420	4,680	6,430	6,640	9,490	
ŗ.	5'01			0,11		12,0	12,2						
		1	70		75	80	85			!			
ų	15	91	17	18	20	22	25	28	30		34	40	
H ₁ (пред. откл.) + 0,05	36	40	48	52	58	89	72	80	92	98	102	110	
Н	68,5	76,0	5,06	0,101	113,0	130,5	139,5	157,5	179,5	190,5	5,661	215,0	
_	65	72	86	110	124	144	148	164	175	961	216	228	
$L_1=D_2$	65	72	85	86	110	125	135	155	175	185	195	210	
7	115	125	145	091	175	061	210	225	245	260	285	305	
Bı	26	28	40	42		46		52	48	62	99		
В	32	34	35	40	45	48	52	55	85	65	89	70	
А (пред. откл. ± 0,2)	85	96	110	125	140	155	591	180	195	210	235	250	
<i>d</i> ₃		70	24	26		30			32		04		
d ₂	4	5			9			∞			01		
d ₁		=		13		15	17 17 22		22				
٥			0,10						0,12				
q		9 11 81											
Dı	63	70	80	96	100	110	120	130	145	155	165	081	
Q	47	52	62	72	80	96	100	110	120	130	140	150	
Обозна- чение корпуса	IIIM 47	IIIM 52	UIM 62	IIIM 72	111M 80	06 MIII	11M 100	UIM 110	IIIM 120	IIIM 130	IIIM 140	LUM 150	

Пример условного обозначения корпусатипа ШМ, исполнения 1, D=90 мм:

Kopnyc IIIM 90 FOCT 13218.1—80 Kopnyc IIIM90—2 FOCT 13218.1-80

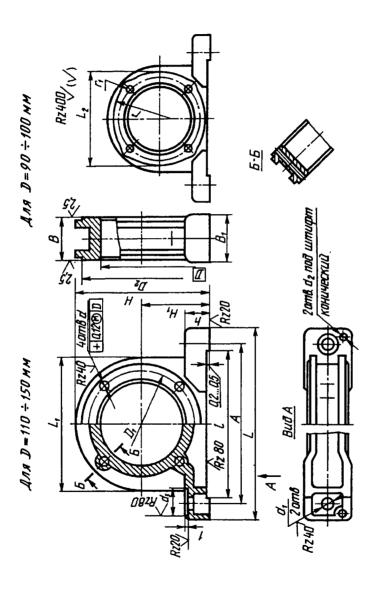
То же, исполнения 2:

149. Корпуса типа УМ (по ГОСТ 13218.3-80)



Размеры, мм

Теоретическая масса, кт	0,71	1,42			
Į.		19 75 11,0 1,42			
		75			
ų		19			
H ₁ (пред. откл. +0,05)	ł	63			
Н	113,0	116 120,5 63			
1	110	116			
$L_1=D_2$	180 110 110 113,0 58	185 115			
T	180	185			
$B_1$		42			
В	35				
А (пред. откл. ± 0,2)	135	140			
$d_3$		26			
ф		8			
$d_1$		13			
٧	0,10	0,12			
p		6			
$D_1$	100				
Q	08	85			
Обозна- чение корпуса	VM 80 80	VM85 85			


1,86	2,33	3,05	4,31	4,99	5,77	6,42	8,30
12,0	12,5				1	<u> </u>	
80	85				1		
22	24	26	32	34		35	40
89	72	80	92		86	102	110
130,5	139,5	157,5	179,5	0,881	190,5	5,661	215,0
128	142	164	194	204		506	230
125	135	155	175	180	185	195	210
195	215	235	260	270	280	295	315
42			48		54		28
38	40	45	84		20	52	55
150	165	185	210	220	225	235	255
26			32				40
		∞				01	
13			71				22
				0,12			
	Ξ				13		
110	120	130	145	150	155	165	081
06	100	110	120	125	130	140	150
ум 90	YM 100	YM 110	УМ 120	YM 125	<b>yM</b> 130	YM 140	YM 150

Пример условного обозначения корпусатипа УМ, исполнения 1, D = 90 мм:

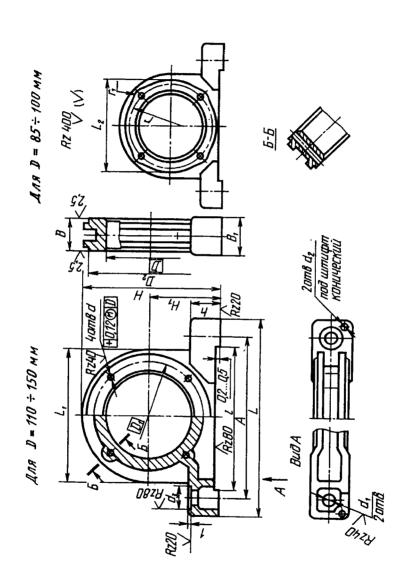
Kopnyc VM 90 FOCT 13218.3-80

То же, исполнения 2:

Kopnyc YM 90-2 FOCT 13218.3-80



Размеры, мм


Обозна- чение корпуса	D ₁		$D_2$	p	$q_1$	$d_2$	$d_3$	А (пред. откл. ± 0,2)	В	$B_1$	7	$I_1$	$L_2$	,	Н	H ₁ (πρεд. οτκ.). +0,05)	ų		<b>~</b>	Теоретическая масса, кт
8	0=	-	1		17		32	175	48	54	220	142	125	156	141	70	26	80	12,0	2,9
100	0 120	<del></del>	1	=		∞		561	52	62	240	951	135	175	153	75	28	85	12,5	3,7
1 =	110 130	<del>                                     </del>	155					210	55	58	270	170		178	170	85	30			5,8
120	0 145	<del> </del>	175		22		40	230	58	09	285	190		208	190	95				6,5
130	0 155	<u> </u>	185			01		240	99	99	295	200	1	216	200	100	36	ı	1	7,9
140	0 165	<del> </del>	195	2				265	89		335	220		230	220	110	40		<del></del>	8,6
150	081	<del> </del>	210		26	13	45	285	70	72	360	240		245	240	120	45			13,2

Пример условного обозначения корпусатипа ШБ, исполнения 1, D=90 мм:

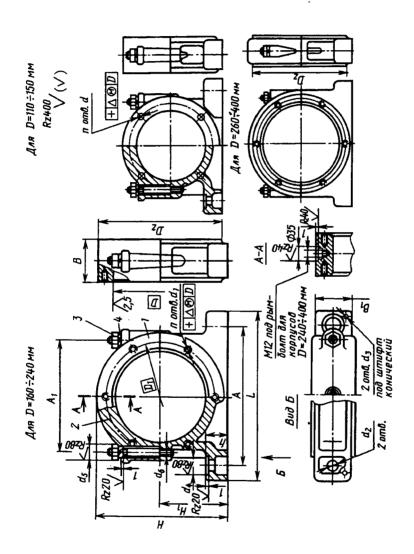
То же, исполнения 2:

Kopnyc III5 90-2 FOCT 13218.5-80

Kopnyc III5 90 FOCT 13218.5-80



Размеры, мм


Обозна- чение корпуса	D	$D_1$	D	р	$q_1$	$d_2$	$d_3$	А (пред. откл. ± 0,2)	В	$B_1$	7	$T^{1}$	$L_2$	1	Н	H ₁ (пред. откл. +0,05)	ч	ž.	Z.	Теоретическая масса, кг
yb 85	85	105		6	1.5		30	155	35		205	130	115	128	128,0	63		75	0,11	1,60
yE 90	96	110	1				32	591	38		215	135	125	138	132,5	65	24	80	12,0	1,60
yE 100	100	120		=	17		• • • • • • • • • • • • • • • • • • • •	185	40	46	235	150	135	160	150,0	75	30	85	12,5	3,04
yE 110	011	130	155	·		·		202	45		592	164		170	0,791	85	32			4,03
YE 120	120	145	521			∞	·	220			275	180		196	180,0	90			<u> </u>	5,10
yb 125	125	150	180		22		40	225	48	20	280	185		204	187,5	95	36		<u></u>	5,80
y Б 130	130	155	185	2				240	50		295	961	i	218	0,861	001		ı	i	7,16
YE 140	140	165	195				•	250	52	. 54	305	206		228	208,0	105	40			7,59
yb 150	150	081	210			01	-	260	55	58	320	220		238	220,0	110	42			9,26

Пример условного обозначения корпусатипа УБ, исполнения 1, D = 90 мм:

То же, исполнения 2:

Kopnyc V5 90 FOCT 13218.7-80

Kopnyc VB 90-2 FOCT 13218.7-80



I- основание корпуса; 2- крышка; 3- гайка; 4- шайба

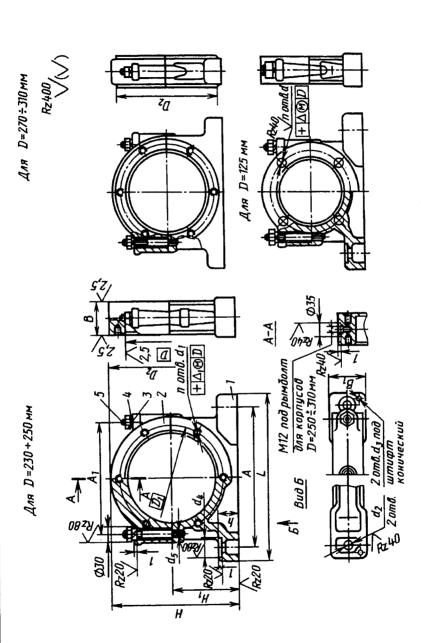
Размеры, мм

Теоретическая масса, кт	4,28	6,23	8,05	8,85	11,40	12,60	13,70	14,90	15,60	16,80	24,00	26,10	34,20
$q_{e}$					M16							M20	
ų	28	30	34				40				45	48	20
H ₁ (пред. откл. +0,05)	80	92	86	102	110	120	125	130	135	140	150	160	170
Н	157,5	5'621	5'061	5,661	215,0	230,0	240,0	250,0	260,0	270,0	292,5	307,5	327,5
7	235	245	260	290	330		335	350		360	390	405	415
$B_1$	45	48			62		99	89	72	52	87	16	94
В	55	58	65	89	70	75	78	80	85	88	001	105	108
<u> </u>	140	150	160	170	185	200	210	220	230	240	260	270	290
Пред.			±0,2							±0,4			
Номин. Пред.	081	195	210	235	250	260	265		275	290	310	330	345
d _s		4				30							36
44		32						40					45
$d_3$	∞		01					13	· · · · · · · · · · · · · · · · · · ·			91	
d ₂		11				22					26		
		4								12			
۵,		1				0,12					91,0		
$q_1$		ı					M12			M14			M16
∢			0,12						1				
р	=		13										· · · · · · · · · · · · · · · · · · ·
D2	155	175	185	195	210	220	230	240	250	260	285	295	315
Dı	130	145	155	165	180	061	200	210	220	230	250	260	280
a	9	120	130	140	150	160	170	180	190	200	215	225	240
Обозна- чение корпуса	PIII 110	PIII 120	PIII 130	PIII 140	PIII 150	PШ 160	PIII 170	PUI 180	PIII 190	PIII 200	PIII215	PШ225	РШ240

	Теоретическая масса, кт	40,60	45,00	57,30	68,10	74,00	87,00	103,00	129,00
	qe			M20				M24	
	~		55	99	65	65	75	8	85
	H _l (пред. откл. +0,05)	180	190	200	210	220	240	250	260
	Н	365,0	375,0	400,0	425,0	445,0	480,0	505,0	530,0
	T		470	480	200	520	595	290	605
	B	96	103	118	124	130	136	142	148
	В	112	120	135	140	150	155	091	165
	₹	315	335	360	385	405	430	455	480
	Пред.			<b></b>	•	±0,4		•	
Y	ds Номин. Пред.	380	390	410	430	450	505	510	530
	ds		d	36	<del></del>	<b></b>		42	
	$q_4$			45				09	
	$d_3$		20					25	
	$q_2$			26				33	
	r v	12							
	$\nabla$	0,16							
	$q^{(}$				M16				M20
	◊					1			
	d					1			
	D2	335	355	380	400	420	440	470	490
	$D_{I}$	300	320	340	360	380	400	430	450
	Q	260	280	300	320	340	360	380	400
	Обозна- чение корпуса	PLII 260	РШ 280	PIII 300	РШ 320	PIII 340	PIII 360	РШ 380	PIII 400

Пример условного обозначения корпусатипа РШ, D=240 мм:

Kopnyc PIII 240 FOCT 13218.9-80


То же, основания:

Основание PШ 24011 ГОСТ 13218.9—80

То же, крышки:

Крышка РШ 24012 ГОСТ 13218.9—80





I — основание корпуса; 2 — крышка, 3 — гайка, 4 — шайба; 5 — шпилька

Размеры, мм

•		ì _	1			
Теоретическая масса, кт	5,95	26,10	29,00	34,80	.39,10	47,90
<i>q</i> ₆	34		20	55	09	\$9
H ₁ (пред. откл. +0,05)	95	165	175	185	195	205
Н	188,0	317,5	337,5	365,0	390,0	415,0
7	280	435	455	490	515	535
Bı	48		78	83	90	102
B	48	06	95	100	011	118
4	091	280	300	325	350	375
Пред.	± 0,2			± 0,4		
А Номин. Пред. откл.	220	350	370	450	440	465
d _S	M16		•	45 M20		
$d_4$	32			45		
$d_3$	8			91		
$d_2$	11			26		
u	4			12		
٥	1			M16 0,15		
$q^{1}$	ı			M16		
⊲	0,12			<u> </u>		
q	13			ł		
ъ	180	305	325	345	365	390
$D_1$	150	270	290	310	330	350
Q	125	230	250	270	290	310
Обозна- чение корпуса	Py 125	PY 230 230	PY 250	PY 270	PY 290	Py 310 310

Пример условного обозначения корпусатипа РУ, D=230 мм:

Kopnyc PY 230 FOCT 13218.10-80

То же, основания:

Основание РУ 230/1 ГОСТ 13218.10-80

То же, крышки:

Крышка РУ 230/2 ГОСТ 13218.10—80

Корпуса подшилников качения изготовляют также по ГОСТ 13218.2—80, ГОСТ 13218.4—80, ГОСТ 13218.6—80, ГОСТ 13218.8—80.

#### Дополнительные источники

- 1. Перель Л. Я., Филатов А. А. Подшипники качения. Расчет, проектирование и обслуживание опор: Справочник. 2-е изд., перераб. и доп. М.: Машиностроение, 1992.
- 2. Подпинниковые узлы современных машин и приборов: Энциклопедический справочник / В. Б. Носов, И.М. Карпухин, Н.Н. Федотов и др.; Под общ. ред. В.Б. Носова. М.: Машиностроение, 1997.
- 3. Решетов Д.Н., Леликов О. П. Расчет подшипников качения при переменных нагрузках. // Изв. вузов. Машиностроение. 1984. №12.
- 4. Дунаев П.Ф., Леликов О. П. Расчет допусков размеров. 2-е изд., перераб. и доп. М.: Машиностроение, 1992.

гост 4.479-87 СПКП. Подшипники качения. Номенклатура показателей.

**ГОСТ 520-89** Подшипники качения. Общие технические условия.

ГОСТ 3189-89. Подшипники шариковые и роликовые. Система условных обозначений.

ГОСТ 3325-85. Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки.

ГОСТ 3395-89. Подшипники качения. Типы и конструктивные исполнения.

**ГОСТ 3478-79.** Подшипники качения. Основные размеры.

ГОСТ 18854-94. Подшипники качения. Статическая грузоподъемность.

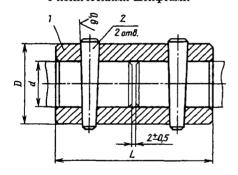
**ГОСТ 18855-94.** Подшипники качения. Динамическая расчетная грузоподъемность и расчетный ресурс (долговечность).

**ГОСТ 20918-75**. Подшипники качения. Метод расчета предельной частоты вращения.

**ГОСТ 24810-81.** Подшипники качения. Зазоры. Размеры.

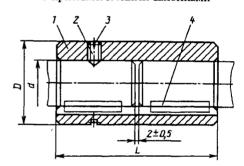
**ИСО 5593-84.** Подшипники качения. Терминологический словарь.

## Глава III


## МУФТЫ

## постоянные муфты

## 1. Втулочные муфты (по ГОСТ 24246-80)


Назначение: для соединения соосных цилиндрических валов при передаче вращающего момента от 1 до 12 500 Н-м без смягчения динамических нагрузок и ограничения частоты вращения.

## Исполнение 1 с коническими штифтами



*I* — втулка; *2* — штифт по ГОСТ 3129—70

#### Исполнение 2 с призматическими шпонками

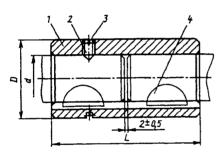


I — втулка; 2 — винт по
 ГОСТ 1476—93; 3 — кольцо по
 ГОСТ 2833—77; 4 — шпонка по
 ГОСТ 23360—78

Номина Т,	альный вр Н-м, для	ащающий исполнен	момент кия	d дл	я исполне	ений			испол- ний	
				1, 2	2, 3		D			
1	2	3	4	l ряд	2 ряд	4		1, 2, 3	4	
1,0	_			6			10			
2,0	_			7		<u></u>	14	30		
				8						

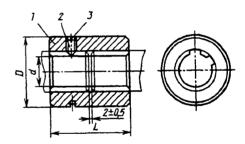
Муфты используются в климатических исполнениях У и Т, для категорий 1, 2, 3, климатических исполнений УХЛ и О, для категорий 4 по ГОСТ 15150—69.

Муфты изготовляют в четырех исполнениях:


1 — с цилиндрическим посадочным отверстием и коническими штифтами по ГОСТ 3129-70;

- 2 с цилиндрическим посадочным отверстием и призматическими шпонками по ГОСТ 23360—78;
- 3 с цилиндрическим посадочным отверстием и сегментными шпонками по ГОСТ 24071—80;
- 4 с прямобочными шлицами по ГОСТ 1139—80.

## Внимание! ГОСТ 24246-96, который введен с 1 июля 2000 г., приведен на с. 876


### Размеры, мм

## Исполнение 3 с сегментными шпонками



1 — втулка; 2 — винт по
 ГОСТ 1476—93; 3 — кольцо по
 ГОСТ 2833—77; 4 — шпонка
 по ГОСТ 24071—80

#### Исполнение 4 с прямобочными шлицами



1 — втулка; 2 — винт по ГОСТ 1476—93; 3 — кольцо по ГОСТ 2833—77

	Крепежн	ые изделия	для исполнений			асса, кг, н		
1	2	3	2, 3, 4		Д	ия исполн	ений	
Штифт по ГОСТ 3129-70	Шпонка по ГОСТ 23360-78	Шпонка по ГОСТ 24071-80	Винт по ГОСТ 1476—93	Кольцо по ГОСТ 2833-77	1	2	3	4
 1,6×12					0,01			_
2,0×16	<del></del>	_			0,03	_		_
					0,03			

Номина <i>Т</i> ,	альный вра Н.м., для і	щающий исполнен	момент ий	d для	исполн	нений		L для и	
				1, 2	2, 3		D		
1	2	3	4	1 ряд	2 ряд	4		1, 2, 3	4
4,0		11,2	<del>_</del>	9	_	_	16	35	_
.,-				10	_				
8,0		22,4		11	_		18	40	_
-,				12	_		1		
16,0		45,0		14		_	28	45	
•				16	_	_	]		
				18	_				
31,5	_	63,0	_	_	19	_	32	55	_
ŕ				20	_	_	1		
				20	_	16			
50,0	71,0	100,0	140,0	22	_	18	38	65	45
Í				_	24	<del></del>	1		
90,0	125,0	180,0	250,0	25	_	21	42	75	50
•				28	_	23	1		
				28	_	23			
125,0	180,0	250,0	355,0	30			48	90	55
				32	<u> </u>	26	1		
				32	-	26			
				35		28	55	105	65
200,0	280,0	400,0	560,0	36	_	-			
				_	38	32			}
				<b> </b> -	38	32			
280,0	400,0	560,0	800,0	40	-		60	120	80
				_	42	36			_
	1			-	42	36			
400,0	560,0	_	1120,0	45	<del> </del>	_	70	140	90
				_	48	42	1		
	1			_	48	42		1	
560,0	800,0	_	1600,0	50	<b> </b>	_	80	150	100
				_	53	46	1		

Продолжение табл. 1

	]	Крепежные	изделия д	ля исполнений		M		, не боло олнений	
	1	2	3	2, 3, 4					<u> </u>
	Штифт по ГОСТ 3129-70	Шпонка по ГОСТ 23360-78	Шпонка по ГОСТ 24071-80	Винт по ГОСТ 1476—93	Кольцо по ГОСТ 2833-77	I	2	3	4
	2,5×20		3×5,0		<u> </u>	0,04		0,04	_
		_		M4—6g×6.14H	_	0,04		0,03	
_	3,0×20		3×6,5			0,06	_	0,05	
						0,05	_	0,04	_
	4,0×30	-	4×6,5		26	0,13	_	0,12	
			4×7,5			0,12	_	0,11	
			5×6,5			0,21	_	0,21	_
	5,0×36	-			32	0,19	_	0,19	
			5×7,5		}	0,18	_	0,18	_
						0,39	0,37	0,37	0,27
- 1	6,0×40	6×6×25	5×9,0	M6-6g×8.14H	38	0,36	0,34	0,34	0,24
		8×7×25				0,32	0,28	0,28	
			6×9,0			0,48	0,45	0,45	0,33
	8,0×45	8×7×28			42	0,42	0,38	0,38	0,30
İ			6×10,0			0,73	0,69	0,69	0,46
	8,0×50	8×7×36			48	0,66	0,63	0,63	
		10×8×36	8×11,0		ļ	0,60	0,55	0,55	0,41
						1,34	1,29	1,29	0,87
	10×60	10×8×45		M66g×10.14H	55	1,22	1,09	1,09	0,83
			10×13,0			1,18	1,04	1,04	
_						1,08	0,96	0,96	0,72
		10×8×50	10×13,0			1,66	1,55	1,55	1,17
1	10,0×65			M6-6g×10.14H	60	1,57	1,50		-
_		12×8×50				1,48	1,32		1,02
İ		12×8×63				2,80	2,65		1,88
	12,0×80		_	M86g×12.14H	70	2,58	2,42		-
-	·	,,,,,,,,				2,30	2,18		1,60
]	12.0.00	14×9×63		N/10 ( 1/1/47	00	3,89	3,72		2,75
}	12,0×90	16 15 45		M10-6g×16.14H	80	3,71	3,54		-
	····	16×10×63	L			3,44	3,25		2,41

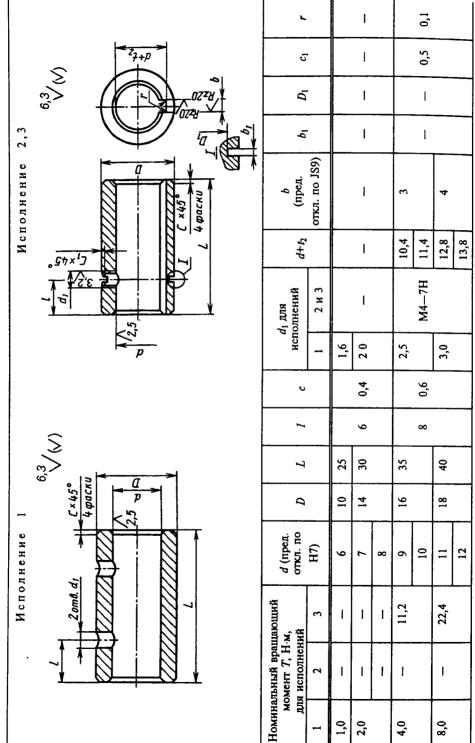
Номина <i>Т</i> ,	альный враг Н.м, для и	щающий сполнен	момент ий	d для	исполн	нений		L для и нені	
- 1				1, 2	., 3		D		
1	2	3	4	1 ряд	2 ряд	4		1, 2, 3	4
					53	46			<del></del>
800,0	1120,0	_	2240,0	55	_		90	170	110
					56	_			
				60	-	52			
				60		52			
1120,0	1600,0	_	3150,0	63	_		100	180	120
					65	56	]		
					65	56			
1600,0	2240,0		4500,0	70	_	_	110	200	130
				71	_	62			
					75				
				_	75				
2240,0	3150,0	-	6300,0	80	_	72	120	220	150
				_	85				
				_	85	_			
3150,0	4500,0		9000,0	90	_		130	240	170
				_	95	82			
					95				
4500,0	6300,0	-	12500,0	100		92	140	280	190
					105			<u> </u>	

Примечание. 1-й ряд является предпочтительным.

Пример условного обозначения втулочной муфты в исполнении 1, передающей номинальный вращающий момент  $T=280~{\rm H\cdot M}$ , с диаметром посадочного отверстия  $d=38~{\rm MM}$ , в климатическом исполнении У и категории 3 по ГОСТ 15150—69:

Муфта втулочная 1—280—38 —УЗ ГОСТ 24246—80

Материал втулок — сталь 45 по ГОСТ 1050—88. Допускается изготовлять втулки из других материалов с механическими свойствами не ниже, чем у стали марки 45 по ГОСТ 1050—88. Виды и толщина покрытий втулок в зависимости от условий хранения и эксплуатации муфт — по ГОСТ 9.303—84 и ГОСТ 7462—73. Технические требования к покрытиям — по ГОСТ 9.301—86.


Штифты — по ГОСТ 3129—70, твердость — 35...49 HRC₃. Допуски углов конусов отверстий под штифты — по 8-й степени точности ГОСТ 8908—81.

Продолжение табл. 1

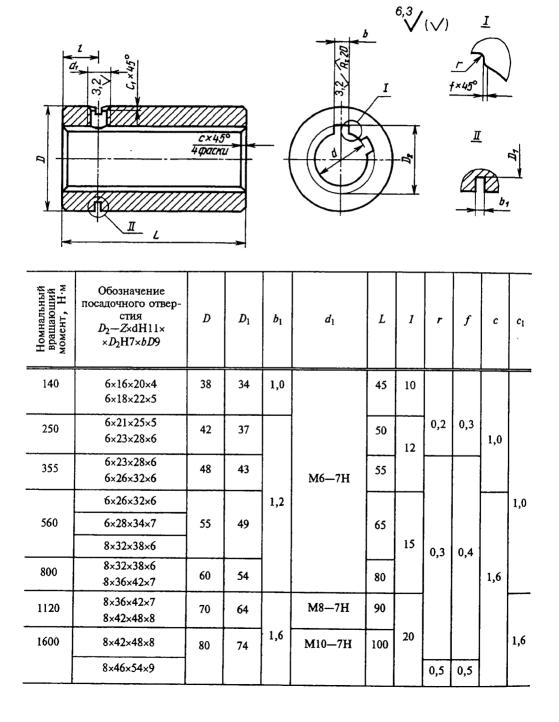
	Крепежные	изделия	для исполнений		N	Ласса, кг для исп	, не боле олнений	
1	2	3	2, 3, 4					
Штифт по ГОСТ 3129-70	Шпонка по ГОСТ 23360-78	Шпонка по ГОСТ 24071-80	Винт по ГОСТ 1476—93	Кольцо по ГОСТ 2833-77	1	2	3	4
					5,74	5,46	_	3,78
16,0×100	16×10×70		M106g×16.14H	90	5,52	5,24	_	_
					5,41	5,12	_	
	18×11×70				4,94	4,62	_	3,36
					7,32	7,00	_	4,66
16,0×100	18×11×80			100	6,92	6,60	_	
					6,64	6,30		4,26
	18×11×90		M106g×20.14H		10,07	9,60		7,72
				110	9,26	8,72		
	20×12×90				9,10	8,65		6,10
20,0×120					8,40	7,83		
	20×12×100				12,31	11,72		
	20×14×100			120	11,29	10,64		7,64
					9,31	9,97	_	
	22×14×110				15,02	14,09		
	25×14×110		M12—6g×20.14H	130	13,77	12,79		
25,0×140	25×14×125				12,45	11,43		9,80
					19,05	18,00		
	28×16×125			140	17,41	16,22	-	11,93
					16,03	14,45	_	_

Допускается применение муфт в исполнении 1 с цилиндрическими штифтами по ГОСТ 3128—70. Размеры шпоночных пазов для втулок — по ГОСТ 23360—78 и ГОСТ 24071—80. Предельные отклонения размеров шпоночных пазов — по ГОСТ 23360—78. Допуск симметричности шпоночного паза относительно оси муфты в пределах двух полей допуска на ширину шпоночного паза. Допуск параллельности плоскости симметрии шпоночного паза относительно оси муфты — в пределах половины поля допуска на ширину шпоночного паза. Размеры шлицевых отверстий — по ГОСТ 1139—80. Допускается изготовление шлицевых отверстий втулок с эвольвентными шлицами по ГОСТ 6033—80. Неуказанные предельные отклонения размеров: отверстий — Н14; валов h14; остальных ± IT14/2 или  $t_1/t$ 

2. Размеры втулок муфт с коническими штифтами, с призматическими шпонками и с сегментивыми шпонками, мм



						<del>-</del>	0,2									9,0		
5	'			<del></del>			1,0									1,6		
Di		24			78			34			37		43				49	
PI	,			,	1,0	-			_		_			1,2		_		
<i>b</i> (пред.	откл. по JS9)	5				9					∞					01		
d+t ₂		16,3	18,3	20,8	21,8	22,8	22,8	24,8	27,3	28,3	31,3	31,3	33,3	35,3	35,3	38,3	39,3	41,3
d _і для исполнений	2и3									M6—7H								
исп	1,	4,0			5,0			0,9				8,0		,			10	
v		9'0							1,0								1,6	
I		10			12			15				20					25	
L		45			55			99		51			96				105	
a		28			32			38		42			48				55	
d (пред. откл. по	H7)	14	91	18	61	20	70	77	74	25	87	87	30	32	32	35	98	38
цающий м, ий	3	45,0			63,0			100,0		0'081			250,0				400,0	
Номинальный вращающий момент Т, Н.м, для исполнений	2	ı			ł			71,0		125,0			180,0				280,0	
Номина мс	-	1 16,0 16,0 31,5			20,0		0,06			125,0		200,0						

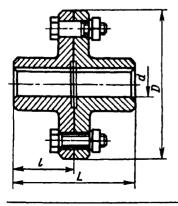

Продолжение табл. 2

7	l																	
лрооолжение таол. 2										03	}			<u> </u>			<del></del> -	
мэжж		5		·						1.6	•							
Thoor		ı'a		54			64			74			84	•			4	
		19		1,2								1,6					<del></del>	
	d neun)	откл. по JS9)	10		12	-1			14	7		<del> </del>	91			81		
	,	2 + 12	41,3	43,3	45,3	45,3	48,8	51,8	51,8	53,8	57,3	57,3	59,3	60,3	64,4	64,4	67,4	69,4
	<i>d</i> 1 для исполнений	2и3		H2—9W			M8-7H			<u> </u>	••		M10-7H		<del></del>	_ <b>L</b> ,	<b></b>	1
	ИСГ			10	12							16						
		د			1,6								2,5					
		•		25				35							45			
	~	1		120			140			150			170				180	
	2	1		9			70			80			8				100	
	d (пред. откл. по	H7)	38	40	42	42	45	48	48	90	53	53	55	56	09	09	63	65
	щающий ∙м, ний	3		260,0			1			1			ı		,			
	Номинальный вращающий момент T, Н·м, для исполнений	2		400,0		-	560,0			0,008			1120,0				1600,0	
:	Номин м ш	-		280,0			400,0			9,095			0,008				1120,0	

								6,0			<del></del>		·····	
2	•				<del></del>			1,6	· · · · · · · · · · · · · · · · · · ·					
P			103				113			123			133	
- Iq	•							2,0						
<i>b</i> (пред.	откл. по JS9)	18		20				22			25	•		28
4+12		69,4	74,9	75,9	6,67	79,9	85,4	90,4	90,4	95,4	100,4	100,4	106,4	111,4
d _і для исполнений	2и3							M12-7H						
исп	1				70							25		
v								2,5					·	
I			45						20				09	
7			200				220			240			280	
Q			110				120			130	•	-	140	
d (пред. откл. по	H7)	59	0.2	7.1	75	75	80	85	85	06	95	95	100	105
цающий м, ий	3		ı				ı			1			١	
льный враг жент <i>T</i> , Н.	Номинальный вращающий момент Т, Н.м. для исполнений 1 2 3		2240,0				3150,0			4500,0			6300,0	
1 6 5 5	момент для исп. 1					2240,0			3150,0		4500,0 6			

#### 3. Размеры втулок с прямобочными плицами, мм (ГОСТ 24246-80)

#### Исполнение 4




Продолжение табл. 3

				· · · · · ·							
Номнальный вращающий момент, Н·м	Обозначение посадочного отверстия $D_2 - Z \times dH11 \times \times D_2H7 \times bD9$	D	$D_1$	<i>b</i> ₁	$d_1$	L	1	r	f	с	$c_1$
2 240	8×46×54×9 8×52×60×10	90	84			110	25			1,6	
3 150	8×52×60×10 8×56×65×10	100	94	1,6	M10—7H	120	30				
4 500	8×56×65×10 8×62×72×12	110	103			130		0,5	0,5	2,5	1,6
6 300	10×72×82×12	120	113	2,0	M12—7H	150	35				
9 000	10×82×92×12	130	123			170	40				
12500	10×92×102×14	140	133			190	45				

#### Фланцевые муфты (по ГОСТ 20761—96)

Назначение: для соединения соосных цилиндрических валов и передаче вращающего момента без уменьшения динамических нагрузок: стальными муфтами —от 16 до 40 000 Н·м при окружной скорости на наружном диаметре муфт до 70 м/с; чугунными муфтами — от 8 до 20 000 Н·м при окружной скорости до 35 м/с, климатических исполнений У и Т для категорий 1—3; климатических исполнений УХЛ и О для категорий 4 по ГОСТ 15150—69.



Полумуфты изготовляют двух исполнений:

- 1-c цилиндрическим отверстием для длинных концов валов по ГОСТ 12080—66;
- 2 с цилиндрическим отверстием для коротких концов валов по ГОСТ 12080—66.

Значения номинального вращающего момента указаны для муфт с постоянными по величине и направлению нагрузками. Если нагрузка является переменной и может периодически достигать двукратного увеличения, значения номинального вращающего момента должны быть уменьшены в 1,4 раза.

При реверсивном вращении и переменной нагрузке значения номинального вращающего момента должны быть уменьшены в 1,96 раза.

Номинальный вращающий момент Т для муфт из стали, $H \cdot M^{*1}$	<i>д</i> *²(отклонение по Н7)	<i>D</i> , не более	<i>І</i> не б		не б	,, олее	Масс не б Испол	олее
			1	2	1	2	1	2
16	11; 12; 14	80	30	25	63	53	1,2	1,1
	16; 18		40	28	84	60		
31,5	16; 18; 19	90	40	28	84	60	1,6	1,4
, , , , , , , , , , , , , , , , , , ,	20; 22		50	36	104	76		
63	20; 22; 24	100	50	36	104	76	2,8	2,5
	25; 28		60	42	124	83		
125	25; 28	110	60	42	124	83	4,5	4,0
	30; 32; 35; 36		80	58	170	120		
160	30; 32; 35; 36; 38	130	80	58	170	120	7,5	59
250	32; 35; 36; 38	135	80	58	170	120	8,0	7,0
	40; 42; 45		110	82	230	170		
400	35; 36; 38	140	80	. 58	170	120	9,5	8,0
	40; 42; 45; 48; 50		110	82	230	170		
630	45; 48; 50; 53; 55;56	160	110	82	230	170	14,5	12,3
	60		140	105	290	220		
1000	50; 53; 55; 56	170	110	82	230	170	19,0	16,0
	60; 63; 65; 70; 71		140	105	290	220		
1600	60; 63; 65; 70; 71;75	190	140	105	290	220	25,3	20,0
	80; 85		170	130	350	270		
	70; 71; 75		140	105	290	220		
2500	80; 85; 90; 95	220	170	130	350	270	41,0	34,0
	100		210	165	430	340		
4000	80; 85; 90; 95	240	170	130	350	270	58,0	50,5
	100; 105; 110		210	165	430	340		
	95		170	130	350	270		
6300	100; 105; 110; 120; 125	280	210	165	430	340	96,0	80,0
	130		250	200	510	410		
10000	110; 120; 125		210	165	430	340	0 121,5	101,0
10000	130; 140; 150	320	250	200	510	410	121,3	101,0

Номинальный вращающий момент Т для муфт из стали,	<i>d</i> *²(отклонение по Н7)	<i>D</i> , не более		, олее	не б	., олее	не б	а, кг,
$\mathbf{H} \cdot \mathbf{M}^{\bullet 1}$				Испол	нения	_	Испол	нения
			1	2	1	2	1	2
16 000	125	360	210	165	430	340	169.0	141,0
	130; 140; 150		250	200	510	410	105,0	111,0
25 000	150	400	250	200	510	410	250,5	191,0

 $^{^{*1}}$  Значения номинального вращающего момента T указаны для муфт из сталей марки 40 или 35Л, для муфт, изготовляемых из чугуна марки СЧ 20, значения T вдвое меньше указанных в таблице. При применении материалов с более высокими механическими свойствами допускается увеличение значения T до пределов, устанавливаемых расчетным методом.

 $*^{2}d = 11; 12; 14; 16; 18; 20; 22; 25; 28; 30; 32; 35; 36; 40; 45; 50; 55; 60; 63; 70; 80; 90; 100;$ 

110; 125; 140 мм являются предпочтительными величинами.

ГОСТ предусматривает также d свыше 150 мм и номинальные вращающие моменты более 25 000 H м.

Масса приведена для стальных муфт. Для чугунных муфт масса должна быть не более 0,95 от указанной.

Размеры шпоночных пазов и предельные отклонения — по ГОСТ 23360—78 и ГОСТ 10748—79.

Допускается сочетание полумуфт в разных исполнениях и с различными диаметрами посадочных отверстий.

Пример условного обозначения фланцевой муфты, передающей номинальный крутящий момент  $T=16~{\rm H\cdot m}$  с диаметром посадочного отверстия  $d=12~{\rm mm}$ , полумуфты исполнения 1, из стали, климатического исполнения У, категории 3:

Муфта фланцевая 16—12—11—УЗ ГОСТ 20761—96

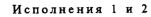
То же, из чугуна:

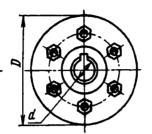
Муфта фланцевая 16-12-12-УЗ ГОСТ 20761-96

То же, одна полумуфта с диаметром посадочного отверстия d=12 мм исполнения 1, другая — с диаметром d=18мм исполнения 2, обе полумуфты из стали:

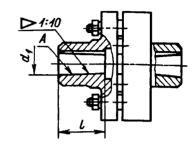
Муфта фланцевая 16—12—11—18—21—УЗ ГОСТ 20761—96

## 5. Упругие втулочно-пальцевые муфты (по ГОСТ 21424-93)


Упругие втулочно-пальцевые муфты общего назначения применяют для соединения соосных валов при передаче вращающего момента от 6,3 до 16 000 Н⋅м и уменьшения динамических нагрузок, климатических исполнений У и Т для категорий 1—3 и климатических исполнений УХЛ и О для категории 4 по ГОСТ 15150— 69.


Полумуфты изготовляют в следующих исполнениях:

- $I-{
  m c}$  цилиндрическими отверстиями для длинных концов валов по ГОСТ 12080—66;
- 2 цилиндрическими отверстиями для коротких концов валов по ГОСТ 12080—66;
- $3-{
  m c}$  коническими отверстиями для длинных концов валов по ГОСТ 12081—72;
- 4 с коническими отверстиями для коротких концов валов по ГОСТ 12081—72.


Продолжение табл. 5

## Размеры, мм





## Исполнения 3 и 4



ій Момент	<i>d</i> *H8	<i>D</i> , не бо-		<i>L</i> , не			нени	<i>l</i> h	14		ащения ее	H	еще- ие юв,	Масса, кг, не бо-	
Номинальный вращающий момент $T,\ H\cdot M$	1-й	ряд	лее	1	2	3	4	1	2	3	4	Частота вращения с-1, не более		угло- вое	лее
		9		43	_	43	_	20		13	_				0,58
6,3		0	71	49	43	49	-	23	20	16	_	147	0,2		0,60
16	1	2	75	63	53	63	_	30	25	20	_	127	ĺ		0,70
	1	.6		83	59	83	59	40	28	30	18				0,75
31,5	l	.6 .8	90	84	60	84	60	40	28	30	18	106		1*30'	1,52
63		20	100	104	76	104	76	50	36	38	24	95	0,3		2,02
125	ľ	25 28	120	125	89	125	89	60	42	44	26				3,97 4,13
	l	0 ряд)		165	121	165	121	80	58	60	38	77			4,37
250	32; 36		140	165	121	165	121	80	58	60	38	63	0,3	1*00'	5,91;6,25
	40; 45			225	169	225	169	110	82	85	56				6,63;6,80

Продолжение табл. 5

мент	<i>d</i> *H8	<i>d</i> ₁ * H9	D,		<i>L</i> , не	боле	e		<i>I</i> h	114		НИЯ	ľ	ие еще-	Macca, kr,
њный ций мо	1-й	ряд	не бо- лее			1	Испол	пнени	ie.		_	вращения более.	вал не б	юв, олее	не более
Номинальный вращающий момент Т, Н.м				1	2	3	4	1	2	3	4	Частота с ⁻¹ , не	ра- ди- аль- ное	уг- ло- вое	
500	40; 45		170	226	169	225	169	110	82	85	56	60	0,3		11,75;12,60
710	45; 50;	56	190	226	170	226	170	110	· 82	85	56	50	0,4	1,00,	14,31;15,21;
1 000	50; 56 63		220	226	170	226	170	110	82	85	56	48			18,87;19,75
	63			286	216	286	216	140	105	107	72	•	0,4		26,09
2 000	63; 71 80; 90		250	288 348	218 268	288 348	218 268	140 170	105 130	107 135	72 95	38			31,98;34,48
	30, 30			340	200	340	208	170	130	133	95				36,07;40,03
4 000	80; 90		320	350	270	350	270	170	130	135	95	30			66,71;71,61
8 000	100; 11	0; 125	400	432	342	432	342	210	165	170	125	24	0,5	0,30,	132,68; 140,88; 142,98
	125			435	345	435	345								234,61
16 000	140		500	515	415	515	415	250	200	205	155	19	0,6		264,61
	160			615	495	615	495	300	240	245	185				308,11

ГОСТ предусматривает 2-й ряд диаметров d и  $d_1$ : 19;24;30;35;38;42;48;55;60;65;70; 75;85;95; 120; 130;150 мм.

Допускается замена упругих втулок набором колец с наружным и внутренним диаметрами, равными диаметрам втулки.

Допускается предельное отклонение d по H8.

Полумуфты изготовляют из чугуна марки СЧ 20. Допускается изготовлять полумуфты из других материалов с механическими свойствами не ниже, чем у чугуна марки СЧ 20.

Материал пальцев—сталь, с механическими свойствами не ниже, чем у стали марки 45 по ГОСТ 1050—88.

Размеры шпоночных пазов и предельные отклонения — по ГОСТ 23360—78 для исполнений 1; 3 и ГОСТ 10748—79 для исполнений 2, 4.

Ширина шпоночных пазов для муфт исполнений 3 и 4 — по ГОСТ 12081—72.

Допуски углов конусов отверстий (поверхность A) — 9 степени точности ГОСТ 8908—81.

Допускаются другие виды соединений муфт с валами.

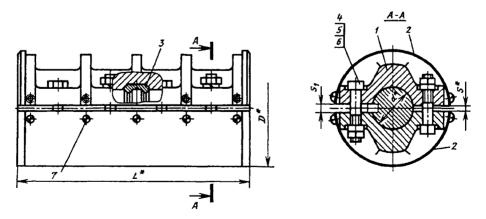
Допускается сочетание полумуфт разных исполнений с различными диаметрами посадочных отверстий в пределах одного номинального вращающего момента.

Условное обозначение муфты должно содержать наименование муфты, цифры, характеризующие номинальный вращающий момент, диаметр посадочного отверстия, исполнение полумуфт и климатическое исполнение муфты по ГОСТ 15150—69.

Пример обозначения упругой втулочно-пальцевой муфты с номинальным вращающим моментом 250 Н·м, диаметром посадочного отверстия d=40 мм, исполнения полумуфт 1, климатическим исполнением У, категории 3:

То же, исполнения полумуфт 2:

То же, номинальным вращающим моментом 250 Н·м, одна из полумуфт диаметром d=32 мм, исполнения 1, другая — диаметром d=40 мм, исполнения 4, климатическим исполнением T, категории 2:


Примечание. В обозначении муфты после значения номинального вращающего момента указывают обозначение полумуфты с отверстиями для крепления пальцев.

#### 6. Продольно-свертные муфты (по ГОСТ 23106-78 в ред. 1990 г.)

Назначение: для соединения цилиндрических валов при передаче вращающего момента без смягчения динамических нагрузок и компенсаций смещений, климатических условий У и Т, категорий 1, 2, 3 и климатических исполнений УХЛ и О категорий 4 по ГОСТ 15150—69.

Основные параметры, конструкция и размеры муфт

Размеры, мм



I — полумуфта; 2 — полукожух; 3 — фиксирующие полукольца; 4 — болт по ГОСТ 7796—70; 5 — гайка по ГОСТ 5916—70; 6 — шайба по ГОСТ 6402—70; 7 — винт по ГОСТ 17473—80

^{*}Размеры для справок. Верхний полукожух не показан.

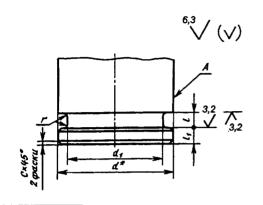
Продолжение табл. 6

								r	
Номинальный вращающий момент, т, Н.м		i	D	L	s	s ₁ H9	Частота вращения, с-1, не более	Динами- ческий момент инерции, кг·м ²	Масса, кг, не более
Номин враща 7, Н	1-й ряд	2-й ряд					Частота с-1, не		
125	25; 28	_	90	90		8		0,002	2,37; 2,04
200	_	30	105	120		8	1	0.004	3,79
200	32	35	103	120		10		0,004	3,73; 3,70
315	36	35; 38	110	120	2	10	1	0,006	5,29; 5,31; 5,18
212	40		110	120		12		0,006	5,05
500	40	42	120			12		0,011	6,21; 5,94
500	45		120			14		0,011	5,76
800	50	48	140	170		14	4,2	0,013	6,76; 6,40
1 250	55	56	150			16		0,020	9,32:9,19
	60	63	150			18		0,020	8,54; 8,28
2 000	-	63	170	220		18	ļ.	0,045	13,15
	70	65; 71				20		0,015	12,28; 12,61; 11,51
3 150	_	75	200	220	3	20		0,116	24,50
	80	85				22	]	0,110	23,39; 22,20
5 000	_	85	210	270		22		0,145	25,67
	90	95	2,0			25		0,115	24,43; 21,30
8 000	100	110	240	340		28		0,228	32,55; 29,71
12 500	125	120	280	340		32	1,6	0,646	66,60; 68,08
		120 130						2,5.0	66,50

 $\Pi$  р и м е ч а н и е . При наличии на валах элементов, фиксирующих муфту по продольной оси, фиксирующие полукольца не применять.

Допускается применение муфт без кожуха при условии установки стационарного ограждения.

Пример обозначения продольно-свертной муфты с номинальным вращающим моментом  $T=125~{\rm H\cdot M}$ , диаметром посадочных отверстий в полумуфтах под валы  $d=28~{\rm mm}$ , с фиксирующими полукольцами климатического исполнения У, категории 3 по ГОСТ 15150—69:


Муфта 125-28-1-УЗ ГОСТ 23106-78

То же, но без фиксирующих полуколец:

Муфта 125—28—2—УЗ ГОСТ 23106—78

Продолжение табл. 6

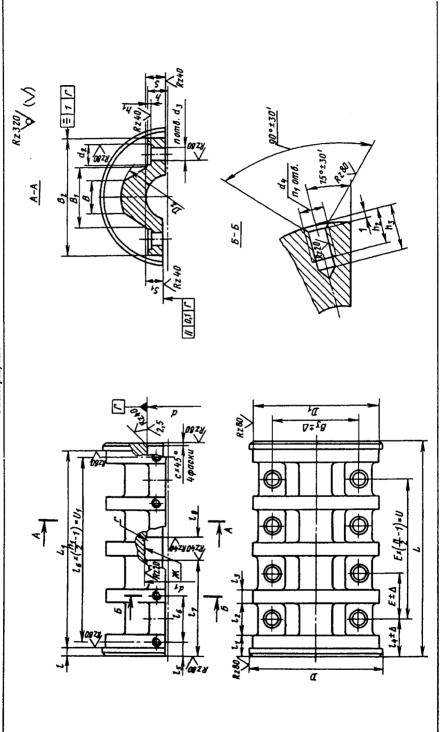
# Размеры канавок валов под фиксирующие полукольца, мм



Шероховатость, указанная на чертеже, на поверхность A не распространяется

^{*}Размер для справок.

Номинальный вращающий момент, <i>T</i> , Н·м	d	d ₁ h9	/ H11	<i>l</i> 1 h11	r	с
125	25; 28	22	4	3	0,2	
200	30; 32 35	25 30	5	4		
315	35; 36 38 40	30 32 35	5 5 6	4 4 5		0,5
500	40 42; 45	35 38			0,4	
800	48; 50	40	6	5		
1 250	55; 56 60 63	45 50 53	6 8 8	5 6 6		
2 000	63 65 70; 71	53 55 60	8	6	0,6	1,0
3 150	75 80 85	65 70 75	8 10 10	6 8 8		


Номинальный вращающий момент <i>T</i> , Н·м	d	<i>d</i> ₁ h9	/H11	<i>l</i> 1 h11	r	с
5 000	85 90 95	75 80 85	10	8	0,6	1,0
8 000	100 110	90 100	12	10	1,0	1,6
12 500	120; 125 130	110 115				

## Крепежные изделия

Номиналь- ный вращающий момент <i>T</i> , Н·м	Деталь 4 Болт по ГОСТ 7796—70	Деталь 5 Гайка ГОСТ 5916—70	Деталь 6 Шайба по ГОСТ 6402—70	Деталь 7 Винт по ГОСТ 17473—80
125	M10-6g×40.56; 4 игт.	М10-6Н.04; 4 шт.	10 65 <b>Г</b> ; 4 шт.	
200	M12-6g×45.56; 4 шт.	М12-6Н.04; 4 шт.	12 65Г;	A.M5-6g×12.56; 12 шт.
315	M12-6g×50.56; 4 шт.		4 шт.	
500	M12-6g×60.56; 6 шт.	М12-6Н.04; 6 шт.	12 65Г; 6 шт.	A.M5-6g×12.56;
800	M16-6g×65.56; 6 шт.	М16-6Н.04; 6 шт.	16 65 <b>T</b> ;	16 шт.
1 250	M16-6g×70.56; 6 шт.		6 шт.	
2 000	M16-6g×90.56;	М16-6Н.04; 8 шт.	16 65Γ;	A.M5-6g×12.56;
3 150	8 шт.		8 шт.	20 шт.
5 000	M20-6g×95.56; 8 шт.	М20-6Н.04; 8 шт.	20 65Γ; 8 шт.	
8 000	M24-6g×105.56; 8 шт.		24 65Γ;	A.M6-6g×15.56;
12 500	M24-6g×130.56; 8 шт.	М24-6Н.04; 8 шт.	8 шт.	20 шт.

Полумуфта, деталь 1

Размеры, мм



1		1		ļ							ı						
^{l8} H111		8		22							28						
4		35		49						71							
16		38			20										<del></del>		
45		7			10												
	79			35													
	∞		10														
	7	30			04												
$l_1$		11,0		15,0													
	3			ح													
	84		110							160							
	06		120								170						
D,		55					65				08 06			<u> </u>	105		
	$D_1$				102				107			117		1	137	147	
	Q	06		105			011			120			;	140	150		
ın Kı	игодэвто опэкР			<b>∞</b>													
	d ₄	MS-7H															
и ур	число отверсти		4 0														
	<i>d</i> ₃ H13			12,5								17,0					
d ₂		20 10,5									30						
	<i>d</i> ₁ H13	32		35	35	40	40	4	45	45	45	20	50	,	<u>ვ</u>	65	65
d H9	arq ñ-S	1		30	I	35	35	1	38	1	1	42	ı	48	1	ı	56
	arq K-l	25	28		32		-	36	1	40	40	1	45	1	20	55	١
Номинальный момент. Т, Н.м		125			200			315				200			200	1250	

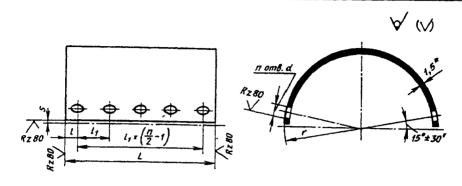
/в Н111	78					38					46			54				
4	71						•				112			143				
9,	50										62			9/				
ls,	10									=				18				
14						35						42			99			
ĘĮ						01					12				15			
7						4					50							
1,					15,0					17,0				25,5				
1	۸.												10					
$L_1$		160				210					260			320				
7		170							270			340						
Dz		105					140		150			170			200			
$D_1$		147			167			197			207			100	237		277	
a	Q			170			200			210			9	240		280		
отверстий п ₁	-Число	∞						10										
$q_4$	d ₄		М5—7Н						Н—9М									
	и йигэсэвто огэмР									∞								
<i>d</i> ₃ Н13						17,0						21,0				25,0		
$q_2$						30						<del>\$</del>		110	120		42	
d ₁ H13		70	75	75	80	80	85	85	8	95	95	100	105		110	130	135	140
A H IR	q ŭ-S	_	63	63	65		71	75	Τ	85	85	1	95	100	1	120	1	130 140
ILR.	q ŭ-l	9				70			80			8	1	100	ı	1	125	
т, Номинальный момент. Вращающий момент. М∙Н , П		1 250			2 000				3 150			2 000		000	8 000		12 500	

						_						
Масса, кт, не болсе	1,01	1,61 1,57 1,55	2,29 2,20 2,15 2,07	2,60 2,45 2,37	2,99	4,13 4,00 3,65 3,48	6,00 5,68 5,50 5,10					
s ₁ h9	8,5 10,0	11,0 11,0 12,5	12,5 13,0 14,0 14,0	14,0 15,0 15,0	17,0	19,5 20,0 21,0 22,5	22,5 23,5 25,0 25,0					
S	11,5	14,0 15,0 16,5	16,5 17,0 18,0 19,0	19,0 20,0 21,5	22,5 23,5	26,0 26,0 28,5 30,0	30,0 31,0 33,5 34,0					
Пред. откл. △			±0,40									
v	6,5		0,1		2,0							
n!	92		001		150							
7	38		20		150							
h ₃	15	17										
42	10	12										
μ1	1,5		2,0									
ų ų	16	16	62	22		25	35					
E	38	20										
B ₃	09	89	70	75	98	100	110					
В	85	100		91		130	150					
B ₁	30	35	<u></u>	6	<b>,</b>	9	70					
В	81		25	28	30	9	45					
	2		7	2,5 2,5 2,5	2,5	2,5	3,0					
arq ñ-l	J !	31 30	38   38	141	\$ 1	1818	63 12					
arq ñ-2	25 28	32	1% 14	9 1 5	18	१८। ।	1181					
Номинальний мент, жент, жент, жент, т	125	200	315	200	800		2 000					

9
табл.
экение
Гродол:

Масса,	кт, не более	11,26 10,63 10,03	11,64 11,03 9,48	14,70 12,70	31,60 30,69 26,60						
	s ₁ h9	27,5 29,0 31,5	31,5 32,5 35,0	36,0 41,0	44,0 46,5 49,0						
	S	36,0 38,5 41,0	48,5 53,5	58,5 61,0 63,5							
∇	Пред. откл.	±0,40									
	c	2,0									
	u ₁	200	248	304							
	п	150	981	228							
	h3	17	20								
	h ₂	12 15									
	hi	2,0									
	h	35		39	49						
	E	50	62	9/							
	B ₃	130	140	165	200						
	В	180	561	210	240						
	B ₁		06	105	140						
_	В	50	55	65	100						
		3,0		3,0	4,0						
<i>р</i> Н9	arq ñ-l	75 85	85  95	101	120 _ 130						
, _T	arq ñ-S	188	181	100	_ 125 						
й тнэмом	Номинальный вращею нь нь нь нь нь нь нь нь нь нь нь нь нь	3 150	\$ 000	8 000	12 500						

Примечание. Для муфт без фиксирующих полуколец канавку (поверхность Ж) в полумуфтах не выполнять.


**Технические требования к полумуфтам.** Материал-чугун СЧ 20 по ГОСТ 1412—85. Допускается изготовление из других материалов с механическими свойствами не ниже, чем у чутуна СЧ 20. Класс точности размеров отливок — 8, степень коробления отливок — 8, класс точности массы отливок — 13 по ГОСТ 26645—85. Фор-

Виды покрытий полумуфт и толщина покрытий в зависимости от условий хранения и эксплуатации муфт — по ГОСТ 9.303—84 и ГОСТ мовочные уклоны — по ГОСТ 3212—92. Литейные радиусы —от 3 до 7 мм.

Технические требования к покрытиям полумуфт — по ГОСТ 9.301—86.

Неуказанные предельные отклонения размеров: отверстий H14, валов h14, остальных  $\pm \frac{1T15}{2}$ 

### Полукожух, деталь 2 Размеры, мм



*Размер для справок.

Номинальный вращающий момент $T$ , $H$ -м	L	I	I ₁	r	d	Число отверстий	s	Масса, кг, не более
125 200 315	84 110 110	4 5 5	38 50 50	45,0 52,5 55,0	5,3	6	1,0	0,12 0,21 0,32
500 800 1250	160	5	50	60,0 70,0 75,0		8	1,0 1,5 1,5	0,34 0,36 0,53
2000 3150	210			85,0 5, 100,0 6,				0,61 0,94
5000 8000 12 500	260 320 320	6 8 8	62 76 76	105,0 120,0 140,0	6,4	10	1,5	1,04 1,41 1,84

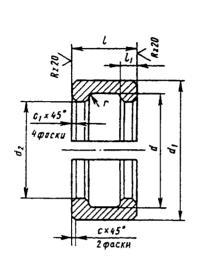
Пример обозначения полукожуха муфты с номинальным вращающим моментом 125 H⋅м, климатического исполнения У, категории 3 по ГОСТ 15150—69,

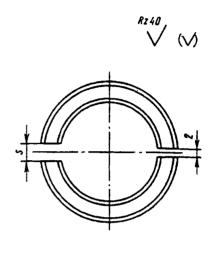
Полукожух 125—УЗ ГОСТ 23106—78

Технические требования к полукожухам.

Б 1,5 ГОСТ 19904-90

Материал—Лист 4-III Ст3кп ГОСТ 16523-89


Допускается изготовление полукожухов из других материалов с механическими свойствами не ниже, чем у стали Ст3 по ГОСТ 380-94.


Виды покрытий полукожухов и толщина покрытий в зависимости от условий эксплуатации муфт — по ГОСТ 9.303—84 и ГОСТ 7462—73.

Технические требования к покрытиям полукожухов — по ГОСТ 9.301—86.

Продолжение табл. 6

### . Фиксирующие полукольца, деталь 3 Размеры, мм





Номинальный вращающий момент <i>T</i> , Н·м	<i>d</i> <b>Н</b> 9	d ₁ h13	<i>d</i> ₂ H9	s, не менее	<i>l</i> (пред. по <i>i</i>	<i>l</i> ₁ откл. dl 1)	r	с	cı	Масса, кг, не более
125	25	22	22		20	4	0.0			0,04
125	28	32	22	9	20	4	0,2			0,05
	30	35	25	9						0,05
200	32	35	25	11	22	5				0,05
	35	40	30	11				2,5		0,06
	35	40	30	11	22	5				0,09
315	36	40	30	11	22	5				0,09
	38	45	32	11	22	5			0,5	0,08
	40	45	35	13	28	6				0,08
	40	45	35	13			0,4			0,14
500	42	50	38	13						0,17
	45	50	38	15						0,15
					28	6		3,0		
800	48	e e	40	1.0						0,15
800	50	55	40	15						0,19

Продолжение табл, 6

Номинальный вращающий момент <i>T</i> , Н·м	<i>d</i> H9	d ₁ h13	d ₂ H9	s, не менее	<u>і</u> (пред. по <i>с</i>		r	с	<i>c</i> ₁	Масса, кг, не более
	55	65	45	17	28	6				0,22
1 250	56	65	45	17	28	6		3,0		0,23
	60	70	50	19	38	8				0,36
	63	75	53	19	38	8				0,38
	63	71	53	19				3,0		0,38
2 000	65	71	55	19	38	8		3,0		0,40
	70	80	60	21				4,0		0,41
	71	80	60	21			0,6	4,0	1,0	0,44
	75	85	65	21	38	8				0,44
3 150	80	90	70	23	46	10				0,59
	85	95	75	23	46	10		4,0		0,67
	85	95	75	23						0,67
5 000	90	100	80	26	46	10			·	0,65
	95	105	85	26						0,69
	100	110	90					4,0		0,73
8 000	110	120	100	29				5,0		0,97
	120	130	110		54	12	1,0		1,6	1,65
12 500	125	135	110	33				5,0		1,65
:	130	140	115							2,10

Пример обозначения фиксирующего полукольца муфты с номинальным вращающим моментом 125 Н·м, диаметром d=28 м, климатического исполнения У, категории 3 по ГОСТ 15150—69:

Фиксирующее полукольцо 125—28—УЗ ГОСТ 23106—78

Технические требования фиксирующих полуколец. Материал — сталь 45.

Допускается изготовление из материалов с механическими свойствами не ниже, чем у стали 45.

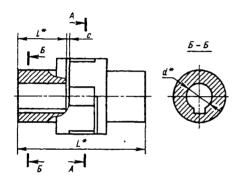
Виды покрытий полуколец и толщина покрытия в зависимости от условий эксплуатации муфт — по ГОСТ 9.303—84.

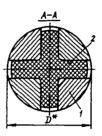
Технические требования к покрытиям полуколец — по ГОСТ 9.301—86.

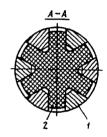
Неуказанные предельные отклонения размеров  $\pm \frac{IT15}{2}$ .

### 7. Упругие муфты со звездочкой (по ГОСТ 14084-93)

Назначение. Для соединения соосных цилиндрических валов при передаче вращающего момента от 2,5 до 400 Н $\cdot$ м и уменьшения динамических нагрузок климатических исполнений У и Т, категорий 1—3 и климатических исполнений УХЛ и О категории 4 по ГОСТ 15150—69.


Муфты изготовляют двух исполнений: 1 — на длинные концы валов; 2 — на короткие концы валов по ГОСТ 12080—66.


Примечание. Допускается уменьшать длину посадочной части полумуфт в соответствии с ГОСТ 12080—66.


### Размеры, мм

Для муфт с  $T = 2.5 \div 6.3 \text{ H} \cdot \text{м}$ 

Для муфт  $T = 16 \div 400 \text{ H} \cdot \text{м}$ 







I — полумуфта; 2 — звездочка

^{*} Размеры для справок.

івный ций момент,	ď	D		L Асполне	ние	I	С	вращения более	осей	цение валов, олее	мо ине	ически мент рции, и ² ·10 ⁻³		сса, кг
Номинальный вращающий м Н·м			1	2	1	2	JS17	Частота с-1, не	радиаль- нос	угловое	1	<b>Испол</b> 2	нение 1	2
2,5	6 7	32	45,5	_	16	_		92			0,05	_	0,17 0,15	_
6,3	10 11	45	59,5	· <b>5</b> 3,5	23	20	1,5		0,1	1°30'			0,25 0,23	0,23 0,21
	12 14		73,5	63,5	30	25	1,5	83			0,12	0,10	0,27 0,31	0,25 0,27

Продолжение табл. 7

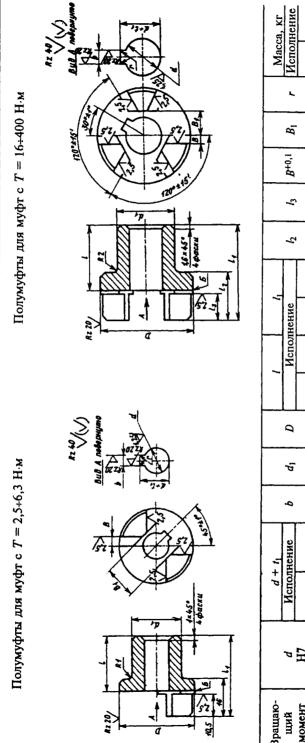
Номинальный вращающий момент Н-м	d	D		<i>L</i> Исполн	<u> </u>	l	C	Частота вращения c-1, не более	Смец осей не б	цение валов, юлее	мо	пически эмент эрции, и ² ·10 ⁻³	й	сса, кг
инал гаюц Н-м							JS17	тота,	<u>ــــــ</u>			Испол	нение	<del></del>
Ном			1	2	1	2		Hac c-1	радиаль- ное	угловое	1	2	1	2
	12 14		81,0	71,0	30	25							0,59 0,57	0,57 0,55
16,0	16 18	53	101,0	77,0	40	28		63			0,35	0,30	0,65 0,63	0,59 0,55
	14		81,0	71,0	30	25							0,72	0,62
25,0	16 18	63	101,0	77,0	40	28		58			0,76	0,54	0,80 0,78	0,66 0,64
	20		121,0	93,0	50	36	3.0						0,88	0,70
	16 18		101,0	77,0	40	28	3,0		0,2	1°30′			1,00 0,98	0,72 0,68
31,5	20 22	71	121,0	93,0	50	36		50			0,96	0,76	1,14 1,10	0,86 0,82
	20		128,0	100,0	50	36							1,31	1,67
(2.2	22												1,75	1,65
63,0	25	85	148,0	112,0	60	42		37			3,0	2,8	2,00	1,61
	28												1,90	1,51
	25		148,0	112,0	60	42							3,32	3,06
	28												3,18	2,84
125,0	32	105	188,0	144,0	80	58		33	0,3		9,0	8,4	3,32	3,16
	36												3,72	3,30

Номинальный вращающий момент, Н-м	d	D		L Ісполне	<u>.</u> .	1	С	Частота вращения с т. не более	осей :	цение валов, олее	мо	ически мент рции, 1 ² .10 ⁻³		cca, Kr
инал (акоп Н.м							JS17	ТОТЯ	-q	ų.		Испол	нение	
Ном			1	2	1	2		Hac	радиаль- ное	угловое	1	2	1	2
											<u> </u>			<u> </u>
	32		191,0	147,0	80	58							7,05	6,50
250,0	36		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,-									7,06	6,56
250,0	40	135	251,0	195,0	110	82		30			14,4	12,8	7,60	6,88
	45					_	3,0		0,4	1, 00,			8,49	7,90
	38		196,0	152,0	80	58							11,34	10,82
400,0	40	166	38,6 37	37,8	12,04	11,46								
	45			,•									12,12	11,00

При применении звездочек, изготовленных из резин марок с пределом прочности при разрыве  $[\sigma_p]$  выше значения 10 МПа, допускаемая частота вращения муфт увеличивается в  $\sqrt{\frac{[\sigma_p]}{\Gamma_0}}$  раз.

ГОСТ предусматривает также нерекомендуемый ряд величин.

Пример обозначения упругой муфты со звездочкой с номинальным вращающим моментом  $T=125~{\rm H\cdot M}$ , диаметром посадочных отверстий в полумуфтах под валы  $d=32~{\rm mm}$ , с полумуфтами исполнения 1, климатического исполнения У, категории 3:


То же, с полумуфтами исполнения 2:

То же, с полумуфтами: одна-исполнения 1, другая-исполнения 2:

То же, с полумуфтами: одна диаметром d=32 мм, исполнения 1, другая диаметром d=25 мм, исполнения 2, климатического исполнения У, категории 3:

### Конструкция и размеры полумуфт

Размеры, мм



Macca. Kr	г Исполнение	1 2	0,1 0,08	0,1 0,12 0,11 0,1 0,11 0,10 0,1 0,13 0,12 0,2 0,15 0,13
	B		16	20
	$B^{+0,1}$ $B_1$		4	5
	13		l	
	4		ļ	I
		2	ı	32 32 37 37
	Исполнение	-	28	35 42 42 42
	Испол	2		25.20
		1	91	23 30 30
	Q		32	45
	ď		20	22 24 24 26
	9		2	6443
- 1,	полнение	2	1 1	11,4 12,8 13,8 16,3
$d+t_1$	Испол	1	7,0 8,0	11 12 13 13 16
	q	Н7	9	10 11 14
Вращаю-	ший	момент Т, Н·м	2,5	6,3

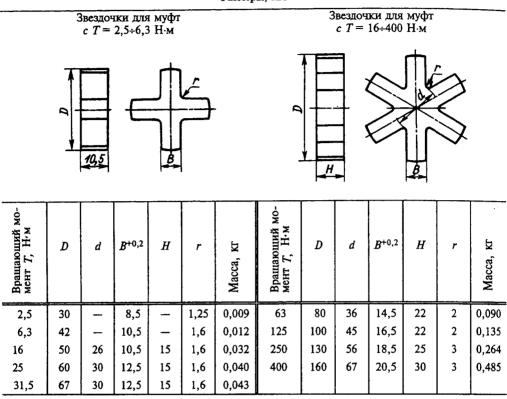
Масса, кг	В1 г Исполнение	1 2	0.28	14 0,2 0,27 0,26	0,31	0,30			0,37 0,30		<del>                                     </del>	0,2 0,47	0,55 0,41				0,95 0,76	
	B+0,1			ς.							9	<del></del>	· · · ·			7		
	l2 l3			- <u></u> -				28   15								40 22		
1/		2	43	43	46	46	43	46	46	54	46	46	54	54	61	19	29	29
	Исполнение	-	48	. 4	28	28	84	28	- 28	89	85	28	89	<b>8</b>	75	75	85	82
_	Испс	2	<u> </u>	23					78				36	<del></del>			42	
		1	Ş.	53 30	40		98	63   40	40	 		71 40	20	 8	20	85   50	09	<u> </u>
	d ₁		×	···	28	28	78		28	30	92		34	34	36		42	42
	9		4	٠ ٧	5	9	5	2	9	9	,	9	9	9	9	9	∞	∞
$d+t_1$	Исполнение	2		١	-	1	1	1	l		1	١	1	1	1	l	ı	1
P	Испол	-	3 8	16,3	18,3	20,8	16,3	18,3	20,8	22,8	18.3	20,8	22,8	24,8	22,8	24,8	28,3	31,3
	p	Н7	<u>;c                                    </u>	1 4	16	81	14	91	18	20	7	2 81	20	22	20	22	25	28
Boamaro-	ший	момент Т, Н·м		16				3,5	3			31.5				63		

Продолжение табл. 7

Вращаю-		+ P	1+11						14							Масса, кг	a, Kr
mw#	ď	Испол	олнение	9	lp	Q		Исполнение	нение		12	l3	B+0,1	Bı		Исполнение	нение
момент Т, Н·м	Н7		2				1	2	1	2						-	7
	25	28,3	1	8	45		09	42	85	29					0,2	1,59	1,46
125	28	31,3	ı	00	45	105	09	42	88	29	40	22	∞	25	0,2	1,52	1,35
	32	35,3	35,8	10	48		08	28	105	83					0,3	1,59	1,51
	36	39,3	39,8	01	55		80	58	105	83					0,3	1,79	1,58
	32	35,3	35,8	10	55		08	58	108	98						3,39	3,12
250	36	39,3	39,8	01	99	135	80	58	108	98	48	25	6	32	6,0	3,40	3,15
	94	43,3	44,4	12	09		110	82	138	110						3,66	3,30
	45	48,8	49,9	14	70		110	82	138	110						4,11	3,82
	38	41,3	41,8	10	63		08	28	113	16						5,43	5,17
400	40	43,3	44,4	12	63	166	110	82	143	115	.56	30	10	38		5,78	5,49
	45	48,8	49,9	14	0,		110	82	143	1115						5,82	5,26

Допускается изготовлять полумуфты методом горячего штампования без обработки по несопрягаемым поверхностям со штамповочными ук. юнами в тогот тогот 1505—89.

Пример обозначения полумуфты муфты с вращающим моментом 125 H·м, диаметром d=32 мм, исполнения 1, климатического исполнения У, категории 3:


Полумуфта 125—32—1—УЗ ГОСТ 14084—93

То же, исполнения 2:

Полужуфта 125—32—2— УЗ ГОСТ 14084-93

### Конструкция и размеры звездочек

### Размеры, мм



Пример обозначения звездочки муфты с номинальным вращающим моментом  $T=125~{
m H}\cdot{
m M}$  климатического исполнения УЗ:

### Звездочка 125—УЗ ГОСТ 14084—93

Технические, требования. Материал полумуфт — сталь 35. Допускается изготовлять полумуфты из других материалов с механическими свойствами не ниже, чем у стали 35.

Виды покрытий полумуфт и толщина покрытия в зависимости от условий эксплуатации муфт — по ГОСТ 9.306—85. Технические требования к покрытиям полумуфт — по ГОСТ 9.301—86.

Размеры шпоночных пазов для полумуфт — по ГОСТ 23360—78.

Допуск симметричности шпоночного паза относительно оси полумуфты—в пределах двух полей допусков на ширину шпоночного паза. Допуск параллельности плоскости симметрии шпоночного паза относительно оси полумуфты—в пределах полови-

ны поля допуска на ширину шпоночного паза

Допускается сочетание полумуфт исполнении 1 и 2 с различными диаметрами *d* в пределах одного номинального вращающего момента.

При соединении муфтами валов, не имеющих заплечиков, необходимо применять стопорение полумуфт с помощью винтов по ГОСТ 1476—93 и колец по ГОСТ 2833—77.

Радиальное биение поверхности  $\mathcal{B}$  полумуфт относительно оси отверстия d — не более 0,1 мм.

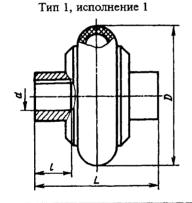
По соглашению между изготовителем и потребителем допускаются отклонения размера *d* полумуфт по H8.

Неуказанные предельные отклонения размеров полумуфт: отверстий — по H14, валов — по h14, остальных —  $\pm \frac{\text{IT14}}{2}$ .

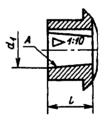
Звездочки должны изготовляться из резин, соответствующих условиям работы муфты, со следующими физико-механическими свойствами:

Предел прочности при разрыве, МПа, не менее . . . . . . . 10

Относительное удлинение при	
разрыве по ГОСТ 270-75,%,	
не менее	300
Относительное остаточное	
удлинение по ГОСТ 270-75,%,	
не более	30
Твердость по ГОСТ 263—75,	
усл. ед., в пределах	5065
06	


Общие технические требования на звездочки для муфт, предназначенных для эксплуатации в условиях тропического климата,— по ГОСТ 15152—69.

### 8. Упругие муфты с торообразной оболочкой (по ГОСТ 20884-93)


Назначение: для соединения валов с целью передачи вращающего момента от 20 до 40000 Н-м, уменьшения динамических нагрузок и компенсации смещений валов, климатических исполнений У и T для категорий 1-3, 5 климатических исполнений УХЛ и O для категории 4 по FOCT 15150-69.

### Основные параметры, габаритные и присоединительные размеры

### Размеры, мм







×	момент	d*	$d_1^*$	<i>D</i> ,	60)	тее	бол		симальный <i>T</i> , кратковремен- перегрузке ,нс менее	я часто 4, с-	ручива- номиналь менее	СМ	ещені элумус	ие
	лірны Пілкі М	Н7	H9	бо- лее		Испол	нение	:	симальный кратковрем перегрузке не менес	пускаемая вращения,	I закручива при номин $T$ , не менее	000	pa-	уг- ло-
)- }-	поминальный вращающий мо $T_r$ Н·м				1	2	1	1	Максимальный при кратковрем ной перегрузке Н·м, не менее	Допускаемая та вращения,	Угол з ния пр ном Т,	oce- Boe	ди- аль- ное	вое
	20	1	4	100	105		28		63					
	20	16; 1	8; 19	100	110	95	30	20					 	
		18;	19		115	100	30	20		50	5°30'	1,0	1,0	1*00'
	40	20; 2	2; 24	125	130	120	38	26	125			ļ	Ì	
		2	15		140	130	44	28			<u></u>	<u> </u>		<u> </u>

й момент	ď*	$d_1^*$	D,	<i>L</i> ,	не лее		не лее	ый <i>Т,</i> ремен- зке	часто-	ива- гиналь- нес	Доі са п	пускае иещен олуму	ие
(вны тий т	H7	<b>H</b> 9	не бо-		Испол	тнени	•	альн гков егру	емая	круч ном е ме		pa-	уг-
Номинальный вращающий момент Т, Н.м			лее	1	2	1	2	Максимальный Т, при кратковременой перегрузке Н·м, не менее	Допускаемая часто- та вращения, с -1	Угол закручива- ния при номиналь- ном <i>T</i> , не менее	oce- Boe	ди- аль- ное	ло- вое
	22;	24		140	130	38	26						
80	25;	28	160	150	140	44	28	250	50				
	3	0		185	170	60	40						
	25;	28		155	145	44	28			5°30'	2,0	1,6	
125	30;	32;	180	190	175	60	40	400		į			
	35;	36											
	30;	32;		200	185	60	40		41		-		
200	35; 3	6; 38	200					630		5°30'	2,5	2,0	
	4	0		250	235	84	60						
	32;	35;		205	185	60	40						
250	36;	38	220					800					
	40; 4	2; 45		255	240	84	60		33	5°30'	3,0	2,5	
	35; 3	6; 38		215	195	60	40						
315	40;	42;	250	270	250	84	60	1000					
	45;	48											
	40;	42;											1°00'
500	45;	48;	280	270	250	84	60	1600					
	50;					•		1000				,	į
	55;	56								5*30'	3,6	3,0	
	48;	50;		280	270	84	60						
800	53; 5		320					2500					
	60;	63		330	310	108	'75		26				
	55;	56		280	230	84	60						
1250	60;		360					3150		4°30'	4,0	3,6	
	65;										,,,	-,-	
	71;			330	260	108	75						
	63;			350	270	108	75					•	
2000	70; 7		400					5000		4°30'	4,5	4,0	
	80; 8	5; 90		400	320	132	96						

Продолжение табл. 8

	r		_									chuc n	rawi. o
Номинальный вращающий момент Т, Н.м	d*	<i>d</i> ₁ *	<i>D</i> , не бо-	60	не лее	бо	не лее	ый <i>T,</i> ремен- ке е	r vacro-	иналь- нее	До: с)	пускае иещен олуму	ие
PILLEN M	H7	Н9	лее		Испо.	пнени	e	ков гру	Мая	ручи Ме		pa-	уг-
Номинальный вращающий м Т, Н.м				1	2	1	1	Максимальный Т, при кратковремен- ной перепрузке Н.м, не менее	Допускаемая частта вращения, с-4	Угол закручива- ния при номиналь- ном T, не менее	oce- Boe	ди- аль- ное	ло- вое
	7	5		355	285	108	75						
3150	80;	85;	450	405	325	132	96	8000	26	<b>4°30</b> '	4,5	4,0	1°00'
	90;	95									.,-	.,.	
	10	00		475	385	168	126						
	90;	95;		415	335	132	96						
5000	100;	105;	500					12 500	21	4°30′	5,0	4,0	
	11	10						]					
	120;	125		490	400	168	126	}					
3	100;	105;		495	400	168	126						
8000	110;		560				İ	20 000	18	3°30'	5,6	5,0	
	12	25											
	130;	140		570	465	204	158						
	110;	120;		525	420	168	126						1°30'
12 500	12	.5	630					25000	17	3°30'	6,0	5,0	
	130;	140;		585	480	204	158						
	15	0							_	[		]	
	120;	125	ŀ	510	430	168	126						
16 000	130;	140;	710					31500	15	3,30,	6,7	5,0	
	15	0		590	490	204	158		_ [				
20 000	140;	150	800	600	500	204	158	40000	13	2*30'	7,5	5,0	

*d и  $d_1$  = 14; 16; 18; 20; 22; 25; 28; 30; 32; 35; 36; 40; 45; 50; 55; 60; 63; 70; 80; 90; 100; 110; 125; 140 мм являются предпочтительными величинами.

ГОСТ предусматривает также d и  $d_1$  свыше 150 мм и номинальные вращающие моменты более 20 000 Н·м.

Допускаются предельные отклонения размера d по H8.

Стандарт предусматривает упругие муфты двух типов:

^{1 -} с оболочкой выпуклого профиля;

^{2 -} с оболочкой вогнутого профиля.

В табл. 8 приведены размеры муфт типа 1.

Полумуфты каждого типа изготовляют в двух исполнениях:

1 — с цилиндрическими отверстиями для коротких концов валов по ГОСТ 12080—66;

2 — с коническими отверстиями для коротких концов валов по ГОСТ 12081—72.

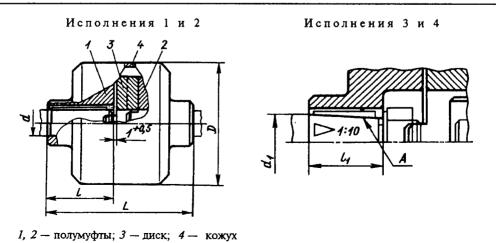
Допускается изготовлять полумуфты для длинных концов валов по ГОСТ 12080—66 и ГОСТ 12081—72, а также применять другие виды соединений полумуфт с валами.

Размеры шпоночных пазов-по ГОСТ 23360-78 и ГОСТ 10748-79.

Допуски углов конусов отверстий-9-й степени точности ГОСТ 8908-81.

Допускается соединение полумуфт разных исполнений с различными диаметрами посадочных отверстий, если эти полумуфты предназначены для передачи одного и того же номинального вращающего момента.

Допускается посадочное отверстие в одной из полумуфт уменьшать до значения, установленного в таблице для других номинальных вращающих моментов.


Пример условного обозначения упругой муфты с номинальным вращающим моментом  $T=250~{\rm H\cdot M}$ , типа 1, диаметром отверстия полумуфт  $d=40~{\rm mm}$ , с полумуфтами исполнения 1, климатического исполнения У, категории 2:

То же, диаметром отверстия одной полумуфты d=40 мм, исполнения 1, другой полумуфты d=36 мм, исполнения 2:

### 9 .Кулачково-дисковые муфты (по ГОСТ 20720—93)

Назначение: соединение валов при передаче вращающего момента от 16 до 16000 H-м с максимальной частотой вращения 4  $c^{-1}$  для моментов до 6300 H-м и 1,6  $c^{-1}$  для моментов свыше 6300 H-м при угловом смещении осей валов до 30' без уменьшения динамических нагрузок, климатических исполнении У и T для категорий 1—3, климатических исполнений УХЛ и O для категории 4 по FOCT 15150—69.

### Размеры, мм



Полумуфты изготовляют следующих исполнений:

- 1 с цилиндрическими отверстиями для длинных концов валов по ГОСТ 12080—66;
- 2 с цилиндрическими отверстиями для коротких концов валов по ГОСТ 12080—66;
- 3 с коническими отверстиями для длинных концов валов по ГОСТ 12081—72.
- 4 с коническими отверстиями для коротких концов валов по ГОСТ 12081—72.

Допускаются другие виды соединения полумуфт с валами с обеспечением гарантированного натяжения.

Номиналь- ный вра- щающий момент	<i>d</i> H7	d ₁ H9	d H7	d ₁ H9	<i>D</i> , не более		не лее дл	я исп	<i>I</i> олнен		1	Ради- альное смеще- ние	боле	, кг, не е для нений
Т, Н∙м	Ря,	д 1	Ря,	д 2		1,3	2,4	1	2	3	4	осей валов, не бо- лее	1,3	2,4
16	16;	18	_	-								0,6	_	1,4
	1	6		-		_	75	—	28		18			1,6
31,5	1	8	_	_							!			
	_	-	_ 1	9	100								—	1,5
	2	0		-								0,7		
	2	2		-									_	1,4
	20;	22	_			_	90	-	36	-	24		_	1,3
63	_	-	2	4								0,8		1,2
	2	5	_			_	105	_	42	_	26		_	1,3
	2	8	_											1,2
	2	5	_	_										6,3
125	2	8	_	_	140							1,0	-	6,2
	30;	32	_			185	140	80	58	60	38		7,4	7,2
	35;	36	_	-									7,2	7,0
	32; 3			-		185	140	80	58	60	38	1,2	11,0	10,0
250	_	-	3	8									10,0	9,0
-	4	0	4:	2	170	245	190	110	82	84	56		11,0	10,0
	4:	5	_	-									10,0	9,0
		-	3	8		185	140	80	58	60	38			
400	4(	0	4:	2									11,0	10,0
	45;	50	4	8 ]		245	190	110	82	84	56	1,6		
			5:	3									10,0	9,0
630	45;	50	4	8	210	245	190	110	82	84	56	2,0	31,0	27,0

Номиналь- ный вра- щающий момент	d H7	<i>d</i> ₁ H9	d H7	d ₁ H9	<i>D</i> , не более	<i>L</i> , бол	iee	испо	<i>I</i> олнені	<i>l</i> 1й	l	Ради- альное смеще- ние	Масса, более испол	RULL
<i>T</i> , Н·мм	Ря	д 1	Ря	д 2		1,3	2,4	1	2	3	4	осей валов, не бо- лее	1,3	2,4
	_	_	5	3		245	190	110	82	84	56		31,0	27,0
630	5	5	5	6								2,0	29,0	26,0
	60;	63	_	-		305	235	140	105	107	72		31,0	28,0
	5	0	-	-	210								31,0	26,0
	-	_	5	3		245	190	110	82	84	56		30,0	25,0
1000	5	55	5	6								2,2	29,0	26,0
	6	0	-	_									31,0	28,0
	6	3	6	5									30,0	27,0
	70;	71	-										29,0	26,0
	6	0	-	_									49,0	45,0
	6	3	_	_		305	235	140	105	107	72		48,0	44,0
1600	-		6	55	250							2,5	48,0	44,0
	70;	71	_	_								<u> </u> 	47,0	43,0
			7	5									40,0	36,0
	8	80	-	_									42,0	38,0
			8	35		360	280	170	130	132	92		41,0	35,0
	70	; 71	_	_									53,0	46,0
	_		7	75		305	235	140	105	107	72		52,0	45,0
2500	8	30	-	_	290							3,0	56,0	48,0
	-	_	8	35									55,0	47,0
	9	ю	-	_	]	360	280	170	130	132	92		53,0	48,0
	_	_	9	95									51,0	44,0
	1	00	-	_		440	350	210	165	167	122	1	55,0	48,0
4000	8	30	_		310							3,5	56,0	48,0
	_	-	8	35		360	280	170	130	132	92		55,0	47,0

Продолжение табл. 9

Номиналь-	d H7	<i>d</i> ₁ H9	<i>d</i> H7	<i>d</i> ₁	<i>D</i> , не	<i>L</i> , бо.	не пее		ı	,	·	Ради- альное	боле	, кг, не е для
щающий момент					более		ДЛ	я исп	олнен	ий		смеще- осей	испол	нений
Т, Н⋅мм	Ря	д 1	Ря	д 2		1,3	2,4	1	2	3	4	валов, не бо- лее	1,3	2,4
	9	0	_	_									53,0	48,0
	_	_	9	5		360	280	170	130	132	92		51,0	44,0
4000	10	00	_	_	310							3,5	55,0	48,0
	-	_	10	)5									53,0	46,0
	11	10	_	_									52,0	45,0
	10	00	-	_		440	350	210	165	167	122		125	108
	-	-	10	)5									123	106
6300	11	10	_	_								4,0	121	104
	_	_	12	20									115	99,0
	12	25	-	-	350								112	97,0
	_	<u>.</u>	13	30		550	450	250	200	202	152		122	105
	14	10	_	<b></b>									114	99,0
	11	10		-			:						122	104
	_	-	12	20		440	350	210	165	167	122		115	99,0
10000	12	25	_	-								4,5	112	97,0
	_	-	13	30		550	450	250	200	202	152		122	105
	14	10	_	-									114	99,0
	12	25	_	-		440	350	210	165	167	122		203	148
16000	_	_	13	0	390							5,0	200	145
	14	10	_	-		550	450	250	200	202	152		205	184
	_	_	15	0									198	179

Обозначение муфт содержит наименование муфты и цифры, характеризующие номинальный вращающий момент, диаметр отверстия полумуфты и исполнение.

Пример условного обозначения кулачково-дисковой муфты с номинальным вращающим моментом  $T=250~{\rm H\cdot m}$ , диаметром посадочного отверстия полумуфт  $d=32~{\rm mm}$ , с полумуфтами исполнения 1, климатического исполнения У, категории 3:

То же, но при исполнении одной полумуфты 1, другой — 3:

То же, но с диаметром посадочного отверстия одной полумуфты D=32 мм, исполнения 1, другой полумуфты с диаметром d=40 мм, исполнения 2:

**Технические требования.** Допускается применять сочетание полумуфт разных типов и исполнений с посадочными отверстиями различных диаметров в пределах одного номинального вращающего момента, а в технически обоснованных случаях — различных номинальных врашающих моментов.

Значения номинального вращающего момента указаны для муфт постоянными по значению и направлению нагрузками, полумуфты которых изготовляют из сталей марки 45 по ГОСТ 1050—88 или марки 45Л по ГОСТ 977—88 твердостью рабочих поверхностей пазов 40—45HRC₃, а диски — из стали марки 40Х по ГОСТ 4543—71 с твердостью рабочих поверхностей выступов 45—50HRC₃.

При использовании других материалов, при переменных нагрузках и при частотах вращения, отличающихся от указанных, значения вращающего момента, передаваемого муфтой, определяются расчетным путем.

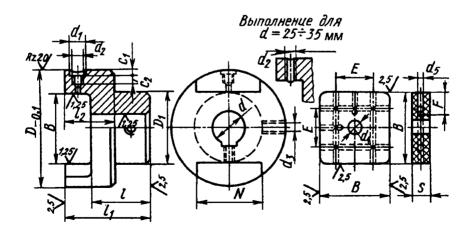
Размеры шпоночных пазов и предельные отклонения — по ГОСТ 23360—78 и ГОСТ 10748—79.

Ширина шпоночных пазов для полумуфт исполнений 3 и 4 — по ГОСТ 12081—81.

Допуски углов конусов отверстий — по 9-й степени точности ГОСТ 8908—81.

### 10. Муфты с промежуточной призматической деталью

Назначение: для присоединения электродвигателя к механизму и присоединения отдельных валов внутри механизма. Рекомендуется применять при отсутствии резко ударной нагрузки и при напряжении кручения валов до  $\tau = 25 \text{ M}\Pi a$ .


Муфта допускает параллельное смещение валов при сборке до 0,2 мм, при работе до 0,01d+0,25 мм и угловое смещение до 40.

Передаваемый вращающий момент муфт

	d, mm	L, mm	Вращающий момент, Н·м
	25—28	124	80—110
	30—32—35	149	130—160—210
	4045	184	320—450
	50—55	224	500—665
2 4	60—65	254	865—1100
	70—75	274	1370—1690
	80—85	304	2040—2450
	9095	344	2910—3430

### Полумуфты и призматическая деталь

Размеры, мм



Материал — сталь Ст3 для полумуфт с  $d \le 45$  мм; чугун СЧ 10 для полумуфт с d > 45 мм; текстолит поделочный для призматической детали.

Допускаемое предельное отклонение для размера В: в полумуфте по H12, в призматической детали по h12.

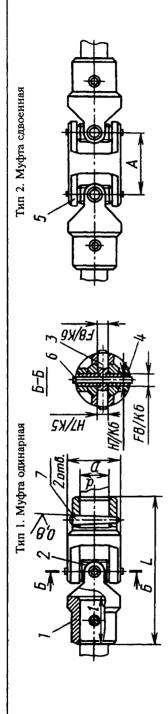
Продолжение табл. 10

d H7	D _{-0,1}	В	$D_1$	I	$l_1$	$l_2$	N	$C_1$	C ₂
25—28	100	60	60	50	72	42	55	_	_
30-32-35	120	70	75	60	87	50	65	_	-
4045	150	80	90	75	107	60	75	15	20
50—55	180	100	110	90	132	80	90	15	25
60—65	220	120	130	100	152	100	110	20	30
70—75	250	140	150	110	162	100	130	15	12
8085	290	160	170	120	182	120	150	15	12
90—95	330	180	190	140	202	120	170	15	12
d H7	$d_1$	$d_2$	!	$d_3$	d ₄	<i>d</i> ₅	S	E	F
							<u></u>		
25—28		M	8	M8	14	4	20	40	15
	<u> </u>	M M1		M8 M10	14 16	4 4	20 25	40 45	15 20
25—28	_ _ 16		.0		Į.				
25-28 30-32-35	  16	Mi	.0	M10	16	4	25	45	20
25—28 30—32—35 40—45		M1 M1	.0	M10 M12	16 18'	4 4	25 30	45 50	20 25
25—28 30—32—35 40—45 50—55	16	MI MI	.0 .2 .2 .6	M10 M12 M12	16 18' 20	4 4 4	25 30 40	45 50 55	20 25 30
25-28 30-32-35 40-45 50-55 60-65	16 20	M1 M1 M1	0 2 2 2 6 1/4"	M10 M12 M12 M16	16 18' 20 25	4 4 4 6	25 30 40 50	45 50 55 60	20 25 30 35

### 11. Шарнирные муфты (по ГОСТ 5147-80)

Шарнирные муфты предназначены для соединения цилиндрических валов, которые устанавливают под углом до 45° при передаче вращающего момента от 11,2 до 1120 Н⋅м без смягчения динамических нагрузок, в климатических исполнениях У и Т для категорий 1, 2, 3, климатических исполнениях УХЛ и О для категорий 4 по ГОСТ 15150—69.

Муфты изготовляют двух типов: одинарные и сдвоенные с промежуточной спаренной вилкой.


Полумуфты для каждого типа муфт следует изготовлять в двух исполнениях: на длинные и короткие концы валов.

Допускается сочетание полумуфт в разных исполнениях с различными диаметрами посадочных отверстий d в пределах одного номинального вращающего момента.

Допускается посадочное отверстие d и одной из полумуфт уменьшать до значения, установленного в таблице для других номинальных вращающих моментов.

Допуски углов конусов отверстий под штифты — по 8-й степени точности ГОСТ 8908—81.

Размеры, мм



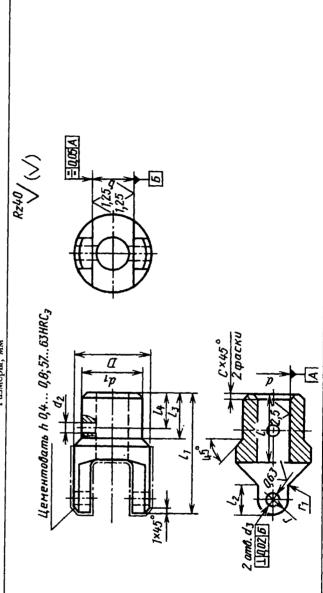
I — полумуфта; 2 — крестовина; 3 — палец; 4 — втулка; 5 — спаренная вилка; 6 — штифт по ГОСТ 10774—80; 7 — штифт по ГОСТ 3129—70

Номиналь-		VIS.			<i>L</i> для типов	типов		<i>I для</i> испол-	RIA OII-		Динами	Динамический момент инерции, кт.м².10-6	кг.м².10-6	нерции,	Σ	асса, кг	Масса, кг, не более, для типов	)     ••
ный вра-		рядов						нений	ий	V		т кид	для типов			_	,	
щающий			D	z	и исполнений	тнени	<u></u>	_	•	(спра-				2		· · · · · · · · · · · · · · · · · · ·	<b>1</b>	
момент										BO4-		и испо	и исполнений			и испо	и исполнений	
Т, Н∙м	-	2		-	2		2	-	7	ный)	1	2	1	2	1	2	1	2
	8	-		99		92	1	70	1					1	0,057	1	0,080	1
11,2	6	ı	16							70	0,223		0,32		0,051	_	0,074	j
	01	1		62	95	82	9/					0,198		0,29	0,053	0,047	9/0'0	0,070
	01			99	09	92	98	23	70		-				0,100	0,092	0,147	0,139
22,4	11		70							.97	0,630	0,560	0,92	0,87	0,094	0,080	0,141	0,127
	12	ı		80	70	106	96	30	25						0,102	0,096 0,149	0,149	0,148

Продолжение табл. 11

Номичапе-	A 1110	E			<i>L</i> для типов	гипов	-	испол	K .		Динами	Динамический момент инерции, кг.м².10-6	омент ин .10-6	ерции,	Ĭ	Масса, кг, не более, для типов	не боле ипов	sî.
ный вра-	рядов	E 0	•			2		нений	: <del>*</del>	7		вопит вид	чпов				2	
щающий	•		P	Z	и исполнений	нений				спра-	_		2					
момент								-		BO4-		и исполнений	нений			и исполнений	нений	
Т, Н∙м	-	7		_	2	-	7	_	7	ный)	1	2	1	2	1	2	-	2
	12														0,170	0,152	0,242	0,224
45,0	14	١	25	98	9/	118	801	30	25	32	1,440	1,290	2,09	1,94	0,150	0,135	0,222	0,207
	16	Ī													0,390	0,321	0,558	0,489
71,0	18	1	32	112	88	150	126		78	38	5,900	4,840	8,53	7,46	0,367	0,299	0,535	0,467
	ı	19							<del> </del>						0,653	0.480	0,973	0,800
140,0	20		5	140	112	188	160			84	16,300	12,900	24,00	20,60	0,720	0,590	1,040	0,910
	22	1						20	36						0,667	0,550	0,987	0,870
	1	24		148	120	206	178	20	36						1,170	096'0	1,780	1,570
280,0	25	1	20							28	45,600	36,600	68,80	9,65	1,280	1,080	1,890	1,640
	28	I		168	132	326	190	99	42						1,160	006'0	1,770	1,510
	30	ı													2,830	2,310	3,900	3,380
960,0	32	ı	09	222	178	292	248	80	28	70	148,000	148,000 117,000 207,000	207,000	176,70	2,710	2,210	3,780	3,280
	35	1			•						•				2,510	1,870	3,580	2,940
	1	38		236	192	328	284		L						4,310	3,630	6,530	5,850
1120,0	40	ı	75	!						92	396,000	338,000	585,000	525,000	5,030	4,410	7,250	6,630
-	Ι	42		296	240	388	332	110	82						4,810	4,050	7,030	6,270

 $\Pi$  р и м е ч а и и я : 1. 1-й ряд является предпочтительным. 2. При смещениях валов допустимый вращающий момент для муфт составит  $T_D=T\cos\alpha$ , где  $T_D-$ табличное значение момента;  $\alpha-$  угол перекоса между осями соединяемых муфтой валов.


с диаметром посадочного отверстия полумуфт d=20 мм для исполнения полумуфт 1, в климатическом исполнении У и категории 3 по Пример условного обозначения шарнирной муфты, передающей номинальный вращающий момент 140 Н·м, типа 1 FOCT 15150-69:

Муфта шарнирная 140—1—20—1—УЗ ГОСТ 5147—80

То же, для передачи номинального вращающего момента 140 Н·м, типа 2, одна из полумуфт которой диаметром d=19 мм исполнении 1, другая диаметром d=22 мм в исполнении 2, в климатическом исполнении  ${
m T}$  и категории 2 по  ${
m FOCT}$  15150—69:

## Муфта шарнирная 140— 2—19—1—22—2—72 ГОСТ 5147—80

### П**олумуфтя** Размеры, мм



Масса, кг, не более для исполнений	2	25	7	0,020	0,044 0,04	0,041 0,037	0,045 0,042	0,079 0,07	0,069 0,061	0,178 0,139	0,162 0,128
N T RIGH	-1	0,025	0,022	0,023	0,0	0,0	0,0	0,0	0,0		0,1
v				9,0						1,0	
7			9,0				1,0				1,6
			4			5			9		7
杏	2	1		12	14		16		13		12
І4	-	12		15	11		21		81		25
l ₃	2			15	15		20		17		18
l ₃	1	15		81	18		25	i	22		30
4		8			10			12			41
	2			32	35		40		4		51
I ₁	1	32		35	38		45		49		63
I I ₁	2				70			25			28
IQI	1	20			23			30			40
q	Н7		10			12			4		18
q			16			50			25		32
<i>d</i> ₃	8		4			5			9		
d ₂			e			4			'n		9
q			15			81			21		78
Н7 ядов	2		1	i	l	ı	I	I	j	ı	ı
d H7 для рядов	_	∞	6	10	10	=	12	12	14	16	18
Номиналь-	щающий момент Т, Н.м		11,2			22,4			45,0		71,0

Продолжение табл. 11

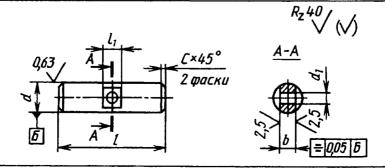

для исполнений         t         для исполнений         г         г           2         1         2         1         2         1         2         г           1         28         68         56         28         16         22         10         8         2,0           1         28         64         38         24         32         18         8         2,0           1         84         70         34         20         26         12         10         2,5           2         42         94         76         44         26         36         10         2,5           3         124         102         28         64         42         50         28         13         1,6           134         112         60         38         45         23         3,0         1,6			<b></b>		
1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       3       1       3       1       3       1       3       1       3       1       3       1       3       1       3       1       3       1       3       1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       4       3       4       3		$d_3$ $D$ $b$		$d_2$ $d_3$ $D$	d ₃ D
68         56         28         16         22         10         8         2,0           78         64         38         24         32         18         8         2,0           84         70         34         20         26         12         10         2,5           94         76         44         26         36         10         2,5           124         102         28         64         42         50         28         13           134         112         60         38         45         23         3,0           134         112         35         16         36         38         45         16	Œ				
78         64         38         24         32         18         2,0           84         70         34         20         26         12         2,5           94         76         44         26         36         10         2,5           124         102         28         64         42         50         28         13           134         112         60         38         45         23         3,0           134         112         35         16         16         3,0	1				
78         64         38         24         32         18         8         18         8         18         8         18         8         18         8         18         8         18         8         18         8         18         8         18         8         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	(.4	8 40 22	40	8 40	8 40
84         70         34         20         26         12         10         2,5           94         76         44         26         36         10         2,5           124         102         28         64         42         50         28         13           134         112         60         38         45         23         3,0           134         112         35         16         16         16         16					
94       76       44       26       36       10       2,5         124       102       28       64       42       50       28       13         134       112       60       38       45       23       3,0         134       115       60       38       45       23       16	1				
94       '76       44       26       36       10       8       10       8       10       8       10       8       10       8       10       8       10       8       13       8       13       8       13       8       13       8       13       8       13       8       13       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	78	10 50 28	20	10 10 50	10 50
124     102     28     64     42     50     28     13       134     112     60     38     45     23     3,0       35     36     38     45     16					
124         102         28         64         42         50         28         13           134         112         60         38         45         23         3,0           35         35         16         16	ŀ				
112 60 38 45 23 35 16	3	13 60 34	09	12 13 60	13 60
112     60     38     45     23       35     35     16					
	i i				
	4	16 75 42	75	16 75	16 16 75
82   164   136   90   62   75   46					

Пример условного обозначения полумуфты в исполнении 1 для муфты, передающей номинальный вращающий момент  $140~{\rm H\cdot M}$ , диаметром  $d=20~{\rm mm}$ , в климатическом исполнении У и категории  $3~{\rm no}$  ГОСТ 15150—69:

Полумуфта 140-20, 1-УЗ ГОСТ 5147-80

### Крестовина

### Размеры, мм




Пример условного обозначения крестовины для муфты, передающей номинальный вращающий момент 140 H-м, в климатическом исполнении У и категории 3 по ГОСТ 15150—69:

### Крестовина 140—УЗ ГОСТ 5147—80

### Палец

### Размеры, мм



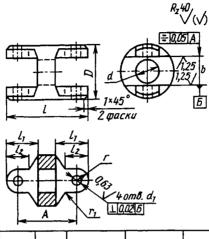
Продолжение табл. 11

Номинальный вращающий момент $T$ , $H\cdot$ м	<i>d</i> k6	<i>d</i> ₁ H12	1	<i>l</i> ₁	<i>b</i> h11	с	Масса, кг, не более
11,2	4	2,0	16	4	2		0,0014
22,4	5	2,5	20	5	3		0,0028
45,0	6	3,5	25	6	4	0,6	0,005
71,0	7	3,5	32	7	5		0,009
140,0	8	4,5	40	8	6		0,014
280,0	10	5,5	50	10	7	1,0	0,028
560,0	13	6	60	13	9		0,059
1120,0	16	7	75	16	10		0,113

Пример условного обозначения пальца для муфты, передающей вращающий момент 140 Н⋅м, в климатическом исполнении У и категории 3 по ГОСТ 15150—69:

Палец 140-УЗ ГОСТ 5147-80

Втулка Размеры, мм


<i>a .a .</i>	Номинальный вращающий момент <i>T</i> , Н·м	<i>d</i> k6	d ₁ H11	l	Масса, кг, не более
$R_z \stackrel{40}{\checkmark} \stackrel{(\checkmark)}{\lor}$	11,2	4	2	7,0	0,0005
2.5,	22,4	5	2	8,5	0,001
05×15°	45,0	6	3	10,5	0,0016
Q5×45°	71 0	7	4	13,5	0,0032
4 puesto	140,0	8	5	17	0,005
	280,0	10	6	21,5	0,01
	560,0	13	8	25,5	0,022
	1120,0	16	10	32,5	0,043

Пример условного обозначения втулки для муфты, передающей номинальный вращающий момент 140 Н·м, в климатическом исполнении У и категории 3 по ГОСТ 15150—69:

Втулка 140-УЗ ГОСТ 5147-80

### Вилка спаренная

### Размеры, мм



Номинальный вращающий момент <i>T</i> , Н·м	đ	D	I	A	<i>b</i> H7	<i>d</i> F8	l ₁	$l_2$	r	$r_1$	Масса, кг, не более
11,2 22,4 45,0 71 140,0 280,0 560,0 1120,0	8 10 12 16 20 25 32 40	16 20 25 32 40 50 60 75	28 36 44 52 64 78 96 124	20 26 32 38 48 58 70 92	10 12 14 18 22 28 34 42	4 5 6 7 8 10 13	12 15 19 23 28 34 44 54	8 10 12 14 16 19 28 34	4 5 6 7 8 10 13 16	0,5 1,0 1,0 1,6 2,0 2,5 3,0 3,0	0,016 0,035 0,06 0,125 0,239 0,456 0,767 1,63

Пример условного обозначения спаренной вилки для муфты, передающей номинальный вращающий момент 140 H-м, в климатическом исполнении Y и категории 3 по ГОСТ 15150—69:

Вилка спаренная 140—УЗ ГОСТ 5147—80

Технические требования на детали шарнирных муфт. Полумуфта и вилка спаренная. Материал—сталь 20Х по ГОСТ 4543—71. Допускается изготовление из других материалов с механическими свойствами не ниже, чем у стали 20Х после термообработки.

Виды и толщина покрытий в зависимости от условий хранения и эксплуатации муфт — по ГОСТ 9.306—85, ГОСТ 7462—73. Технические требования к покрытиям — по ГОСТ 9.301—86.

Отклонение от соосности отверстий диаметром  $d_1$  (вилка) и  $d_3$  (полумуфта) —

не более 0,02 мм.

Неуказанные предельные отклонения размеров: отверстий H14, валов h4, остальных ±IT14/2.

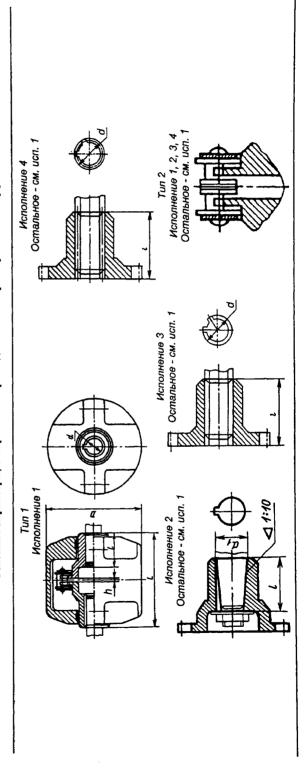
Крестовина, палец, втулка. Материал — сталь 40Х по ГОСТ 4543—71. Допускается изготовление из других материалов с механическими свойствами не ниже, чем у стали 40Х после термообработки. Твердость 49 ... 53 HRC₃.

Виды и толщина покрытий в зависимости от условий хранения и эксплуатации муфт — по ГОСТ 9.306—85. Технические требования к покрытиям — по ГОСТ 9.301—86.

### 12. Цепные муфты (по ГОСТ 20742-93)

Назначение: для соединения соосных валов при передаче вращающего момента от 63 до 1600 Н·м без уменьшения динамических нагрузок, климатических исполнений У и Т для категорий 1—3, климатических исполнений УХЛ и О для категорий 4 по ГОСТ 15150—69. Муфты изготовляют двух типов: тип  $1-{
m c}$  однорядной цепью, тип  $2-{
m c}$  двухрядной цепью.

Полумуфты изготовляют следующих исполнений:


1 — с цилиндрическим отверстием для коротких концов валов по ГОСТ 12080—66; 2 — с коническим отверстием для коротких концов валов по ГОСТ 12081—72;

с коническим отверстием для коротких концов вытов по т сот 12001
 с отверстием на валы с эвольвентными шлицами по ГОСТ 6033—80;

Допускается изготовлять полумуфты для длинных концов валов по ГОСТ 12080-66 и ГОСТ 12081-72. с отверстием на валы с прямобочными шлицами по ГОСТ 1139—80.

Допускаются другие виды соединения полумуфт с валами.

# Основные параметры, габаритиме и присоединительные размеры цепных муфт



### Муфты с однорядной цепью

### Размеры, мм

Номинальный вращающий момент, Н. м	d H7	<i>d</i> ₁ Н9	d H7	d ₁	<i>D</i> , не бо- лее	L 6d		<i>L</i> , h14			Ради- альное смеще- ние осей валов,	Частота вращения с ⁻¹, не более	Обозначение цепи по ГОСТ 13568-75	Число звеньев цепи (число зубьев полу-	h	КГ, бол дл исп	сса, не нее, ия пол-	
Номи враща Н	Ря	д 1	Ря	д2		1	2	3,4			3,4	не бо- лее	Hacπ c -	O6031 IC	муфты)		1,2	1,3
63	20	;22	2	<u>.</u> 4	110	102	80	74	36	25	36	0,16	25	ПР- 19,05-	12	1,3	2,2	
0.3	25	;28	_	_	110	122	92		42	27		0,10	2.3	3180	12	1,3	2,5	2,0
	2	:5	_	-													3,0	2,5
125	2	8	-	-	125			86			42	0,20	22		10		4,0	3,3
	30;	32;																
	35	;36	_	-		162	124		58	39								
	32	;35	-	_										ПР-		1,8		
250	3	6	-		140									25,4-				
	-	_	3	8							<u> </u>	0,25	20	6000	12		4,5	4,0
	40	;45	4	2													5,5	4,5
	40	;45	4	2													11,0	8,0
						222	172	118	82	57	58	0,32	18	ПР-	14	2,0		
500	-	_	4	8	200			•						31,75-				
	50	;55	-	-										8900			12,5	9,5
	_	_	53	;56														
1000	50;	;55	5	3	210							0,40	16	ПР- 38,1-	12	3,5	13,0	8,0
		,												12700				

Продолжение табл. 12

												·						
Номинальный вращающий момент, Н.м	<i>d</i> H7	d d ₁ d d ₁ H9 H7 H9		<i>D</i> , не бо- лее	б	., не олее			, h1		Ради- альное смеще- ние осей	Частота врашения с 14, не более	Обозначение цепи по ГОСТ 13568-75	Число звеньев цепи (число зубьев	h	кг, бол		
ина Теро	<u> </u>	L	ļ	L			ו אנעו	испо	лне	ний		валов,	ora	Car	полу-			
Ном	Ря	д 1	Ря,	д 2		1	2	3,4	1	2	3,4	не бо- лее	Част	06031 Г(	муфты)		1,2	1,3
	_	_	5	6		222	172	120	82	57	58			ПР- 38,1- 12700			13,0	8,0
	6	0	_	-								0,40	16			3,5		
1000	6	3	6	5	210												18,0	14,0
	70	;71	_	_		284	220	168	105	73	82			ПР-	12			
	6	3	6	5										50,8- 22700			25,0	22,0
2000	70	;71	7	5	280				ļ			0,50	14			3,8	27,0	23,0
	80	;90	8	5		344	272	214	130	94	105	,					36,0	32,0
	<u> </u>	0	8	5													44,0	40,0
4000	9	0	9	5								0,60	12		14			
	10	00	10	05														
	1	10	-														50,0	45,0
	10	00	10	)5	i	424	342	264	165	124	130						53,0	48,0
	1:	10	12	20	350							0,80	11		16		65,0	57,0
8000	12	25	_															
	_	_	13	30														
	14	40	_	_		504	408	334	200	154	165						83,0	72,0

 $\Pi$  р и м е ч а н и е . Ряд 1 является предпочтительным. Угловое смещение осей валов не более 1°.

### Муфты с двухрядной ценью

Номинальный вращающий момент, Н.м	<i>d</i> H7	<i>d</i> ₁ Н9	d H7	<i>d</i> 1 Н9	<i>D</i> , не бо- лее	б	., не олее			, hl		Ради- альное смеще- ние осей	Частота врашения с ~√, не более	Обозначение цепи по ГОСТ 13568-75	Число зве- ньев цепи (число зубъев	h	Мас кг, бол для и нен	не ее, спол-
мина щаю Н.	-		-	<u>L_</u>				испо				валов, не бо-	CTOT C ~ 4	03на ^у ГОС	полу- муф-		1,2	3,4
Ho	Ря	д 1	Ря	д2		1	2	3,4	1	2	3,4	лее	ца	90	ты)			
	20	;22																
63			2	.4	75	108	86	80	36	25					12		1,5	
	-	.5	_		85							0,20	40	2ПР-	14		2,0	1,6
	-	8	-								36			12,7-		7,5		
	-	;28	_	-	95	128	98	92	42	27				3180				
125		0		_											16		2,7	2,2
	32	;35		_	105							0,25	36					
	├	6													14		3,5	3,0
	32	;35	-					!										
250	3	6			115	170	132	94	58	39	42	0,32	32	2ПР-	16		4,0	3,5
	4	10	-	38		<u> </u>	<u> </u>	ļ	_					15,875-		9,5		
-	4	5	14	12	125	230	180	126						4540			5,0	4,0
	4	10	_															
500	4	15	4	2	170				82	57	58	0,40	28	2ПР-	18	11,5	10,0	7,0
	5	0	4	8		232	182	128						19,05-				
		55	5	53										6400				
	_		5	56											22		12,0	9,0
		0	_	_														
		55		53	190							0,50	25	2ПР-		15,5		
1000		_	_ 5	56										25,4-	16			
	6	0	_	_										11400	18		18,0	14,0
	6	3	6	55				180										
	70	;71	-			296	232		105	73	82							
	6	3	(	55										2ПР-	22		24,0	21,0
2000	70	;71	7	75	250	L		183				0,60	20	31,75-	16	19,0	26,0	22,0
	8	0	8	35		363	291	233	130	94	105			17700	20		35,0	31,0
	9	0	-	-														•
	<u> </u>		Щ_			<u> </u>	<u> </u>	<u> </u>	L	L	L	<u> </u>	<u> </u>	L	L	<u> </u>		L

Продолжение табл. 12

Номинальный вращающий момент, Н.м	<i>d</i> H7	<i>d</i> ₁ H9	d     d ₁ D, не более     L, не более     L, h14       H7     H9     более       для исполнений		4	Ради- альное смеще- ние осей валов,	Частота вращения с - 1, не более	Обозначение цепи по ГОСТ 13568-75	Число звеньев цепи (число зубьев полу-	h	Масса, кг, не более, для ис- пол- нения							
Номи враща F	Ря	д 1	Ря	д2		1	2	3,4	1	2	3,4	не бо- лее	Ψacπ c -	Обозн ОО	муфты)		1,2	3,4
	8	0	8	5														
	9	0	9	5		363	291	233	130	94	105	0,80	16	2ПР-	18		47,0	42,0
4000	10	00	10	05	320		$\vdash$			<del>                                     </del>				38,1-		22,5		
	1	10	_	_						l				25400	22		64,0	58,0
	10	00	10	05		447	369	287	165	124	130			2ПР-				55,0
8000	1	10	1:	20	340				}			1,00	14	44,45-	20	26,3	63,0	
	1:	25												34480				54,0
	14	40	1	30											16		81,0	70,0
	13	25	1:	30		530	434	360	200	154	165			2ПР-				
16000	14	40	1:	50	440				L		L_	1,20	12	50,8-	18	30,0	140	115
	10	60	1	70										45360				
	1	80	_	_		610	490	430	240	184	200				22		227	187

Примечание. Ряд 1 является предпочтительным. Угловое смещение осей валов не более  $1^{\circ}$  для муфт с номинальным вращающим моментом T до 2000 Н·м; для  $T=4000 \dots 16000$  Н·м не более  $1,2^{\circ}$ .

### Обозначение посадочных отверстий муфт с прямобочными шлицами по ГОСТ 1139-80

### Размеры, мм

D	Обозначение по	FOCT 1139-80	D	Обозначение по ГОСТ 1139-80				
	z×d×D	ь		z×d×D	ь			
20	6×16×20	4,0	42	8×36×42	7,0			
22	6×18×22	5,0	48	8×42×48	8,0			
25	6×18×25	5,0	60	8×52×60	10,0			
28	6×23×28	6,0	65	8×56×65	10,0			
32	6×26×32	6,0	125	10×112×125	18,0			
38	8×32×38	6,0						

z - число прямобочных шлицев.

Допускается применять сочетание полумуфт разных исполнений с посадочными отверстиями различных диаметров в пределах одного вращающего момента.

Значения номинального вращающего момента указаны для полумуфт с постоянными по значению и направлению нагрузками, полумуфты которых изготовляют из сталей марки 45 или марки 45 Л с твердостью рабочих поверхностей зубьев полумуфт 40-45 HRC₃.

При использовании других материалов, при переменных нагрузках, а также при частотах вращения, отличающихся от приведенных в табл. 12, значения вращающего момента, передаваемого муфтой, определяются расчетом.

Размеры шпоночных пазов и предельные отклонения — по ГОСТ 23360—78 и ГОСТ 10748—79.

Ширина шпоночных пазов для полумуфт исполнения 2 — по ГОСТ 12081—72.

Размеры и предельные отклонения для отверстий с прямобочными шлицами — по ГОСТ 1139—80; с эвольвентными шлицами — по ГОСТ 6033—80.

Попуски углов конусов отверстий — по 9-й степени точности ГОСТ 8908—81.

Профиль зубьев полумуфт — по ГОСТ 591—69, точность размеров зубьев — по группе В ГОСТ 591—69.

Наружный диаметр зубчатого венца полумуфты должен быть равным по диаметру делительной окружности, увеличенному на удвоенное значение радиального смещения, указанное в табл. 12.

При номинальном вращающем моменте не более  $1000~{
m H\cdot M}$  и частоте вращения не более  $10~{
m c^{-1}}$  допускается:

применение муфт без кожуха;

изготовление размера d по H9;

точность размеров зубьев полумуфт — по группе С ГОСТ 591—69.

Пример условного обозначения цепной муфты с номинальным вращающим моментом 1000 Н м, типа 1, с диаметром посадочного отверстия полумуфты d=56 мм, с полумуфтами исполнения 1, климатического исполнения Y, категории 3:

То же, типа 2, диаметром посадочного отверстия одной полумуфты d=56 мм, исполнения 1, другой полумуфты d=60 мм, исполнения 2:

То же, типа 1, с полумуфтами исполнения 3, с наружным диаметром шлицев d=60 мм:

То же, типа 2, с диаметром посадочного отверстия одной полумуфты d=60 мм, исполнения 1, с наружным диаметром зубьев шлицев другой полумуфты d=60 мм, посадкой по диаметру центрирования H7, модулем m=1,5 мм, исполнения 4:

### КУЛАЧКОВЫЕ СЦЕПНЫЕ МУФТЫ

Сцепные муфты служат для включения и выключения валов при их движении или во время остановки.

Установочные муфты применяют в механизмах настройки и фиксации расположения узлов.

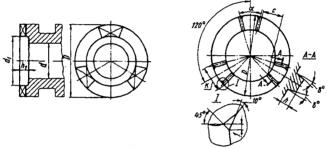
Одна из полумуфт неподвижно закреплена на ведущем валу, а другая перемещается на шпонках или шлицах ведомого вала вручную или автоматически. Отсутствие относительного перемещения полумуфт позволяет применять муфты в кинема-

тических цепях, не допускающих колебаний передаточного отношения (в резьбонарезных станках, в делительных цепях зуборезных станков и т. д.).

Основным недостатком кулачковых муфт является невозможность включения на быстром ходу; разность окружных скоростей на сцепляемых кулачках не должна превышать 0,7—0,8 м/с; практически для обычных кулачковых станочных муфт разность чисел оборотов не должна превышать 100—150 оборотов в минуту.

### 13. Муфты с центрирующей втулкой

Размеры, мм


4-A Неподвинная Подвинная	d	D	L	а	b	С	h
A-A RETUDURANDA I TOODURADA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YACIILA YA	35—40	100	200	70	95	5	30
	5560	150	275	90	139	6	40
	80	200	350	110	182	8	50
	100	250	435	140	225	10	60
a c b h	125	300	500	160	260	10	70

Чаще всего бывает три кулачка на полумуфте.

Центрирующая втулка крепится в ведущей полумуфте. Материал — сталь 35.

### 14. Элементы кулачковых муфт

Число кулачков z = 3



Размеры, мм

D	Вращающий момент <i>Т</i> , Н⋅см	d H7	$d_1$	h ₁	h	c	K	f	α, град
40	6500	20	28	6	4	11,83	15,82	0,5	45
45	8500	22	30	6	4	12,71	17,73	0,5	45
50	12500	25	32	6	4	13,58	19,65	0,5	45
55	17500	28	35	6	4 2	14,89	21,56	0,5	45
60	26000	32	40	8	6	16,89	23,73	0,8	45
70	34000	35	45	8	6	19,08	22,43	0,8	36
80	51000	40	50	8	6	21,28	25,52	0,8	36
90	73000	45	55	8	6	23,43	28,61	0,8	36
100	100000	50	60	10	8	25,47	26,55	1,2	36
110	133 000	55	65	10	8	27,65	28,86	1,2	30
125	173000	60	75	10	8	31,97	33,4	1,2	30
140	275000	70	85	12	10	36,17	37,59	1,5	30
160	410000	80	95	12	10	40,51	42,77	1,5	30

Вращающий момент рассчитан для кулачкового венца, изготовленного из стали 20X с твердостью 60 ... 64  $HRC_3$  или стали 45 с твердостью 50 ... 54  $HRC_3$ .

Направление вращения вала — в обе стороны.

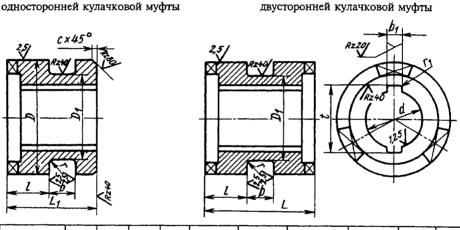
Размеры, мм

Разность угловых скоростей, при которых допускается включение сцепных муфт на ходу:

разность угловых скоро-

Стей, мин⁻¹ До 450 300—400 200—250 150—200 D, мм 40 40—60 70—100 110—160

Степень вероятности включения муфты без холостых проворотов:


Исполнение 1 -

27 42 52 40-60 70-100 110-160

### 15. Передвижная часть кулачковых муфт

Конструкция и размеры необязательны: данные приводятся в качестве образца для конструирования.

Исполнение II —



<i>D</i>	d H7	$D_1$	L	$L_1$	I	<i>b</i> H11	<i>b</i> ₁ Н9	t	<i>r</i> , не более	$r_1$	с
40	20	30	40	30	15	10	6	24,6+0,12	0,5	0,3	0,5
45	22	35	40	30	15	10	6	26,6 ^{+0,12}	0,5	0,3	0,5
50	25	38	50	38	19	12	6	29,6+0,12	0,8	0,3	0,5
55	28	43	50	38	19	12	8	33,2+0,12	0,8	0,3	1,0
60	32	48	60	45	22	16	8	37,2 ^{+0,12}	1,0	0,3	1,0
70	35	54	70	50	27	16	8	40,2 ^{+0,12}	1,0	0,3	1,0
80	40	60	80	60	30.	20	12	45,8+0,12	1,2	0,3	1.0
90	45	70	90	70	35	20	12	50,8+0,12	1,2	0,3	1,0
100	50	80	100	80	40	20	12	55,8+0,12	1,2	0,3	1,0
110	55	90	110	90	45	20	16	62,2 ^{+0,16}	1,5	0,5	1,5
125	60	100	125	100	50	25	16	67,2+0,16	1,5	0,5	1.5
140	70	115	135	110	55	25	16	77,2+0,16	1,5	0,5	1,5
160	80	135	155	120	65	25	20	88,6+0,16	1,5	0,5	1,5

Материал — сталь 20X, твердость кулачков 60 ... 64 HRC₃; сталь 45, твердость кулачков 50 ... 54 HRC₃.

16. Расчетные формулы для кулачковых сцепных муфт

Показатели	Расчетные формулы	Буквенные обозначения
Передаваемый вра- щающий момент (рассчитан по кон- тактным напряже- ниям для условия длительной работы без значительных колебаний по вели- чине нагрузки)	$T_{M} = 0.8 T_{B} = 0.8 [\tau] W_{0};$ $[\tau] = 50 \text{ M}\Pi a;$ $W_{0} = 0.2 d^{3};$ $T_{M} = 0.16 d^{3} [\tau]$	$T_{\text{M}}$ - наибольший вращающий момент, передаваемый муфтой, $H \cdot \text{мм}$ ; $T_{\text{B}}$ - вращающий момент, передаваемый валом, $H \cdot \text{мм}$ ; $W_0$ - момент сопротивления вала, $\text{мм}^3$ ; $d$ - диаметр вала, $\text{мм}$ ; $n_0$ - наибольшая разность угловых скоростей, мин $n_0$ - соответственно наружный и внутренний диаметры кулачков, $\text{мм}$ ;
Наибольшая раз- ность угловых ско- ростей, при кото- рой допускается включение муфты на ходу	$n_0 = \frac{1000 \cdot 60}{\pi D_{\rm cp}} v_{\rm cp}$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$	$\phi_{ ext{Tp}}$ - угол трения на кулачках; $\delta$ - угол профиля кулачка; $f_{ ext{Tp}}'$ - приведенный коэффициент трения на шпонке или на шлицах; $\alpha$ - центральный угол кулачка $\left(\frac{2\pi}{z}\right)$ ; $\alpha_{\beta}$ - центральный угол, соответствующий ширине вершины кулачка по на-
Усилие включения на кулачковом вен- це	$P = \frac{4T_{M}}{D + d_{1}} \times \left[ t g \left( \delta + \varphi_{T} p \right) + \frac{f'_{T} p \left( D + d_{1} \right)}{2d} \right]$	ружному диаметру; $f$ - минимально допустимая глубина захода кулачка во впадину в момент включения, мм; $v_0$ - осевая скорость включения, мм/с; $P_{c\tau}$ - статическая вероятность включения (при $n_0 = 0$ ); $P_{\kappa}$ - кинематическая вероятность ность включения
Степень вероятно- сти включения муфты без холо- стого проворота	$P_{\text{CT}} = \frac{\alpha - \alpha_{\text{B}} \frac{2f}{D} tg\delta}{\alpha};$ $P_{\text{K}} = P_{\text{CT}} - \frac{\pi n_0}{30v_0} \frac{f}{\alpha}$	

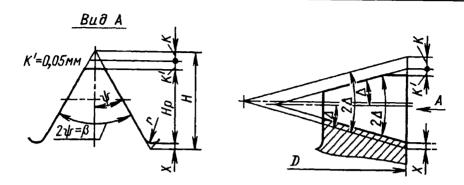
## МУФТЫ С V-ОБРАЗНЫМ МЕЛКИМ (МЫШИНЫМ) ЗУБОМ

## 17. Основные параметры муфт

Линейные размеры, мм

	D	$d_1$	$\frac{\gamma}{2}$	$h_1$	<i>T</i> *2, H⋅M
	40	28	6°	8	340 360
	50	32	5°	8	810 920
Регулировочные и предохранительные					
муфты <i>Вид А</i>	60	40	4°30'	8	1310 1560
	70	46	4°06'	10	2160 2560
Сцепные муфты *1	80	50	3°36'	10	3 <u>540</u> 4000
	90	56	3°36'	10	<u>5100</u> 6050

^{*1} В сцепных муфтах число зубъев уменьшено по сравнению с регулировочными и предохранительными муфтами в 2 раза за счет удаления половины зубъев при соответственном увеличении размеров впадин. Расчетное число зубъев остается удвоенным при определении геометрических параметров зуба.


Вращающий момент подсчитан для чисел зубьев, соответствующих регулировочным и предохранительным муфтам.

Для сцепных муфт  $T_{\text{сц}} = \frac{1}{2}T$ .

^{*2} T — максимально допустимый передаваемый момент; в числителе — для угла профиля  $\beta = 60^{\circ}$  (см. рисунок и таблицу профиля зубьев), в знаменателе — для  $\beta = 90^{\circ}$ .

## 18. Профиль зубьев муфт с V-образкым мелким зубом

Линейные размеры, мм



 $z_{\rm p}$  - число зубьев регулировочных и предохранительных муфт;  $z_{\rm cu}$  —число зубьев сцепных муфт

D	Zp	ψ°	$H_{\rm p}$	Δ	K	r	X
40	30	30	3,07	5°11'30"	0,3	0,2	0,2
40	30	45	1,80	2°59'30"	0,2	0,1	0,041
50	36	30	3,22	4°19'	0,3	0,2	0,2
30   36	30	45	1,89	2°28'30"	0,2	0,1	0,041
60	40	30	3,53	3°53'	0,3	0,2	0,2
		45	2,06	2°15′	0,2	0,1	0,041
70	44	30	3,77	3°32'	0,3	0,2	0,2
,,,		45	2,21	2°02'30"	0,2	0,1	0,041
80	50	30	3,80	3°06'30"	0,3	0,2	0,2
	50	45	2,22	1°48'	0,2	0,1	0,041
90	50	30	4,34	3°06'30"	0,3	0,2	0,2
	30	45	2,53	1°48'	0,2	0,1	0,041

#### МУФТЫ ТРЕНИЯ

Муфты трения в станках применяют для пуска и останова, реверсирования, переключения скоростей, переключения направления движения (напри мер, на продольную и поперечную подачу и т. д.).

Фрикционные многодисковые масляные муфты используют в узлах, где трудно обеспечить изоляцию муфты от масла (коробка передач и др.).

Материалами трущихся поверхностей служат закаленная сталь (>60 HRC₃) и текстолит.

При муфтах с дисками из текстолита, работающими по стали, нет металлической пыли, появляющейся при трении стали по стали. Текстолитовые диски разрушаются при температуре свыше 110°C.

Стальные диски при трении по стали шлифуют.

Фрикционные многодисковые сухие муфты устанавливают в узлах, где удобно изолировать их от масла. Материалы тру трущихся поверхностей — сталь (среднеуглеродистая, можно без термической обработки) или чугун по асбесту.

**Проверочный расчет многодисковых муфт трения** (ненормализованных, рис. 1).

Исходные данные:

T — передаваемый вращающий момент, H-мм;

 п — частота вращения ведущего вала муфты, мин-1;

k — число включений муфты в 1 ч;

і — число поверхностей трения;

 $\beta$  — коэффициент запаса сцепления (обычно 1,3—1,5);

 К — наружный радиус поверхностей трения, мм;

r — внутренний радиус поверхностей трения, мм.

Средний радиус поверхностей трения в мм

$$r_{\rm cp} = \frac{R+r}{2} .$$

Средняя окружная скорость, м/с,

$$v = \frac{\pi r_{\rm cp} n}{30 \cdot 1000}$$

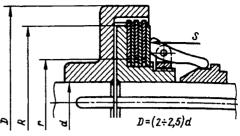



Рис. 1. Узел ненормализованных фрикционных многодисковых муфт трения

Допускаемый вращающий момент,  $H \cdot MM$ ,

$$[T] = \frac{\pi \left(R^2 - r^2\right) r_{\text{c p}} i p f K_v K_m \left(1 - K'_n\right)}{\beta}.$$

Необходимая сила сжатия дисков, H  $S = \frac{[T]\beta}{r_{\rm c.p.}if}.$ 

Давление на трущихся поверхностях в  $M\Pi a$ 

$$p = \frac{S}{\pi \left(R^2 - r^2\right)}; \qquad p < [p].$$

При средней окружной скорости v > 2,5 м/с допускаемый вращающий момент масляных и сухих муфт умножают на коэффициент скорости  $K_v$ :

Коэффициент $K_{v}$						0,63
Окружная скорость, м/с	До 2,5	3	4	6	8	10

При работе масляных муфт с частыми переключениями (свыше 50— 100 раз в 1 ч)

вводят поправочный коэффициент  $K_m$ , учитывающий число дисков:

Число наружных дисков	До 3	4 5	6	7	8	9	10	11
Коэффициент К _т	1	0,97 0,94	0,91	0,88	0,85	0,82	0,79	0,76

Для сухих муфт  $\mathit{K}_m$  принимают равным единице.

Кроме этого, допускаемые вращающие моменты муфт следует снижать на 1% на каждые дополнительные пять включений сверх 50-100, т. е. вводить коэффициент  $(1-K_n')$ , где  $K_n'=0.01$  на каждые дополнительные пять включений для муфт с числом включений не более 300-350 в 1 ч;

предельные значения  $K'_n = 0.5$ ; при большем числе включений необходимо производить тепловой расчет муфты.

Значение коэффициента f и наибольшие допускаемые давления [p] приведены в табл. 19. При v > 2,5 м/с табличные давления [p] умножают на коэффициент скорости  $K_v$ . Давление [p] снижают также введением коэффициентов  $K_m$  и  $K_n'$ .

Материал поверхностей трения			Материал поверхностей трения	f	[p], МПа	
Для маслян	ых м	уфт	Для сухих муфт			
Закаленная сталь по закаленной стали	0,08	0,6-0,8	Прессованный асбест или феродо по стали или			
Чугун по чугуну или по закаленной стали	0,08	0,6—0,8	чугуну	0,3	0,2-0.25	
Текстолит по стали	0,15	0,40,6	закаленной стали	0,15	0,25-0,3	

19. Коэффициент трения f и наибольшие допускаемые давления [p] на поверхность трения

Меньшие значения давлений рекомендуются при малом числе дисков, большие — при большом.

#### ОБГОННЫЕ РОЛИКОВЫЕ МУФТЫ

Классификация и описание работы. Роликовые обгонные муфты (свободного хода), передающие вращающий момент возникающими силами трения при заклинивании роликов, классифицируют:

1. По конструкции — на I, II, III исполнения (табл. 20).

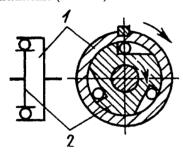



Рис. 2. Муфты, передающие вращение в одном направлении

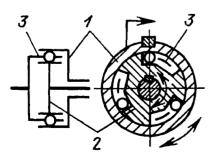



Рис. 3. Муфты, передающие медленное вращение в одном направлении и ускоренное вращение в двух направлениях:

1 - обойма; 2 - ступица; 3 - поводковая вилка

Муфты исполнения I и II (рис. 2) состоят из трех основных элементов: обоймы (звено I), ступицы (звено 2) и роликов (три — для исполнения I и пять—для исполнения II). При вращении одного из звеньев ролики автоматически вкатываются в клиновую щель и заклиниваются, связывая этим оба звена в одно целое.

Муфты исполнения III имеют еще один элемент — поводковую вилку (звено 3, рис. 3), которая может принудительно выталкивать ролики из клиновой щели, осуществляя при этом реверсирование ступицы.

2. По принципу действия.

*Группа 1.* Муфты, передающие вращение в одном направлении.

Эти муфты (см. рис. 2) связывают две кинематические цепи. От звена I на звено 2 (звено I — ведущее) вращение передается только в одном направлении — по часовой стрелке (заклинивание).

Звену 2 можно сообщить ускоренное вращение в том же направлении от другого источника, вызвав этим отсоединение его на ходу от звена I (обгон — расклинивание).

Если ведущим является звено 2, то направление его вращения, а следовательно, и вращение ведомого звена 1 будет обратным.

*Группа II.* Муфты, передающие медленное вращение в одном направлении и ускоренное вращение в двух направлениях.

От звена 1 (см. рис. 3) на звено 2 (звено 1 — ведущее) вращение передается только в одном направлении — по часовой стрелке (заклинивание). Звено 3 при этом увлекается звеном 2 (вхолостую).

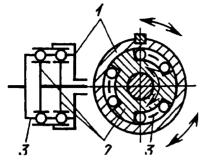



Рис. 4. Муфты, передающие медленное и ускоренное вращение в двух направлениях

Звено 3, связанное с самостоятельным источником движения, может сообщить звену 2 ускоренное вращение как в одну, так и в другую сторону, вызвав этим отсоединение его (на ходу) от звена 1.

При вращении по часовой стрелке (в сторону вращения ведущего звена) произойдет расклинивание роликов (обгон), а звено 3 увлечет за собой звено 2.

. При вращении против часовой стрелки звено 3 вытолкнет ролики из клиновой ще-

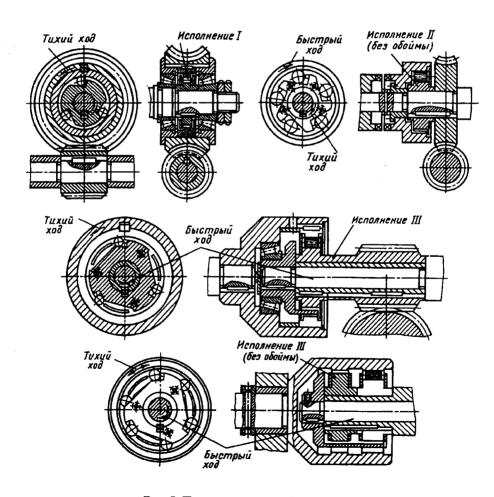



Рис. 5. Примеры встройки обгонных муфт

ли и увлечет за собой звено 2.

Муфты этой группы работают только при ведущем звене I.

Группа III. Муфты, передающие медленное и ускоренное вращение в двух направлениях (рис. 4); они могут быть получены установкой двух муфт с поводковой вилкой (исполнение III) в следующих положениях:

- а) зубцы звеньев 2 направлены в разные стороны;
- б) оси муфт повернуты одна относительно другой на некоторый угол.

С ведущего звена 1 на звенья 2 вращение может передаваться как в одну, так и в другую сторону. В зависимости от направления вращения звена 1 заклинивается то одна, то другая муфта.

Звено 3 может сообщать звеньям 2 ускоренное вращение также в обе стороны, выталкивая ролики одного звена муфты и расклинивая ролики другого звена, увлекая при этом звенья за собой.

Такие муфты работают только в том случае, если ведущим является звено I.

Примеры встройки обгонных муфт показаны на рис. 5.

# Расчет геометрических параметров ненормализованной обгонной муфты (рис. 6)

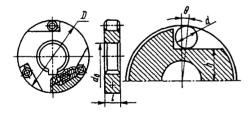



Рис. 6. Узел ненормализованных обгонных муфт

Наибольший вращаю- ший момент на валу
муфты, Н $\cdot$ мм
Число роликов
Расчетный диаметр
ролика, мм $d_p = 0.58\sqrt[3]{T/z}$
Принятый диаметр
ролика, мм

Диаметр поверхности зажима обоймы, мм . . . .  $D \approx 8d$  Высота опорной поверхности, мм . . . .  $h = 0,496 \ (D-d)-0,5d$  Ориентировочное значение диаметра вала, мм . . . . .  $d_{\rm B} = 0,43 \ \sqrt[3]{T}$  Длина ролика, мм . . . . . l = 1,5d

## Указания по монтажу

1. Обойму муфты монтируют в достаточно прочный и жесткий корпус. Точность отверстия в корпусе должна быть в пределах допусков 7-го квалитета.

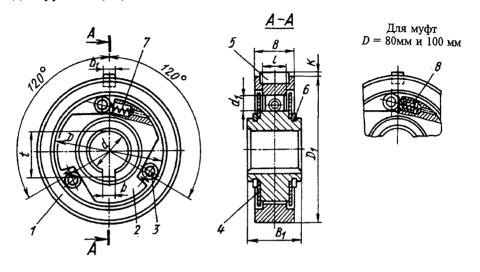
Чем меньше требуемый угол поворота муфты в процессе заклинивания, тем более

жестким должен быть корпус.

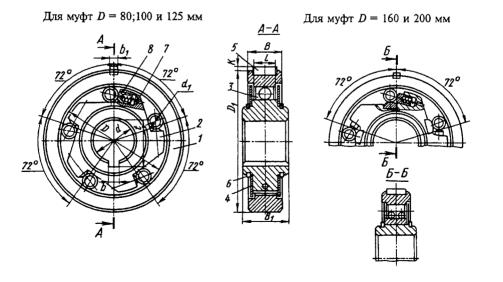
- 2. Повышению точности работы муфты (уменьшению угла проскальзывания) способствует увеличение радиуса размещения роликов, т. е. увеличение диаметра муфты и уменьшение нагрузки снижение передаваемого вращающего момента.
- 3. Работоспособность муфты значительной степени зависит от соосности обоймы и ступицы. При несоосности нагрузка между роликами распределяется неравномерно. Кроме того, появляется дополнительная нагрузка на опоры.

Отклонение от соосности для муфт с D < 80 мм не должно превышать 0,02 мм, а для муфт свыше 80 мм — 0,03 мм, что составляет приблизительно 60% допускаемого суммарного радиального отклонения муфты. Перекос осей ступицы и обоймы не должен превышать 0,01:100.

- 4. Рабочую длину шпонки, соединяющей ступицу муфты с валом, при значениях передаваемого момента, близких к максимальным, рекомендуется принимать равной длине ступицы.
- 5. Ролики муфты должны быть постоянно смазаны; лучше использовать маловязкие сорта масел по ГОСТ 20799—88. Более вязкие сорта способствуют увеличению потерь при обгонном вращении, вязкость смазки должна повышаться с увеличением нагрузки муфт.


Частота масла должна поддерживаться надежной фильтрацией или сменой его не реже одного раза в 4-6 месяцев.

6. Нижнюю щеку или заменяющую его деталь при установке муфты на вертикальных валах рекомендуется подвергать термической обработке до твердости 41,5 ... 51,5 HRC₃.


## 20. Конструкция и размеры обгонных роликовых муфт, мм

#### Исполнение I

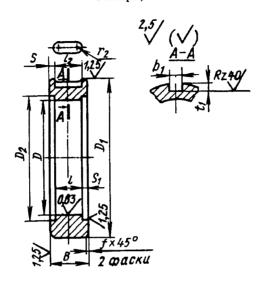
Для муфт D = 32; 40; 50мм и 65 мм



#### Исполнение II



Продолжение табл. 20


Для муфт <i>D</i>	= 65 MM	8 5 ×	ля муфт D = 80 и 10	00 MM
D	<i>l</i> ₁	r	$r_1$	C

				1					- '1				
6	5		2	1	27,5		27,5		31,5		22		
8	0		2	5			33,5		39,0		27		
10	00		3	31		41,0		49,0		33			
Испол- нение	<i>D</i> H7		<i>d</i> Н7	<i>d</i> 1 h7		В	$B_1$	<i>b</i> 1 h8	<i>l</i> <i>d</i> 11	K	Шпонка 5 ГОСТ 23360-78	Шпонка 6 ГОСТ 13940-86	
	32	10	; 12; 14;	4	1	12-0,12	18+0,24	3	8	1,2	3×3×10	A22	
I	40	14	1; 16 18;	5	1	15-0,12	22 ^{+0,28}	4	10	1,8	4×4×12	A28	
	50	1	6; 18; 20	6	_ 1	18-0,12	25+0,28	5	12	2,3	5×5×14	A32	
							28+0,28*						
III u I	65	16	5; 20; 25	8	2	20 _{-0,15}	30+0,28	5	14	2,3	5×5×14	A40	
			20										
I, II u III	80	25	5; 30; 35	10	2	25-0,15	35+0,34	6	18	2,6	6×6×18	A50	
I, III			25										
I, II, III	100	3(	); 35; 40	13		30 _{-0,2}	45+0,34	8	24	3,2	8×7×20	A60	
	125		35; 40;	16	3	35-0,25	50+0,40	8	28	3,2	8×7×25	A75	
II			45; 50										
	160		70	20	4	10 _{-0,25}	60+0,40	12	32	3,8	12×8×32	A100	
·	200		90	25	ı	50 _{-0,30}	70+0,40	12	40	3,8	12×8×40	A125	

^{*}Для исполнения III.

Размеры, см:  $D_1$  на стр. 370; b и t на стр. 372.

**Обойма 1** Размеры, мм



Размеры В и *l* см. на стр. 372.

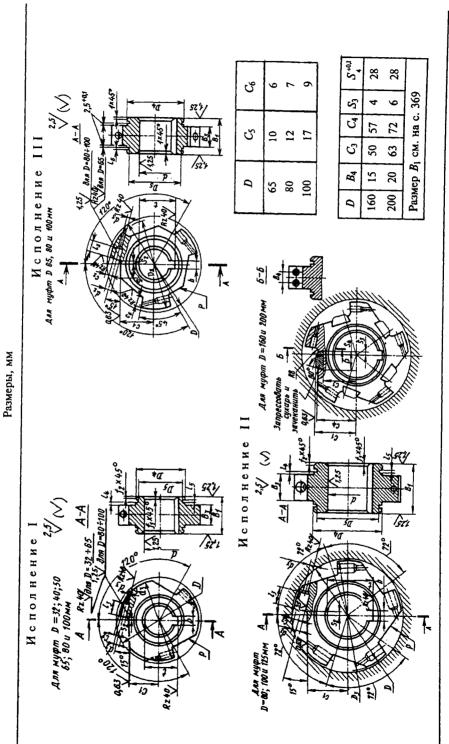
Биение поверхности  $D_1$  относительно оси отверстия D для муфт диаметром от 32 до 80 мм не более 0,02 мм, свыше 80 мм—не более 0,03 мм.

Биение торцов для муфт диаметром от 32 до 80 мм не более 0,02 мм, свыше 50 мм — не более 0,03 мм.

Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$  .

D H7	D ₁ k7	$D_2$	<i>l</i> ₂	<i>b</i> ₁ P9	t ₁ H12	S	$S_1$	<i>r</i> 2	f	Macca, кг
32	45	35,5 ^{+0,2}	10	3	2,0	1,0	2,0	1,5	0,5	0,07
40	55	44,0 ^{+0,2}	12	4	2,5	1,5	2,5	2,0	0,5	0,13
50	70	54,0 ^{+0,2}	14	5	3,0	2,0	3,0	2,5	1,0	0,23
65	85	69,0 ^{+0,2}	14	5	3,0	3,0	3,0	2,5	1,0	0,35
80	105	85,0 ^{+0,2}	18	6	3,5	3,5	3,0	3,0	1,0	0,68
100	130	106,0 ^{+0,2}	20	8	4,0	5,0	3,0	4,0	1,0	1,22
125	160	131,0 ^{+0,5}	25	8	4,0	5,0	3,5	4,0	2,0	2,57
160	200	167,0 ^{+0,5}	32	12	4,5	4,0	4,0	6,0	2,0	3,36
200	250	208,0+0,5	40	12	4,5	5,0	5,0	6,0	2,0	6,70

М а т е р и а л : сталь 20Х; ШХ15. Термическая обработка отверстия диаметром D для стали 20Х — цементация на твердость 57,5 ... 63,5 HR $C_3$ .


 Диаметр муфты D, мм
 32-40
 50-65
 80-125
 160-200

 Глубина цементованного слоя, мм
 0,8-1,0
 1,0-1,2
 1,2-1,5
 1,5-1,8

Для стали ШX15 — закалка до твердости 59,5 ... 65,5 HRC₃.

Продолжение табл. 20

Ступица 2



Масса, кг	0,05 0,05 0,04	0,08 0,07 0,06	0,20 0,19 0,18	0,42/0,32 0,38/0,30 0,34/0,26	0,75/0,62 0,71/0,66/0,59 0,66/0,61/0,54 0,59/0,54/0,47	1,52/1,31 1,45/1,37/1,24 1,36/1,28/1,15 1,25/1,17/1,04	2,56 2,44 2,30 2,13	2,73
22	0,5	0,5	0,5	0,5	0,5	1,0	1,0	1,0
λ	5,0	0,5	0,5	6,0	5,0	0,5	5,0	1,0
S2	1,0	1,0	1,5	1,5	2,0	4,0	5,0	8,0 9,0
$\mathcal{C}$	2,65	3,0	3,9	5,1	6,2	8,8	10,8	13,6 17,0
ני	11,92-0,01	14,90-0,01	18,87-0,02	24,34-0,3	29,80-0,04	36,76-0,06	46,20-0,08	59,61 _{-0,13} 74,52 _{-0,14}
1,40,2	1,30	1,30	1,30	1,90	2,20	2,20	2,80	3,10
740,1	1,5	2,5	2,5	2,5	2,5	2,5	3,0	3,0
13	7	6	6	11	41	15	41	20,5
f+0,12	11,1 13,6 15,6	9,51 17,9 19,9	17,9 19,9 22,3	17,9 22,3 27,6	22,3 27,6 32,6 37,9	27,6 32,6 37,9 42,9	37,9 42,9 48,3 53,6	74,3 95,2
р (Н8)	644	5 5	2 9	\$ 6 8	6 8 8 10	8 8 10 12	10 12 14 16	20
B ₃ -0,1	9,8	10,6	12,6	14,6	18,6	24,6	28,6	33,0 _{-0,3} 41,0 _{-0,3}
$d_3$				1	3	ю		4
$d_2$	3	3	4	4	8+0'03	8+0,03	8+0,03	10+0,03
Ds	21,0-0,12	26,6- 0,3	30,3-0,3	37,5-0,3	47,0-0,5	57,0-0,5	72,0	96,5
d (h8)	22	26	32	40	50	09	75	100
$D_3$	31,5-0,3	39,0-0,3	40,0-0,3	64,0-0,4	79,0-0,4	99,0-0,4	124-0,5	158-0.5 198-0.5
(LH)	10 12 14	14 16 18	16 18 20	16 20 25		25 30 35 40	35 40 45 50	90
q	32	40	50	65	- 08	100	125	700
Испол-		<b>–</b>		Іи ІІІ	І, ІІ и	I и III I, II и III		=

D - диаметр муфты.

Материал: для муфт  $D \le 125$  мм — сталь 20X и IIIX15,

для муфт D = 160 и 200 мм — сталь 45.

Термообработка поверхности Р:

для стали 20X — цементация на твердость 57,5 ... 63,5 HRC₃:

32—40 0,8—1,0 50—65 1,0—1,2 80—125 1.2—1.5

100

лля стали 45—закалка на твердость 59,5 ... 65,5 HRC₃.

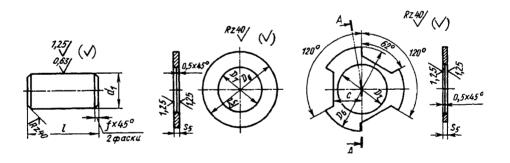
Разность размеров  $C_1$ ,  $C_2$ ,  $C_3$  и  $C_4$  в пределах одной ступицы для муфт D до 80 мм не более 0,01 мм, D свыше 80 мм не более 0,02 мм.

Непараллельность плоскостей P относительно оси отверстия d для муфт D до 80 мм не более 0,01 мм, свыше 80 мм не более 0,015 мм.

Биение торцовой поверхности  $D_4$  для муфт с D до 80 мм не более 0,03 мм, свыше 80 мм не более 0,06 мм (исполнение I и II).

Биение торцовой поверхности  $D_3$  для муфт с D до 80 мм не более 0,03 мм, свыше 80 мм не более 0,05 мм (исполнение I).

Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$ .


#### Ролик 3 и щека 4 Размеры, мм

#### Исполнение І

#### Исполнение II

65

ΩΛ



					$\nu$	65	00	100
					С	22	27	33
		P	олик			IJ	Цека	
<i>D</i> муфты	d₁h7	<i>l</i> e9	f	Масса, кг	$D_6$	<i>D</i> ₇ H8	S ₅ (-0,03 -0,08)	Масса, кг
32	4	8		0,001	35_0,2	22	1,5	0,011
40	5	10		0,002	43 _{-0,2}	28	2,0	0,014
50	6	12	0,3	0,003	53 _{-0,2}	32	2,5	0,031
65	8	14		0,006	68-0,2	40	2,5	0,045/0,03*
80	10	18		0,011	84-0,2	50	2,5	0,055/0,04*

		P	олик		<u> </u>	IJ	Цека	
<i>D</i> муфты	$d_1$ h7	l e9	f	Масса, кг	D ₆	<i>D</i> ₇ H8	S ₅ (-0,03 -0,08)	Масса, кт
100	13	24		0,025	105-0,2	60	2,5	0,092/0,07*
125	16	28	0,5	0,044	130-0,5	75	3,0	0,230
160	20	32		0,078	165 _{-0,5}	100	3,0	0,350
200	25	40		0,154	206-0,5	125	4,0	0,740

*Для исполнения II.

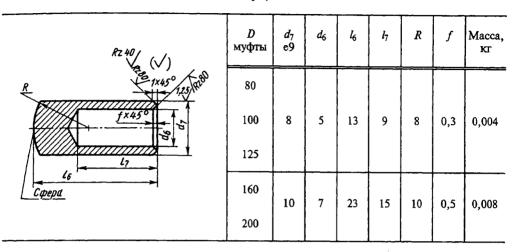
Щека. Материал — сталь 45. Твердость 31,5 ...41,5 HRC₃.

Ролик. Материал — сталь ШХ15, У8.

Термическая обработка для стали ШХ15 на твердость 59,5 ... 65,5 HRC₉, для стали У8 на твердость 59,5 ... 69,5 HRC₉.

Овальность по  $d_1$  и конусообразность для муфт D до 80 мм не более 0,04 мм, свыше 80 мм — не более 0,06 мм.

Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$  .


**Пружина 7** Размеры, мм

d10	<i>D</i> муфты	d ₅	d ₁₀	Н (в свобод- ном состоя- нии)	<i>t</i> ₂	Длина развер- тки <i>L</i>	Вит п рабо- чих	ков n _l всего	Масса 100 шт., кт
d ₅	32	0,2	2,5	25	1,3	148	19	20	0,005
12	40	0,2	2,5	32	1,3	184	24	25	0,006
z T	50	0,3	3,0	28	1,2	208	23	24	0,012
	65	0,3	3,0	28	1,2	208	23	24	0,012
	80	0,5	4,0	18	1,5	144	12	13	0,022
· Rz20	100	0,5	4,0	32	1,5	247	21	22	0,039
	125	0,5	4,0	32	1,5	247	21	22	0,039
	160	0,8	6,0	40	2,0	350	20	21	0,144
	200	0,8	6,0	40	2,0	350	20	21	0,144

Материал — проволока стальная углеродистая пружинная класса II по ГОСТ 9389—75.

Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$  .

Штифт 8 Размеры, мм



Материал-сталь 40X. Твердость 46,5 ...51,5 HRC₃.

Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$  .

Сухарь, деталь 9

Размеры, мм

RZ40/ (V)	<i>D</i> муфты	B ₅ (+0,20 +0,15)	<i>L</i> ₁ (-0,5)	h _{-0,2}	Масса, кг
1,5×45° 85 ^{2,5}	160	28	32	10,5	0,06
300/5%	200	35	40	12,5	0,10

Материал — сталь ШХ15. Твердость 59,5 ... 65,5 HRC₃.

. Неуказанные предельные отклонения по h14, H14,  $\pm \frac{\text{IT14}}{2}$  или  $\frac{t_2}{2}$  .

21. Технических данные обгонных роликовых муфт

					Диам	Диаметр муфт, мм	, MM				
Технические показатели	32	40	50	65	80	0	10	100	125	160	200
					Чи	Число роликов	OB				
			3			5		3		5	
Передаваемый вращающий мо- мент Н.м	2500	4500	8500	005 91	33 000	25 000	70 000	120 000	210 000	390 000	770 000
Наибольшее рекомендуемое число циклов включений в минуту	250	200	160	125	100	00	∞	80	92	50	40
Рекомендуемая наибольшая часто-та вращения при обгоне, мин- ¹	3000	2500	2000	1500	12	1250	10	1000	800	630	200
Наибольший допускаемый вра- ща-ющий момент от сил трения при обгоне, Н.мм	120	220	420	200	1000	1700	2100	2400	4200	7800	16000
Наибольший угол холостого поворота муфты при включении (угол проскальзывания)	3	3°	2°30'	2°	10.	1°30'	1	۱.	4	45.	30,

Общее число циклов нагружения муфты (число включений) до 5·106.

При большем числе включений и передаче максимального для данного типоразмера вращающего момента вследствие изнашивания рабочих поверхностей ступицы, обоймы и ролика может начаться проскальзывание муфты.

Передаваемый вращающий момент указан для условий максимального числа циклов включений и максимальной частоты вращения. При уменьшения числа циклов включений и частоты вращения передаваемый вращающий момент может быть увеличен до 20%.

## ПРЕДОХРАНИТЕЛЬНЫЕ МУФТЫ

Эти муфты служат для ограничения передаваемого момента и предохранения частей механизмов от поломок при перегрузках, превышающих расчетные.

# Втулочные муфты со срезным штифтом

Размеры муфты (рис. 7) принимают

$$L=(3\div 5)d_{\rm B},$$

$$D = (1.5 \div 1.8)d_{\rm B}$$

или берут из табл. 1.

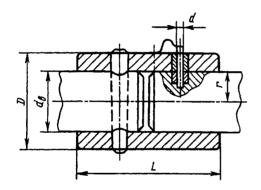



Рис. 7. Предохранительная втулочная муфта со срезным штифтом

Исходными данными являются:

- 1. Наибольший номинальный вращающий момент  $T_{\text{ном}}$ , передаваемый муфтой, H-мм.
- 2. Расчетный вращающий момент T срабатывания муфты H-мм, во избежание случайных включений муфты берут T=1,25  $T_{\rm HOM}$ .
- 3. Радиус расположения поверхности среза *г*, мм.
- 4. Материал предохранительного штифта: среднеуглеродистые стали.
- 5. Временное сопротивление разрыву (в зависимости от марки стали штифта)  $\sigma_{\rm B}$ , МПа.

Для расчета из табл. 22 берут коэффициент пропорциональности K между пределами прочности на срез и на разрыв.

При проектированном расчете для выбора K предварительно задается d.

Расчетный предел прочности на срез штифта, МПа

$$\tau_{\rm cp} = K \sigma_{\rm B}$$
.

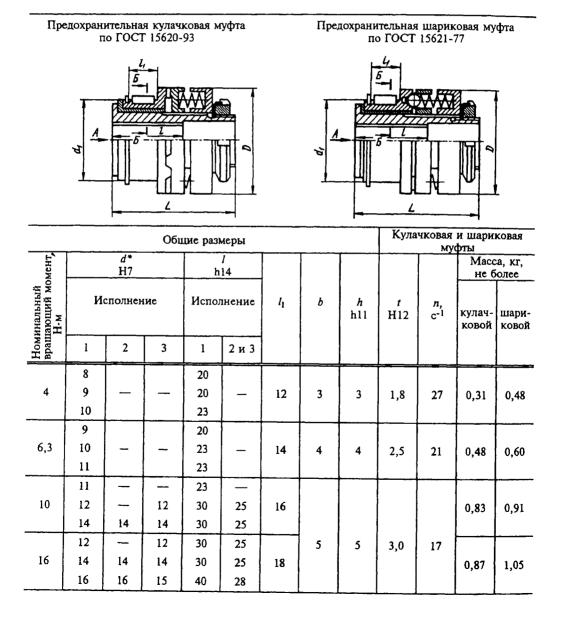
Диаметр предохранительного штифта (проектировочный расчет), мм

$$d = \sqrt{\frac{4T}{\pi r \tau_{\rm cp}}}.$$

Предельный вращающий момент, Н·мм, при котором происходит срез штифта (проверочный расчет),

$$T=\frac{\pi d^2r \tau_{\rm cp}}{4}.$$

#### 22. Коэффициент пропорциональности К


Диаметр штифта d, мм	Материал	штифта	Штифт с V-образной
	средней вязкости (ε = 12+17%)	вязкий (ε = 20+22%)	канавкой
2—3	0,80,78	0,81-0,80	0,8—0,9
4—5	0,72—0,68	0,76—0,75	0,8-0,9

Значения K приведены для муфт с осевым расположением штифтов. В муфтах с радиальным расположением штифта коэффициент K следует увеличивать на 5-10%.

## Кулачковые, шариковые и фрикцио

## 23. Кулачковые, шариковые и фрикцио

Муфты общемашиностроительного применения предназначены для предохранения привода от перегрузок при передаче вращающего момента от 4 до 400  $\text{H}\cdot\text{M}$ , климатических исполнений: У и ТС категорий 2–4, УХЛ и О категорий 3.1, 4, 4.1, 4.2 по ГОСТ 15150 для эксплуатации без смазки (всухую), У и Т категорий 1–5, УХЛ и О категорий 3.1, 4, 4.1, 4.2, 5 по ГОСТ 15150 для эксплуатации в масляной ванне.



Размеры, мм

## нные предохранительные муфты

Предохранительная фрикционная муфта по ГОСТ 15622—96

## нные предохранительные муфты

Допускаемое отношение моментов срабатывания  $\frac{T_{\text{макс}}}{T_{\text{ном}}} \le 1,3$ . Полумуфты изготовляют трех исполнений:

1 — с цилиндрическим посадочным отверстием и шпоночным пазом по ГОСТ 23360—78;

2— со шлицевым посадочным отверстием, соответствующим соединению средней серии по ГОСТ 1139—80;

3 — с эвольвентным шлицевым отверстием по ГОСТ 6033—80.

Rut A Исполнение 1 Исполнение 2 Исполнение 3 Фрикционная муфта Шариковая муфта Кулачковая муфта D L L t D  $\boldsymbol{L}$  $d_1$ D  $d_1$ n, c⁻¹  $d_1$ k6 k6 k6 не более не более не более 45 67 36 32 36 63 50 0,64 48 75 32 75 2,5 42 38 48 0,68 50 80 80 75 3,0 42 56 50 56 38 48 0,75 83 80 90

			Обш	ие разм	еры				Кулач	нковая мус	и шариі фты	Ковая
мент		d* H7		h.	! 14						Масс не б	а, кг, олее
Номинальный вращающий момент $T, { m H.m}$	Ис	полнен	ие	Испол	нение	<i>l</i> _l , не более	b	h	t	<i>h</i> , c ⁻¹	кулач- ковой	шари- ковой
Ном врац Т,	1	2	3	1	2и3							
	14	14	14	30	25							
25	16	16	15	40	28	21					1,55	1,80
	18		17	40	28		6	6,0	3,5	13		
	18		17	40	28							
40	20	20	20	50	36	24					1,74	2,00
	22	22	22	50	36						<del> </del>	
	20	20	20	50	36		_					
63	22	22	22	50	36	28	8	7,0	4,0	10	2,42	2,50
	25	25	25	60	42				[ [		<del> </del>	<u> </u>
	25	25	25	60	42						1.05	
100	28	28	28	60	42	32					4,85	4,80
			30	80	58	ļ					<u> </u>	<u> </u>
_	28	28	28	60	42	1	10			8	7.25	
160		_	30	80	58	36		8,0	5,0		7,25	6,80
	32	32	32	80	58	<del> </del>		-			<del>                                     </del>	
250	32 36	32	32 35	80 80	58 58	42	12			7	9,70	11,5
250	30	38	33	80	58	42	12			,	),,,0	11,5
	40		40	110	82							
	<del></del>	38	38	80	58				-	<del> </del>	<del>                                     </del>	<del> </del>
400	40	] ]0	40	110	82	48	14	9	5,5	5	15,5	19,6
700	<del></del>	42	42	110	82	"	1 -		","		,5	-/,-
	45		45	110	82							

^{*}ГОСТы предусматривают 2-й ряд для исполнения 1 как менее предпочтительный.

ГОСТ 15622—96 предусматривает муфты с моментом T до 16 000 H-м.

Для размера *b* предельные отклонения по ГОСТ23360-78.

По ГОСТ 15622-96 материал фрикционной пары при относительной скорости скольжения: до 3 м/с - сталь по стали; свыше 3 м/с - бронза по стали.

Допускаемое давление на фрикционных поверхностях - не более 0,6 МПа.

Пружины - по ГОСТ 13766-86.

п - допускаемая частота вращения.

Продолжение табл. 23

Кула	чковая м	гуфта	Шарі	иковая м	гуфта		Φ ₁	рикцион	ная муф	та	
<i>d</i> ₁ k6	D	L	<i>d</i> 1 k6	D	L	<i>d</i> 1 k6	D	L	t	n, c ⁻¹	Масса, кг, не более
	не б	олее		не б	олее		не б	олее			
		85		:	100		65	90			1,10
56	71		65	71		45			3,5	25	
		105					70	95			1,20
65	85	110	70	80	120	55	85	120	4,0	17	2,00
	100	140		95	150	65	95	125		17	3,60
80			85								
	125	160		100	190		100	150	5,0	13,0	3,80
90	140	180	100	125	220	70	120	160		10	5,00
105	180	190	100	155	260	90	145	180	5,5	7	7,60

Пример условного обозначения предохранительной кулачковой муфты с номинальным вращающим моментом  $63~H\cdot M$ , диаметром посадочного отверстия 25~MM, исполнения 1, климатического исполнения 9~MM и категории 3~MM:

То же, исполнения 2 с наружным диаметром шлицев d = 25 мм:

То же, исполнения 3 с номинальным диаметром зубьев шлицев, d=25 мм, модулем m=1,5 мм:

Муфта 63—25×1,5—УЗ ГОСТ 15620—93

## 23,а. Обозначение посадочных отверстий муфт с поямобочными плипами по ГОСТ 1139-80

Размеры,	MM
----------	----

	Обозначение п	о ГОСТ 1139-80	D	Обозначение по	ΓΟCT 1139-80
	z×d×D	b *		z×d×D	b
14	6×11×14	3,0	28	6×23×28	6,0
16	6×13×16	3,5	32	6×26×32	6,0
20	6×16×20	4,0	38	6×32×38	6,0
22	6×18×22	5,0	42	6×36×42	7,0
25	6×21×25	5,0	48	6×42×48	8,0

#### 24. Элементы кулачковых предохранительных муфт

Основные размеры кулачковых предохранительных муфт те же, что и основные размеры кулачковых муфт (см. табл. 14).

Грань кулачка, расположенная под углом 30°, является рабочей.

Направление вращения валов — в одну сторону, согласно расположению граней.

Сила на кулачках:

Размеры, мм

1	D	h	С	$C_1$	K	f
120° 6 30°±10′ +C1,	40	4	10,35	6,55	14,73	0,5
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	45	4	11,22	7,44	16,03	0,5
Ло развертке	50	4	12,09	8,33	17,33	0,5
/ / X \\/ \\ \\ A-A	55	4	13,39	9,66	18,63	0,5
	60	6	14,66	8,93	22,09	0,8
THE TOTAL PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY	70	6	16,83	11,17	24,70	0,8
M X X X X X X X X X X X X X X X X X X X	80	6	19,00	13,38	27,30	0,8
500	90	6	21,17	15,59	29,90	0,8
1	100	8	22,44	14,89	34,67	1,2
459	110	8	24,62	17,11	37,36	1,2
1	125	8	28,95	21,52	41,16	1,2
	140	10	32,38	23,05	47,23	1,5
	160	10	36,73	27,46	52,43	1,5

Сила, Н	3600	4350	5770	7350	9800	11 300	14 870
Диаметр муфты D, мм	40	45	50	55	60	70	80
Сила, Н	18 940	23	500	28 560	32 840	45 940	60 350
Диаметр муфты $D$ , мм	90	10	00	110	125	140	160

Степень вероятности включения без холостого хода:

Вероятность включения, %	70	67	64
Диаметр муфты D, мм	40-60	70-100	110-160

Расчетные формулы для кулачковых предохранительных муфт те же, что и для кулачковых сцепных муфт (см. табл. 16).

25. Дисковые муфты со срезным штифтом Размеры, мм

	<b>u</b>	1,5	2	4
	t=h	3	4	9
	`	5	- 00	12
	γį	1,5	2	2,5
	Ŷ	1	1,5	2
	$d_2$	1	28 4	\$ 8 8
	$D_1$	8	12	22
A PORT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE	h	10	15	24
Sample of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	41	11,5	14	24,5
Sie de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la compan	<i>L</i> -0,1	12	18	28
	E .	1	1,5	2
	<i>~</i>	8	10	91
pucky colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the colored to the	S	11	11	26
To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	В	91	25	45
3 0	4	22	30	20
	D H7/h6	10	15	25
	$d_1$	\$	∞	12
	в	M16	M20	M30
	d H7	1,5 2	£ 4 &	6 10
	Наименьшая срезывающая сила P, Н	700 1300	2900 5300 8250	12 000 21 000 33 000

Штифты цилиндрические по ГОСТ 3128—70; 1,5×18; 2×18; 3×18; 4×30; 5×30; 6×45; 8×45; 10×45. Материал: втулок—сталь 40X, твердость 49,5 HRC3, пробок—сталь 30, твердость 36,5 HRC3.

## Пружинно-кулачковые муфты

Предохранительные пружинно-кулачковые муфты (рис. 8) рассчитывают на контактную прочность и изгиб так же, как и сцепные кулачковые муфты.

Допускаемый вращающий момент по контактным напряжениям, H·мм,

$$T = 0.5D z b hp$$

где D - средний диаметр кулачков, мм; обычно D выбирается в пределах 1,25-2,5 диаметра вала;

z - число кулачков; b - ширина кулачков, мм; h - высота кулачков, мм;

p - допускаемое номинальное давление, принимают равным 30 МПа.

Допускаемый вращающий момент по изгибу (определяют для кулачков с плоскими гранями при z > 11)

$$T = \frac{D z^1 b \left[\sigma_{\mathsf{H}}\right] l^2}{6 h},$$

где  $z^1$  - расчетное число кулачков, равное 1/2-1/3 общего числа кулачков;

 $[\sigma_{H}]$  - допускаемое напряжение на изгиб, МПа, выбирают по пределу текучести с запасом не ниже 1.5:

l - толщина кулачков у основания, см; при беззазорном сцеплении:

$$l = \frac{\pi D}{2\tau} + h \, \mathrm{tg}\alpha \; ,$$

где  $\alpha$  - угол наклона рабочих граней, практически принимают не более 65°.

Потребную силу сжатия пружины  $P_{\text{пр}}$ , H, для передачи вращающего момента определяют из следующих уравнений:

$$P_{\text{mp}} = \frac{2T_{\text{p}}}{D} \operatorname{tg}\alpha; \tag{1}$$

$$P_{\text{m p}} = \frac{2T_{\text{p}}}{D} \left[ tg(\alpha - \rho_1) - \frac{D}{d} f_2 \right], \qquad (2)$$

где  $T_{\rm p}$  - расчетный вращающий момент, мм;  ${
m H\cdot mm}$ ;  $T_{\rm p}=1,3$   $T_{\rm Hom}$  ( $T_{\rm Hom}$  — наибольший номинальный вращающий момент):

D - средний диаметр кулачков, мм;

 $\alpha$  - угол наклона рабочих граней, градусы;

 $\rho_1$  - угол трения между кулачками (для стали 5—6°);

 $f_2$  - коэффициент трения в шлицевом (шпоночном) соединении (для стали 0,15-0,16):

d - диаметр вала, мм.

Формула (1) не учитывает сил трения в кулачках и в шлицевом соединении, что соответствует работе муфты при длительной перегрузке. При мгновенных перегрузках предполагается действие сил трения и расчет ведут по формуле (2).

Для, надежности работы муфты кромки кулачков следует закруглять.

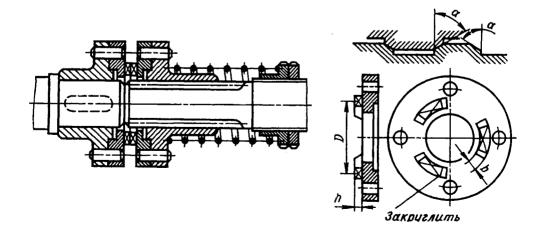
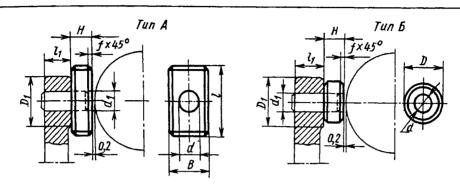




Рис. 8. Предохранительная пружинно-кулачковая муфта

## 26. Камни для перевода муфт

#### Размеры, мм



<i>B</i> d11	<i>D</i> d11	<i>D</i> ₁ наиболь- ший	H cll	d E8	Отвер- стие <i>d</i> ₁ Н7	1	<i>l</i> ₁	f	Цилин- дричес- кий штифт, ГОСТ 3128-70
1	0	14	5		5	18	8	0,5	5×12
1	2	16	6	}	6	22	10	0,5	6×16
1	6	20	8		8	28	12	1,0	6×18
2	.0	26	10	1	0	36	14	1,0	10×22
2	5	32	12	1	3	45	16	1,5	13×25
3	2	40	16	1	6	56	22	1,5	16×36
4	0	50	20	2	0	70	24	2,0	20×40
5	0	60	25	2	5	85	30	2,0	25×50

Материал: для типа A - чугун СЧ 20, текстолит, бронза; для типа Б - сталь 40X, твердость 49,5 HRC₃.

#### ЭЛЕКТРОМАГНИТНЫЕ МНОГОДИСКОВЫЕ МУФТЫ С МАГНИТОПРОВОДЯЩИМИ ДИСКАМИ (по ГОСТ 21573—76 и ГОСТ 21574—88)

Муфты электромагнитные многодисковые с магнитопроводящими дисками работают со смазкой.

Устанавливаются следующие исполнения муфт:

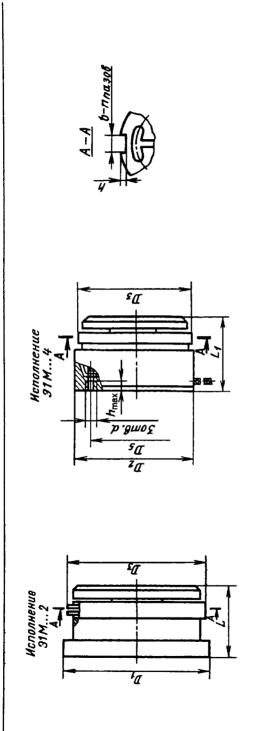
Э1М ... 2 — муфты с контактным токоподводом.

Э1М ... 4— муфты с бесконтактным токоподводом.

Э1М ... 6 — муфты тормозные с ведомыми внутренними дисками.

Основные параметры и размеры муфт приведены в табл. 27-30.

**Технические требования.** Муфты должны изготовляться в соответствии с требованиями ГОСТ 21574—88, ГОСТ 21573—76 и


по рабочим чертежам, утвержденным в установленном порядке. Технические данные муфт приведены в табл. 33.

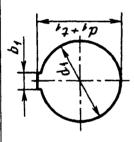
Муфты Э1М ... 2, Э1М ... 4, Э1М ... 6 должны применяться для работы в условиях, обеспечивающих смазывание фрикционных дисков минеральным маслом с кинематической вязкостью 17—23 мм²/с при температуре 50°С.

Муфты не должны применяться в среде взрывоопасной или содержащей агрессивные пары и газы в концентрациях, могущих привести к повреждению деталей муфты или изменению свойств смазочного материала.

27. Основные параметры н размеры электромагнитных муфт исполнений Э1М ... 2, Э1М ... 4

Размеры, мм




Обозначение габарита муфты	10	02	03	04	05	90	07	80	60	10	11	10 11 12 13 14 15 16 17 18 19	13	14	15	91	17	18		70
Р ₁ h9	05	5.5	09	39	08	S	100								240	340 370 300	300	340	380	430
Дурб	3	3	3	3			2	110	120	135	150	170 190	190	215	2	213				2
$D_3$ h $11$	49	54	65	64	78	88	86								235	265	295	335	375	425
D₄h6 .	45	50	50 55	09	70	80	06	100	110	125	140 160	160	180 200	200	220	250	280	320	360	400

O60 ra6ap	Обозначение габарита муфты	10	0.5	03	20	05	90	07	80	60	10	11	12	13	14	15	16	17	18	19	20
$D_{\mathcal{S}}$	Номинал	40	45	8	55	09	70	08	8	100	110	120	140	165	180	200	230	250	300	340	370
<u> </u>	Отклонение		±0,16										±0,35	35							
L h11		20	22	25	30	32	35	38	41	45	52	09	89	78	06	100	110	120	130	145	160
L ₁ h11		26	28	32	38	~	4	45	84	55	09	89	74	82	100	110	120	128	130	165	180
d H7			M3	3			M5	~			M6	9			M8			M10		M	M12
hmax	Номинал	2,5	3,0	3,5	4,0		5,0			0,9	6,5	0,6	0,	11,0	14,0	15,0	17,0	18,0	22,0	25,0	28,0
	Отклонение		+0,3	ε,		+0,5		+0,8							+1,0	0					
Номинальнь редаваемый мент $T_{\text{ном}}$ , $\mathbf{F}$	Номинальный пе- редаваемый мо- мент Т _{ном} , Н.м	4,0	6,3	10	91	25	40	63	100	160	250	400	069	1000	1600	2500	4000	6300	10000   6000   25000	0009	2000;
Номинальны вращающий мент $T_{\rm B}$ , Н-м	Номинальный вращающий момент $T_{B}$ , $H$ -м	2,5	4,0	6,3	10	16	25	40	63	100	160	250	400	630	1000	1600	2500	4000	6300	0000 16000	0009
Номин пряжен <i>U</i> , В	Номинальное на- пряжение питания <i>U</i> , В		12										24								
Масса, кг	Kſ	0,22 0,28		0,36	0,48	0,71	1,10	1,65	2,17	2,84	4,47	6,20	9,05	12,5	18,2	25,6	35,8	55,5	88,0	123,0	175,0
b B11	.!	80	~~		10			12			91			20			•	25			
и паз			4						9					8					10		
h H12			2,5	5			4,5				5,	5,5			8			10			

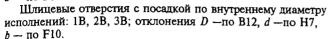
28. Основные параметры и размеры муфты исполнения Э1М ... 6, мм

			A 103		40mb d	!	$P_2$					
Обозначение габарита муфты	05	06	07	08	09	10	11	12	13	14	15	16
D ₁ (-0,5)	115	125	140	150	170	185	215	235	255	290	310	355
D ₂ h6	80	90	100	110	120	135	150	170	190	210	230	265
D ₃ (±0,35)	100	110	123	133	150	165	190	210	230	256	276	315
<i>L</i> h11	32	35	38	41	45	52	60	68	78	90	100	110
B (-0,5)	90	100	110	120	135	150	170	190	210	230	250	285
<i>l</i> (+0,2)		3			4					5	•	•
d (+0,2)		9	1	l	1	3		17			19	
Номинальный передаваемый момент $T_{\text{ном}}$ , Н·м	25	40	63	100	160	250	400	630	1000	1600	2500	4000
Номинальный вращающий, момент $T_B$ , $H$ м	16	25	40	63	100	160	250	400	630	1000	1600	2500
Масса, кг	1,4	1,8	2,2	3,06	4,0	5,3	7,4	9,7	12,5	21,5	28,4	39,3
Номинальное напряжение питания <i>U</i> ном, В						24						

29. Размеры посадочных гладких отверстий, мм



Обозна-							Исполнение	ИС				
чение		IA	-				2A			3A	Ą	
муфты	d ₁	19	$d_1 + t_1$	47	q ₁	p ₁	- lp	$d_1 + t_1$	$d_1$	$p_1$	$d_1 + t_1$	- 11
	Н7	Н9	Номи- нал	Откло-	Н7	Н9	Номи- нал	Откло- нение	H7	Н9	Номи- нал	Откло- нение
10	12	4	13,8							١	-	1
02	14	5	16,3	+0,120	12	4	13,8	+0,12				
03	16	5	18,3		14	\$	16,3		12	4	13,8	
04	18	9	20,8	+0,120	16	S	18,3	+0,12	14	5	16,3	
05	20	9	22,8		18	9	20,8		16	٧	18,3	
90	22	9	24,8		70	9	22,8		18	9	20,8	+0,120
07	25	∞	28,3	+0,160	22	9	24,8	+0,12	20	9	22,8	
80	30	<b>∞</b>	33,3	:	25	∞	28,3	+0,16	22	9	24,8	


Продолжение табл. 29

Обозна-						Испо	Исполнение					
чение габарита			14				2A			3,	3A	
муфты	q ₁	Iq	q	$d_1 + t_1$	lp	61	lp q1	$d_1 + t_1$	d ₁	lq	$q_1 + t_1$	+ 1 ₁
	Н7	Н9	Номи- нал	Откло- нение	Н7	Н6	Номи- нал	Откло- нение	Н7	Н9	Номи- нал	Откло- нение
60	35	01	38,3		30	8	33,3		25	8	28,3	
01	40	12	43,3		35	10	38,3		30	∞	33,3	
11	20	14	53,8		40	12	43,3		35	10	38,3	
12	09	18	64,4		20	14	53,8	+0,16	40	12	43,3	
13	70	70	74,9		09	18	64,4		50	14	53,8	
14	80	70	84,9	+0,160	70	70	74,9		09	18	64,4	+0,160
15	96	22	95,4		80	22	85,4		70	70	74,9	
16	100	25	105,4		06	25	95,4		80	22	85,4	
17*	110	25	115,4		100	28	106,4	+0,20	06	25	95,4	
18*	125	28	131,4		110	28	116,4		100	28	106,4	
19*	140	32	147,4	+0,200	125	32	132,4	+0,20	110	28	116,4	+0,200
20*	160	36	168,4		140	36	148,4		125	32	132,4	

* По две шпонки, расположенных под углом 180° одна относительно другой.

## 30. Размеры плицевых отверстий, мм

Шлицевые отверстия с посадкой по наружному диаметру исполнений: 1H, 2H, 3H; отклонения: D—по H7, d— по H12, b— по F8.





жие		1H,	, 1B			2H,	2B			3H,	, 3B	
Обозначение габарита муфты	D	d	b	Число зубьев	D	d	ь	Число зубъев	D	d	ь	Число зубьев
01	14	11	3	6	_	_	_	_		_	_	
02	14	11	3	6	-	<b> </b>	_	_	_	_		_
03	16	13	3,5	6	14	11	3	6	_	_	_	_
04	20	16	4	6	16	13	3,5	6	14	11	3	6
05	22	18	5	6	20	16	4	6	16	13	3,5	6
06	25	21	5	6	22	18	5	6	20	16	4	6
07	30	26	6	6	25	21	5	6	22	18	5	6
08	34	28	7	6	30	26	6	6	.25	21	5	6
09	40	36	7	8	34	28	7	6	30	26	6	6
10	46	42	8	8	40	36	7	8	34	28	7	6
11	54	46	9	8	46	42	8	8	40	36	7	8
12	65	56	10	8	54	46	9	8	46	42	8	8
13	72	62	12	8	65	56	10	8	54	46	9	8
14	82	72	12	10	72	62	12	8	65	56	10	8
15	92	82	12	10	82	72	12	10	72	62	12	8
16	102	92	14	10	92	82	12	10	82	72	12	10
17	112	102	16	10	102	92	14	10	92	82	12	10
18	125	112	18	10	112	102	16	10	102	92	14	10
19	-		-	-	125	112	18	10	112	102	16	10
20	L <u> </u>	l <u> </u>	L_=_						125	112	18	10

Допускается изготовление муфт, силовые параметры которых превосходят указанные в таблицах 27, 28 для данного габарита, при коэффициенте превышения  $\varphi = 1,58$ .

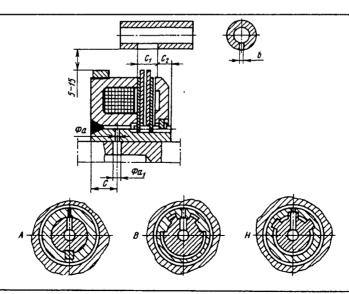
Неуказанные предельные отклонения размеров:

охватывающих — по H12, охватываемых — по h12, прочих — по  $\pm \frac{IT14}{2}$ .

Обозначение муфт содержит наименование серии (Э1М), обозначение габарита (первые две цифры), исполнение (третья цифра) и обозначение отверстия (через тире).

Примеры обозначений муфт серии Э1 М. Муфта габарита 08 с контактным токоподводом и посадочным отверстием исполнения 1A:

То же, габарита 09 с бесконтактным токоподводом и посадочным отверстием исполнения 2H:


То же, габарита 10 — тормозная с ведомыми внутренними дисками и посадочным отверстием исполнения 3В:

Э1М106—3В ГОСТ 21573—76

31. Рекомендуемые основные размеры щеткодержателей к муфтам Э1М ... 2, мм

45	Обозначение щеткодержателя	Н	h
	ЭМЩ2А-20	66,5	19,5
=	ЭМЩ2А-40	87	40
	ЭМЩ2А-60	107	60
#18×15	ЭМЩ2А-80	127	80
Φ25,4	ЭМЩ2А-100	147	100

32. Рекомендуемые отверстия для подачи смазки для муфт исполнения Э1М ... 2, Э1М ... 4



Группы посадочных отверстий:

A — гладкие; B — шлицевые для центрирования по внутреннему диаметру;

Н — шлицевые для центрирования по наружному диаметру.

Продолжение табл. 32

Обозначение				F	азмері	ы, мм,	для м	уфт габ	барито	В			
размера	04	05	06	07	08	09	10	11	12	13	14	15	16
Øa	3	3	3	3	4	4	4	4	4	5	5	6	6
$\emptyset a_1$	3	3	3	3	4	5	5	5	6	7	7	8	8
c	7	7	10	10	10	10	12	12	13	18	18	20	20
$c_1$	7	8	9	12	13	15	19	20,5	23	29	32	37	42
$c_2$	4	4	5	5	5	6	6	7	9	10	10	11	12
b	0,5	0,5	0,5	0,5	0,5	0,8	0,8	1,0	1,0	1,0	1,0	1,0	1,0
Расход масла, не менее л/мин*	0,2	0,3	0,3	0,4	0,5	0,8	1,2	1,6	2,0	2,5	3,0	3,5	4,0

^{*}Дан расход при смаэке поливом. При подаче смаэки по валу принимать 25-50~% указанного.

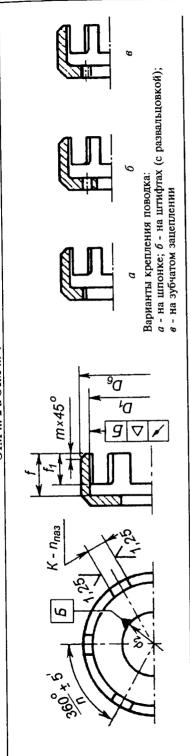
### 33. Технические характеристики муфт

ra-				I	1сполнени	е муфты				
Обозначение га- барита муфты		91M	2, Э1M	1 4, Э1	М 6		Э1М4, Э1М6	Э1М2	Э1М2, Э1М6	Э1M4
Обо	<i>U</i> _н , В	<i>Т</i> п, Н∙м	<i>Т</i> в, Н∙м	<i>Т</i> ₀, Н⋅м	$T_{\text{o.п.}}$ Н $\cdot$ м	<i>t</i> _{0,05} ,c	n _{max}	, c ⁻¹	ΔΡ,	Вт
01	12	4,0	2,50	0,025	0,09	0,006			23	35
02	(24)	6,3	4,0	0,040	0,15	0,011	166	112	30	45
03		10	6,3	0,060	0,25	0,018			40	60
04	(24) 12	16,0	10,0	0,10	0,40	0,03	133	100	50	75
05	24	25,0	16,0	0,15	0,50	0,04	117	83	80	120
06		40,0	25,0	0,25	0,70	0,06	100	75	100	150

Продолжение табл. 33

ra-				V	Ісполнени	е муфты				
Обозначение га- барита муфты		Э1 <b>M</b>	2, Э1M	<b>1</b> 4, Э1	М 6		Э1М4, Э1М6	Э1М2	Э1М2, Э1М6	Э1М4
Обоз бари	<i>U</i> _н , В	Тп, Н∙м	Т _в , Н⋅м	Т₀, Н⋅м	$T_{ m o.n}$ , $ m H\cdot M$	<i>t</i> _{0,05} ,c	n _{max}	, c ⁻¹	Δ <i>P</i> ,	Вт
07		63,0	40,0	0,40	1,0	0,07	83	66	140	210
08		100	63,0	0,70	1,5	0,08	75	58	180	270
09		160	100	1,0	2,0	0,10	66	50	210	315
10		250	160	1,2	3,2	0,12	60	47	250	375
11		400	250	2,0	4,5	0,14	55	41	300	450
12		630	400	2,5	7,0	0,20	50	37	350	525
13		1000	630	4,0	12	0,28	48	33	470	705
14	24	1600	1000	6,5	18	0,36	45	30	600	900
15		2500	1600	10	30	0,60	42	27	750	1125
16		4000	2500	18	45	0,90	36	23	1000	1500
17		6300	4000	29	72	1,44	32	21	1280	1920
18		10000	6300	46	115	2,30	28	19	1640	2460
19		16000	10000	74	184	3,68	25	17	2100	3150
20		25000	16000	118	294	5,80	22	15	2685	4028

Обозначения:  $T_{\rm n}$  — номинальный передаваемый момент;  $T_{\rm B}$  — номинальный вращающий момент;


 $U_{\rm H}$  — номинальное напряжение питания постоянного тока. Допускаемое колебание напряжения составляет от 0,9 до 1,05 от номинального;

 $t_{0,05}$  — время спадания передаваемого момента до уровня 5% от  $T_n$  при мгновенном разрыве тока и горизонтальном расположении муфты на валу;

 $T_{\text{0-B}}$  и  $T_{\text{0-B}}$  — остаточный вращающий и остаточный передаваемый моменты; их значения даны для горизонтального расположения муфты на валу при частотах вращения 150 мин⁻¹ для муфт габаритов 01—09, 75 мин⁻¹ для муфт габаритов 10—15 и 50 мин⁻¹ для муфт габаритов 16—20;

 $n_{\max}$  — максимальная частота вращения при горизонтальном расположении муфты на валу;  $\Delta P$  — теплорассеивающая способность муфты.

34. Габаритные и присоединительные размеры поводка муфт исполнений — 34. Габаритные и присоединительные э 1М ... 2 и Э1М ... 4



						Разм	Размеры, мм, для муфт габаритов	, для му	рт габари	fTOB				•
Обозначение размера   допуск	Допуск	g	05	98	07	80	60	10	11	12	13	14	15	16
$D_{\delta}$	Ь9	71,5	80	8	100	112	122	140	155	175	196	221	246	276
4	H111	62	72	82	92	102	112	128	143	163	183	203	225	255
f, не менее	I	14,2	14,5	17	5,61	20,5	24	27,5	59	34,5	40	47	53,5	61,5
$f_1$ , не менее	1	13	13,0	15	17,5	18,5	21	25,5	27	31,5	37,0	42	49	99
K	B11	10	10	12	12	12	16	16	16	20	20	70	25	25
$h_{\Pi B 3}$	1	4	9	9	9	9	9	9	∞	∞	∞	∞	∞	10
ш	1	1,6	1,6	1,6	1,6	2,5	2,5	4	4	4	4	9	9	9
δ	1		0,	0,02			0,03		0,	0,04		0,05	2	

 $\Pi$  римечание. Размер  $d_2$  - по согласованию с потребителем.

#### 35. Параметры номинального режима

Обозна- чение габарита муфты	n, c ⁻¹	<i>I,</i> кт∙м²	N	Обозна- чение габарита муфты	n, c ⁻¹	I, kr·m²	N
01		0,0011		11 12		0,3000 0,4500	4.106
02		0,0018					
03	25	0,0028	5·10 ⁶	13	12	0,7500	
04		0,0045		14		1,0500	
05		0,0060		15		1,4000	3.10 ⁶
06		0,0100		16		3,5000	
07		0,0150		17	8,0	5,6000	
08		0,0200		18		8,9600	
09		0,0750	5.10 ⁶	19		14,3400	
10	17	0,1250	4·10 ⁶	20	5,0	22,9400	2.106

Обозначения: N — число циклов, I — динамическая нагрузка.

Ресурс (число циклов N), который должна отработать каждая муфта, должен быть для номинального режима не менее приведенного в табл. 35.

## Дополнительные источники

**Ряховский О.А., Иванов С.С.** Справочник по муфтам. Л.: Политехника, 1991.

Муфты зубчатые. ГОСТ Р50895-96.

**Муфты** упругие с промежуточным лиском—ГОСТ 25021—81.

**Муфты** дисковые полужесткие —  $\Gamma$ OCT 26455—85.

**Муфты** с торообразной оболочкой. - ГОСТ P50892-96.

**Муфты упругие** быстроразъемные гидравлических систем тракторов и сельскохозяйственных машин. - ГОСТ P51208-98.

Справочник. Инженерный журнал. 1997. № 34.

# Глава IV

# зубчатые и червячные передачи

# ЗУБЧАТЫЕ ПЕРЕДАЧИ

### РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

## Цилиндрические зубчатые передачи

Термины и обозначения приведены в табл. 1, определения терминов см. ГОСТ 16530-83 и 16531-83.

## 1. Термины и обозначения цилиндрических зубчатых передач

Термин	Обозна- чение	Термин	Обозна- чение
Делительное межосевое расстояние Межосевое расстояние Ширина венца цилиндрического зубчатого колеса Рабочая ширина венца зубчатой передачи Радиальный зазор пары исходных контуров Коэффициент радиального зазора нормального исходного контура Высота зуба цилиндрического зубчатого колеса Высота делительной головки зуба цилиндрического зубчатого колеса Коэффициент высоты головки исходного контура Высота до хорды зуба колеса Высота до хорды зуба колеса Высота до хорды дуги окружности Глубина захода зубьев колеса, а также глубина захода зубьев исходных реек Высота делительной ножки зуба колеса	a $a$ $b$ $c$ $c$ $h$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$ $h$ $a$	Делительный диаметр зубчатого колеса	d da db df df dl dw r m mn mt Pb Pn Pt Px Pbn Pbn Sc Sn Sx
Граничная высота зуба колеса	$h_l$	Торцовая толщина зуба рейки	31

Продолжение табл. 1

Термин	Обозна- чение	Термин	Обозна- чение
Толщина по хорде зуба	s _{ny}	Частота вращения зубчатого колеса в минуту	n
Толщина по хорде Длина общей нормали зубчатого колеса	s _y W	дачи $\left(\frac{z_2}{z_1}; \frac{d_2}{d_1}; \frac{n_1}{n_2}\right) \dots$	и
Коэффициент смещения исход- ного контура Коэффициент наименьшего сме-	x	Угол профиля зуба исходного контура в нормальном сечении Угол профиля зуба в торцовом	α
щения исходного контура	$x_{\min}$	сечении	$\alpha_t$
Коэффициент суммы смещений	$x_{\Sigma}$	Угол зацепления	α _{tw}
Коэффициент воспринимаемого смещения	<i>у</i> Ду	трической окружности заданного диаметра $d_y$	α _y
Число зубьев зубчатого колеса (число зубьев секторно-зубчатого колеса)	z	метра $d_y$	β _y β
Наименьшее число зубьев, сво- бодное от подрезания	z _{min}	(косозубого колеса на его основном цилиндре)	β _δ ν Ψ
мали . Нормальный боковой зазор эволь- вентной цилиндрической зубчатой передачи .	j _n	Половина угловой толщины зуба эквивалентного зубчатого колеса, соответствующая концентрической	
Эвольвентный угол профиля зуба. Эвольвентный угол, соответствующий точке профиля на окружности $d_y \dots \dots$	inv α	окружности диаметра $\frac{d_y}{\cos^2 \beta_y}$	Ψ _{yv} ω

Шестерня — зубчатое колесо передачи с меньшим числом зубьев, колесо — с большим числом зубьев. При одинаковом числе зубьев зубчатых колес передачи шестерней

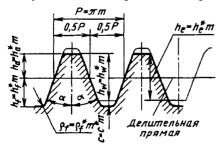



Рис. 1. Исходный контур зубчатых цилиндрических колес эвольвентного зацепления по ГОСТ 13755—81 и конических колес с прямыми зубьями по ГОСТ 13754—81

называют ведущее зубчатое колесо, а колесом - ведомое. Индекс 1 - для величин, относящихся к шестерне, индекс 2 - относящихся к колесу.

Индекс n - для величин, относящихся к нормальному сечению, t - к окружному (торцовому) сечению. В тех случаях, когда не может быть разночтения и неясности, индексы n и t можно исключить.

Термины параметров нормального исходного контура и нормального исходного производящего контура, выраженных в долях модуля нормального исходного контура, образуют добавлением слова «коэффициент» перед термином соответствующего параметра.

Обозначения коэффициентов соответствуют обозначениям параметров с добавле-

нием знака «*», например коэффициент радиального зазора пары исходных контуров  $c^*$ .

**Модули (по ГОСТ 9563—60).** Стандарт распространяется на эвольвентные цилиндрические зубчатые колеса и конические зуб-

чатые колеса с прямыми зубьями и устанавливает:

для цилиндрических колес - значения нормальных модулей;

для конических колес - значения внешних окружных делительных модулей.

Числовые значения модулей:

Ряд 1	Ряд 2	Ряд 1	Ряд 2	Ряд 1	Ряд 2	Ряд 1	Ряд 2
1	1,125	-	-	5	5,5	12	14
1,25	1,375	2,5	2,75	6	7	16	18
1,5	1,75	3	3,5	8	9	20	22
2	2,25	4	4,5	10	11	25	28
						32	36

Примечания:

- 1. При выборе .модулей ряд 1 следует предпочитать ряду 2.
- 2. Для цилиндрических зубчатых колес допускается:
- а) в тракторной промышленности применение модулей 3,75; 4,25 и 6,5 мм;
- б) в автомобильной промышленности применение модулей, отличающихся от установленных в настоящем стандарте;
- в) в редукторостроении применение модулей 1,6; 3,15; 6,3; 12,5 м.
- 3. Для конических зубчатых колес допускается:
- а) определять модуль на среднем конусном расстоянии;
- б) в технически обоснованных случаях применение модулей, отличающихся от указанных в таблице.
- 4. Стандарт предусматривает применение модулей в диапазоне значений от 0,05 до 100 мм.

Исходный контур цилиндрических зубчатых колес. Под исходным контуром колес (рис. 1) подразумевают контур зубьев рейки в нормальном к направлению зубьев сечении. Радиальный зазор c=0,25m, радиус кривизны переходной кривой зуба  $\rho_f=0,4m$ . Допускается увеличение радиуса  $\rho_f$ , если это не нарушает правильности зацепления, и увеличение c до 0,35m при обработке колес долбяками и шеверами и до 0,4m при шлифовании зубьев.

Для цилиндрических колес внешнего зацепления при окружной скорости более указанной в табл. 2 применяют исходный контур с модификацией профиля головки зуба (рис. 2). При этом линия модификации

- прямая, коэффициент модификации  $h_g^*$  должен быть не более 0,45, а коэффициент глубины модификации  $\Delta^*$  - не более 0,02. Рекомендуемые значения коэффициента  $\Delta^*$  приведены в табл. 3.

Основные элементы зубчатого зацепления указаны на рис. 3 и 4 в соответствии с обозначением по табл. 1.

Смещение колес зубчатых передач с внешним зацеплением. Чтобы повысить прочность зубьев на изгиб, снизить контактные напряжения на их поверхности и уменьшить износ за счет относительного скольжения профилей, рекомендуется производить смещение инструмента для цилиндрических (и конических) зубчатых передач, у которых  $z_1 \neq z_2$ . Наибольший результат достигается в следующих случаях:

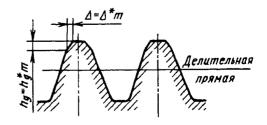



Рис. 2. Исходный контур с профильной модификацией

2. Окружная скорость колес в зависимости от их точности

Тип колес	Окружная скорость в м/с при степени точности колеса по ГОСТ 1643-81				
	6	7	8		
Прямозубые Косозубые	10 16	6 10	4 6		

3. Коэффициент глубины модификации  $\Delta^*$  в зависимости от модуля и степени точности

Модуль <i>m</i> , мм	Степень точности по нормам плавности работы по ГОСТ 1643-81				
	6	7	8		
До 2 Св. 2 до 3,5 * 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25 * 25 * 40	0,010 0,009 0,008 0,006 0,005	0,015 0,012 0,010 0,008 0,007 0,006	0,020 0,018 0,015 0,012 0,010 0,009 0,008		

- 1) при смещении передач, у которых шестерня имеет малое число зубьев  $(z_1 < 17)$ , так как при этом устраняется подрез у корня зуба;
- при больших передаточных числах, так как в этом случае значительно снижается относительное скольжение профилей.

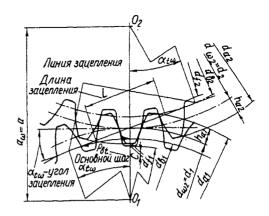



Рис. 3

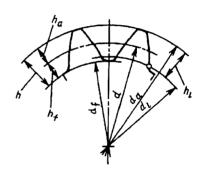
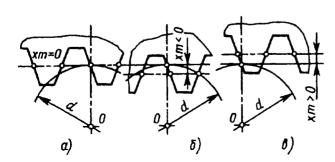
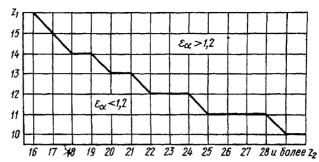



Рис. 4

Положение исходного производящего контура относительно нарезаемого колеса, при котором делительная прямая рейка касается делительной окружности колеса, называют номинальным положением (рис. 5, а). Колесо, зубья которого образованы при номинальном положении исходной производящей рейки, называют колесом, нарезанным без смещения исходного контура (по старой терминологии - некорригированное колесо).





Рис. 5. Положение производящего реечного контура относительно заготовки:

а - номинальное;

 $\delta$  - с отрицательным смещением;  $\delta$  - с положительным смещением

Рис. 6. График для определения нижнего предельного значения  $z_1$  в зависимости от  $z_{\gamma'}$  при которых

$$\varepsilon_{\alpha} = 1.2 \ (x_1 = x_2 = 0.5)$$



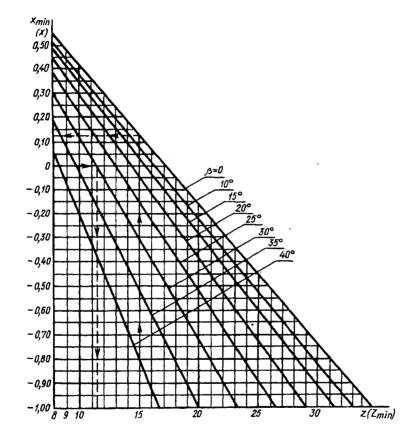



Рис. 7. График для определения  $x_{\min}$  в зависимости от z и  $\beta$  или  $z_{\min}$  - x и  $\beta$   $\left(\alpha=20^{\circ}\right),\ h_{l}^{\star}-h_{\alpha}^{\star}=1$ :

$$\bar{x}_{\min} = h_l^* - h_a^* - \frac{z \sin^2 \alpha_l}{2 \cos \beta}; \quad \bar{z}_{\min} = \frac{2(h_l^* - h_a^* - x) \cos \beta}{\sin^2 \alpha_s}$$

(округляется до ближайшего большего целого числа)

Примеры. 1. Дано: z=15;  $\beta=0$ . По графику определяем  $x_{\min}=0.12$  (см. штриховую линию). 2. Дано: x=0;  $\beta=30$ °. По графику определяем наименьшее число зубьев  $\overline{z}_{\min}=12$  (см. штриховую линию)

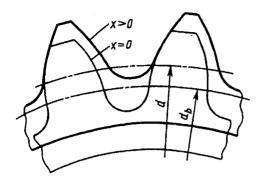



Рис. 8. Влияние смещения исходного контура на геометрию зубьев

Если исходная производящая рейка в станочном зацеплении смещена из номинального положения и установлена так, что ее делительная прямая не касается делительной окружности нарезаемого колеса, то

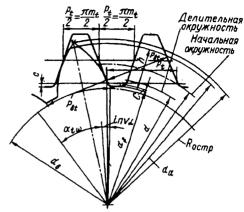



Рис. 9. Зацепление (в сечении, парадлельном торцовому) зубчатого колеса со смещением с исходной производящей рейкой

в результате обработки получится колесо, нарезанное со смещением исходного контура (по старой терминологии — корригированное колесо).

### 4. Коэффициенты смещения у зубчатых колес прямозубой передачи

Коэффициент смещения		- Область применения				
у шестер- ни х ₁	у колеса <i>х</i> ₂					
0	0	Межосевое расстояние $a_w$	Кинемати- ческие	z ₁ ≥ 17		
0,3	-0,3	задано равным $0,5(z_1+z_2)m$ или не задано	передачи	12 ≤ z ₁ < 16 и z ₂ ≥ 22		
0	0	Межосевое расстояние $a_{_{\scriptscriptstyle W}}$		z ₁ ≥ 21		
0,3	-0,3	задано равным $0,5(z_1+z_2)m$		$14 \le z_1 \le 20$ и $u \ge 3,5$		
0	0	Межосевое расстояние $a_{_{\rm W}}$ не задано	Силовые передачи	z ₁ > 30		
0,5	0,5			$10 \le z_1 \le 30$ .  В пределах $10 \le z_1 \le 16$ нижнее предельное значение $z_1$ определяется по графику (рис.6)		

Коэффициент смещения		Область применения				
у шестер- ни х ₁	у колеса <i>x</i> ₂					
0	0			$z_1 ≥ z_{\min}$ ; $z_{\min}$ определя- ется по табл. 8		
0,3	-0,3	Межосевое расстояние $a_{w}$ задано равным $\frac{\left(z_{1}+z_{2}\right)m}{2\cos\beta}$ или не задано	Кинемати- ческие пе- редачи	$z_1 \ge z_{1 \text{ min}}$ , но не менее 10 и $z_D \ge z_{2 \text{ min}}$ ; $z_{1 \text{ min}}$ и $z_{2 \text{ min}}$ определяется по графику на рис. 7 соответственно при $x = x_1 = 0,3$ и $x = x_2 = -0,3$		
0	0			$z_1 \ge z_{\min} + 2$ ; $z_{\min}$ определяется по табл. 8		
0,3	-0,3		Силовые передачи	$z_1 \ge z_{\min} + 2$ , но не менее 10 и $u \ge 3.5$ ; $z_{1 \min}$ определяется по графику на		

#### 5. Коэффициент смещения у зубчатых колес косозубой и шевронной передач

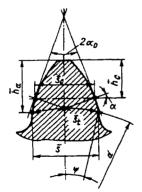



Рис. 10. Толщина зуба по постоянной хорде и высота до постоянной хорды в нормальном сечении

Расстояние от делительной прямой исходной производящей рейки (или исходного контура) до делительной окружности колеса является величиной смещения.

Отношение смещения исходного контура к расчетному модулю называют коэффициентом смещения (x).

рис. 7 при  $x = x_1 = 0.3$ 

Если делительная прямая исходного контура пересекает делительную окружность зубчатого колеса (рис. 5,  $\theta$ ), смещение называют отрицательным (x < 0), если не пересекает и не соприкасается (рис. 5,  $\theta$ ) - положительным (x > 0). При номинальном положении исходного контура смещение равно нулю (x = 0).

Коэффициент смещения х обеспечивается установкой инструмента относительно заготовки зубчатого колеса в станочном защеплении.

Коэффициенты смещения у зубчатых колес рекомендуется выбирать по табл. 4 для прямозубой передачи и по табл. 5 - для косозубой и шевронной передач.

Основные элементы зубчатого зацепления со смещением указаны на рис. 8, 9, 10.

# 6. Разбивка коэффициента суммы смещения $x_{\Sigma}$ у прямозубой передачи на составляющие $x_1$ и $x_2$

Коэффициент смещения смещения х ₂					
смещения $x_{\Sigma}$	у шестер- ни х ₁	у колеса <i>х</i> ₂	Область применения		
$0 < x_{\Sigma} \le 0.5$	x _Σ	0	Кинематические передачи $z_1 \ge z_{1 { m min}}$ , но не менее 10 и $z_2 \ge 17$ ; $z_{{ m min}}$ определяется по графику на рис. 7 при $x=x_1=x_\Sigma$		
			Силовые передачи	$z_1 \ge z_{1 { m min}+2}$ и $z_2 \ge 21$ ; $z_{{ m min}}$ определяется по графику на рис. 7 при $x=x_1=x_\Sigma$	
$0.5 < x_{\Sigma} \le 1$	0,5	x _Σ - 0,5	Кинемати- ческие пе- редачи	$z_1 \ge 10$ и $z_2 \ge z_{2  \mathrm{min}}$ ; $z_{2  \mathrm{min}}$ определяется по графику на рис. 7 при $x = x_2 = x_\Sigma$ - 0,5	
			Силовые передачи	$z_1 \ge 11$ и $z_2 \ge z_{2  \mathrm{min}} + 2$ ; $z_{2  \mathrm{min}}$ определяется по графику на рис. 7 при $x = x_2 = x_\Sigma - 0.5$	

Примечания: 1. При заданном межосевом расстоянии  $a_{\rm w}$  требуемое значение коэффициента суммы смещений  $x_{\rm E}$  можно получить за счет изменения числа зубьев  $z_{\rm 1}$  или  $z_{\rm 2}$ , если это изменение допускается.

- 2. При  $0.3 < x_{\Sigma} < 0.7$  и u < 2 наибольшая скорость скольжения в зацеплении будет большей, чем в передаче без смещения.
  - 3. При u = 1 рекомендуется  $x_1 = x_2 = 0.5x_{\Sigma}$ .

# 7. Разбивка коэффициента суммы смещения $x_{\Sigma}$ у косозубой или шевронной передачи на составляющие $x_1$ и $x_2$

Коэффициент суммы		ициент чения		
смещения $x_{\Sigma}$	у шестер- ни х ₁	у колеса <i>х</i> ₂		Область применения
$0 < x_{\Sigma} \le 0.5$	$x_{\Sigma}$	0	Кинемати- ческие пе- редачи	$z_1 \ge z_{1 { m min}}$ , но не менее 10 и $z_2 \ge z_{2 { m min}}$ ; $z_{1 { m min}}$ определяется по графику на рис. 7 при $x=x_1=x_\Sigma$ , $x_{2 { m min}}$ определяется по табл. 8

Продолжение табл. 7

Коэффициент суммы	1	оициент цения				
смещения $x_{\Sigma}$	у шестер- ни х ₁	у колеса <i>х</i> ₂	Область применения			
$0 < x_{\Sigma} \le 0.5$	$x_{\Sigma}$	0	Силовые передачи	$z_1 \ge z_{1\mathrm{min}} + 2$ , но не менее 10 и $z_2 \ge z_{2\mathrm{min}} + 2$ , $z_{1\mathrm{min}}$ определяется по графику на рис. 7 при $x = x_1 = x_\Sigma$ , $x_{2\mathrm{min}}$ определяется по табл. 8		

 $\Pi$  р и м е ч а н и я : 1. При заданном межосевом расстоянии  $a_w$  требуемое значение коэффициента суммы смещений  $x_\Sigma$  можно получить за счет изменения числа зубьев  $z_1$  или  $z_2$ , угла наклона  $\beta$ , если эти изменения допускаются.

- 2. При  $x_{\Sigma} > 0.3$  и u < 2 наибольшая скорость скольжения в зацеплении будет большей, чем в передаче без смещения.
  - 3. При u = 1 рекомендуется  $x_1 = x_2 = 0.5x_{\Sigma}$ .

### Значения наименьшего числа зубьев z_{nin} зубчатого колеса с коэффициентом смещения x = 0 при станочном зацеплении с исходной производящей рейкой

β°	z _{min}	β°	z _{min}	β°	Z _{min}
До 12 Св. 12 » 17 » 17 » 21	17 16 15	Св. 21 до 24 • 24 • 28 • 28 • 31	14 13 12	Св. 31 до 34 <b>»</b> 34	11 10

## Цилиндрические прямозубые передачи

### 9. Формулы и пример расчета прямозубой передачи внешнего зацепления без смещения

#### Размеры, мм

Параметры и обозначения	Расчетные формулы и указания	Числовые значения
Число зубьев шестерни $z_1$ Число зубьев колеса $z_2$	Задаются или выбирают в соответствии с расчетом зубьев на прочность, требованием кинематики и конструктивными соображениями	20 30
Модуль т	Определяют расчетом на прочность и округляют до ближайшего большего по ГОСТ 9563-60. Предпочтительный ряд m: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16	

Продолжение табл. 9

Параметры и обозначения	Расчетные формулы и указания	Числовые значения
Угол профиля α	Нормальный исходный контур	20°
Делительный диаметр <i>d</i>	$d_1 = z_1 m$ $d_2 = z_2 m$	60 90
Межосевое расстояние а	$a = \frac{\left(z_1 + z_2\right)m}{2}$	75
Диаметр вершин зубьев $d_a$	$d_{a1} = d_1 + 2m$ $d_{a2} = d_2 + 2m$	66 96
Диаметр впадин $d_f$ (справочный размер)	$d_{f1} = d_1 - 2(c + m)$ $d_{f2} = d_2 - 2(c + m)$	52,8 82,8
Постоянная хорда $\bar{s}_c$ Высота до постоянной хорды $\bar{h}_c$	$\bar{s}_{c1} = \bar{s}_{c2} = 1,387m$ $\bar{h}_{c1} = \bar{h}_{c2} = 0,748m$	4,16 2,24

# Цилиндрические косозубые передачи при параллельных валах

Косозубая передача более плавная и передает большую мощность, чем прямозубая, при тех же размерах. Недостатком косозубых передач является возникающая в зацеплении дополнительная осевая сила, отсутст-

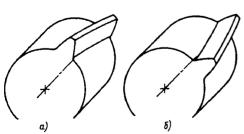



Рис. 11. Линии винтовых зубьев колес: a - правая;  $\delta$  - левая

вующая у прямозубых колес. Линии зубьев имеют правое или левое направление. Правой называют такую линию, точка на которой движется по часовой стрелке при удалении вдоль зуба, если смотреть на колесо со стороны его торца (рис. 11). Углы наклона двух сцегляющихся колес равны. Схема развертки делительного цилиндра зубчатого колеса показана на рис. 12.

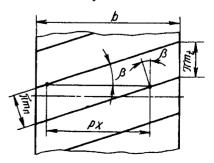



Рис. 12. Схема развертки делительного цилиндра косозубого колеса

# 10. Формулы и пример расчета косозубой передачи без смещения

Исходные данные $m_n = 4$ $z_1 = 41$ $z_2 = 82$ $a = 250$ $b_1 = 32$ $b_2 = 26$ $\alpha = 20^\circ$	Если межосевое расстояние $a$ не входит в исходные данные, то $a = \frac{m_n(z_1 + z_2)}{2 \cos \beta}$

Параметры и обозначения	Расчетные формулы и указания	Числовые значения
Угол наклона линии зуба β	$\cos \beta = \frac{m_n(z_1 + z_2)}{2a} = 0.984$	β = 10°15′
Окружной (торцовый) модуль т,	$m_t = \frac{m_n}{\cos \beta}$	4,066
Делительный диаметр d	$d_1 = m_r z_1$ $d_2 = m_r z_2$	166,706 333,412
Диаметр вершин зубьев $d_a$	$d_{a1} = d_1 + 2m_n$ $d_{a2} = d_2 + 2m_n$	174,706 341,412
Постоянная хорда $\bar{s}_c$	$ar{s_c} = \left(rac{\pi}{2}\cos^2lpha ight) m_n$ , где $lpha = 20^\circ$ или по табл. 11 $ar{s_c} = 1{,}387m_n$	5,55
Высота до постоянной хорды $\overline{h_c}$	$\vec{h_c} = 0.5 \left( d_a - d - \bar{s_c} \right) \text{ tg} \alpha$ , где $\alpha = 20^\circ$ , или по табл. 12 $\vec{h_c} = 0.748 m_n$	2,99
	чет длины общей нормали	•
Условное число зубьев z _K	$z_{K1} = Kz_1$ ; по табл. 13 $K = 1,047$ ; $z_{K2} = Kz_2$ . Если $\beta = 0$ , то $z_K = z$	42,927 85,854
Часть длины общей нормали, определяемая целой частью $z_T$ величины $z_K$ , выраженная в долях модуля	$W_{T1}^*$ определяют по табл. 14, $W_{T2}^*$ - тоже по табл. 14. Если $\beta=0$ , то $z_T=z$	13,8728 (при z _n = 5) 29,2357 (при z _n = 10)
Часть длины общей нормали, определяемая дробной частью величины $z_K$ , выраженная в долях модуля	$W_{n1}^{\bullet} = 0.0149(z_{K1} - z_{T1}) = 0.0149(42.927 - 42);$ $W_{n2}^{\bullet} = 0.0149(z_{K2} - z_{T2}) = 0.0149(85.854 - 85).$ Если $\beta = 0$ , то $W_{n}^{\bullet} = 0$	0,0138 0,0127

Продолжение табл. 10

Параметры и обозначения	Расчётные формулы и указания	Числовые значения
Длина общей нормали <i>W</i>	$W_1 = (W_{T1}^* + W_{n1}^*)m;$	54,97
	$W_2 = \left(W_{T2}^* + W_{n2}^*\right) m$ Для косозубых зубчатых колес должно выполняться дополнительное условие $W < \frac{b}{\sin \beta_b}$ , где $b$ - ширина венца, $\sin \beta_b = \sin \beta \cos \alpha$	116,99

# 11. Значения постоянной хорды $\bar{s}_c^*$ и расстояния ее от делительной окружности $\bar{h}_{\!_\Delta}^*$ , выраженные в долях модуля ( $\alpha=20$ °)

$$\vec{s}_c^{\bullet} = \frac{\pi}{2}\cos^2\alpha + x\sin 2\alpha; \quad \vec{h}_{\Delta}^{\bullet} = 0.5 \, \vec{s}_c^{\bullet} \, \text{tg}\alpha$$

х	$\bar{s}_c$	$\overline{h}_{\!\scriptscriptstyle \Delta}^{ullet}$	х	-* s _c	$\bar{h}_{\!\scriptscriptstyle \Delta}^{ullet}$	х	-• s _c	$ar{h}_{\!\Delta}^{m{*}}$	х	-* s _c	$\bar{h}_{\!\scriptscriptstyle \Delta}^{\:ullet}$
-0,50	1,0657	0,1940	-0,12	1,3099	0,2384	0,26	1,5542	0,2828	0,64	1,7984	0,3273
-0,49	1,0721	0,1951	-0,11	1,3164	0,2396	0,27	1,5606	0,2840	0,65	1,8049	0,3284
-0,48	1,0785	0,1963	-0,10	1,3228	0,2408.	0,28	1,5670	0,2852	0,66	1,8113	0,3296
-0,47	1,0850	0,1975	-0,09	1,3292	0,2419	0,29	1,5735	0,2864	0,67	1,8177	0,3308
-0,46	1,0914	0,1986	-0,08	1,3356	0,2431	0,30	1,5799	0,2875	0,68	1,8241	0,3319
-0,45	1,0978	0,1998	-0,07	1,3421	0,2443	0,31	1,5863	0,2887	0,69	1,8306	0,3331
-0,44	1,1042	0,2010	-0,06	1,3485	0,2454	0,32	1,5927	0,2899	0,70	1,8370	0,3343
-0,43	1,1107	0,2021	-0,05	1,3549	0,2466	0,33	1,5992	0,2910	0,71	1,8434	0,3355
-0,42	1,1171	0,2033	-0,04	1,3614	0,2478	0,34	1,6056	0,2922	0,72	1,8498	0,3366
-0,41	1,1235	0,2045	-0,03	1,3678	0,2490	0,35	1,6120	0,2934	0,73	1,8563	0,3378
-0,40	1,1299	0,2057	-0,02	1,3742	0,2501	0,36	1,6185	0,2945	0,74	1,8627	0,3390
-0,39	1,1364	0,2068	-0,01	1,3806	0,2513	0,37	1,6249	0,2957	0,75	1,8691	0,3401
-0,38	1,1428	0,2080	0,00	1,3870	0,2524	0,38	1,6313	0,2969	0,76	1,8756	0,3413
-0,37 -0,36	1,1492	0,2092 0,2103	0,01 0,02	1,3935	0,2536 0,2548	0,39 0,40	1,6377	0,2981 0,2992	0,77	1,8820	0,3425 0,3436
-0,36	1,1621	0,2103	0,02	1,4063	0,2559	0,40	1,6506	0,3004	0,78	1.8948	0,3448
-0,33	1,1685	0,2117	0,03	1,4128	0,2571	0,42	1,6570	0,3016	0,80	1,9013	0,3460
-0,34	1,1749	0,2138	0,05	1,4192	0,2583	0,42	1,6635	0,3010	0,81	1,9077	0,3472
-0,33	1,1814	0,2150	0,06	1,4256	0,2594	0,43	1,6699	0,3039	0,82	1,9141	0,3483
-0,31	1,1878	0,2162	0,07	1,4320	0,2606	0,45	1,6763	0,3051	0,83	1,9206	0,3495
-0,30	1,1942	0,2174	0,08	1,4385	0,2618	0,46	1,6827	0,3062	0,84	1,9270	0,3507
-0,29	1,2007	0,2185	0,09	1,4449	0,2630	0,47	1,6892	0,3074	0,85	1,9334	0,3518
-0,28	1,2071	0,2197	0,10	1,4513	0,2641	0,48	1,6956	0,3086	0,86	1,9398	0,3530
-0,27	1,2135	0,2209	0,11	1,4578	0,2653	0,49	1,7020	0,3098	0,87	1,9463	0,3542
-0,26	1,2199	0,2220	0,12	1,4642	0,2665	0,50	1,7084	0,3109	0,88	1,9527	0,3554
-0,25	1,2264	0,2232	0,13	1,4706	0,2676	0,51	1,7149	0,3121	0,89	1,9591	0,3565
-0,24	1,2328	0,2244	0,14	1,4770	0,2688	0,52	1,7213	0,3132	0,90	1,9655	0,3577
-0,23	1,2392	0,2255	0,15	1,4835	0,2700	0,53	1,7277	0,3144	0,91	1,9720	0,3589
-0,22	1,2457	0,2267	0,16	1,4899	0,2711	0,54	1,7341	0,3156	0,92	1,9784	0,3600
-0,21	1,2521	0,2279	0,17	1,4963	0,2723	0,55	1,7406	0,3168	0,93	1,9848	0,3612
-0,20	1,2585	0,2291	0,18	1,5028	0,2735	0,56	1,7470	0,3179	0,94	1,9913	0,3624
-0,19	1,2649	0,2302	0,19	1,5092	0,2747	0,57	1,7534	0,3191	0,95	1,9977	0,3635
-0,18	1,2714	0,2314	0,20	1,5156	0,2758	0,58	1,7599	0,3203	0,96	2,0041	0,3647
-0,17	1,2778	0,2326	0,21	1,5220	0,2770	0,59	1,7663	0,3214	0,97	2,0105	0,3659
-0,16	1,2842	0,2337	0,22	1,5285	0,2782	0,60	1,7727	0,3226	0,98	2,0170	0,3671
-0,15	1,2906	0,2349	0,23	1,5349	0,2793	0,61	1,7791	0,3238	0,99	2,0234	0,3682
-0,14	1,2971	0,2361	0,24	1,5413	0,2805	0,62	1,7856	0,3249	1,00	2,0298	0,3694
-0,13	1,3035	0,2372	0,25	1,5477	0,2817	0,63	1,7920	0,3261	L	L	<u></u>

	т _п , мм	1
α -20°	- \$ _c	1,387
	- h _c	0,748
30 30	m _n ,	4
	- s _c	5,548
Ψ	- h	2,990

# 12. Значения постоянной хорды $\tilde{s}_c$ для колес без смещения

1	1,25	1,5	2	2,5	3	3,5
1,387	1,734	2,081	2,774	3,468	4,161	4,855
0,748	0,935	1,121	1,495	1,869	2,243	2,617
4	5	6	7	8	9	10
5,548	6,935	8,323	9,710	11,097	12,484	13,871
2,990	3,738	4,486	5,223	5,891	6,728	7,476
	0,748	1,387 1,734 0,748 0,935 4 5 5,548 6,935	1,387     1,734     2,081       0,748     0,935     1,121       4     5     6       5,548     6,935     8,323	1,387     1,734     2,081     2,774       0,748     0,935     1,121     1,495       4     5     6     7       5,548     6,935     8,323     9,710	1,387     1,734     2,081     2,774     3,468       0,748     0,935     1,121     1,495     1,869       4     5     6     7     8       5,548     6,935     8,323     9,710     11,097	1,387     1,734     2,081     2,774     3,468     4,161       0,748     0,935     1,121     1,495     1,869     2,243       4     5     6     7     8     9       5,548     6,935     8,323     9,710     11,097     12,484

Табличные данные определены по формулам: для постоянной хорды  $\bar{s}_c = 1,387 m_n$ , для высоты до постоянной хорды  $\bar{h}_c = 0,748 m_n$ .

13.	Значение	коэффициента	<b>Κ</b> (α	= 20°)	K	=	$\frac{\operatorname{inv}\alpha_t}{\operatorname{inv}\alpha}$
-----	----------	--------------	-------------	--------	---	---	---------------------------------------------------------------

β	K	β	К	β	K	β	K
8°00′	1,0283	16°00′	1,1192	24°00′	1,2933	32°00′	1,5952
8 10	1,0295	16 10	1,1219	24 10	1,2980	32 10	1,6033
8 20	1,0308	16 20	1,1246	24 20	1,3029	32 20	1,6116
8 30	1,0321	16 30	1,1274	24 30	1,3078	32 30	1,6200
8 40	1,0334	16 40	1,1302	24 40	1,3127	32 40	1,6285
8 50	1,0347	16 50	1,1330	24 50	1,3177	32 50	1,6371
9 00	1,0360	17 00	1,1358	25 00	1,3227	33 00	1,6457
9 10	1,0374	17 10	1,1387	25 10	1,3278	33 10	1,6545
9 20	1,0388	17 20	1,1416	25 20	1,3330	33 20	1,6634
9 30	1,0402	17 30	1,1446	25 30	1,3382	33 30	1,6723
9 40	1,0417	17 40	1,1476	25 40	1,3435	33 40	1,6814
9 50	1,0432	17 50	1,1507	25 50	1,3488	33 50	1,6906
10 00	1,0447	18 00	1,1538	26 00	1,3542	34 00	1,6999
10 10	1,0462	18 10	1,1569	26 10	1.3597	34 10	1,7092
10 20	1,0478	18 20	1,1600	26 20	1,3652	34 20	1,7188
10 30	1,0494	18 30	1,1632	26 30	1,3708	34 30	1,7284
10 40	1,0510	18 40	1,1664	26 40	1,3765	34 40	1,7381
10 50	1,0527	18 50	1,1697	26 50	1,3822	34 50	1,7479
11 00	1,0544	19 00	1,1730	27 00	1,3880	35 00	1,7579
11 10	1,0561	19 10	1,1764	27 10	1,3938	35 10	1,7680
11 20	1,0578	19 20	1,1798	27 20	1,3997	35 20	1,7782
11 30	1,0596	19 30	1,1832	27 30	1,4057	35 30	1,7884
11 40	1,0614	19 40	1,1867	27 40	1,4117	35 40	1,7989
11 50	1,0632	19 50	1,1902	27 50	1,4178	35 50	1,8095
12 00	1,0651	20 00	1,1938	28 00	1,4240	36 00	1,8201
12 10	1,0670	20 10	1,1974	28 10	1,4303	36 10	1,8309
12 20	1,0689	20 20	1,2010	28 20	1,4366	36 20	1,8419
12 30	1,0708	20 30	1,2047	28 30	1,4429	36 30	1,8529
12 40	1,0728	20 40	1,2085	28 40	1,4494	36 40	1,8641
12 50	1,0748	20 50	1,2123	28 50	1,4559	36 50	1,8754
13 00	1,0769	21 00	1,2161	29 00	1,4626	37 00	1,8869
13 10	1,0790	21 10	1,2200	29 10	1,4693	37 10	1,8985
13 20	1,0811	21 20	1,2239	29 20	1,4760	37 20	1,9102
13 30	1,0832	21 30	1,2279	29 30	1,4828	37 30	1,9221

Продолжение табл. 13

β	K	β	K	β	K	β	K
13°40′ 13 50 14 00 14 10 14 20 14 30 14 40 14 50 15 00 15 10 15 20 15 30 15 40 15 50	1,0854 1,0876 1,0898 1,0921 1,0944 1,0967 1,0991 1,1015 1,1039 1,1064 1,1089 1,1114 1,1140 1,1166	21°40′ 21 50 22 00 22 10 22 20 22 30 23 40 22 50 23 00 23 10 23 20 23 30 23 40 23 50	1,2319 1,2360 1,2401 1,2442 1,2484 1,2527 1,2570 1,2614 1,2658 1,2702 1,2747 1,2793 1,2839 1,2886	29°40′ 29 50 30 00 30 10 30 20 30 30 30 40 30 50 31 10 31 20 31 30 31 40 31 50	1,4897 1,4967 1,5038 1,5109 1,5182 1,5255 1,5329 1,5404 1,5479 1,5556 1,5633 1,5712 1,5791 1,5871	37°40′ 37 50 38 00 38 10 38 20 38 30 38 40 38 50 39 00 39 10 39 20 39 30 39 40 39 50 40 00	1,9341 1,9463 1,9586 1,9710 1,9836 1,9963 2,0093 2,0224 2,0355 2,0490 2,0626 2,0764 2,0902 2,1143 2,1185

# 14. Значение части длины общей нормали $W_T^*$ , выраженной в долях модуля (lpha=20°)

z _T	x	$W_T^*$	z _n	z _T	х	$W_T^*$	z _n
8 9 10	От 0,55 до 0,80 » 0,50 » 0,80 » 0,40 » 0,80	4,5402 4,5542 4,5683	2 2 2	20	От —0,10 до 0,55 Св. 0,55 » 1,00	7,6604 10,6125	3 4
11	От 0,35 до 0,65 Св. 0,65 » 0,90	4,5823 7,5344	2 3	21	От —0,15 до 0,45 Св. 0,45 » 1,00	7,6744 10,6265	3 4
12	От 0,30 до 0,50 Св. 0,50 » 1,00	4,5963 7,5484	2 3	22	От —0,25 до 0,35 Св. 0,35 » 1,00	7,6884 10,6405	3 4
13	От 0,25 до 0,40 Св. 0,40 <b>»</b> 1,00	4,6103 7,5624	2 3	23	От —0,30 до 0,30 Св. 0,30 » 1,00	7,7024 10,6545	3 4
14	От 0,20 до 0,30 Св. 0,30 <b>»</b> 1,00	4,6243 7,5764	2 3	24	От —0,35 до 0,20 Св. 0,20 » 1,00	7,7165 10,6686	3 4
15	От 0,15 до 0,20 Св. 0,20 <b>»</b> 1,00	4,6383 7,5904	2 3	25	От -0,35 до 0,15 Св. 0,15 » 1,00	7,7305 10,6826	3 4
16	От 0,05 до 0,15 Св. 0,15 → 1,00	4,6523 7,6044	2 3	26	От —0,40 до 0,05 Св. 0,05 » 0,80 » 0,80 » 1,00	7,7445 10,6966 13,6487	3 4 5
17	От 0 до 0,90 Св. 0,90 » 1,00	7,6184 10,5705	3 4	27	От —0,45 до 0 Св. 0 * 0,70	7,7585 10,7106	3 4
18	От 0 до 0,75 Св. 0,75 → 1,00	7,6324 10,5845	3 4	-	» 0,70 » 1,00	7,7725	3
19	От —0,05 до 0,65 Св. 0,65 » 1,00	7,6464 10,5985	3 4	28	От —0,50 до —0,05 Св. —0,05 » 0,60 » 0,60 » 1,00	10,7246 13,6767	4 5

Продолжение табл. 14.

$z_T$	х	$W_T^*$	z _n	z _T	x	$W_T^*$	z _n
29	От —0,50 до —0,10 Св. —0,10 » 0,50 » 0,50 » 1,00	7,7865 10,7386 13,6907	3 4 5	41	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	10,9067 13,8588 16,8109	4 5 6
30	От —0,50 до —0,20 Св. —0,20 » 0,45 » 0,45 » 1,00	7,8005 10,7526 13,7047	3 4 5	42	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 1,00	10,9207 13,8728 16,8249	4 5 6
31	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	7,8145 10,7666 13,7187	3 4 5	43	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,80	10,9347 13,8868 16,8389	4 5 6
32	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	7,8285 10,7806 13,7327	3 4 5	44	» 0,80 » 1,00 От —0,50 до —0,45 Св. —0,45 » 0,05	19,7910 10,9487 13,9008	4 5
33	От —0,50 до —0,35 Св. —0,35 » 0,20	7,8425 10,7946	3 4 5		* 0,05 * 0,75 * 0,75 * 1,00	16,8529 19,8050	6 7
	» 0,20 » 1,00 От -0,50 до -0,40	7,8565	3	45	От —0,50 до 0 Св. 0 » 0,65 » 0,65 » 1,00	13,9148 16,8669 19,8190	5 6 7
34	CB0,40 » 0,15 » 0,15 » 1,00	10,8086	5	46	От —0,50 до —0,05 Св. —0,05 » 0,55	13,9289 16,8810	5 6
35	От —0,50 до —0,45 Св. —0,45 » 0,05 » 0,05 » 0,75	7,8706 10,8227 13,7748	3 4 5		» 0,55 » 1,00	19,8331	5
	» 0,75 » 1,00 От —0,50 до 0	16,7269	4	47	От —0,50 до —0,10 Св. —0,10 » 0,50 » 0,50 » 1,00	13,9429 16,8950 19,8471	6 7
36	CB. 0 » 0,65 » 0,65 » 1,00	13,7888 16,7409	5 6	48	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	13,9569 16,9090 19,8611	5 6 7
37	От —0,50 до —0,05 Св. —0,05 » 0,60 » 0,60 » 1,00	10,8507 13,8025 16,7549	4 5 6		От -0,50 до -0,25	13,9709	5
	От -0,50 до -0,10	10,8647	4	49	CB0,25 » 0,35 » 0,35 » 1,00	16,9230 19,8751	6 7
38	Св. —0,10 » 0,50 » 0,50 » 1,00	13,8168 16,7689	5 6	50	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	13,9849 16,9370 19,8891	5 6 7
39	От —0,50 до —0,20 Св.—0,20 » 0,40 » 0,40 » 1,00	10,8787 13,8308 16,7829	4 5 6				-
40	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	10,8927 13,8448 16,7969	4 5 6	51	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 1,00	13,9989 16,9510 19,9031	5 6 7

Продолжение табл. 14.

z _T	х	$W_T^*$	z _n	z _T	х	$W_T^*$	$z_n$
52	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,80 » 0,80 » 1,00	14,0129 16,9650 19,9171 22,8692	5 6 7 8	62	От —0,50 до —0,45 Св. —0,45 » 0,05 » 0,05 » 0,70 » 0,70 » 1,00	17,1051 20,0572 23,0093 25,9614	6 7 8 9
53	От —0,50 до —0,45 Св. —0,45 » 0,05 » 0,05 » 0,70 » 0,70 » 1,00	14,0269 16,9790 19,9311 22,8832	5 6 7 8	63	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	20,0712 23,0233 25,9754	7 8 9
54	От —0,50 до 0 Св. 0 » 0,65 » 0,65 » 1,00	16,9930 19,9451 22,8972	6 7 8	64	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	20,0852 23,0373 25,9894	7 8 9
55	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	17,0071 19,9592 22,9113	6 7 8	65	От —0,55 до —0,10 Св. —0,10 » 0,45 » 0,45 » 1,00	20,0992 23,0513 26,0034	7 8 9
56	От -0,50 до -0,10 Св0,10 » 0,50 » 0,50 » 1,00	17,0211 19,9732 22,9253	6 7 8	66	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	20,1132 23,0653 26,0174	7 8 9
57	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	17,0351 19,9872 22,9393	6 7 8	67	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	20,1272 23,0793 26,0314	7 8 9
58	От —0,50 до —0,25 Св. —0,25 » 0,35	17,0491 20,0012	6 7	68	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	20,1412 23,0933 26,0454	7 8 9
59	»     0,35 »     1,00       От —0,50 до —0,30     Св. —0,30 »     0,25 »       »     0,25 »     1,00	22,9533 17,0631 20,0152 22,9673	8 6 7 8	69	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,85 » 0,85 » 1,00	20,1553 23,1074 26,0595 29,0116	7 8 9 10
60	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 1,00	17,0771 20,0292 22,9813	6 7 8	70	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,75 » 0,75 » 1,00	20,1693 23,1214 26,0735 29,0256	7 8 9 10
61	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,80 » 0,80 » 1,00	17,0911 20,0432 22,9953 25,9474	6 7 8 9	71	От —0,50 до 0,05 Св. —0,05 » 0,70 » 0,70 » 1,00	23,1354 26,0875 29,0396	8 9 10

Продолжение табл. 14.

					11700	олжение та	
$z_T$	x	$W_T^*$	Z _n	$z_T$	х	$W_T^*$	Z _n
72	От —0,50 до 0 Св. —0 » 0,60 » 0,60 » 1,00	23,1494 26,1015 29,0536	8 9 10	82	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	26,2416 29,1937 32,1458	9 10 11
73	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	23,1634 26,1155 29,0676	8 9 10	83	От —0,50 до —0,10 Св. —0,10 » 0,45 » 0,45 » 1,00	26,2556 29,2077 32,1598	9 10 11
74	От —0,50 до —0,10 Св. —0,10 » 0,45 » 0,45 » 1,00	23,1774 26,1295 29,0816	8 9 10	84	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	26,2696 29,2217 32,1738	9 10 11
75	°От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	23,1914 26,1435 29,0956	8 9 10	85	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	26,2836 29,2357 32,1878	9 10 11
76	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	23,2054 26,1575 29,1096	8 9 10	86	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	26,2976 29,2497 32,2018	9 10 11
77	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	23,2194 26,1715 29,1236	8 9 10	87	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,85 » 0,85 » 1,00	26,3116 29,2637 32,2158 35,1679	9 10 11 12
78	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,85	23,2334 26,1855 29,1376	8 9 10	88	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,75 » 0,75 » 1,00	26,3256 29,2777 32,2298 35,1819	9 10 11 12
	» 0,85 » 1,00 От —0,50 до —0,40 Св. —0,40 » 0,15	32,0897 23,2474 26,1995	8 9	89	От —0,50 до 0,05 Св. 0,05 » 0,70 » 0,70 » 1,00	28,2917 32,2438 35,1959	10 11 12
	» 0,15 » 0,75 » 0,75 » 1,00	29,1516 32,1037	10 11	90	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	29,3057 32,2578 35,2099	10 11 12
80	От —0,50 до 0,05 Св. 0,05 » 0,70 » 0,70 » 1,00	26,2135 29,1656 32,1177	9 10 11	91	От —0,50 до —0,05 Св. —0,05 » 0,55	29,3198 32,2719	10 11
81	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	26,2276 29,1797 32,1318	9 10 11	92	» 0,55 » 1,00  От —0,50 до —0,10  Св. —0,10 » 0,45  » 0,45 » 1,00	35,2240 29,3338 32,2859 35,2380	10 11 12

Продолжение табл. 14.

$z_T$	х	$W_T^*$	$z_n$	z _T	х	$W_T^*$	$z_n$
93	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	29,3478 32,2999 35,2520	10 11 12	104	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	32,4540 35,4061 38,3582	11 12 13
94	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	29,3618 32,3139 35,2660	10 11 12	105	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,80 » 0,80 » 1,00	32,4680 35,4201 38,3722 41,3243	11 12 13 14
95	От —0,50 до —0,30 Св. —0,30 » 0,25 » 0,25 » 1,00	29,3758 32,3279 35,2800	10 11 12	106	От —0,50 до —0,45 Св. —0,45 » 0,15 » 0,15 » 0,75 » 0,75 » 1,00	32,4820 35,4341 38,3862 41,3383	11 12 13 14
96	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,80 » 0,80 » 1,00	29,3898 32,3419 35,2940 38,2461	10 11 12 13	107	От —0,50 до 0,05 Св. 0,05 » 0,65 » 0,65 » 1,00	35,4481 38,4002 41,3523	12 13 14
97	От —0,50 до —0,40 Св. —0,40 » 0,15 » 0,15 » 0,75	29,4038 32,3559 35,3080	10 11 12	108	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	35,4621 38,4142 41,3663	12 13 14
	» 0,75 » 1,00	38,2601	13	109	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	35,4761 38,4282 41,3803	12 13 14
98	От —0,50 до 0,05 Св. 0,05 » 0,70 » 0,70 » 1,00	32,2699 35,3220 38,2741	11 12 13	110	От —0,50 до —0,15 Св. —0,15 » 0,45	35,4901 38,4422	12 13
99	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	32,3839 35,3360 38,2881	11 12 13		» 0,45 » 1,00 От —0,50 до —0,20	41,3943 35,5041	14
100	От —0,50 до —0,05	32,3979	11	111	Св. —0,20 » 0,40 » 0,40 » 1,00	38,4562 41,4083	13 14
100	CB0,05 » 0,55 » 0,55 » 1,00	35,3500 38,3021	12	112	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	35,5181 38,4702 41,4223	12 13 14
101	От —0,50 до —0,15 Св. —0,15 » 0,45 » 0,45 » 1,00	32,4119 35,3640 38,3161	11 12 13	113	От —0,50 до —0,30 Св. —0,30 » 0,25	35,5321 38,4842	12 13
102	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	32,4260 35,3781 38,3302	11 12 13		» 0,25 » 1,00	41,4363	14
103	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	32,4400 35,3921 38,3442	11 12 13	114	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,80 » 0,80 » 1,00	35,5461 38,4982 41,4503 44,4024	12 13 14 15

Продолжение табл. 14.

$z_T$	х	$W_T^*$	Zn	z _T	х	$W_T^*$	z _n
115	От —0,50 до —0,45 Св. —0,45 » 0,15 » 0,15 » 0,75 » 0,75 » 1,00	35,5602 38,5123 41,4644 44,4165	12 13 14 15	121	От —0,50 до —0,25 Св. —0,25 » 0,35 » 0,35 » 1,00	38,5963 41,5484 44,5005	13 14 15
116	От —0,50 до 0,05 Св. 0,05 » 0,65 » 0,65 » 1,00	38,5263 41,4784 44,4305	13 14 15	122	От —0,50 до —0,30 Св. — 0,30 » 0,25 » 0,25 » 1,00	38,6103 41,5624 44,5145	13 14 15
117	От —0,50 до 0 Св. 0 » 0,60 » 0,60 » 1,00	38,5403 41,4924 44,4445	13 14 15	123	От —0,50 до —0,35 Св. —0,35 » 0,20 » 0,20 » 0,80 » 0,80 » 1,00	38,6243 41,5764 44,5285 47,4806	13 14 15 16
118	От —0,50 до —0,05 Св. —0,05 » 0,55 » 0,55 » 1,00	38,5543 41,5064 44,4585	13 14 15	124	От —0,50 до —0,45 Св. —0,45 » 0,15 » 0,15 » 0,75	38,6383 41,5904 44,5425	13 14 15
119	От —0,50 до —0,15 Св. —0,15 » 0,45 » 0,45 » 1,00	38,5683 41,5204 44,4725	13 14 15		» 0,75 » 1,00	47,4946	16
120	От —0,50 до —0,20 Св. —0,20 » 0,40 » 0,40 » 1,00	38,5823 41,5344 44,4865	13 14 15	125	От —0,50 до —0,05 Св. —0,05 » 0,65 » 0,65 » 1,00	41,6044 44,5565 47,5086	14 15 16

 $\Pi$  р и м е ч а н и е . Значения  $\textit{W}^{\bullet}_{\textit{T}}$  рассчитаны по формуле

$$W_T^* = \left[\pi(z_n - 0.5) + z_T \text{ inv }\alpha\right]\cos\alpha$$
;

здесь  $z_n$  - округленное до ближайшего целого числа значение  $z_{nr}$  :

$$z_{nr} = \frac{\alpha_{xk} z_k}{180^{\circ}} + 0.5,$$
$$\cos \alpha_{xk} = \frac{z_k \cos \alpha}{z_k + 2x}.$$

где

### 15. Формулы для определения основных размеров цилиндрических передач со смещением

Параметры и о	бозначения	Расчетные формулы и указания				
	Исходн	ные данные				
Число зубьев <i>z</i> Модуль <i>m</i> Угол наклона β Нормальный исходный Межосевое расстояние		1. Межосевое расстояние входит в исходные данные, если его значение задано. 2. Коэффициенты смещения $x_1$ и $x_2$ входят в исходные данные, если значение межосевого расстояния $a_w$ не задано.				
Коэффициент смещения	у шестерни x ₁ у колеса x ₂	При исходном контуре по ГОСТ 13755-81 величины $x_1$ и $x_2$ рекомендуется выбирать по табл. 4 и 5				

Продолжение табл. 15

## Расчетные формулы и указания Параметры и обозначения Расчет коэффициентов смещения х, и х, при заданном межосевом расстоянии $a = \frac{\left(z_1 + z_2\right)m}{2\cos\theta}$ **Делительное** межосевое расстояние а $tg \alpha_t = \frac{tg \alpha}{\cos \beta}$ Угол профиля а, $\cos \alpha_{tw} = \frac{a}{a} \cos \alpha_t$ Угол зацепления α м $x_{\Sigma} = \frac{(z_1 + z_2)(\operatorname{inv} \alpha_{nv} - \operatorname{inv} \alpha_t)}{2 \operatorname{tg} \alpha} ;$ Коэффициент суммы смещений $x_{\tau}$ значение эвольвентной функции (inv α) - по При исходном контуре по ГОСТ 13755-81 раз-Коэффициент у шестерни $x_1$ бивку значения $x_{\Sigma} = x_1 + x_2$ на составляющие $x_1$ у колеса $x_2$ смешения и $x_2$ рекомендуется производить по табл. 6 и 7.

Расчет межосевого расстояния  $a_w$  при заданных коэффициентах смещения  $x_1$  и  $x_2$ 

Коэффициент суммы смещений  $x_{\Sigma}$ 

Угол профиля а,

Угол зацепления а_м

Межосевое расстояние а

$$x_{\Sigma} = x_1 + x_2$$

$$tg \alpha_i = \frac{tg \alpha}{\cos \beta}$$

$$inv \alpha_{nw} = \frac{2x_{\Sigma} tg \alpha}{z_1 + z_2} + inv \alpha_i$$

$$\alpha_w = \frac{(z_1 + z_2) m}{2 \cos \beta} \frac{\cos \alpha_i}{\cos \alpha_{nw}}$$

### Расчет диаметров зубчатых колес

Делительный диаметр d Передаточное число u Начальный диаметр  $d_w$  Коэффициент воспринимаемого смещения y Коэффициент уравнительного смещения  $\Delta y$  Диаметр вершин зубьев  $d_a$ 

Диаметр впадин  $d_f$  (размер справочный)

$$\begin{split} d_1 &= \frac{z_1 \, m}{\cos \beta} \, ; \quad d_2 &= \frac{z_2 \, m}{\cos \beta} \\ u &= z_2/z_1 \\ d_{w1} &= \frac{2a_w}{u+1} \, ; \quad d_{w2} &= \frac{2a_w u}{u+1} \\ y &= \frac{a_w - a}{m} \\ \Delta y &= x_{\Sigma} - y \\ d_{a1} &= d_1 + 2 \Big( h_a^* + x_1 - \Delta y \Big) \, m \, ; \\ d_{a2} &= d_2 + 2 \Big( h_a^* + x_2 - \Delta y \Big) \, m \\ d_{f1} &= d_1 - 2 \Big( h_a^* + c^* - x_1 \Big) \, m \, ; \\ d_{f2} &= d_2 - 2 \Big( h_a^* + c^* - x_2 \Big) \, m \end{split}$$

Примечания: 1. Для прямозубых передач  $\beta=0^{\circ}$ , тогда  $a=0.5(z_1+z_2)m$ ,  $\alpha_t=\alpha$ , d=zm.

- 2. При  $\alpha = \alpha_w$  получаем  $\alpha_{tw} = \alpha_t$ ,  $x_{\Sigma} = 0$ ,  $d_w = d$ , y = 0 и  $\Delta y = 0$ .
- 3. При  $x_{\Sigma} = 0$  получаем  $\alpha_{DW} = \alpha_{I}$ ,  $a_{W} = a$ ,  $d_{W} = d$ , y = 0 и  $\Delta y = 0$ .

Продолжение табл. 15

	Продолжение табл. 15
Параметры и обозначения	Расчетные формулы и указания
Расчет постоянной хорды	и высоты до постоянной хорды
<b>Постоянная хорда</b> , выраженная в долях $s_c^*$ (величина вспомогательная)	$\overline{s}_c^*$ - по табл. 11
Постоянная хорда s _c	$\bar{s}_c = \bar{s}_c^* m$
Расстояние постоянной хорды от делительной окружности, выраженное в долях мо-	$\overline{h}_{\!\Delta}^{ullet}$ - по табл. $11$
дуля $h_{\Delta}^{-*}$ (величина вспомогательная)	
Высота до постоянной хорды $\overline{h}_c$	$\overline{h}_c = 0.5(d_a - d) - \overline{h}_{\Delta}^* m$
Расчет длин	ы общей нормали
Условное число зубьев $z_K$	$z_{K1} = Kz_1,  z_{K2} = Kz_2;$ здесь $K$ определяется по табл. 13. Если $\beta = 0$ , то $z_{K1} = z_1,  z_{K2} = z_2$
Часть длины общей нормали, определяемая целой частью $z_T$ величины $z_K$ , выражен ная в долях модуля $W_T^*$	$W_T^*$ - по табл. 14. Если $\beta = 0$ , то $z_T = z$
Часть длины общей нормали, определяемая дробной частью величины $z_K$ , выраженная в долях модуля	$W_{n1}^* = 0.0149(z_{K1} - z_{T1});$ $W_{n2}^* = 0.0149(z_{K2} - z_{T2}).$ Если $\beta = 0$ , то $W_{n1}^* = 0$ и $W_{n2}^* = 0$
Часть длины общей нормали, определяемая смещением исходного контура, выраженная в долях модуля $\boldsymbol{W}_{x}^{*}$	
Длина общей нормали <i>W</i>	$W_{1} = (W_{T1}^{*} + W_{n1}^{*} + W_{x1}^{*}) m;$ $W_{2} = (W_{T2}^{*} + W_{n2}^{*} + W_{x2}^{*}) m.$
	Для прямозубых колес длину общей нормали проще принимать по табл. 17

Расчет толщины по хорде и высоты до хорды

Угол профиля  $\alpha_y$  в точке на концентрической окружности заданного диаметра  $d_y$ 

Окружная толщина  $s_{p_y}$  на заданном диаметре  $d_{v_y}$ 

$$\cos \alpha_y = \frac{d \cos \alpha_t}{d_y}$$

$$s_{ty} = d_y \left( \frac{\frac{\pi}{2} + 2x \operatorname{tg} \alpha}{2} + \operatorname{inv} \alpha_t - \operatorname{inv} \alpha_y \right)$$

	Продолжение табл. 15
Параметры и обозначения	Расчетные формулы и указания
Угол наклона линии зуба $\beta_y$ соосной цилиндрической поверхности диаметром $d_y$	$tg \beta_y = \frac{d_y}{d} tg \beta$
Половина угловой толщины зуба $\psi_{yv}$ эквивалентного зубчатого колеса, соответствующая концентрической окружности диаметром $\frac{d}{\cos^2 \beta_y}$	$a_{y}$
Толщина по хорде $\bar{s}_y$	$\bar{s}_y = d_y \frac{\sin \psi_{yv}}{\cos^2 \beta_y}$
Высота до хорды $\overline{h}_{ay}$	$\bar{s}_y = d_y \frac{\sin \psi_{yv}}{\cos^2 \beta_y}$ $\bar{h}_{ay} = 0.5 \left[ d_a - d_y + \frac{d_y}{\cos^2 \beta_y} (1 - \cos \psi_{yv}) \right]$
	по роликам (шарикам) . 13 и 14)
Диаметр ролика (шарика) <i>D</i>	При $\alpha = 20^{\circ}$ рекомендуется принимать $D \approx 1.7m$ и округлять до ближайшего значения по ГОСТ

Угол профиля в точке на концентрической окружности зубчатого колеса, проходящей через центр ролика (шарика) а п

Диаметр концентрической окружности зубчатого колеса, проходящей через центр ролика (шарика) сър

Размер по ролнкам (шарикам) прямозубых и косозубых зубчатых колес с четным числом зубьев M

То же, прямозубых колес с нечетным числом зубьев М

Размер по роликам (шарикам) косозубых зубчатых колес с нечетным числом М зубьев, а также с четным числом M зубьев при B > 45°

2475-88 (гл. ІХ)

$$\operatorname{inv} \alpha_D = \frac{D}{zm\cos\beta} + \operatorname{inv} \alpha_t - \frac{\frac{\pi}{2} - 2x\operatorname{tg}\alpha}{z}$$

$$d_D = d \frac{\cos \alpha_t}{\cos \alpha_D}$$

$$M = d_D + D$$

$$M = d_D \cos \frac{90^{\circ}}{z} + D \begin{cases} \text{Должно выполняться} \\ \text{условие} \\ d_D + D > d_a, \\ d_D - D > d_f \end{cases}$$

$$M = \frac{d_D}{2 \lg \beta_D} \sqrt{\lambda^2 + 4 \lg^2 \beta_D \cos^2 \left(\frac{90^\circ}{z} + \frac{\lambda}{2}\right)} + D,$$

где 
$$tg \beta_D = \frac{\cos \alpha_t tg \beta}{\cos \alpha_D}$$
.

	Продолжение табл. 15
Параметры и обозначения	Расчетные формулы и указания
	Вспомогательную величину $\lambda$ упрощенно определяют по графику на рис. 16. Должно выполняться условие $d_D + \frac{D}{\cos\beta_D} > d_a$
Нормальная толщина s _n	$s_n = \left(\frac{\pi}{2} + 2x \operatorname{tg} \alpha\right) m$
Основной диаметр $d_b$	$d_b = d \cos \alpha_t$
Основной угол наклона $\beta_b$	$\sin \beta_n = \sin \beta \cos \alpha$
$\Pi$ аг зацепления $p_{\alpha}$	$p_a = \pi m \cos \alpha$
Осевой шаг $p_{\chi}$	$p_{x} = \frac{\pi m}{\sin \beta}$
Ход $P_z$	$p_z = zp_x$
Коэффициент наименьшего смещения $x_{\min}$	х _{min} - по графику на рис. 7
Проверка коэфо	фициента перекрытия
Угол профиля зуба в точке окружности вершин $\alpha_a$	$\cos \alpha_a = \frac{d_b}{d_a}$
Коэффициент торцового перекрытия $\varepsilon_{\alpha}$	$\varepsilon_{\alpha} = \frac{z_1 \operatorname{tg} \alpha_{a1} + z_2 \operatorname{tg} \alpha_{a2} - (z_1 + z_2) \operatorname{tg} \alpha_{nw}}{2\pi}.$
	Для прямозубых передач рекомендуется $\varepsilon_{\alpha} \geq 1,2$ .
	Для косозубых передач рекомендуется $\epsilon_{\alpha} \ge 1,0$ .
	Коэффициенты торцового перекрытия передачи без смещения $\epsilon_{a1}$ и $\epsilon_{a2}$ определяют по графику
	на рис. 15, если $d_{a1}$ и $d_{a2}$ рассчитаны по формулам на стр. 416
Коэффициент осевого перекрытия $\epsilon_{eta}$	$ \varepsilon_{\beta} = \frac{b_{w}}{p_{x}}, $
	где b _w - рабочая ширина венца;
	р _х - осевой шаг.

Более полный и упрощенный геометрический расчет эвольвентного внешнего зацепления см. ГОСТ 16532-70.

Коэффициент перекрытия  $\varepsilon_{v}$ 

Рекомендуется ε_в ≥ 1,0

 $\epsilon_{\nu} = \epsilon_{\alpha} + \epsilon_{\beta}$ 



Рис. 13. Размеры по роликам при четном числе зубьев

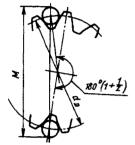



Рис. 14. Размеры по роликам при нечетном числе зубьев

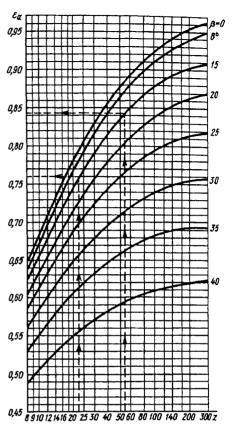



Рис. 15. График для определения величины  $\varepsilon_{a1}$  и  $\varepsilon_{a2}$  передачи без смещения в зависимости от z и  $\beta$  ( $\alpha=20^{\circ}$ ),  $h_a^*=1; \ \varepsilon_a=\frac{z}{2\pi}\left(\operatorname{tg}\alpha_a-\operatorname{tg}\alpha_{rv}\right)$ 

 $\Pi$  ример. Дано:  $z_1 = 22$ ,  $z_2 = 55$ ,

 $\beta = 15^{\circ}$ . По графику при z и  $\beta$  определяем  $\epsilon_{a1} = 0,76$  (см. штриховые линии); при  $z_2$  и  $\beta$  определяем  $\epsilon_{a2} = 0,84$  (см. штриховые линии)

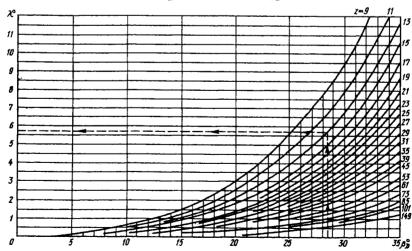



Рис. 16. График для определения величины  $\lambda$  в зависимости от  $\bar{z}$  и  $\beta_D$ 

Пример. Дано:  $z=13;\ \beta_D=28^{\circ}40'.$  По графику определяем  $\lambda=5^{\circ}45'$  (см. штриховую линию)

16. Значение эвольвентной функции (inv α)

Ми- нуты	0°	l°	2°	3°	<b>4</b> °	5°	6°
0	0,0000000000000	0,00000177	0,00001418	0,00004790	0,00011364	0,00022220	0,0003845
1	0008	186	454	871	507	443	877
2 3	0066	196	491	952	651	668	909
3	0122 0525	205 215	528 565	0,00005034	796	894	942
4	1026	215	603	117 201	943 0,00012090	0,00023123 352	975
5 6	1772	236	642	286	239	583	0,0004008 041
7	2814	247	682	372	389	816	074
8	4201	258	722	458	541	0,00024049	108
.9	5981 8205	270	762	546	693	284	141
10 11	0,000000010920	281 0,00000294	804 0,00001846	634 0,00005724	847	522	175
$\frac{-\frac{11}{12}}{}$	14178	306	888	814	0,00013002 158	0,00024761 0,00025001	0,0004209 244
13	18026	319	931	906	316	243	2 <del>44</del> 278
14	22514	333	975	998	474	486	313
15	27691	346	0,00002020	0,00006091	634	731	347
16	336061	360	065	186	796	977	382
17	40310 47850	375 389	111 158	281	958	0,00026225	417
18 19	56276	404	205	377 474	0,00014122 287	474 726	453 488
20	65638	420	253	573	453	978	524
21	0,000000075984	0,00000436	0,00002301	0,00006672	0,00014621	0,00027233	0,0004560
22	087364	452	351	772	790	489	596
23	099827	469	401	873	960	746	632
24 25	113423 128199	486 504	452 503	975 0,00007078	0,00015132 305	0,00028005 266	669
26	144207	522	555	183	479	528	706 743
27	161495	540	608	288	655	792	780
28	180212	559	662	394	831	0,00029058	817
29	200108	579	716	501	0,00016010	325	854
30 31	221531 0,000000244431	598 0,00000618	771 0,00002827	610 0,00007719	189 0,00016370	594	892
$\frac{-31}{32}$	268857	639	884	829	552	0,00029864 0,00030137	0,0004930 968
33	294859	660	941	941	736	410	0,0005006
34	322486	682	999	0,00008053	921	686	045
35	351787	704	0,00003058	167	0,00017107	963	083
36 37	382810 415607	726 749	117 178	281 397	294 483	0,00031242 522	122 161
38	450224	772	239	514	674	804	200
39	486713	796	301	632	866	0.00032088	240
40	525122	821	364	751	0,00018059 0,00018253	374	280
41	0,000000565501	0,00000846	0,00003427	0,00008871	0,00018253	0,00032661	0,0005319
42 43	0607898 0652363	871 897	491 556	992 0,00009114	449 646	950 0,00033241	359 400
44	0698946	923	622	237	845	533	440
45	0747695	950	689	362	0,00019045	827	481
46	0798660	978	757	487	247	0,00034123	522
47	0851889	0,00001005	825	614	450	421	563
48	0907433	034	894 964	742 870	654 860	720 0,00035021	604 645
49 50	0965341 1025661	063 092	0,00004035	0.00010000	0,00020067	324	687
51	0,000001088443	0,00001123	0,00004033	0,00010000	0.00020076		0,0005729
52	1153737	153	179	264	486	934	771
53	1221591	184	252	397	698	0,00036242	813
54	1292056	216	327	532	911	552	856
55 56	1365179 1441011	248 281	402 478	668 805	0,00021125 341	864 0.00037177	898 941
57	1519600	315	554	943	559	492	985
58	1600997	349	632	0,00011082	778	809	0,0006028
59	1685250	383	711	223	998	0,00038128	071
60	0,000001772408	0,00001418	0,00004790	0,00011364	0,00022220	0,00038448	0,0006115

Продолжение табл. 16

Ми- нуты	7°	8°	9°	10°	11°	12°	13°
0	0,0006115	0,0009145	0,0013048	0,0017941	0,0023941	0,0031171	0,0039754
1	158	203	121 195	0,0018031	0,0024051 161	302 434	909
2 3	203 248	260 318	268	122 213	272	567	0,0040065 221
4	292	377	342	305	383	567 699	377
5	337	435	416	397 489	495 607	832	534
5 6 7	382 427	494 553	491 566	581	719	966 0,0032100	692 849
8	473	612	641	674	831	2341	0,0041008
9	518 564	672	716	767	944	369	166
10 11	0,0006610	732 0,0009792	792 0,0013868	860 0,0018954	0,0025057 0,0025171	504 0,0032639	325 0,0041485
$-\frac{11}{12}$	657	852	944	0,0019048	285	775	644
13	703	913	0,0014020	142	3991	911	805
14 15	750	973	97	237 332	513	0,0033048	965
15	797 844	0,00010034 096	174 251	427	628 744	185 322	0,0042126 288
16 17	844 892	157	329	523	859	460	450
18	939	219	407	619	975	598	612
19 20	987 0,0007035	281 343	485 563	715 812	0,0026091 208	736 875	775 938
21	0,0007033	0,0010406	0,0014642	0,0019909	0,0026325	0,0034014	0,0043102
22	132	469	721	0,0020006	443	154	266
23 24	181	532	800	103	560	294	430
24 25	230 279	595 659	880 960	201 299	678 797	434 575	595 760
26 27	279 328	722	0,0015040	299 398 497	916	575 716	926
27	378	786	120	497	0,0027035	858	0,0044092
28 29	428 478	851 915	201 282	5961 695	154 274	0,0035000 142	259 426
30	528	980	363	596 695 795	394	285	593
31	0,0007579 629	0,0011045	0,0015445	0,0020895	0,0027515	0,0035428	0,0044761
32 33	629 680	111	527 699	995 0,0021096	636 757	572 716	929 0,0045098
34	732	176 242	691	197	879	860	267
35 [	783	308	774	197 299	0,0028001	0,0036005	437
36 37	835 887	375 441	857 941	400 502	123 246	150 296	607 777
38	939	508	0,0016024	605	369	441	948
39	991	575	108	605 707	493	588 735	0,0046120
40 41	0,0008044	643 0,0011711	193 0,0016277	810	616	735	291 0,0046464
42	0,0008096 150	779	362	0,0021914 0,0022017	0,0028741 865	0,0036882 0,0037029	636
43	203	847	447 533	121	990	177	809
44	256	915	533	226	0,0029115	326	983
45 46	310 364	984 0,0012053	618 704	330 435	241 367	474 623	0,0047157 331
47	418	122	791	541	494	773	506
48	473		877	647	620	923	681
49 50	527 582	262 332	964 0,0017051	753 859	747 875	0,0038073 224	857 0,0048033
51	0,0008638	0,0012402	0,0017031	0,0022966	0,0030003	0.0038375	0,0048210
52	693	473	227	0,0023073	131	527	387
53 54	749 805	544 615	315	180	260	679	564 742
55	805 861	687	403 492	288 396	389 518	831 984	742 921
56	917	758	581	504	648	0,0039137	0,0049099
57	974	830	671	613	778	291	279
58 59	0,0009031 088	903 975	760 850	722 831	908 0,0031039	445 599	458 639
60	0,0009145	0,0013048	0,0017941	0,0023941	0,0031171	0,0039764	0,0049819

Продолжение табл. 16

			<del></del>	<del></del>					
Ми- нуты	14°	15°	16°	17°	18°	19°	20°	21°	22°
0	0,0049819	0,0061498		0,009025	0,010760	0,012715	0,014904	0,017345	0,020054
1	0,0050000	707	517	052	791	750	943	388	101
2 3	182	917	541	079	822	784 819	982	431	149
3	364	0,0062127	565	107	853	819	0,015020	474	197
4	546	337	589	134	884	854	059	517	244
5 6 7	729	548	613	161	915	888	098	560	292
6	912	760	637	189	946	923	137	603	340
7	0,0051096	972	661	216	977	958	176	647	388
8	280	0,0063184	686	244	0,011008	993	215	690	436
9	465	397 611	810	272	039	0,013028	254	734	484
10	650	0063636	735	299	071	063	293	777	533
11	0,0051833	0,0063825	0,007759	0,009327	0,011102	0,013098	0,015333	0,017821	0,020581
12	208	0,0064039 254	784 808	355	133	134	372	865	629
13	395	470	833	383 411	165	169	411	908	678
14 15	582	686	857	439	196 228	204	451	952	726
16	770	902	882	467	260	240 275	490	996	775
17	058	0,0065119	907	495	200	311	570	0,018040	824
18	0,0053147	337	932	523	323	346	530 570 609	084	873
10	336	555	957	552	355	382	649	129 173	921 970
19 20	526	773	982	580	387	418	689	217	0,021019
21	0.0053716	0,0065992	0 008007	0,009608	0 01 1419	0,013454	0,015729	0,018262	0,021019
22	907	0,0066211	032	637	451	490	769	306	118
23	0,0054098	431	057	665	483	526	809	351	167
24	290	652	082	694	515	562	850	395	217
25	482	873	107	722	547	598	890	440	266
26	674	0,0067094	133	751	580	634	930	485	316
27	867	316	158	780	612	670	971	530	365
28	0,0055060	539	183	808	644	707	0,016012	575	415
29	254	762	209	837	677	743	052	620	465
30	448	985	234	866	709	779 0,013816	092	665	514
31	0,0055643	0,0068209	0,008260	0,009895	0,011742	0,013816	0,016133	0,018710	0,021564
32	838	434	285	924	775	852	174	755	614
33	0,0056034	659	311	953	807	889 926	215	800	665
34	230	884	337	982	840	926	255	846	715
35	427	0,0069110	362	0,010012	873	963	296	891	765
36 37	624 822	337	388 414	041 070	906 939	999 0,014036	337 379	937	815
38	0,0057020	564 791	414	070	939	0,014036	3/9	983 0,019028	866 916
39	219	0,0070019	440 466	120	972 0,012005	110	420 461	0,019028	967
40	417	248	400	158	0,012003	148	502	120	0,022018
41	0.0057617	0,0070477	492 0,008518	0.010188	0,012071	0.014185	0,016544	0,019166	0,022068
42	817	706	544	217	105	222	585	212	119
43	0.0058017	936	571	247	138	259	627	258	170
44	218	0,0071167	597	277	172	297	669	304	221
45	420	398	623	307	205	334	710	350	272
46	622	630	650	336	239	372	752	397	324
47	824	862	676	366	272	409	794	443	375
48	0,0059028	0,0072095	702	396	306	447	836	490	426
49	230	328	729	426	340	485	878	536	478
50	434	561	756	456	373	523	920	583	529
51		0,0072796			0,012407	0,014560	0,016962	0,019630	
52	843	0,0073030	809	517	441	598	0,017004	676	633
53	0,0060048	266	836	547	475	636	047	723	684
54	254	501	863	577	509	674	089	770	736
55	460	738	889	608	543	713	132	817	788
56	667	975	916	638	578	751	174	864	840
57		0,0074212	943	669	612	789	217	912	892
58	0,0061081	450	970	699	646	827	259	959	944
59	289	688	998	730	681	866	302	0,020007 0,020054	997 0,023049
60	0,0001498	0,0074927	0,009025	0,010/60	0,012/13	0,014904	0,01/343	0,020034	0,023049

Продолжение табл. 16

Ми- нуты	23°	24°	25°	26°	27°	28°	29°	30°	31°
0	0,023049	0,026350	0,029975		0,038287	0,043017	0,048164	0,053751	0,059809
1	102	407	0,030039	0,034016	362	100	253	849	914
2 3	154 207	465 523	102 166	086 155	438 514	182 264	343 432	946 0,054043	0,060019
3 4	207 259	581	229	225	590	347	522	140	124 230
5	312	639	293	294	666	430	612	238	335
5 6 7	365	697	357	364	742	513	702	336	441
7	418	756	420	434	818	596	792	433	547
8	471	814	484	504	894 971	679 762	883 973	531	653
9	524 577	872 931	549 613	574 644	0 039047	845	0,049064	629 728	759 866
10 11	0,023631	0,026989	0,030677	0,034714	0,039047 0,039122	0,043929	0,049154	0,054826	0,060972
$\frac{11}{12}$	684	0,027048	741	785	201	0,044012	245	924	0,061079
13	738	107	806	855	278	096	336	0,055023	186
14 15	791	166	870	926	355	180	427	122	292
15	845	225	935	997	432 509	264 348	518 609	221 320	400
16 17	899 952	284 343	0,031000	0,035067	586	432	701	419	507 614
18	0,024006	402	065 130	138 209	664	516	792	518	721
19	060	462	l 195	280	741	601	884	617	829
20	114	521	200	352	819	685	976	717	937
21	0,024169	0,027581	0,031325	0,035423	0,039897	0,044770	0,050068	0,055817	0,062045
22	223 277	640 700	390 456	494 566	974 0,040052	855 939	160 252	916 0,056016	153 261
23 24	332	760 760	521	637	131	0,045024	344	116	369
25	386	820	521 587	637 709	209	110	437	217	478
26	441	880	653	l 781	287	195	529	317	586
27	495	940	718	853	366	280	622	417	695
28	550 605	0,028000	784 850	925 997	444 523	366 451	715 808	518 619	804 913
29 30	660	060 121	917	0,036069	602	537	901	720	0,063022
31	0,024715	0,028181	0,031983	0,036142		0,045623	0,050994	0,056821	0,063131
32	770	242	0,032049	214	759	709	0.051087	922	241
33	825	302	116	287	839	795	181	0,057023	350
34	881 936	363 424	182 249	359 432	918 997	881 967	274 368	124 226	460 570
35 36	992	485	315	505	0.041076	0,046054	462	328	680
37	0,025047	546	382	578	156	140	556	429	790
38	103	607	449	651	236	227	650	531	901
39	159	668	516	724	316	313	744	633	0,064011
40 41	0,025270	729 0,028791	583 0,032651	798 0,036871	395 0,041475	400 0,046487	838 0,051933	736 0,057838	0,064233
42	326	852	718	945	556	575	0,052027	940	343
43	382	914	785	0.037018	636	662	122	0,058043	454
44	439	976	853	0,037018 092	636 716	749	217	146	565
45	495	0,029037	920	166	1 797	837	312	249	677
46 47	551 608	099 161	988 0,033056	240	877 958	924 0,047012	407 502	352 455	788 900
47 48	664	223		314	0,042039	100	597	558	0,065012
49	721	285	192	462	120	188	693	662	123
50	778	348	260	537	201	276	788	765	236
51	0,025834					0,047364			0,065348
52	891	472					980		460
53 54	948 0,026005	535 598	465 534		444 526		0,053076	0,059077 181	573 685
55	0,026003	660	602			718		285	798
56	120	723	671	885	689	807	365	390	
57	177	786	740	0,038060	771	896	461	494	0,066024
58	235	849					558	599	
59 60	292 0,026350	912			935	0,048074	655 0.053751	704 0,059809	
00	L 0,020330	0,0299/3	10,033947	0,038287	0,043017	0,048164	0,033/31	1 0,03909	0,000304

Продолжение табл. 16

Ми- нуты	32°	33°	34°	35°	36°	37°	38°	39°	40°
0	0,066364	0,073449		0,089342	0,098224	0,10778	0,11806	0,12911	0,14097
1	478 591	572 695	229 362	485 628	838 853	795	824	930	117
2	705	818	494	771	869	811 828	842 859	949 968	138 158
4	819	941	627	914	884	844	877	987	179
5 6	934 0,067048	0,074064 188	760 894	0,090058 201	899 915	861 878	895 913	0,13006	200
7	163	312	0,082027	345	930	894	931	025 045	220 241
8	277	435	161	489	946	911	949	064	261
9 10	392 507	559 684	294 428	633 777	961 977	928 944	967 985	083 102	282 303
11	0,067622	0,074808		0,090922	0,09992	0,10961	0,12003	0,13122	0,14324
12	738	932	697	0,091067	0,10008	978	021	141	344
13 14	853 969	0,075057 182	831 966	⁷ 211 356	024 039	995 0,11011	039 057	160 180	365 386
15	0,068084	307	0,083100	502	055	028	075	199	407
16	200	432	235	647	070	045	093	219	428
17 18	316 432	557 683	371 506	793 938	086 102	062 079	111 129	238 258	448 469
19	549	808	641	0,092084	118	096	147	277	490
20	665	934	777	230	133	113	165	297	511
$\frac{21}{22}$	0,068782 899	0,076060 186	0,083913	0,092377 523	0,10149 165	0,11130 146	0,12184 202	0,13316	0,14532 553
23	0,069016	312	185	670	181	163	220	355	574
24	133	439	321	816	196	180	238	375	595
25 26	250 367	565 692	457 594	963 0,093111	212 228	197 215	257 275	395 414	616 638
27	485	819	731	258	244	232	293	434	659
28	602	946	868	406	260	249	312	454	680
29 30	720 838	0,077073 200	0,085005 142	553 701	276 292	266 283	330 348	473 493	701 722
31	0,069956		0,085280	0,093849	0,10308	0,11300	0,12367	0,13513	0,14743
32	0,070075	455	418	998	323	317	385	533	765
33 34	193 312	583 711	555 693	0,094146 295	339 355	334 352	404 422	553 572	789 807
35	430	839	832	443	371	369	441	592	829
36	549	968	970	592 742	388	386 403	459 478	612 632	850 871
37 38	668 787	0,078096 225	0,086108 247	891	404 420	403	496	652	893
39	907	354	386	0,095041	436	438	515	672	914
40 41	0,071026 0,071146	483 0,078612	525 0,086664	190 0,095340	452 0,10468	455 0,11473	534 0,12552	692 0,13712	936 0,14957
42	266	741	804	490	484	490	571	732	979
43	386	871	943	641	500	507	590 608	7521	0,15000
44 45	506 626	0,079000 130	0,087083 223	791 942	516 533	525 542	608 627	772 792	022 043
46	747	260	363	0,096053	549	560	6461	813	065
47	867	390	503	244	565	577	664	833	087
48 49	988 0,072109	520 651	644 784	395 546	581 598	595 612	683 702	853 873	108 130
50	230	781	925	698	614	630	721	893	152
51	0,072351	0,079912	0,088066	0,096850	0,10630	0,11647	0,12740	0,13913	0,15173
52 53	473 594	0,080043 174	207 348	0,097002 154		665 682	759 778	934 954	195 217
54	716	306	490	306		700	797	974	239
55	838	437	631	459	696	718	815	995	261
56 57	959 0,073082	569 700	773 915	611 764	712 729	735 753	834 853	0,14015 035	282 304
58	204	832	0.089057	917	745	771	872	056	326
59	326	964	200	0,098071	762	788	891	076	348
60	0,073449	0,081097	0,089342	0,098224	0,10778	0,11806	0,12911	0,14097	0,15370

Продолжение табл. 16

Ми- нуты	41°	42°	43°	44°	45°	46°	47°	48°	49°
0	0,15370	6,16737	0,18202	0,19774	0,21460	0,23268	0,25206	0,27285	0,29516
1	392	760	228 253	802 829	489 518	299 330	240 273	321 357	554 593
2 3	414 436	784 807	233 278	856	548	362	307	393	631
4	458	831	304	883	577	393	341	429	670
5 6	480	855	329	910	606	424	374 408	465	709
6	503 525	879 902	355 380	938 965	635 665	456 487	408	501 538	747 786
7 8	547	926	406	992	694	519	475	574	825
9	569	950	431	0,20020	723	550	509	610	864
10	591	974	457 0,18482	047 0,20075	753 0,21782	582 0,23613	543 0,25577	646 0,27683	903 0,29942
- <u>11</u> 12	0,15614 636	0,16998 0,17022	508	102	812	645	611	719	981
13	658	045	534	130	841	676	645	755	0,30020
14	680	069	559	157	871	708	679	792	059
15 16	703 725	093 117	585 611	185 212	900 930	740 772	713 747	828 865	098 137
17	748	142	637	240	960	803	781	902	177
18	770	166	662	` 268	989	835	815	938	216
19	793	190 214	688	296 323	0,22019 049	867 899	849 883	975 0,28012	255 0,30295
20 21	815 0,15838	0,17238	714 0,18740	0,20351	0,22079	0,23931	0,25918	0,28012	0,30293
22	860	262	766	379	108	933	952	085	374
23	883	286	792	407	138	995	985	122	413
24 25	905 928	311 335	818 844	435 463	168 198	0,24027 059	0,26021	159 196	453 492
26	950	359	870	490	228	091	089	233	532
27	973	383	896	518	258	123	124	270	572
28 29	996 0,16019	408 432	922 948	546 575	288 318	156 188	159 193	307 344	611 651
30	0,10019	457	975	603	348	220	228	381	691
31	0,16064	0,17481	0,19001	0,20631	0,22378	0,24253	0,26262	0,28418	0,30731
32	087	506	027	659	409	285	297	455	771
33 34	110 133	530 555	053 080	687 715	439 469	317 350	332 368	493 530	811 851
35	156	579	106	743	499	382	401	567	891
36 37	178	604	132	772	530	415	436	605	931
37	201 224	628 653	159 185	800 828	560 590	447 480	471 506	642 680	971 0,31012
39	247	678	212	857	621	512	541	717	0,51012
40	270	702	238	885	651	545	576	755	092
$\frac{41}{42}$	0,16293	0,17727 752	0,19265 291	0,20914 942	0,22682	0,24578	0,26611 646	0,28792 830	0,31133
42	317 340	777	318	971	712 743	611 643	682	868	173 214
44	363	801	344	999	773	676	717	906	254
45	386	826	371	0,21028	804	709	752	943	295
46 47	409 432	851 876	398 424	056 085	835 865	742 775	787 823	981 0,29019	335 376
48	456	901	451	114	896	808	858	057	417
49	479	926	478	142	927	841	893	095	457
50 51	502 0,16525	951 0,17976	505 0,19532	171 0,21200	958 0,22989	874 0,24907	929 0,26964	133 0,29171	498 0,31539
52	549	0,17970	558	229	0,22989	940	0,26964	209	580
53	572	026	585	257	050	973	035	247	621
54	596	051	612	286	081	0,25006	071	286	662
55 56	619 642	076 101	639 666	315 344	112 143	040 073	107 142	324 362	703 744
57	666	127	693	373	174	106	178	400	785
58	689	152	720	402	206	140	214	439	826
59 60	713 0,16737	177	747 0.19774	431	0.23269	173	250	477	868
	0,10/3/	0,18202	0,17//4	0,21460	0,23268	0,25206	0,27285	0,29516	0,31909

Продолжение табл. 16

Минуты	50°	51°	52°	53°	54°
0	0,31909	0,34478	0,37237	0,40202	0,43390
1	950 992	522 567	285	253	446
2	0,32033	567 611	332 380	305 356	501
4	0,52055	656	428	407	556 611
3 4 5 6 7	116	700	476	459	667
6	158	745	524	511	722
7	199	790	572	562	778
8	241 283	834	620	614	833
9	324	879 924	668 716	666 717	889 945
11	0,32366	0,34969	0,37765	0,40769	0,44001
12	408	0,35014	813	821	057
13	450	059	861	873	113
14	492	104	910	925	169
15	534 576	149 194	958 0,38007	977	225
16 17	618	240	0,38007	0,41030 082	281 337
18	661	285	105	134	393
19	703	330	153	187	450
20	745	376	202	239	506
21	0,32787	0,35421	0,38251	0,41292	0,44563
22 23	830 872	467 512	299 348	344	619
23	915	558	397	397 450	676 733
25	957	604	446	502	789
26	0,33000	649	496	555	846
27	042	695	545	608	903
28	085	741 787	594 643	661	960 0.45017
29 30	128 171	833	693	714 767	0,43017
31	0,33213	0,35879	0,38742	0,41820	0,45132
32	256	925	792	874	189
33	299	971	841	927	246
34	342	0,36017	891 941	980 0,42034	304 361
35 36	385 428	063 110	990	0,42034	419
37	471	156	0,39040	141	476
38	515	202	090	194	534
39	558	249	140	248	592
40	601	295	190	302 0,42355	650 0,45708
41 42	0,33645 688	0,36342 388	0,39240 290	409	766
43	731	435	340	463	824
44	775	482	390	517	882
45	818	529	441	571	940
46	862	575	491	625	998 0,46057
47 48	906 949	622 669	541 592	680 734	115
49	993	716	642	788	173
50	0,34037	763	693	843	232
51	0,34081	0,36810	0,39743	0,42897	0,46291
52	125	858	794 845	952	349 408
53 54	169 213	905 952	843 896	0,43006 061	408 467
55	257	999	947	116	526
56	301	0,37047	998	171	585
57	345	094	0,40049	225	644
58	389	142	100	280	708 763
59	434	189 0,37237	0,40202	335 0,43390	762 0,46822

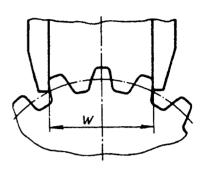
Продолжение табл. 16

Минуты	55°	56°	57°	58°	59°
0	0,46822	0,50518	0,54503	0,58804	0,63454
1	881	582	572	879	534
2 3	940	646	641	954 0,49028	615 696
3	0,47000	710 774	710 779	103	777
4 5 6	060 119	838	849	178	858
6	179	903	918	253	939
7	239	967	988	328	0,64020
8	299	0,51032	0,55057	403	102
9	359	096	127	479	183
10	419	161	197	554	265
11	0,47479	0,51226	0,55267	0,59630 705	0,64346 428
12	539 599	291 356	407	781	510
13 14	660	421	477	857	592
15	720	486	547	933	674
16	780	551	618	0,60009	756
17	841	616	689	085	839
18	902	682	759	161	921
19	962	747	829	237	0,65004
20	0,48023	813	900 0,55971	314 0,60390	086 0,65169
21 22	0,48084	0,51878 944	0,56042	467	252
22 23	206	0,52010	113	544	335
24	267	0,52010	184	620	418
25	328	141	255	697	501
26	389	207	326	774	585
27	451	274	398	851	668
28	512	340	469	929	752
29	574 635	406 472	541 612	0,61006 083	835 919
30 31	0,48697	0,52539	0,56684	0,61161	0,66003
32	758	0,52605	0,56756	0,61239	0,66087
33	820	672	828	316	171
34	882	739	900	394	255
35	944	805	972	472	340
36	0,49006	872	0,57044	550	424 500
37 38	068 130	939 0,53006	116 188	628 706	509 593
39	192	0,33000	261	785	678
40	255	141	333	863	763
41	0,49317	0,53208	0,57406	0,61942	0,66848
42	380	275	479	0,62020	933
43	442	343	552	099	0,67019
44	505	410	625	178	104
45	568	478	698	257 336	189 275
46 47	630 693	546 613	771 844	415	361
48	756	681	917	494	447
49	819	749	991	574	532
50	882	817	0,58064	653	618
51	0,49945	0,53885	0,58138	0,62733	0,67705
52	0,50009	954	211	812	791 877
53 54	072 135	0,54022 090	285 359	892 972	877 964
55	199	159	433	0,63052	0,68050
56	263	228	507	132	137
57	326	296	581	212	224
58	390	365	656	293	311
59	454	434	730	373	398
60	0,50518	0,54503	0,58804	0,63454	0,68485

### 17. Длина общей нормали цилиндрических прямозубых колес

Измерение толщины зубьев при длине общей нормали W имеет то преимущество перед измерением по постоянной хорде, что не требуется более точного изготовления зубчатых колес по наружному диаметру.

Для прямозубых колес без смещения


$$W = m_n W',$$

для колес со смещением (при коэффициенте смещения x)

$$W = m_n (W' + 0.684x);$$

здесь W' - длина общей нормали цилиндрических прямозубых колес при  $m_n=1$  .

Значения W' в зависимости от числа зубьев колеса и числа зубьев, охватываемых при измерении, указаны в таблице, приведенной ниже.



Длина общей нормали W' цилиндрических прямозубых колес при  $m_n=1$  мм

Число зубьев колеса	Число зубьев, охватываемых при измерении измерении	w'	Число зубьев колеса	Число зубьев, охватываемых при измерении г _п	w'	Число зубьев колеса	Число зубьев, охватываемых при измерении ги	w'
7 8 9 10		4,5263 4,5403 4,5543 4,5683 4,5823	34 35 36 37	4	10,8086 10,8230 10,8370	59 60 61 62 63	7	20,0152 20,0292 20,0430 20,0570 20,0710
12 13 14 15 16	2	4,5963 4,6103 4,6243 4,6383 4,6523	38 39 40 41 42	5	13,8168 13,8308 13,8448 13,8588 13,8728	64 65 66 67 68 69	8	23,0373 23,0513 23,0654 23,0794 23,0934 23,1074
17 18 19 20 21		4,6660 4,6800 7,6464 7,6605 7,6745	43 44 45 46 47		13,8868 13,9010 13,9150 16,8810 16,8950	70 71 72 73		23,1210 23,1350 23,1490 25,1155
22 23 24 25 26	3	7,6885 7,7025 7,7165 7,7305 7,7440	48 49 50 51 52	6	16,9090 16,9230 16,9370 16,9510 16,9650	74 75 76 77 78 79	9	26,1295 26,1435 26,1575 26,1715 25,1850 26,1990
27 28 29 30 31	4	7,7580 10,7246 10,7386 10,7526 10,7666	53 54 55 56 57	7	16,9790 16,9930 19,9592 19,9732 19,9872	80 81 82 83	10	26,2130 26,2270 29,1937 29,2077
32 33		10,7806 10,7946	58		20,0012	84		29,2217

Продолжение табл. 17

Число зубьев колеса	Число зубьев, охватываемых при измерении гламерении гл	w'	Число зубьев колеса	Число зубьев, охватываемых при измерении	w'	Число зубьев колеса	Число зубьев, охватываемых при измерении <i>z_n</i>	W'
85 86 87 88 89	10	29,2357 29,2490 29,2630 29,2770 29,2910	124 125 126	14	41,5900 41,6040 41,6180 44,5846	163 164 165 166 167 168	19	56,8973 56,9113 56,9250 56,9390 56,9530
90  91 92 93		32,2719 32,2859 32,2999	127 128 129 130 131 132	15	44,5985 44,6126 44,6260 44,6400 44,6540	169 170 171		56,9670 56,9810 56,9950 57,0090
94 95 96 97 98	11	32,3139 32,3279 32,3420 32,3560 32,3700	133 134 135		44,6680 44,6820 44,6950	172 173 174 175 176	20	59,9755 59,9895 60,0030 60,0170 60,0310
99 100 101		32,3840 35,3501 35,3641	136 137 138 139 140	16	47,6628 47,6768 47,6908 47,7010 47,7180	177 178 179 180		60,0450 60,0590 60,0730 60,0870
102 103 104 105 106 107	12	35,3781 35,3921 35,4060 35,4200 35,4340 35,4480	141 142 143 144		47,7320 47,7460 47,7600 47,7740	181 182 183 184 185	21	63,0537 63,0677 63,0810 63,0950 63,1090
109		35,4620 38,4283 38,4423	145 146 147 148 149	17	50,7410 50,7550 50,7690 50,7830 50,7970	186 187 188 189		63,1230 63,1370 63,1510 63,1650
111 112 113 114 115 116	13	38,4563 38,4703 38,4840 38,4980 38,5120	150 151 152 153		50,8110 50,8250 50,8390 50,8530	190 191 192 193	22	66,1319 66,1450 66,1590 66,1730
117		38,5260 38,5400 41,5064	154 155 156 157	18	53,8192 53,8332 53,8470 53,8610	194 195 196 197 198	22	66,1870 66,2010 66,2150 66,2290 66,2430
120 121 122 123	14	41,5204 41,5344 41,5485 41,5620 41,5760	158 159 160 161 162	10	53,8750 53,8890 53,9030 53,9170 53,9310	199 200	23	69,2100 69,2240

## Цилиндрические винтовые зубчатые передачи

Винтовые передачи применяют при перекрещивающихся валах.

Для винтового цилиндрического колеса сохраняют силу все зависимости, связывающие между собой основные размеры цилиндрического косозубого колеса.

Зацепление двух винтовых колес с односторонним наклоном линии зубьев и углами  $\beta_1$  и  $\beta_2$  происходит с межосевым углом  $\Sigma$  (рис. 17).

Возможно сцепление винтовых колес и при наклоне зубьев в противоположные стороны; в этом случае

$$\Sigma = \beta_2 - \beta_1.$$

Однако такое сцепление следует по возможности не применять, так как при этом получается меньший КПД.

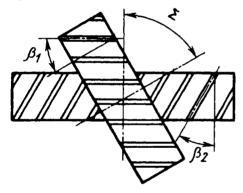



Рис. 17. Винтовые передачи, зацепляющиеся под углом

Максимальный КПД пары будет при

$$\beta_1 = \frac{\Sigma}{2} + \frac{\rho}{2} \quad \text{if} \quad \beta_2 = \frac{\Sigma}{2} - \frac{\rho}{2} \,,$$

где  $\rho$  - угол трения, равный 4-8°. Передаточное отношение обычно принимают  $u=1\div 4$ .

# Цилиндрические эвольвентные зубчатые передачи внутреннего зацепления

Основные элементы и параметры зубчатых колес показаны на рис. 18 и 19. Формулы расчета приведены в табл. 18.

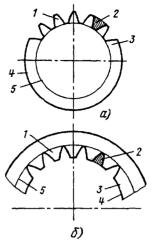



Рис. 18. Элементы зубчатого колеса:

а — с внешними зубьями;
б — с внутренними зубьями;
1 — зуб; 2 — впадина; 3 — зубчатый венец;
4 — поверхность вершин;

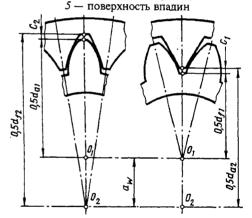



Рис. 19. К определению параметров во внутреннем зацеплении

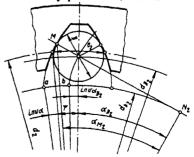
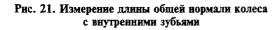
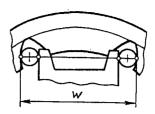





Рис. 20. Основные элементы при определении положения ролика (шарика) во впадине колеса с внутренними зубъями



Параметры и обозначения



Расчетные формулы и указания

### 18. Формулы для расчета прямозубых передач с внутренним зацеплением без смещения

Исходные данные	$z_1, z_2, m, \alpha, c$
$a_{\scriptscriptstyle{W}}$ входит в состав исходных данных, с	если его значение задано
Делительное межосевое расстояние $a$	$a = \frac{\left(z_2 - z_1\right)m}{2}$
Делительный диаметр $d$	$d_1 = z_1 m;  d_2 = z_2 m$
Диаметр вершин зубьев $d_a$	$d_{a1} = d_1 + 2m;  d_{a2} = d_2 - 2m$
Диаметр впадин $d_f$ (размер справоч-	$d_{f1} = d_1 - 2(c + m);$
ный)	$d_{f2} = d_2 + 2(c+m)$
Расчет постоянной хор	оды и высоты до постоянной хорды
Постоянная хорда зуба, выраженная в долях модуля $\hat{s}_c^*$	$\ddot{s_{c1}}$ — по табл. 11 (при $x=0$ $\ddot{s_{c1}}$ равно 1,387) $\ddot{s_{c2}}$ — по табл. 19 (при $x=0$ $\ddot{s_{c2}}$ равно 1,387)
Постоянная хорда $\bar{s}_c$	$\bar{s}_{c1} = \bar{s}_{c1}^* m = 1,387 m; \qquad \bar{s}_{c2} = \bar{s}_{c2}^* m$
Расстояние постоянной хорды от делительной окружности, выраженное в долях модуля	$\overline{h}_{\Delta 1}^* = 0,2524 \; ; \qquad \overline{h}_{\Delta 2}^* = 0,2524$
	l – ,

Нормальная толщина зуба s_n

Высота до постоянной хорды  $h_c$ 

$$\frac{\dot{h}_{c1}}{\dot{h}_{c2}} = 0.5 (d_{a1} - d_1) - h_{\Delta 1}^{*} m;$$

$$\frac{\dot{h}_{c2}}{\dot{h}_{c2}} = 0.5 (d_2 - d_{a2}) - h_{\Delta 2}^{*} m$$

$$s_{n1} = \left(\frac{\pi}{2} + 2x_1 \operatorname{tg} \alpha\right) m;$$

$$s_{n2} = \left(\frac{\pi}{2} - 2x_2 \operatorname{tg} \alpha\right) m$$

Расчет длины общей нормали по табл. 15 (рис. 21) Расчет размера по роликам (шарикам) (рис. 20)

Размер по роликам (шарикам): с четным числом зубьев с нечетным числом зубьев

$$M = mz - D$$
$$M = mz \cos \frac{90^{\circ}}{2} - D$$

Для колес без смещения диаметр ролика D берут в зависимости от m

D	1,732	1,845	2,214	2,952	3,690	4,428
	5,904	7,380	8,8	56	11,808	14,760
m	4	5	6		8	10

19. Значение постоянной хорды зуба колеса  $\bar{s_{c2}}^*$  и расстояния ее от делительной окружности  $\bar{h_{\Delta 2}}^*$ , выраженное в долях модуля ( $\alpha=20^\circ$ )

$$\bar{s}_{c2}^{\bullet} = \frac{\pi}{2} \cos^2 \alpha - x_2 \sin 2\alpha; \quad \bar{h}_{\Delta 2}^{\bullet} = 0.5 \bar{s}_{c2}^{\bullet} \operatorname{tg} \alpha$$

$x_2$	$\bar{s}_{c2}^{\star}$	$\bar{h}_{\Delta 2}^*$	x ₂	$\bar{s}_{c2}^*$	$\bar{h}_{\Delta 2}^*$	$x_2$	$\bar{s}_{c2}^*$	$\bar{h}_{\Delta 2}^*$
	1,7084	0,3109	0.04					
-0,50			-0,04	1,4128	0,2571	0,42	1,1171	0,2033
-0,49	1,7020	0,3098	-0,03	1,4063	0,2559	0,43	1,1107	0,2021
-0,48	1,6956	0,3086	-0,02	1,3999	0,2548	0,44	1,1042	0,2010
-0.47	1,6892	0,3074	-0,01	1,3935	0,2536	0,45	1,0978	0,1998
-0,46	1,6827	0,3062	0,00	1,3870	0,2524	0,46	1,0914	0,1986
-0,45	1,6763	0,3051	0.01	1 2004		0,47	1,0850	0,1975
-0,44	1,6699	0,3039	0,01	1,3806	0,2513	0,48	1,0785	0,1963
-0,43	1,6635	0,3027	0,02	1,3742	0,2501	0,49	1,0721	0,1951
-0,42	1,6570	0,3016	0,03	1,3678	0,2490	0,50	1,0657	0,1940
-0,41	1,6506	0,3004	0,04	1,3614	0,2478			l
-0,40	1,6442	0,2992	0,05	1,3549	0,2466	0,51	1,0593	0,1928
_			0,06	1,3485	0,2454	0,52	1,0528	0,1916
-0,39	1,6377	0,2891	0,07	1,3421	0,2443	0,53	1,0404	0,1904
-0,38	1,6313	0,2969	0,08	1,3356	0,2431	0,54	1,0400	0,1892
-0,37	1,6249	0,2957	0,09	1,3292	0,2419	0,55	1,0336	0,1881
-0,36	1,6185	0,2945	0,10	1,3228	0,2408	0,56	1,0271	0,1869
0,35	1,6120	0,2934				0,57	1,0207	0,1857
0,34	1,6056	0,2922	0,11	1,3164	0,2396	0,58	1,0143	0,1845
-0,33	1,5992	0,2910	0,12	1,3099	0,2384	0,59	1,0078	0,1834
-0,32	1,5927	0,2899	0,13	1,3035	0,2372	0,60	1,0014	0,1822
-0,31	1,5863	0,2887	0,14	1,2971	0,2361			
-0,30	1,5799	0,2875	0,15	1,2906	0,2349	0,61	0,9950	0,1811
	·		0,16	1,2842	0,2337	0,62	0,9886	0,1799
0,29	1,5735	0,2864	0,17	1,2778	0,2326	0,63	0,9821	0,1787
-0,28	1,5670	0,2852	0,18	1,2714	0,2314	0,64	0,9757	0,1776
-0,27	1,5606	0,2840	0,19	1,2649	0,2302	0,65	0,9693	0,1764
0,26	1,5542	0,2828	0,20	1,2585	0,2291	0,66	0,9629	0,1752
-0,25	1,5477	0,2817		1		0,67	0,9564	0,1740
-0,24	1,5413	0,2805	0,21	1,2521	0,2279	0,68	0,9500	0,1729
-0,23	1,5349	0,2793	0,22	1,2457	0,2267	0,69	0,9436	0,1717
-0,22	1,5285	0,2782	0,23	1,2392	0,2255	0,70	0,9371	0,1705
-0,21	1,5220	0,2770	0,24	1,2328	0,2244			
-0,20	1,5156	0,2758	0,25	1,2264	0,2232	0,71	0,9307	0,1694
			0,26	1,2199	0,2220	0,72	0,9243	0,1682
-0,19	1,5092	0,2747	0,27	1,2135	0,2209	0,73	0,9179	0,1670
-0,18	1,5028	0,2735	0,28	1,2071	0,2197	0,74	0,9114	0,1659
-0,17	1,4963	0,2723	0,29	1,2007	0,2185	0,75	0,9050	0,1647
-0,16	1,4899	0,2711	0,30	1,1942	0,2174	0,76	0,8986	0,1635
-0,15	1,4835	0,2700				0,77	0,8921	0,1623
-0,14	1,4770	0,2688	0,31	1,1878	0,2162	0,78	0,8857	0,1612
-0,13	1,4706	0,2676	0,32	1,1814	0,2150	0,79	0,8793	0,1600
0.12	1,4642	0,2665	0,33	1,1749	0,2138	0,80	0,8729	0,1588
-0,11	1,4578	0,2653	0,34	1,1685	0,2127			
-0,10	1,4513	0,2641	0,35	1,1621	0,2115	0,81	0,8664	0,1577
			0,36	1,1557	0,2103	0,82	0,8600	0,1565
0,09	1,4449	0,2630	0,37	1,1492	0,2092	0,83	0,8536	0,1553
-0,08	1,4385	0,2618	0,38	1,1428	0,2080	0,84	0,8471	0,1542
0,07	1,4320	0,2606	0,39	1,1364	0,2068	0,85	0,8407	0,1530
-0,06	1,4256	0,2594	0,40	1,1299	0,2057	0,86	0,8343	0,1518
-0.05	1,4192	0,2583		]		0,87	0,8279	0,1507
	L	l	0,41	1,1235	0,2045	L	<u> </u>	L

Продолжение табл. 19

x ₂	-* s _{c2}	$\bar{h}_{\Delta 2}^{ullet}$	<i>x</i> ₂	s _{c2}	$\overline{h}_{\Delta 2}^*$	<i>x</i> ₂	$\bar{s}_{c2}$	$\overline{h}_{\Delta 2}^*$
0,88 0,89 0,90 0,91 0,92	0,8214 0,8150 0,8086 0,8022 0,7957	0,1495 0,1483 0,1471 0,1460 0,1448	0,93 0,94 0,95 0,96	0,7893 0,7829 0,7764 0,7700	0,1436 0,1425 0,1413 0,1401	0,97 0,98 0,99 1,00	0,7635 0,7571 0,7507 0,7443	0,1389 0,1378 0,1366 0,1354

## Формулы для определения основных размеров передач внутреннего зацепления со смещением

Параметры и обозначения	Расчетные формулы и указания
Исходные данные	$z_1, z_2, m, \beta, \alpha, h_a^*, c^*$ , нормальный исходный контур

 $a_{w}$  входит в состав исходных данных, если его значение задано; коэффициенты смещения  $x_{1}$  и  $x_{2}$  входят в состав исходных данных, если значение межосевого расстояния  $a_{w}$  не задано

Расчет коэффициентов смещения  $x_1$  и  $x_2$  при заданном межосевом расстоянии  $a_{\rm m}$ 

Делительное межосевое расстояние а

Угол профиля α,

Угол зацепления а "

Коэффициент разности смещений  $x_d$ 

$$a = \frac{\left(z_2 - z_1\right)m}{2\cos\beta}$$

$$tg\alpha_r = \frac{tg\alpha}{\cos\beta}$$

$$\cos\alpha_{rw} = \frac{a}{a_w}\cos\alpha_r$$

$$x_d = \frac{\left(z_2 - z_1\right)\left(\text{inv}\alpha_{rw} - \text{inv}\alpha_r\right)}{2tg\alpha}$$

Рекомендации по разбивке значения  $x_d = x_2 - x_1$  на составляющие  $x_1$  и  $x_2$  стандартом не устанавливаются. Величины коэффициентов смещения определяются требуемыми качествами передачи по прочностным и геометрическим показателям.

Расчет межосевого расстояния  $a_w$  при заданных коэффициентах  $x_1$  и  $x_2$ 

Коэффициент разности смещений  $x_d$ 

•

Угол зацепления ап

$$x_d = x_2 - x_1$$

inv 
$$\alpha_{nv} = \frac{2x_d \operatorname{tg} \alpha}{z_2 - z_1} + \operatorname{inv} \alpha_r$$

### Продолжение табл. 20

Параметры и обозначения	Расчетные формулы и указания
Межосевое расстояние $a_w$	$a_{w} = \frac{\left(z_{2} - z_{1}\right) m}{2 \cos \beta} \frac{\cos \alpha_{t}}{\cos \alpha_{pw}}$

# Расчет диаметров зубчатых колес

# **Лелительный** диаметр d

Передаточное число и

Начальный диаметр  $d_w$ 

Диаметр вершин зубьев  $d_a$ 

Диаметр впадин  $d_f$  (размер справочный)

$$d_{1} = \frac{z_{1} m}{\cos \beta}; \quad d_{2} = \frac{z_{2} m}{\cos \beta}$$

$$u = \frac{z_{2}}{z_{1}}$$

$$d_{w1} = \frac{2a_{w}}{u - 1}; \quad d_{w2} = \frac{2a_{w} u}{u - 1}$$

$$d_{a1} = d_{1} + 2(h_{a}^{*} + x_{1})m$$

$$d_{a2} = d_{2} - 2(h_{a}^{*} - x_{2} - 0.2)m$$

$$d_{f1} = d_{1} - 2(h_{a}^{*} + c^{*} - x_{1})m,$$

$$d_{f2} = d_{2} + 2(h_{a}^{*} + c^{*} + x_{2})m$$

Примечания: 1. Для прямозубых передач  $\beta=0^\circ$ , тогда  $a=0.5(z_2-z_1)m; \quad \alpha_t=\alpha; d=zm$ .

- 2. При  $a = a_w$  получаем  $a_{tw} = \alpha_t$ ;  $x_d = 0$ ;  $d_w = d$ .
- 3. Расчет диаметров вершин зубчатых колес для случая предполагаемой окончательной обработки колеса с внутренними зубьями зуборезным долбяком приведен в табл. 3 ГОСТ 19274—73.

Постоянная хорда зуба, выраженная в долях модуля  $\bar{s}_{\bullet}^{\bullet}$ 

# Постоянная хорда зуба $\bar{s}$

Расстояние постоянной хорды от делительной окружности, выраженное в долях модуля,  $\overline{h}_{\Delta}^{\star}$  — по табл. 11,  $\overline{h}_{\Delta 2}^{\star}$  — по табл. 19

Высота до постоянной хорды  $h_c$ 

$$egin{align*} \vec{s}_{c1}^{\star} & -\text{по табл. 11,} \\ \vec{s}_{c2}^{\star} & -\text{по табл. 19} \\ & \vec{s}_{c1} & = \vec{s}_{c1}^{\star} \ m; \ \vec{s}_{c2} & = \vec{s}_{c2}^{\star} \ m \\ \hline \vec{h}_{\Delta 1}^{\star} & -\text{ по табл. 11,} \\ \vec{h}_{\Delta 2}^{\star} & -\text{ по табл. 19} \\ & \vec{h}_{c1} & = 0.5 \left(d_{a1} - d_{1}\right) - \vec{h}_{\Delta 1}^{\star} \ m, \\ & \vec{h}_{c2} & = 0.5 \left(d_{2} - d_{a2}\right) - \vec{h}_{\Delta 2}^{\star} \ m \\ \end{pmatrix}$$

Расчет длины общей нормали при α=20° по табл. 15 Расчет толщины по хорде зуба и высоты до хорды

Угол профиля  $\alpha_y$ в точке на концентрической окружности заданного диаметра  $d_v$ 

$$\cos \alpha_y = \frac{d}{d_y} \cos \alpha_t$$

Продолжение табл. 20

Параметры и обоз	начения	Расчетные формулы и указания
Окружная толщина на заданном диаметре $d_{_{\mathcal{Y}}}$	шестерни ⁵ у/1	$s_{ty1} = d_{y1} \left( \frac{\frac{\pi}{2} + 2x_1 \operatorname{tg} \alpha}{z_1} + \operatorname{inv} \alpha_t - \operatorname{inv} \alpha_{y1} \right)$
колеса ^S ty2		$s_{y2} = d_{y2} \left( \frac{\frac{\pi}{2} - 2x_2 \operatorname{tg} \alpha}{z_2} - \operatorname{inv} \alpha_t + \operatorname{inv} \alpha_{y2} \right)$
Угол наклона линии зуба $\beta_y$ на соосной цилиндрической поверхности диаметром $d_y$		$\operatorname{tg}\beta_{y} = \frac{d_{y}}{d}\operatorname{tg}\beta$
Половина угловой толщины зуба $\psi_{yv}$ эквивалентного зубчатого колеса, соответствующая концентрической окружности диаметром $\frac{d_y}{\cos^2\beta_y}$		$\psi_{yv} \approx \frac{s_{yy}}{d_y} \cos^3 \beta_y$
Толщина по хорде $\bar{s}_y$		$\bar{s}_y = d_y \frac{\sin \psi_{yv}}{\cos^2 \beta_y}$
Высота до хорды		$\overline{h}_{ay1} = 0.5 \left[ d_{a1} - d_{y1} + \frac{d_{y1}}{\cos^2 \beta_{y1}} (1 - \cos \psi_{yv1}) \right]$
	колеса 	$\vec{h}_{ay2} = 0.5 \left[ d_{y2} - d_{a2} - \frac{d_{y2}}{\cos^2 \beta_{y2}} (1 - \cos \psi_{y02}) \right]$

Расчет размера по роликам (шарикам)

Диаметр ролика (шарика) <i>D</i>	При $\alpha=20^\circ$ (включая исходный контур по ГОСТ 13755—81) рекомендуется принимать $D\approx 1,7m$ для шестерни и $D\approx 1,5m$ для колеса (для роликов допускается выбирать ближайшее значение по ГОСТ 2475—88).
	Контроль косозубых колес с внутренними зубьями по роликам не производится

Продолжение табл. 20

Параметры и обозначения	Расчетные формулы и указания
Угол профиля в точке на концентрической окружности, проходящей через центр ролика (шарика), $\alpha_D$	inv $\alpha_{D1} = \frac{D}{z_1 m \cos \alpha} + \text{inv } \alpha_t - \frac{\frac{\pi}{2} - 2x_1 \text{ tg } \alpha}{z_1}$ ;
	inv $\alpha_{D2} = \frac{\frac{\pi}{2} + 2x_2 \operatorname{tg} \alpha}{z_2} - \frac{D}{z_2 m \cos \alpha} + \operatorname{inv} \alpha_t$
Диаметр концентрической окружности зубчатого колеса, проходящей через центр ролика (шарика), $d_D$	$d_D = d \frac{\cos \alpha_t}{\cos \alpha_D}$
Размер по роликам (шарикам) прямозубых и косозубых зубчатых колес с четным числом зубьев (в торцовом сечении) $M$ Размер по роликам (шарикам) прямозубых и косозубых зубчатых колес с нечетным числом зубьев (в торцовом сечении) $M$	$M_1 = d_{D1} + D$ Должно выполняться условие: для шестерни $d_{D1} + D > d_{a1}$ , $d_{D1} - D > d_{f1}$ ; для колеса $d_{D2} - D < d_{a2}$ , $d_{D2} + D < d_{f2}$
Формулы для $\alpha_a$ , $\beta_b$ , $p_\alpha$ , $p_x$ , $p_z$ , $x_{1\mathrm{min}}$	, см. в табл. 15

# Проверка радиального зазора в передаче

Радиальный зазор во впадине ше терни $c_1$ во впадине колеса $c_2$	$c_1 = 0.5(d_{a2} - d_{f1}) - a_w$ $c_2 = 0.5(d_{f2} - d_{a1}) - a_w$	Действительный радиальный зазор определяется по фактическим диаметрам
--------------------------------------------------------------------	-----------------------------------------------------------------------	-----------------------------------------------------------------------

# Проверка коэффициента перекрытия

Коэффициент торцового перекрытия $\epsilon_{\alpha}$	$\varepsilon_{\alpha} = \frac{z_1 \operatorname{tg} \alpha_{a1} - z_2 \operatorname{tg} \alpha_{a2} + (z_2 - z_1) \operatorname{tg} \alpha_{nv}}{2\pi},$
	где $\alpha_{a1}$ и $\alpha_{a2}$ .
Коэффициент осевого перекрытия $\epsilon_{\beta}$ Коэффициент перекрытия $\epsilon_{\nu}$	См. ε _β и ε _ν — по табл. 15.

# Допуски пилиндрических зубчатых передач

Термины и обозначения приведены в табл. 21, определения — по ГОСТ 1643—81.

# 21. Термины и обозначения

Термин	Обозна- чение	Термин	Обозна- чение
1. Кинематическая погрешность передачи	_	Допуск на колебание измеритель- ного межосевого расстояния:	
Наибольшая кинематическая погрешность передачи	$F_{ior}^{'}$	за оборот зубчатого колеса	$F_i''$
Допуск на кинематическую погрещность передачи	$F_{io}^{'}$	на одном зубе	$f_i''$
2. Кинематическая погрешность зубчатого колеса	-	10. Циклическая погрешность передачи	$f_{zkor}$
Наибольщая кинематическая погрешность зубчатого колеса	$F_{ir}^{'}$	Допуск на циклическую погреш- ность передачи	$f_{zko}$
Допуск на кинематическую погрешность зубчатого колеса	$F_i^{'}$	<ol> <li>Циклическая погрешность зубцовой частоты в передаче</li> </ol>	$f_{zzor}$
3. Кинематическая погрешность зубчатого колеса на <i>k</i> шагах	$F_{ikr}^{'}$	Допуск на циклическую погреш- ность зубцовой частоты в передаче	$f_{zzo}$
Допуск на кинематическую по- грешность зубчатого колеса на <i>k</i> шагах	$F_{ik}^{\prime}$	12. Циклическая погрешность зубчатого колеса	$f_{zkr}$
4. Накопленная погрешность <i>k</i> шагов	$F_{Pkr}$	Допуск на циклическую погреш- ность зубчатого колеса	$f_{zk}$
Допуск на накопленную погрешность $k$ шагов	$F_{Pk}$	<ol> <li>Циклическая погрешность зубцовой частоты зубчатого колеса</li> </ol>	$f_{zzr}$
5. Накопленная погрешность шага по зубчатому колесу	$F_{P,r}$	Допуск на циклическую погреш- ность зубцовой частоты зубчатого колеса	$f_{zz}$
Допуск на накопленную погрешность шага по зубчатому колесу	$F_{p}$	14. Местная циклическая погреш- ность передачи	$f_{ior}^{'}$
6. Радиальное биение зубчатого венца	$F_{rr}$	Допуск на местную кинематиче- скую погрешность передачи	$f_{io}^{'}$
Допуск на радиальное биение зубчатого венца	$F_r$	15. Местная кинематическая погрешность зубчатого колеса	$f_{ir}^{\prime}$
7. Погрешность обката	F _{cr}	Допуск на местную кинематиче- скую погрешность зубчатого коле- са	$f_i^{\prime}$
Допуск на погрешность обката	$F_c$	16. Отклонение шага	$f_{ptr}$
8. Колебание длины общей нор-мали	$F_{vwr}$	Предельное отклонение шага: верхнее	$+f_{pt}$
Допуск на колебание длины общей нормали	$F_{vw}$	нижнее	$-f_{pt}$
9. Колебание измерительного межосевого расстояния:		17. Разность шагов	$f_{vptr}$
за оборот зубчатого колеса	$F_{ir}^{"}$	Допуск на разность шагов	$f_{vpt}$
на одном зубе	$f_{ir}^{"}$	18. Отклонение шага зацепления.	$f_{pbr}$

# Продолжение табл. 21

Термин	Обозна- чение	Термин	Обозна- чение
Предельные отклонения шага зацепления: верхнее	$+f_{Pb}$ $-f_{Pb}$ $f_{fr}$	Допуск на дополнительное сме- щение исходного контура	$T_H$
Допуск на погрешность профиля зуба	$f_{f}$ $-$ $F_{pxnr}$	зубьями: верхнее нижнее для зубчатых колес с внутренними зубьями:	+E _{a"s} -E _{a"i}
шагов по нормали: верхнее нижнее	$+F_{p_{x_n}}$ $-F_{p_{x_n}}$	верхнее	$-E_{a''s}$ $+E_{a''i}$ $W$
22. Суммарная погрешность контактной линии	$F_{kr}$ $F_{k}$ $F_{\beta r}$ $F_{\beta \beta}$	Отклонение длины общей нормали  Наименьшее отклонение длины общей нормали:  для зубчатого колеса с внешними зубьями  для зубчатого колеса с внутренними зубьями	$E_{Wr}$ $-E_{Ws}$ $+E_{Wi}$
ния зуба	$f_{xr}$ $f_x$	Допуск на длину общей нормали	$T_W$ $W_{mr}$
25. Перекос осей	$f_{yr}$ $f_{y}$	Отклонение средней длины общей нормали	$E_{Wmr}$
26. Отклонение межосевого рас- стояния	$f_{ar}$	для зубчатого колеса с внешними зубьями	$-E_{Wms}$ $+E_{Wmi}$
верхнее	$+f_a$ $-f_a$ $j_{n \min}$	Допуск на среднюю длину общей нормали	<i>T_{Wm}</i>
Допуск на боковой зазор	$T_{jn}$	Отклонение толщины зуба	Ecr
28. Дополнительное смещение исходного контура Наименьшее дополнительное смещение исходного контура: для зубчатого колеса с внешними зубьями	E _H , -E _H ,	Наименьшее отклонение толщины зуба	$-E_{cr}$ $T_{c}$ $E_{Mr}$

Продолжение табл. 21

Термин	Обозна- чение	Термин	Обозна- чение
Наименьшее отклонение размера по роликам:     для зубчатого колеса с внешними зубьями для зубчатого колеса с внутренними зубьями	$-E_{Ms}$	Допуск на размер по роликам 34. Эффективный коэффициент осевого перекрытия передачи	$T_H$ $\epsilon_{eta e}$

Допуски распространяются на эквивалентные цилиндрические зубчатые колеса и зубчатые передачи внешнего и внутреннего зацепления с прямозубыми, косозубыми и шевронными зубчатыми колесами с делительным диаметром до 6300 мм, шириной зубчатого венца или полушеврона до 1250 мм, модулем зубьев от 1 до 55 мм, с исходным контуром по ГОСТ 13755—81.

Степени точности и виды сопряжения. 1. Устанавливаются двенадцать степеней точности зубчатых колес и передач, обозначаемых в порядке убывания точности цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.

Примечание. Для степеней точности 1 и 2 допуски и предельные отклонения не даны. Эти степени предусмотрены для будущего развития. Для степеней точности 3, 4, 11 и 12 допуски и предельные отклонения см. ГОСТ 1643—81.

- 2. Для каждой степени точности зубчатых колес и передач устанавливаются нормы: кинематической точности, плавности работы и контакта зубьев зубчатых колес в передаче.
- 3. Допускается комбинирование норм кинематической точности, норм плавности работы и норм контакта зубьев зубчатых колес и передач разных степеней точности.
- 4. При комбинировании норм разных степеней точности нормы плавности работы зубчатых колес и передач могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности; нормы контакта зубьев могут назначаться по любым степеням, более точным, чем нормы плавности работы зубчатых колес и передач, а также на одну степень грубее норм плавности.

5. Устанавливаются шесть видов сопряжений зубчатых колес в передаче A, B, C, D, E, H и восемь видов допуска  $T_{jn}$  на боковой зазор x, y, z, a, b, c, d, h.

Обозначения даны в порядке убывания величины бокового зазора и допуска на него.

6. Видам сопряжений H и E соответствует вид допуска на боковой зазор h; видам сопряжений D, C, B и A — виды допуска d, c, b и а соответственно.

Соответствие между видом сопряжения зубчатых колес в передаче и видом допуска на боковой зазор допускается изменять; при этом также могут быть использованы виды допусков x, y, z.

7. Устанавливаются шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI.

Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния (для сопряжений H и E-II класса; для сопряжений D, C, B и A- классов III, IV, V и VI соответственно).

Допускается изменять соответствие между видом сопряжения и классом отклонений межосевого расстояния.

8. Точность изготовления зубчатых колес и передач задается степенью точности, а требования к боковому зазору — видом сопряжения по нормам бокового зазора.

Пример условного обозначения точности цилиндрической передачи со степенью точности 7 по всем трем нормам, с видом сопряжения зубчатых колес С и соответствием между видом сопря-

Виды сопряжений	A	В	С	D	E	#		Вид сопряже- ния	Степень точ- ности по нор- мам плавности работы
Гарантированные							Допуски на боковые за- зоры Т _{јп}	A B	3-12
боховые за <b>зоры</b> Эптіп					V	1		С	3—9
Нулевая линия				7	4	$\Pi$		D	3—8
						1.	inmin=0	E	37
						_		н	37

# 22. Виды сопряжении и гарантированные боковые зазоры

 $\Pi$  р и м е ч а н и е . Сопряжение вида B обеспечивает минимальную величину бокового зазора, при котором исключается возможность заклинивания стальной или чугунной передачи от нагрева при разности температур зубчатых колес и корпуса в 25 °C.

жения и видом допуска на боковой зазор, а также между видом сопряжения и классом отклонений межосевого расстояния:

9. При комбинировании норм разных степеней точности и изменении соответствия между видом сопряжения и видом допуска на боковой зазор, но при сохранении соответствия между видом сопряжения и классом отклонений межосевого расстояния точность зубчатых колес и передач обозначается последовательным написанием трех цифр и двух букв.

Первая цифра обозначает степень по нормам кинематической точности;

вторая — степень по нормам плавности работы;

третья — по нормам контакта зубьев; первая из букв — вид сопряжения; вторая —вид допуска на боковой зазор. Цифры между собой и от слитно пишущихся букв разделяются тире.

Пример условного обозначения точности цилиндрической передачи со степенью 8 по нормам кинематической точности, со степенью 7 по нормам плавности, со степенью 6 по нормам контакта зубьев, с видом сопряжения B, видом допуска на боковой зазор a и соответствием между видом сопряжения и классом отклонений межосевого расстояния:

 $\Pi$  р и м е ч а н и е . В случаях, когда на одну из норм не задается степень точности, взамен соответствующей цифры указывается буква N.

10. При выборе более грубого класса отклонений межосевого расстояния, чем предусмотрено для данного вида сопряжения, в условном обозначении точности цилиндрической передачи указывается принятый класс и рассчитанный по формуле уменьшенный гарантированный боковой зазор:

$$j'_{n\min} = j_{n\min} - 0.68 \left( \mid f'_{a} \mid - \mid f_{a} \mid \right),$$

где  $j_{n \min}$  и  $f_a$  — табличные значения гарантированного бокового зазора и предельного отклонения межосевого расстояния

для данного вида сопряжения (см. табл. 34);

 $j'_{n \min}$  — рассчитанный гарантированный боковой зазор;

 $f_a^{'}$  — отклонение межосевого расстояния пля более грубого класса.

Пример условного обозначения точности цилиндрической передачи со степенью точности 7 по всем нормам с видом сопряжения зубчатых колес C, видом допуска на боковой зазор и классом отклонений межосевого расстояния V (при межосевом расстоянии передачи

$$a_{\rm w} = 450 \, {\rm MM}, \ j'_{\rm n, min} = 128 \, {\rm MKM}$$
):

Примечание. При принятии более точного класса отклонений межосевого расстояния наименьший боковой зазор в передаче будет больше бокового зазора, указанного в табл. 34. Его величина, рассчитанная по той же формуле, может не указываться в условном обозначении точности передач.

**Нормы точности**. 1. Показатели кинематической точности устанавливаются по табл. 23.

1. Если кинематическая точность зубчатых колес относительно рабочей оси (см. п. 9) соответствует требованиям ГОСТ 1643—81 и требование селективной сборки не выдвигается, кинематическую точность зубчатых передач допускается не контролировать.

При соответствии кинематической точности окончательно собранной передачи требованиям ГОСТ 1643—81 контроль кинематической точности зубчатых колес не является необходимым.

2. Показатели плавности работы зубьев устанавливаются по табл. 24 для степеней точности 3—8 в зависимости от граничных значений номинального коэффициента осевого перекрытия  $\epsilon_{\beta}$  и степени точности по нормам контакта (табл. 25), для степеней точности 9—12 — независимо от  $\epsilon_{\beta}$ .

Если точность зубчатых колес по нормам плавности соответствует требованиям настоящего стандарта, плавность работы передач допускается не контролировать.

23. Показатели кинематической точности

Контроли- руемый объект	Показатель точности или комплекс	Степень точности
Зубчатое колесо	$F'_{i}$ ,	3-8
i	$F_{P_r}$ и $F_{Pk_r}$	36
	$F_{Pr}$	7, 8
	$F_{cr}$ и $F_{rr}$	3—8
	$F_{vWr}$ и $F_{rr}$	3—8
	$F_{vWr}$ и $F_{ir}^{"}$	5—8
	$F_{cr}$ и $F_{ir}''$	5—8
	$F_{ir}^{"}$	9—12
	$F_{rr}$	7—12 *
Зубчатая передача	F' _{ior}	3—8

^{*} Для степеней точности 7, 8 только при делительных диаметрах зубчатых колес свыше 1600 мм.

При соответствии плавности работы передачи требованиям ГОСТ 1643—81 контроль плавности работы зубчатых колес не является необходимым.

Показатель точности  $f_{zz}$ , применяется при контроле с измерительным зубчатым колесом.

Взамен отклонения шага  $f_{PII}$ , в качестве показателя плавности работы зубчатого колеса может применяться разность шагов  $f_{vPII}$  (см примечание 2 к табл. 29).

3. Показатели контакта зубьев устанавливаются в зависимости от граничных значений номинального коэффициента осевого перекрытия  $\epsilon_{\beta}$  (см. табл. 25) по табл. 26.

24. Показатели плавности работы

Контролируемый объект	Показатель точности или комплекс	Степень точности
Зубчатое колесо передачи с $\epsilon_{\beta}$ , менее указанного в табл. 25	$f'_{ir}$ $f_{zz_r}$ $f_{Pbr}$ w $f_{fr}$ $f_{Pbr}$ w $f_{Ptr}$	3—8
•	$f_{ir}^{"}$	5—8
Зубчатое колесо передачи с любым є _р	$f_{ir}^{''}$ $f_{Pbr}$ $f_{Ptr}$	9—12
Зубчатое колесо передачи с $\epsilon_{\beta}$ , большим или равным указанному в табл. 25	$f_{zkr}$ $f_{Ptr}$	3—8 7, 8
Зубчатая передача с $\epsilon_{\beta}$ , менее указанного в табл. 25	$f_{ior}^{\prime}$ $f_{zzor}$	3—8
Зубчатая передача с $\epsilon_{\beta}$ , большим или равным указанному в табл. 25	f _{zkor}	10

25. Граничные значения  $\,\epsilon_{\beta}\,$ 

Степень точности по нормам контакта	3	4	5	6	7	8
Граничные значения номинального коэффициента осевого перекрытия ε _β	1,2	25	1,5	2,0	2,5	3,0

Если точность зубчатых колес по нормам контакта и действительные значения  $f_{xr}$  и  $f_{yr}$  соответствуют требованиям ГОСТ 1643—81, пятно контакта в зубчатой передаче допускается не контролировать.

При соответствии суммарного или мгновенного пятна контакта требованиям ГОСТ 1643—81 контроль по другим показа-

телям, определяющим контакт зубьев в передаче, не является необходимым.

Допускается оценивать точность зубчатого колеса по суммарному или мгновенному пятну контакта его зубьев с зубьями измерительного зубчатого колеса.

4. Допуски и предельные отклонения по нормам кинематической точности, нормам плавности работы и нормам контакта зубь-

Контактируемый объект	Показатель точности или комплекс	Степень точности
Зубчатое колесо передачи с $ \epsilon_{eta}  , $ менее	$F_{eta r}$	3—12
указанного в табл. 25 *	F _{kr}	3—12
Зубчатое колесо передачи с $ \epsilon_{eta}  , $	$F_{P \times nr}$ и $F_{kr}$	39
большим или равным указанному в табл. 25 **	$F_{Pxnr}$ и $f_{Pbr}$	3—9
Зубчатая передача	f _{xr} и f _{yr} ***	3–12
	Суммарное пятно контакта	3—11
	Мгновенное пятно контакта	3—11

### 26. Показатели контакта зубьев

- * Для степеней точности 9—12 при любом  $\epsilon_{\rm g}$  .
- ** Для степени точности 9 при любом  $\epsilon_8$ .
- *** Комплекс только для передач с нерегулируемым расположением осей.

ев для различных степеней точности зубчатых колес и передач устанавливаются по табл. 27—33.

- 5 Нормы кинематической точности, кроме  $F_r$ ,  $F_{vW}$ ,  $F_i^{"}$ , нормы плавности работы, кроме  $f_i^{"}$ , и нормы контакта зубьев в передаче, кроме  $f_x$  и  $f_v$ , в зависимости от условий работы зубчатых колес по правым и левым профилям допускается назначать из разных степеней точности. Для нерабочих боковых поверхностей зубъев или поверхностей, используемых ограниченное время при пониженных нагрузках, допускается снижение точности, но не более чем на две степени.
- 6. В тех случаях, когда производится корректировка параметров зацепления с целью улучшения эксплуатационных характеристик передачи под нагрузкой, предельные отклонения и допуски, регламентируемые ГОСТ 1643—81, могут устанавливаться относительно скорректированных значений параметров.

Способ определения пятна контакта, относительные размеры пятна контакта сопряженных поверхностей зубьев и место расположения на этих поверхностях

могут назначаться конструктором передачи. В этих случаях нормы на суммарное пятно контакта допускается устанавливать независимо от указанных в табл. 33.

7. Комплексы показателей точности в соответствии с пп. 1—3 и показатели, обеспечивающие гарантированный боковой зазор, устанавливаются изготовителем.

Каждый установленный комплекс показателей, используемый при приемке зубчатых колес и передач, является равноправным с другими. При сравнительной (например, расчетной) оценке влияния точности передач на их эксплуатационные качества предпочтительными являются функциональные показатели:  $F_{ior}^{'}$ ,  $F_{zzor}$ ,

 $f_{z\,k\,o\,r}$  и суммарное пятно контакта.

8. Непосредственный контроль зубчатых колес и передач по всем показателям установленного комплекса не является обязательным, если изготовитель существующей у него системой контроля точности производства гарантирует выполнение соответствующих требований ГОСТ 1643—81.

(Продолжение см. стр. 459)

27. Нормы кинематической точности (показатели  $F_{ir}^{'}$  ,  $F_{rr}$  ,  $F_{vWr}$  ,  $F_{cr}$  ,  $F_{ir}^{''}$  ), мкм

				Делительный диаметр $d$ , мм								
Степень точности       5	Обозна- чение	Модуль т, мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300			
	$F_i^{'}$	От 1 до 16		<del>!;=:</del>	$F_P + f_f$	(см. при	мечание	1)				
	F _r	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	16 18 20 —	22 25 28 32	28 32 36 40	32 36 40 45	36 40 45 50	- 45 50 56	- 56 63			
5	$F_{vW}$	От 1 до 16	10	18	28	45		_	_			
	$F_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	22 25 28 —	32 36 40 45	40 45 50 56	45 50 56 63	_ _ _ _	_ _ _	- - -			
	$F_c$	От 1 до 16	10	18	28	45	70	90	140			
	$F_i^{'}$	От 1 до 16			$F_P + f_f$	(см. прі	имечание	1)				
	F,	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	25 28 32 —	36 40 45 50	45 50 56 63	50 56 63 71	56 63 71 80	71 80 90	- 90 100			
6	$F_{vW}$	От 1 до 16	16	28	45	70		_				
	$F_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16		50 56 63 71	63 71 80 90	71 80 99 100	- - -	  	  			
	F _c	От 1 до 16	16	28	45	70	110	140	220			
	$F_i'$	От 1 до 25			$F_P + f_f$	(см. пр	имечание	: 1)	<b>_</b>			
7	F,	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25		50 56 63 71 80	63 71 80 90 100	71 80 90 100 112	80 90 100 112 125	100 112 125 140	125 140 160			

Продолжение табл. 27

					Делителі	ьный диа	метр <i>d</i> , м	<u></u>	
Степень точности	Обозна- чение	Модуль <i>т</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
	$F_{vW}$	От 1 до 25	22	40	60	100	_	_	_
7	$F_i^{"}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	50 56 63 —	71 80 90 100	90 100 112 125	100 112 125 140	- - -	- - -	- - -
	F _c	От 1 до 25	22	40	60	100	160	200	300
	$F_i'$	От 1 до 25			$F_P + f_f$	(см. при	імечание	1)	
8.	$F_r$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40	45 50 56 — —	63 71 80 90 100	80 90 100 112 125 140	90 100 112 125 140 160	100 112 125 140 160 190	125 140 160 180 224	 160 180 200 250
	F,"	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	63 71 80 —	90 100 112 125	112 125 140 160	125 140 160 180	_ _ _ _	_ _ _ _	- - -
	$F_{vW}$	От 1 до 40	28	50	80	120	_		
	F _c	От 1 до 40	28	50	80	120	200	250	400
9	F,	От 1 до 3,5 Св. 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25 * 25 * 40 * 40 * 55	71 80 90 — — —	80 100 112 125 160 —	100 112 125 160 200 250 315	112 125 140 160 200 250 315	125 140 160 180 224 280 355	160 180 220 224 280 355	200 224 250 315 400
	F,"	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16		112 140 160 180	140 160 180 224	160 180 200 224			_ _ _

Продолжение табл. 27

			Делительный диаметр $d$ , мм								
Степень точности	Обозна- чение	Модуль <i>т</i> , мм	До 125		Св. 4000 до 6300						
10	F,	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55		140 160 180	140 160 200 250 315	160 180 200 250 315	180 200 224 280 355	224 250 280 355	 250 280 315 400 500		
	$F_i^{"}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16		200 224	200 224	224 250	- - -	  -  -	-		

 $\Pi$  р и м е ч а н и я : 1. Для определения  $F_i^{'}$  принимают  $F_P$  по табл. 28 и  $f_f$  по табл. 29.

Допускается нормировать кинематическую погрешность на k шагах —  $F_{i\,k}^{'}$  , величина которой определяется по формуле

$$F_{ik}' = F_{Pk} + f_f,$$

где значение  $F_{Pk}$  принимается по табл. 28.

2. Допуск на кинематическую погрешность передачи  $F_{io}^{'}$  равен сумме допусков на кинематическую погрешность ее зубчатых колес.

Для передач, составленных из зубчатых колес, имеющих кратные между собой числа зубьев при отношении этих чисел не более трех (1, 2, 3), допуск на наибольшую кинематическую погрешность передачи, при ее селективной сборке, может быть сокращен на 25% или более, исходя из расчета.

- 3. Для шевронных зубчатых колес наибольшая алгебраическая разность значений накопленных погрешностей шага (т. е. взятых со своим знаком) на одноименных боковых поверхностях зубьев двух полушевронов, в любом общем для них осевом сечении, не должна превышать допуска на накопленную погрешность шага по зубчатому колесу  $F_p$ .
- 4. При комбинировании норм кинематической точности и плавности работы из разных степеней точности допуск на колебание измерительного межосевого расстояния за оборот зубчатого колеса определяют по формуле

$$\left[F_i''\right]_{KOM6} = \left[F_i'' - f_i''\right]_F + \left[f_i''\right]_f,$$

где допуски, входящие в первое слагаемое (с индексом *F*), принимаются по степени для норм кинематической точности, а допуск, входящий во второе слагаемое (с индексом *f*), принимается по степени для норм плавности работы.

5. Допускается, чтобы одна из величин, входящих в комплекс показателей кинематической точности, превосходила предельное значение, если суммарное влияние обеих величин не превышает  $F_i'$ .

28. Нормы кинематической точности (показатели  $F_{p_{Kr}}$  и  $F_{p_{r}}$ ), мкм

	Св. 5000 до 7200		Св. 3183 до 4584	125	200	280	400
	Св. 4000 до 5000		Св. 2547 до 3183	112	180	250	355
	Св. 3150 до 4000		Св. 2005 до 2547	100	160	224	315
¥	Св. 2500 до 3150	M	Св. 1592 до 2005	06	140	200	280
ости d, м	Св. 1600 до 2500	ости L, м	Св. 1019 до 1592	71	112	160	224
Для $F_{Pk}$ — длина дуги делительной окружности $d$ , мм	CB. 1000 40	длина дуги делительной окружности $L$ , мм	Св. 636,6 до 1019	63	100	140	200
ительной	CB. 630 40 1000	<i>т</i> ельной	CB. 401,1 10 636,6	50	80	112	091
дуги дел	CB. 315 40 630	цуги дель	CB. 200,5 Ao 401,1	40	63	06	125
— длина	CB. 160 40 315	— длина	Св. 101,8 до 200,5	28	45	63	06
I FP k	CB. 80 40 160	Для F _P -	CB. 50,9 40 101,8	20	32	45	63
n <del>T</del> T	CB.	17	Св. 31,8 до 50,9	91	25	36	50
	CB. 32 30 50		Св. 20,4 до 31,8	14	22	32	45
	Св. 20 до 32		Св. 12,7 до 20,4	12	20	28	40
	CB. 11,2 40		До 12,7	01	91	22	32
	До 11,2		-	7	=	91	22
	Обозна- Модуль чение <i>m</i> , мм			От 1 до 16	Or 1 30 16	От 1 до 25	Or 1 40 25
	Обозна-			$F_{Pk}$	$[F_P]$		
	Сте- пень точ- ности			5	9	7	∞

 $\Pi$  р и м e ч а н и e . При отсутствии специальных требований допуск на накопленную погрешность шагов  $F_{Pk}$  назначается для длины дуги делительной окружности, соответствующей 1/6 части числа зубьев зубчатого колеса (или дуги, соответствующей ближайшему целому числу зубьев).

29. Нормы плавности работы (показатели  $f_{ir}^{'},\;f_{Prr},\;f_{P\,b\,r},\;f_{f\,r}^{''},\;f_{ir}^{''}$ ), мкм

IF TH	ние			<del></del>	Делителі	ьный диал	иетр <i>d</i> , мм	I	
Степень точности	Обозначение	Модуль <i>m</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
	$f_i^{\prime}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	12 16 18 —	14 18 20 22	18 20 22 25	20 22 25 28	25 28 32 36	- 36 40 45	 50 56
	$f_{Pt}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	±6 ±8 ±9 —	±7 ±9 ±10 ±11	±8 ±9 ±11 ±13	±9 ±10 ±11 ±13	±10 ±11 ±13 ±14	- ±13 ±14 ±16	 _ _ ±16 ±18
5	f _{Pb}	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	±5,6 ±7,5 ±8,5	±6,7 ±8,5 ±9,5 ±10	±7,5 ±8,5 ±10 ±12	±8,5 ±9,5 ±10 ±12	±9,5 ±10 ±12 ±13	±12 ±13 ±15	_ _ ±14 ±16
	$f_f$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	6 7 8 —	7 8 9 11	9 10 11 13	11 13 14 15	16 17 18 20		 34 36
	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	10 13 14 —	11 14 16 18	13 14 16 20	14 16 18 20	_ _ _ _	- - -	  
	$f_i'$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	18 22 28 —	20 25 30 36	25 28 32 40	32 36 40 45	40 45 50 56	- 56 60 63	 80 90
6	$f_{Pt}$	Or 1 до 3,5 Cв. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	±10 ±13 ±14	±11 ±14 ±16 ±18	±13 ±14 ±18 ±20	±14 ±16 ±18 ±20	±16 ±18 ±20 ±22	±20 ±22 ±25	- - ±25 ±28
	$f_{Pb}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16		±10 ±13 ±15 ±17	±12 ±13 ±17 ±19	±13 ±15 ±17 ±19	±15 ±17 ±19 ±21	±19 ±21 ±24	- - ±24 ±26
	$f_f$	Or 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	8 10 12 —	9 11 13 16	12 14 16 18	17 18 20 22	24 25 28 30	- 34 36 38	  53 56

Продолжение табл. 29

H.F.	нис				Делител	ьный диам	иетр <i>d</i> , мм	1	
7 )	Обозначение	Модуль <i>m</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
6	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	14 18 20	16 20 22 25	18 20 22 28	20 22 25 28	- - -	_ _ _ _	- - -
	$f_i'$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	25 32 36 —	30 36 40 50 63	36 40 50 56 71	45 50 56 63 80	45 63 71 80 90	 80 90 100 112	- 112 125 140
	$f_{Pt}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±14 ±18 ±20 —	±16 ±20 ±22 ±25 ±32	±18 ±20 ±25 ±28 ±36	±20 ±22 ±25 ±28 ±36	±22 ±25 ±28 ±32 ±40	±28 ±32 ±36 ±40	- ±36 ±40 ±45
7	$f_{Pb}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±13 ±17 ±19 —	±15 ±19 ±21 +24 ±30	±17 ±19 +24 +26 ±34	±19 ±21 ±24 +26 ±34	±21 ±24 ±26 +30 ±38	- ±26 ±30 +34 ±38	- ±34 +38 ±42
	$f_f$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	11 14 17 —	13 16 19 22 30	17 20 24 26 36	24 28 30 33 42	36 38 40 45 53	— 53 56 60 67	 80 85 95
	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	20 25 28	22 28 32 36	25 28 32 40	28 32 36 40		- - -	_ _ _ _
8	$f_i^{'}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	36 45 50 —	40 50 60 71 90	50 56 71 80 100	63 71 80 90 112	80 90 100 112 140	 125 140 140 160	- 180 200 224

Продолжение табл. 29

라 II	ние				Делителі	ьный диам	иетр <i>d</i> , мм	[	
Степень точности	Обозначение	Модуль <i>т</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
	$f_{Pt}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40	±20 ±25 ±28 —	±22 ±28 ±32 ±36 ±45	±25 ±28 ±36 ±40 ±50 ±63	±28 ±32 ±36 ±40 ±50 ±63	±32 ±36 ±40 ±45 ±56 ±71	- ±40 ±45 ±50 ±56 ±71	- ±50 ±56 ±63 ±80
8	$f_{Pb}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40	±19 ±24 ±26 —	±21 ±26 ±30 ±34 ±42	±24 ±26 ±34 ±38 ±48 ±60	±26 ±30 ±34 ±38 ±48 ±60	±30 ±34 ±38 ±42 ±53 ±67	 ±38 ±42 ±48 ±53 ±67	±48 ±53 ±60 ±75
	$f_f$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	14 20 22 —	18 22 28 32 45	25 28 36 40 56	36 40 45 50 63	50 56 63 71 80	 80 90 90 100	125 130 150
	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16		32 40 45 50	36 40 45 56	40 45 50 56		- - -	- - -
9	$f_{P_1}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55		±32 ±40 ±45 ±50 ±63	±36 ±40 ±50 ±56 ±71 ±90 ±112	±40 ±45 ±50 ±56 ±71 ±90 ±125	±45 ±50 ±56 ±63 ±80 ±100 ±125	±56 ±63 ±71 ±80 ±100 ±140	 ±71 ±80 ±90 ±112 ±140
	$f_{Pb}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55	1	±30 ±38 ±42 ±48 ±60 —	±34 ±38 ±45 ±53 ±67 ±85 ±106	±38 ±42 ±48 ±53 ±67 ±85 ±118	±42 ±48 ±53 ±60 ±75 ±95 ±118	- ±53 ±60 ±67 ±75 ±95 ±132	±67 ±75 ±85 ±106 ±132

Продолжение табл. 29

- F	ние				Делител	ьный диам	иетр <i>d</i> , мм		
Степень точности	Обозначение	Модуль <i>т</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
9	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	36 45 50 —	40 50 56 63	45 50 56 71	50 56 63 71	- - -	- - -	-
	$f_{Pt}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55	ř .	±45 ±56 ±63 ±71 ±90	±50 ±56 ±71 ±80 ±100 ±125 ±160	±56 ±63 ±71 ±80 ±100 ±125 ±160	±63 ±71 ±80 ±90 ±112 ±140 ±180	+80 +90 +100 +112 +140 +180	- ±100 ±112 ±125 ±160 ±200
10	$f_{Pb}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55	±38 ±48 ±53 — — —	±42 ±53 ±60 ±67 ±85 —	±48 ±53 ±67 ±75 ±95 ±118 ±150	±53 ±60 ±67 ±75 ±95 ±118 ±150	±60 ±67 ±75 ±85 ±106 ±132 ±170	±75 ±85 ±95 ±106 ±132 ±170	- ±95 ±106 ±118 ±150 ±190
	$f_i^{"}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	45 56 63 —	50 63 71 80	56 63 71 90	63 71 80 90	_ _ _	_ _ _	_ _ _

П р и м е ч а н и я : 1. При установлении допуска на разность любых шагов  $f_{vPt}$  в пределах зубчатого колеса взамен предельных отклонений шага его значение не должно превышать  $1.6 \left| f_{Pt} \right|$ .

- 2. Допуск на местную кинематическую погрешность передачи  $f_{io}^{'}$  принимается равным 1,25  $f_{t}^{'}$  колеса передачи.
- 3. Допуск на колебание измерительного межосевого расстояния на одном зубе  $f_i^{"}$  допускается изменять на величину  $\Delta f_i^{"}$ , определяемую по ГОСТ 1643—81 (приложение 4).

					7 2 2 0	, , ,		
Степень точности				Делителі	ьный диаз	иетр <i>d</i> , мм	[	
по пока- зателю плавност и работы $f_{zzor}$	Модуль <i>m</i> , мм	До 16	Св. 16 до 32	Св. 32 до 63	Св. 63 до 125	Св. 125 до 250	Св. 250 до 500	Св. 500
5	От 1 до 3,5	6,7	7,1	7,5	8	8,5	9,5	11
	Св. 3,5 » 6,3	8	8,5	9	10	11	12	14
	» 6,3 » 10	10	11	11	12	13	15	17
	» 10 » 16	12	13	14	15	16	18	21
6	От 1 до 3,5	10	10	11	12	13	14	16
	Св. 3,5 » 6,3	12	13	14	15	16	18	21
	» 6,3 » 10	14	16	17	· 18	19	22	25
	» 10 » 16	18	19	20	22	24	28	32
7	От 1 до 3,5	15	16	17	18	19	21	24
	Св. 3,5 » 6,3	18	19	20	22	24	28	30
	» 6,3 » 10	22	24	24	26	30	34	38
	» 10 » 16	28	28	30	34	36	42	48
8	От 1 до 3,5	22	24	24	25	28	30	34
	Св. 3,5 » 6,3	28	28	30	32	34	40	45
	» 6,3 » 10	32	34	36	38	42	48	56
	» 10 » 16	40	42	45	48	53	60	71

30. Нормы плавности работы (показатель  $f_{7,707}$ ), мкм

 $\Pi$  р и м е ч а н и я : 1. При контроле передачи частота k принимается равной z — числу зубьев колеса передачи.

2. При контроле с измерительным зубчатым колесом частота k принимается равной z — числу зубьев контролируемого зубчатого колеса.

 $f_{zz}$  — допуск на циклическую погрешность зубцовой частоты зубчатого колеса устанавливается равным  $0.6\,f_{zzo}$ , принимаемого по табл. 30.

- 3. Допуск на циклическую погрешность частоты k=2z, 3z и 4z за оборот колеса передачи устанавливается равным соответственно 0,5; 0,4 и 0,35  $f_{zzo}$ , где  $f_{zzo}$  величина допуска циклической погрешности частоты k, принимаемого по табл. 30.
- 4. Для передач с эффективным коэффициентом осевого перекрытия  $\epsilon_{\beta e} > 0,45$  допуск на циклическую погрешность зубцовой частоты в передаче принимается:

при 
$$\varepsilon_{\beta e}$$
 св. 0,45 до 0,58 равным 0,6  $f_{zzo}$ ; при  $\varepsilon_{\beta e}$  св. 0,58 до 0,67 равным 0,4  $f_{zzo}$ ; при  $\varepsilon_{\beta e}$  св. 0,67 равным 0,3  $f_{zzo}$ ,

где  $f_{zzo}$  принимается по табл. 30.

Соотношение между эффективным  $\epsilon_{\beta e}$  и номинальным  $\epsilon_{\beta}$  коэффициентами осевого перекрытия, зависящее от степени точности передачи по нормам контакта, определяется по нижеследующим зависимостям:

31. Норма плавности работы (показятели  $f_{zl\sigma}$  или  $f_{zk\sigma}$ ), мкм

	Св.4000 до 6300		Св.6,3 до 10	25	18	13	Ξ	8,5	7,1	6,3	0,9	3,6	5,3
	Св. 2500 до 4000		Св.6,3 до 10	22	91	12	9,5	8,0	6,7	0,9	5,3	5,0	8,4
	CB.		От 1 до 6,3	18	13	10	7,5	6,3	5,3	4,8	4,2	4,0	3,8
	500 500		Св.6,3 до 10	21	15	11	0,6	7,1	0'9	5,3	5,0	4,5	4,5
MM	CB. 1600 до 2500		Or 1 go 6,3	16	12	0,6	7,1	9,6	<b>4</b> , 8,	4,2	4,0	3,6	3,4
Делительный диаметр d, мм	009 009	и, мм	Св.6,3 до 10	18	13	10	8,0	6,3	5,6	4,8	4,5	4,2	4,0
пьный ди	Св. 800 до 1600	Модуль т, мм	Or 1 до 6,3	15	Ξ	8,0	6,3	5,0	4,5	3,8	3,6	3,2	3,2
Делите	Св. 400 до 800		Св.6,3 до 10	15	11	8,5	6,3	5,3	4,5	4,0	3,6	3,4	3,2
	G. G.		Or 1 до 6,3	13	5,6	7,1	9,6	4,5	3,8	3,4	3,2	2,8	2,8
	Св. 125 до 400		Св.6,3 до 10	12	9,0	6,7	5,3	4,2	3,6	3,2	3,0	2,8	2,6
   	G. G.		Or 1 до 6,3	10	7,5	5,6	4,5	3,6	3,0	2,6	2,4	2,2	2,2
	До 125		Св.6,3 до 10	0,6	6,7	5,0	3,8	3,2	2,6	2,4	2,2	2,0	1,9
	оД		От 1 до 6,3	7,1	5,0	3,8	3,0	2,5	2,1	1,9	1,7	1,6	1,5
	Частота <i>k</i> циклической	погрешности за оборот	зубчатого колеса	От 1 до 4	CB. 4 * 8	* 8 * 16	* 16 * 32	* 32 * 63	* 63 * 125	* 125 * 250	* 250 * 500	* 500 * 1000	* 1000
	Степень точности							ν,		4.4.1.			

Продолжение табл. 31

	Св.4000 до 6300		Св.6,3 до 16	40	28	21	17	13	11	10	5,6	8,5	8,5	09	45	34	26	21	18	16	15	14	13
	g 8																						_
	2500		Св.6,3 до 16	36	56	20	15	12	10	0,6	8,5	8,0	7,5	95	40	30	24	70	16	15	13	12	12
	Св. 2500 до 4000		От 1 до 6,3	28	21	16	12	10	8,5	7,5	6,7	6,3	6,0	45	32	24	19	91	13	12	11	10	9,5
	009		Св.6,3 до 16	32	24	18	14		9,5	8,5	8,0	7,5	7,1	53	38	28	22	18	15	13	12	11	11
3	Св. 1600 до 2500		Or 1 до 6,3	26	19	14	11	0,6	7,5	6,7	6,3	9,5	5,6	40	30	22	81	14	12	11	10	0,6	8,5
Делительный диаметр d, мм	000	, мм	CB.6,3 Ao 16	<b> </b>	21	91	13	10	8,5	7,5	7,1	6,7	6,3	48	34	25	70	91	14	12	11	10	10
ьный диа	Св. 800 до 1600	Модуль <i>т</i> , мм	Or 1 go 6,3	<b>—</b>	17	13	10	8,0	7,1	0,9	9,6	5,3	5,0	36	79	20	16	13	Ξ	9,5	0,6	8,5	8,0
Делител	400		Св.6,3 до 16	<b> </b>	17	13	10	8,5	7,1	6,3	5,6	5,3	5,0	38	78	21	16	14	Ξ	01	0,6	8,5	8,0
	Св. 400 до 800		Or 1 zo 6,3	21	15	=======================================	0,6	7,1	0,9	5,3	5,0	4,5	4,5	32	24	18	14	12	9,5	8,5	8,0	7,1	6,7
 	125		Св.6,3 до 16	19	14	10,5	8,0	6,7	5,6	5,0	4,5	4,2	4,0	30	22	16	13	10	0,6	8,0	7,1	6,7	6,3
	CB. 125 до 400		Or 1 to 6,3	91	12	8,5	6,7	5,6	4,8	4,2	3,8	3,6	3,4	26	18	14	11	0,6	7,5	6,7	0,9	5,6	5,3
	125		Св.6,3 до 16	14	10	7,5	0,9	5,0	4,2	3,6	3,4	3,2	3,0	22	16	12	9,5	8,0	6,7	6,0	5,3	2,0	4,8
	До 125		Or 1 20 6,3	=	8,0	0,9	4,8	3,8	3,2	3,0	2,6	2,5	2,4	18	13	9,5	7,5	0,9	5,3	4,5	4,2	4,0	3,8
	Частота <i>к</i> циклической	погрешности за оборот	зубчатого колеса	Or 2 go 4	* * *	8 * 16	16 * 32	32 » 63	63 × 125	125 * 250	250 * 500	* 500 * 1000	* 1000	От 2 до 4	3. 4 × 8	8 * 16	16 * 32	32 * 63	63 × 125	125 * 250	250 * 500	* 500 * 1000	* 1000
-				-	Ĉ.	*	*	*	*	*	*	*	*	-	Ö.		*	*	*	*	*	*	*
	Степень точности			9										1									

Продолжение табл. 31

Harrona k as of opporate cyoif a solidation of the component of the component of the component and of opporate cyoif and of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the component of the compone								Делител	іьный ду	Делительный диаметр $d$ , мм	1 1				
Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3         Or I         Ca.6.3 <t< td=""><td>a <i>k</i> :Koří</td><td></td><td>앱</td><td>125</td><td>Св.</td><td>125 400</td><td>CB.</td><td>400 800</td><td>CB.</td><td>800 600</td><td>CB. 1</td><td>1600 500</td><td>CB.</td><td>Св. 2500 до 4000</td><td>Св.4000 до 6300</td></t<>	a <i>k</i> :Koří		앱	125	Св.	125 400	CB.	400 800	CB.	800 600	CB. 1	1600 500	CB.	Св. 2500 до 4000	Св.4000 до 6300
Ort Incommendent         Case 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 6, 3 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and	or or	<del></del>						-	Модуль 1	<i>п</i> , мм					
25         32         36         42         45         53         53         63         56         75           18         22         26         30         34         38         48         42         53           14         17         20         22         25         28         28         36         34           111         13         15         18         20         22         28         25         34           8,5         11         12         16         18         18         20         25         34           7,1         9,5         10         12         14         16         15         19         17         22           6,7         8,0         9,5         11         12         14         16         15         19         17         22           1         6,0         7,5         8,5         10         11         13         17         15         20           5,6         7,1         8,0         9,5         10         11         11         14         12         14         12         15           5,3         6,7         7,5	<u>و</u> ۾ ا		Or 1 40 6,3	Св.6,3 до 16	От 1 до 6,3			Св.6,3 до 16	Оr 1 до 6,3	Св.6,3 до 16	Or 1 20 6,3	Св.6,3 до 16	От 1 до 6,3	Св.6,3 до 16	Св.6,3 до 16
18         22         26         30         34         38         38         48         42         53           14         17         20         22         25         28         28         36         32         40           111         13         15         18         20         22         28         25         34           8,5         11         12         15         16         18         18         22         20         26           7,1         9,5         10         12         14         16         15         19         17         22           6,7         8,0         9,5         11         12         14         16         15         19         17         22           6,0         7,5         8,0         9,5         11         12         14         13         17         18         18           5,6         7,1         8,0         9,5         10         11         11         14         12         15         15           8,3         6,7         7,5         9,0         10         11         11         11         11         11         11	4		25		36	42	45	53	53	63	56	7.5	63	08	85
14         17         20         22         28         28         36         32         40           11         13         15         18         20         22         28         28         34           8,5         11         12         15         16         18         18         22         34           7,1         9,5         10         12         14         16         15         19         17         25           6,7         8,0         9,5         11         12         14         13         17         15         20           6,0         7,5         8,5         10         11         13         17         16         18           5,6         7,1         8,0         9,5         10         11         11         15         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		∞	81	22	26	30	34	38	38	48	42	53	45	99	63
11         13         15         18         20         22         22         28         25         34           8,5         11         12         15         16         18         18         22         20         26           7,1         9,5         10         12         14         16         15         19         17         22           6,7         8,0         9,5         11         12         14         13         17         15         20           6,0         7,5         8,5         10         11         13         12         16         14         18           5,6         7,1         8,0         9,5         10         12         11         15         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		91	14	17	70	22	25	28	28	36	32	40	34	42	48
8,5         11         12         15         16         18         18         22         20         26           7,1         9,5         10         12         14         16         15         19         17         22           6,7         8,0         9,5         11         12         14         13         17         15         20           6,0         7,5         8,5         10         11         13         12         16         18           5,6         7,1         8,0         9,5         10         12         11         15         13         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		32	П	13	15	81	92	22	22	28	25	34	28	34	36
7,1         9,5         10         12         14         16         15         19         17         22           6,7         8,0         9,5         11         12         14         13         17         15         20           6,0         7,5         8,5         10         11         13         12         16         14         18           5,6         7,1         8,0         9,5         10         12         11         15         13         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		63	8,5	1	12	15	16	18	18	22	50	56	22	28	30
6,7         8,0         9,5         11         12         14         13         17         15         20           6,0         7,5         8,5         10         11         13         12         16         14         18           5,6         7,1         8,0         9,5         10         12         11         15         13         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		125	7,1	5,6	10	12	14	16	15	61	17	22	19	24	25
6,0         7,5         8,5         10         11         13         12         16         14         18           5,6         7,1         8,0         9,5         10         12         11         15         13         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		250	6,7	0,8	5,6	Ξ	12	41	13	17	15	20	17	20	22
5,6         7,1         8,0         9,5         10         12         11         15         13         16           5,3         6,7         7,5         9,0         10         11         11         14         12         15		200	0,9	7,5	8,5	10	Π	13	12	91	14	18	15	19	21
6,7 7,5 9,0 10 11 11 14 12 15		0001	5,6	7,1	8,0	5,6	10	12	11	15	13	16	14	18	19
			5,3	6,7	7,5	0,6	10	=	=	14	12	15	13	17	18

Примечания: 1. При контроле зубчатой передачи частота к принимается по колесу передачи. При контроле с измерительным зубчатым колесом частота k принимается по контролируемому зубчатому колесу.

2. Нормы на циклические погрешности, частота которых k равна или менее передаточного числа u, не устанавливаются.

32. Нормы контакта зубьев (показатели  $F_{Pxnt}$ ,  $F_{kr}$ ,  $F_{\beta r}$ ,  $f_{xr}$ ,  $f_{yr}$  ), мкм

	ние						енца (г стной л			<del></del>
Степень точности	Обозначение	Модуль <i>т</i> , мм	До 40	Св. 40 до 100	Св. 100 до 160	Св. 160 до 250	Св. 250 до 400	Св. 400 до 630	Св. 630 до 1000	Св. 1000 до 1250
5	F _{Pxn}	От 1 до 16	±11	±12	±14	±16	±20	±25	±32	±45
		От 1 до 3,5	14	16	16	18	20	_		
	$F_k$	Св. 3,5 » 6,3	16	18	20	20	25	28		
		» 6,3 » 10	20	20	22	22	25	30	36	45
		» 10 » 16	_	25	25	28	30	36	40	50
	$F_{eta}$	От 1 до 16	7	10	12	16	18	22	25	30
	$f_{x}$	От 1 до 16	7	10	12	16	18	22	25	30
	$f_y$	От 1 до 16	4	5	6,3	8	9	11	12	16
	F _{Pxn}	От 1 до 16	±12	±14	±16	±20	±25	±30	±40	±50
		От 1 до 3,5	18	20	22	25	28		_	
6	$F_k$	Св. 3,5 » 6,3	20	22	25	25	30	36	_	
		» 6,3 » 10	25	25	28	30	32	40	45	56
		* 10 * 16		30	32	36	40	45	50	60
	$F_{\beta}$	От 1 до 16	9	12	16	20	25	28	32	40
	$f_{x}$	От 1 до 16	9	12	16	20	25	28	32	40
	$f_{y}$	От 1 до 16	4,5	6,3	8	10	12	14	16	20
	$F_{Pxn}$	От 1 до 25	±16	±18	±20	±25	±32	±40	±50	±63
		От 1 до 3,5	22	25	28	30	32	_	_	_
		Св. 3,5 » 6,3	25	28	30	32	36	45		_
7	$F_k$	* 6,3 * 10	30	30	36	40	45	50	56	71
		» 10 » 16		40	40	45	50	56	63	80
		» 16   » 25		50	50	56	60	63	71	90
	$F_{\beta}$	От 1 до 25	11	16	20	25	28	32	40	50
	$f_{x}$	От 1 до 25	11	16	20	25	28	32	40	50
	$f_{y}$	От 1. до 25	5,6	8	10	12	14	16	20	25
8	F _{Pxn}	От 1 до 40	±25	±28	±32	±40	±45	±60		

Продолжение табл. 32

	Тие					на зубч г длина					1)
Степень точности	Обозначение		Модуль <i>т</i> , мм	До 40	Св. 40 до 100	Св. 100 до 160	Св. 160 до 250	Св. 250 до 400	Св. 400 до 630	Св. 630 до 1000	
			От 1 до 3,5	36	40	40	45	50	_		
	$F_k$		C _B . 3,5 * 6,3	40	45	50	50	56	71		_
			<b>»</b> 6,3 <b>»</b> 10	45	50	56	60	63	80		-
			<b>*</b> 10 <b>*</b> 16	_	60	63	71	80	90	-	-
			* 16 * 25	_	80	80	90	90	100	-	
			* 25 * 40	_	_	112	125	125	125		_
8	$F_{\mathfrak{g}}$		От 1 до 40	18	25	32	40	45	56	_	
	$f_x$		От 1 до 40	18	25	32	40	45	56		
	$f_y$		От 1 до 40	9	12	16	20	22	28	_	
-	Ние					рина з или дл					
Степень точности	Обозначение		Модуль <i>т</i> , мм		До 40	CB. 40 no 100	CB. 100			Св. 250 до 400	Св. 400 до 630
	$F_{P_2}$	cn	От 1 до 55		±40	±45	±50	) ±	60	±71	±90
			От 1 до 3,5		56	60	60	7	1	80	
	}		Св. 3,5 * 6,3		63	71	80	8	0	90	112
9			* 6,3 * 10		80	80	90	9	0	100	125
	$F_{i}$	k	* 10 * 16			100	100	)   11	12	125	140
			* 16 * 25		_	125	125	14	10	140	160
			* 25 * 40		_	-	180		30	180	200
			* 40 * 55					22		250	250
	$F_{\beta}$		От 1 до 55		28	40	50	6	3	71	90
	$f_x$		От 1 до 55		28	40	50	6.	3	71	90
	$f_y$		От 1 до 55		14	20	25	3	0	36	45
10	$F_k$	:	От 1 до 3,5		90	100	100	11	2	125	
	<u></u>		Св. 3,5 * 6,3		100	112	112	12	.5	140	180

Продолжение табл. 32

				ина зуб ли длин				
Степень точности	Обозна- чение	Модуль <i>m</i> , мм	До 40	Св. 40 до 100	Св. 100 до 160	Св. 160 до 250	Св. 250 до 400	Св. 400
		Св. 6,3 до 10	125	125	140	140	160	200
		* 10 * 16	_	160	160	180	200	224
	$F_k$	* 16 * 25		200	200	224	224	250
;		* 25 * 40	_	_	280	280	315	315
!		* 40 * 55	_	_	_	355	400	400
10	$F_{eta}$	От 1 до 55	45	63	80	100	112	140
	$f_x$	От 1 до 55	45	63	80	100	112	140
<u></u>	$f_{y}$	От 1 до 55	22	32	40	50	56	71

 $\Pi$  р и м е ч а н и я : 1.  $F_k$  определяется в зависимости от длины контактной линии. Для зубчатых колес с номинальным коэффициентом осевого перекрытия  $\epsilon_{\beta}$  до 0,8 допуск на суммарную погрешность линии  $F_k$  принимают:

при 
$$\varepsilon_{\beta}$$
 от 0 до 0,2  $F_k = F_{\beta};$ 

*  $\varepsilon_{\beta}$  св. 0,2 * 0,4  $F_k = 1,3F_{\beta};$ 

*  $\varepsilon_{\beta}$  * 0,4 * 0,6  $F_k = 1,5F_{\beta};$ 

*  $\varepsilon_{\beta}$  * 0,6 * 0,8  $F_k = 1,7F_{\beta}.$ 

Если вычисленные значения  $F_k$  превышают значения  $F_k$ , установленные в табл. 32, то их принимают по указанной в таблице. Значение  $F_6$  принимают по табл. 32.

- 2.  $F_{Pxn}$ ,  $F_8$ ,  $f_x$ ,  $f_y$  определяют в зависимости от ширины зубчатого венца (полушеврона).
- 3. При использовании отклонения шага зацепления  $f_{Pbr}$  в качестве показателя контакта зубьев предельные отклонения выбирают по табл. 29 в соответствии со степенью точности, принятой по нормам контакта.
- 9. Точностные требования установлены ГОСТ 1643—81 для зубчатых колес, находящихся на рабочих осях.

На чертеже требования к прочности зубчатого колеса допускается устанавливать относительно другой оси (например, оси отверстия под вал), которая может не совпадать с рабочей осью.

Погрешности, вносимые при использовании в качестве измерительной базы поверхностей, имеющих неточности формы и

расположения относительно рабочей оси, должны быть учтены при установлении точности передачи или компенсированы введением уменьшенного производственного допуска.

10. В тех случаях, когда взаимозаменяемость не является обязательной, допускается принимать за номинальные следующие элементы одного из зубчатых колес:

среднее значение действительного осевого шага или среднее значение действи-

тельного угла наклона линии зуба;

среднее значение действительного шага зацепления;

действительное дополнительное смещение исходного контура (или действительное уменьшение средней длины общей нормали, или действительное уменьшение толщины зуба).

При этом дополнительное смещение исходного контура (или уменьшение средней длины общей нормали, или уменьшение толщины зуба) второго зубчатого колеса определяется наименьшим действительным дополнительным смещением исходного контура (наименьшим действительным уменьшением средней длины общей нормали или наименьшим уменьшением толщины зуба) на первом зубчатом колесе и выбранным видом сопряжения (бокового зазора в передаче).

**Нормы бокового зазора.** 1. Величины гарантированного бокового зазора  $j_{n \text{ min}}$  для различных видов сопряжений устанавливаются по табл. 34 независимо от степеней точности зубчатых колес и передач и их комбинирования,

- 2. Показателями, обеспечивающими гарантированный боковой зазор, являются: для зубчатых колес  $E_{Hs}$  или  $E_{Wms}$ , или  $E_{Ws}$ , или  $E_{cs}$ , или  $E_{a^*s}$ ; для передач с нерегулируемым расположением осей  $f_{ar}$ , а для передач с регулируемым расположением  $j_n$  min.
- 3. Наименьшее дополнительное смещение исходного контура  $E_{Hs}$  устанавливается по табл. 35 (или наименьшее отклонение средней длины общей нормали  $E_{Wns}$  по табл. 37 и 38, или наименьшее отклонение длины общей нормали  $E_{Ws}$  по табл. 37, или наименьшее отклонение толщины зуба  $E_{cs}$  по табл. 41, или верхнее предельное отклонение измерительного межосевого расстояния  $E_{a^*s}$  по табл. 43) в зависимости от вида сопряжения и степени точности по нормали плавности работы.
- 4. Допуск на смещение исходного контура  $T_H$  устанавливается по табл. 36 (или допуск на среднюю длину общей нормали  $T_{Wm}$  по табл. 39, или допуск на длину общей нормали  $T_{W}$  по табл. 40, или допуск на толщину зуба  $T_c$  по табл. 42,

33. Нормы контакта зубьев в передаче (суммарное пятно контакта)

Степень	Относительн суммарного пя	ные размеры тна контакта, %
точности	по высоте зубьев, не менее	по длине зубьев, не менее
5	55	80
6	50	70
7	45	60
8	40	50
9	30	40
10	25	30

Примечания: 1. Для передачи 7—11 степеней точности с числом зубьев колеса, не равным и не кратным числу зубьев щестерни, допускается уменьшение относительных размеров міновенного пятна контакта зубьев. Предельные относительные размеры міновенного пятна контакта зубьев в этом случае не должны быть менее 75% соответствующих предельных относительных размеров суммарного пятна контакта.

- 2. Если не указаны специальные требования по нагрузке (торможению) зубчатой передачи, пятно контакта устанавливают при легком торможении, обеспечивающем непрерывное контактирование зубьев обоих зубчатых колес.
- 3. При контроле с измерительным зубчатым колесом относительные размеры суммарного пятна контакта должны быть соответственно увеличены по сравнению с указанными в табл. 33.

или нижнее предельное отклонение измерительного межосевого расстояния  $E_{a7}$  — по табл. 43, в зависимости от вида сопряжения или вида допуска на боковой зазор, если он указан в условном обозначении передачи.

5. Предельные отклонения межосевого расстояния  $f_a$  устанавливаются по табл. 34 в соответствии с видом сопряжения или, если это указано в условном обозначении точно-

34. Нормы бокового зазора (показатели  $j_n \min, f_{ar}$ ), мимк

	TO 4000	0	260	410	099	1050	1650	∓30	±140	±200	±350	±550	008∓
	TO 3120	0	210	330	540	098	1350	±70	±110	∓160	±280	±450	±700
	Св. 2000 до 2500	0	175	280	440	700	1100	±55	∓90	±140	±220	±350	±550
	CB, 1600 Lto 2000	0	150	230	370	009	920	±45	±70	±110	±180	±300	±450
	CB. 1250 Ato 1600	0	125	195	310	200	780	±40	79∓	1000	±160	±250	∓400
	CB. 1000	0	105	165	260	420	099	±35	∓20	08∓	±140	±220	±350
a, MM	CB. 800	0	90	140	230	360	260	±28	±45	<b>±</b> 70	±110	±180	±280
Межосевое расстояние	CB. 630	0	80	125	200	320	200	±25	±40	09∓	±100	±160	±250
soe pacc	CB. 500 до 630	0	70	110	175	280	440	±22	±35	±55	76∓	±140	+220
Лежосе	CF 400	0	63	6	155	250	400	±20	±30	±50	∓80	±120	±200
	CB. 315	0	57	68	140	230	360	±18	±28	±45	±70	±110	±180
	CB. 250	0	52	81	130	210	320	±16	±25	±40	09∓	±100	±160
	CF. 180	0	46	72	115	185	290	±14	±22	±35	±55	76∓	±140
	CB. 125	0	40	63	100	160	250	±12	±20	∓30	∓20	∓80	±120
	CB.80 Ao 125	0	35	54	87	140	220	#11	±18	±28	±45	±70	±110
	08 o∏.	0	30	46	74	120	190	±10	±16	±22	±35	09∓	±100
нис	обозначен		j, min						fa				
Класс	отклонений межосевого расстояния*	П		III	2	>	5	П	II	III	≥	>	IA
-1	Вид сопря жения	Н	ш	Ω	ပ	В	∢	ı	H, E	Ω	ပ	В	∢

* Класс отклонений межосевого расстояния используется при изменении соответствия между видом сопряжения и классом отклонения межосевого расстояния.

 $\Pi$  р и м е ч а н и е . Принятые обозначения:  $j_n$   $_{min}$  — гарантированный боковой зазор;  $\pm f_a$  — предельные отклонения межосевого

расстояния.

35. Нормы бокового зазора, мкм (показатель —  $E_{Hs}$ ) для зубчатого колеса с внешними зубьями, показатель  $\pm$   $E_{Hs}$  для зубчатого колеса с внутренними зубьями)

	CB. 5000	160	180	400	450	620	700	750	980	1100	1200	1200	1550	1800	1800	2000	2200	2400	2500	2800	3000	3500	3500
	CB. 4000	120	140	320	350	200	550	009	008	900	1000	1000	1300	1400	1600	1800	1800	2000	2000	2200	2400	2500	2800
	CB. 3150	100	110	260	280	410	450	200	099	700	800	900	1050	1100	1200	1400	1400	1600	1650	1800	2000	2200	2200
	CB. 2500	80	06	210	240	330	350	400	540	009	009	700	098	006	1000	1100	1200	1200	1350	1400	1600	1800	1800
	то 5200	70	80	175	200	280	300	350	440	450	200	009	002	800	800	006	1000	1100	0011	1200	1400	1400	1600
	CB. 1600	09	70	150	160	230	250	280	370	400	450	200	009	700	700	800	800	006	920	1000	1100	1200	1400
	CB. 1250	20	55	125	140	561	220	250	310	350	400	450	200	550	009	700	700	800	780	900	006	1000	1100
р д, мм	CB. 1000	45	20	105	120	591	180	200	760	280	300	350	420	450	200	550	009	009	099	700	800	906	900
диаметр	Св. 800 до 1000	40	45	06	100	140	160	180	230	250	280	300	360	400	450	450	200	550	999	009	700	800	800
Делительный	CB. 630	30	35	08	90	125	140	160	200	220	250	280	320	350	400	400	450	500	200	550	009	700	700
Делите	Св. 500	78	30	70	80	110	120	140	175	200	220	250	780	300	350	400	400	400	440	200	550	009	909
	CB. 400	25	78	63	70	26	170	120	155	180	200	200	250	280	300	350	350	400	400	450	200	200	009
	CB. 315	22	25	57	09	68	100	110	140	160	180	200	230	250	280	300	350	350	360	400	450	200	500
	CB. 250 go 315	70	22	52	55	81	96	100	130	140	160	180	210	250	250	280	300	300	320	350	400	400	450
	CB. 180	18	70	46	50	7.2	80	90	511	120	140	160	185	700	220	250	250		290	300	350	400	400
	CB. 125 до 180	16	18	40	45	63	70	80	100	110	120	140	160	180	700	700	220		250	280	300	350	350
	CB.80	14	16	35	40	54	99	70	87	001	110	120	140	160	160	180	200		220	250	280	280	300
	08 ₀Д	12	14	30	35	46	20	55	74	08	8	100	120	140	140	160	160	180	190	200	220	250	280
Степень	точности по нор- мам плавности	3–6	7	3–6	7	3–6	7	8	3—6	7	∞	6	3–6	7	<b>∞</b>	6	01	=	3—6	7	∞	6	10
-F	вид сопра	H		ш		Ω	•		U				В						∢				

36. Нормы бокового зазора, мкм  $(T_H -$ допуск на смещение исходного контура)

	то 800 Св. 630	006	1200	1400	1800	2000	2500	3500	4000
	Св. 500	700	006	1200	1400	1600	2000	2500	3000
	CB. 400	550	700	006	1100	1400	1600	2000	2500
	CB. 320	450	009	700	906	1100	1400	1600	2000
	CB- 250	450	450	009	700	006	1100	1400	1800
	CB. 200	300	350	200	009	700	006	1100	1400
венца	CB. 160 до 200	250	300	400	200	550	700	006	1100
Допуск на радиальное биение зубчатого венца	CB. 125	200	250	300	400	450	550	700	006
е зубч	TO 172 CB. 100	091	200	250	300	350	450	009	700
биени	Св. 80 до 100	120	160	200	250	300	350	200	009
15ное	CB. 60 Ato 80	110	140	180	200	250	300	400	200
радиал	Ca. 50 до 60	08	100	140	180	200	250	350	400
ск на	CB-40	70	8	120	140	180	220	280	350
Допу	CB. 32	09	8	100	120	160	180	250	300
	CB. 25 до 32	55	70	96	100	140	160	200	250
	CB.20	45	09	80	8	110	54	180	220
	CB-16	40	55	70	80	100	120	160	200
	CB.12	40	45	99	20	8	110	140	180
	CB.10 TO 17	35	9	25	2	8	100	140	160
	CB.8 40 10	30	9	20	9	8	92	120	160
	8 oII.	28	35	45	55	70	8	110	140
-	ку <u>.</u> Вид допус	h	ď	ပ	9	a	2	^	×
-	Вид сопря жения	H, E	Ω	ပ	æ	∢	I	ı	I

^{*} Вид допуска на боковой зазор используется при изменении соответствия между видом сопряжения и видом допуска.

 $\Pi$  р и м е ч в н и е . Величина  $F_r$  устанавливается в соответствии с нормой кинематической точности по табл. 27.

	3	37. Нормы	бокового зазора, мем (показатели — $E_{Wms}$ или + $E_{Wmi}$ — слагаемое 1 и — $E_{Ws}$ или + $E_{Wt}$ )	азора, мки	і (показате	ли — Еум	$_{\rm S}$ relief $+ E_{\rm F}$	Vmi — Citar	аемое 1 и	— Еруз или	+Ew)		1
-RG	Степень					Дел	ительный	Делительный диаметр, мм	MM				
жения Вип соп	точности по нормам плавности	До 80	Св. 80 до 125		Св. 180 до 250	Св. 125         Св. 180         Св. 250         Св. 315         Св. 400           до 180         до 250         до 315         до 400         до 500	Св. 315 до 400	Св. 400 до 500	Св. 500 до 630	Св. 630         Св. 800         Св. 1000         Св. 1250           до 800         до 1000         до 1250         до 1600	Св. 800 до 1000	Св. 1000 до 1250	Св. 1250 до 1600
Н	3—6	8	10	11	12	14	91	18	20	22	25	28	35
	7	01	91	12	14	16	18	20	22	25	28	30	40

Продолжение табл. 37

-RG	Степень					Дел	ительный	Делительный диаметр, мм	MM				
жения	точности по нормам плавности	До 80	Св. 80 до 125	Св. 125	Св. 180 до 250	Св. 250 до 315	Св. 315 до 400	CB. 400 до 500	Св. 500	Св. 630	Св. 800	Св. 1000 до 1250	Св. 1250 до 1600
	3—6	20	24	28	30	35	40	45	50	55	09	70	06
	7	25	30	30	35	40	45	50	55	09	70	80	100
Ω	36	30	35	40	90	55	09	70	70	06	100	110	140
	7	35	40	90	55	09	70	70	80	100	110	120	160
	8	40	50	20	09	70	70	08	8	110	120	140	180
O O	3–6	90	09	70	80	06	100	110	120	140	160	180	220
	7	55	70	70	80	100	110	120	140	140	091	200	250
	80	09	80	80	100	110	120	140	140	160	200	200	280
	6	70	80	100	110	120	140	140	160	200	200	250	300
	3—6	80	100	110	120	140	160	180	200	220	250	280	350
	7	100	110	120	140	180	180	200	200	250	280	300	400
	œ	100	110	140	140	180	200	200	250	280	300	350	400
	6	110	120	140	160	200	200	250	280	300	300	350	200
	10	110	140	160	180	200	250	250	280	350	350	400	200
	3—6	120	140	180	200	220	250	280	300	350	400	500	550
	7	140	081	200	200	250	280	300	350	350	400	200	009
	∞	160	200	200	250	280	300	350	350	400	200	550	009
	6	180	200	250	280	280	350	350	400	200	550	009	700
	10	200	200	250	280	300	350	400	400	200	550	009	800

38. Нормы бокового зазора, мкм (показатель —  $E_{\Psi_{mS}}$  или +  $E_{\Psi_{mi}}$  — слагаемое II)

	TO 800	180
	CB. 500	140
	CB · 400	110
	CB. 320	8
	TO 370	70
	TO 720 CB 700	55
$F_r$	CB. 160	45
жнца	CB. 125 до 160	35
aroro E	CB, 100	25
пуск на радиальное биение зубчатого в	CB. 80	22
	CB. 60 ato 80	18
иально	CB. 50	14
на рад	TO 20	11
Допуск	CB. 32 40 40	6
,	CB. 25	7
	Ca 20	5
	CB.16	4
	CB. 12 no 16	3
	CB, 10 до 12	3
	Св. 8 до 10	2
	8 ०प्र	2

Примечание. Величина наименьшего отклонения средней длины общей нормали Еить (Еить) определяется сложением слагаемого I (табл. 37) со слагаемым II (табл. 38).

Например, величина  $E_{W_{ms}}$  для колеса 8-й степени точности с d=300 мм, m=5 мм, сопряжения С будет равна: 110 мкм по табл. 37 и —18 мкм по табл. 38.

Таким образом, *Еµ_{ти}* = (-110)+(-18)=-128 мкм (или *Е_{Vm}* = +128 мкм). Величина наименьшего отклонения длины общей нормали *Е*_{Vs} определяется по табл. 37. Эта величина равна - 110 мкм.

# 39.~ Нормы бокового зазора, мкм $(T_{Hm}$ - допуск на среднюю дляну общей нормалн)

	то 800	780	200	009	900	1000	1400	2000	2400
	CB 500	200	350	550	700	800	1100	1400	1800
ļ	TO 200 CB 400	160	250	400	550	700	800	1100	1400
	то 400 Св 350	140	240	300	450	550	800	900	1200
	CB 220	100	160	280	350	450	009	800	1100
	TO 720	100	140	240	300	350	200	009	800
a Fr	TO 700	80	120	180	250	280	400	200	700
э венца	CB 125	70	100	140	200	240	300	400	550
Допуск на радиальное биение зубчатого	TO 172 CP 100	55	80	120	140	180	250	350	400
ие зуб	CB 80	4	70	110	120	150	200	300	350
е биен	CB 60 40 80	30	99	8	100	140	180	240	300
ально	CB 20	28	40	70	100	110	140	220	250
а раду	TO 20 CB 40	25	6	9	70	100	120	180	220
пуск н	TO 40	25	6	20	9	8	110	160	180
धि	CB 25	22	35	45	55	08	001	120	160
	TO 72	70	30	45	20	9	80	110	140
	CB 16	8	28	40	45	99	70	100	120
	CB 12 20 16	70	25	35	40	55	70	8	110
	CB 10	18	25	30	4	20	09	8	001
	CB 8 20 10	91	25	30	9	20	9	80	80
	8 oJI,	16	70	28	35	45	99	20	8
-0	кэ. Вид допу	Ч	Þ	J	q	ø	2	ኣ	×
-R	Вид сопр жения	Н, Е	Ω	ပ	М	∢			

* Вид допуска на боковой зазор используется при изменении соответствия между видом сопряжения и видом допуска,

 $\Pi$  р и м е ч в н и е . Величина  $F_r$  устанавливается в соответствии с нормой кинематической точности по табл. 27.

40. Нормы бокового зазора, мкм  $(T_W$  -допуск на длину общей нормали)

	ļ	Св. 630 до 800	009	700	1000	1200	1400	1800	2500	2800	
		CB. 500 до 630	450	009	700	1000	1100	1400	1800	2000	•
		Св. 400 до 500	400	200	009	700	1000	1100	1400	1800	•
		CB. 320	300	400	200	009	700	1000	1100	1400	•
		CB. 250	250	300	400	200	009	800	1000	1200	
		то 720 То 720	200	250	350	400	200	009	800	1000	•
	жиа $F_r$	CB. 160	160	200	280	350	350	200	009	800	
	OLO BE	CB, 125 Ao 160	140	180	200	280	300	350	200	909	
	зубчат	TO 172 CF 100	100	140	180	200	250	300	400	200	
	сние	CB. 80 go 100	80	110	140	180	200	250	350	400	
	ное би	CB. 60 до 80	70	100	120	140	180	200	280	350	
	циаль	CB. 50 go 60	99	70	100	120	140	180	250	280	
	Допуск на радиальное биение зубчатого венца	TO 20	20	09	80	001	120	140	200	250	
	опуск	CB. 32	40	55	70	80	110	120	180	200	
	Π.	CB. 25	35	20	09	70	100	110	140	180	
		CB.20 25 on	30	4	55	9	08	901	120	140	
		CB.16 Ato 20	78	35	20	55	20	80	110	140	
		CB.12 go 16	78	30	9	20	09	70	100	120	
		то 15 Св 10	25	78	35	20	55	70	100	110	*
		CB. 8 40 10	20	28	35	9	55	70	80	110	,
		8 oIL	20	25	35	35	20	99	80	201	
	-:	кэ _* Вий чопус	ų	p	J	q	a	2	y	×	Drive acceptance on Kanada and
	-1	Вид сопря жения	H, E	Ω	ပ	æ	∢	1	1	1	*

* Вид допуска на боковой зазор используется при изменении соответствия между видом сопряжения и видом допуска.

 $\Pi$  р и м е ч а н и е . Величина  $F_t$  устанавливается в соответствии с нормой кинематической точности по табл. 27.

41. Нормы бокового зазора (показатель  $E_{\rm cs}$ ), мкм

l	0059 on	   2   2	40	0	.0
	CB 2000	<del> </del>	_	300	350
	CB 4000	8	100	240	250
	CB 3120	20	80	180	200
	CB 2500	99	0/	160	180
	TO 7200 CB 7000	20	09	120	140
	TO 5000 CP 1600	45	50	110	120
	TO 1000	35	40	96	100
<i>d</i> , мм	CB 1000	35	35	80	8
Делительный диаметр d,	CB 800	30	35	70	70
ьный д	то 800 Св 630	22	25	99	70
(елипел	CB 200	20	22	50	09
П	TO 200 CB 400	81	20	45	20
	TO 400	16	18	40	45
	CB 720	91	91	40	40
	CB 180	14	14	35	35
	CB 125	12	14	30	35
	CB 80	10	12	25	30
	08 oII.	6	10	22	25
Степень	точности по нормам плавности	3—6	7	3—6	7
-)	вид сопря	Н		ш	

	CB. 5000	450	200	550	700	800	006	006	1100	1400	1400	1400	1600	1800	2000	2200	2500	2500
	CB. 4000	350	400	450	009	700	700	700	006	1000	1200	1400	1400	1400	1600	1800	1800	2000
	то 4000 Св. 3150	300	350	350	200	200	009	009	800	800	006	1000	1000	1200	1400	1400	1600	1600
	то 3120 Св 2200	240	250	300	400	450	200	200	009	700	700	800	006	1000	1000	1200	1400	1400
	CB. 2000	200	220	250	300	350	400	450	200	009	009	200	700	800	006	1000	1000	1200
	то 5000 Св. 1600	180	180	200	250	300	350	350	400	200	200	009	009	200	700	800	006	1000
	TO 1000	140	160	180	220	250	300	350^	350	400	450	200	200	009	700	700	700	800
d, MM	CB, 1000	120	140	140	180	200	220	250	300	350	350	400	450	200	200	009	700	700
диаметр	Св. 800 До 1000	100	120	140	160	180	200	220	250	300	350	350	400	400	450	200	009	909
	Св. 630	96	100	120	140	160	180	200	220	250	300	300	350	350	400	450	200	200
Делительный	CB. 500	08	06	100	120	140	160	180	200	220	250	300	300	300	350	400	450	450
Д	CB. 400	70	08	90	110	140	140	140	180	200	220	250	250	300	350	350	350	450
	CB. 315	09	70	08	100	120	140	140	160	180	200	220	250	250	300	350	350	350
	TO 312	09	70	70	06	100	120	140	160	180	180	200	220	250	250	300	300	350
	CB. 180	55	09	70	80	90	100	120	140	140	160	180	180	200	220	250	300	300
	CB. 125	45	50	09	70	80	8	901	120	140	140	160	180	180	200	220	250	250
	CB.80	40	45	20	09	70	80	06	100	120	120	140	140	160	180	200	200	220
	08 oII,	35	35	40	55	09	70	70	8	100	100	120	120	140	150	160	180	200
	Степень точности по нормам плавности	3–6	7	∞	3—6	7	∞	6	36	7	∞	6	10	3-6	7	∞	6	10
	Вид сопря- жения	Δ			ပ				м					V				

42. Нормы бокового зазора, мкм ( $T_c$  — допуск на толщину зуба)

	CB 630	700	700	1000	1400	1400	1800	2500	3000
	CB 500	200	700	006	1000	1200	1400	1800	2200
	CB 400	400	200	700	800	1000	1200	1400	1800
	CB 320	350	450	200	700	800	1000	1200	1400
	TO 370	250	350	450	200	700	800	1000	1400
	TO 720	220	250	350	450	500	700	800	1000
нца Е,	TO 700 CB 100	180	220	300	350	400	200	700	800
Допуск на радиальное биение зубчатого венца	TO 100 CB 172	140	180	220	300	350	400	200	700
зубча	TO 172 CB 100	120	140	180	220	250	350	450	200
ление	то 100 Св 80	06	120	091	180	220	250	350	450
ное би	CB 60	70	001	140	140	180	220	300	350
циаль	TO 00	20	70	100	140	140	180	250	300
на рад	TO 20	50	70	96	100	140	160	200	250
эпуск	TO 40	45	09	70	06	120	140	180	220
Й	CB 25	40	20	70	70	100	140	140	180
	CB 20	35	45	09	70	80	100	140	160
	CB 16	30	40	50	09	70	06	120	140
	CB 12 20 16	30	35	45	50	70	80	100	140
	CB 10	25	30	35	50	09	70	100	120
	CB 8	22	30	35	45	09	70	96	120
	8 oII,	20	25	35	40	50	70	80	001
-	кэ _* Вий поцус	ų	p	υ	p	ø	2	~	×
-R	жения Вии соць	Н, Е	Q	U	Ø	∢	1	l	ı

*Вид допуска на боковой зазор используется при изменении соответствия между видом сопряжения и видом допуска.

 $\Pi$  р и м е ч а н и е . Величина  $F_r$  устанавливается в соответствии с нормами кинематической точности, приведенными в табл. 27.

# 43. Нормы бокового зазора (показатели $E_{a^*s}$ и $E_{a^*i}$ )

E _a *s	Для зубчатых колес с внешними зубьями равно $+ f_i^{"}$ по табл. 29 Для зубчатых колес с внутренними зубьями равно $+ T_H$ по табл. 36
$E_{a^*i}$	Для зубчатых колес с внешними зубьями равно $+T_H$ по табл. 36 Для зубчатых колес с внутренними зубьями равно $-f_i''$ по табл. 29

сти передачи с классом отклонений межосевого расстояния.

- 6. При контроле предельных отклонений измерительного межосевого расстояния верхнее  $E_{a^n}$ , и нижнее  $E_{a^n}$  отклонения определяются по табл. 43.
- 7. При контроле размера по роликам наименьшее отклонение  $E_{Ms}$  и допуск  $T_{M}$  определяют пересчетом величин  $E_{Wms}$  и  $T_{Wm}$  по формулам:

наименьшее отклонение размера по роликам

$$E_{Ms} \approx \frac{E_{Wms}}{\sin \alpha_D \cos \beta_D}$$

и допуск на размер по роликам

$$T_M \approx \frac{T_{Wm}}{\sin \alpha_D \cos \beta_b}$$
,

где  $\alpha_D$  — угол профиля в точке на концентрической окружности зубчатого колеса, проходящей через центр ролика, определяется при геометрическом расчете размера по роликам;  $\beta_b$  — угол наклона зуба на основном цилиндре.

### Конструкции цилиндрических зубчатых колес

Литые стальные и чугунные колеса. Толщина  $\delta_0$  обода литого колеса (рис. 22) должна быть возможно меньше, чтобы она не отличалась значительно от толщины спиц. Минимальная толщина

$$\delta_0 = (1.5m_t + 5)\sqrt[3]{\frac{z}{150}}$$
, MM,

где  $m_t$  — торцовый модуль, мм; z — число зубьев колеса.

Формула действительна при наличии на ободе ребер жесткости высотой h не менее толщины  $\delta_0$ ; рекомендуется принимать  $h=2\delta_0$ . Толщину ребра следует брать примерно  $(0,8\div1)\delta_0$ . При ширине литого колеса  $b<\frac{d}{12}$  его выполняют однодиско-

вым или со спицами овального сечения, а при большой ширине — со спицами, показанными на рис. 23. При  $d_a \le 1000$  мм и

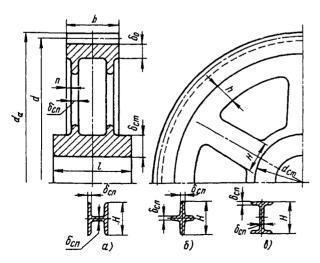



Рис. 22. Литое колесо и форма спиц

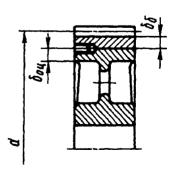



Рис. 23. Конструкция бандажированных цилиндрических колес

		Отклоне	ние, мкм			
Номинальный	отвеј	стия	ва	ла	Натя	г, мм
диаметр D, мм	нижн.	верхн. +	верхн. +	нижн. +	наиб.	наим.
Св. 500 до 600	0	80	560	480	560	400
» 600 » 700	0	125	700	575	700	450
» 700 » 800	0	150	800	650	800	500
* 800 * 1000	0	200	950	750	950	550
* 1000 * 1200	0	275	1200	925	1200	650
* 1200 * 1500	0	375	1500	1125	1500	750

#### 44. Рекомендуемые натяги для стальных бандажей зубратых колес и чугунных центров

 $b=100\div200$  мм спицы выполняют H-образными (рис. 22, a), крестообразными (рис. 22, b) и двутавровыми (рис. 22, b). H-образные спицы предпочтительнее, так как в отливках остаточные напряжения получаются меньше. Колеса с  $d_a < 2500$  мм выполняют с шестью спицами.

Размер H спицы с H-образным сечением при толщине стенки спицы  $(0,8\div1)$   $\delta_0$  (большие значения относятся к

$$\frac{b}{m_t} > 25$$
) принимают

$$H \geq 10 m_t \sqrt[3]{\frac{b}{10 m_t} \left(\frac{z}{150}\right)^2}\,.$$

Если при найденном H спицы не уменьшаются на ступице, то H следует выбрать из условия сопряжения спиц со ступицей (например, при шести спицах  $H\approx 0,6d_{\rm cr}$ , где  $d_{\rm cr}$  - диаметр ступицы) и рассчитать на изгиб по изгибающему моменту по спицам  $M_{\rm cn}\approx 0,1Pd$  (здесь P - окружная сила). Суживать спицы к ободу следует не больше, чем на 20%.

Ширина края обода, не поддерживаемая спицами,  $n \le 0,15b$ .

Толщина ступицы

$$\delta_{\rm CT} = \left(14\sqrt{d_{\rm B}} + 1.2m_t - 5\right)\left(1 + \frac{300 - z}{3000}\right),\,$$

где  $d_{\mathtt{B}}$  - диаметр отверстия ступицы, мм.

Длина ступицы  $l = (1,5\div 2)d_{\rm B}$ , но не меньше ширины колеса b.

**Бандажированные колеса.** Толщина бандажа (рис. 23)

$$\delta_6 = (2, 4m_t + 10)\sqrt{\frac{z}{150}}$$

при 
$$z < 150$$
;

$$\delta_6 = 0.016d + 10$$
 при  $z \ge 150$ ,

где  $m_t$  и d - в мм.

Толщина обода чугунного центра  $\delta_{\text{оц}} \approx \delta_6$ . Для предохранения бандажа от проворачивания или сдвига с центра с каждой стороны колеса ввинчивают 3-6 стопорных винтов диаметром  $(0,5 \div 0,6)\delta_6$  и длиной, равной трехкратному диаметру.

Размеры спиц и ступицы центров такие же, как для литых колес.

Однодисковая конструкция предпочтительна при окружной скорости  $\nu > 10$  м/с вследствие меньших потерь масла на разбрызгивание.

Меньшие колебания натяга, чем приведенные в табл. 44, могут быть достигнуты, если при проточке центра за номинальный диаметр будет принят внутренний диаметр уже расточенного бандажа колеса. Такой способ обработки применяют при повышенных требованиях к посадке бандажа на центр (например, при ударной или вибрационной нагрузке). При толщине бандажа меньше (4÷5) m, также рекомендуется сужать

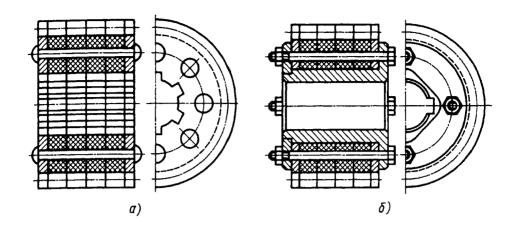



Рис. 24. Конструкция армированных зубчатых колес:

a - шлицевое соединение с валом;  $\delta$  - соединение с валом посредством специальной втулки

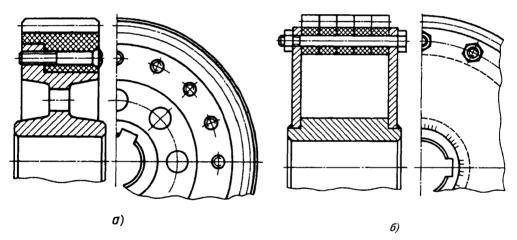



Рис. 25. Конструкция армированных зубчатых колес: a - венец из термопласта;  $\delta$  - наборный венец из слоистого пластика

поля натяга указанным способом. Следует учитывать, что при натягах больше 0,001D возможны разрушения от впадины между зубьями.

Пластмассовые колеса. Одно из колес в паре делают пластмассовым (текстолит, лигнофоль, капрон, нейлон и др.), а другое — чугунным или стальным с закалкой. Такое сочетание материалов обеспечивает практически бесшумную работу зубчатой передачи при больших окружных скоростях.

Основной недостаток пластмассовых колес — низкие допускаемые нагрузки (в 2—3 раза меньше, чем для стальных колес), ограничиваемые выносливостью против

выкрашивания и износостойкостью рабочих поверхностей зубьев.

Армирование пластмассовых зубчатых колес талью или чугуном также проводят для повышения прочности при изгибе зубъев, усиления соединения зубчатого колеса с валом, придания стабильности размерам пластмассового венца.

На рис. 24 показаны варианты армирования зубчатых колес из слоистых пластиков методами осевой стяжки заклепками (рис. 24, *a*) и болтами (рис. 24, *b*). Если зубчатое колесо надевается на вал непосредственно, то соединять его с валом целесообразно с помощью шлицев (см. рис. 24, *a*).

Допускаемые напряжения при расчете шлица на смятие рекомендуется назначать для полиамидов 7—10 МПа; для полиформальдегида и текстолита 12—15 МПа.

На рис. 25 показаны конструкции армированных колес. Здесь зубчатый венец выполнен из полимера, а диски и ступицы из стали. Это позволяет осуществлять смену изношенных зубчатых венцов даже без съема колес с вала.

Для термопластических материалов армирующие элементы при изготовлении зубчатых колес или составных заготовок вводят в сопряжение с пластмассовыми венцами непосредственно в процессе отливки (рис. 26).

Однако усадочное сокращение длины и ширины венца при остывании, содействуя более плотному сопряжению, одновременно вызывает внутренние напряжения, остающиеся в материале весьма длительное время. Термическая обработка способствует частичному снятию внутренних напряжений.

### Правила выполнения чертежей зубчатых колес

Общие указания при выполнении чертежей цилиндрических колес зубчатых реек и конических зубчатых колес. Таблицы параметров должны состоять из трех частей, которые разделяются сплошными основными линиями: первая часть — основные данные, вторая — данные для контроля, третья — справочные данные.

Неиспользуемые строки таблиц параме-



Рис. 26. Армированное зубчатое колесо из термопласта

тров следует исключать или прочеркивать.

Размеры фасок или радиусы кривизны линий притупления на кромках зубьев допускается указывать в технических требованиях чертежа вместо указания на изображении зубчатой детали.

В третьей части таблицы параметров для колес указывают обозначение сопрягаемого колеса, для реек — при необходимости.

## Правила выполнения чертежей цилиндрических зубчатых колес

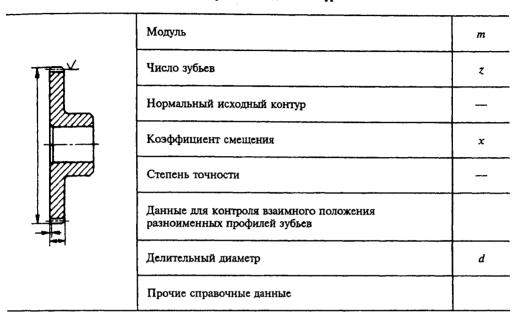
В первой части таблицы параметров указывают:

нормальный исходный контур со ссылкой на соответствующий ГОСТ;

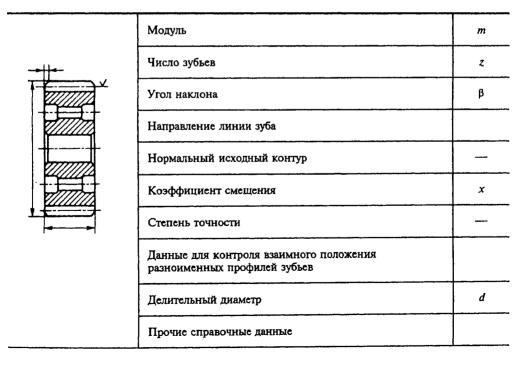
коэффициент смещения x с соответствующим знаком; при отсутствии смещения следует проставлять 0;

степень точности и вид сопряжения по нормам бокового зазора по соответствующему стандарту и обозначение этого стандарта.

Во второй части таблицы параметров венца приводят данные для контроля взаимного положения разно-именных профилей зубьев по одному из следующих вариантов: постоянная хорда зуба  $\bar{s}_c$  и высота до постоянной хорды  $\bar{h}_c$ ; длина общей нормали W; толщина по хорде зуба  $\bar{s}_y$  и высота до хорды  $\bar{h}_{ay}$ ; торцовый размер по роликам (шарикам) M и диаметр ролика (шарика) D.


В третьей части таблицы параметров венца приводят при необходимости прочие справочные данные, например: шаг зацепления, осевой шаг, ход зуба и размеры элементов зубьев для контроля.

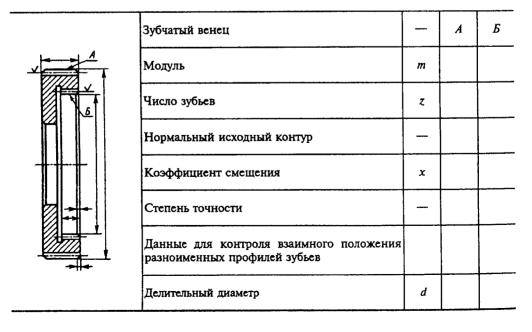
Если зубчатое колесо имеет два и более венца (табл. 48), то венец и соответствующая колонка таблицы должны быть обозначены одной прописной буквой русского алфавита.


Более подробно о правилах выполнения чертежей цилиндрических зубчатых колес см. ГОСТ 2.403—75.

Примеры указания параметров зубчатого венца на чертежах колес приведены в табл. 45—48.

#### 45. Пример указання параметров зубчатого венца на чертеже прямозубого пилиндрического зубчатого колеса со стандартным исходным контуром




# 46. Пример указания параметров зубчатого венца на чертеже косозубого пилиндрического зубчатого колеса со стандартным исходным контуром



# 47. Пример указания параметров зубчатого венца на чертеже прямозубого зубчатого сектора со стандартным исходным контуром

	Модуль	m
	Число зубьев секторного зубчатого колеса	z
	Нормальный исходный контур	_
1	Коэффициент смещения	х
	Степень точности	
<u>A-A</u>	Данные для контроля взаимного положения разноименных профилей зубьев	d
	Делительный диаметр	
	Число зубьев сектора	_
	Прочие справочные данные	

#### 48. Пример указания параметров зубчатого венца на чертеже цилиндрического зубчатого колеса со стандартным исходным контуром, имеющего два венца



#### РЕЕЧНЫЕ ПЕРЕЛАЧИ

#### Расчет реек

Зубчатая реечная передача состоит из колеса и рейки с исходным контуром по ГОСТ 13755—81 с прямыми или косыми зубьями.

#### 49. Формулы для расчета реек

Параметры и обозначения	Расчетные формулы
Угол профиля зу- ба рейки а	α = 20°
Угол наклона зуба β	β рекомендуется принимать не более 20°
Модуль нормаль- ный $m_n$	<ul> <li>тринимается</li> <li>конструктивно и</li> <li>определяется</li> <li>расчетом</li> </ul>
Модуль основной (торцовый) $m_t$	$m_t = \frac{m_n}{\cos \beta}$
Шаг нормальный $p_n$	$p_n = \pi m_n$
Шаг торцовый $p_t$	$p_t = \frac{p_n}{\cos \beta}$
Высота головки зуба, $h_a$	$h_a = m_n$
Высота зуба <i>h</i> (размер справочный)	$h=2,25m_n$
Ширина рейки <i>b</i>	$b=(2\div 10)m_n$
Длина косого зуба b ₁	$b_1 = \frac{b}{\cos \beta}$
Линейное перемещение рейки $L$ , соответствующее углу пово-	$L = \frac{\gamma p_T z}{360^{\circ}}$
рота колеса или червяка	(z - число зубьев ко- леса или число захо- дов червяка)
Угол поворота колеса $\gamma$ , соответствующий перемещению рейки на величину $L$	$\gamma = L \frac{360}{p_t z}$

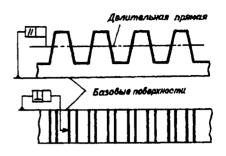



Рис. 27. Базовые поверхности рейки

Базовыми поверхностями рейки называют поверхности, относительно которых задается положение делительной прямой и направление зуба рейки (рис. 27).

### Допуски на изготовление зубчатых реек (по ГОСТ 10242—81)

Допуски распространяются на зубчатые рейки и зубчатые реечные передачи, состоящие из цилиндрического прямозубого или косозубого зубчатого колеса и рейки с исходным контуром по ГОСТ 13755—81 с модулем зубьев от 1 до 40 мм, с рабочей шириной рейки до 630 мм с точностью зубчатого колеса по ГОСТ 1643—81.

Термины и обозначения приведены в табл. 21. Они или однозначны указанным в таблице, или слово «колесо» следует заменить словом «рейка». Остальные термины и обозначения пояснены в примечаниях к таблицам. Определения — по ГОСТ 10242—81.

Степени точности и виды сопряжений. 1. Устанавливаются двенадцать степеней точности зубчатых реек и реечных передач, обозначаемых в порядке убывания точности цифрами: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.

Примечание. Для степеней точности 1 и 2 допуски и предельные отклонения не приведены. Эти степени предусмотрены для будущего развития.

Для степеней точности 3,4, 11 и 12 допуски и предельные отклонения см. ГОСТ 10242—81.

2. Для каждой степени точности зубчатых реек и передач устанавливаются нормы: кинематической точности, плавно-

Å 8	Вид сопря- жения	Для степеней точности передач	Вид допуска на боко- вой зазор
Поля допусков	A	3—12	а
Гарантированные	В	3—10	ь
SONOBNE SASOPN Jamin	С	3—9	с
	D	3-8	d
J _{nmin=0}	E	3—7	h
	н	3—7	h

#### 50. Вилы сопряжений и гарантированные боковые зазоры

Примечание. Сопряжение вида В гарантирует минимальную величину бокового зазора, при котором исключается возможность заклинивания реечной передачи из чугуна или стали от нагрева при разности температур зубчатого колеса, рейки и корпуса в 25 °C.

ности, плавности работы и контакта зубьев.

- 3. Допускается комбинирование норм кинематической точности, плавности работы и контакта зубьев зубчатых реек и передач разных степеней точности.
- 4. При комбинировании норм разных степеней точности нормы плавности работы реек могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности.

Нормы контакта зубьев реек не могут быть грубее норм плавности работы зубчатых реек.

Точность зубчатых колес реечных передач по нормам плавности не должна быть грубее степеней точности реек по соответствующим нормам.

- 5. Независимо от степени точности зубчатых колес, реек и реечных передач устанавливается щесть видов сопряжений в реечной передаче A, B, C, D, E, H и пять допусков на боковой зазор  $T_{jn}$ , обозначаемых в порядке убывания буквами a, b, c, d, h (табл. 50).
- 6. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов от-клонений монтажного размера (для сопря-

жений H и E — II класса, а для сопряжений D, C, B и A — классов III, IV, V и VI соответственно).

Допускается изменять соответствие между видом сопряжения и классом отклонений монтажного размера.

7. Точность изготовления зубчатых реек и передач задается степенью точности, а требования к боковому зазору — видом сопряжения по нормам бокового зазора и видом допуска на боковой зазор.

Пример условного обозначения точности зубчатой рейки со степенью точности 7 по всем трем нормам, с видом сопряжения В и неизмененным соответствием между видами сопряжения и допуска на боковой зазор и номером стандарта на рейку:

#### 7—В ГОСТ 10242— 81.

Условное обозначение точности реечной передачи включает указание о точности зубчатого колеса по ГОСТ 1643—81, рейки с допусками по ГОСТ 10242—81 и номера соответствующих стандартов.

Пример условного обозначения точности реечной передачи со степенью точности 7 по всем трем нормам для колеса и рейки, с видом сопряжения В и соответствием между видами сопряжения и допуска на боковой зазор и номерами стандартов на зубчатое колесо и рейку:

8. При комбинировании норм разных степеней точности и изменении соответствия между видом сопряжения и видом допуска на боковой зазор точность зубчатых реек и реечных передач обозначается последовательным написанием трех цифр и двух букв. Между собой и от слитно пишущихся букв цифры разделяются тире.

Первая цифра обозначает степень по нормам кинематической точности,

вторая — степень по нормам плавности работы,

третья — степень по нормам контакта зубьев.

Первая из букв обозначает вид сопряжения, вторая — вид допуска на боковой зазор.

Пример условного обозначения точности реечной передачи, состоящей из указания точности зубчатого колеса со степенью точности 8 по нормам кинематической точности, со степенью 7 по нормам плавности работы и степенью 7 по нормам контакта зубьев, с видом сопряжения В и видом допуска а и рейки со степенями точности, видом сопряжения и видом допуска 9—8—8—Ва соответственно и номеров стандартов на зубчатое колесо и рейку:

При назначении грубого класса отклонений монтажного размера, чем предусмотрено для данного вида сопряжения (табл. 59), в условном обозначении точности передачи указывается принятый класс и уменьшенный гарантированный зазор, рассчитанный по формуле

$$j'_{n \min} = j_{n \min} - 0.68 (|f'_a| - |f_a|),$$

где  $j_{n \text{ min}}$  - гарантированный боковой зазор для данного вида сопряжения;

 $f_a$  - предельное отклонение монтажного размера для данного вида сопряжения;

$$f_{n\min}'$$
 и  $f_a'$  - измененные значения.

Пример условного обозначения точности реечной передачи со степенью точности 7 по всем нормам, с видом сопряжения С, видом допуска на боковой зазор a и классом отклонений монтажного размера V (при расчетном монтажном расстояния  $a'_R = 450$  мм,  $j_{n \text{ min}} =$ = 123 мкм) и номерами стандартов на зубчатое колесо и рейку:

Примечание. При принятия более точного класса отклонений монтажного размера наименьший зазор в передаче будет больше зазора, указанного в табл. 59. В этом случае увеличенный гарантированный зазор может не указываться в условном обозначении точности передачи.

**Нормы точности**. 1. Показатели кинематической точности, плавности работы и контакта зубьев в передаче устанавливаются по табл. 51, 52, 53.

#### 51. Показатели кинематической точности

Контролируемый объект	Показатель точности или комплекс	Степень точности
	$F_{ir}^{\prime}$	3—7
Зубчатая рейка	$F_{pgr}, F_{pr}$	3—7
	$F_{ir}^{\prime\prime}$	5—12
	$F_{rr}$	8—12
Реечная передача	$F'_{ior}$	3-7

Примечание. Если кинематическая точность зубчатого колеса относительно рабочей оси соответствует требованиям ГОСТ 1643—81, рейки относительно базовых поверхностей соответствуют требованиям ГОСТ 10242—81 и требование селективной сборки не выдвигается, контроль кинематической точности передачи необязателен.

Контролируемый объект	Показатель точности или комплекс	Степень точности
	$f_{ir}^{\prime}$	3—7
Зубчатая рейка	f _{ptr} , f _{fr}	3—7
	$f_{ir}''$	5—12
	f _{ptr}	8—12
Реечная передача	$f_{\it ior}'$	3—7

#### 52. Показатели плавности работы

Примечания: 1. Если плавность работы зубчатого колеса соответствует требованиям, предъявляемым ГОСТ 1643—81, а плавность работы рейки — требованиям ГОСТ 10242—81, контроль плавности реечных передач необязателен.

2. При соответствии плавности передачи требованиям ГОСТ 10242—81 контроль плавности зубчатого колеса и зубчатой рейки не является обязательным.

53. Показатели, о	пределяющие
контакт зубьев :	в передаче

Контролиру- емый объект	Показатель точности или комплекс	Степень точности
Зубчатая рейка	$F_{eta r}$	3—12
Реечная передача	$f_{xr}, f_{yr}$ Суммарное пятно контакта	3—12 3—9

 $\Pi$  р и м е ч а н и я : 1.  $f_{xr}$  и  $f_{yr}$  - для передач с нерегулируемым расположением звеньев.

 Нормы суммарного пятна контакта не являются обязательными и применяются при соглашении между изготовителем и потребителем.

- 2. Допуски и предельные отклонения по нормам кинематической точности, нормам плавности работы и нормам контакта зубьев для различных степеней точности зубчатых реек и передач устанавливаются по табл. 54—58.
- 3. Нормы кинематической точности, кроме  $F_{rr}$ ,  $F_{ir}^{"}$ , нормы плавности работы, кроме  $f_{ir}^{'}$ , и нормы контакта зубьев в реечной передаче, кроме  $f_{xr}$  и  $f_{yr}$  в зависимости от условий работы по правым и левым профилям зубьев, допускается назначать из разных степеней точности.
- 4. В тех случаях, когда производится продольная или профильная модификация боковых поверхностей зубьев или когда предусматриваются специальные требования к форме и расположению суммарного пятна контакта или способам его обнаружения, показатели и нормы, определяющие контакт зубьев в передаче, устанавливаются независимо от табл. 58.
- 5. Комплексы показателей точности в соответствии с п. 1 и показатели, обеспечивающие гарантированный боковой зазор, устанавливаются изготовителем. Каждый установленный комплекс показателей, используемый при приемке реек и передач, является равноправным с другим.

При сравнительной (например, расчетной) оценке влияния точности передач на их эксплуатационные качества предпочтительными являются функциональные показатели  $F_{ior}'$ ,  $F_{ir}'$ ,  $f_{ior}'$ ,  $f_{ir}'$  и относительные размеры суммарного пятна контакта.

- 6. Непосредственный контроль зубчатых реек и передач по всем показателям установленного комплекса не является обязательным, если изготовитель существующей у него системой контроля точности производства гарантирует выполнение соответствующих требований ГОСТ 10242—81.
- 7. Требования к точности зубчатой рейки устанавливаются относительно базовых поверхностей.

Погрешности, вносимые при использовании в качестве измерительной базы поверхностей, имеющих неточность формы и расположения относительно базовых поверхностей, должны быть учтены или компенсированы уменьшением производственного допуска.

54. Нормы кинематической точности (показатели  $F_{in}$   $F_{pn}$   $F_{pg}$ ), мм

							,				1
Степень	Обозна-	Модуль				ИПД	Длина рейки, мм	М			l
точности	чение	т, мм	До 32	Св. 32 до 50	Св. 50 до 80	Св. 80 до 160	Св. 160 до 315	Св. 315 до 630	Св. 630 до 1000	Св. 1000 до 1600	Св. 1600 до 2500
	$F_i$					7	$F_i' = F_p + f_{g}$				
\$	$F_{ m p}$	Or 1 до 16	15	21	20	24	35	20	09	ļ	1
	Fpg		±12	±14	±16	±20	±28	±40	±50	ļ	j
	F		!			,	$F_i' = F_P + f_{g}$				
9	$F_P$	Or 1 до 16	24	27	30	40	55	75	95	120	135
	Fpg		±20	±22	±25	±32	±45	±63	780	±100	±112
	F					,	$F_i' = F_P + f_{fg}$				
7	FP	Or 1 до 25	35	40	45	55	75	110	135	170	200
	Fpg		∓28	±:32	∓36	±45	±63	764	±112	±140	±160

 $\Pi$  р и м е ч а н и я : 1. Обозначения:  $F_{pq}$  - предельные накопленные отклонения шага зубчатой рейки.

^{2.} Для определения  $F_l^\prime$  принимают  $F_p$  в зависимости от степени точности по нормам кинематической точности, а  $f_f$  — в зависимости от степени точности по нормам плавности работы (табл. 57).

Степень	Обозначе-		<del></del>	Модуль	т, мм		
точности	ние	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40
5	$F_i''$	22	32	38	50		_
6	$F_i''$	38	50	60	75	_	_
7	F"	50	70	80	105	_	_
8	F _i "	70	105	120	150		_
	$F_r$	45	65	75	90	112	140
9	$F_i''$	105	150	170	200	_	
	F _r	65	90	105	130	160	200
10	$F_i''$	150	200	240	300	_	_
	$F_r$	90	130	150	180	220	300

### 55. Нормы кинематической точности (показатели $F_{ir}$ , $F_{rr}$ ), мкм

 $\Pi$  р и м е ч а н и е . Принятые обозначения:  $F_i^{"}$  - допуск на колебание измерительного расстояния на длине рейки;  $F_r$  - допуск на колебание утоняющего смещения зуба.

56.	Нормы	кинематической	итэонрот	(показатель	$F'_{ior}$	)
-----	-------	----------------	----------	-------------	------------	---

и	От 0,25 до 0,50	Св. 0,50 до 0,75	Св. 0,75 до 1,00	Св. 1,00 до 1,25	Св. 1,25 до 1,50	Св. 1,50 до 1,75	Св. 1,75 до 2,00
K	0,57	0,60	0,64	0,67	0,70	0,75	0,77
u	Св. 2,00 до 2,25	Св. 2,5 до 2,5		. 2,50 2,75	Св. 2,75 до 3,00	Св. 3,00 до 3,25	Св. 3,25 до 3,50
K	0,80	0,83	C	,87	0,90	0,93	0,97

П р и м е ч а н и е . Допуск на кинематическую (наибольшую) погрешность реечной передачи рассчитывают по формуле

$$F'_{io} = K(F'_{i1} + F'_{i2}),$$

где K - по табл. 56 в зависимости от  $u = \frac{z_2}{z_1}$ ; здесь  $z_2$  - число зубьев рейки на рабочей длине;

 $z_1$  - число зубьев зубчатого колеса;  $F_{i1}^\prime$  - по ГОСТ 1643—81;  $F_{i2}^\prime$  - по табл. 54.

Принятое обозначение  $F_{io}^{'}$  —допуск на кинематическую (наибольшую) погрешность реечной передачи. Допуск на кинематическую (наибольшую) погрешность реечной передачи  $F_{io}^{'}$  при ее селективной сборке может быть уменьшен, исходя из расчета.

57. Нормы плавности работы (показатели  $f_{ir}^{'}$  ,  $f_{ptr}$  ,  $f_{fr}f_{ir}^{''}$  ), мкм

Степень	Обозна-			Модул	ть <i>m</i> , мм	<del></del>	
точности	чение	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40
	$f_i'$	14	19	22	30		_
5	$f_{pt}^{'}$	±6	±9	±10	±13	_	_
	$f_f$	7,5	10	12	16	_	_
	$f_i''$	8	12	14	18		_
	$f_i'$	22	30	36	45	_	_
6	$f_{pt}$	±10	±14	±16	±20	-	_
	ff	12	17	20	25	-	_
	$f_i''$	14	19	22	28	_	_
	$f_i^{\prime}$	32	45	50	63	80	
7	f _{pt}	±14	±20	±22	±28	±36	
	$f_f$	18	24	28	35	45	_
	$f_i''$	19	26	30	40	-	
8	$f_{pt}$	±20	±28	±32	±40	±50	±63
	$f_i^{"}$	28	40	45	55	_	_
9	$f_{pt}$	±28	±40	±45	±56	±71	±90
	$f_i''$	40	55	60	75	-	_
10	f _{pt}	±40	±56	±63	±80	±100	±125
	$f_i''$	55	75	90	110		-

 $\Pi$  р и м е ч а н и е . Допуск на местную кинематическую погрешность зубчатой реечной передачи рассчитывается по формуле

$$f_{io}' = \left| f_{pt_1} \right| + \left| f_{pt_2} \right|,$$

где  $f_{pt_1}$  - по ГОСТ 1643—81;  $f_{pt_2}$  — по табл. 57.

# 58. Нормы контакта зубьев в передаче (показатели: $F_{\beta},\,f_{\chi},\,f_{\gamma}$ в мкм, суммарное пятно контакта)

Степень	Модуль <i>т</i> ,	Обозначение		Рабо	чая ширі	ина рейк	и, мм			
точности	мм	и размер- ность	До 40	Св. 40 до 100	Св. 100 до 160	Св. 160 до 250	Св. 250 до 400	Св. 400 до 630		
	Суммарное контакта, %	онткп	(По высоте не менее 55, по длине не менее 80)							
5	$F_{\beta}$		7	10	12	14	18	22		
	От 1 до 16	f _x	7	10	12	14	18	22		
		fy	4	5	6	7	9	11		
	Суммарное пятно контакта, %				о высоте о длине н					
6		$F_{\beta}$	9	12	16	20	24	28		
	От 1 до 16	f _x	9	12	16	20	24	28		
		fy	5	6	8	10	12	14		
	Суммарное контакта, %	пятно	(По высоте не менее 45, по длине не менее 60)							
7		$F_{\beta}$	11	16	20	24	28	34		
	От 1 до 25	$f_{x}$	11	16	20	24	28	34		
		$f_{y}$	6	8	10	12	14	17		
	Суммарное пятно контакта, %		(По высоте не менее 30, по длине не менее 40)							
		$F_{\beta}$	18	25	32	38	45	55		
8	От 1 до 40	f _x	18	25	32	38	45	55		
		fy	9	12	16	19	22	30		

Продолжение табл. 58

Степень	Модуль т,	Обозначение		Рабо	чая шир	ина рейк	и, мм			
точности	ММ	и размер- ность	До 40	CB.40 40 100	Св. 100 до 160	Св. 160 до 250	Св. 250 до 400	Св.400 до 630		
	Суммарное пятно контакта, %		(По высоте не менее 20, по длине не менее 25)							
		$F_{eta}$	28	40	50	60	75	90		
9	От 1 до 40	f _x	28	40	50	60	75	90		
		$f_{y}$	14	20	25	30	35	45		
		$F_{eta}$	45	65	80	105	120	140		
10	10 От 1 до 40	f _x	45	65	80	105	120	140		
		$f_y$	22	30	40	50	60	70		

Примечание. Нормы пятна контакта, приведенные в табл. 58 в скобках, не являются обязательными и применяются при соглашении между изготовителем и потребителем.

Нормы бокового зазора. 1. Величины гарантированного бокового зазора  $j_{n \text{ min}}$  для различных видов сопряжений устанавливаются независимо от степеней точности зубчатых колес, реек и передач и их комбинирования по табл. 59.

- 2. Предельные отклонения монтажного размера  $f_a$  устанавливаются в соответствии с видом сопряжения или, если это указано в условном обозначении точности передачи, с классом отклонений монтажного размера (табл. 59).
- 3. Наименьшее дополнительное смещение исходного контура  $E_{Hs}$  и наименьшее отклонение толщины зуба  $E_{ss}$  устанавливаются соответственно по табл. 60 и 62 в зависимости от вида сопряжения и степени точности по нормам плавности работы.
- 4. Допуск на смещение исходного контура  $T_H$  и допуск на толщину зуба  $T_s$  устанавливаются по табл. 61 и 63 в зависимости от вида сопряжения или допуска бокового зазора и степени точности по нормам кинематической точности.
- 5. Для передач с нерегулируемым расположением звеньев показателями, обеспечивающими гарантированный боковой зазор, являются:

для зубчатых реек  $E_{Hs}$  (табл. 60) или  $E_{ss}$  (табл. 62);

для реечных передач предельные отклонения монтажного размера  $f_{\rm a}$ .

Для передач с регулируемым расположением звеньев показателем, обеспечивающим гарантированный боковой зазор, является  $j_{n \text{ min}}$ .

(показатель  $f_{ar}$  — отклонение монтажного размера;  $J_{n \; \mathrm{min}}$  — гарантированный боковой зазор) 59. Нормы бокового зазора, мкм

	Св. 1600 до 2000	0	150	230	370	009	920	±75	±112	±180	∓300	±450
	CE, 1250 no 1600	0	125	195	310	200	780	<del>+63</del>	100	±150	±250	∓400
	Св. 1000 до 1250	0	105	165	260	420	099	±53	±85	±130	±210	±335
	Св. 800 до 1000	0	96	140	230	360	999	±45	∓70	±112	±180	±280
*, MM	Св. 630 до 800	0	80	125	200	320	200	±40	±63	100	7160	±250
Расчетный монтажный размер*, мм	Св 500 до 630	0	70	110	175	280	440	∓36	±55	∓85	±140	±220
ионтажны	Cz 400 no 500	0	63	97	155	250	400	±32	±48	±75	±125	±200
счетный м	CB.315 до 400	0	57	68	140	230	360	±28	±45	±70	±112	∓180
Pa	CB. 250 до 315	0	52	81	130	210	320	±26	∓40	∓63	±105	±160
	Св. 180 до 250	0	48	72	115	185	290	±23	±36	7€	76∓	±140
	Св. 120 до 180	0	40	63	001	091	250	±20	±32	05∓	08∓	±125
	Св. 80 до 120	0	35	54	87	140	220	81 <b>∓</b>	∓26	∓45	0 <i>/</i> ∓	±110
	08 oIl	0	30	46	74	120	061	<b>415</b>	±22	∓38	∓60	∓95
	Обозначение			<i>jn</i> min						fa		
	Класс отклонения монтажного размера			1				II	III	IV	^	M
	Вид сопряжении	Н	E	D	С	В	Ą	Н, Е	D	С	В	¥

*Расчетный монтажный размер  $a_{R}': a_{R}' = \frac{1}{2}(d+35m)$ .

П р и м е ч а н и е . Принятое обозначение  $\pm f_a$  — предельные отклонения монтажного размера.

60. Нормы бокового зазора (показатель  $E_{Hsr}$ ), мкм

Вид	Степень		<del></del>	Моду	ль <i>т</i> , мм		
сопряже- ния	точности по нормам плавности	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40
Н	3-6	12	16	20	25		_
	7	13	18	22	28	36	_
E	3-6	30	40	52	63	_	_
	7	34	45	56	70	90	_
	3—6	48	63	80	100	-	_
D	7	52	70	90	110	140	
	8	55	75	100	120	150	200
	3–6	75	110	130	155	_	_
С	7	80	110	140	170	220	
	8	90	120	160	190	240	320
	9	100	130	170	200	260	340
	36	120	160	210	250		_
	7	130	170	230	270	350	
В	8	140	190	250	300	380	500
	9	160	200	280	320	420	560
	10	180	220	300	360	450	600
	3—6	190	250	320	400	_	_
	7	200	280	360	440	530	
Α	8	220	300	380	480	600	800
	9	250	320	420	530	670	850
	10	260	340	450	600	750	950

61. Нормы бокового зазора, мкм ( $T_H$  - допуск на смещение исходного контура)

		Степень		Модуль <i>т</i> , мм							
Вид сопряже- ния	Вид допуска	точности по нормам кинемати- ческой точности	От 1 до 3,5	C _B 3,5 no 6,3	Св 6,3 до 10	Св 10 до 16	Св 16 до 25	Св 25 до 40			
		3-4	30	34	36	_	_				
H, E	h	56	45	55	60	70	-	_			
		7	55	70	75	90	110				
		3-4	38	42	45	_	_	-			
D	ď	56	60	70	80	90	_	-			
		7	70	90	100	110	140	_			
		8	90	110	130	150	180	220			

Продолжение табл. 61

		Степень			Модуль	т, мм		
Вид сопряже- ния	Вид допуска	точности по нормам кинемати- ческой точности	От 1 до 3,5	Св 3,5 до 6,3	Св 6,3 до 10	Св 10 до 16	CB 16 40 25	CB 25 до 40
		34	50	55	60	~~	_	
		56	75	90	100	110	-	_
С	c	7	90	110	125	150	180	_
		8	110	150	180	200	240	280
		9	150	200	220	260	320	400
	<del>                                     </del>	3-4	60	70	75	_	_	-
		5—6	90	110	120	140		_
В	b	7	110	140	150	180	240	_
		8	140	180	200	240	280	350
		9	180	240	280	320	400	500
	Ì	10	240	320	380	450	530	700
	1	3-4	75	80	85	_	-	_
		5—6	110	130	140	160	-	<b> </b> -
		7	130	160	180	200	280	-
Α	а	8	160	200	240	280	340	400
		9	200	280	320	380	450	560
		10	280	360	420	500	630	800

## 62. Нормы бокового зазора (показатель $E_{\it ssr}$ ), мкм

Вид	Степень			Модуль	т, мм		
сопря- жения	точности по нормам плавности	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40
H	36	9	12	15	18	-	
	7	10	13	16	20	26	
E	3-6	22	30	38	45	_	_
	7	25	32	40	50	67	
	3-6	34	45	60	70		_
D	7	38	50	65	80	100	_
	8	40	55	70	90	110	150
	36	55	75	95	110		_
С	7	60	80	100	125	160	-
	8	65	85	120	140	180	240
	9	70	95	125	150	190	250

Продолжение табл. 62

Вид	Степень		Модуль т, мм							
сопря- жения	точности по нормам плавности	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40			
	3–6	90	110	150	180	_	_			
	7	95	125	170	200	260				
В	8	100	140	180	220	280	360			
	9	120	150	200	240	300	400			
	10	130	160	220	260	340	450			
	3-6	140	180	240	300	_	_			
	7	150	200	260	320	400				
Α	8	160	220	280	360	450	600			
	9	180	240	300	380	500	630			
	10	190	250	340	450	560	700			

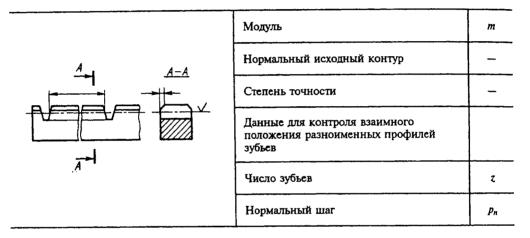
П р и м е ч а н и е . Принятое обозначение  $\it E_{ss}$  - наименьшее отклонение толщины зуба.

# 63. Нормы бокового зазора, мкм ( $T_{\rm s}$ - допуск на толщину зуба)

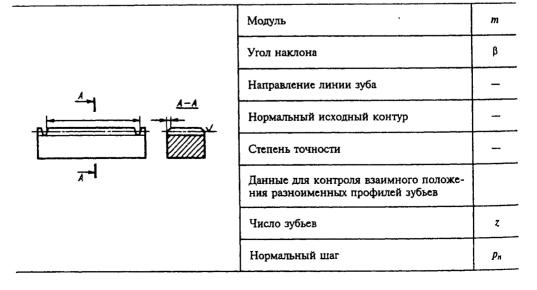
Вид	Вид	Степень точности		Модуль т, мм								
сопря- жения	допуска	по нормам кинемати- ческой точности	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25	Св. 25 до 40				
<u> н, е</u>	h	56	32	40	45	50	_	_				
		7	40	50	55	67	80					
		56	45	50	60	67	_	_				
D	d	7	50	67	75	80	100	_				
	Ì	8	67	80	95	110	130	160				
		5—6	55	67	75	80	_	_				
С	c	7	67	80	90	110	130	-				
		8	80	110	130	150	180	200				
		9	110	150	160	180	240	300				
		5—6	67	80	85	100	_	_				
		7	80	100	110	130	180	-				
В	ь	8	100	130	150	180	200	260				
		9	130	180	200	240	300	380				
		10	180	240	260	320	400	500				
		56	80	95	100	120	_	-				
		7	95	120	130	150	200	_				
A	a	8	120	150	180	200	250	300				
!		9	150	200	240	280	320	400				
		10	200	260	300	360	450	560				

## Правила выполнения чертежей зубчатых реек

Общие указания см. на стр. 472. На изображении зубчатой рейки указывают длину нарезанной части рейки.


В первой части таблицы параметров приводят степень точности и вид сопряжения по нормам бокового зазора по соответствующему стандарту и обозначение этого стандарта.

Во второй части таблицы параметров приводят данные для контроля, например толщину зуба  $s_y$  и измерительную высоту  $h_{av}$ .


На чертеже рейки с нестандартным исходным контуром приводят данные для контроля по нормам: кинематической точности; плавности работы; контакта зубьев в передаче; бокового зазора.

Примеры указания параметров зубчатого венца на чертежах зубчатых реек приведены в табл. 64 и 65.

64. Пример указания параметров зубчатого венца на чертеже прямозубой зубчатой рейки со стандартным исходным контуром



# 65. Пример указания параметров зубчатого венца на чертеже косозубой зубчатой рейки со стандартным исходным контуром



# Конические зубчатые передачи

# 66. Термины и обозначения конических зубчатых передач

Термины	Обозна- чения	Термины	Обозна- чения
Базовое расстояние	A	Внещняя постоянная хорда зуба	$\overline{S}_{c\epsilon}$
Расстояние от вершины колеса до		Внешняя толщина по хорде зуба.	$\tilde{S}_{\epsilon}$
плоскости внешней окружности		Передаточное число	и
вершин зубьев	В	Коэффициент смещения	х
Ширина зубчатого венца	b	Коэффициент наименьшего	
Расстояние от базовой плоскости		смещения	$x_{\min}$
до плоскости внешней окружно-		Средний нормальный коэффици-	
сти вершин зубьев	С	ент смещения	$x_n$
Радиальный зазор пары исходных		Внещний окружной коэффициент	
контуров (радиальный зазор)	с	смещения	$x_t$
Диаметр	d	Коэффициент изменения толщи-	
Внешний делительный диаметр	$d$ $d_e$	ны зуба	
Внешний диаметр вершин зубьев.	$d_{e}$ $d_{ae}$	Число зубьев плоского зубчатого	$x_{\tau}$
Высота зуба	h	колеса	$z_c$
Высота головки зуба	$h_a$	Межосевой угол передачи	Σ
Высота до хорды зуба конического		Угол профиля нормального ис-	
зубчатого колеса	$\bar{h}_a$	ходного контура (угол нормаль-	
Внешняя высота головки зуба	h _{ae}	ного профиля зуба плоского коле-	
·	$\frac{\ddot{h}_{c}}{h_{c}}$	(ca)	$\alpha_n$
Высота до постоянной хорды	1	Угол наклона средней линии зуба	
Внешняя высота зуба	h _e	(впадины)	$\beta_n$
Высота ножки зуба (высота ножки		(впадины) плоского колеса	$\beta_n$
исходного контура)	$h_f$	Угол делительного конуса	δ
Внешняя высота ножки зуба	hje	Угол конуса вершин	$\delta_a$
Граничная высота зуба (граничная		Угол конуса впадин	$\delta_f$
высота зуба исходного контура)	h _i	Коэффициент осевого перекрытия	$\epsilon_{\beta}$
Нормальный модуль	$m_n$	Угол головки зуба	$\theta_a$
Внешний окружной модуль	m _{te}	Угол ножки зуба	$\theta_f$
Внутренний окружной модуль	m _{ti}	Радиус кривизны переходной кри-	
Средний окружной модуль	$m_{im}$	вой исходного контура в гра-	2.
Среднее конусное расстояние	R _m	ничной точке профиля	Pf
Внешнее конусное расстояние	R _e	Половина угловой толщины зуба в	312
Расчетная толщина зуба		нормальном сечении	$\Psi_n$
исходного контура	S	щины зуба в нормальном сечении	Ψne
Нормальная толщина зуба	Sn	Половина угловой толщины зуба.	$\Psi_t$
Окружная толщина зуба	St	Половина внешней угловой тол-	
Внешняя окружная толщина		щины зуба	$\psi_{te}(\psi_e)$
зуба	$S_{te}(S_e)$	Половина средней угловой тол-	
Постоянная хорда зуба	Ī,	щины зуба	Ψtm

# Конические зубчатые передачи с прямыми зубьями

Прямозубые конические передачи выполняют с осевой формой I с пропорционально понижающимися зубьями (рис. 28) и постоянным радиальным зазором по ширине зубчатого венца.

При обработке зубчатых колес зубострогальными резцами дно впадины имеет коническую форму (рис. 29, *a*), а при обработке парными зуборезными головками вогнутую (рис. 29, *б*).

Числа зубьев шестерни и колеса ортогональной конической зубчатой передачи при исходном контуре по ГОСТ 13754—81 следует выбирать с учетом данных, приведенных в табл. 67.

Число зубьев цементованных конических зубчатых колес рекомендуется определять по номограмме, приведенной на рис. 30.

Термически улучшенные конические зубчатые колеса можно выполнять с тем же увеличенным числом зубьев на 10-20 %.

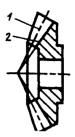
**Модули.** В качестве расчетного принят внешний окружной модуль  $m_e$ . Модуль  $m_e$  рекомендуется устанавливать по ГОСТ 9563—60.

Параметры исходного контура. Конические передачи с прямыми зубьями общего назначения при  $m_e$  выше 1 мм должны выполняться в соответствии с исходным контуром по ГОСТ 13754—81 со следующими параметрами:

$$\alpha = 20^{\circ}$$
;  $h_a^* = 1$ ;  $c^* = 0.2 \text{ M } \rho_f^* = 0.3$ .

Исходный контур для прямозубых конических колес см. на рис. 1.

Выбор коэффициентов смещения и коэффициентов изменения расчетной толщины зуба исходного контура.


1. При u > 1 шестерню рекомендуется выполнять с положительным смещением  $(x_1)$  по табл. 68, а колесо с равным ему по величине отрицательным смещением  $(x_2 = -x_1)$ .

Для передач, у которых u и  $z_1$  отличаются от указанных в табл. 68, коэффициенты смещения принимают с округлением в большую сторону.

2. При  $u \ge 2,5$  зубчатые колеса рекомендуется выполнять не только со смещением,

Рис. 28. Осевая форма зуба I:

делительный конус;
 конус впадин



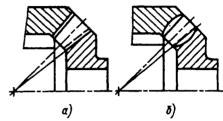



Рис. 29. Форма впадины: a - при обработке зубострогальными резцами;  $\delta$  - при обработке парными зуборезными головками

устанавливаемым по п. 1, но и с различной толщиной зуба исходного контура: уве-

личенной по сравнению с расчетной 
$$\left(\frac{\pi m_e}{2}\right)$$

у исходного контура шестерни и соответственно уменьшенной у исходного контура колеса.

Коэффициент изменения расчетной толщины зуба исходного контура  $x_{\tau 1}$ , положительный для шестерни и равный ему по величине, но обратный по знаку  $x_{\tau 2}$  для колеса, рекомендуется вычислять по формуле

$$x_{-1} = 0.03 + 0.008(u - 2.5)$$

 Минимальное допустимое число зубьев ортогональной конической передачи с прямыми зубьями

Число зубьев шестерни 2 ₁	Наименьшее число зубьев сопряженного колеса 22	Число зубьев шестерни <1	Наименьшее число зубьев сопряженного колеса 23
12	30	15	19
13	26	16	18
14	20	17	17

68. Коэффициенты смещения для ортогональных конических зубчатых передач с прямыми зубьями при исходном контуре по ГОСТ 13754—81

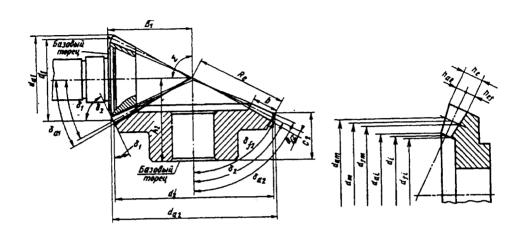
			Значе	ффеох вин	ициента с	Значения коэффициента смещения х ₁ при передаточном числе передачи	при перед	таточном ч	исле перед	ачи и		
Число зубъев шестерни 2 ₁	_	1,12	1,25	1,4	1,6	1,8	2,0	2,5	3,15	4,0	5,0	6,3 и выше
12		1	1	l	ı	l	İ	0,50	0,53	95,0	0,57	0,58
13	ı	ı		!	l	1	0,44	0,48	0,52	0,54	0,55	95,0
14	ı	ı	ı	0,27	0,34	0,38	0,42	0,47	0,50	0,52	0,53	0,54
15	1	l	0,18	0,25	0,31	9;00	0,40	0,45	0,48	0,50	0,51	0,52
16	ı	0,10	0,17	0,24	0,30	0,35	0,38	0,43	0,46	0,48	0,49	0,50
18	00,00	60'0	0,15	0,22	0,28	0,33	9;0	0,40	0,43	0,45	0,46	0,47
20	0,00	0,08	0,14	0,20	0,26	0,30	0,34	0,37	0,40	0,42	0,43	0,44
25	0,00	0,07	0,13	0,18	0,23	0,26	0,29	0,33	0,36	0,38	0,39	0,40
30	00,00	90'0	0,11	0,15	61,0	0,22	0,25	0,28	0,31	0,33	0,34	0,35
40	00,00	0,05	60'0	0,12	0,15	0,18	0,20	0,22	0,24	0,26	0,27	0,28
$\Pi$ р и м е ч а н и е . Данные таблицы могут быть использованы также для повышающих передач при $u<1$	ние. Дав	иные табли	цы могут б	ыть исполі	зованы та	кже для по	вышающи	передач п	ри и < 1.			

69. Ширины зубчатых конических венцов в зависимости от  $d_{e2}$  и u

Допускается п путем по таба. 70 Значения без с Фактические значи и 3 % для и

Фактические значения могут отличаться от номинальных не более, чем на 2 % для  $d_{\it e2}$ Допускается применять ширины зубчатых венцов, определяемые расчетным Значения без скобок являются предпочтительными. путем по табл. 70 и 71.

п з % для и


l	1									
	0£,8	1		ı	I	ļ	1	J	1	1
	(09,č)	ı	1	ı	1	1	ı	1		١
	00,2	1	ı	ı	ı	ł	1	ı	ı	l
сел и	(05,4)		1	I	1	I	ı	ı	ı	1
ных чи	00'₺	ı	1	1		I	1	ı	ı	18
Ширина зубчатых венцов $b$ , мм, для номинальных передаточных чисел $u$	(55,5)	1	1	I	1	I	I	-	ı	19
ных пе	3,15	1	1	ı	ı	i	1	15	17	61
миналь	(08,2)		I	ı	ı		1	15	17	61
он втд	7,50		ı	1	ı	12	14	15	17	19
з b, мм,	(5,24)	ı	ı	ı	i	12	14	91	17	19
венцов	00,2	!	ı	10	11,5	13	14	91	18	20
убчатых	(08,1)	ı	1	10	11,5	13	15	91	18	20
грина з	09'1	8,5	9,5	10,5	12	13	15	17	19	21
Ши	(04,1)	6	10	Ξ	12	41	91	18	70	22
	1,25	6	10	11,5	13	15	91	18	70	22
	(1,12)	9,5	5,01	12	14	15	17	19	21	24
	1,00	10	=	13	14	91	18	70	22	25
Номинальные	значения внешнего дели- тельного диаметра колеса <i>des,</i> мм	50	(95)	63	(71)	80	(06)	100	(112)	125

Продолжение табл. 69

:																			
	0£'9		24	78	28	32	36	40	45	52	09	65	70	80	06	100	120	130	140
	(09,č)	l	24	56	30	32	36	40	45	52	09	99	70	80	06	105	120	130	140
	00,2		24	26	30	32	36	40	45	52	09	99	75	80	96	105	120	130	150
сел и	(02,4)	20	24	26	30	32	36	40	45	52	09	65	75	08	96	105	120	130	150
ных чи	4'00	21	24	26	30	32	36	42	45	52	09	65	75	08	96	105	120	130	150
Ширина зубчатых венцов $b$ , мм, для номинальных передаточных чисел $u$	(3,55)	21	24	26	30	34	38	42	48	52	09	65	75	82	95	105	120	130	150
ных пе	\$1,5	21	24	92	30	34	38	42	48	55	09	65	75	82	95	105	120	130	150
миналь	(08,2)	21	24	28	30	34	38	42	48	55	09	70	75	88	95	110	120	140	150
он від	05,2	21	25	78	30	34	38	42	48	55	09	70	75	82	95	110	125	140	150
3 b, MM,	(42,24)	22	25	28	32	36	40	45	20	55	63	70	80	6	100	110	125	140	160
венцов	00,2	22	25	28	32	36	40	45	20	55	63	70	80	06	100	110	130	J	1
бчатых	(08,1)	22	36	30	32	36	40	45	52	09	99	75	80	06	100	120	130	I	1.
рина зу	09'1	24	28	30	34	38	42	48	52	09	70	7.5	85		Ma-	~			
	(04,1)	24	28	32	34	40	45	50	.55	63	70	80	06		предус	1600 mr			
	1,25	26	30	32	38	42	45	52	09	99	75	80	06		.289 - 76 предусма	тривает $d_{e2}$ до 1600 мм			
	(21,1)	26	30	34	38	42	48	52	09	70	75	82	95		rocr 122	гривает			
	00'1	28	32	36	9	45	20	55	99	70	80	06	100		0.				
	поминальные значения внешнего дели- тельного диаметра колеса $d_{\epsilon 2}$ , мм	(140)	091	(180)	200	(225)	250	280	315	355	400	450	200	260	630	710	800	006	1000

## 70. Формулы и пример расчета конической передачи с прямыми зубьями без смещения

### Линейные размеры, мм



Парамет	ры и обозначения	Расчетные формулы и указания	Численные значения
Исходные	Число зубьев z ₁ z ₂	Задаются или выбираются в соответствии с расчетом зубьев на прочность, требованием кинематики и по конструктивным соображениям	18 20
данные	Внешний окружной модуль $m_e$	Определяют из расчета на прочность (при нарезании на зубострогальных станках модули могут выбираться нестандартными и дробными)	5
	Межосевой угол передачи Σ	По конструктивным соображениям	90°
	1 -	По ГОСТ 13754—81	_
Число зубьев плоского колеса $z_c$		$z_c = \sqrt{z_1^2 + z_2^2}$	26,9072
Внешнее конусное расстояние $R_e$		$R_e = 0.5 m_e Z_c$	67,268
Ширина зубчатого венца <i>b</i>		$b \le 0.3R_e;  b \le 10m_e$	20
Среднее ко	нусное расстояние $R_m$	$R_m = R_e - 0.5b$	57,268
Средний ок	ружной модуль <i>т</i>	$m_m = m_e \frac{R_m}{R_e}$	4,2567
Средний де.	лительный диаметр $d_m$	$d_{m1}=m_mz_1$	77,6206
		$d_{m2}=m_mz_2$	85,1340

Продолжение табл. 70

Параметры и обозначения	Расчетные формулы и указания	Численные эначения
Угол делительного конуса δ	$tg\delta_1 = \frac{z_1}{z_2}$	41°59'
	$\delta_2 = 90^{\circ} - \delta_1$	48°01'
ļ	$\sin \delta_1 = \cos \delta_2$	0,66891
	$\cos\delta_1 = \sin\delta_2$	0,74334
	z ₂	
Передаточное число и	$u=\frac{z_2}{z_1}$	1,1111
	при $u < 2,5$ не изменяется толщина	
	зуба исходного контура	ı
Внешняя высота головки	$h_{ae}$ при $h^* = 1$	5
зуба h _{ae}	- I - I - I - I - I - I - I - I - I - I	
Внешняя высота ножки зуба $h_{fe}$	$h_{fe} = h_{ae} + 0.2m_e$	6
Внешняя высота зуба $h_e$	$h_e = h_{ae} + h_{fe}$	11,0
Внешняя окружная толщина	$s_e = 0.5\pi m_e$	7,85
зуба s _e	,	$tg\theta_f = 0.0893;$
Угол ножки зуба 0 _f	$tg\theta_f = \frac{h_f}{R_e};$	$\theta_{\mathbf{f}} = 5^{\circ}06'$
Угол головки зуба θ _а	$\theta_a = \theta_f$	5°06'
Угол конуса вершин δ _a	$\delta_{a1} = \delta_1 + \theta_a$	47°05'
	$\delta_{a2} = \delta_2 + \theta_a$	53°07'
Угол конуса впадин δ _f	$\delta_{f1} = \delta_1 - \theta_f$	36°53'
· ·	$\delta_{f2} = \delta_2 - \theta_f$	42°55'
December of the second of	$d_{e1}=m_e z_1$	90
Внешний делительный диаметр $d_e$	$d_{e2}=m_ez_2$	100
Внешний диаметр вершин	$d_{ae1} = d_{e1} + 2h_{ae}\cos\delta_1$	97,4334
зубьев dae	$d_{ae2} = d_{e2} + 2h_{ae}\cos\delta_2$	106,6891
Расстояние от вершины до	$B_1 = 0.5 d_{e2} - h_{ae} \sin \delta_1$	56,6555
плоскости внещней окружности вершин зубьев В	$B_2 = 0.5d_{e1} - h_{ae}\sin\delta_2$	41,2833
Внешняя постоянная хорда зуба $\bar{s}_{ce}$	$\bar{s}_{ce} = 0.883s_e$	6,9315
Высота до внешней постоянной	- h 01607c	
хорды $\overline{h}_{ce}$	$\overline{h}_{ce} = h_{ae} - 0.1607 s_e$	3,7385
Половина внешней угловой толщины $\psi_e$ , рад*	$\psi_{e1} = \frac{s_e \cos \delta_1}{d_{e1}}$	0,0648 рад или 3°42'45"
	$\Psi_{e2} = \frac{s_e \cos \delta_2}{d_{e2}}$	0,0525 рад или 3°00'29"
Внешняя делительная толщина зуба по хорде $\bar{s}_e$	$\bar{s}_{e1} = \frac{d_{e1}}{\cos \delta_1} \sin \psi_{e1}$	7,8340
	$\bar{s}_{e2} = \frac{d_{e2}}{\cos \delta_2} \sin \psi_{e2}$	7,0496

Продолжение табл. 70

Параметры и обозначения	Расчетные формулы и указания	Численные значения
Высота до внешней делительной хорды зуба $h_{ae}$	$\overline{h}_{ae1} = h_{ae} + 0.25\overline{s}_{e1} \Psi_{e1}$	5,1272
Nopate Systemate	$\vec{h}_{ae2} = h_{ae} + 0.25\vec{s}_{e2} \Psi_{e2}$	5,1030
*1 pag = 57°17'44"		•

# 71. Формулы и пример расчета ортогональной конической передачи с прямыми зубьями при стандартном исходном контуре со смещением

Линейные размеры, мм

Парамет	ры и обозначения	Формулы и указания	Численные значения	
Исходные	Число зубьев z ₁ z ₂	_	15 30	
данные	Внешний окружной модуль <i>те</i>		5	
	Внешний торцовый исходный контур	По ГОСТ 13754—81		
Число зубье колеса $z_c$	в плоского	$z_c = \sqrt{z_1^2 + z_2^2}$	33,5410	
Внешнее ко	нусное расстояние Re	$R_e = 0.5 m_e z_c$	83,8525	
Ширина зуб	чатого венца b	$b \le 0.3R_e;  b \le 10m_e$	25	
Среднее кон	нусное расстояние $\mathit{R}_{\mathit{m}}$	$R_m = R_e - 0.5b$	71,3525	
Средний окр	ужной модуль <i>т_т</i>	$m_m = m_e  \frac{R_m}{R_e}$	4,2546	
Внутренний окружной модуль $m_t$		$m_i = m_e \frac{R_e - b}{R_e}$	3,5093	
Средний делительный диаметр $d_m$		$d_{m1}=m_{m}z_{1}$	63,8190	
		$d_{m2}=m_mz_2$	127,6380	
Угол делите	льного конуса б	$tg\delta_1 = \frac{z_1}{z_2}$	26°34′	
		$\delta_2 = 90^{\circ} - \delta_1$	63°26′	
		$\sin\delta_1 = \cos\delta_2$	0,44724	
		$\cos\delta_1 = \sin\delta_2$	0,89441	
Передаточн	ое число и	$u = \frac{z_2}{z_1}$	2	

Продолжение табл. 71

Параметры и обозначения	Формулы и указания	Численные значения
Коэффициент смещения у ше- стерни x ₁	<i>x</i> ₁ (по табл. 68)	0,40
Коэффициент изменения тол-	$x_{c1}$	0
щины зуба шестерии $x_{c1}$		(так как и < 2,5)
Внешняя высота головки	$h_{ae1} = \left(h_a^* + x_1\right) m_e$	7,0000
з <b>уба</b> h _{ae}	, ,	
	$h_{ae2} = 2h_a^* m_e - h_{ae1}$	3,0000
Внешняя высота ножки	$h_{fe1} = h_{ae2} + 0.2m_e$	4,0000
зуба <i>h_{fe}</i>	$h_{fe2} = h_{ae1} + 0.2m_e$	8,0000
Внешняя высота зуба $h_e$	$h_{e1} = h_{ae1} + h_{fe1}$	11,0000
	$h_{e2} = h_{ae2} + h_{fe2}$	11,0000
Внешняя окружная толщина $s_e$	$s_{e1} = (0.5\pi + 2x_1 tg\alpha + x_{\tau 1})m_e$	9,3096
	$s_{e2} = \pi m_e - s_{e1}$	6,3979
Угол ножки зуба θ	$tg\theta_{f1} = \frac{h_{fe1}}{R_e}$	$tg\theta_{f1} = 0.04770$ $\theta_{f1} = 2^{\circ}44'$
	$tg\theta_{f2} = \frac{h_{fe2}}{R_e}$	$tg\theta_{f2} = 0,09540$ $\theta_{f2} = 5^{\circ}27'$
Угол головки зуба $\theta_a$	$\theta_{a1} = \theta_{i2}$	5°27'
	$\theta_{a2} = \theta_{f1}$	2°44'
Угол конуса вершин δα	$\delta_{a1} = \delta_1 + \Theta_{a1}$	32°01'
	$\delta_{a2} = \delta_2 + \theta_{a2}$	66°10'
Угол конуса впадин δ _f	$\delta_{\Lambda} = \delta_1 - \theta_{\Lambda}$	23°50'
•	$\delta_{f2} = \delta_2 - \theta_{f2}$	57°59'
Внешний делительный	$d_{e1} = m_e z_1$	75,0000
диаметр $d_e$	$d_{e2}=m_e z_2$	150,0000
Внешний диаметр вершин зубьев	$d_{ae1} = d_{e1} + 2h_{ae1}\cos\delta_1$	87,5217
$d_{ae}$	$d_{ae2} = d_{e2} + 2h_{ae2}\cos\delta_2$	152,6834
Расстояние от вершины до	$B_1 = 0.5d_{e2} - h_{ae1}\sin\delta_1$	71,8693
плоскости внешней окружности вершин зубьев $B$	$B_2 = 0.5d_{e1} - h_{ae2}\sin\delta_2$	34,8168
Расчет внешней	постоянной хорды и высоты (при $x_1 \le 0,4$ )	до нее
Внешняя постоянная хорды	$\bar{s}_{cel} = 0.883 s_{el}$	8,2206
з <b>уба</b>	$\bar{s}_{ce2} = 0,883 s_{e2}$	5,6496
Высота до внешней постоянной	$\overline{h}_{cel} = h_{ael} - 0,1607s_{el}$	5,5039
хорды $\overline{h}_{ce}$	$\overline{h}_{ce2} = h_{ae2} - 0,1607s_{e2}$	1,9718

Продолжение табл. 71

Параметры и обозначения	Формулы и указания	Численные значения
	ней делительной толщины з и высоты до нее (при $x_1 \leq 0,4$ )	уба
Половина внешней угловой толщины зуба ψ	$\Psi_{e1} = \frac{s_{e1}\cos\delta_1}{d_{e1}}$	0,11102
	$\Psi_{e2} = \frac{s_{e2}\cos\delta_2}{d_{e2}}$	0,01907
Внешняя делительная толщина зуба по хорде $\bar{s}_e$	$\vec{s}_{e1} = \frac{d_{e1}}{\cos \delta_1} \Psi_{e1}$	9,2986
	$\bar{s}_{e2} = \frac{d_{e2}}{\cos \delta_2 \Psi_{e2}}$	6,3422
Высота до внешней делительной	$\overline{h}_{ae1} = h_{ae1} + 0.25 s_{e1} \psi_{e1}$	7,2584
хорды зуба h _{ae}	$\bar{h}_{ae1} = h_{ae1} + 0.25 s_{e1} \psi_{e1}$ $\bar{h}_{ae2} = h_{ae2} + 0.25 s_{e2} \psi_{e2}$	3,0305

#### 72. Дополнительный расчет

Данный расчет приводится в дополнение к табл. 71 в части расчета в неш ней постоянной хорды, высоты до нее и расчета в неш ней делительной толщины зуба по хорде и высоты до нее и расчета в неш ней делительной толщины зуба по хорде и высоты до нее для более общих случаев.

Параметры и обозначения	Формулы и указания
Расчет внешней постоян и высоты до постоян	
Внешняя постоянная хорда зуба $\hat{s}_{ce}$	$\bar{s}_{ce} = s_e \cos^2 \alpha$
Высота до внешней постоянной хорды зуба $\overline{h}_{ce}$	$\overline{h}_{ce} = h_{ae} - 0.25 s_e \sin 2\alpha$
Расчет внешней делительн по хорде и высоты	•
Половина внешней угловой толщины зуба $\psi_e$ , рад	$\Psi_e = \frac{s_e \cos \delta_2}{d_a}$

* Метод измерения рекомендуется для шестерни при любом значении  $x_1$ , а для колеса при  $x_1 \le 0.4$ .

 $h_{ae} = h_{ae} + 0.25 s_e \psi_e$ 

Внешняя делительная толщина зуба по

Высота до внешней делительной хорды зуба  $\bar{h}_{ae}$ 

хорде  $\bar{s}_{\bullet}$ 

ГОСТ 19624—74 предусматривает расчет конической передачи с прямыми зубьями при межосевом угле  $\Sigma \neq 90^\circ$ , а также при параметрах исходного контура, отличных от установленных ГОСТ 13754—81.

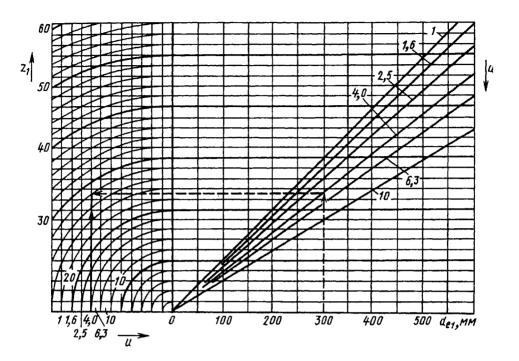



Рис. 30. Номограмма определения рекомендуемого числа зубьев шестерии (α=20°; Σ=90°):

$$z_1 = \sqrt{(22 - 9 \lg u)^2 + (6,25 - 4 \lg u) \frac{d_{e1}^2}{645}}$$

Пример. Дано  $d_{el} = 300$  мм, u = 4. По номограмме определяют  $z_1 = 28$ 

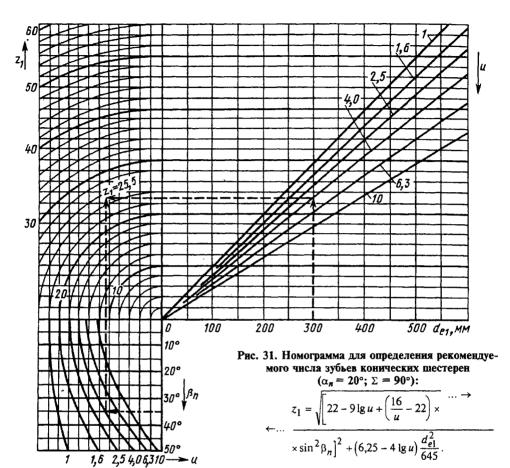
Основные параметры. Ширины зубчатых колес в зависимости от номинального внешнего делительного диаметра колеса и передаточных чисел приведены в табл. 69. Эти данные распространяются на ортогональные конические передачи и являются стандартными (обязательными) для редукторов и рекомендуемыми для встроенных передач.

При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду внешний торцовый профиль.

# Конические зубчатые передачи с круговыми зубьями

Благодаря наклону и бочкообразной форме зубьев конические колеса с круговым зубом, более прочны, бесшумны и допускают большие отклонения при монтаже, чем прямозубые.

При конструировании конических колес с круговым зубом учитывают возможность нарезания их на станке.


В интервале 6—100 можно нарезать колесо с любым числом зубьев в интервале 100—200 — только колеса с числом зубьев, которое можно разложить на множители.

Так, например, колесо с z = 107 не следует конструировать, так как для его изготовления придется делать специальное колесо на делительную гитару станка.

Числа зубьев шестерен и колес ортогональной конической зубчатой передачи следует выбирать с учетом данных, приведенных в табл. 73.

Число зубьев цементованных конических зубчатых колес рекомендуется определять по рис. 31.

Термически улучшенные конические зубчатые колеса могут выполняться с тем же или с увеличенным на 10—20 % числом зубьев.



Пример. Дано:  $d_{e1}=300$  мм, u=4,  $\beta_n=35^\circ$ . По номограмме определяем  $z_1=25,5\approx25$ .

73. Минимальные допустимые числа зубьев ортогональной конической передачи с круговыми зубьями при исходном контуре по ГОСТ 16202—81

Число зубьев шестерни	Наименьшее число зубьев колеса z ₁	Число зубъев шестерни	Наименьшее число зубъев колеса z ₁
6	34 при β _n ≥ 42°	12	30 при β _n от 0 до 15° 28 при β _n ≥ 20°
7	33 при β _n ≥ 40°		26 при β _n св. 29 до 45° 26 при β _n от 0 до 15°
8	32 при β _n ≥ 38°	13	24 при β _n св. 15 до 29° 22 при β _n св. 29 до 45°
9	31 при β _n ≥ 35°	14	20 при β _п от 0 до 45°
10	32 при β _n ≥ 28°	15	19 при β _п от 0 до 45°
	30 при β _n ≥ 32°	16	18 при β _n от 0 до 45°
11	30 при β _n ≥ 25° 28 при β _n св. 29 до 45°	17	17 при β _n от 0 до 45°

**Модули.** В качестве расчетного принят нормальный модуль  $m_n$  в середине ширины венца.

В качестве исходного для расчета вместо  $m_n$  может быть принят внешний окружной модуль  $m_{le}$ . Так, для редукторных передач с параметрами по ГОСТ 12289—76, в котором стандартизованы внешние делительные диаметры колес  $(d_{e2})$ , первоначально определяют внешний окружной модуль

$$m_{te} = \frac{d_{e2}}{z_2}$$
, который и принимают в

качестве исходного для дальнейшего расчета.

При  $m_n < 2$  исходным для расчета принимают только средний нормальный модуль.

Модули  $m_n$  рекомендуется устанавливать по ГОСТ 9563—60, им соответствуют разводы резцов зуборезных головок по ГОСТ 11902—77 (табл. 74).

Угол наклона и направление линии зуба. Расчетный угол наклона зуба  $\beta_n$  может находиться в пределах 0—45°. Рекомендуется применять одно из значений ряда:

0; 10; 15; 20; 25; 30; 35; 40; 45°.

Предпочтителен к применению угол наклона  $\beta_n = 35^\circ$ . При  $z_1$  от 6 до 17 рекомендуемые значения указаны в табл. 73.

Угол  $\beta_n$  целесообразно назначать таким, чтобы коэффициент осевого перекрытия  $\epsilon_{\beta}$  был не менее 1,25;

при требовании максимальной плавности работы передачи рекомендуется  $\epsilon_{\beta} \ge 1,6$  (рис. 32).

При назначении угла  $\beta_n$  следует также учитывать, что с его увеличением возрастают нагрузки на опоры и валы.

В табл. 75 приведены формулы для определения величины и направления осевой и радиальной сил в зацеплении конических

74. Разводы  $W_2$  резиов зуборезных головок по ГОСТ 11902—77 и соответствующие им значения коэффициентов изменения расчетной толщины зуба шестерни  $x_{c1}$  при средних нормальных модулях  $m_n$  по ГОСТ 9563—60

Средний нормальный модуль <i>т</i> _п , 1-й ряд	$x_{i1}$	$W_2$	$\delta h_j^*$	<i>x</i> ₁ 1	$W_2$	$x_{r1}$	W ₂
1,25	0,00	0,80	0,036	_	_	_	_
1,5	0,00	1,00	-0,010	_	_	_	_
2,0	0,00	1,3	0,030	0,04	1,4	0,14	1,6
2,5	0,00	1,6	0,072	0,06	1,8	0,14	2,0
3,0	0,00	2,0	0,024	0,07	2,2	0,20	2,6
4,0	0,00	2,6	0,060	0,04	2,8	0,14	3,2
5,0	0,00	3,2	0,143	0,06	3,6	0,14	4,0
6,0	0,00	4,0	-0,047	0,10	4,6	0,20	5,2
8,0	0,00	5,2	0,120	0,09	6,0	0,15	6,5
10,0	0,00	6,5	0,150	0,04	7,0	0,14	8,0
12	0,00	8,0	-0,095	0,09	9,0	0,17	10,0
16	0,00	10	0,789	0,09	12,0	0,15	13,0

^{*} $\delta h_f$  - поправка на высоту ножки зуба вводится только при  $x_{\rm cl}=0$  и двусторонней обработке колеса.

ГОСТ 19326—73 предусматривает также 2-й ряд среднего нормального модуля  $m_n$ .

зубчатых колес с круговыми зубьями, а на рис. 33 — график для определения величины и направления осевой силы в ортогональной конической передаче при угле профиля исходного контура  $\alpha_n = 20^\circ$ .

При совпадении направлений линий зуба с направлением вращения, если смотреть со стороны вершины делительных конусов ведущего конического зубчатого колеса понижающей передачи и ведомого конического зубчатого колеса повышающей передачи, осевые силы на них будут направлены от вершин делительных конусов.

Сопряженные зубчатые колеса имеют противоположные направления линий зуба.

При проектировании конических зубчатых колес с осевой формой зуба I в некоторых случаях расчетный угол наклона зубъев назначают с учетом номера резцов,

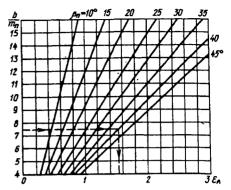



Рис. 32. График для определения коэффициента осевого перекрытия

$$\varepsilon_{\beta} = \frac{b \sin \beta_n}{\pi m_n}.$$

 $\Pi$  р и м е р . Дано: b=30 мм,  $m_n=4$  мм,  $\beta_n=40^\circ$ . По графику находят при  $\frac{b}{m_n}=\frac{30}{4}=7.5;\ \epsilon_\beta=1.54.$ 

75. Формулы для определения сил в зацеплении

Силы	Ведущее зубчатое колесо	Ведомое зубчатое колесо	
Окружная	$F_t = rac{2T_1}{d_{m1}} = rac{2T_2}{d_{m2}}$ , где $T_1$ и $T_2$ - момен	гты на шестерне и колесе	
Осевая	$F_x = F_I \left( \operatorname{tg} \alpha_n \frac{\sin \delta}{\cos \beta_n} \pm \operatorname{tg} \beta_n \cos \delta \right)$	$F_{x} = F_{l} \left( tg\alpha_{n} \frac{\sin \delta}{\cos \beta_{n}} \mp tg\beta_{n} \cos \delta \right)$	
Радиальная	$F_r = F_t \left( \operatorname{tg} \alpha_n \frac{\cos \delta}{\cos \beta_n} \mp \operatorname{tg} \beta_n \sin \delta \right)$	$F_r = F_l \left( tg\alpha_n \frac{\cos \delta}{\cos \beta_n} \pm tg\beta_n \sin \delta \right)$	

Примечания: 1. Верхние знаки в формулах даны для случая, когда направление вращения рассматриваемого зубчатого колеса (если смотреть на него с вершины делительного конуса) совпадает с направлением наклона зубьев, как показано на рис. 34; нижние знаки — при отсутствии такого совпадения.

2. Направление вращения по часовой стрелке — правое; против часовой стрелки — левое.

3. Направления действия сил  $F_x$  и  $F_r$  определяются по знакам (+ и -), указанным на рис. 34, получаемым в результате расчета по формулам.

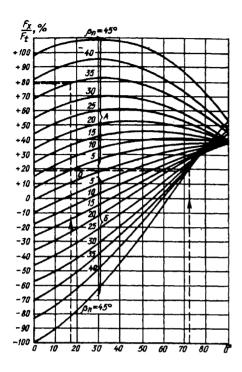



Рис. 33. Осевые силы в зацеплении конических зубчатых колес с круговыми зубьями  $\alpha_n = 20^\circ$ ,  $\Sigma = 90^\circ$ 

Для кривых А

Зубчатое колесо	Направление наклона зубьев	Направление вращения	
Ведущее	Левое	Левое	
	Правое	Правое	
Ведомое	Левое	Правое	
	Правое	Левое	

Пример. Дано:  $δ_1 = 18^\circ; δ_2 = 72^\circ;$   $β_n = 35^\circ;$ 

шестерня: направление наклона — правое, направление вращения — правое;

колесо: левое, направление вращения - левое.

По номограмме определяем  $F_{x1} = 0.79 F_i$ ;  $F_{x2} = 0.19 F_t$ , используемых при зубонареза-

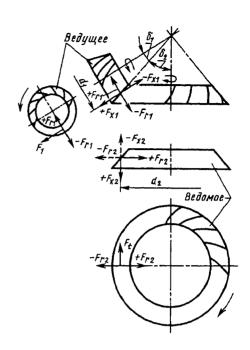



Рис. 34. Направления вращения и действия сил  $F_x$  и  $F_r$ 

Для кривых Б

Зубчатое колесо	Направление наклона зубьев	Направление вращения	
Ведущее	Левое	Правое	
	Правое	Левое	
Ведомое	Левое	Левое	
	Правое	Правое	

нии. Для этого предварительно определяют необходимый номер резцов по формуле

$$N' = \frac{343.8(h_a^* + c^*)}{z_a} \sin 2\beta_n'$$

и округляют его до значений N по ГОСТ 11902—77. В приведенной формуле  $\beta'_n$  - предварительное значение угла наклона зуба проектируемой передачи.

Далее окончательно устанавливают расчетный угол наклона зуба  $\beta_n$  по формуле

$$\sin 2\beta_n = \frac{Nz_c}{343.8(h_a^* + c^*)};$$

при исходном контуре по ГОСТ 16202-81.

$$\sin 2\beta_n = \frac{Nz_c}{429.75}.$$

Исходный контур. Под исходным контуром конических зубчатых колес с круговыми зубьями (рис. 35) подразумевают контур зубьев условной рейки, профиль которой и высотные размеры зубьев совпадают с одноименными элементами зубьев плоского исходного колеса в среднем нормальном сечении; шаг и толщину зубьев принимают соответственно равными окружному шагу и половине окружного шага плоского исходного колеса посередине ширины зубчатого венца, умноженным на косинус среднего угла наклона линии зубьев плоского исходного колеса;  $c = \rho_f = 0.25m_n$ .

В технически обоснованных случаях допускается неравенство делительных толщин зубьев  $s_{n1}$  и  $s_{n2}$  в паре исходных контуров, изменение глубины захода  $h_W$ , радиального зазора c и радиуса  $\rho_f$  (от  $0,15m_n$  и до  $0,35m_n$ ) и соответственно граничной высоты  $h_l$ , а также применение переходной кривой, отличной от дуги окружности, если указанные изменения не нарушают правильности зацепления и не препятствуют использованию стандартного инструмента.

Допускается применение профильной модификации исходного контура.

Конические передачи с круговыми зубьями (средний нормальный модуль  $m_n$  от 1 мм и более) должны выполняться с параметрами и коэффициентами исходного контура по ГОСТ 16202—81:

угол главного профиля  $\alpha_n=20^\circ;$  коэффициент высоты головки  $h_a^*=1;$  коэффициент высоты ножки  $h_f^*=1,25;$  коэффициент граничной высоты  $h_t^*=2,08;$ 

коэффициент радиуса кривизны переходной кривой, являющейся дугой окружности,  $\rho_f^* = 0,25$ ;

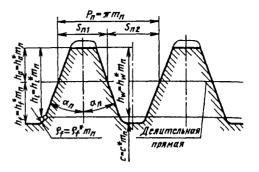



Рис. 35. Исходный контур по ГОСТ 16202-81

коэффициент глубины захода в паре исходных контуров  $h_{W}^{*}=2;$ 

коэффициент радиального зазора в паре исходных контуров  $c^* = 0,25$ ;

профиль в пределах граничной высоты — прямолинейный.

Примечание. При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду профиль в нормальном расчетном сечении.

Выбор осевой формы зубьев и номинального диаметра зуборезной головки.

1. В табл. 76 указаны диапазоны параметров конических зубчатых колес, определяющие возможные области использования осевых форм зубьев I, II и III, получивших наибольшее распространение. Осевая форма зуба I показана на рис. 28, осевые формы зуба II и III—на рис. 39 и 40.

При исходном контуре по ГОСТ 16202— 81 и расчетных углах наклона зуба  $\beta_n > 15^\circ$  разграничение этих областей в зависимости

от 
$$k_0 = \frac{R}{d_0}$$
 и  $\beta_n$  устанавливается по рис. 36.

Зона, заштрихованная на графике перекрещивающимися линиями, соответствует значениям  $k_0$  и  $\beta_n$ , при которых осевые формы зубьев I и II практически являются равноценными. Кривая линия, делящая рекомендуемую область применения зубчатых колес с осевой формой зуба III почти на две равные части, соответствует значениям  $k_0 = \frac{1}{2\sin\beta_n}$ , при которых ис-

ключается какое-либо сужение равновысоких зубьев, и они приобретают оптимальную форму.

Параметры	Обоз-		Осевая форма зуба	1		
	начения	I	II	III		
Средний нормальный модуль, мм	m _n	От 2 до 65	От 0,4 до 25	От 2 до 25		
Среднее конусное расстояние, мм	R	От 60 до 650	От 60 до 700	От 75 до 750		
Отношение среднего конусного расстояния к номинальному диаметру зуборезной головки		При $\beta_n > 15^\circ$ - в пределах значений, указанных на рис. 36, при $\beta_n \le 15^\circ$ - 0,40-0,65 для осевых форм зуба I и II				
Средний угол наклона	$\beta_n$	От 0	От 25 до 45°			
зубьев		С учетом числ	а зубьев плоского к	олеса по рис. 37		
Число зубьев плоского колеса	Z _C	20—100 с учетом	24—100 угла наклона зуба	Св. 40 по рис. 37		

 Основные параметры конических зубчатых колес с круговыми зубьями, определяющие области применения различных осевых форм зубьев

С осевой формой зуба III рекомендуется выполнять конические зубчатые колеса ортогональных передач со средним конусным - расстоянием, большим 0,7 от максимального допустимого среднего конусного расстояния для данного зуборезного станка.

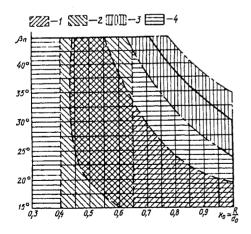



Рис. 36. Области рационального применения осевых форм зубьев I, II, III (исходный контур по ГОСТ 16202—81): 1, 2, 3 - рекомендуемые области: *I* - осевая

форма зуба I; 2 - осевая форма зуба II; 3 - осевая форма зуба III; 4 - допустимая область, осевая форма зуба II

Зубчатые колеса с углами наклона зуба  $\beta_n$  от 0 до 15° предпочтительно проектировать с осевой формой зуба II с учетом ограничений по числу зубьев плоского колеса по рис. 37.

2. Выбор номинального диаметра зуборезной головки для нарезания конических зубчатых колес с круговыми зубьями рекомендуется производить по табл, 77, составленной в соответствия с рис. 36.

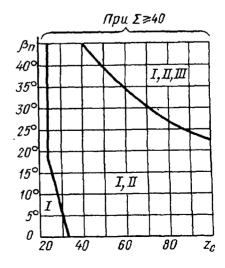



Рис. 37. Области применения осевых форм зубьев I, II и III в зависимости от  $z_c$  и  $\beta_n$ 

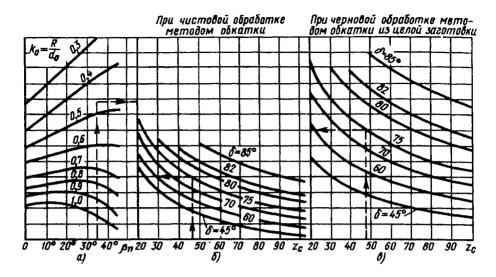



Рис. 38. График для проверки отсутствия вторичного резания конических зубчатых колес с круговыми зубьями

П р и м е р . Дано:  $\delta = 75^\circ$ ,  $\beta_n = 35^\circ$ ,  $z_c = 47$ ,  $k_0 = 0,47$ . Поскольку при заданных параметрах ордината на рис. 38, a больше ординаты на рис. 38,  $\delta$ , вторичное резание при чистовой обработке исключается: аналогично из сравнения ординат на рис. 38, a и 38,  $\delta$  определяют, что нет опасности вторичного резания и при черновой обработке зубчатого колеса

Если исходным для расчета передачи принят внешний окружной модуль  $m_{te}$ , то необходимую для подбора зуборезной головки величину среднего конусного расстояния определяют по формуле

$$R \approx 0,42 m_{te} z_c$$

При проектировании мелкомодульных передач ( $m_n < 2$ ) с осевой формой зуба III диаметр зуборезной головки и параметры передачи следует подбирать такими, чтобы соблюдалось равенство

$$d_0 = m_n z_c tg \beta_n$$
.

При этом диаметр  $d_0$  выбирают по табл. 77 из ряда для осевой формы зуба II.

Если при данных R, h, b и  $m_n$  могут быть выбраны зуборезные головки с разными диаметрами  $d_0$ , то предпочтительной к применению является зуборезная головка со средним значением  $d_0$ .

Для колес с правым направлением линий зубьев при угле делительного конуса  $\delta \ge 50^\circ$  и отношений

$$k_0 = \frac{R}{d_0} > 0.7$$

следует проверять правильность выбора диаметра зуборезной головки на отсутствие вторичного резания по графикам, изображенным на рис. 38.

Если ордината на рис. 38, a при данных  $k_0$  и  $\beta_n$  больше ординаты, определяемой по значениям  $\delta$  и  $z_c$  на рис. 38,  $\delta$ , то это указывает на отсутствие опасности вторичного резания при чистовой обработке конического зубчатого колеса методом обкатки. Аналогично сравнением ординат на рис. 38, a и 38,  $\delta$  устанавливают отсутствие вторичного резания при черновом нарезании конического зубчатого колеса из целой заготовки методом обкатки.

# 77. Выбор номинального диаметра зуборезной головки

## Размеры, мм

Расчетный угол наклона	Пределы конусного ра		- Second		Ширина зубчатого	Расчетный номиналь-
зуба β° _n	рекомендуемые	допустимые	зуборезной головки $d_0$	зуба h _e	венца <i>в</i>	ный мо- дуль <i>m_n</i>
	(	Осевая фо	рма зуба	I		
От 0 до 15	36—58					
Св. 15 » 29	40-62	_	(88,9)	8	10-20	2—3,0
» 29 » 40	40—55					
От 0 до 15	40—65					
Св. 15 » 29	45—70	_	100	9	10—20	2—3,0
» 29 » 40	45—60					
От 0 до 15	50—80					
Св. 15 » 29	55—90	_	125	10	12—25	2-3,5
» 29 » 40	55—75					
От 0 до 15	60—100					
Св. 15 » 29	70—110		(152,4)	10	15—30	2,5—3,5
» 29 » 40	70—90					
От 0 до 15	65—105					
Св. 15 » 29	72—110	_	160	12	16—32	2,5—4
» 29 » 40	72—95	*·····				
От 0 до 15	75—120					
Св. 15 » 29	85—135	-	(190,5)	15	2040	2,5—5
* 29 * 40	85—115					
От 0 до 15	80130					
Св. 15 » 29	90—140	_	200	15	20—40	2,5—5
» 29 » 40	90—120					
От 0 до 15	90—150					
Св. 15 » 29	100—160	-	(228,6)	15	20-40	2,5—5
» 29 » 40	100—135					
От 0 до 15	100160		}			
Св. 15 * 29	110—175	_	250	18	25—50	2,5—6
* 29 * 40	140—150					
От 0 до 15	120—200					]
Св. 15 » 29	140—215	_	(304,8)	20	30—65	2,5—7
» 29 » 40 ————————————————————————————————————	140190					

Продолжение табл. 77

					11роволже	ние табл. 77
Расчетный угол наклона	конусного р	среднего асстояния <i>R</i>	Номиналь- ный диаметр	į.	Ширина зубчатого	номиналь-
зуба β° _n	рекомендуемые	допустимые	зуборезной головки d ₀	зуба <i>h_e</i>	венца <i>b</i>	ный модуль $m_n$
От 0 до 15	120—200					
Св. 15 » 29	140—220	_`	315	24	3265	2,5—9
» 29 » 40	140—190					
От 0 до 15	160—250					
Св. 15 » 29	180—280	_	400	30	4080	3—10
* 29 * 40	180—240					
От 0 до 15	180—300					
Св. 15 » 29	200-320	_	(457,2)	28	50—100	4-10
<b>*</b> 29 <b>*</b> 40	200—280					
От 0 до 15	200—320					
CB. 15 * 29	225—350		500	36	50—100	4-12
<u>* 29 * 40</u>	225—300					
От 0 до 15	250400					
C _B . 15 * 29	290—440	_	630	45	70—125	416
<b>*</b> 29 <b>*</b> 40	290380					
От 0 до 15	320-520					
Св. 15 * 29	360—560	-	800	60	80—160	5—20
» 29 » 40	360480					
От 15 до 29	400650		1000	70	100 200	
Св. 29 » 40	450600		1000	70	100—200	6—25
	0	севая фор	ома зуба I	I	•	
От 0 до 15	13-21	-	32	4	25.0	
Св. 15 » 45		10—22	32	4	2,5—8	1,25
От 0 до 15	1525	-	(38,1)	5	3—8	1,25
Св. 15 <b>»</b> 45 От 0 до 15		11-26				1,25
Св. 15 <b>»</b> 45	16—26	— 12—28	40	5	3—10	1,5
От 0 до 15	20 20		50 и	<del></del>		
Св. 15 * 45	20—32	15—35	(50,8)	6	4—12	2
От 0 до 15	2440	19 42		7		
CB. 15 * 45	70	1842	60	7	5—15	2

Продолжение табл. 77

					11рооолже	ение таол. //
Расчетный угол наклона зуба β° _n	Пределы конусного р		Номиналь- ный диаметр зуборезной головки <i>d</i> ₀	Внешняя высота зуба <i>h</i> e	Ширина зубчатого венца <i>b</i>	Расчетный номиналь- ный модуль т,
От 0 до 15 Св. 15 » 45	32-52	_ 24—56	80	8	6—20	1-2,5
От 0 до 15 Св. 15 » 45	36—58	_ 25—60	(88,9)	8	8—20	1—2,5
От 0 до 15 Св. 15 » 45	40—65	- 30-70	100	9	8—25	1—3
От 0 до 15 Св. 15 » 45	50—80	- 4090	125	10	10—30	13,5
От 0 до 15 Св. 15 » 45	60—100	- 45105	(152,4)	10	12—30	1,5—3,5
От 0 до 15 Св. 15 » 45	65-105	 50110	160	12	1340	1,5-4
От 0 до 15 Св. 15 <b>→</b> 45	75—120	- 60-135	(190,5)	15	1540	25
От 0 до 15 Св. 15 <b>»</b> 45	80—130	 60140	200	15	16—50	2—5
От 0 до 15 Св. 15 » 45	95—150	- 70—160	(228,6)	15	18—60	2–6
От 0 до 15 Св. 15 <b>»</b> 45	100—160	- 75-175	250	18	20—65	26
От 0 до 15 Св. 15 » 45	120—200	 90210	(304,8)	20	25—80	3—7
От 0 до 15 Св. 15 » 45	120—200	 95—220	315	24	25—80	3—8
От 0 до 15 Св. 15 * 45	160—250	- 120-280	400	30	32-100	3—10
От 0 до 15 Св. 15 <b>»</b> 45	180—300	-140-320	(457,2)	28	36—120	410
От 0 до 15 Св. 15 <b>»</b> 45	200—320	- 150350	500	36	40125	4—12
От 0 до 15 Св. 15 » 45	250—400	 190440	630	45	50—160	5—16
От 0 до 15 Св. 15 » 45	320—520	— 240—560	800	60	65—200	6—20
От 15 до 29 Св. 29 <b>»</b> 45	400—700 400—650	300—700 300—650	1000	70	80—250	8—25

Продолжение табл. 77

Расчетный угол наклона зуба β° _n	Пределы конусного ра		Номиналь- ный диаметр зуборезной головки d ₀	Внешняя высота зуба h _e	Ширина зубчатого венца <i>b</i>	Расчетный номиналь- ный модуль т _п
	0 0	евая форм	а зуба ІІ	I		
30	75*90					
35	68*—90	<del></del>	(88,9)	8	10—20	2-3,0
40	60*—80					·
30	85*-100					
35	75*—100	_	100	9	1020	2—3,5
40	65*—90					·
30	105*—125					
35	95*—125		125	10	1225	2—4
40	80*110				<u> </u>	
30	130*—150					
35	115*—150	<u> </u>	(152,4)	10	15—30	2—4
40	100*—135					
30	135*160					
35	120*—160	_	160	12	16—32	2—5
40	105*—145					
30	160*—190					
35	140*—190	_	(190,5)	15	2040	3-6
40	125*—170					
30	170*-200					
35	150*200	_	200	15	20—40	36
40	130*—180					
30	190*230					
35	170*—230	_	(228,6)	15	25—50	3—6
40	150*—200					
30	210*—250					
35	190*250	_	250	18	25—50	3—7
40	160*—225					
30	260*—305					
35	230*—305		(304,8)	20	32—65	3—8
40	200*—270					
30	270*—315					
35	235*—315	<del>-</del>	315	24	3265	38
40	205*—280					

Продолжение табл. 77

Расчетный угол наклона	Пределы конусного р		Номиналь- ный диаметр	Внешняя высота	Ширина зубчатого	Расчетный номиналь-
зуба β° _n	рекомендуемые	допустимые	зуборезной головки d ₀	зуба h _e	венца <i>в</i>	ный модуль <i>т</i> _п
30	340*400					
35	300*—400	-	400	30	40—80	3—12
40	260*360					
30	390*—460					
35	340*460	<del></del>	(457,2)	28	50—100	4—12
40	300*—410				_	
30	420*500					
35	370*—500	_	500	36	50—100	4—15
40	330*—450					
30	530*—630					
35	470*—630	_	630	45	63—125	5-18
40	420*—570					
30	680*—800					
35	600*—800	_	800	60	80—160	6—25
40	520*—720	·				

Примечания: 1. Если величина R превышает значение, отмеченное знаком «*», и угол делительного конуса  $\delta_2 > 50$ °, то необходимо производить проверку на отсутствие вторичного резания.

- 2. Диаметр зуборезной головки для зубчатых колес с осевой формой зуба I при расчетных углах наклона зуба  $\beta_n$  св. 40 до 45° подбирают по графику на рис. 36.
- 3. Диапазоны допускаемых значений среднего конусного расстояния при данном диаметре зуборезной головки для зубчатых колес с осевой формой зуба II могут быть уточнены по сравнению с указанным в таблице с учетом графика на рис. 36.
- 4. Диаметр зуборезной головки для зубчатых колес с осевой формой зуба III при  $z_c > 70$  и  $\beta_n$  св. 10 до 30° подбирают таким, чтобы удовлетворялись два уравнения:

$$d_0 = 2R \sin \beta_n (1 \pm 0,002 z_c \cos \beta_n),$$
  
$$d_0 = (5 \div 10)b.$$

5. Таблица составлена из условия обработки колеса передачи двусторонним или поворотным методом.

При одностороннем методе обработки колеса и  $m_2 \ge 2$  мм наименьшее рекомендованное значение R может быть уменьшемо, а наибольшее — увеличено на 25 %.

6. Зуборезные головки с номинальными диаметрами, заключенными в скобки, по возможности не применять.

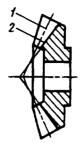
78. Коэффициенты смещения для ортогональных конических зубчятых передач с круговыми зубьями при псходном контуре по ГОСТ 16202—81

-	3.	нач	ения коэфо	фициента	смещения	<i>х</i> _и при пе	Значения коэффициента смещения $x_{n1}$ при передаточном числе передачи $x_{n1}$ $x_{n1}$ $x_{n2}$ $x_{n3}$ $x_{n4}$ $x_{n2}$ $x_{n3}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$ $x_{n4}$	м числе по 3-15	средачи <i>и</i>	5.0	6.3 и выше
	1,12	1,25	1,4	1,6	1,8	2,0	2,5	3,15	4,0	5,0	6,3 и выше
			Pa	Расчетный угол зуба $eta_n$ от $0$ до $15^\circ$	гол зуба β"	от 0 до 15	٥٤				
	ı	1	ŀ	1	į	I	0,50	0,53	95,0	0,57	0,58
	1	1	1	ı	ı	0,44	0,48	0,52	0,54	0,55	95'0
	ı	ı	0,27	0,34	0,38	0,42	0,47	0,50	0,52	0,53	0,54
	i	0,18	0,25	0,31	0,36	0,40	0,45	0,48	0,50	0,51	0,52
	0,10	0,17	0,24	0,30	0,35	0,38	0,43	0,46	0,48	0,49	0,50
	60,0	0,15	0,22	0,28	0,33	98'0	0,40	0,43	0,45	0,46	0,47
	80,0	0,14	0,20	0,26	0,30	0,34	0,37	0,40	0,42	0,43	0,44
	0,07	0,13	81,0	0,23	0,26	0,29	0,33	98'0	0,38	0,39	0,40
00,0	90,0	0,11	0,15	0,19	0,22	0,25	0,28	0,31	0,33	0,34	0,35
_	0,05	60'0	0,12	0,15	0,18	0,20	0,22	0,24	0,26	0,27	0,28
			Расчетн	Расчетный угол наклона зуба $\beta_n$ св. 15 до 29°	аклона зуб	іа β,, св. 15	до 29°				
	1	ı	1	I	1		l 	0,49	0,52	0,53	0,54
	1	I	1	I	1	l	1	0,48	0,49	0,51	0,52
	1	1	1	ı	1	İ	0,42	0,46	0,48	0,49	0,50
	ı	l		İ	0,33	0,37	0,40	0,43	0,45	0,47	0,48
	I	ı	0,21	0,26	0,32	96,0	0,39	0,42	0,44	0,45	0,46
	1	0,14	0,20	0,25	0,30	0,34	0,37	0,40	0,42	0,43	0,43

78	
табл.	
Продолжение	

	100		00.0	100	000	0.33	0.35	0.39	070	Прооблже	1рооолжение таол. 76 0.41 0.42
	/0,0	0,14	07,0	0,24	67,0	75,0	0,33	0,00	04,0	0,40	0,42
	90,0	0,13	61,0	0,23	0,28	0,31	0,34	0,37	65,0	0,40	0,41
	90,0	0,12	0,18	0,22	0,27	0,30	0,33	92,0	0,38	0,39	0,39
	0,05	0,11	0,16	0,21	0,24	0,26	0,29	0,33	0,35	0,36	96,0
	0,05	0,10	0,14	0,18	0,20	0,23	0,25	0,28	0,30	0,31	0,32
	0,04	80,0	0,12	0,15	0,18	0,20	0,22	0,25	0,26	0,27	0,27
	0,03	0,05	0,08	0,12	0,14	0,16	0,18	0,20	0,20	0,21	0,22
	•	•	Расчетн	Расчетный угол н	наклона зуба	а β" св. 29	до 45°				
		ı	ı	1	i	!	1	1	1	1	0,70
	1	-	1	1	I	ı	İ	1	1	9,65	99'0
	ļ	1	ı	l	1	ı	1	1	0,51	0,53	0,54
	ı	ı	ŀ	I	l	ł	İ	0,46	0,49	0,50	0,52
	ı	1	ı	1	1	J	I	0,44	0,47	0,47	0,48
	ŀ	1	1	١	1	1	0,38	0,41	0,44	0,45	0,45
	1	ı	ı	i	1	0,32	0,37	0,39	0,41	0,42	0,43
	1	ı	ı	ł	0,27	0,30	0,35	0,37	0,39	0,40	0,41
	j	ı	0,18	0,23	0,26	0,29	0,33	0,35	0,37	0,38	0,38
	ı	0,12	0,17	0,22	0,25	0,27	0,31	0,33	0,35	0,36	0,37
	90,0	0,11	0,16	0,21	0,24	0,26	0,30	0,32	0,34	0,35	0,35
	0,05	0,10	0,15	0,19	0,22	0,24	0,27	0,30	0,32	0,32	0,33
	0,05	0,09	0,13	0,17	0,20	0,22	0,26	0,28	0,29	0,29	0,30
	0,04	80,0	0,11	0,15	0,17	0,19	0,21	0,24	0,25	0,25	0,26
	0,03	0,07	60'0	0,11	0,15	91,0	0,18	0,21	0,22	0,22	0,23
	0,03	0,05	0,07	60,0	0,11	0,11	0,14	0,16	0,17	0,17	0,18
. =	$\Pi$ римечание. Данные таблицы могут быть использованы для повышающих передач при $u < 1$ .	цы могут	быть испо.	льзованы д	шивоп въ	ающих пе	редач при	u < 1.			

17--5837


Выбор коэффициентов смещения и коэффициентов изменения расчетной толщины зуба исходного контура. 1. В передачах с u>1 при разности твердости рабочих поверхностей зубыев шестерни и колеса менее 100~HB шестерню рекомендуется выполнять с положительным смещением  $(+x_{n1})$  по табл. 78, а колесо с равным ему по величине отрицательным смещением  $(x_{n2}=-x_{n1})$ .

При u > 1 и разности твердости зубьев шестерни и колеса, превышающей 100~HB, передачу следует выполнять без смещения или равносмещенной с положительным смещением у шестерни, достаточным лишь для устранения подрезания зубьев.

Для передач, у которых u и  $z_1$  отличаются от указанных в табл. 78, коэффициенты смещения принимают с округлением в большую сторону.

2. При  $u \ge 2,5$  и  $m_n > 2$  мм зубчатые колеса рекомендуется выполнять не только со смещением, устанавливаемым по п. 1, но и с различной толщиной зуба исходного контура, увеличенной по сравнению с расчетной ( $\frac{\pi m_n}{2}$ ) у исходного контура шестерни и соответственно уменьшенной у исходного контура колеса.

Коэффициент изменения расчетной толщины зуба исходного контура  $x_{\tau 1}$ , положительный для шестерни и равный ему по величине, но обратный по знаку  $x_{\tau 2}$  для колеса, рекомендуется принимать по табл. 79.



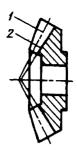
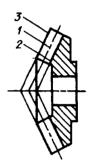




Рис. 39. Осевая форма зуба II: 1 - делительный конус; 2 - конус впадин

Рис. 40. Осевая форма зуба III:

делительный конус;
 конус впадин;

3 - конус вершин



Для ответственных тяжело нагруженных передач значения  $x_{\tau 1}$  следует определять из расчета зубьев на изломную прочность.

Коэффициенты для расчета угла ножек и угла головок зубьев конических зубчатых колес с осевой формой зуба II. 1. Для облегчения расчета коэффициента K, входящего в формулу для определения суммы

79. Коэффициенты изменения расчетной толщины зуба исходного контура для ортогональных конических зубчатых передач при исходном контуре по ГОСТ 16202-81

Расчетный угол наклона зуба	Значения	$x_{t1}$ при передат	очном числе пер	едачи <i>и</i>
β'n	от 2,5 до 4	св. 4 до 6,3	св. 6,3 до 8	св. 8 до 10
От 0 до 15	0,04	0,06	0,08	0,10
Св. 15 → 29	0,08	0,10	0,12	0,14
* 29 * 40	0,12	0,14	0,16	0,18
* 40 * 45	0,16	0,18	0,20	0,22

Примечания: 1. Значения  $x_{\tau 1}$  могут быть скорректированы до ближайшего значения  $x_{\tau 1}$  при данном  $m_n$  по табл. 74, с тем чтобы обеспечить обработку колеса двусторонним методом при стандартном разводе резцов.

2. Для повышающих передач рекомендуется принимать  $x_{r1} = 0$ .

			Расч	етный угол	і наклона	β'n		
Диаметр зубо-	10	15	20	25	30	35	40	45
резной головки			Знач	ение коэф	фициента	<i>C</i> ₁		
$d_0$ , mm	5232	7951	10800	13837	17132	20777	24898	29673
			Знач	ение коэф	фициента	$c_2$	·	
(12,7)	143,1	324,1	581,7	920,9	1349	1877	2520	3304
20	90,85	205,8	369,4	584,8	856,6	1192	1600	2098
(27,94)	65,05	147,3	264,4	418,6	613,2	853,0	1146	1502
25	72,68	164,6	295,5	467,8	685,3	953,4	1280	1678
32	56,78	128,6	230,9	365,5	535,4	744,8	1000	1311
(38,1)	47,69	108,0	193,9	307,0	449,6	625,6	840,1	1101
40	45,43	102,9	184,7	292,4	428,3	595,9	800,2	1049
50	36,34	82,32	147,8	233,9	342,6	476,7	640,2	839,3
(50,8)	35,77	71,02	145,4	230,2	337,2	469,2	630,1	826,1
60	30,28	68,60	123,1	194,9	285,5	397,2	533,5	699,4
80	22,71	51,45	92,35	146,2	244,21	297,9	400,1	524,6
(88,9)	20,44	46,30	83,10	131,6	192,7	268,1	360,0	472,0
100	18,17	41,16	73,88	116,9	171,32	238,4	320,1	419,6
125	14,54	32,93	59,10	93,56	137,06	190,7	256,1	335,7
(152,4)	11,92	27,00	48,48	76,74	112,4	156,4	210,0	275,4
160	11,36	25,72	46,17	73,10	107,08	148,9	200,1	262,28
(190,5)	9,539	21,60	38,78	61,39	89,93	125,1	168,0	230,3
200	9,085	20,58	36,94	58,48	85,66	119,2	160,0	209,82
(228,6)	7,949	18,00	32,32	51,16	74,94	104,3	140,0	183,6
250	7,268	16,46	29,55	46,78	68,53	95,34	128,0	167,86
(304,8)	5,962	13,50	24,24	38,37	56,21	78,20	105,0	137,7
315	5,768	13,07	23,45	37,13	54,38	75,67	101,6	133,22
400	4,543	10,29	18,47	29,24	42,83	59,59	80,02	104,91
(457,2)	3,974	9,002	16,16	25,58	34,47	52,13	70,01	91,78
500	3,634	8,233	14,78	23,39	34,26	47,67	64,02	83,93
630	2,884	6,533	11,73	18,56	27,19	37,83	50,81	66,61
800	2,271	5,145	9,24	14,62	21,42	29,79	40,01	52,46
1000	1,817	4,116	7,39	11,70	17,13	23,84	32,01	41,96

При  $\beta_{n=0}$   $C_1 = 0$  и  $C_2 = 0$ 

### 80. Значения коэффициентов $C_1$ и $C_2$

углов ножек зубьев конических зубчатых колес с круговыми зубьями осевой формы II при  $\alpha_n=20^\circ$ , приведена табл. 80, в которой

$$C_1 = \frac{10800 \operatorname{tg} \beta_n}{\operatorname{tg} \alpha_n}$$

И

$$C_2 = \frac{2C_1 \sin \beta_n}{d_0} \, .$$

Коэффициенты K,  $C_1$  и  $C_2$  связаны зависимостью

$$K=\frac{C_1-C_2R}{z_c}.$$

При K > 500 следует уменьшить  $d_0$  или перейти на осевую форму зуба I. При

 $K \le 0$  рекомендуется увеличить  $d_0$  и перейти на осевую форму зуба III.

2. При проектировании конических зубчатых колес с круговыми зубьями осевой формы II для обеспечения приблизительного постоянства ширины вершинной ленточки по всей длине зуба при определенном сочетании значений  $\beta_n$ ,  $z_1$  и u вынужденно принимают  $\theta_{\alpha 1} \neq \theta_{\alpha 2}$  и  $\theta_{\alpha 2} = \theta_{f1}$ , допуская тем самым переменный радиальный зазор в передаче.

В табл. 81 приведены значения коэффициента угла головки зуба  $K_{\alpha}$ , равного отношению угла головки зуба данного зубчатого колеса к углу ножки зуба сопряжен-

# 81. Значение коэффициента угла головки зуба $K_{\alpha}$

(при 
$$\Sigma=90^\circ$$
,  $\alpha_n=20^\circ$ ,  $h_a^*=1.0$ ;  $x_{nl}$  и  $x_{\tau l}$  по табл. 78 и 79 и  $k_0=\frac{R}{d_0}$  от 0,3 до 0,7)

β'n	z ₁	Значение к	оэффициента у	угла головки зу числе <i>и</i>	⁄ба <i>К</i> а при по	ередаточном
		От 1,0 до 1,25	Св. 1,25 до 1,6	Св. 1,6 до 2,5	Св. 2,5 до 4,0	Св. 4,0
	12—13	_	_	_	0,70 0,95	0,65 0,95
	14—15	-	0,75 0,85	0,75 0,90	0,75 0,95	0,70 0,95
	16—19	0,80 0,80	0,80 0,85	0,80 0,95	0,75 0,95	0,75 1,00
От 0 до 15	20—24	0,85 0,85	0,80 0,85	0,80 0,95	0,80 0,95	0,80 1,00
	25—29	0,85 0,85	0,85 0,90	0,85 0,95	0,85 0,95	0,80 1,00
	3040	0,90 0,90	0,85 0,90	0,85 0,95	0,85 0,95	0,85 1,00
· · · · · · · · · · · · · · · · · · ·	Св. 40	0,90 0,90	0,90 0,95	0,85 0,95	0,85 0,95	0,85 1,00
	10—11				0,75 0,95	0,75 1,00
	12—13		*******	0,80 0,90	0,80 0,95	0,75 1,00
Св. 15	14—15	_	0,85 0,90	0,80 0,90	0,80 0,95	0,80 1,00
до 29	16—19	0,85 0,85	0,85 0,90	0,85 0,95	0,85 0,95	0,85 1,00
	20—24	0,90 0,90	0,85 0,90	0,85 0,95	0,85 0,95	0,85
	25—29	0,90 0,90	0,90 0,90	0,90 0,95	0,90 0,95	0,90 1,00

Продолжение табл. 81

	,	<del></del>				сение тиол. в.
$\beta_n^{\circ}$	$z_1$	Значение к	оэффициента у	угла головки зу числе <i>и</i>	/ба $K_{lpha}$ при п	ередаточном
		От 1,0 до 1,25	Св. 1,25 до 1,6	Св. 1,6 до 2,5	Св. 2,5 до 4,0	Св. 4,0
Св. 15	30—40	0,90 0,90	0,90 0,95	0,90 0,95	0,90 1,00	0,90 1,00
до 29	Св. 40	0,95 0,95	0,95 0,95	0,90 0,95	0,90 1,00	0,90 1,00
	6—7	_	_	_	-	0,75 1,00
	8—9	<u></u>	_	_	ı	0,75 1,00
	10—11	_	_		0,80 1,00	0,80 1,00
	12—13	_	_	0,90 1,00	0,85	0,85 1,00
Св. 29	14—15	_	0,90 0,90	0,90 1,00	0,90 1,00	0,85 1,00
до 45	16—17	0,90 0,90	0,90 1,00	0,90 1,00	0,90 1,00	0,90 1,00
	18—19	0,90 0,90	0,90 1,00	0,90 1,00	0,90 1,00	0,90 1,00
	20—24	1,00 1,00	1,00 1,00	1,00 1,00	0,90 1,00	0,90 1,00
	25—30	1,00 1,00	1,00 1,00	1,00	1,00 1,00	1,00 1,00
T	Св. 30	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00

 $\Pi$  р и м е ч а н и я : 1. В числителе приведены значения  $\mathit{K}_{\alpha}$  для шестерни, в знаменателе - для колеса.

^{2.} Допускается использовать данные таблицы при значениях  $x_{\tau 1}$ , отличных от указанных в табл. 79.

82. Формулы и примеры расчета основных геометрических параметров ортогональной конической передачи с круговыми зубъями при стандартном исходном контуре

Линейные размеры, мм

		3	18	58	1	20	30°	Левое	Правое		
	Числовые примеры	2	17	34	3	I	25°	Правое	Левое		°06
	оиЬ	1	20	90	l	10	35°	Правое	Левое	По ГОСТ 16202-81	
линсиные размеры, мм	Расчетн				1		-		-		1
			шестерни 21	колеса 22	средний нор- мальный (расчетный) <i>т</i> п	внешний ок- ружной <i>т_{іе}</i>	аклона зуба	шестерни	колеса	Средний нормальный исходный контур	ы
	Параметры и обозначения		Число	зубьев	Модуль		Средний утол наклона зуба (расчетный) β _п	Направление	линии зуба	Средний норма контур	Межосевой угол
	=						Исходные				

I. Число зубьев плоского колеса $z_c$	$z_c = \sqrt{z_1^2 + z_2^2}$	53,8516	38,0132	60,7289
2. Среднее конусное расстояние (при задан- ном <i>m</i> _n ) <i>R</i> _m	$R_m = \frac{m_n c_c}{2 \cos \beta_n}$	1	62,9142	l
3. Внешнее конусное расстояние (при задан- ном <i>m_{le}</i> ) <i>Re</i>	$R_{\boldsymbol{e}} = \frac{m_{\boldsymbol{\ell}\boldsymbol{e}}z_{\boldsymbol{c}}}{2}$	269,2580	<b>!</b>	607,2890
<ol> <li>Выбор осевой формы зуба</li> <li>Номинальный диаметр зуборезной головки См. на стр. 506, 507 (шлифовального круга) d₀</li> </ol>	См. на стр. 504 См. на стр. 506, 507	I 400	11	630
6. Угол делительного конуса 8 ₁	$\frac{c_2}{l_2} = l_8 g_1$	21°48′	26°34′	17°14′
	$\delta_2 = 90^\circ - \delta_1$	68°12′	63°26′	72°46′
	$\sin \delta_1 = \cos \delta_2$	0,37137	0,44724	0,29626
	$\cos \delta_1 = \sin \delta_2$	0,92848	0,89441	0,95511
7. Ширина зубчатого венца $b$	72	75	22	125
8. Передаточное число и	1 ₂ = n	2,50	2,00	3,22
9. Коэффициент смещения у шестерни $x_{nl}$	по табл. 78	0,26	0,31	0,30
10. Коэффициент изменения толщины зуба шестерни $x_{t1}$	по табл. 79	0,12	0	0,12

				ИродИ	Продолжение табл. 82
Параметры и обозначения	ачения	Расчетные формулы и указания	Иh	Числовые примеры	
			1	2	3
11. Развод резцов зуборезной головки $W_2^{\prime}$ для чистовой обработки колеса		$W_2' = m_\eta (0.6609 + x_{\tau 1})$	l	$W_2' = 1,9827$ $W_2 = 2,00$	
	Расчет при	При $x_{t1} = 0$ $0.5m_n \ge W_2' - W_2 \ge -0.02m_n$ (1)	1	Неравенство соблюдается $\delta h_f = 0,024$	1
	заданном т _и	$\delta h_f = \frac{W_2' - 1}{0,7278}$	$\delta h_f = \frac{W_2' - W_2}{0,72784}$ ; $\delta h_f$ по табл. 74;	74;	
		0,05m _n ≥ 1	$0.05m_n \ge W_2' - W_2 \ge -0.05m_n$		(2)
		Уточняется значение $x_{t1}$ в п. 10, $x_{t1} = \frac{W_2}{m_n} - 0,6609$ . Если неравенства (1) и (2) не соблюда-	2 – 0,6609. Если но п	еравенства (1) и (	2) не соблюда-
		ются, то определяют новое значение $m_n$ по формуле $m_n = \frac{W_2}{0,6609 + x_{t1}}$	о формуле $m_{\rm h} = \frac{1}{0}$	$W_2$ $6609 + x_{\tau 1}$	
<ol> <li>Расстояние от внешнего т ного сечения l_e</li> </ol>	горца до расчет-	торца до расчет- а) $l_e = 0.5b$ (рекомендуется); б) $l_e = R_e' - R$ или			i
		$l_e = 0.5z_c \left( m_{le} - \frac{m_n}{\cos \beta_n} \right),$		$R'_e = 75$ (задано)	
		где Re или тhe - заданные значения			
13. Внешнее конусное расстояние $R_{m{e}}$	He Re	$R_e = R_m + l_e$	1	75,0000	l
14. Внешний окружной модуль т _{іе}	, m _{te}	$m_{le} = \frac{2R_2}{z_c}$	ı	3,9460	1

15. Развод резцов зуборезной головки для чистовой дву- сторонней обработки колеса		$W_2 = \left(m_{le} - K_l \frac{b}{2c}\right) \left(0,6609 + x_{11}\right) \cos \beta_n$	$W_2 = 5.2$ $npu$ $K_l = 1.0$ $\beta_n = 35^\circ$ ; $x_{t1} = 0.08$ (уточненное значение)	l	$W_2 = 12,0$ $npn$ $K_I = 1,0$ ; $x_{t1} = 0,14$ (уточненное значение); $\beta_n = 35^n 16^n 34^n$ (уточненное значение); $\cos \beta_n = 0,83604$
16. Нормальный модуль в расчетном сечении mn	Расчет при за- данном <i>те</i>	$m_n = \left(m_{le} - K_l \frac{b}{z_c}\right) \cos \beta_n$	7,0507	<b>-</b>	15,0000
17. Среднее конусное рас- стояние <i>R</i> _m		$R_m = \frac{m_n z_c}{2 \cos \beta_n}$	231,7594	l	544,7906
<ol> <li>Расстояние от внешнего торца до расчетного сечения</li> </ol>		$l_e = R_e - R_m$	37,4986≈37,5	l	62,4984≈62,5
<ol> <li>Высота ножки зуба в расчетном сечении</li> </ol>	счетном сечении	$h_{f1} = \left(h_a^* + c^* - x_{n1}\right)m_n + \delta h_f$ $h_{f2} = \left(h_a^* + c^* + x_{n1}\right)m_n + \delta h_f$	6,9801	2,7958	14,2500

Продолжение табл. 82

				1	
Параметры и обозначения	нения	Расчетные формулы и указания	Чис	Числовые примеры	
			1	2	3
20. Нормальная толщина зуба чении $s_{n}$	в расчетном се-	$s_{n1} = (0.5\pi + 2x_{n1}tg\alpha_n + x_{\tau 1})m_n$ $s_{n2} = \pi m_n - s_{n1}$	12,9735 9,1770	5,3893 4,0355	28,9365 18,1875
21. Сумма утлов ножек шестерни и колеса а) При $\beta=0^{\circ}$ (только для зубчатых колес с осевой формой зуба II) $\theta_{\mathcal{R}}$	терни и колеса осевой формой	a) При $\beta = 0^{\circ}$ $\theta_{\mathcal{L}} = \frac{29673}{c_{c}} \text{ (в мин.)};$			
		6) при $\beta \neq 0$ $\theta_{f\Sigma} = \frac{K}{\sin \beta_{ft}} \text{ (в мин.)};$	I	268	i
		$K = \frac{C_1 - C_2 R_m}{z_c}$		240	
		С ₁ и С ₂ - по табл. 72			
	Осевая форма	$tg\theta_{f1} = \frac{h_{f1}}{R_m}$	$1^{\circ}44'$ $tg\theta_{f1} = 0.03026$	1	1
22. Угол ножки зуба $\theta_f$	3y6a I	$4g\theta_{f2} = \frac{h_{f2}}{R_m}$	$2^{\circ}38'$ $tg\theta_{f2} = 0,04599$	1	1
	Осевая форма	$\theta_{f1} = \theta_{f\Sigma} \frac{s_{n2}}{\pi m_n} \text{ (B MMH.)}$	l	$4^{\circ}03'$ $tg\theta_{f1} = 0.07080$	I
	3y6a II	$\theta_{f2} = \theta_{f2} - \theta_{f1}$ (B MHH.)	ı	$5^{\circ}25'$ $tg\theta_{f2} = 0,09482$	

22. Угол ножки зуба $\theta_{f}$	Осевая форма зуба III	$\theta_{f1} = 0$ $\theta_{f2} = 0$			0
	Оссвая форма зуба I	$\theta_{a1} = \theta_{f2}$ $\theta_{a2} = \theta_{f1}$	$2^{\circ}38'$ $tg\theta_{a1} = 0,04599$ $1^{\circ}44'$ $tg\theta_{a2} = 0,0326$	1 1	ļ l
23. Угол головки зуба θ _α	Осевая форма зуба II	$\theta_{a1} = K_{a1} \; \theta_{f2}$ $\theta_{a2} = K_{a2} \; \theta_{f1}$ $K_a$ - расчет на стр. 000, 000 (Коэффициенты для расчета угла ножек и угла головки зубъев)		$4^{\circ}36'$ $(K_{a1} = 0.85)$ ${\rm tg}\theta_{a1} = 0.08046$ $3^{\circ}51'$ $(K_{a2} = 0.95)$ ${\rm tg}\theta_{a2} = 0.06730$	l i
	Осевая форма зуба III	$\theta_{a1} = 0$ $\theta_{a2} = 0$		l l	0 0
24. Увеличение высоты головки ходе от расчетного сечения на 1 $\Delta h_{ae}$	ки зуба при пере- на внешний торец	$\Delta h_{ae1} = l_e \mathrm{tg}  \Theta_{a1}$ $\Delta h_{ae2} = l_e \mathrm{tg}  \Theta_{a2}$	1,7246	0,9724	0

Продолжение табл. 82

Памачения	Расчетные формулы и указания	Чис	Числовые примеры	
and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		1	2	3
25. Увеличение высоты ножки зуба при переходе от расчетного сечения на внешний торец $\Delta h_{fe}$	$\Delta h_{fe1} = l_e t g \theta_{f1}$ $\Delta h_{fe2} = l_e t g \theta_{f2}$	1,1347	0,8557 1,1460	0
26. Уменьшение высоты головки зуба в расчетном сечении $\delta h_a$	$\delta h_{a1} = (b - l_e) (\operatorname{tg}\theta f_2 - \operatorname{tg}\theta_{a1})$ $\delta h_{a2} = (b - l_e) (\operatorname{tg}\theta f_1 - \operatorname{tg}\theta_{a2})$	0	0,1424 0,0347	0
27. Высота головки зуба в расчетном сечении $h_a$	$h_{a1} = \left(h_a^* + x_{n1}\right) m_n - \delta h_{a1}$ $h_{a2} = \left(h_a^* - x_{n1}\right) m_n - \delta h_{a2}$	8,8839	3,7876	19,5000
28. Внешняя высота головки зуба $h_{ae}$	$h_{ae1} = h_{a1} + \Delta h_{ae1}$ $h_{ae2} = h_{a2} + \Delta h_{ae2}$	10,6085	4,7600	19,5000
29. Внешняя высота ножки зуба <i>h</i> $f_{\ell}$	$h_{fe1} = h_{f1} + \Delta h_{fe1}$ $h_{fe2} = h_{f2} + \Delta h_{fe2}$	8,1148 12,3712	3,6515 5,8018	14,2500
30. Внешняя высота зуба $h_e$	$h_{e1} = h_{\alpha e1} + h_{fe1}$ $h_{e2} = h_{\alpha e2} + h_{fe2}$	18,7233 18,7234	8,4115	33,7500
$31.$ Угол конуса вершин $\delta_a$	$\delta_{a_1} = \delta_1 + \theta_{a_1}$ $\delta_{a_2} = \delta_2 + \theta_{a_2}$	24°26′ 69°56′	31°10′ 67°17′	17°14′ 72°46′

$32.$ Угол конуса впадин $\delta_f$	l/θ-l2=l/δ	20°04′	22°31′	17°14′
	$\delta_{f2} = \delta_2 - \theta_{f2}$	65°34′	58°01′	72°46′
33. Средний делительный диаметр $d_m$	$d_{m1} = \frac{m_n z_1}{\cos \beta_n}$	172,1467	56,2721	322,9163
	$d_{m2} = \frac{m_n z_2}{\cos \beta_n}$	430,3668	112,5442	1040,5080
$34.\;$ Внешний делительный диаметр $d_e$	$d_{e1} = m_{le}z_1$ $d_{e2} = m_{le}z_2$	200	67,0820 134,1640	360,0000
$35.$ Ввешний диаметр вершин зубьев $d_{ae}$	$d_{ae1} = d_{e1} + 2h_{ae1} \cos \delta_1$ $d_{ae2} = d_{e2} + 2h_{ae2} \cos \delta_2$	219,6995 504,7180	75,5968 136,7123	397,2493 1166,2215
36. Расстояние от вершины до плоскости внешней окружности вершин зубьев В	$B_1 = 0,5 d_{e2} - h_{ae1} \sin \delta_1$ $B_2 = 0,5 d_{e2} - h_{ae2} \sin \delta_2$	246,0603 94,1068	64,9530	574,2229
37. Постоянная хорда зуба в расчетном сечении $\bar{s}_{c}$	$\bar{s}_{c1} = 0.8830 \ s_{n1}$ $\bar{s}_{c2} = 0.8830 \ s_{n2}$	1 1	4,7587	25,5509
38. Высота до постоянной хорды зуба в расчетном сечении $\bar{h}_c$	$\bar{h}_{c1} = h_{a1} - 0.1607s_{n1}$ $\bar{h}_{c2} = h_{a2} - 0.1607s_{n2}$	1 1	2,9215	14,8499

82
табл.
Продолжение

Параметры и обозначения	Расчетные формулы и указания	Чи	Числовые примеры	
			2	3
39. Половина утловой толщины зуба в нор- мальном сечении ψ _п (в радианах)	$\psi_{n1} = \frac{s_{n1}\cos\delta_1\cos^2\beta_n}{d_1}$	0,0469	l	l
	$\psi_{n2} = \frac{s_{n2}\cos\delta_2\cos^2\beta_n}{d_2}$	0,0053	I	I
40. Коэффициент, зависящий от угловой тол- щины зуба в нормальном сечении, $K_{\psi n}$	$K_{\psi nl} = 1 - \frac{\psi^2}{6}$	9666'0	I	1
	$K_{\psi\pi2} = 1 - \frac{\psi^2_{\pi2}}{6}$	1,0000	I	I
	Коэффициент - по табл. 83			
41. Толщина зуба по хорде в расчетном сечении $\bar{s}$	$\bar{s}_{ m l}=s_{n m l}~K_{\psi n m l}$	12,9682	.	I
	$\bar{s}_2 = s_{n2} K_{\psi n2}$	9,1770	I	I
42. Высота до хорды в расчетном сеченин h	$\overline{h}_{a1} = h_{a1} + 0.25s_{n1} \vee_{n1}$	9,0360	1	l
	$\bar{h}_{a2} = h_{a2} + 0.25s_{n2} \psi_{n2}$	5,2296	ı	1

ГОСТ 19326-73 предусматривает более полный расчет конических передач с круговыми зубьями и, в частности, с межосевым расстоянием  $\Sigma \neq 90^{\circ}$ .

83. Значения коэффициента  $K_{\psi n}$ 

 $K_{\psi n} = 1 - \frac{\psi \bar{n}}{6}$ 

$K_{\psi n}$	0,9575	9956'0	0,9559	0,9549	0.0540	0,9340	0,9532	0,9523	0,9514		0,9505	0,9496	0,9487	0,9477	0.0467	0,740/	0,9458	0,9449	0,9439		0,9429	0,9420	0,9410	0,9400
μh	0,505	0,510	0,515	0,520	3030	C7C'0	0,530	0,535	0,540		0,545	0,550	0,555	0,560	973 0	coc'o	0,570	0,575	0,580	1	0,585	0,590	0,595	009'0
Kwn	0,9727	0,9720	0,9713	9026,0	00/0	0,9699	0,9692	0,9685	0,9677		0,9670	0,9662	0,9655	0,9648	0000	0,9030	0,9632	0,9624	0,9616		0,9608	0096'0	0,9592	0,9583
u A	0,405	0,410	0,415	0,420	, ,	0,425	0,430	0,435	0,440		0,445	0,450	0,455	0,460	377.0	0,400	0,470	0,475	0,480		0,485	0,490	0,495	0,500
$K_{\psi n}$	0,9845	0,9840	0,9834	0,9829		0,9824	0,9818	0,9813	0,9807		0,9802	9626'0	0,9790	0,9784	0	0,77,78	0,9772	9926'0	0,9759		0,9753	0,9746	0,9740	0,9733
μħ	0,305	0,310	0,315	0,320		0,325	0,330	0,335	0,340		0,345	0,350	0,355	098'0	2,70	0,363	0,370	0,375	0,380		0,385	0,390	0,395	0,400
$K_{\Psi n}$	0,9930	0,9926	0,9923	6166'0		0,9915	0,9912	8066'0	0,9904		0,9900	9686'0	0,9893	0,9887	000	0,9883	0,9878	0,9874	6986'0		0,9864	0,9860	0,9855	0,9850
и́ф	0,205	0,210	0,215	0,220		0,225	0,230	0,235	0,240	•	0,245	0,250	0,255	0,260		0,265	0,270	0,275	0,280		0,285	0,290	0,295	0,300
$K_{\Psi n}$	0,9981	0,9980	0,9978	9266'0		0,9974	0,9972	0,9970	0,9967		0,9965	0,9962	0966'0	0,9957		0,9955	0,9952	0,9949	0,9946		0,9943	0,9940	0,9936	0,9933
ψ	0.105	0,110	0,115	0,120		0,125	0,130	0,135	0,140		0,145	0,150	0,155	0,160	,	0,165	0,170	0,175	0,180		0,185	0,190	0,195	0,200
$K_{\psi n}$	1,0000	1,0000	0,9999	6666'0		0,9999	8666'0	8666'0	0,9997		9666,0	9666'0	0,9995	0,9994	1	0,9993	0,9992	0,9990	6866'0		0,9988	9866'0	0,9985	0,9983
u A	0.005	0.010	0,015	0,020	,	0,025	0,030	0,035	0,040		0,045	0,050	0,055	0,060	1	0,065	0,070	0,075	0,080		0,085	0,090	0,095	0,100

Параметры	Вал-шестерня	Колесо			
		улучшенное закален 260 290 <i>НВ</i> 56 60	закаленное		
Твердость рабочих поверхно- стей зубьев и посадочных ше- ек валов-шестерен		260 290 <i>HB</i>	56 60 HRC		
Твердость сердцевины зубьев, шпоночных пазов и тела зубчатых колес	35 40 <i>HRC</i>	260 290 <i>HB</i>	35 40 <i>HRC</i>		
Ударная вязкость сердцевины зубьев		Не ниже 45 Н·м/см²			

84. Твердость и ударная вязкость зубчатых колес

ного с ним зубчатого колеса, для передач, выполненных в соответствии с исходным контуром по ГОСТ 16202-81 и с коэффициентами  $x_{n1}$  и  $x_{\tau 1}$ , рекомендованными на стр. 514 в «выборе коэффициентов смещения и коэффициентов изменения расчетной толщины зуба исходного контура» и в табл. 79 при  $k_0 = \frac{R}{d_0}$  от 0,3 до 0,7.

**Технические требования.** Твердость рабочих поверхностей зубьев, шпоночных пазов и тела зубчатых колес, а также твердость и ударная вязкость сердцевины зубьев приведены в табл. 84.

Допускается изготовление колес конических зубчатых пар с твердостью поверхности зубьев 45 ... 50 HRC, твердостью сердцевины зубьев 40 ... 45 HRC и ударной вязкостью сердцевины не ниже 35  $\text{H} \cdot \text{м}/\text{cm}^2$ .

Модуль торцовый, мм	До 4	Св. 4 до 6
Глубина цементо- ванного слоя, мм	0,75-1,0	1,0-1,3
Модуль торцовый, мм	Св. 6 до 8	Св. 8
Глубина цементо- ванного слоя, мм	1,2-1,5	1,4-1,8

Глубина цементованного слоя на зубьях с твердостью поверхности 56 ... 60 *HRC*:

Несоосность поверхностей базовых шеек валов-шестерен под подшипники и торцовое биение опорных торцов валов-шестерен должны быть не более 0,01 мм, а биение опорных торцов ступиц насадных зубчатых колес - не более 0,02 мм.

Овальность и конусность посадочных отверстий зубчатых колес и базовых шеек валов-шестерен под подшипники должны быть в пределах половины допуска на диаметр, а неплоскостность торцов ступиц зубчатых колес и опорных торцов валовшестерен - в пределах допуска на торцовое биение.

Допуски на смещение и перекос шпоночных пазов в отверстиях колес должны быть в пределах допуска на ширину шпоночного паза, а допуски на смещение и перекос шпоночных пазов на валахшестернях - в пределах удвоенного допуска на ширину шпоночного паза.

Острые кромки на торцах зубьев должны быть скруглены радиусом, равным 0,5 мм, или ограничены фаской 0,5×45°.

Зубчатые колеса с диаметром вершин зубьев свыше 100 мм должны быть подвергнуты статической балансировке. При этом допускается для колес с диаметром до 350 мм смещение центра тяжести не более 0,05 мм, а для колес с диаметром свыше 350 мм - 0,06 мм.

# Допуски конических и гипоидных зубчатых передач (по ГОСТ 1758-81)

Допуски распространяются на конические и гипоидные зубчатые передачи и пары (без корпуса) внешнего зацепления с прямыми, тангенциальными и криволинейными зубьями со средним делительным диаметром зубчатых колес до 4000 мм, средним нормальным модулем от 1 до 55 мм, с прямолинейным профилем исходного контура и номинальным углом его профиля 20° (для зубчатых колес гипоидных передач за номинальный угол профиля принимается среднее арифметическое значение углов профиля на противоположных сторонах зубьев).

Степени точности и виды сопряжений. 1. Устанавливаются двенадцать степеней точности зубчатых колес и передач, обозначаемых в порядке убывания точности цифрами: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.

Примечание. Для степеней точности 1, 2 и 3 допуски и предельные отклонения не даны. Эти степени предусмотрены

- для будущего развития. Для степеней точности 4, 11 и 12 допуски и предельные отклонения см. ГОСТ 1758-81.
- 2. Для каждой степени точности зубчатых колес и передач устанавливаются нормы: кинематической точности, плавности работы и контакта зубьев зубчатых колес в передаче.
- 3. Допускается комбинирование норм кинематической точности зубчатых колес и передач, норм плавности работы и норм контакта зубьев различных степеней точности.
- 4. При комбинировании норм разных степеней точности, нормы плавности работы зубчатых колес и передач могут быть не более чем на две степени точнее или одну степень грубее норм кинематической точности; нормы контакта зубьев не могут назначаться по степеням точности более грубым, чем нормы плавности.
- 5. Устанавливаются шесть видов сопряжений зубчатых колес в передаче, обозначаемых в порядке убывания гарантированного бокового зазора буквами A, B, C, D, E и H (табл. 85).

85. Виды сопряжений и гарантированные боковые зазоры

Виды сопряжений А В С Д Е Н	Вид сопряжения	Степень точности по нормам плавности работы
	A	4—12
Допуски на боковые за- зоры Т _{іп}	В	4—11
GOROBIE SASOPHI	С	4—9
j _n min	D	4—8
Нулевая линия	E	4—7
j _n min=0	н	4—7

 $\Pi$  р и м е ч а н и е . Сопряжение вида B обеспечивает минимальную величину бокового зазора, при котором исключается возможность заклинивания стальной или чугунной передачи от нагрева при разности температур зубчатых колес и корпуса (чугунного или стального) в 25°C.

Приведенные в табл. 85 диапазоны степеней точности являются ориентировочными при выборе боковых зазоров. В необходимых случаях гарантированный боковой зазор может устанавливаться независимо от видов сопряжений, указанных в табл. 85.

Контролируемый объект	Показатель точности или комплекс	Степень точности
Зубчатые колеса	$F_{ir}^{'}$ $F_{Pr}$ и $F_{Pkr}$ $F_{Pr}$ $F_{rr}$ и $F_{cr}$ $F_{rr}$	4-8 4-6 7, 8 4-8 7-12**
Зубчатые пары (поставляемые без корпуса)	$F_{arDelta_0 r}^{"}$ $F_{arDelta_0 r}^{"}$ и $F_{cr}^*$	9—12 5—8
Зубчатые передачи	$F_{i0r}'$ $F_{Vjr}$ u $F_{cr}^*$ $F_{Vjr}$	4—8 5—8 9—12

#### 86. Показатели кинематической точности

* Для колеса и шестерни пары и передачи.

Примечания: 1. Допускается, чтобы одна из величин, входящих в комплекс  $F_{rr}$  и  $F_{cr}$  или  $F_{\Sigma 0r}^{"}$  и  $F_{cr}$ , превосходила предельное значение, если суммарное влияние обеих величин не превышает  $F_{i}'$ .

2. Допускается вместо  $F_{i\Sigma 0r}$  в качестве показателя кинематической точности использовать: колебание относительного положения зубчатых колес пары по нормали за полный цикл  $F_{in0r}'$ , при этом принимается  $F_{in0}'' = F_{i\Sigma 0}''$  (см. табл. 89);

колебание измерительного межосевого угла измерительной пары  $F_{i\mathcal{D}r}^{"}$  или относительного положения зубчатых колес измерительной пары по нормали за оборот зубчатого колеса  $F_{inr}^{"}$ . Допуски  $F_{i\mathcal{D}}^{"}$  и  $F_{in}^{"}$  устанавливаются равными 0.7  $F_{i\mathcal{D}0}^{"}$ .

 Точность изготовления конических и гипоидных зубчатых колес и передач задается степенью точности, а требования к боковому зазору - видом сопряжения по нормам бокового зазора.

Пример условного обозначения точности передачи или пары со степенью 7 по всем трем нормам точности, с видом сопряжения зубчатых колес С:

#### 7-C TOCT 1758-81

Пример условного обозначения точности передачи со степенью точности 7, гарантированным боковым зазором 400 мкм (не соответствующим ни одному из указанных видов сопряжения):

## 7-400 ΓOCT 1758-81

7. При комбинировании норм разных степеней точности точность зубчатых колес и передач обозначается последовательным написанием трех цифр и буквы. Первая цифра обозначает степень по нормам кинематической точности, вторая - степень по нормам плавности работы, третья - степень по нормам контакта зубьев и буква вид сопряжения. Между собой цифры и буква разделяются тире.

Для степеней точности 7, 8 для зубчатых колес со средним делительным диаметром свыше 1600 мм.

Пример условного обозначения точности передачи со степенью 8по нормам кинематической точности, со степенью 7 по нормам плавности работы, со степенью 6 по нормам контакта зубьев, с видом сопряжения B:

### 8-7-6-B FOCT 1758-81

**Нормы точности.** 1. Показатели кинематической точности устанавливаются по табл. 86.

Если кинематическая точность зубчатых колес относительно рабочей оси (см. п. 10 на с. 537) соответствует требованиям ГОСТ 1758-81 и требование селективной сборки не выдвигается, контроль кинематической точности зубчатых передач необязателен.

При соответствии кинематической точности окончательно собранной передачи требованиям ГОСТ 1758-81 контроль кинематической точности зубчатых колес не является необходимым.

2. Показатели плавности работы устанавливаются по табл. 87 для степеней точности 4-8 в зависимости от граничных значений номинального коэффициента осевого перекрытия и степени точности по нормам контакта (табл. 88), для степеней точности 9-12 независимо от  $\epsilon_{\rm R}$ .

Если плавность работы зубчатых передач или пар соответствует требованиям ГОСТ 1758-81, контроль плавности работы зубчатых колес не является необходимым.

- 3. Показателями, определяющими контакт зубьев, являются: в паре отклонения относительных размеров суммарной зоны касания  $F'_{shr}$  и  $F'_{slr}$ ; в передаче отклонения относительных размеров суммарного пятна контакта  $F_{shr}$ ,  $F_{slr}$  и  $f_{\alpha r}$ .
- 4. Правила определения суммарного пятна контакта, его относительные размеры и расположение на сопряженных поверхностях зубьев назначаются конструктором передачи в зависимости от ее служебного назначения, степени нагруженности, жесткости и геометрических особенностей рабочих поверхностей зубьев зубчатых колес.

Для передач, имеющих продольную модификацию зубьев, не допускается выход суммарного пятна контакта на кромки зуба у внутреннего или внешнего торцов. Для передач, имеющих профильную модификацию, не допускается выход суммарного пятна контакта на кромки у вершин зубьев, а также разрывы пятна контакта по высоте.

Примечание. Если не указаны специальные требования по нагрузке (торможению) зубчатой передачи, пятно контакта устанавливают при легком торможении, обеспечивающем непрерывное контактирование зубьев сопряженных зубчатых колес.

- Зона касания и ее расположение на поверхности зуба устанавливаются в зависимости от требований к данной передаче.
- 6. Допуски и предельные отклонения по нормам кинематической точности, нормам плавности работы и нормам контакта зубьев для различных степеней точности зубчатых колес и передач устанавливаются по табл. 89-96.
- 7. Нормы кинематической точности, кроме  $F_r$ ,  $F_{I\Sigma O}^{"}$  и  $F_{vj}$ , нормы плавности работы и нормы контакта зубьев в передаче в зависимости от условий работы зубчатых колес различными сторонами зубьев по разноименным профилям допускается назначать из разных степеней точности.

По каждой из норм степень точности шестерни и колеса передачи должна назначаться единой.

8. Комплексы показателей точности в соответствии с пп. 1, 2 и 3 и показатели, обеспечивающие гарантированный боковой зазор, устанавливаются изготовителями передач.

Каждый установленный комплекс показателей точности, используемый при контроле передачи, является равноправным с другим. При сравнительной (например, расчетной) оценке влияния точности передач на эксплуатационные качества, предпочтительными для всех видов передач являются функциональные показатели  $F_{iOr}$ ,  $f_{ZZOr}$ ,  $f_{ZKOr}$  и относительные размеры суммарного пятна контакта или его отклонения  $F_{slr}$  и  $F_{shr}$ .

9. Непосредственный контроль зубчатых колес и передач по всем показателям установленного комплекса не является обязательным, если изготовитель существующей

## 87. Показатели плавности работы

Контролируемый объект	Показатель точности или комплекс	Степень точности
	$f_{\it Zkr}$ или	4-8
Зубчатое колесо передачи (пары) с $\epsilon_{eta}$ не менее указанного в табл. 88	$f_{Ptr}$ и $f_{cr}$	9—12
	f _{Ptr}	
Зубчатое колесо передачи (пары) с $\epsilon_{eta}$ менее указанного	$f_{Ptr}$ и $f_{cr}$	48
в табл. 88	f _{Ptr}	9—12
Зубчатая передача с єв не менее указанного в табл. 88	fzkOr и fAMr	4—8
Syo latest nepoda ta e tig no moneo y tasamore o resin ee	f _{AMr}	9—12
Зубчатая передача с єв менее указанного в табл. 88	$f_{ZZOr}$ и $f_{AMr}$	48
ojo latar nepoda la o op monto jilaodinioto b latar. oo	f _{AMr}	9—12
Зубчатая пара с любым ε _β	f″ _{iΣOr}	9—12

Примечания: 1. Взамен отклонения шага  $f_{Ptr}$  в качестве одного из показателей может применяться разность любых шагов  $f_{vPtr}$ .

- 2. Показатель  $f_{AMr}$  контролируется для каждого элемента передачи.
- 3. При невозможности осуществлять контроль конических и гипоидных передач 7 и 8 степеней точности по комплексу  $f_{ZZOr}$  и  $f_{AMr}$  допускается производить их контроль по  $f_{PIr}$  с обязательным комплектованием пар на контрольно-обкатном станке по зоне касания.
- 4. Допускается вместо  $f_{i\Sigma Or}^{"}$  в качестве показателя плавности работы использовать: колебание относительного положения зубчатых колес пары по нормали на одном зубе  $f_{inOr}^{"}$ , при этом принимается  $f_{inO}^{"} = f_{i\Sigma O}^{"}$  (см. табл. 91);

колебание измерительного межосевого угла измерительной пары  $f_{1\Sigma r}^{"}$  или относительного положения зубчатых колес измерительной пары по нормали на одном зубе  $f_{lnr}^{"}$ .

Допуски  $f_{i\Sigma}^{''}$  и  $f_{in}^{''}$  устанавливаются равными 0,7  $f_{i\Sigma O}^{''}$  .

## 88. Граничные значения $\epsilon_{\rm R}$

Степень точности по нормам контакта	45	6—7	8
Граничные значения номинального коэффициента осевого перекрытия $\epsilon_{oldsymbol{eta}}$	1,35	1,55	2,0

89. Нормы кинематической точности, мкм (показатели  $F_{ir}'$ ,  $F_{rr}$ ,  $F_{i\bar{\nu}Or}'$ ,  $F_{vjr}$ ,  $F_{cr}$ )

			C	релний л	елительн	ый лиаме	TD d. MM	
Степень точности	Обозна- чение	Средний нормальный модуль $m_n$ , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600	Св. 2500 до 4000
	$F_i'$	От 1 до 16		F _P + 1,15	$f_c$ (см. п	. 2 приме	чания)	
	F _r	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10	16 18 20	22 25 28	28 32 36	- 36 40	_ _ 45	_ _ _
		* 10 * 16	22	32	40	45	50	56
5	$F''_{i\Sigma O}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	30 34 38 45	45 48 53 56	56 63 67 80	67 71 80 90	- - -	  -
	$F_{vj}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	21 24 26 30	30 34 36 40	40 42 45 50	- 50 56 60	- - 60 71	- - - 75
	F _c	От 1 до 16	10	18	28	45	70	90
	$F_i$	От 1 до 16		$F_{P}$ + 1,15	$f_c$ (см. г	<ol> <li>2 приме</li> </ol>	ечания)	<u> </u>
	F _r	От 1 до 3,5 Св. 3,5 * 6,3 * 6,3 * 10 * 10 * 16	25 28 32 36	36 40 45 50	45 50 56 63	- 56 63 71	- - 71 80	- - - 90
6	$F_{i\Sigma O}^{''}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	48 53 60 71	71 75 85 95	90 100 105 120	100 110 125 140	  -	- - -
	$F_{vj}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 От 1 » 16	34 36 42 48 16	50 53 56 63 28	63 67 75 80 45	 75 90 100 70	- 100 110 110	- - - 120 140
7	$F_i'$	От 1 до 25		F _P + 1,13	$\delta f_c$ (cm. )	т. 2 прим	ечания)	

Продолжение табл. 89

			C	редний д	елительн	ый диаме	тр <i>d</i> , мм	
Степень точности	Обозна- чение	Средний нормаль- ный модуль $m_n$ , мм	До 125	Св. 125 до 400	Св. 400	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000
	<u> </u>	От 1 до 3,5	36	50	63	_	_	
		Св. 3,5 🔹 6,3	40	56	71	80	_	-
	$F_r$	* 6,3 * 10	45	63	80	90	100	_
		* 10 * 16	50	71	90	100	112	125
		▶ 16 → 25	60	80	100	112	125	140
		От 1 до 3,5	67	100	130	150	_	
		Св. 3,5 » 6,3	75	105	140	160	_	-
7	$F_{i\Sigma O}^{"}$	<b>→</b> 6,3 <b>→</b> 10	85	120	150	180	_	-
		<b>→</b> 10 <b>→</b> 16	100	130	160	200	-	-
		* 16 * 25	120	150	180	200		
		От 1 до 3,5	48	71	90	_	_	
		C _B . 3,5 → 6,3	53	75	100	110	_	-
	$F_{vj}$	» 6,3 » 10	60	80	100	125	140	-
		1	67	90	110	140	160	170
		От 1 до 3,5 36 50 63 — — — — — — — — — — — — — — — — — —	200					
	$F_c$	От 1 до 25	22	40	70	100	160	200
	$F_i'$	От 1 до 56		$F_P + 1,15$	$f_c$ (см. г	т. 2 прим	ечания)	
		От 1 до 3,5	45	63	80	_		T -
		Св. 3,5 → 6,3	50	71	90	100	-	_
		* 6,3 * 10		80	100	112	125	-
	$F_r$	-	63	90	112	125	140	160
		1	75	100	1	140	160	180
		1	_		1		1	224
		<del></del>		ļ	<b></b>		220	240
		i I		ŀ	1			-
				1	F	1	_	-
8	_"	1	1	1	l		_	_
ū	$F_{i\Sigma O}^{"}$	1		1	1	1	_	-
		1	150	1	1	3		-
		1	_	1	1	3		-
		<del>                                     </del>	-			340		<u> </u>
		•	i .	1	1		_	_
		l I	l .			1	l	_
	$F_{vj}$	1	ł	1		1	i	220
				1	1	1	l .	220
			100	1	1	i		250
	1	1	_	i			l .	300
	i	<b>*****</b> ** 33		L	220	200	280	320

Продолжение табл. 89

	<u> </u>	<u> </u>			<del></del>			
				редний д	елительн	ый диам	етр <i>d</i> , мм	: <del></del>
Степень	Обозна-	Средний нормаль-	25	125	400 800	800 1600	88	2500
точности	чение	ный модуль $m_n$ , мм	До 125	CB.1	CB.4 40 %	B.8 16	. 1600	
			Д	0 4	Oğ	<b>2</b> 8	2,8	S S
8	$F_c$	От 1 до 55	28	50	80	120	200	250
		От 1 до 3,5	56	80	100			
		Св. 3,5 » 6,3	63	90	112	125	_	_
		» 6,3 » 10	71	100	125	140	160	_
	$F_r$	* 10 * 16	80	112	140	160	180	200
		* 16 * 25	95	125	160	180	200	224
		» 25 » 40	_	150	180	200	240	280
		* 40 * 55	-	-	200	240	280	320
		От 1 до 3,5	110	160	200	240	_	-
		Св. 3,5 » 6,3	120	170	220	250	_	_
0		» 6,3 » 10	130	180	220	280	-	_
9	$F_{i\Sigma O}^{"}$	* 10 * 16	150	200	260	320	-	-
		» 16 » 25	180	220	280	340	_	-
		» 25 » 40	-	280	340	400	_	_
		* 40 * 55	_		400	450		
		От 1 до 3,5	75	110	140		_	-
	_	Св. 3,5 » 6,3	80	120	150	170	_	—
	$F_{vj}$	» 6,3 » 10	90	130	160	200	220	-
		* 10 * 16	105	140	180	220	250	280
		* 16 * 25	130	160	200	240	280	320
		» 25 » 40	_	200	240	280	320	375
		* 40 * 55			280	320	360	420
		От 1 до 3,5	71	100	125	-	_	-
		Св. 3,5 » 6,3	80	112	140	160	_	_
	$F_r$	* 6,3 * 10	90	125	160	180	200	_
	I'r	* 10   * 16	100	140	180	200	224	250
		* 16 * 25	120	160	200	224	250	280
		* 25   * 40	_	180	224	260	300	355
10		* 40 * 55	<del>-</del>	_	260	300	340	400
10		От 1 до 3,5	130	190	260	280	_	_
	-	Св. 3,5 » 6,3	150	200	280	320	_	-
	E"	* 6,3 * 10	170	220	300	360	_	-
	$F_{i\Sigma O}^{"}$	* 10 * 16	190	250	320	400	_	-
		* 16   * 25	220	280	360	450	_	-
		* 25 * 40	_	360	420	500	_	-
		* 40 * 55			500	560	_	

Продолжение табл. 89

			C	редний д	елительн	ый диаме	етр <i>d</i> , мм 000 1700 000 000 000 000 000 000 000 00	
Степень точности	Обозна- чение	Средний нормаль- ный модуль $m_n$ , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600		Св. 2500
		От 1 до 3,5	90	140	180		_	_
		Св. 3,5 » 6,3	100	150	190	220	-	-
10	$F_{vj}$	» 6,3 » 10	120	160	200	250	280	_
	- 0)	» 10 » 16	130	170	220	270	300	340
	1	* 16 * 25	160	200	250	300	360	400
		» 25 » 40	!	250	300	340	400	450
		» 40 » 55	-	-	340	400	450	530

Примечания: 1. Принятые обозначения:

 $F_i^\prime$  - допуск на кинематическую погрешность зубчатого колеса;

 $F_{r}$  - допуск на биение зубчатого венца;

 $F_{c}$  - допуск на погрешность обката;

 $F_{i\Sigma O}''$  - допуск на колебание измерительного межосевого угла пары за полный цикл;

 $F_{vi}\,$  - допуск на колебание бокового зазора в паре.

- 2. Для определения  $F_i^{'}$  принимают  $F_p = F_{Pk}$  по табл. 90 при  $k = \frac{z}{2}$  (или ближайшем к нему целом большом числе) и  $f_c$  по табл. 91.
- 3. Допуск  $F'_{i0}$  на наибольшую кинематическую погрешность передачи равен сумме допусков на кинематическую погрешность ее зубчатых колес.

Для передач, составленных из зубчатых колес, имеющих кратные между собой числа зубьев при отношении этих чисел не более трех (1, 2, 3), допуск на наибольшую кинематическую погрешность передачи, при ее селективной сборке, может быть сокращен на 25 % или более, исходя из расчета.

4. Допуск на колебание бокового зазора в передаче  $F_{vj}$  принимается для диаметра, равного полусумме средних делительных диаметров шестерни и колеса.

Для передач, составленных из зубчатых колес, имеющих кратные между собой числа зубьев при отношении этих чисел не более трех (1, 2, 3), допуск на колебание бокового зазора в передаче, при ее селективной сборке, может быть сокращен на 25 % или более, исходя из расчета.

5. Допуск на поступательные перемещения одного из элементов пары в направлении, перпендикулярном общей образующей начальных конусов,

$$F_{in0}^{"}=F_{iz0}^{"}.$$

6. Допуск  $F_{i\Sigma 0}^{''}$  на колебание измерительного межосевого угла пары за полный цикл принимается для диаметра, равного полусумме средних делительных диаметров щестерни и колеса.

	Обо-	Средний	Длина дуги <i>L</i> , мм						
Степень точности	значе- ние	нормальный модуль $m_n$ , мм	До 11,2	Св. 11,2 до 20	Св. 20	Св. 32 до 50	Св. 50	Св. 80 до 160	Св. 160 до 315
5		От 1 до 16	7	10	12	14	16	20	28
6	$F_{Pk}$	* 1 * 16	11	16	20	22	25	32	45
7	- PK	* 1 * 25	16	22	28	32	36	45	63
8		» 1 » 25	22	32	40	45	50	63	90

90. Нормы кинематической точности (показатель  $F_{Ph}$ ), мкм

Продолжение табл. 90

	Обо-	Средний			Ι	<b>І</b> лина ду	ти <i>L</i> , м	М		
Степень точности	значе- ние	нормальный модуль mn, мм     35       От 1 до 16     4       » 1 » 16     6       » 1 » 25     9	Св. 315	Св. 630 до 1000	Св. 1000 до 1600	Св. 1600 до 2500	Св. 2500 до 3150	Св. 3150 до 4000	Св. 4000 до 5000	CB, 5000
5		От 1 до 16	40	50	63	71	90	100	112	125
6	$F_{P_k}$	» I » 16	63	80	100	112	140	160	180	200
7	^ <i>P,K</i>	» 1 » 25	90	112	140	160	200	224	250	280
8		* 1 * 25	125	160	200	224	280	315	355	400

 $\Pi$  р и м е ч а н и я : 1.  $F_{Pk}$  - допуск на накопленную погрещность k шагов .

- 2. При отсутствии специальных требований допуск  $F_{Pk}$  назначается для длины дуги средней делительной окружности, соответствующей 1/6 части числа зубьев зубчатого колеса (или дуги, соответствующей ближайшему большему числу зубьев).
  - 3. Допуск  $F_P = F_{Pk}$  при k = z / 2 (или ближайшему большему числу).

у него системой контроля точности производства гарантирует выполнение соответствующих требований ГОСТ 1758-81.

10. Требования ГОСТ 1758-81 относятся к зубчатым колесам, установленным на их рабочих осях.

Погрешности, вносимые при использовании в качестве измерительных баз поверхностей, имеющих неточность формы и расположения относительно рабочей оси вращения (например, поверхности отверстия зубчатого колеса, ось которого может не совпадать с рабочей осью), должны быть компенсированы уменьшением производственного допуска или учтены при установлении точности передачи.

**Нормы бокового зазора.** Величины гарантированного бокового зазора  $j_{n \text{ min}}$  для передач с различными видами сопряжений устанавливаются независимо от степеней точности и их комбинирования по табл. 97.

Гарантированный боковой зазор в передаче обеспечивается выбором предельного отклонения межосевого угла передачи ( $E_{\Sigma}$ ), наименьщего отклонения средней постоянной хорды зубьев шестерни и колеса ( $E_{\overline{SCS}}$ ) и допусков на них.

В справочном приложении ГОСТ 1758-81 приводятся значения указанных показателей.

Допуск на боковой зазор  $T_{jn}$  ГОСТ 1758-81 не регламентирует.

91. Нормы плавности работы, мкм (показатели  $f_{Ptr}$  ,  $f_{cr}$  ,  $f_{i\Sigma Or}$  )

			Средний делительный диаметр $d$ , мм					
Степень точности	Обозна- чение	Средний нормальный модуль $m_n$ , мм	До 125	Св.125 до 400	Св. 400 до 800	Св. 800 до 1600	Св.1600 до 2500.	Св.2500
	ļ				±8			
		От 1 до 3,5	±6 ±8	±7 ±9	±9	±10	_	_
	$f_{Pt}$	CB. 3,5 * 6,3		±10	±11	±11	±13	_
		* 6,3 * 10	±9 ±11	±10	±13	±13	±14	±16
_		* 10 * 16			6			<del></del>
5		От 1 до 3,5 Св. 3,5 <b>»</b> 6,3	4 5	5 6	7	9	_	_
	$f_c$	* 6,3 * 10	6	7	8	10	13	_
		* 10 * 16	7	8	9	11	14	18
		От 1 до 3,5	±10	±11	±13		_	
		CB. 3,5 * 6,3	±13	±14	±14	±16	_	_
	$f_{Pt}$	* 6,3 * 10	±14	±18	±18	±18	±20	_
		* 10 * 16	±17	±20	±20	±20	±22	±25
6		От 1 до 3,5	5	7	9	_		_
Ü		Св. 3,5 » 6,3	6	8	10	13	_	_
	$f_c$	<b>*</b> 6,3 <b>*</b> 10	8	9	11	14	19	-
		* 10 * 16	10	11	13	16	21	28
<del></del>		От 1 до 3,5	±14	±16	±18	_		T -
	f _{Pt}	Св. 3,5 » 6,3	±18	±20	±20	±22	_	-
		<b>*</b> 6,3 <b>*</b> 10	±20	±22	±25	±25	±28	±32
		<b>→ 10 → 16</b>	±24	±25	±28	±28	±32	±36
		<b>→</b> 16 <b>→</b> 25	±30	±32	±36	±36	±40	±40
7		От 1 до 3,5	8	9	12	_	-	<b>—</b>
	$f_c$	CB. 3,5 * 6,3	9	11	14	19	_	-
		* 6,3 * 10	11	13	16	21	28	-
		* 10 * 16	15	17	20	25	32	42 48
	<del> </del>	* 16 * 25	20	22	25	30	38	<del>                                     </del>
		От 1 до 3,5 Св. 3,5 <b>»</b> 6,3	±20 ±25	±22 ±28	±25 ±28	±32		_
	$f_{Pt}$	P.	±23	±32	±26 ±36	±36	±40	_
			±34	±36	±40	±40	±45	±50
		* 10 * 16 * 16 * 25	±42	±45	±50	±50	±56	±56
		* 25 * 40		±60	±63	±63	±71	±71
8		* 40 * 55			±85	±85	±90	±95
		От 1 до 3,5	10	13	18	, -		+
		Св. 3,5 * 6,3	13	15	20	28	_	_
	1	* 6,3 * 10	17	19	24	32	45	-
	$f_c$	* 10 * 16	22	25	30	38	50	67
	100	▶ 16	30	34	38	48	56	75
	1	<b>→</b> 25 <b>→</b> 40	-	48	53	60	71	90
	<u> </u>	<b>→</b> 40 <b>→</b> 55	<u> </u>		71	80	90	105

Продолжение табл. 91

	Обозна- чение		Средний делительный диаметр $d$ , мм							
Степень точности		Средний нормальный модуль $m_n$ , мм	До 125	Св. 125 до 400	Св.400	Св. 800 до 1600	Св. 1600 до 2500	Св.2500		
		От 1 до 3,5	±28	±32	±36	T -	T -	<u> </u>		
	f _{Pt}	Св. 3,5 » 6,3	±36	±40	±40	±45	-	-		
:		» 6,3 » 10	±40	±45	±50	±50	±56	-		
		* 10 * 16	±48	±50	±56	±56	±63	±71		
		* 16 * 25	±60	±63	±71	±71	±80	±80		
		* 25   * 40	-	±85	±90	±90	±100	±100		
		* 40 * 55	-	_	±112	±125	±125	±140		
9	f _i zo	От 1 до 3,5	53	60	67	_	_	_		
		Св. 3,5 » 6,3	60	67	75	80	-	_		
		» 6,3 » 10	71	80	85	90	100			
		» 10 » 16	85	90	100	110	120	125		
	$f_{Pt}$	От 1 до 3,5	±40	±45	±50			_		
		Св. 3,5 » 6,3	±50	±56	±56	±63	-	_		
		» 6,3 » 10	±56	±63	±71	±71	±80	-		
		» 10 » 16	±67	±71	±80	±80	±90	±100		
		* 16 * 25	±85	±90	±100	±100	±112	±112		
		* 25   * 40	_	±120	±125	±125	±140	±140		
		* 40 * 55		_	±160	±160	±180	±180		
10	f _™ o	От 1 до 3,5	67	75	80	_		_		
		Св. 3,5 » 6,3	75	80	90	105	-	_		
		* 6,3 * 10	90	100	105	120	130	_		
		* 10   * 16	105	120	130	140	150	160		

Примечания: 1. Принятые обозначения:

 $f_{i\Sigma 0}$  - допуск на колебание измерительного межосевого угла на одном зубе;

- $f_{c}$  допуск на погрешность обката зубцовой частоты.
- 2. При установлении допуска на разность любых шагов  $f_{vPt}$  в пределах зубчатого колеса взамен предельных отклонений шага его значение не должно превышать 1,6 [  $f_{Pt}$  ].
- 3. Допуск  $f_{i\Sigma 0}$  на колебание измерительного межосевого угла на одном зубе подсчитывается для диаметра, равного полусумме средних делительных диаметров колеса и шестерни.
- 4. Для зубчатых колес конических и гипоидных передач с номинальным углом профиля  $\alpha$  , не равным 20 ° величины допусков  $f_{I\!\!\! \Sigma 0}^{\prime\prime}$  (табл. 91) и  $f_{AM}$  (табл. 92) умножаются на отношение  $\frac{\sin 20^\circ}{2}$  .

 $f_{Pt}$  - предельные отклонения шага;

92. Нормы плавности работы (показатель  $\pm f_{AM}$ ), мкм

CB. 1600	00		CB* 42		l	1 1	1 1	1	1	220		
		CB, 20 до 45		1	1 1	1 1	ı	l	530			
	0		प्र० ५०	111	I	1 1	1 1	1		630		
			CB, 45	1	99	1 1	100			140		
	Св. 800	30 св. 30 св. 100 до 200 до 400 до 800 до 800 до Угол делительного конуса зубчатого колеса 8°	CB, 20 Ao 45	1 1 1	140	1 1	240	1	1 1	340		
			No 20	_ _ _ 250	160	1 1	380	ı	560	300		
			CB* 42	105 63 40	26	190	63 45	270	26	67 50		
В, мм	Св. 400		Св. 20 до 45	250 150 95	63	450 240	150	630	210	160		
			До 20	300 180 110	75	530	180	750	250	180		
сстоян			CB* 42	48 28 18	12	85 45	30	120	3 4	30		
roe pa	Среднее конусное расстояние . 100		CB. 20 до 45	110 67 45	30	200 105	71 50	280	001	71 56		
конус			До 20	130 80 53	36	240 130	85	340	120	85		
днее 1	0.0		CB. 45	21 13 8,5	9,6	38	13	53	19	1 1 1		
ပြီ	Св. 100		Св. 20 до 45	20 20	14	88	32 24	130	45	34		
			07 ०∏	36 24	16	105	38	150	53	30		
	00		CB' 42	10,5 6,0 3,8	3,0	17	6,0	24	8,5	6,7		
	Св. 50		CB. 20 до 45	25 14 9,0	7,1	40	15	56	21	16		
						प० ऽ०	30 16 11	8,0	48 26	17	79	24
			CB. 45	3,0 1,7	ŀ	5,0	1 1	7,1	<b>ř</b> 1	1 1		
	До 50		Св. 20 до 45	7,5	ı	12 6,7	1 1	17	Ç.	1 1		
			प्र० ५०	9,0 5,0	1	14 8,0	ıi	20	: 1	1 1		
Средний номинальный модуль <i>т</i> _n , мм			Or 1 до 3,5 CB. 3,5 * 6,3 * 6,3 * 10	* 10 * 16	Or 1 no 3,5 Cb. 3,5 * 6,3	* 6,3 * 10 * 10 * 16	Or 1 no 3,5	6,3 *	* 10 * 16 * 16 * 25			
Степень точности		\$		9			7					

i	i	!	i	320	260	210	ł	i	I	i	450	360	300	ı	I	I	Î	630	200	420
1	1	1	ı	750	009	200	1	ı	1	1	1050	850	710	ı	1	1	1	1500	1200	0001
ı	ì	1	1	006	710	009	l	ı	ı	-	1200	1000	850	1	١	1		1700	1400	1200
-		l	200	150	120	100	1	ı	1	280	210	170	140	1	1	!	400	150	240	200
-	l	ı	480	360	280	240	ı	-	ł	670	200	400	340	1	I	1	950	360	999	480
1	1	750	999	420	340	280	ı	ı	1100	800	009	480	400		ı	1500	1100	420	029	260
380	700	125	8	70	99	48	530	280	180	130	100	80	71	750	400	250	180	140	110	100
006	480	300	220	170	130	120	1300	029	440	300	240	190	170	1700	950	009	440	340	260	240
1050	260	360	260	200	160	140	1500	800	200	380	280	220	190	2100	1100	710	200	400	320	280
170	06	09	42	32	56	24	240	130	85	09	48	38	32	340	180	120	85	19	53	45
400	210	140	001	80	63	99	260	300	200	150	110	96	80	800	420	280	200	160	130	110
480	250	170	120	95	75	29	029	360	240	170	130	105	95	950	200	320	240	061	150	130
75	40	92	70	15	13	1	105	09	38	28	22	18	ı	150	80	53	40	30	25	ı
180	100	63	48	36	30	I	260	140	90	29	53	42	ı	360	190	130	95	75	09	ì
200	120	75	56	45	36	1	300	160	105	80	63	20	I	420	240	150	110	85	71	I
34	17	12	6	1	1	1	48	56	17	13	ı	1	ı	29	38	24	18	ı	I	1
08	45	30	77	1	l	ı	120	63	42	30		1		160	8	09	45		ŀ	ı
95	53	34	79	1	ı	1	140	75	50	38	1		1	190	105	71	20		ı	1
10	5,6	١	1	ľ	1	ļ	14	00	1	١	1		ı	70	Ξ	l	١	1	1	1
24	13	I	ı	1	1	ı	34	61	1		-	I	ı	84	56	١	İ	ı	1	1
28					l	١	40	22	ı	l	1	1	1	56				l	ı	
по 3.5	6,3	01	16	16 * 25	9	55	, 3,5	B. 3,5 * 6,3 2	01	* 16	25	40	. 25	3,5	6,3	* 10	91	25	40	55
1 10	3,5 *	6,3 *	*	• 9	25 *	*	1. до 3,5	3,5 *	6.3 *	* 01		25 *	<b>4</b> 0 *	1 01	3.5	6,3	· 0	9	25 *	* 40
5	C.	*	*	*	*	* 40	δ	ő	*	*	*	*	*	5	<u>ප</u>	*	*	*	*	*
			∞							6							10			

 $\Pi$  р и м е ч а н и я ;  $\, 1$ . Принятое обозначение  $\, \pm f_{\mathsf{AM}} \,$  - предельные осевые смещения зубчатого венца. 2. Величины  $f_{\rm AM}$  относятся к немодифицированным передачам.

	75. x10p.m2							
Степень точности по показателю	Средний номиналь-		Часто		клическої г зубчатої			
плавности работы $f_{\it ZZOr}$	ный модуль $m_n$ , мм	До 16	Св. 16 до 32	Св. 32 до 63	Св. 63 до 125	Св. 125 до 250	Св. 250 до 500	CB.500
	От 1 до 3,5	6,7	7,1	7,5	8	8,5	9,5	11
	Св. 3,5 » 6,3	8	8,5	9	10	11	12	14
5	<b>→</b> 6,3 <b>→</b> 10	10	11	11	12	13	15	17
	* 10   * 16	12	13	14	15	16	18	21
	От 1 до 3,5	10	10	11	12	13	14	16
	CB. 3,5 * 6,3	12	13	14	15	16	18	21
6	» 6,3 » 10	14	16	17	18	19	22	25
	* 10   * 16	18	19	20	22	24	28	32
-	От 1 до 3,5	15	16	17	18	19	21	24
	Св. 3,5 * 6,3	18	19	20	22	24	28	30
7	* 6,3 * 10	22	24	24	26	30	34	38
	* 10   * 16	28	28	30	34	36	42	48
	Or 1 70 35	22	24	24	25	28	30	34

#### 93. Нормы плавности работы (показатель $f_{zzOr}$ ), мкм

Примечания: 1. Принятое обозначение  $f_{ZZO}$  - допуск на циклическую погрешность зубцовой частоты в передаче.

28

34

30

36

32

38

48

34

42

53

40

48

60

45

56 71

2. При контроле передачи частота k принимается равной z - числу зубьев колеса.

40

3. Значения  $f_{ZZO}$  в табл. 93 даны для передач с эффективным коэффициентом осевого перекрытия  $\epsilon_{Re} \leq 0,45$  .

При  $\epsilon_{\beta e} > 0,45\,$  допуск на циклическую погрешность зубцовой частоты в передаче принимается:

при  $\varepsilon_{\beta e}$  св. 0,45 до 0,58 равным 0,6  $f_{ZZO}$ ;

- *  $\epsilon_{\beta e}$  * 0,58 * 0,67 * 0,4  $f_{ZZO}$ ;
- »  $\epsilon_{\beta e}$  » 0,67 » равным 0,3  $f_{ZZO}$ ;

где  $f_{ZZO}$  - значения по табл. 93.

Соотношение между эффективным  $\epsilon_{\beta e}$  и номинальным  $\epsilon_{\beta}$  коэффициентами осевого перекрытия, зависящее от степени точности передачи по нормам контакта, определяется по нижеследующим зависимостям:

степень точности 4—5  $\epsilon_{Be} = 0.7\epsilon_{B}$ 

- * * 6-7  $\epsilon_{\beta e} = 0.6\epsilon_{\beta}$
- $\star$   $\star$  8  $\epsilon_{Be} = 0.5\epsilon_{B}$ .

94. Нормы плавности работы, мкм (показатели  $f_{2k}$  или  $f_{zko}$ )

i					Средний д	Средний делительный диаметр $d$ , мм	ій диамет	р д, мм			(	
	До 125	125	Св. 125 до 400	125	Св. До	Св. 400 до 800	Св. 800 до 1600	009	Св. 1600 до 2500	Св. 1600 до 2500	B G	Св. 2500 до 4000
L					Средний в	Средний нормальный модуль $\mathit{m}_{n}$ , мм	ій модуль	<i>m</i> _n , MM				
за оборот колеса)	Or 1 до 6,3	Св. 6,3 до 10	Or 1 Ito 6,3	CB. 6,3 до 10	Or 1 до 6,3	Св. 6,3 до 10	Or 1 до 6,3	Св. 6,3 до 10	Or 1 до 6,3	Св. 6,3 до 10	Or 1 до 6,3	Св. 6,3 до 10
<del> </del> <del> </del> <del> </del> <del> </del>	7,1	8,5	10,0	=	13,0	14	14,0	18	16	19	18	21
∞	9,0	6,0	7,1	8,0	9,5	10,5	10,5	13	=	4	13	15
16	3,8	4,5	9,5	6,3	7,1	8,0	8,0	0,01	8,5	10,5	0	II
32	3,0	3,6	4,5	4,8	9,6	0,9	6,3	7,5	7,1	8,0	7,5	0,6 -
63	2,5	2,8	3,4	4,0	4,5	5,0	5,0	6,3	9,6	6,7	6,3	7,1
125	2,1	2,5	3,0	3,2	4,0	4,2	4,2	5,3	4,8	9,6	5,3	0,9
250	1,9	2,1	2,8	3,0	3,4	3,6	3,8	4,8	4,2	5,0	4,8	5,3
200	1,7	6,1	2,4	2,6	3,0	3,2	3,4	4,2	4,0	4,5	4,2	5,0
	1,6	1,8	2,2	2,5	2,8	3,0	3,2	4,0	3,6	4,2	4,0	4,5
4	=	13	16	18	21	22	24	27	56	30	78	32
- ∞	8,0	5,6	11	13	15	17	17	70	19	71	21	22
91		7,1	8,5	10,0	=	12	13	15	4	16	91	17,0
32	, <del>4</del> ,	5.6	6.7	7,5	0,6	9,5	10	12	11	12	12	14,0
63	3,8	4,5	5,6	6,0	7,1	7,5	8,0	9,5	0,6	9	0,01	11,0
125	3,2	3,8	4,8	5,3	0,9	6,7	7,5	8,0	7,5	8,0	8,0	5,6
250	3,0	3,4	4,2	4,5	5,3	0,9	7,0	7,1	6,7	7,5	7,5	8,5
200	2,6	3,0	3,8	4,2	2,0	5,3	6,3	6,7	6,3	7,1	6,7	7,5
	2.5	. ~	3.6	4.0	4,8	2,0	0,9	6,3	9,6	6,7	6,3	7,1

Продолжение табл. 94

							Средний	Средний делительный диаметр $d$ , мм	ый диамет	тр д, мм				
		5	До 125	25	CB.	Св. 125 до 400	CB.	Св. 400 до 800	C _B .	Св. 800 до 1600	Св. до 2	Св. 1600 до 2500	CB.	Св. 2500 до 4000
Степень точности	물년 <del></del>	g <u>z</u>					Средний	Средний нормальный модуль <i>т</i> _п , мм	ый модуль	, <i>m_n</i> , MM				
	за оборот колеса)	δ ရူ	Or 1 до 6,3	Св. 6,3 до 10	Or 1 40 6,3	Св. 6,3 до 10	От 1 до 6,3	Св. 6,3 до 10	Оr 1 до 6,3	Св. 6,3 до 10	От 1 до 6,3	Св. 6,3 до 10	Or 1 40 6,3	Св. 6,3 до 10
	От 2 до	4 17		21	25	28	32	36	36	42	40	45	45	53
	CB. 4 *	8 13		15	18	20	24	56	97	30	30	34	32	38
	* ∞	16 10		11	13	91	18	19	20	22	22	56	25	28
	* 16 *	32 8,	oʻ	0,6	10	12	14	15	16	81	17	70	19	22
7	* 32 *	63 6,	oʻ	7,1	0,6	10	11	12	13	15	14	91	91	18
	* 63 * 1	125 5,		0,9	7,5	8,0	10	10	11	12	12	14	13	15
	* 125 * 2	250 4,	۲,	5,3	6,7	7,5	8,5	9,5	10	11	11	12	12	14
	* 250 * 5	500 4,	-,	5,0	0,9	6,7	8,0	8,5	8,5	10	9,5	=	11	12
	<b>*</b> 500	4,	0,1	4,5	5,6	6,3	7,5	8,0	8,0	5,6	0,6	01	10	11
	От 2 до	4 25		28	36	40	45	20	53	63	95	29	63	71
	CB. 4 *	8 18		21	26	30	32	36	38	4	42	20	45	53
	* * *	16 13	-	16	19	22	25	78	28	32	30	36	34	40
	* 91 *	32 10		12	15	17	19	21	22	56	24	78	28	30
<b>∞</b>	* 32 <b>*</b>	63 8,	٠, 	10	12	14	16	17	18	22	20	22	22	25
	* 63 * 1	125 7,	۸,	8,5	10	12	13	15	15	18	17	19	19	22
	*	<u> </u>	۲,	7,5	6	10,5	12	13	14	91	15	17	17	19
	* 250 * 5	500 6,	<u> </u>	7,0	8,5	01	11	12	12	14	14	91	15	18
	* 500	5,	9,	6,7	8,0	8,5	10	11	11	13	13	15	14	16
L N C	ПоинепаиноП	nuartite	1000	Принатьте обознапения:	٠, ١	THE OH ADA			Joe mooi	COORDY CACAMILIANA WOODING AND CALLED ON VIOLENCE				

 $\Pi$  р и м е ч а н и е . Принятые обозначения:  $f_{\mathcal{A}}$  - допуск на циклическую погрешность зубчатого колеса;  $f_{d\!kO}$  - допуск на циклическую погрешность передачи.

				- F (12012		, Ividadya	
		C	Среднее кону	сное расстоя	ние <i>R</i> , мм		
Степень точности	До 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600
5	10	12	15	18	25	36	45
6	12	15	18	25	30	40	56
7	18	20	25	30	36	50	67
8	28	30	36	45	60	85	100
9	36	45	55	75	90	130	160
10	67	75	90	120	150	200	280

95. Нормы контакта зубьев в передаче (показатель  $\pm f_{C}$ ), мкм

 $\Pi$  р и м е ч а н и я : 1. Принятое обозначение  $\pm f_{\alpha}$  - предельные отклонения межосевого расстояния.

2. Табличные значения  $f_{\alpha}$  установлены для передач без продольной модификации зубьев.

Для передач с продольной модификацией величина  $f_{\alpha}$  устанавливается независимо от значений, указанных в табл. 95.

Эти значения могут быть вычислены по формуле, приведенной в справочном приложении 3 ГОСТ 1758-81.

3. Для гипоидных передач выбор производится по среднему конусному расстоянию колеса передачи.

96. Нормы контакта зубьев в передаче (показатели $F_{slr}$ и $F_{sl}$	br
и относительные размеры суммарного пятна контакта)	

	Под	лине зубьев	П	о высоте зубьев
Степень	с продольной модифи- кацией	немодифици- рованных	с профильной модификацией	немодифицированных
точности	F _{sl} (в % длины зуба)	Относительный размер суммарного пятна контакта (в % длины зуба), не менее	F _{sh} (в % средней глубины захода)	Относительный размер сум- марного пятна контакта (в % средней глубины захода), не менее
4—5	±10	70	±10	75
67	±10	60	±10	65
8—9	±15	50	±15	55
10-12	±15	40	±15	45

Примечание. Принятые обозначения:

 $F_{\it sl}\,$  - предельные отклонения относительных размеров суммарного пятна контакта по длине (для модифицированных зубьев);

 $F_{\it sh}$  - предельные отклонения относительных размеров суммарного пятна контакта по высоте (для модифицированных зубьев).

97. Нормы бокового зазора (показатель јя min), мкм

									Sg	днес к	онусн	Среднее конусное расстояние R, мм	стоян	не В,	ММ							
кинэ <b>ж</b>			До 50		U #	CB. 50 go 100		O #	Св. 100 до 200		OH	Св. 200 до 400		Oğ	Св. 400 до 800		O &	Св. 800 до 1600		0	CB. 1600	
копря:	Обозна- чение							yro	л дели	тельн	oro Ko	Угол делительного конуса шестерни δ ₁ , градусы	пестер	ни 81	, rpaur	/сы						
пия		গু গু	CB. 15 go 25	CB, 25	्रा ०१७	CB. 15 до 25	CB, 25	टा ०प्र	CB. 15 до 25	CB, 25	८१ ०प्र	CB. 15 до 25	CB. 25	टा ०प्	CB, 15 до 25	CB, 25	टा ा	CB. 15 до 25	CB, 25	टा ०प्र	CB, 15 до 25	CB.25
Ξ		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
山		15	21	25	21	25	30	25	35	9	30	46	52	40	57	70	52	80	105	70	125	175
Ω	<i>Jn</i> min	22	33	39	33	39	46	39	25	63	46	72	81	63	68	011	81	125	165	110	195	280
ن د		36	52	62	52	62	74	62	87	100	74	115	130	100	140	175	130	200	260	175	310	440
В		58	84	100	84	001	120	100	140	160	120	185	210	160	230	280	210	320	420	280	200	710
<		8	130	091	130	160	061	160	220	250	190	290	320	250	360	440	320	200	099	440	780	1100

Примечания: 1. Принятое обозначение ј_{и тіп} - гарантированный боковой зазор.

2. Для ортогональных передач  $j_{n \, \text{min}}$  определяют непосредственно из табл. 97 по значениям R; для неортогональных передач  $j_{n \, \text{min}}$ определяют по расчетной величине

$$R' = \frac{R}{2} \left( \sin 2\delta_1 + \sin 2\delta_2 \right),$$

где  $\delta_1$  и  $\delta_2$  - углы делительных конусов соответственно шестерни и колеса.

3. Для гипоидных передач выбор  $j_n$  min проводится по среднему конусному расстоянию колеса.

#### Конструкция конических зубчатых колес

Кованые и литые стальные колеса. Основные элементы этих колес показаны на рис. 41.

Толщина обода кованого и литого колеса

$$\delta_0 - (1.8 \div 3) m_t$$
;

длина ступицы кованого и литого колеса

$$l = (0.9 \div 1.3)d_{\rm B}$$

Толщина ступицы колеса:

кованого 
$$\delta_{\rm CT} = (0.3 \div 0.35) d_{\rm B}$$
; литого  $\delta_{\rm CT} = (0.4 \div 0.45) d_{\rm B}$ .

Толшина лиска колеса:

кованого 
$$C = (0,2 \div 0,35)b$$
; литого  $C = (2 \div 2,5)m_t$ , но

не менее 10 мм.

Если литое колесо без ребер, то  $C = (0.3 \div 0.4)b$ .

Пример конструктивного исполнения узла вал-шестерни с круговым зубом показан на рис. 42.

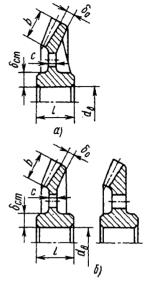



Рис. 41. Конструкции конических колес: a - литых;  $\delta$  - кованых

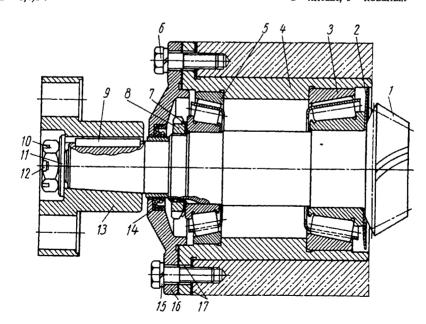



Рис. 42. Конструкция узла вал-шестерии с круговым зубом:

1 - вал-шестерня; 2 - маслоотражатель; 3 - роликоподшипник; 4 - стакан; 5 - роликоподшипник; 6 - болт; 7 - стопорная шайба; 8 - круглая гайка; 9 - шпонка; 10 - гайка; 11 - шайба; 12 - шплинт; 13 - полумуфта; 14 - манжета; 15 - гайка пружинная; 16 - крышка; 17 - прокладка

### Правила выполнения чертежей конических зубчатых колес

Общие указания см. стр. 472. В случае, когда передний торец зубчатого колеса выполняют плоскосрезанным, размер ширины зубчатого венца на чертеже указывают как справочный (табл. 99). На изображении конического колеса указывают:

внешний диаметр вершин зубьев до притупления кромки;

внешний диаметр вершин зубьев после притупления кромки (при необходимости);

расстояние от базовой плоскости до плоскости внешней окружности вершин зубьев;

угол конуса вершин зубьев;

угол внешнего дополнительного конуса. Допускается указывать дополнительный угол к углу внешнего дополнительного конуса;

ширина зубчатого венца. В случае, когда передний торец зубчатого колеса выполняют плоскосрезанным, размер ширины зубчатого венца должен быть указан как справочный;

базовое расстояние;

размеры фасок или радиусы кривизны линий притупления на кромках зубьев. Допускается указывать размеры фасок или радиусы кривизны линий притупления в технических требованиях чертежа;

положение измерительного сечения.

На чертеже зубчатого колеса должна быть помещена таблица параметров зубчатого венца.

В первой части таблицы параметров указывают направление линии зуба надписью «Правое» или «Левое». Коэффициент изменения толщины зуба  $x_{\tau}$  с соответствующим знаком; при отсутствии изменения расчетной толщины зуба следует проставлять 0. Степень точно-

сти и вид сопряжения по нормам бокового зазора приводят по соответствующему стандарту с указанием его обозначения.

Во второй части таблицы параметров приводят толщину зуба по хорде s или постоянную хорду  $\bar{s}_c$ , высоту до хорды  $h_{\alpha}$  или до постоянной хорды  $\bar{h}_c$ .

На чертеже шестерни вместо размеров зуба в измерительном сечении допускается указывать боковой зазор в паре с сопряжением зубчатым колесом записью «Допускаемый боковой зазор в паре».

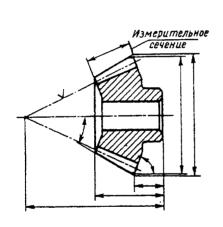
Во второй части таблицы параметров зубчатого колеса с нестандартным исходным контуром должны быть приведены данные для контроля по нормам:

кинематической точности;

плавности работы;

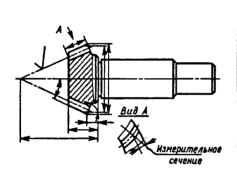
контакта зубьев в передаче;

бокового зазора.


В качестве данных для контроля по нормам точности на чертеже зубчатого колеса с нестандартным исходным контуром следует указывать установленные конструктором значения параметров одного из контрольных комплексов, предусмотренных стандартом на допуски.

В третьей части таблицы параметров при необходимости приводят прочие справочные данные, например внешнюю головку зуба  $h_{\alpha e}$ , внешнюю окружную толщину зуба  $s_e$  для прямозубого колеса, среднюю нормальную толщину зуба  $s_n$  для колеса с круговыми зубьями.

Правила выполнения и пример указания параметров зубчатого венца на чертежах конического зубчатого колеса с круговыми зубьями с нестандартным исходным контуром см. ГОСТ 2.405-75.


Примеры указания параметров зубчатого венца на чертежах конических зубчатых колес приведены в табл. 98 и 99.

## 98. Пример указания параметров зубчатого венца на чертеже прямозубого конического зубчатого колеса со стандартным и исходным контуром



и исходным контуром		
Внешний окружной модуль	m _e	
Число зубьев	z	
Тип зуба	_	Пря- мой
Исходный контур	_	
Коэффициент смещения	$x_e$	
Коэффициент изменения тол- щины зуба	$x_{\tau}$	
Угол делительного конуса	δ	
Степень точности	_	
Размеры зуба в измерительном сечении		
Межосевой угол передачи	Σ	
Средний окружной модуль	m _m	
Внешнее конусное расстояние	R _e	
Среднее конусное расстояние	R _m	
Средний делительный диаметр	d	
Угол конуса впадин	$\delta_f$	
Внешняя высота зуба	h _e	
Обозначение чертежа сопря- женного зубчатого колеса		

# 99. Пример указания параметров зубчатого венца на чертеже конического зубчатого колеса с круговыми зубьями со стандартным исходным контуром



$m_n$	
z	
_	Кру- говой
_	
β	
-	
_	
x _n	
$x_{\tau}$	
δ	
d ₀	
_	
Σ	
m _{ie}	
R _e	
R _m	
d	
$\delta_f$	
he	
	z  -  β  -  x _n x _τ δ  d ₀ -  E  m _{te} R _e R _m d

#### РАСЧЕТ НА ПРОЧНОСТЬ

### 100. Термины и обозначения для прочностного расчета пилиндрических передач

Термин	Обозначение
Межосевое расстояние, мм	$a_w$
Ширина венца зубчатого колеса, мм	ь
Рабочая ширина венца зубчатой передачи, мм	$b_{zv}$
Удельная нормальная жесткость пары зубьев, Н/(мм·мкм)	c'
Средняя удельная торцовая жесткость зубьев пары зубчатых колес, Н/(мм·мкм)	cy
Делительный диаметр, мм	d
Диаметр вершин зубьев, мм	$d_a$
Основной диаметр, мм	$d_b$
Модуль упругости материала зубчатого колеса, МПа	E
Окружная сила на делительном цилиндре в торцовом сечении, Н	$F_t$
Окружная сила на делительном цилиндре при расчете на выносливость при изгибе, Н	$F_{tF}$
Окружная сила на делительном цилиндре при расчете на контактную выносливость, Н	$F_{tH}$
Допуск на направление зуба, мкм	$F_eta$
Отклонение положения контактных линий вследствие упругой деформации и зазора в подшипниках, мкм	$f_{kE}$
Фактическое отклонение положения контактных линий в начальный период работы передачи, мкм	$f_{ky}^0$
Отклонение положения контактных линий вследствие погрешностей изготовления, мкм	f _{kZ}
Предельное отклонение шага зацепления, мкм	$f_{\it pb}$
Коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса при расчете коэффициентов $K_{Hv}$ и $K_{Fv}$	<b>g</b> 0
Твердость сердцевины зубчатого колеса	$H_{K}$
Твердость поверхности зубчатого колеса	$H_0$
Толщина упрочненного слоя до исходной структуры (сердцевины), мм	$h_t$
Коэффициент, учитывающий внешнюю динамическую нагрузку (не учтенную в циклограмме нагружения)	$K_A$
Коэффициент $K_A$ при расчете на максимальную нагрузку	$K_{AS}$
Коэффициент нагрузки	$K_F$
Коэффициент, учитывающий внутреннюю динамическую нагрузку	$K_{Fv}$
Коэффициент, учитывающий распределение нагрузки прочность зубьев между зубьями	K _{Fα}
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий	K _F B

Термин		Обозначение
Коэффициент нагрузки		$K_H$
Коэффициент, учитывающий распределение нагрузки между зубьями	при расчете на	$K_{H\!lpha}$
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий	прочность актив- ных поверхностей зубьев	$K_{H\beta}$
Коэффициент, учитывающий внутреннюю динамическую нагрузку		$K_{Hv}$
Коэффициент, учитывающий приработку зубьев		$K_{Hw}$
Требуемый ресурс, ч		$L_h$
Нормальный модуль, мм		$m_H$
Число циклов напряжений		N
Показатель степени для пересчета $K_{H\!\beta}$ и $K_{F\!\beta}$		$N_{F}$
Эквивалентное число циклов напряжений при расчете из	згибной выносливости	$N_{FE}$
Эквивалентное число циклов напряжений при расчете к сти		$N_{HE}$
Число циклов напряжений в соответствии с заданным ср	оком службы	$N_{k}$
Число циклов напряжений в соответствии с расчетным с	роком службы	$N_L$
Число циклов напряжений, соответствующее перегибу расчете на изгибную выносливость		$N_{F \text{ lim}}$
Число циклов напряжений, соответствующее перегибу расчете на контактную выносливость	кривой усталости, при	$N_{H \text{ lim}}$
Частота вращения, мин-1		n
Параметр протуберанца, мм		Pr o
Показатель степени кривой усталости при расчете на изг	ибную выносливость	$q_F$
Показатель степени кривой усталости при расчете на ком	тактную выносливость	$q_H$
Шероховатость поверхности по ГОСТ 2789-73 (высота имкм		$\begin{pmatrix} \mathit{Ra} \\ \mathit{Rz} \end{pmatrix}$
Расчетный коэффициент запаса прочности	при расчете на	$S_F$
Минимальный коэффициент запаса прочности	изгибную вынос- ливость	$S_{F \min}$
Коэффициент запаса прочности при расчете на прочно максимальной нагрузкой		S _{FSt}
Минимальный коэффициент запаса прочности при рас нагрузкам		S _{FSt min}
Расчетный коэффициент запаса прочности	, при расчете на	$\mathcal{S}_H$
Минимальный коэффициент запаса прочности	контактную вы- носливость	$S_{H \text{ min}}$

Термин	Обозначение
Максимальный коэффициент запаса прочности при расчете по максимальным контактным нагрузкам	S _{HSt min}
Вращающий момент, Н-м	Т
Окружная скорость на делительном цилиндре, м/с	υ
Удельная окружная динамическая сила, Н/мм	$egin{cases} w_{F_{\mathcal{U}}} \ w_{H_{\mathcal{U}}} \end{cases}$
Коэффициент смещения	x
Коэффициент, учитывающий двустороннее приложение нагрузки	$Y_A$
Коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности зуба	$Y_d$
Коэффициент, учитывающий форму зуба и концентрацию напряжений	$Y_{FS}$
Коэффициент, учитывающий влияние шлифования переходной поверхности зуба	$Y_{g}$
Коэффициент долговечности	$Y_N$
Коэффициент, учитывающий влияние шероховатости переходной поверхности	$Y_R$
Коэффициент, учитывающий технологию изготовле-	
ния при расчете на	$Y_T$
Коэффициент, учитывающий размер зубчатого колеса изгибную вынос-	$Y_X$
Коэффициент, учитывающий влияние способа получения заготовки зубчатого колеса	$Y_z$
Коэффициент, учитывающий наклон зуба	$Y_{oldsymbol{eta}}$
Коэффициент, учитывающий градиент напряжений и чувствительность материала к концентрации напряжений (опорный коэффициент)	$Y_{\delta}$
Опорный коэффициент рассчитываемого зубчатого колеса при максимальной	
нагрузке	$Y_{\delta St}$
Опорный коэффициент испытываемого зубчатого колеса при максимальной нагрузке	$Y_{\delta StT}$
Коэффициент, учитывающий перекрытие зубьев при расчете на выносливость при изгибе	$Y_{\epsilon}$
Значение приработки, уменьшающее отклонение шага зацепления $f_{\it pb}$ в ре-	
зультате износа, мкм	$\mathcal{Y}_{\alpha}$
Коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес, $(M\Pi a)^{-0.5}$	$Z_E$
Коэффициент, учитывающий форму сопряженных поверхностей зубьев	$Z_H$
Коэффициент, учитывающий влияние вязкости масла	$Z_L$
Коэффициент долговечности при расчете на	$Z_N$
Коэффициент, учитывающий влияние исходной шероховатости сопряженных поверхностей зубьев	$Z_R$

Продолжение табл. 100

Термин	Обозначение
Коэффициент, учитывающий размеры зубчатого колеса	$\overline{z_X}$
Коэффициент, учитывающий влияние окружной скорости	$Z_v$
Коэффициент, учитывающий влияние перепада твердостей материалов сопряженных поверхностей зубьев	$Z_w$
ное другими коэффициентами)	$Z_{eta}$
Коэффициент, учитывающий суммарную длину контактных линий	$Z_{arepsilon}$
Число зубьев	$z$ $z_v$ $\alpha_t$
Угол зацепления, рад	$\alpha_{tw}$
Угол наклона, градусы	β
Основной угол наклона, рад	βδ
ции профиля головок зубьев при расчетах	$\begin{cases} \delta_F \end{cases}$
	$\delta_H$
Коэффициент торцового перекрытия	εα
Коэффициент осевого перекрытия	εβ
Суммарный коэффициент перекрытия	$\epsilon_{\gamma}$
Коэффициент Пуассона	ν σ _F
Предел выносливости зубъев при изгибе, МПа	σ _{F lim b}
Предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа	$\sigma_{F \lim b}^{0}$
Допускаемое напряжение изгиба зуба	σ _{F max}
Допускаемое напряжение изгиба зуба максимальной нагрузкой, МПа	σ <i>ϝρ</i> σ <i>ϝρ</i> _{max}
Предельное напряжение изгиба при максимальной нагрузке, МПа	σ FSt
Контактное напряжение, МПа	$\sigma_H$
То же, без учета дополнительных нагрузок (динамических и от неравномерности распределения, т.е. при $K_H = 1$ )	$\sigma_{H0}$
Предел контактной выносливости	σ _{H lim}
Контактное напряжение при максимальной нагрузке	σ _{H max}
Допускаемое контактное напряжение	σHP
при максимальной нагрузке	σ <i>HP</i> max
Предельное контактное напряжение при действии максимальной, в частности,	
ударной нагрузки	o HSt
Предел текучести материала зубчатого колеса, МПа	στ

 $\Pi$  р и м е ч а н и я : 1. F - окружная сила, H; K - коэффициент, учитывающий влияние каких-либо факторов на расчетную нагрузку; S - коэффициент запаса прочности; T - расчетная нагрузка (крутящий момент), H-м; w - удельная окружная сила, H/мм; Y - коэффициент, учитывающий влияние отдельных факторов при расчете изгибной прочности; Z - то же, при расчете контактной прочности;  $\sigma$  - напряжение,  $M\Pi$ а.

2. Основные и дополнительные индексы для буквенных обозначений параметров: F - относящийся к изгибной прочности; H - относящийся к контактной прочности; P - дополнительный индекс, относящийся к допускаемому напряжению; I - относящийся к шестерне; 2 - относящийся к колесу.

Отсутствие цифрового индекса означает отношение к любому зубчатому колесу передачи.

#### Расчет на прочность зубчатых цилиндрических эвольвентных передач внешнего зацепления (по ГОСТ 21354-87)

Расчет распространяется на силовые зубчатые передачи внешнего зацепления, состоящие из стальных зубчатых колес, исходный контур которых соответствует требованиям ГОСТ 13755-81, встроенные или выполненные в виде самостоятельных агрегатов, работающие со смазкой в закрытом корпусе при окружных скоростях не свыше 25 м/с в пределах температур окружающего воздуха от -40 до +100 °C.

Расчет зубьев на контактную прочность. При расчете определяют контактное напряжение  $\sigma_H$  в полюсе зацепления. При малом числе зубьев (например, z < 17) или неблагоприятных параметрах зацепления можно дополнительно проверить контактное напряжение и в других характерных фазах зацепления.

1. Контактное напряжение в полосе зацепления

$$\sigma_H = \sigma_{HO} \sqrt{K_H} , \qquad (1)$$

где

$$\sigma_{HO} = Z_E Z_H Z_{\varepsilon} Z_{\beta} \sqrt{\frac{F_t}{b_w d_1} \frac{u+1}{u}} ; \quad (2)$$

$$K_H = K_A K_{Hv} K_{HB} K_{H\alpha} .$$
(3)

2. Допускаемое контактное напряжение, не вызывающее опасной контактной усталости материала

$$\sigma_{HP} = \frac{\sigma_{H \text{ lim}} Z_N}{S_{H \text{ min}}} Z_L Z_R Z_v Z_w Z_X. \quad (4)$$

 Допускаемое предельное контактное напряжение, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя:

$$\sigma_{HP \max} = \frac{\sigma_{HSt}}{S_{HSt \min}}.$$
 (5)

101. Нагрузочная способность поверхностей зубьев

Критерий	Условия нагрузочной способности	
Напряжение	σ _H ≤σ _{HP} ;	(6)
	$\sigma_{H \text{ max}} \leq \sigma_{HP \text{ max}}$	(7)
Безопасность	$S_H \ge S_{H \min}$ ;	(8)
	$S_{HSt} \ge S_{HSt \min}$	(9)
Ресурс	$N_L \ge N_K$ ;	(10)
	σ _{H max} ≤ σ _{HP max}	(11)
Вероятность	$P_H(N_L \ge N_K) \ge P_{H \min};$	(12)
безотказной работы	$P_{HSY}(\sigma_{HSY} \ge \sigma_{H \text{ max}}) \ge P_{HSY}$	min (13)

Примечание.

$$S_H = \frac{\sigma_{H \text{ lim}} Z_N}{\sigma_H} Z_L Z_R Z_v Z_w Z_X; \quad (14)$$

$$S_{HSt} = \frac{\sigma_{HSt}}{\sigma_{H \max}}, \qquad (15)$$

где  $\sigma_{H \, {
m max}}$  - максимальное контактное напряжение за весь срок службы;  $S_H$  - расчетный коэффициент запаса прочности для предотвращения опасной контактной усталости;  $S_{HSI}$  - расчетный коэффициент запаса прочности для предотвращения остаточных деформаций или хрупкого разрушения поверхностного слоя при максимальной нагрузке;  $P_H$  - вероятность безотказной работы в течение заданного срока службы;  $P_{H \, {
m min}}$  - минимальное регламентированное значение  $P_{H \, {
m F}}$ ;  $P_{HSI}$  - вероятность безотказной работы при расчете по максимальным контактным нагрузкам;  $P_{HSI \, {
m min}}$  - минимальное регламентированное значение  $P_{HSI}$ .

Нагрузочная способность поверхностей зубьев обеспечивается при выполнении условий любого критерия по табл. 101.

Расчет зубьев на прочность при изгибе. При расчете определяется напряжение изгиба  $\sigma_F$  в опасном сечении на переходной поверхности.

1. Напряжение изгиба в опасном сечении

$$\sigma_F = \frac{F_t}{bm_n} K_F Y_{FS} Y_{\beta} Y_{\varepsilon}, \qquad (16)$$

где

$$K_F = K_A K_{Fv} K_{F\alpha} K_{F\beta}. \tag{17}$$

2. Допускаемое напряжение изгиба на переходной поверхности зуба, не вызывающее усталостного разрушения материала:

$$\sigma_{FP} = \frac{\sigma_{F \lim b} Y_N}{S_{F \min}} Y_R Y_x Y_\delta . \tag{18}$$

3. Допускаемое напряжение изгиба в опасном сечении, не вызывающее остаточных деформаций, хрупкого излома или первичных трещин

$$\sigma_{FP \max} = \frac{\sigma_{FSt}}{S_{FSt \min}} \frac{Y_{\delta St}}{Y_{\delta StT}}, \quad (19)$$

где

$$\sigma_{FSt} = \sigma_{F \lim b} Y_{N \max}. \tag{20}$$

Нагрузочная способность зуба при изгибе обеспечивается при выполнении условий любого критерия по табл. 102.

Ниже изложен пример расчета на прочность зубчатой передачи, базирующийся на основных расчетных зависимостях (1)-(30).

102. Нагрузочная способность зуба при изгибе

Критерии	Условия нагрузочной способности	
Напряжение	$\sigma_F \leq \sigma_{FP}$ ;	(21)
	$\sigma_{F \max} \leq \sigma_{FP \max}$	(22)
Безопасность	$S_F \geq S_{F \min}$ ;	(23)
Describeration	$S_{FSt} \geq S_{FSt \min}$	(24)
Ресурс	$N_L \ge N_K$ ;	(25)
	$\sigma_{F \max} \leq \sigma_{FP \max}$	(26)
Вероятность	$P_F(N_L \ge N_K) \ge P_{F \min};$	(27)
безотказной работы	$P_{FSt}(\sigma_{FSt} \ge \sigma_{F\max}) > P_{FSt}$	min (28)

Примечание.

$$S_F = \frac{\sigma_{F \lim} b Y_N}{\sigma_F} Y_R Y_x Y_\delta ; \qquad (29)$$

$$S_{FSt} = \frac{\sigma_{FSt}}{\sigma_{F \max}} \frac{Y_{\delta St}}{Y_{\delta StT}}, \quad (30)$$

где  $\sigma_{F\, {\rm max}}$  - максимальное местное напряжение изгиба в опасном сечении зуба за весь срок службы;

 $S_F$  - расчетный коэффициент запаса прочности для предотвращения усталостного разрушения материала;

 $S_{FSt}$  - расчетный коэффициент запаса прочности для предотвращения остаточных деформаций, хрупкого излома или первичных трещин при максимальной нагрузке;

 $P_{F}$  - вероятность отсутствия повреждений в течение заданного срока службы;

 $P_{F\,\mathrm{min}}$  - минимальное регламентированное значение  $P_F$  ;

 $P_{FSt}$  - вероятность отсутствия хрупкого излома или остаточных деформаций при максимальной нагрузке;

 $P_{FST \; \mathrm{min}}$  - минимальное регламентированное значение  $P_{FSt}$  .

103. Исходные параметры для расчета на прочность зубчатой передачи

Наименование параметра		Обозначение	Величина
Число зубьев	шестерни	⁷ 1	32
	колеса	z ₂	64
Нормальный модуль, м		m	5
	шестерни	<i>b</i> ₁	60
Ширина венца, мм	колеса	b ₂	60
Коэффициент смещения	шестерни	$x_1$	0
	колеса	$x_2$	0
Угол наклона		β	16°15′
Наличие модификации головки зуба		_	_
Степень точности передачи по ГОСТ 1643-81		_	7
Шероховатость поверхности по ГОСТ 2789-73, мкм		Ra	2,0
Циклограмма нагружения		_	Постоянная нагрузка $T_1 = 1970  \text{H·м}$
Частота вращения ведущего зубчатого колеса, мин ⁻¹		n	1500
Требуемый ресурс, ч		$L_h$	1000
Отклонение положения контактных линий вследствие упругой деформации и зазора в подшипниках, мкм		f _{KE}	0

Продолжение табл. 103

Наименование параметра		Обозначение	Величина
	шестерни	-	25ХГМ
Марка стали	колеса		40X
Способ упрочняющей обра- ботки	шестерни		Нитроцементация хромо- марганцевой стали с молиб- деном закалкой с нитроце- ментационного нагрева
	колеса	_	Закалка при нагреве ТВЧ, закаленный слой повторяет очертания впадины
Толщина упроченного слоя, мм	шестерни	$h_{t1}$	0,8 1,1
	колеса	h ₁₂	0
Твердость поверхности зуба (средняя)	шестерни	$H_{O1}$	58 <i>HRC</i>
	колеса	H _{O2}	50 <i>HRC</i>
Твердость сердцевины зуба	шестерни	$H_{K1}$	300 HV
(средняя)	колеса	H _{K2}	300 HV
Предел текучести материала, МПа	шестерни	$\sigma_{ au l}$	1000
	колеса	σ _{τ2}	900

104. Определение геометрических и кинематических параметров, используемых в расчете на прочность зубчатых передач

Параметры	Расчетная формула и числовое обозначение
Делительный угол профиля в торцовом сечении $\alpha_t$	$\alpha_t = \arctan \frac{\text{tg } 20^\circ}{\cos \beta} = \arctan \frac{0.364}{0.96} = 20.76^\circ$
Угол зацепления α _{tw}	$\operatorname{inv} \alpha_{tw} = \frac{2(x_1 + x_2)\operatorname{tg} 20^{\circ}}{z_1 + z_2} + \operatorname{inv} \alpha_{t};$ $\operatorname{tak \ kak \ } x_1 + x_2 = 0 \text{ , to } \alpha_{tw} = \alpha_{t} = 20,76^{\circ}$
Межосевое расстояние $a_w$ , мм	$a_{w} = \frac{(z_{1} + z_{2})m}{2\cos\beta} \frac{\cos\alpha_{t}}{\cos\alpha_{tw}} =$ $= \frac{(32 + 64) \cdot 5}{2 \cdot 0.96} \frac{0.935}{0.935} = 250$
Делительные диаметры d , мм	$d_1 = \frac{mz_1}{\cos\beta} = \frac{5 \cdot 32}{0,96} = 166,667$ $d_2 = \frac{mz_2}{\cos\beta} = \frac{5 \cdot 64}{0,96} = 333,334$
Диаметры вершин $_{3}$ убьев $d_{a}$ , мм	$d_{a1} = d_1 + 2m(1 + x_1) =$ $= 166,667 + 2 \cdot 5 = 176,667;$ $d_{a2} = d_2 + 2m(1 + x_2) =$ $= 333,334 + 2 \cdot 5 = 343,334$
Основные диаметры $d_b$ , мм	$d_{b1} = d_1 \cos \alpha_t = 166,667 \cdot 0,935 = 155,834;$ $d_{b2} = d_2 \cos \alpha_t = 333,334 \cdot 0,935 = 311,666$
Углы профиля зуба в точках на окружностях вершин $\alpha_a$	$\alpha_{a1} = \arccos \frac{d_{b1}}{d_{a1}} = \arccos \frac{155,834}{176,667} = 29,11^{\circ};$ $\alpha_{a2} = \arccos \frac{d_{b2}}{d_{a2}} = \arccos \frac{311,666}{343,334} = 24,80^{\circ}$

Параметры	Расчетная формула и числовое обозначение
Составляющие коэффициента торцового перекрытия $\varepsilon_{a1}$ , $\varepsilon_{a2}$	$\varepsilon_{a1} = \frac{z_1 (tg\alpha_{a1} - tg\alpha_{fw})}{2\pi} =$ $= \frac{32 \cdot (0,534 - 0,379)}{2\pi} = 0,790;$
	$\varepsilon_{a2} = \frac{z_2 (tg\alpha_{a2} - tg\alpha_{tw})}{2\pi} =$ $= \frac{64 \cdot (0,462 - 0,379)}{2\pi} = 0,846$
Коэффициент торцового перекрытия $\epsilon_{\alpha}$	$\varepsilon_{\alpha} = \varepsilon_{a1} + \varepsilon_{a2} = 0,790 + 0,846 = 1,64$
Осевой шаг <i>р</i> _х	$p_X = \frac{\pi n}{\sin \beta} = \frac{\pi \cdot 5}{0,280} = 56,13$
Коэффициент осевого перекрытия ε _β	$\varepsilon_{\beta} = \frac{b_{\infty}}{p_{x}} = \frac{60}{56,13} = 1,07$
Суммарный коэффици- ент перекрытия є _γ	$\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta} = 1,64 + 1,07 = 2,71$
Основной угол наклона β _δ	$\beta_b = \arcsin(\sin \beta \cos 20^\circ) =$ $= \arcsin(0,280 \cdot 0,94) = 15,25^\circ$
Эквивалентные числа зубьев z _v	$z_{v1} = \frac{z_1}{\cos^3 \beta} = \frac{32}{0,885} = 36,2;$ $z_{v2} = \frac{z_2}{\cos^3 \beta} = \frac{64}{0,885} = 72,4$
Окружная скорость v, м/с	$v = \frac{\pi d_1 n_1}{60000} = \frac{\pi \cdot 166,7 \cdot 1500}{60000} = 13,1$

#### 105. Расчет на контактную выносливость зубчатых передач

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий механические свойства сопряженных зубчатых колес, $Z_E$	$Z_E = \sqrt{rac{1}{\pi igg(rac{1-v_1^2}{E_1} + rac{1-v_2^2}{E_2}igg)}}$ ; для $E_1 = E_2 = E$ и $v_1 = v_2 = 0.3$ принимают $Z_E = \sqrt{0.175E}$ . Для стали при $E = 2.1 \cdot 10^5$ МПа $Z_E = 190$
Коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления, $Z_H$	По рис. 43 или формуле $Z_H = \frac{1}{\cos \alpha_f} \sqrt{\frac{2\cos \beta_b}{\mathrm{tg}\alpha_{fw}}} = \frac{1}{0,935} \sqrt{\frac{2\cdot 0,965}{0,379}} = 2,41$
Коэффициент, учитываю- щий суммарную длину контактных линий, $Z_{\epsilon}$	По рис. 44 или формулам: $Z_{\varepsilon} = \sqrt{\frac{4-\varepsilon_{\alpha}}{3}}  \text{для } \varepsilon_{\beta} = 0 \; ;$ $Z_{\varepsilon} = \sqrt{\frac{(4-\varepsilon_{\alpha})(1-\varepsilon_{\beta})}{3} + \frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}}  \text{для } \varepsilon_{\beta} < 1 \; ;$ $Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}} = \sqrt{\frac{1}{1,64}} = 0{,}781 \; \text{для } \varepsilon_{\beta} \geq 1$
Окружная сила на дели- тельном цилиндре $F_{Ht}$ , H	$F_{Ht} = \frac{2000  T_{1H}}{d_1} = \frac{2000  T_{2H}}{d_2};$ $F_{Ht} = \frac{2000 \cdot 1970}{166,7} = 25635$
Коэффициент, учитывающий внешнюю динамическую нагрузку, $K_A$	Поскольку в циклограмме учтены внешние нагрузки, $K_A = 1$ . Если в циклограмме не учтены внешние динамические нагрузки, то можно воспользоваться ориентировочными значениями $K_A$ , приведенными в приложении 4 ГОСТ 21354-87 для некоторых машин и механизмов

Параметры	Расчетные формулы, указания по определению и числовые значения
Проверка на резонансную зону	При выполнении условия $\frac{vz_1}{1000} < 1 \ \text{для прямозубых передач } $ и $\frac{vz_1}{1000} < 1,4 \ \text{для косозубых передач}$ резонансная зона далеко и определение коэффициента $K_{Hv}$ можно проводить по формуле $\frac{vz_1}{1000} = \frac{13 \cdot 32}{1000} = 0,42 < 1 \ .$ При невыполнении этих условий $K_{Hv}$ находят по приложению 5 ГОСТ 21354-87
Коэффициент, учитывающий влияние вида зубчатой передачи и модификации профиля головок зубьев, $\delta H$	При твердости $H_1 > 350HV$ и $H_2 > 350HV$ для косых зубьев по
Коэффициент, учитываю- щий влияние разности шагов зацепления зубьев шестерни и колеса, g ₀	Для 7-й степени точности по нормам плавности при модуле $m=5$ по табл. $108$ $g_0=53$
Удельная окружная дина- мическая сила $w_{Hv}$ , $H$ /мм	$w_{Hv} = \delta_H g_0 v \sqrt{\frac{a_w}{u}} =$ $= 0,004 \cdot 53 \cdot 13.1 \cdot \sqrt{\frac{250}{2}} = 31.0$

 $\Pi$  р и м е ч а н и я: 1. Если с шестерней жестко связана массивная деталь (например, зубчатое колесо, надетое на вал-шестерню в непосредственной близости от этой шестерни) с моментом инерции в  $\gamma$  раз большим, чем у шестерни, то значение  $w_{Hv}$  следует увеличить в

$$\sqrt{\frac{\left(1+u^2\right)\gamma}{u^2+\gamma}} \quad \text{pas.}$$

2. Если значения  $w_{Hv}$ , вычисленные по формуле, превышают предельные значения, указанные в табл. 106, их следует принимать равными этим предельным значениям.

Динамическая добавка v _H	$v_H = \frac{w_{Hv}b_wd_1}{2000T_{1H}K_A} = \frac{31,0.60.166,7}{2000.1970.1} = 0,08$

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитываю- ший динамическую нагруз- ку, возникающую в зацеп- лении, $K_{Hv}$	$K_{Hv} = 1 + v_H = 1 + 0.08 = 1.08$
	По ГОСТ 1643-81 для 7-й степени точности по нормам контакта при ширине зубчатого венца $b_1=60$ $F_{\beta}=16$
Отклонение положения контактных линий вследствие погрешностей изготовления $f_{kZ}$ , мкм	$f_{kZ} = 0.5 \cdot F_{\beta} = 0.5 \cdot 16 = 8$
Фактическое отклонение положения контактных линий в начальный период работы передачи $f_{kY}^{0}$ , мкм	1
Удельная нормальная жест- кость пары зубьев с', Н/(мм·мкм)	Определяют по рис. 45 или по формуле $\frac{1}{c'} = 0,05139 + 0,1425 / z_{v1} + 0,1860 / z_{v2} - 0,01x_1 - \frac{0,1027x_1}{z_{v1}} + 0,00455x_2 + \frac{0,3762x_2}{z_{v2}} + 0,00734x_1^2 - 0,00054x_2^2.$ При $x_1 = 0$ и $x_2 = 0$ $\frac{1}{c'} = 0,05139 + \frac{0,1425}{z_{v1}} + \frac{0,1860}{z_{v2}} = 0,05139 + \frac{0,1425}{36,2} + \frac{0,1860}{72,4} = 0,0578.$ $c' = 17,3$
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий в начальный период работы передачи, $K^0_{H\beta}$	$0.4b_m f_{\nu\nu}^0 c' \cos \alpha_t + (b_m)^2$

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий в начальный период работы передачи, $K^0_{H\beta}$	где $K_k=0,14$ , если максимальная ордината эпюры распределения удельных нагрузок по ширине зубчатого венца расположена со стороны подвода крутящего момента; $K_k=-0,08$ - в противоположном случае. Для шевронных передач с симметричным расположением относительно опор, при подводе мощности с одной стороны, при зацеплении шестерни только с одним колесом и $\psi_{bd}=b_w/d_{w1}>1,3$ коэффициент $K_{H\beta}^0$ определяют по формуле $K_{H\beta}^0=1+0,12\left(\psi_{bd}+0,4\frac{b_k}{d_{w1}}\right)^{2,56},$ тде $b_k$ - ширина канавки между полушевронами; $K_{H\beta}^0=1+\frac{0,4f_{kY}^0b_wc'\cos\alpha_t}{F_{Ht}z_\epsilon^2K_AK_{Hv}}=$ $=1+\frac{0,4\cdot8\cdot60\cdot17,3\cdot0,935}{25635\cdot0,781^2\cdot1\cdot1,08}=1,18$
Коэффициент, учитывающий приработку зубьев, $K_{Hw}$	$K_{Hw}=1-rac{20}{ig(0,01H_{Hv}+2ig)^2ig(v+4ig)^{0,25}}=$ = $=1-rac{20}{ig(0,01\cdot510+2ig)^2ig(13,1+4ig)^{0,25}}=0,804.$ В формулу подставляется значение твердости менее твердого зубчатого колеса
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, $K_{H\beta}$	$K_{H\!\beta}=1+\Big(K_{H\!\beta}^0-1\Big)K_{H\!w}=$ = $1+(1,\!18-1)\cdot 0,\!804=1,\!14$ . При дополнительно заданных конструктивных параметрах передачи определяется по приложению 6 ГОСТ 21354-87
Средняя удельная торцовая жесткость зубьев пары зубчатых колес $c_{\gamma}$ , $H/(MM\cdot MKM)$	$c_{\gamma} = c'(0.75\varepsilon_{\alpha} + 0.25) =$ $= 17.3 \cdot (0.75 \cdot 1.64 + 0.25) = 25.6$
Предельные отклонения шага зацепления $f_{\it pb}$ , мкм	По ГОСТ 1643-81 для 7-й степени точности по нормам плавности при модуле $m=5$ мм и соответствующих делительных диаметрах $d_1=166,7$ мм и $d_2=333,3$ мм $f_{pb1}=19$ и $f_{pb2}=19$

Продолжение табл. 105

	Продолжение табл. 105
Параметры	Расчетные формулы, указания по определению и числовые значения
Предел контактной выносливости $\sigma_{H \text{ lim 2}}$ , МПа	По табл. 109: $\sigma_{H \text{ lim 2}} = 17H_{HRC_{\mathfrak{S}}} + 200 = 17 \cdot 50 + 200 = 1050$
Уменьшение погрешности шага зацепления в результате приработки, $y_{\alpha}$ , мкм	
	$y_{\alpha} = \frac{y_{\alpha 1} + y_{\alpha 2}}{2} = \frac{1,4 + 2,9}{2} = 2,1$
Коэффициент, учитывающий распределение нагрузки между зубьями, $K_{H\alpha}$	Для прямозубых передач $K_{H\alpha} = 1  .$ Для косозубых передач при $\epsilon_{\gamma} \leq 2$ принимают
	$K_{H\alpha} = \frac{\varepsilon_{\gamma}}{2} \left[ 0.9 + 0.4 \frac{c_{\gamma} b_{w} (a_{\alpha} f_{pb\varepsilon} - y_{\alpha})}{F_{Ht} K_{A} K_{Hv} K_{H\beta}} \right];$
	для косозубых (при $\varepsilon_{\gamma} > 2$ ) и шевронных передач принимают $K_{H\alpha} = 0.9 + 0.4 \sqrt{\frac{2(\varepsilon_{\gamma} - 1)}{\varepsilon_{\gamma}}} \frac{c_{\gamma} b_{w} (a_{\alpha} f_{pb\varepsilon} - y_{\alpha})}{F_{Ht} K_{A} K_{Hv} K_{H\beta}},$
	где $f_{pb\epsilon} = \sqrt{f_{pb1}^2 + f_{pb2}^2}$ ; $a_{\alpha}$ - коэффициент, учитывающий статистическое распределение погрешностей и критерии допустимого повреждения активных поверхностей зубьев; для передач с твердостью поверхностей зубьев шестерни и колеса
	$H > 350HV   a_{\alpha} \ge 0.3;$
	для передач с твердостью поверхности зубьев хотя бы одного зубчатого колеса
	$H \le 350 HV \qquad a_{\alpha} \ge 0,2.$
	Должно выполняться условие $1 \leq K_{H\alpha} \leq \frac{\varepsilon_{\gamma}}{\varepsilon_{\alpha} Z_{\varepsilon}^{2}}  .$

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий распределение нагруз- ки между зубьями, $K_{H\alpha}$	При $\varepsilon_{\gamma} > 2$ $K_{H\alpha} = 0.9 + 0.4 \sqrt{\frac{2(\varepsilon_{\gamma} - 1)}{\varepsilon_{\gamma}}} \frac{c_{\gamma} b_{w} (a_{\gamma} f_{pb\varepsilon} - y_{\alpha})}{F_{Ht} K_{A} K_{H\beta} K_{H\nu}} =$ $= 0.9 + 0.4 \sqrt{\frac{2(2.71 - 1)}{2.71}} \frac{25.6 \cdot 60 \cdot (0.3\sqrt{19^{2} + 19^{2}} - 2.1)}{25.635 \cdot 1 \cdot 1.14 \cdot 1.08} = 1.02$
Коэффициент нагрузки <i>К н</i>	$K_H = K_A K_{Ho} K_{HB} K_{H\alpha} = 1 \cdot 1,08 \cdot 1,14 \cdot 1,02 = 1,26$
Контактное напряжение $\sigma_{HO}$ при $K_H = 1$ , МПа	$\sigma_{HO} = Z_E Z_H Z_{\varepsilon} \sqrt{\frac{F_{Ht}}{b_w d_1} \frac{u+1}{u}} =$
	$= 190 \cdot 2,41 \cdot 0,781 \cdot \sqrt{\frac{25635}{60 \cdot 166,7} \cdot \frac{2+1}{2}} = 700$
Расчетное контактное на- пряжение $\sigma_H$ , МПа	$\sigma_H = \sigma_{HO} \sqrt{K_H} = 700 \cdot \sqrt{1,26} = 784$
Пределы контактной выносливости $\sigma_{H \text{ lim}}$ , МПа	Определяют по табл. 109: для цементованной шестерни
	$\sigma_{H \text{ lim } 1} = 23H_{HRC} = 23.59 = 1300;$
	для колеса, закаленного с нагревом ТВЧ,
	$\sigma_{H \text{ lim } 2} = 17H_{HRC} + 200 = 17 \cdot 50 + 200 = 1050$
Коэффициенты запаса прочности $S_H$	Коэффициент запаса прочности интегрально учитывает приближенный характер метода расчета. Минимальная безопасность должна устанавливаться с учетом неточности исходных параметров, заданной вероятности неразрушения и опасности возможности повреждений. При отсутствии необходимых фактических статистических данных можно применить следующие минимальные коэффициенты запаса прочности: для зубчатых колес с однородной структурой материала $S_{H  min} = 1,1$ ; для зубчатых колес с поверхностным упрочнением зубьев $S_{H  min} = 1,2$

	Проболжение такж. 103
Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициенты запаса прочности <i>S_H</i>	Для передач, выход из строя которых связан с тяжелыми последствиями, значение минимальных запасов прочности следует увеличивать соответственно до $S_{H  { m min}} = 1,25$ и $S_{H  { m min}} = 1,35$ . Для шестерни и колеса с поверхностным упрочнением зубьев принимаем $S_{H1} = 1,2$ и $S_{H2} = 1,2$
Базовые числа циклов напряжений, соответствующие пределу выносливости, $N_H \lim$	По графику (рис. 46) или по формуле: $N_{H  \text{lim}} = \!\! 30  H_{\text{HB}}^{2,4} \leq \! 120 \cdot \! 10^6  ,$ $N_{H  \text{lim}  1} = \! 30 \cdot \! 590^{2,4} = \! 134 \cdot \! 10^6  ,$ так как $134 \cdot 10^6 > \! 120 \cdot \! 10^6  ,$ то $N_{H  \text{lim}  1} = \! 120 \cdot \! 10^6  .$ $N_{H  \text{lim}  2} = \! 30 \cdot \! 470^{2,4} = \! 77,\! 6 \cdot \! 10^6$
Суммарное число циклов напряжений $N_K$	$N_{K1} = 60n_1L_h = 60 \cdot 1500 \cdot 1000 = 90 \cdot 10^6;$ $N_{K2} = N_{K1} \frac{z_1}{z_2} = 90 \cdot 10^6 \frac{32}{64} = 45 \cdot 10^6$
Коэффициент долговечности $Z_N$	По графику (рис. 47) или формулам: $Z_N = {}^6\sqrt{\frac{N_H}{N_K}}  \text{при } N_K \le N_H \text{ lim} ,$ но не более 2,6 для однородной структуры материала и 1,8 для поверхностного упрочнения; $Z_N = {}^{20}\sqrt{\frac{N_H}{N_K}}  \text{при } N_K > N_H \text{ lim} ,$ но не менее 0,75. При использовании метода эквивалентных циклов вместо $N_K$ подставляют $N_{HE}$ : $Z_{N1} = {}^6\sqrt{\frac{N_H \text{ lim 1}}{N_{K1}}} = {}^6\sqrt{\frac{120 \cdot 10^6}{90 \cdot 10^6}} = 1,05 ;$ $Z_{N2} = {}^6\sqrt{\frac{N_H \text{ lim 2}}{N_{K2}}} = {}^6\sqrt{\frac{78 \cdot 10^6}{45 \cdot 10^6}} = 1,10$
Коэффициент, учитывающий шероховатость сопряженных поверхностей зубъев, $Z_R$	Значение $Z_R$ , общее для шестерни и колеса, принимают для того из зубчатых колес пары, зубья которого имеют более грубые поверхности, в зависимости от параметра шероховатости поверхности. Для $Ra$ 1,25 0,63 мкм $Z_R$ =1

Продолжение табл. 105

Параметры	Расчетные формулы, указания по определению и числовые значения				
щий шероховатость сопря-	Для $Ra$ от 2,5 до 1,25 мкм $Z_R$ =0,95. Для $Rz$ от 40 до 10 мкм $Z_R$ =0,9. При шероховатости поверхности $Ra$ 2 мкм $Z_R$ =0,95				
Коэффициент, учитывающий окружную скорость, $Z_v$	Определяют по графику (рис. 48) или по формулам: при $H \le 350HV$ $Z_v = 0.85  v^{0.1}$ ; при $H > 350HV$ $Z_v = 0.925  v^{0.05}$ ; при $H > 350HV$ $Z_{v1} = Z_{v2} = 0.925  v^{0.05} = 0.925 \cdot 13.1^{0.05} = 1.05$				
Коэффициент, учитываю- щий влияние смазки, $Z_{\rm L}$	Z _L =1				
Коэффициент, учитываю- ший размер зубчатого коле- са, $Z_X$	Определяют по графику (рис. 49) или по формуле $Z_X = \sqrt{1,07-10^{-4}d} \ .$ При $d<700$ мм принимают $Z_X=1$ . Поскольку $d_1<700$ и $d_2<700$				
	$Z_{X1} = Z_{X2} = 1$				
Допускаемые контактные напряжения зубчатых колес $\sigma_{HP1}$ , $\sigma_{HP2}$ , МПа	_ '11 11111 7 7 7 7 7				
Допускаемое контактное напряжение передачи $\sigma_{HP}$ , МПа	Принимают: для прямозубых передач минимальное из $\sigma_{HP1}$ и $\sigma_{HP2}$ , т.е. $\sigma_{HP} = \min \bigl\{ \sigma_{HP1},  \sigma_{HP2} \bigr\}  ;$ для косозубых и шевронных передач по формуле $\sigma_{HP} = 0.45  ( \sigma_{HP1} + \sigma_{HP2} ) \geq  \sigma_{HP  \min}  ;$				

Параметры	Расчетные формулы, указания по определению и числовые значения
Допускаемое контактное напряжение передачи $\sigma_{HP}$ , МПа	при выполнении условия $\sigma_{HP} < 1,25 \ \sigma_{HP \ min} \ ;$
	σ _{HP} =0,45(1190+960)=968;
	1,25 $\sigma_{HP2} = 1,25.960 = 1200$ .
	В качестве $\sigma_{HP}$ принимают меньщее из этих двух значений, т.е.
	σ _{HP} =968
Сопоставление расчетного и допускаемого напряжений	$\sigma_H = 784 < \sigma_{HP} = 968$ . Следовательно, обеспечена усталостная выносливость по контакту

#### 106. Предельные значения $\boldsymbol{w}_{H\boldsymbol{v}}$ и $\boldsymbol{w}_{F\boldsymbol{v}}$ , $\mathbf{H}/\mathbf{m}\mathbf{m}$

Степень точности по нормам плавности по ГОСТ 1643-81						-81
Модуль <i>m</i> , мм	5	6	7	8	9	10
До 3,55	85	160	240	380	700	1200
Св. 3,55 до 10	105	194	310	410	880	1500
Св. 10	150	250	450	590	1050	1800

#### 107. Значение коэффициента $\delta_H$

Твердость поверхностей зубьев по Виккерсу	Вид зубьев	Значение ко- эффициента б <i>ң</i>
При твердости $H_1 \le 350 HV$ или $H_2 \le 350 HV$	Прямые без модификации головки Прямые с модификацией головки Косые	0,006 0,004 0,002
При твердости $H_1 > 350 HV$ и $H_2 > 350 HV$	Прямые без модификации головки Прямые с модификацией головки Косые	0,014 0,010 0,004

	Степень точности по нормам плавности по ГОСТ 1643-81					
Модуль т, мм	5	6	7	8	9	10
До 3,55	28	38	47	56	73	100
Св. 3,55 до 10	31	42	53	61	82	110
Св. 10	37	48	64	73	100	135

#### 108. Значения коэффициента до

109. ОН біль в зависимости от материалов и термической обработки зубьев

Способ термической и химико-термической обработки зубьев	Средняя твердость поверхностей зубьев	Сталь	Формула для расчета значений $\sigma_{H  \text{lim}  b}$ , МПа
Отжиг, нормализация или улучшение	Менее 350 НВ	Стали углеродистые и	$\sigma_{H \lim b} =$ =2 $H_{HB}$ +70
Объемная и поверхно- стная закалка	38-50 HRC	легированные	$\sigma_{H \lim b} =$ =17 $H_{HRC}$ +200
Цементация и нитро- цементация	Более 56 HRC	Стали легированные	$\sigma_{H \lim b} =$ $= 23 H_{HRC}$
Азотирование	550-750 HV		$\sigma_{H \lim b} = 1050$

Примечание. Соотношение между твердостями, выраженными в единицах HRC, HV и HB, определяют по графику (рис. 50).

Расчет на контактную прочность при действии максимальной нагрузки. При действии максимальной нагрузки  $T_{1\,\mathrm{max}}$  наибольшее за заданный срок службы контактное напряжение  $\sigma_{H\,\mathrm{max}}$  не должно превышать допускаемого  $\sigma_{HP\,\mathrm{max}}$ :

$$\sigma_{H \max} \leq \sigma_{HP \max}$$
.

Напряжение  $\sigma_{H \; \mathrm{max}}$  определяют по формуле

$$\sigma_{H \text{ max}} = \sigma_H \sqrt{\frac{T_{\text{max}} K_{H \text{ max}}}{T_H K_H}} ,$$

где  $K_{H\,{
m max}}$  - коэффициент нагрузки, определяемый при нагрузке  $T_{
m max}$  .

Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя  $\sigma_{HP\; max}$ , зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба:

для зубчатых колес, подвергнутых нормализации, улучшению или сквозной закалке с низким отпуском,

$$\sigma_{HP \max} = 2.8 \sigma_T$$
;

для зубьев, подвергнутых цементации или контурной закалке,

$$\sigma_{HP \, \text{max}} = 44 \, H_{\text{HRC}}$$

для азотированных зубьев

$$\sigma_{HP \, \text{max}} = 3 \, H_{\text{HV}}$$
.

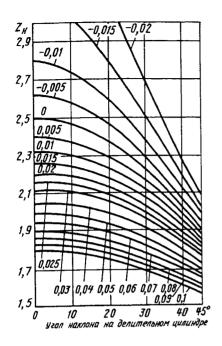



Рис. 43. График для определения коэффициента  $Z_H$ 

(на кривых показаны значения  $\frac{x_1 + x_2}{z_1 + z_2}$ )

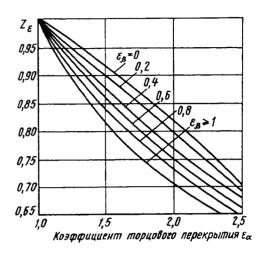



Рис. 44. График для определения коэффициента  $Z_{\varepsilon}$ 

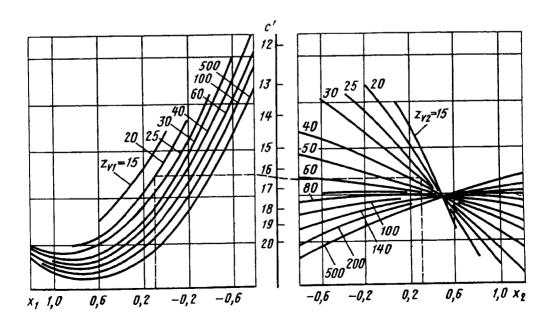



Рис. 45. Удельная нормальная жесткость пары зубьев с'

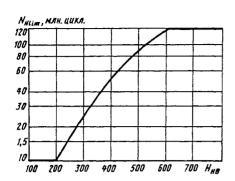



Рис. 46. График для определения базового числа циклов перемены напряжений

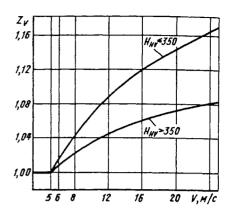



Рис. 48. График для определения коэффициента  $Z_v$ 

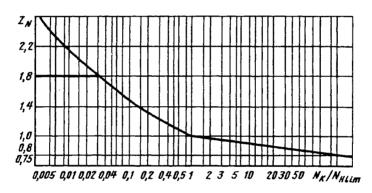



Рис. 47. График для определения коэффициента  $Z_N$ 

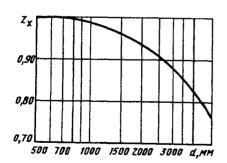



Рис. 49. График для определения коэффициента  $Z_x$ 

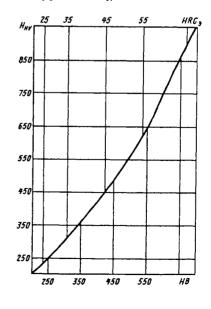



Рис. 50. График соотношений твердостей, выраженных в единицах *HB*, *HRC* и *HV* 

110. Ориентировочные значения приработки у	110.	Ориентировочные	значения	приработки	<i>y</i> ~
--------------------------------------------	------	-----------------	----------	------------	------------

Характеристика материала зубчатого колеса	Окружная ско- рость, м/с	Значение приработки $y_{\alpha}$ , мкм	Максимальное значение прира- ботки у _{с тах} , мкм
	<5		Без ограничений
Зубчатые колеса с однородной структурой материала	5 < v≤10	$\frac{160}{\sigma_{H  \mathrm{lim}}} f_{pb}$	$\frac{12800}{\sigma_{H \text{ lim}}}$
	>10		6400 σ _{H lim}
Зубчатые колеса с поверхност- ным упрочнением	-	0,075 f _{pb}	3

 $\Pi$  р и м е ч а н и е . Если применяют материалы с разными механическими свойствами, то необходимо определить среднее арифметическое из значений приработки обоих зубчатых колес.

#### 111. Расчет зубъев на выносливость при изгибе

Параметры	Расчетные формулы, указания по определению и числовые значения
Окружная сила на делительном цилиндре $F_{Ft}$ , Н	$F_{Ft} = \frac{2000T_{1F}}{d_1} = \frac{2000T_{2F}}{d_2},$ $F_{Ft} = \frac{2000\cdot1970}{166,7} = 25635.$ При переменных нагрузках определяется по приложению 3 ГОСТ 21354—87
Коэффициент, учитывающий внеш- нюю динамическую нагрузку, <i>К</i> _А	$K_A = 1$ . Если в циклограмме не учтены внешние динамические нагрузки, то можно воспользоваться ориентировочными значениями $K_A$ , приведенными в приложении 4 ГОСТ 21354—87 для некоторых машин и механизмов
Коэффициент, учитывающий влияние проявления погрешностей зацепления на динамическую нагрузку, $\delta_F$	Для косозубых и шевронных передач $\delta_F = 0{,}006.$ Для прямозубых передач с модификацией головки $\delta_F = 0{,}011.$ Для прямозубых передач без модификации головки $\delta_F = 0{,}016.$

Продолжение табл. 111

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитываю- щий влияние разности ша- гов зацепления зубьев шес- терни и колеса, g ₀	По табл. 108. Для 7-й ступени точности по нормам плавности при модуле $m=5$ мм $g_0=53$
	$w_{Fv} = \delta_F g_0 v \cdot \sqrt{\frac{a_w}{u}} = $ $= 0.06 \cdot 53 \cdot 13.1 \cdot \sqrt{\frac{250}{2}} = 46.6$
Удельная окружная динамическая сила $w_{F_0}$ , мм	Если с шестерней жестко связана массивная деталь (например, зубчатое колесо, закрепленное на валу-шестерне) в непосредственной близости от этой шестерни, с моментом инерции в $\gamma$ раз большим, чем у шестерни, то значение $w_{Fv}$ надо увеличить в $\sqrt{\frac{\left(1+u^2\right)\gamma}{u^2+\gamma}}$ раз. Если значения $w_{Fv}$ , вычисленные по формуле, превышают предельные значения, указанные в табл. 106, их следует принимать равными этим предельным значениям
Динамическая добавка $v_F$	$n_F = \frac{w_{Fv} b_w d_1}{2000 T_{1F} K_A} = \frac{46,6 \cdot 60 \cdot 166,7}{2000 \cdot 1970 \cdot 1} = 0,12$
Коэффициент, учитываю- щий динамическую нагруз- ку, возникающую в зацеп- лении, $K_{Fv}$	При выполнении условия: для прямозубых передач $\frac{vz_1}{1000} < 1$ ; для косозубых передач $\frac{vz_1}{1000} < 1,4$ определяют по формуле $K_{Fv} = 1 + n_F = 1 + \frac{w}{F_F} \frac{b_w}{K_A} = 1 + 0,12 = 1,12.$ При невыполнении этих условий определяют по приложению 5 ГОСТ 21354—87

	Прообіжение таол. 111
Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, $K_{P_0}$	По рис. 51 или по формуле $K_{F\beta} = \left(K_{H\beta}^0\right)^{N_F},$ где $N_F = \frac{\left(b/h\right)^2}{\left(b/h\right)^2 + b/h + 1},$ принимаем $h = \frac{2m}{\varepsilon_\alpha}$ — для прямозубого зацепления; $h = 2m$ — для косозубого зацепления. Для $(b/h)$ необходимо подставить значение более уэкого колеса. В уточненных расчетах $K_{H\beta}^0$ в первой формуле табл. 105, п. 16 следует принимать 0,6 вместо 0,4: $h = 2m = 2 \cdot 5 = 10;$ $N_F = \frac{\left(b/h\right)^2}{\left(b/h\right)^2 + b/h + 1} = \frac{\left(\frac{60}{10}\right)^2}{\left(\frac{60}{10}\right)^2 + \frac{60}{10} + 1} = 0,837;$ $K_{F\beta} = \left(K_{H\beta}^0\right)^{N_F} = 1,14^{0,837} = 1,12$
Коэффициент, учитывающий распределение нагрузки между зубьями, $K_{F_{lpha}}$	Расчет прямозубых передач первоначально производится в предположении, что в зацеплении находится одна пара зубьев и принимают $K_{F\alpha}=1$ и $Y_{\epsilon}=1$ . Если при этом условие прочности не удовлетворяется ( $\sigma_F > \sigma_{FP}$ ), то для передач грубее 8-й степени точности по нормам плавности ГОСТ 1643—81 следует провести расчет для двух случаев зацепления (в вершине зуба и в верхней граничной точке однопарного зацепления) по приложению 9 ГОСТ 21354—87. Для косозубых и шевронных передач $K_{F\alpha}$ определяют по табл. 105, п. 23. При этом в уточненных расчетах принимают $y_{\alpha}=0$ и $a_{\alpha} \ge 0,4$ . Должно выполняться условие $1 \le K_{F\alpha} \le \epsilon_{\gamma}$ . $K_{F\alpha} = K_{H\alpha} = 1,02$

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий форму зуба и концентрацию напряжений, $Y_{FS}$	По рис. 52 или приближенно по формуле $Y_{FS} = 3,47 + \frac{13,2}{z_v} - 29,7 \frac{x}{z_v} + 0,092x^2.$ Для зубчатых колес, изготовленных с применением червячной фрезы или зубострогальной гребенки с протуберанцем (при $h_{a0}$ /m=1,4 и $p_{r0}$ /m=0,05), определяют по рис. 53 или приближенно по формуле $Y_{FS} = 3,61 + 0,53x^2 + \frac{25,3}{z_v} - 37,6\frac{x}{z_v}.$ Формулы не учитывают влияния шлифовочных ступенек, которые могут привести к значительному увеличению концентрации напряжений. Для зубчатых колес, нарезанных фрезой без протуберанца, $Y_{FS1} = 3,47 + \frac{13,2}{36,2} = 3,83;$ $Y_{FS2} = 3,47 + \frac{13,2}{72,4} = 3,65$
Коэффициент, учитывающий наклон зуба, $Y_{\mathfrak{p}}$	$Y_{\beta} = 1 - \varepsilon_{\beta} \frac{\beta^{\circ}}{120^{\circ}} \ge 0.7,$ $Y_{\beta} = 1 - 1.07 \frac{16.25}{120} = 0.855$
Коэффициент, учитывающий перекрытие зубьев, $Y_{\epsilon}$	Для прямозубых передач при предварительных расчетах $Y_{\varepsilon}=1$ . Для уточненных расчетов для прямозубых передач не грубее 8-й степени точности по нормам плавности ГОСТ $1643-81$ по приложению 9 ГОСТ $21354-87$ . Для косозубых передач при $\varepsilon_{\beta} < 1$ $Y_{\varepsilon} = 0.2 + \frac{0.8}{\varepsilon_{\alpha}};$ при $\varepsilon_{\beta} \ge 1$ $Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha}};$ $Y_{\varepsilon} = \frac{1}{\varepsilon_{\alpha}} = \frac{1}{1.64} = 0.61$
Коэффициент перегрузки <i>К_F</i>	$K_F = K_A K_{Fv} K_{F\beta} K_{F\alpha} = 1.1,12.1,12.1,02 = 1,28$

Параметры	Расчетные формулы, указания по определению и числовые значения	
Расчетные напряжения о _г , МПа	$\sigma_{F1} = \frac{F_{FI}}{b_1 m} K_F Y_{FS1} Y_{\beta} Y_{\epsilon} =$ $= \frac{25 635}{60 \cdot 5} 1,28 \cdot 3,83 \cdot 0,855 \cdot 0,61 = 218.$ При $b_1 = b_2$ $\sigma_{F2} = \sigma_{F1} \frac{Y_{FS2}}{Y_{FS1}} = 218 \frac{3,65}{3,83} = 208$	
Пределы выносливости зубьев, соответствующие базовому числу циклов напряжений, $\sigma_{F \lim b}^0$ , МПа	Установлен для отнулевого цикла перемены напряжений. Определяется в зависимости от способа термической или химико-термической обработки по табл. $112-115$ . Для нитроцементованной шестерни из стали марки $25$ XГМ $\sigma_{F \ lim \ b1}^0 = 1000 \ .$ Для колеса из стали марки $40$ X, закаленной при нагреве ТВЧ с закаленным слоем, повторяющим очертания впадины: $\sigma_{F \ lim \ b2}^0 = 580$	
Коэффициент, учитывающий влияние шлифования переходной поверхности зуба, $Y_g$	Определяют в зависимости от способа термической или химико-термической обработки по табл. 112—115. Для зубчатых колес с нешлифованной переходной поверхностью зубьев принимают $Y_{g1} = Y_{g2} = 1$	
Коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности, $Y_d$	Для зубчатых колес без деформационного упрочнения или электрохимической обработки переходной поверхности принимают $Y_{d1} = Y_{d2} = 1$	
Коэффициент, учитывающий влияние двустороннего приложения нагрузки, $Y_A$	При одностороннем приложении нагрузки $Y_A = 1 \ .$ При двустороннем приложении нагрузки $Y_A = 1 - \gamma_A \frac{\min\left(\frac{T_F}{Y_N},  \frac{T_F'}{Y_N'}\right)}{\max\left(\frac{T_F}{Y_N},  \frac{T_F'}{Y_N'}\right)}$	

Параметры	Расчетные формулы, указания по определению и числовые значения		
Коэффициент, учитывающий влияние двустороннего приложения нагрузки, $Y_A$	Примечание. При $T_F' < 0.6 T_F$ можно принимать $Y_A = 1$ . $\gamma_A$ — коэффициент, учитывающий влияние амплитуд напряжений противоположного знака. Для зубчатых колес из отоженной, нормализованной и термоулучшенной стали $\gamma_A = 0.35$ . Для зубчатых колес с твердостью поверхности зубьев более 45 HRC, за исключением азотированных $\gamma_A = 0.25$ . Для азотированных зубчатых колес $\gamma_A = 0.1$		
Коэффициент, учитывающий технологию изготовления, $Y_T$	При отступлениях от примечаний к табл. 112—115 принимать $Y_T < 1$ . Поскольку в технологии изготовления шестерни и колеса нет отступления от примечаний к соответствующим табл. 113 и 115, $Y_{T1} = 1 \ \text{и} \ Y_{T2} = 1$		
Предел выносливости зубьев при изгибе $\sigma^0_{F \lim b}$ , Мпа	$\sigma_{F \lim b1} = \sigma_{F \lim b1}^{0} Y_{g1} Y_{d1} Y_{A1} Y_{T1} =$ $= 1000 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1000;$ $\sigma_{F \lim b2} = \sigma_{F \lim b2}^{0} Y_{g2} Y_{d2} Y_{A2} Y_{T2} =$ $= 580 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 580$		
Коэффициент, учитывающий нестабильность свойств материала зубчатого колеса и ответственность зубчатой передачи, $S_F^\prime$	Определяют по табл. 112—115. Для нитроцементованной шестерни из стали 25ХГН $S_{F1}' = 1,55 \ .$ Для колеса из стали марки 40Х, закаленной при нагреве ТВЧ с закаленным слоем, повторяющим очертания впадины: $S_{F2}' = 1,7$		
Коэффициент, учитывающий способ получения заготовки зубчатого колеса, $Y_z$	Для поковок и штамповок $Y_z = 1$ . Для проката $Y_z = 0,9$ . Для литых заготовок $Y_z = 0,8$ .		

Параметры	Расчетные формулы,
	указания по определению и числовые значения
Коэффициент долговечности $Y_N$	Определяют по формуле $Y_N = {}^q F \sqrt{\frac{N_F \lim}{N_K}} \;,$ но не менее 1. Для зубчатых колес с однородной структурой материала, включая закаленные при нагреве ТВЧ со сквозной закалкой, и зубчатых колес со шлифованной переходной поверхностью, независимо от твердости и термообработки их зубьев $q_F = 6.$ Для зубчатых колес азотированных, а также цементованных и нитроцементованных с нешлифованной переходной поверхностью $q_F = 9$ . Максимальные значения $Y_N$ . $Y_{Nmax} = 4  \text{при } q_F = 6, \\ Y_{Nmax} = 2,5  \text{при } q_F = 9.$ При использовании метода эквивалентных циклов вместо $N_k$ подставлять $N_{FE}$ . $N_F \lim_{lim} - 6 \text{азовое число циклов напряжений, } N_F \lim_{lim} = 4 \cdot 10^{-6}.$ Под базовым числом циклов напряжений понимается число циклов, соответствующее на диаграмме усталости переходу наклонного участка кривой усталости в горизонтальный участок или участок с очень малым наклоном оси циклов. Так как $N_{k1} > N_{F \lim} = 4 \cdot 10^6$ и $N_{k2} > N_{F \lim}$ ,
<u> </u>	To $Y_{N1} = Y_{N2} = 1$ $Y_{8} = 1,082 - 0,172 \text{ lg } m.$
Коэффициент, учитывающий градиент напряжений и чувствительность материала к концентрации напряжений (опорный коэффициент), $Y_{\rm b}$	$T_{\delta} = 1,082 - 0,172$ lg $m$ . Для уточненных расчетов при $\rho_{Fn} > 7$ мм можно пользоваться следующими зависимостями: для зубчатых колес, изготовленных из нормализованной улучшенной стали и с поверхностной закалкой без охвата основания зуба $Y_{\delta} = (1,0-0,07 \text{ lg } m) \times \left[1,0+x^{0,55}\cdot 10^{-\left(0,47+\frac{\sigma_T}{875}\right)}\right];$ для цементованных, нитроцементованных зубчатых колес и с поверхностной закалкой, кроме закалки без охвата основания зуба: $Y_{\delta} = 0,84 \left(1,0+\chi^{0,55}\cdot 10^{-0,72}\right),$ где $\chi$ — относительный градиент напряжений, мм $^{-1}$ ; $\chi = 2,3$ / $\rho_{fn}$ ; $\rho_{fn}$ — радиус кривизны переходной кривой в опасном сечении, определяют по рис. $54,55$ ;

 $Y_{\delta} = 1,08 - 0,15 \lg m = 1,08 - 0,15 \lg 5 = 1,00$ 

Продолжение табл. 111

Параметры	Расчетные формулы, указания по определению и числовые значения
Коэффициент, учитывающий шероховатость переходной поверхности, $Y_R$	Для шлифования и зубофрезерования при шероховатости поверхности не более $R_z$ 40 мкм $Y_R=1$ .  Для полирования $Y_R$ в зависимости от способа термического упрочнения принимают:  при цементации, нитроцементации, азотировании (полирование до химико-термической обработки) $Y_R=1,05$ ;  при нормализации и улучшении $Y_R=1,2$ ;  при закалке ТВЧ, когда закаленный слой повторяет очертание впадины между зубьями $Y_R=1,05$ ;  при закалке ТВЧ, когда закаленный слой распределяется на все сечение зуба, а также часть ступицы под основанием зуба и впадины или обрывается к переходной поверхности: $Y_R=1,2$ . $Y_{R1}=0,95$ ; $Y_{R2}=1,05$
Коэффициент, учитывающий размеры зубчатого колеса, $Y_X$	Определяют в зависимости от делительного диаметра зубчатого колеса по формулам: $Y_X=1,05-0,000125d$ $Y_{X1}=1,05-0,000125\cdot166,7=1,03;$ $Y_{X2}=1,05-0,000125\cdot333,4=1,01$
Допускаемые напряжения о _{гр} , МПа	$\sigma_{FP1} = \frac{\sigma_{F \lim b1}}{S_{F1}} Y_{N1} Y_{\delta} Y_{R1} Y_{x1} =$ $= \frac{1000}{1,55} 1 \cdot 1 \cdot 0,95 \cdot 1,03 = 631;$ $\sigma_{FP2} = \frac{\sigma_{F \lim b2}}{S_{F2}} Y_{N2} Y_{\delta} Y_{R2} Y_{x2} =$ $= \frac{580}{1,7} 1 \cdot 1 \cdot 1,05 \cdot 1,01 = 362$
Сопоставление расчетного и допускаемого напряжений	$\sigma_{F1} = 218 < \sigma_{FP1} = 631;$ $\sigma_{F2} = 208 < \sigma_{FP2} = 362.$ Следовательно, выносливость зубьев при изгибе гарантируется с вероятностью неразрушения более 99%

112. Определение параметров о $\frac{0}{F \lim b}$ ,  $Y_g$  и  $S_F$  для цементованных зубчатых колес

	S _F *6	1,55	1,55	1,65		
	электрох имиче- ская обработ- ка*5	1,0	1,1 1,2	1,2		
$Y_d$	дробь, роли- ки *4	1,0-1,05	1,0-1,1 1,1-1,3	1,1-1,2		
	$Y_g^{*3}$	0,75	0,75 0,65	0,65		
	$\sigma^0_{F  \text{lim}  b}$ , MIIa	950	820 *2	800		
	Твердость зубьев на поверхности		5763 HRC,			
Концентрация углерода на поверхности, %			0,75—1,1 (достигается при контроле и автоматическом регулирова- нии утлеродного потенциала карбюризатора и закалочной атмосферы)	0,6—1,4 (достигается при цементации в средах с неконтролируемым углеродным потенциалом и закалке с применением средств обезуглероживания)		
	Легированная сталь	1. Содержащая никель более 1% и хром 1% и менее (например, марок 20ХН, 20ХН2М, 12ХН2, 12ХН3А; 20ХН3А, 15ХГНТА по ГОСТ 4543—71)	2. Безникелевая, содержащая никель менее 1% (например, марок 18ХГТ, 30ХГТ, 20Х, 20ХГР по ГОСТ 4543—71 и марки 25ХНМА) Содержащая хром более 1% и никель более 1% (например, марок 12ХДНАА, 20Х2НАА, 18Х2НАВА по ГОСТ 4543—71 и марки 14ХГСН2МА)	3. Всех марок		

7
S
$\Xi$
-
табл.
10
зент
жv
Ø
Пр

					Jun		
4. Содержащая никель более 1% (например, марок 20Х2Н4А, 20ХН3А, 18Х2Н4ВА по ГОСТ 4543—71)	4. Содержащая никель более Возможно обезуглероживание 1% (например, марок (производится при зака-20X2H4A, 20XH3A, лочном нагреве в ятмосфере 18X2H4BA по ГОСТ 4543— воздуха или продуктах сго годум в предуктах прания смеси углеводородов с	5563 HRC,	780	8'0	1,1-1,2	1,2	1,70
5. Прочая (например, марок 18 XIT, 30XIT по ГОСТ 4543—71)	воздухом)		089	0,8			1,70

 *1  Значения  $\sigma_{F \, {
m lim} \, b}^0$  установлены для зубчатых колес, для которых выполнены следующие условия:

1) толщина диффузионного слоя у переходной поверхности зубьев (0,28m-0,007m²)±0,2 мм; данную формулу применяют при расчете колес с модулями до 20 мм. Толщину диффузионного слоя рекомендуется определять на оттожженых шлифах как толщину слоя до структуры сердцевины;

2) твердость сердцевины зубьев, измеренная у их основания, находится в пределах 30...45 НRС3;

3) зерно исходного аустенита в диффузионном слое не грубее балла 5 по ГОСТ 5639-82.

Если хотя бы одно условие не выполняется, то следует приведенные в таблице значения  $\sigma_{F \, ext{lim} \, b}^0$  снижать на 25%.

Марку стали и технологию химико-термической обработки выбирают, исходя из требуемой прочности зубьев с учетом экономических факторов. Не всегда целесообразно выполнять условие 1, так как это может быть связано с дополнительными издержками производства

Значения о^рі_{ї в} установлены для условий плавного изменения напряжений на переходной поверхности и не касаются спектра нагружения, для которого характерно наличие ударных нагрузок. Если в спектр включены ударные нагрузки, то независимо от технологии химикотермической обработки предпочтительнее применять стали с высоким содержанием никеля.  *2  Для сталей с содержанием хрома болес 1% и никеля более 1%, закаливаемых после высокого отпуска, принимают  $\sigma_{F\, ext{lim}\, b}^0 = 950 ext{M}\Pi a$ , эсли высокий отпуск проводится в безокислительной среде

*3 Данные в знаменателе принимают, если не гарантировано отсутствие шлифовочных прижогов или острой щлифивочной сгупеньки на переходной поверхности. *4 Данные в знаменателе принимают для зубчатых колес, упрочненных дробью или роликами после шлифования переходной поверхности или шлифования с образованием ступеньки на переходной поверхности.

Максимальные значения  $I_d$  следует принимать при оптимальных режимах деформационного упрочнения.

 *5  Значения  $Y_d$  установлены для условий бескоррозийной электрохимической обработки, проводимой для удаления слод интенсивного обезуглероживания и слоя внутреннего окисления. Данные в знаменателе принимают в случае, если электрохимическая обработка проводится после шлифования переходной поверхности. Если электрохимической обработке подвергается зубчатое колесо со шлифивочной ступенькой на зубе, то принимают  $Y_d = 1$ .

 *6  Для передач особо высокой ответственности допускается устанавливать значения  $S_{
m F}$  в индивидуальном порядке.

ă
5
×
Ž
톭
ģ
6
њих зубчатъкх колес
E
итроцементовани
Ĕ
¥
골
Dog
¥
F для ни
튭
5
51
Y, Yan S
~
, , ,
Y , Y
0 F. lim h 1 1
G Flim h,
OB G Flim A, Y
empose of Film A, Y
AMETPOB G Elim A 1 Y
0 F lim h 1
inapamethos of $E_{\text{lim}} k$ , $Y$
e IIa
113. Определение параметров о $E_{\text{lim }b}$ , у

	Š		
	$S_F^{\prime}$ *5	1,55	1,55
	$Y_{d}^{*4}$	1,0	1,05 – 1,1
y _e *3 0,7 0,75		0,75	
	$\sigma_{F \lim b}^{0}$ *,	1000	750
	Твердость зубьев на поверхности	57 63 HRC ₃	57 63 HRC3
n allill I	Концентрация азота на по-	0,15-0,3	0,150,5
•	Концентрация*1 углерода на поверхности, %	0,7—1,0	0,7—1,0
	Легированная сталь	1. Хромомарганцевая, содержащая молибден, закаливаемая с нитроцементационного нагрева (например, марки 25XГМ по ГОСТ 4543—71)	2. Не содержащая молибден, закаливаемая с нитроцементационного нагрева (например, марки 25XГТ, 30XГТ, 35X по ГОСТ 4543—71)

*1 Концентрация углерода достигается при контроле и автоматическом регулировании углеродного потенциала карбюризатора и атмосферы для нагрева при закалке.

*2 Значения о $_{F\,\,\mathrm{lim}\,b}^{0}$  установлены для зубчатых колес, для которых выполнены следующие условия:

1) толщина диффузионного слоя у переходной поверхности зубьев 0,13m...0,2m, но не более 1,2 мм (применять нитроцементацию для зубчатых колес с модулем более 8 мм без специальных испытаний не рекомендуется). Толщину диффузионного слоя рекомендуется определять на отожженных шлифах как толщину слоя до структуры сердцевины;

2) твердость сердцевины зубьев, измеренная у их основания, должна быть 30 ... 45 НВС₃ 3) зерно исходного аустенита в диффузионном слое не грубее балла 6 по ГОСТ 5639—82.

Если хотя бы одно условие не выполняется, то следует приведенные в таблице значения  $\sigma_{F \lim b}^0$  уменышить на 25%. Наличие темной

*3 Данные установлены для случаев, когда гарантировано отсутствие шлифовочных прижогов или острой шлифовочной ступеньки на составляющей в структуре диффузионного слоя не допускается. Значения о $f_{
m lim}^0$  справедливы для плавного изменения напряжений на переходной поверхности и не касаются спектра нагружения, для которого характерно наличие ударных нагрузок. переходной поверхности. Если эти условия не гарантированы, то значение  $Y_{\!\!8}$  уменышают на 25%

*4 Данные в знаменателе принимают для зубчатых колес, упрочняемых дробью или роликами после шлифования переходной поверхности или шлифования с образованием ступеньки на переходной поверхности.

Максимальные значения Yd следует принимать при оптимальных режимах деформационного управления.

*5 Для передач особо высокой ответственности допускается устанавливать значения S_F в индивидуальном порядке.

114. Определение параметрово  $F_{\lim b}$  ,  $Y_p$   $Y_d$  и  $S_F$ для зубчатых колес из отожженной, нормализованной

и улучшен	и улучшенной стали, зубчатых колес, закаленных при объемном нагреве, и азотированных зубчатых колес	с, закаленных при	объемном нагреве,	и азотированных	зубчатых	колес	
Сталь	Способ термической или	Твердость зубьев	ь зубьев	$\sigma_{F \lim b^{*1}}^0$			
	химико-термической обработки	на поверхности	в сердцевине у основания	МПа	$Y_g^{*2}$	$Y_d^{*3}$	S F*4
<ol> <li>Углеродистая и легированная, содержащая углерод более 0,15% (например, марок 40, 45 по ГОСТ 1050—74, марок 40X, 40XH2MA, 18X2H4BA по ГОСТ 4543—71)</li> </ol>	Нормализация, улучшение	180 360 HB	60 HB	1,75 Нив	1,1	1,1-1,1 1,1-1,1	1,7
2.Легированная, содержащая углерод 0,4—0,55% (например, марок 40X, 40XH2M по ГОСТ 4543—71)	Объемная закалка с применением средств против обезуглеро-живания	45 55 HRC ₃	HRC,	280	0,9	1,05 - 1,15 1,1 - 1,2	1,7
3. Легированная, содержа- шая никеля более 1% (например, марок 40ХН, 50ХН, 40ХН2МА по ГОСТ 4543—71)	Объемная закалка при возможном обез- углероживании	45 55 HRC ₃	HRC,	200	0,8	$\frac{1,1-1,3}{1,1-1,2}$	1,7

4. Прочая легированная (например, марок 40X, 40XФА по ГОСТ 4543—71)	Объемная закалка при возможном обезуглероживании	45 55 HRC _s	. HRC,	460	0,8	1,1-1,3	1,7
5.Содержащая алюминий	Азотирование	700 950 HV	24 40 HRC ₃	290+	1	1,0	1,7
6. Прочая легированная		550 750 HV	24 40 HRC ₃	+12H ^c epau HRC ₃			

 *1  Значения  $\sigma_{F \, {
m lim} \, b}^0$  установлены для азотированных колес, для которых выполнены следующие условия:

1) толщина диффузионного слоя для зубчатых колес из сталей с алюминием равна 0,07m ... 0,1m, для зубчатых колес из прочих легированных сталей равна 0,1 т ... 0,13 т;

2) в структуре диффузионного слоя отсутствует замкнутая нитридная сетка є-фаза.

Если хотя бы одно условие не выполняется, то следует приведенные в таблице значения  $\sigma_{F\, ext{lim}\, b}^0$  уменьшить на 20%.

*2 Данные в знаменателе принимают, если не гарантировано отсутствие шлифовочных прижогов, микротрещин или острой шлифовочной ступеньки.

*3 Данные в знаменателе принимают для зубчатых колес, упрочняемых дробью или роликами после шлифования переходной поверхности или шлифования с образованием ступеньки на переходной поверхности.

Максимальные значения  $Y_d$  следует принимать при оптимальных режимах деформационного упрочнения.

*4 Для передач особо высокой ответственности допускается устанавливать значения  $S_F$  в индивидуальном порядке.

115. Определение параметров о  $F_{\lim b}$ ,  $Y_g$  и  $S_F$ для зубчатых колес, закаленных при нагреве ТВЧ

	SF. *7	1	1,7	1,7	1,7	1,7
	9* PX		1,0	1,0	1,05 – 1,1	1,05 – 1,1
•	Yg *5	•	0,75 0,55	0,8	1,0 0,8	1,0 0,8
	$\sigma_F^0 \lim b^{*1},$	МПа	870*2	730*3	089	580
	Гвердость зубьев	в сердцевине	28 35 HRC,	25 35 HRC,	25 35 HRC,	25 36 HRC ₃
F 11m b' - s' - u r	Твердост	на переходной поверхности	58 62 HRC,	54 60 HRC3	48 58 HRC3	48 58 HRC,
	Форма	закаленного слоя	Закаленный слой повторяет очертания впадины			
	Crans		1. Пониженной прокаливаемости, содержащая углерод 0,5—0,6% (например, марки 55ПП)	2. Специальная легированная, содержащая углерод 0,6% (например, марок 60XB, 60X, 60XH)	3. Легированная , содер- жащая углерод 0,35—0,5% и никель 1% и более (например, марок 40X, 40XH2MA по ГОСТ 4543)	<ol> <li>Прочая легированная, содержащая утлерод 0,35—0,45% (например, марок 40X, 35XМ по ГОСТ 4543)</li> </ol>

	1,7	1,7
	1,15 - 1,35 1,1 - 1,2	$\frac{1,2-1,4}{1,1-1,3}$
	1,0	
580*4	480*4	390
	48 55 HRC ₃	Незакаленной части зуба 200 300 НВ
Закаленный слой распространяется на все сечение зуба и	часть тела зубчатого колеса под основа- нием зуба и впа- дины	Закаленный слой обрывается на переходной поверхности или вблизи нес
5. Легированная, содержащая углерод 0,35—0,45% и никель 1% и более (например, марок 40XH, 40XH2MA по ГОСТ 4543)	6. Прочая легированная, содержащая углерод 0,35—0,45% (например, марок 40X, 35XM по ГОСТ 4543)	7. Углеродистая и леги- рованная

 *1  Значения  $\,^0_{F \, 
m lim} \, _b \,$  установлены для зубчатых колес, для которых выполнены следующие условия:

- 1) толщина закаленного слоя (до структуры сердцевины) у переходной поверхности  $0,2m \dots 0,4m$ ; 2) в структуре закаленного слоя отсутствует феррит.

Если хотя бы одно условие не выполняется, то следует приведенные в таблице значения  $\sigma_{
m F\,lim\,\it b}^{
m U}$  уменьшать на 30%.

- *2 Форма закаленного слоя, повторяющего очертания впадины между зубьями, достигается на зубчатых колесах с модулем 6 мм и более при глубинном индукционном электронагреве и охлаждения в быстродвижущемся потоке воды с самостпуском.
- *3 Форма закаленного слоя, повторяющего очертания впадины между зубьями, может быть получена при индукционном электронагреве токами двух частот.
- *4 Значения  $\sigma_{F \, 
  m lim}^{\, 
  u}$  установлены для зубчатых колес, для которых выполнены следующие условия:
- 1) толщина закаленного слоя (до структуры сердцевины) под основанием впадины между зубьями 0,5m ... 1,0m;
  - 2) в структуре закаленного слоя отсутствует феррит.

Если хотя бы одно условие не выполняется, следует приведенные в таблице значения  $\sigma_{F \, ext{lim} \, b}$  уменьшать на 25%.

- *5 Данные в знаменателе принимают, если не гарантировано отсутствие шлифовочных прижогов или острой шлифовочной ступеньки на переходной поверхности.
- *6 Данные в знаменателе принимают для зубчатых колес, упрочняемых дробью или роликами после шлифования переходногй поверхности или шлифования с образованием ступеньки на переходной поверхности.

Максимальные значения  $Y_d$ принимают при оптимальных режимах деформационного упрочнения.

 *7 Для передач особо высокой ответственности допускается устанавливать значения  $S_{
m F}$ в индивидуальном порядке.

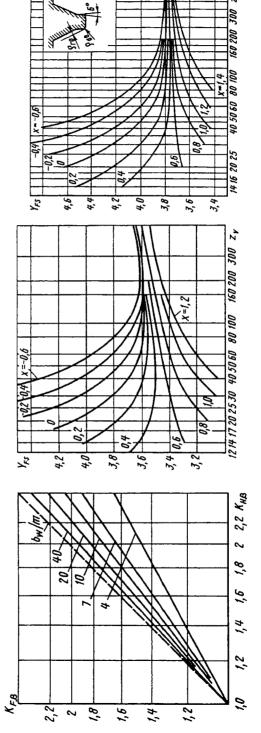



Рис. 53. Коэффициент, учитывающий форму зубьев, изготовленных инструментом с протуберанцем

Рис. 51. График для определения коэффициента  $K_{B}$ 

Рис. 52. Коэффициент, учитывающий форму зуба и концентрацию напряжений:  $\alpha_n = 20^\circ; \ h_a = 1; \ c^* = 0.25;$   $\rho_{ab} / m_a = 0.38$ 

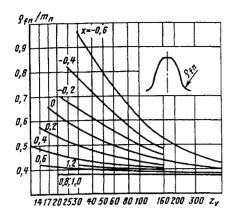



Рис. 54. Относительный радиус кривизны переходной кривой зубьев с исходным контуром по ГОСТ 13755—81:

$$\frac{\rho_{fn}}{m_n} = 0.417 + \frac{4.32}{z} - 10.34 \frac{x}{z} + 6.03 \frac{x^2}{z} - 0.071x + 0.036x^2$$

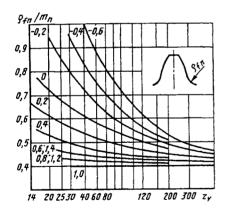



Рис. 55. Относительный радиус кривизны переходной кривой зубьев, нарезаемых зуборезным инструментом с протуберанцем:

$$\alpha = 20^{\circ}; \ h_a^* = 1; \ c^* = 0.4; \ \rho_{f0}^* = 0.4;$$

$$P_{Z0/m_n} = 0.05;$$

$$\rho_{fn} / m_n = 0.424 + \frac{7.27}{z} - \frac{16.8}{z}x + \frac{9.81}{z}x^2 - 0.019x - 0.004x^2$$

Расчет на прочность при изгибе максимальной нагоузкой.

1. Прочность зубьев, необходимая для предотвращения остаточных деформаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максимальной нагрузки:

$$\sigma_{F \max} \leq \sigma_{FP \max}$$
.

2. Расчетное местное напряжение  $(\sigma_{Fmax})$ , МПа, определяют по формуле

$$\sigma_{F \max} = \frac{F_{Ft \max}}{b_{m} m} K_{Fv} K_{F\beta} K_{F\alpha} Y_{FS} Y_{\beta} Y_{\varepsilon}.$$
(1)

Для упрощенных расчетов в формуле значения  $K_{Fv}K_{F\beta}K_{F\alpha}Y_{FS}Y_{\beta}Y_{\epsilon}$  берут из расчета на выносливость при изгибе (табл.111), поэтому можно воспользоваться зависимостью

$$\sigma_{F \max} = \sigma_F \frac{F_{Ft \max}}{F_F K_A} = \sigma_F \frac{K_{AS}}{K_A}.$$
 (2)

3. За исходную расчетную нагрузку  $(F_{F\max})$ , H, или  $T_{1(2)F\max}$ , H · м, принимают максимальную из действующих за расчетный срок службы нагрузок ударного или плавного характера — с числом повторных воздействий  $N_K < 10^3$ . Значения  $T_{I(2)F\max}$  определяют экспериментально динамическим расчетом или по отраслевым рекомендациям.

Если в циклограмме нагружения при расчете  $\sigma_F$  представлены все внешние нагрузки, то принимают  $K_A = 1$ .

4. Допускаемое напряжение ( $\sigma_{FP\ max}$ ), МПа, определяют раздельно для зубчатых колес по формуле

$$\sigma_{FP \max} = \frac{\sigma_{FSt}}{S_{FSt}} Y_{RSt} Y_X \frac{Y_{\delta St}}{Y_{\delta StT}}, \qquad (3)$$

где коэффициент  $Y_X$  определяют по табл. 111 (для варианта и условий, отраженных в табл. 116 и 117,  $Y_{RSt} = 1$  и отношение  $Y_{\delta St} / Y_{\delta StT} = 1$ ), а остальные параметры, входящие в формулу (3), определяют по табл. 117.

116. К расчету параметров, входящих в формулу (3)

Наименование параметра	Обозначение	Метод определения
1. Предельное напряжение зубьев при изгибе максимальной нагрузкой, МПа	σ _{FSt}	$\sigma_{FSt} = \sigma_{FSt}^0 \cdot Y_{gSt} \cdot Y_{dSt}.$ Для марок сталей и способов термообработки, не вошедших в табл. 117, допускается определять по приближенной зависимости $\sigma_{FSt} \approx \sigma_{F \lim b} \cdot Y_{N \max} \cdot K_{St}$
1.1. Базовое значение предельного напряжения зубьев при изгибе максимальной нагрузкой, МПа	$\sigma^0_{FSt}$	По табл. 117 в зависимости от марки стали и способа термической и химикотермической обработки.  1. В качестве $\sigma_{FSI}^0$ в табл. 117 использованы усредненные (медианные) значения предельного напряжения зубьев цилиндрических эвольвентных колес внешнего зацепления, установленные на основании испытаний при знакопостоянном ударном нагружении при числе повторных воздействий $N$ от 1 до $10^3$ и выраженные в форме максимальных местных напряжений.  2. Использование этих значений в расчете на статическую прочность при плавном приложении нагрузки и на малоцикловую выносливость (при числе циклов $N=10^2\dots 10^3$ ) обеспечивает дополнительный запас прочности против излома зубьев
1.2. Коэффициент, учитыва- ющий влияние шлифования переходной поверхности зуба	$Y_{gSt}$	Для зубчатых колес с переходной поверхностью зубьев, подвергнутой шлифованию после термообработки: сквозной закалки с нагревом ТВЧ и объемной закалкой: $Y_{gS}=0,95$ (черновой режим зубошлифования), $Y_{gS}=1,1$ (чистовой режим); цементации с закалкой: $Y_{gS}=1,0$ (черновой режим), $Y_{gS}=1,05$ (чистовой режим); нитроцементации с закалкой: $Y_{gS}=0,95$ (черновой режим), $Y_{gS}=0,95$ (честовой режим). При отсутствии шлифования $Y_{gS}=1$

Продолжение табл. 116

		Продолжение табл. 116
Наименование параметра	Обозначение	Метод определения
1.3. Коэффициент, учиты- вающий влияние деформа- ционного упрочнения	Y _{dSt}	Для зубчатых колес с деформационным упрочнением переходной поверхности зубьев: нешлифованной $Y_{dSt} = 0.95,$ шлифованной $Y_{dSt} = 1.$ При отсутствии деформационного упрочнения $Y_{dSt} = 1$
<ol> <li>1.4. Предельное значение коэффициента долговечности</li> </ol>	Y _{Nmax}	Устанавливается по табл. 111 для $N_{FE} = N_K = 10^3$ : $Y_{N \max} = 4 \text{ при } q_F = 6;$ $Y_{N \max} = 2,5 \text{ при } q_F = 9$
1.5. Коэффициент, учитывающий различие между предельными напряжениями, определенными при ударном однократном нагружении и при числе ударных нагружениий №=10 ³	$K_{S_l}$	Значения $K_{St}$ установлены на основе усреднения результатов испытаний при ударном нагружении зубчатых колес с различными вариантами термической и химико-термической обработки и числе нагружений $N$ от 1 до $10^3$ : $K_{St}=1,3  \text{при } q_F=6;$ $K_{St}=1,2  \text{при } q_F=9$
2. Коэффициент запаса прочности	S _{FSi}	$S_{FSt} = Y_z S_Y$ , где $Y_z$ определяют из расчета на выносливость по табл. 111. $S_Y$ зависит от вероятности неразрушения. Для марок сталей и способов термической и химико-термической обработки по табл. 117 и вероятности неразрушения $0.99\ S_Y=1.75$

117. Базовое значение предельного напряжения зубьев при изгибе максимальной нагрузкой

χ	***	11104.)	Твердость зубьев	зубьев	
рид термической или химико-термической обработки зубъев	лимико-термической и зубьев		на поверхности	в сердцевине у основания	σ ⁰ _{FSt} , ΜΠα
Цементация	Закалка с повторного нагрева	Легированная с содержанием никеля ≥1%	56 62 HRC, 56 60 HRC,	40 43 HRC 27 32 HRC	2800
	С непосредственного нагрева	Прочая легированная	54 60 HRC,	30 43 HRC	2000
Нитроцементация (с авто- матическим регулирова- нисм процесса)	Закалка с непосредствен-	Легированная с молибденом	56 60 HRC ₃	32 45 HRC	2500
Нитроцементация	ного нагрева	Прочая легированная	56 60 HRC ₃	27 45 HRC	2200
Азотирование		Легированная (без алюминия)	550 850 HV	24 30 HRC	1800
Закалка при нагреве ТВЧ	Сквозная до переходной поверхности	Легированная и углеродистая	48 52 HRC у основания 200 300 HB	2 HRC 00 300 HB	

Закалка при нагреве ТВЧ	Сквозная с охватом дна впадины	Легированная с содержанием никеля ≥1%	48 52 HRC ₃	RC,	2500
	Сквозная	Прочая легированная			2250
TRU	По контипу	Легированная с содержанием никеля более 1%	48 54 HRC ₃	24 30 HRC,	2200
Sakalika lipu nai pebe i b i		Прочая легированная			1800
Oka astron savontva		Легированная с содержанием никеля более 1%	48 52 HRC ₃	RC,	2500
CODEMICA SANCTINA		Прочая легированная			2250
Нормализация, улучшение		Легированная и углеродистая	200 350 HB	НВ	6,5 Ннв

Проектировочный расчет.

Проектировочный расчет на контактную выносливость. 1. Проектировочный расчет служит только для предварительного определения размеров и не может заменить проведения расчета на контактную выносливость по табл. 105.

Исходными данными для проектировочного расчета являются:

циклограмма нагружения;

параметр 
$$\psi_{bd} = \frac{b_w}{d_{w1}}$$

или 
$$\psi_{ba} = \frac{b_w}{d_w}$$
;

передаточное число u;

вид передачи — прямозубая или косозубая;

способ термической или химикотермической обработки и твердость рабочих поверхностей зубьев.

2. Ориентировочное значение диаметра начальной окружности шестерни  $(d_{w1})$ , мм, определяют по формуле

$$d_{w1} = K_d \sqrt[3]{\frac{T_{2H} \cdot K_{H\beta}}{\psi_{bd} \cdot \sigma_{HP}^2} \cdot \frac{u+1}{u^2}} \ ,$$

где  $K_d$  — вспомогательный коэффициент.

Для прямозубых передач  $K_d = 770$ , для косозубых и шевронных передач  $K_d = 675$ .

Ориентировочное значение межосевого расстояния  $(a_{\varpi})$ , мм, определяют по формуле

$$a_w = K_a(u+1) \sqrt[3]{\frac{T_{2H} \cdot K_{H\beta}}{u^2 \cdot \psi_{ba} \cdot \sigma_{HP}^2}},$$

где  $K_a$  — вспомогательный коэффициент. Для прямозубых передач  $K_a$ =495, для косозубых и шевронных передач  $K_a$ =430.

- 3. При переменных режимах нагружения исходную расчетную нагрузку ( $T_{2H}$ ), H-м, определяют в соответствии с приложением 3 ГОСТ 21354—87.
- 4. Коэффициент  $K_{H\beta}$ , учитывающий неравномерность распределения нагрузки по ширине венца, принимают в зависимости от параметра  $\psi_{hd}$  по графику на рис. 56.

 $\Pi$  р и м е ч а н и е . Коэффициенты  $\psi_{bd}$  и  $\psi_{bc}$  связаны зависимостью

$$\psi_{bd} = \frac{\psi_{ba}(u+1)}{2}.$$

5. В качестве допускаемого контактного напряжения  $\sigma_{HP}$  для прямозубой передачи принимают допускаемое контактное напряжение того зубчатого колеса (шестерни или колеса), для которого оно меньше.

Допускаемое контактное напряжение рассчитывают в соответствии с табл. 105, при этом следует принимать  $Z_R Z_v Z_L Z_X = 0,9$ .

6. В качестве допускаемого контактного напряжения  $\sigma_{HP}$  для косозубой и шевронной передачи принимают условное допускаемое напряжение, определяемое по формуле

$$\sigma_{HP}=0.45(\sigma_{HP1}+\sigma_{HP2}).$$

При этом должно выполняться условие

$$\sigma_{HP} < 1,23\sigma_{HP \min}$$

где  $\sigma_{HP}$  min — меньшее из значений  $\sigma_{HP1}$  и  $\sigma_{HP2}$ .

В противном случае принимают  $\sigma_{HP} = 1,23 \ \sigma_{HP} \ \mathrm{min}.$ 

Проектировочный расчет на выносливость зубьев при изгибе. 1. Проектировочный расчет служит только для предварительного определения размеров и не может заменить проведение расчета на выносливость зубьев при изгибе по табл. 111.

Исходными данными для проектировочного расчета являются:

. циклограмма напряжения;

параметр 
$$\psi_{bd} = \frac{b_w}{d_{wl}}$$
 или межосевое

расстояние  $a_m$ ;

число зубьев шестерни  $z_1$ ;

угол наклона зуба  $\beta = 0$  или  $\beta \neq 0$ ;

коэффициент осевого перекрытия

 $\varepsilon_{\beta} > 1$  или  $\varepsilon_{\beta} \le 1$ ;

способ термической или химикотермической обработки и твердость рабочих поверхностей зубьев.

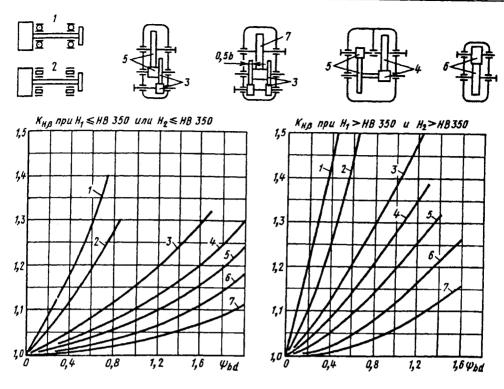



Рис. 56. График для определения ориентировочных значений коэффициента  $K_{Hp}$ . Кривые 1-7 соответствуют передачам, указанным на схемах

- 2. Расчет производится для шестерни.
- 3. Ориентировочное значение модуля (m), мм, при заданном параметре  $\psi_{bd}$  вычисляют по формуле

$$m = K_m \sqrt[3]{\frac{T_{2F} \cdot K_{F\beta}}{uZ_1^2 \psi_{bd} \cdot \sigma_{FP1}}} Y_{FS1},$$

где  $K_m$  — вспомогательный коэффициент. Для прямозубых передач  $K_m = 14$ ; для косозубых ( $\epsilon_{\rm p} > 1$ ) и шевронных передач  $K_m = 11,2$ ; для косозубых ( $\epsilon_{\rm g} \le 1$ ) передач  $K_m = 12,5$ .

Ориентировочное значение модуля (m), мм, при заданном межосевом расстоянии  $a_w$  вычисляют по формуле

$$m = K_{ma} \frac{T_{2F}(u+1)Y_{FS1}}{ua_w \cdot b_w \cdot \sigma_{FP1}}$$

где  $K_{ma}$  — вспомогательный коэффициент.

Для прямозубых передач  $K_{ma} = 1400;$  для косозубых передач ( $\epsilon_{p} \leq 1$ )  $K_{ma} = 1100;$ 

для косозубых ( $\varepsilon_{\beta} > 1$ ) и шевронных передач  $K_{ma} = 850$ .

- 4. Исходную расчетную нагрузку  $(T_{1F})$ , Н м, при переменных нагрузках определяют в соответствии с указаниями приложения 3 ГОСТ 21354—87.
- 5. Коэффициент  $K_{F_0}$ , учитывающий неравномерность распределения нагрузки по ширине венца, принимают в зависимости от параметра  $\psi_{bd}$  по графику рис. 57.
- 6. Допускаемое изгибное напряжение (σ_{FP}), МПа, определяют по формуле

$$\sigma_{FP} = 0.4 \, \sigma_{F \lim b}^0 \, Y_N \, ,$$

где  $\sigma_{F \, lim \, b}^{0}$  — базовый предел выносливости зубьев, определяемый в зависимости от способа термической или химикотермической обработки по табл. 112—115.

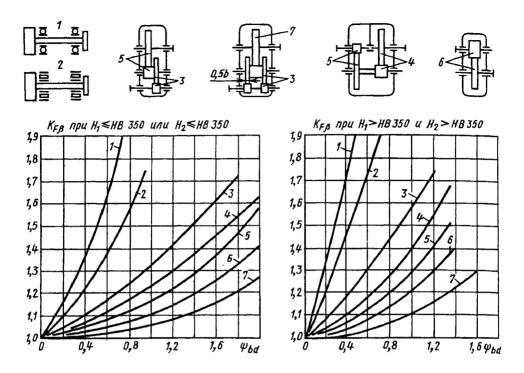



Рис. 57. График для определения ориентировочных значений коэффициента  $K_{f\beta}$ . Кривые 1-7 соответствуют передачам, указанным на схемах

Коэффициент долговечности  $Y_N$  определяют в соответствии с указаниями табл. 111.

 $\Pi$  р и м е ч а н и е . Для реверсивных зубчатых передач  $\sigma_{FP}$  уменьшить на 25%.

7. Коэффициент, учитывающий форму зуба  $Y_{FS}$ , определяют по графику (рис. 52 или 53).

Уточненный расчет допускаемых напряжений для косозубых и шевронных передач.

Для косозубых и шевронных передач в качестве допускаемого контактного напряжения  $\sigma_{HP}$  принимают условное допускаемое контактное напряжение, вычисляемое по формуле

$$\sigma_{HP} = \sqrt{\frac{1}{\varepsilon_{\alpha}} (\varepsilon_{al} \delta_{I} \sigma_{HPI}^{2} + \varepsilon_{a2} \delta_{II} \delta_{HPII}^{2})}.$$
 (4)

Величины, входящие в формулу (4), определяют по табл. 118.

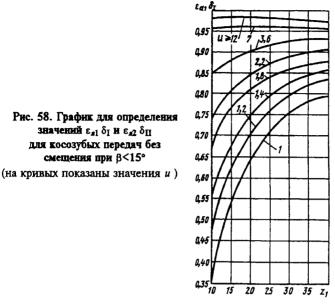
Примечание. Для передач без смещения значения  $\epsilon_{a1}$   $\delta_1$  и  $\epsilon_{a2}$   $\delta_2$  можно определить по графикам (рис. 58—60).

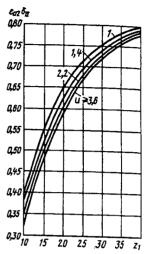
Уточненный расчет прямозубых передач на прочность при изгибе. Расчет производится для двух случаев зацепления отдельно для зубьев шестерни и колеса.

Первый случай соответствует двухпарному зацеплению ( $Y_{\epsilon}$ =0,5), когда часть полной нагрузки 0,5 $F_{IF}K_{F\alpha}$  приложена к вершине зуба a.

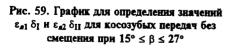
Второй случай соответствует однопарному зацеплению, когда полная нагрузка  $F_{tF}$  ( $Y_{\epsilon}=1$ ,  $K_{F\alpha}=1$ ) приложена к верхней граничной точке u.

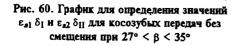
Определяют произведения

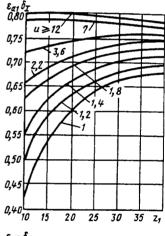

соответствующие этим двум моментам зацепления. При

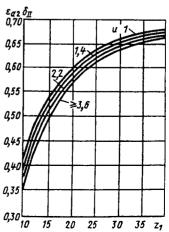

$$0.5Y_{ESa}$$
  $F_{tF}$   $K_{Fa} > Y_{ESu}$   $F_{tF}$ 

расчетные напряжения  $\sigma_{F1}$  и  $\sigma_{F2}$  рассчитывают для первого случая зацепления (табл. 119), при обратном соотношении — для второго случая зацепления (табл. 120).


# 118. Расчет параметров, входящих в формулу (4).


Параме	гры	Метод определения		
Коэффициент, учитые ческие параметры зацрых зависит нагрузо передачи в зоне I, г. шестерни зацепляются колеса (δ _I ), и в зоне II ев колеса зацепляются шестерни (δ _{II} )	епления, от кото- чная способность де головки зубьев с ножками зубьев , где головки зубь-	По номограмме (рис. 61) $\delta_{\rm I} = 1 + 0.5 K_{\rm I} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II} - 0.5 K_{\rm II$	$-0.5 \frac{K_{\rm I}}{u} - \frac{K_{\rm I}^2}{3u};$ $-0.5 \frac{K_{\rm II}}{u} - \frac{K_{\rm II}^2}{3u},$	
Допускаемое контактное напряжение, МПа	для зоны I Ф <i>нр</i> і для зоны II Ф <i>нр</i> іі	вспомогательного парам собой отношение боль: $\sigma_{HP1}$ и $\sigma_{HP11}$ к меньшем допустимого значения $\phi$ . Для твердости $H_1 \le 350$ при $v < 15$ м/с, $\phi_P = 15$ для твердости $H_1 > 350$ при $v < 9$ м/с, $\phi_P = 15$ при $v < 9$ м/с, $\phi_P = 15$ при $v > 9$ м/с, $\phi_P = 15$ при $v > 9$ м/с, $\phi_P = 15$ при $v > 9$ м/с, $\phi_P = 15$ противном случае бол	из двух значений: пускаемые контактные напряжения для шестерни и колеса, определяемые по формуле, принимать меньшее из двух значений: $\sigma_{HP1}$ 105.	
Коэффициент $\mu_k$ увелиого контактного на верхностей головок з колеса относительно полюса	гряжения для по- убьев шестерни и	$\mu_k=1,64\!\!\!\sqrt{\frac{200}{H_{HB}}}.$ При $H_{HB}<200$ НВ принимают $\mu_k=1,6$		













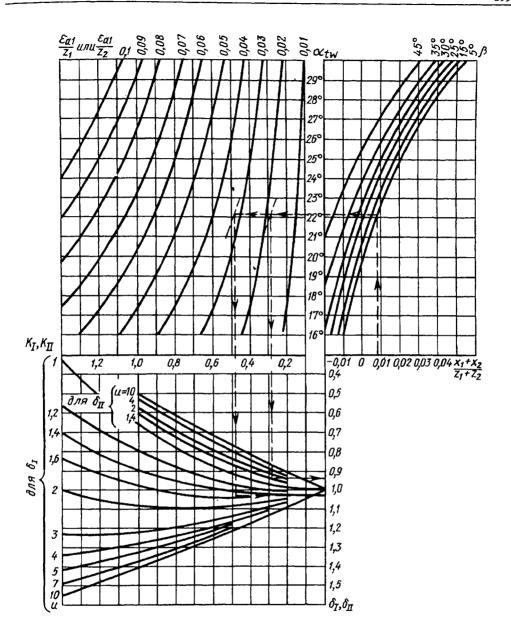




Рис. 61. График для определения коэффициентов  $\delta_I$  и  $\delta_{II}$ 

Пример. Дано  $z_1=30;\ z_2=45;\ x_1=0.5;\ x_2=0;\ \beta=10^\circ;\ \epsilon_{a1}=0.96.$  По графику определяем при  $\frac{x_1+x_2}{z_1+z_2}=0.0067\alpha_{tw}=22.1^\circ.$  Определяем  $\frac{\epsilon_{a1}}{z_1}=0.032$  и  $\frac{\epsilon_{a2}}{z_1}=0.019.$  Далее по графику определяем при u=1.5 и  $\frac{\epsilon_{a1}}{z_1}=0.032$   $\delta_1=1.03$  и при u=1.5 и  $\frac{\epsilon_{a2}}{z_1}=0.019$   $\delta_{11}=0.93$ 

### 119. Значения параметров при приложении нагрузки к вершине зуба Метол определения Параметры $K_{F\alpha a1} = \frac{2c_a'}{c_a' + c_a'} \left[ 1 + \frac{0.78b_w \cos \alpha_{fw} c_v'}{F_{AF} K_{IF} K_{IF}} \times \right]$ 1. Коэффициент, учитываюший распределение нагрузки между зубьями, $K_{Faal}$ $\times \sqrt{f_{pb1}^2 + f_{pb2}^2}$ В первом приближении можно принимать $K_{F\alpha a1} = 0,932 + 0,11 \frac{\sqrt{f_{pb1}^2 + f_{pb2}^2}}{\underline{F_{tF}}}$ 1.1. Удельная нормальная же- $\frac{1}{c_a'} = \frac{1}{c_a} + \frac{1}{c_p},$ сткость пары зубьев при контакте вершины зуба шестерни $c'_{a}$ H/(MM·MKM) $\frac{1}{c'} = \frac{1}{c} + \frac{1}{c},$ То же , для пары зубьев, отстоящей от первой на расстоянии шага зацепления, $c'_{t_0}$ $H/(MM\cdot MKM)$ Для зубьев с исходным контуром по ГОСТ 13755-81 опре-1.1.1. Удельная нормальная жесткость зуба щестерни при деляют из формулы контакте его вершины $\frac{1}{x} = 10^{-2} \left( 9,671 - 7,521x + 1,626x^2 - 0,041x^3 - 1 \right)$ Н/(мм·мкм); то же, для сопряженного зуба колеса $c_p$ $-3.878\xi + 4.662x\xi - 0.457x^2\xi + 1.557\xi^2 -$ Удельная нормальная жесткость зуба шестерни при $-0.734x\xi^{2} - 0.224\xi^{3} - 3.440h_{...} + 2.674xh_{...}$ контакте в его нижней граничной точке $c_n$ , H/(MM·MKM); $-0.515x^2h_{m}-2.180\xi h_{m}-0.737x\xi h_{m}+$ то же, для сопряженного $+0.338\xi^{2}h_{m}+2.042h_{m}^{2}-0.298xh_{m}^{2}+$ зуба колеса с,, $+0.529\xi h_{m}^{2}-0.573h_{m}^{3}$ для зубьев с модификацией ножек при c = 0.4, $P_m = 0.05m$ и $h_a^* = 1$ определяют из формулы $\frac{1}{2} = 10^{-2} \left( 12,280 - 6,077x + 0,886x^2 - 0,033x^3 - 4,489 \xi + \right)$

$$\begin{split} &\frac{1}{c}=10^{-2}\left(12,280-6,077x+0,886x^2-0,033x^3-4,489\,\xi+\right.\\ &+3,800\,x\,\xi-0,214x^2\xi+1,113\,\xi^2-0,599\,x\,\xi^2-0,079\xi^3-\\ &-10,207h_m+1,536xh_m-0,242x^2h_m+1,250\,\xi\,h_m-0,516x\xi h_m-\\ &-0,138\,\xi^2h_m+4,389h_m^2-0,008xh_m^2-0,155\,\xi h_m^2-0,807h_m^3\right); \end{split}$$
 в этих формулах

 $\xi = \lg z$ 

. . .

Параметры	Метод определения
	При расчете $c_a$ в формулы подставляют величины $z=z_1$ , $x=x_1$ , $h_m=h_{ma1}=0$ ; при расчете $c_p$ - $z=z_2$ , $x=x_2$ , $h_m=h_{mp2}$ ; при расчете $c_v$ - $z=z_1$ , $x=x_1$ , $h_m=h_{mv1}$ ; при расчете $c_v$ - $z=z_2$ , $x=x_2$ , $h_m=h_{mu2}$
1.1.1.1. Расстояние $h_m$ в долях модуля, измеренное по радиусу зубчатого колеса от вершины зуба до контактной линии	$h_{ma1} = 0;$ $h_{mp2} = \left(\frac{1}{\cos \alpha_{a2}} - \frac{1}{\cos \alpha_{p2}}\right) \frac{d_{b2}}{2m};$ $h_{mv1} = \left(\frac{1}{\cos \alpha_{a1}} - \frac{1}{\cos \alpha_{v1}}\right) \frac{d_{b1}}{2m};$ $h_{mu2} = \left(\frac{1}{\cos \alpha_{a2}} - \frac{1}{\cos \alpha_{u2}}\right) \frac{d_{f2}}{2m}$
1.1.1.1. Углы профиля: для вершины зуба шестерни $\alpha_{a1}$ для вершины зуба колеса $\alpha_{a2}$ для нижней активной точки профиля зуба колеса $\alpha_{\rho2}$ для нижней граничной точки однопарного зацепления зуба шестерни $\alpha_{v1}$ для верхней граничной точки однопарного зацепления зуба колеса $\alpha_{u2}$	$\alpha_{a1} = \arccos\left(\frac{d_{b1}}{d_{a1}}\right)$ $\alpha_{a2} = \arccos\left(\frac{d_{b2}}{d_{a2}}\right)$ $\alpha_{p2} = \arctan\left[\operatorname{tg} \alpha_{\operatorname{tw}} - \frac{z_1}{z_2} \left(\operatorname{tg} \alpha_{a1} - \operatorname{tg} \alpha_{w}\right)\right]$ $\alpha_{v1} = \arctan\left(\operatorname{tg} \alpha_{a1} - \frac{2\pi}{z_1}\right)$ $\alpha_{u2} = \arctan\left(\operatorname{tg} \alpha_{p2} + \frac{2\pi}{z_2}\right)$
2. Коэффициент формы зуба при приложении нагрузки к вершине зуба шестерни $Y_{FSa1}$	По табл. 111 или формулам: для зубьев с исходным контуром по ГОСТ 13755—81 $Y_{FS} = 7,106 - 5,688x + 0,687x^2 - 0,100x^3 - \\ - 3,737\xi + 4,461x\xi - 0,278x^2\xi + 1,221\xi^2 - \\ - 0,862x\xi^2 - 0,115\xi^3 - 1,163h_m + 0,497xh_m - \\ - 0,012x^2h_m - 0,579\xi h_m - 0,161x\xi h_m + \\ + 0,170\xi^2h_m + 0,192h_m^2 - 0,078xh_m^2 - \\ - 0,127\xi h_m^2 + 0,221h_m^3;$

Параметры	Метод определения
	для зубьев с модификацией ножек при $c^* = 0,4, P_{ro} = 0,05m$ и $h_a^* = 1$
	$Y_{FS} = 9,003 - 4,814x + 0,285x^2 - 0,051x^3 - \\ - 5,908\xi + 3,646x\xi^2 - 0,097x^2\xi + 2,231\xi^2 - \\ - 0,687x\xi^2 - 0,282\xi^3 - 1,657h_m + 0,412xh_m - \\ - 0,005x^2h_m - 0,182\xi h_m - 0,137x\xi h_m + \\ + 0,079\xi^2h_m + 0,232h_m^2 - 0,041xh_m^2 - \\ - 0,125\xi h_m^2 + 0,162h_m^3 ; \\ \text{при } z = z_1, \ x = x_1, \ h_m = h_{ma1} = 0.$
	B этих формулах $\xi = \lg z$

Примечание. При расчете зуба колеса везде слово "шестерня" заменить на "колесо", а "колесо" на "шестерня" и соответственно индекс 1 на 2 и 2 на 1.

120. Значения параметров при расчете однопарного зацепления

Параметры	Метод определения
Коэффициент, учитывающий распределение нагрузки между зубьями, $K_{Faul}$	$K_{F\alpha u1} = 1$
Коэффициент формы зубьев при приложении нагрузки в верхней граничной точке однопарного зацепления шестерни $Y_{FSu1}$	По табл. 119 при $z=z_1,\ x=x_1,\ h_m=h_{mu1}$ или по номограмме на рис. 62
Расстояние в долях модуля, измеренное по радиусу шестерни от вершины зуба до контактной линии, $h_{mu1}$	$h_{mu1} = \left(\frac{1}{\cos\alpha_{a1}} - \frac{1}{\cos\alpha_{u1}}\right) \frac{d_{b1}}{2m}$
Угол профиля для верхней граничной точки однопарного зацепления зуба шестерни α _{и1}	$\alpha_{u1} = \operatorname{arctg}\left[\operatorname{tg}\alpha_{w} - \frac{z_{2}}{z_{1}}\left(\operatorname{tg}\alpha_{a2} - \operatorname{tg}\alpha_{w}\right) + \frac{2\pi}{z_{1}}\right]$

 $\Pi$  р и м е ч а н и е . При расчете зуба колеса везде слово "шестерня" заменить на "колесо" и заменить индекс 1 на 2 и 2 на 1.

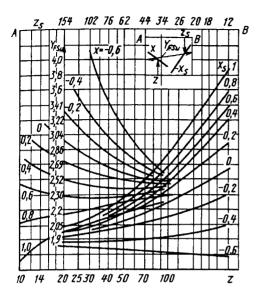



Рис. 62. Коэффициент, учитывающий форму зуба и концентрацию напряжений при приложении нагрузки в верхней граничной точке  $Y_{FSu}$ :

z и x — параметры рассчитываемого зубчатого колеса;

 $z_S$  и  $x_S$  — параметры сопряженного зубчатого колеса

## РАСЧЕТ НА ПРОЧНОСТЬ ЗУБЧАТЫХ КОНИЧЕСКИХ ПЕРЕДАЧ

Расчет конических колес ведут по среднему сечению, находящемуся на середине

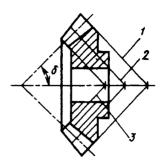



Рис. 63. Дополнительные конусы: 1 — внешний; 2 — средний; 3 — внутренний

длины зубьев. При этом конические колеса заменяют эквивалентными цилиндрическими; их диаметр начальной окружности и модуль равны диаметру начальной окружности и модулю в среднем сечении зуба конических колес, а профиль зубьев соответствует профилю приведенных колес, полученных разверткой дополнительного конуса на плоскость (рис. 63).

Из пары сцепляющихся зубчатых колес рассчитывают меньшее (шестерню).

Упрощенный метод расчета приведен в табл. 121—125.

Обозначения, кроме особо оговоренных, те же, что и в табл. 66.

121. Коэффициент формы зуба у для прямозубых колес

Z _{πp}	14	15	16	17	18	19	20
у	0,088	0,092	0,094	0,096	0,098	0,100	0,102
Z _{np}	21	23	25	27	30	34	38
у	0,104	0,106	0,108	0,111	0,114	0,118	0,122
Z _{пр}	43	50	60	75	100	150	300
у	0,126	0,130	0,134	0,138	0,142	0,146	0,150

степени точности
ž
Ļ
RICH
k
коэффициент
Скоростной
122.

	9	0,50		k	260	170
	5	0,55		Материал	Сталь Чугун	Текстолит Сталь
	4	09'0	ения <i>к</i>	Деталь		
ı	3	0,67	123. Коэффициент давления К	7	Шестерня Колесо	Шестерня Колесо
	2	0,75	123. Koэ	ų	029	470
	_	_		Материал	Сталь	Чугун
	U, M/C	$k_v$		Деталь	Шестерня Колесо	Шестерня Колесо

124. Допускаемые напряжения для зубьев колес

		Me	Расчетные значения механических характеристик	э істик	Дог	тускаемые	Допускаемые напряжения, МПа	іия, МПа
Материал	Термическая обработка	Предел прочности	Предел выносливости	Твердость	изгиб	изгиба $\sigma_{FP}$ при модуле $m_e$	модуле	контакт-
		σ _в , ΜΠа	при изгибе о.1, МПа		9 ой	до 6 7—10 12—13	12—13	Hble of Hp
Crans 45	Нормализация	600—750	250—340	170 217 HB	140	135	130	500
	Улучшение	650-900	320-400	220 250 HB	180	170	165	009
	Закалка по сечению	>1000	400500	38 48 HRC	l	1	1	800
	Закалка по профилю с выкружкой	1	ı	Поверхность 48 55 НRC	260	250	240	950
Сталь 50Г	Закалка	950—1000	420—500	28 33 HRC	240	230	220	750

Сталь 40Х	Улучшение Закалка по сечению Закалка по профилю с выкружкой	800—1000 1500—1650 —	360—480 550—650 500—560	230 260 НВ 45 50 НКС Поверхность 50 55 НКС	220 380 320	210 360 300	220 350	650 900 950
Сталь 20Х		>800	480—560	Поверхность 56 62 НRC	320	300	280	1050
Crans 18XIT	Цементация и закалка	1100—1300	009—005≈	Поверхность 56 62 НКС, сердцевина 33 НКС	400	380	350	1100
Crans 12XH3		006<	∞500—600	Поверхность 56 62 HRC	350	330	300	1050
Чугун СЧ 15	ļ	>150	l	160 229 HB	50	46	44	200
Чутун СЧ 20	ŀ	>210	110—130	170 241 HB	09	55	52	009
Чугун СЧ 30	t	>320	140-150	187 255 НВ	80	75	70	750
Текстолит	-	82/28	_	30 34 HB		_	40—50	100

Примечания: 1. Значения напряжения изгиба для колес с поверхностной закалкой ТВЧ соответствуют хорошо отработанному процессу термообработки. В ином случае напряжения необходимо снижать на 15%.

- 2. В случае сквозной закалки (ТВЧ) зубьев малых модулей можно пользоваться значениями допускаемых напряжений при закалке профиля с выкружкой.
- 3. При поверхностной термообработке, не охватывающей выкружку, допускаемые напряжения изгиба берут по механическим характеристикам сердцевины.

125. Формулы упрощенного метода расчета конических колес

Расчетные формулы
$\Sigma = 90^{\circ}$ $u = \frac{z_2}{z_1}$ $\left. \right\}$ Исходные данные
$\Psi = \frac{b}{R}$
$z_{\text{np}} = \frac{z_1}{\cos \delta_1}$
$v = \frac{\pi m_e (1 - 1.5 \psi) z_1 n_1}{60 \cdot 1000}$
$\sigma_F = \frac{6,35M_{\text{Kp}}}{m^2(1-0.5\psi)^2 z_1 y_1 b k_v} \le \sigma_{FP}$
$\sigma_H^* = \frac{k}{z_1 m_e (1 - 0.5 \psi)} \times \sqrt{\frac{\sqrt{u^2 + 1}}{u + b}} \frac{M_{\kappa p}}{k_v} \le \sigma_{HP}$

^{*} При определении контактного напряжения колеса вместо  $z_1$  подставлять  $z_2$  .

#### ЧЕРВЯЧНЫЕ ПЕРЕЛАЧИ

## Общие сведения и основные параметры

**Термины и обозначения.** При буквенных значениях, общих для червяка и колеса (d, d_a, M и др.), червяк отличается индексом 1, а колесо индексом 2.

Термины и обозначения приведены в табл. 126. Определение терминов см. ГОСТ 18498—89.

**Характеристика передачи.** Ведущим звеном обычно является червяк, а в ускоряющих передачах — колесо.

Основное достоинство передач — плавность и относительная бесшумность;

недостаток передач — низкий КПД.

Не рекомендуется, чтобы передаваемая

мощность червячных передач превышала 60 кВт. Преимущественно принимают передаточное число  $u=10 \div 80$ .

Смещение (корригирование) осуществляют у червяка и главным образом с целью получения стандартного межосевого расстояния; смещением удается варьировать числа зубьев колеса при одинаковом межосевом расстоянии с точностью  $\pm 2$  единицы. Без смещения делительное межосевое расстояние передачи a=0,5 ( $d_1+d_2$ ), т. е. делительные диаметры червяка и червячного колеса соприкасаются.

В червячных передачах необходимо предусматривать возможность регулирования при сборке положения колеса вдоль его оси для совмещения с осевой плоскостью червяка.

126. Термины и обозначения параметров червячных передач

Термин	Обозначение
Делительное межосевое расстояние червячной передачи	а
Межосевое расстояние	$a_{w}$
Длина нарезанной части червяка	$b_{\mathbf{i}}$
Ширина венца червячного колеса	•
	$b_2$
Радиальный зазор червячной передачи	c
Средний диаметр червяка (червячного колеса)	d
Делительный диаметр червяка (червячного колеса)	d
Диаметр верщин витков червяка (зубьев червячного колеса)	$d_a$
Наибольший диаметр червячного колеса	d _{ae2}
Основной диаметр червяка	$d_{\dot{b}}$
Диаметр впадин червяка (червячного колеса)	$d_f$
Начальный диаметр червяка (червячного колеса)	$d_w$
Диаметр измерительного ролика	D
2	_
Высота витка.	$h_{1}$
Высота зуба червячного колеса	$h_2$
Высота делительной головки витка	$h_{a1}$
Высота до хорды витка	$\bar{h}_{a1}$
Высота начальной головки витка	$\overline{h}_{aw1}$
Высота делительной головки зуба червячного колеса	$h_{a2}$
Высота до хорды зуба червячного колеса	$\bar{h}_{a2}$
Высота начальной головки зуба колеса	$\overline{h}_{aw2}$
Глубина захода червячной передачи	$h_w$
Высота делительной ножки витка	$h_{f1}$
Высота делительной ножки зуба червячного колеса	$h_{f2}$
Граничная высота витка	$h_{I1}$
Граничная высота зуба червячного колеса	h ₁₂

Термин	Обозначение
Расчетный модуль червяка (червячного колеса)	m
Размер червяка по роликам	$M_1$
Расчетный шаг червяка	p
Расчетный шаг зубьев червячного колеса	P
Ход витка	$p_{z1}$
Коэффициент диаметра червяка	q
Расчетная толщина витка	$s_1$
Толщина по хорде витка	<u>-</u> \$1
Делительная толщина по хорде витка	
Передаточное число.	u
Коэффициент смещения червячного колеса	x
Число заходов червяка	$z_1$
Число зубъев червячного колеса	z ₂
Нормальный угол профиля впадины червяка	α _{nS}
Нормальный угол профиля витка	$\alpha_{nT}$
Угол профиля производящей поверхности	$\alpha_0$
Осевой угол профиля витка	α _x
Угол профиля эвольвентного червяка	α _n
Угол подъема линии витка	γ
Делительный угол подъема линии витка	γ
Угол подъема линии вершин угла	Υ a
Основной угол подъема линии витка червяка	γ _b
Начальный угол подъема линии витка	γ _w
Радиус кривизны переходной кривой червяка	ρ

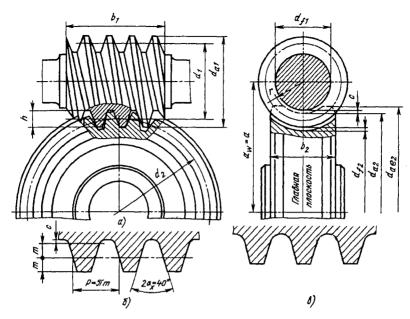



Рис. 64. Червячная передача:

a — схема;  $\delta$  — осевое сечение архимедова червяка; s — осевое сечение червяка с вогнутыми боковыми поверхностями

**Основные параметры.** Схема и основные элементы червячной передачи показаны на рис. 64.

Модули *т* цилиндрических червячных передач в мм, определяемые в осевом сечении червяка, приведены ниже:

1-й ряд: 1,0; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0;

2-й ряд: 1,5; 3,0; 3,5; 6,0; 7,0; 12,0;

3-й ряд: 1,125; 1,375; 1,75; 2,25; 2,75; 4,5; 9,0; 11,0; 14,0; 18,0; 22,0.

 $\Pi$  р и м е ч а н и е . 1-й ряд следует предпочитать 2-му.

Модули 3-го ряда допускается применять в технически обоснованных случаях для нормализованных редукторов общемашиностроительного применения.

ГОСТ 19672 предусматривает m < 1 мм. Коэффициенты диаметра червяка q:

1-й ряд: 6,3; 8; 10; 12,5; 16,0; 20,0; 25,0; 2-й ряд: 7,1; 9; 11,2; 14; 18; 22,4.

1-й ряд следует предпочитать 2-му.

По ГОСТ 19672—74 допускается применять q = 7,5 и q = 12,0. Коэффициент диаметра червяка q = 25,0 по возможности не применять.

Червяки. ГОСТ 19036—94 распространяется на ортогональные цилиндрические червячные передачи с червяками: архимедовым (ZA), эвольвентным (ZL), с прямолинейным профилем витка (ZN), образованными конусом (ZK) и тором (ZT) и устанавливает исходный червяк, исходный производящий червяк (фрезу) и радиальные зазоры червячной передачи с модулем от 1 до 25 мм.

Стандарт не распространяется на делительные червячные передачи и другие передачи, к которым предъявляются специальные требования.

Форма и размеры витков исходного червяка и исходного производящего червяка и радиальные зазоры червячной передачи в осевом сечении этих червяков, содержащем межосевую линию червячной передачи, должны соответствовать указанным на рис 65.

Значения коэффициентов параметров витков исходного червяка и исходного производящего червяка приведены в табл. 126а и 1266.

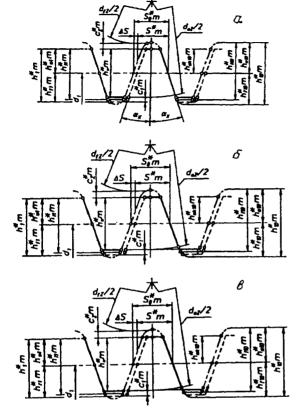



Рис. 65. Контуры витков исходных червяков и исходных производящих червяков:

a - ZA;  $\delta - ZL$ ; ZN; ZK;  $\epsilon - ZT$ 

Обозначения контуров витков:

——— — совпадающих исходного червяка и исходного производящего червяка;

— — — — исходного червяка;— — — — исходного производя-шего червяка.

### Значения углов профиля:

- в осевом сечении витка червяка ZA α_x;
- в нормальном сечении зуба рейки, сопряженной с червяком  $ZL \alpha_n$ ;
- в нормальном сечении витка червяка  $ZN1 \alpha_n T$
- в нормальном сечении впадины червяка ZN2 α_{ns};
- в нормальном сечении винтовой линии витка червяка ZN3 α_n;
- производящего конуса для червяков ZK1, ZK2, ZK3 и ZK4 должны соответствовать 20°;
  - в нормальном сечении витка червяка ZT1 и ZT2 должны соответствовать 22°.

Примечание. Допускается в технически обоснованных случаях (например, для локализации пятна контакта) корректировать угол профиля исходного производящего червяка.

Значения радиуса скругления  $ho_{k_{10}}$  кромки производящей поверхности, образующей боковые поверхности витков исходного производящего червяка, должны находиться в пределах от 0.2m до 0.3m

		Числовое значе	ение или формул	а для червяков
Коэффициенты	Обозначение	ZA, ZK, ZN	ZL	ZT
Высоты витка	h ₁ *		$2,0+c_1^*$ $1,0$	
Высоты головки витка Высоты ножки витка	$h_{a1}$ $h_{c1}^*$		$1,0 + c_1^*$	
Граничной высоты витка, не менее Глубины захода	$h_{1}^{*}$ $h_{a1}^{*}$ $h_{f1}^{*}$ $h_{l1}^{*}$ $h_{w}^{*}$		2,0 2,0	
Радиального зазора у по- верхности впадин: червяка	c ₁ * c ₂ *		0,2	
червячного колеса	$c_2^*$		0,2	
Расчетной толщины витка	s*	0,5π	0,45π	0,35π
Радиуса кривизны пере- ходной кривой	$ ho_{f1}^{*}$	0,3	0,	2
Радиуса образующей дуги окружности шлифовального круга	ρ*	_	-	4,8—6,0

126 а. Значения коэффициентов параметров витков исходного червяка

### Примечания:

- 1. Допускается изменять коэффициент расчетной толщины для червяков:
- ZA, ZL, ZK и ZN в пределах от 0.4 до  $0.5\pi$ ;
- ZT в пределах от  $0.3\pi$  до  $0.38\pi$ .
- 2. В обоснованных случаях допускается изменение коэффициента радиального зазора у поверхности впадин червячного колеса в пределах от 0,15 до 0,3.
- 3. Для эвольвентных червяков и червяков с делительным углом подъема  $\gamma$  не менее 26,565° принимать  $c_1$ = 0,2 cos  $\gamma$ .
- 4. Обязательное утонение расчетной толщины витка исходного червяка Δs по сравнению с расчетной толщиной витка исходного производящего червяка не регламентируется.
- 5. Кромка головки витка исходного червяка притупляется радиусом  $\rho_k = 0.05m$  или фаской соответствующего размера.
- 6. Значение коэффициента радиуса образующей дуги окружности шлифовального круга  $\rho_0^*$  принимается в пределах от 4,8 до 6,0 из условия отсутствия подрезания зуба червячного колеса.

126 б. Значения коэффициентов параметров витков исходного производящего червяка

		Числовое знач	ение или формул	па для червяков
Коэффициенты	Обозначение	ZA, ZK, ZN	ZL	ZT
Диаметра исходного произ- водящего червяка	$q_0^*$	q(1.	1,5)	q(11,2)
Модуля исходного производящего червяка	$m_0^*$		$m_0^* = \frac{\cos \gamma}{\cos \gamma_0},$	
		ŀ	елительные углы ка и исходного пр червяка	
Высоты витка, не менее	$h_{10}^*$		$2,0+c_1^*+c_2^*$	
Высоты головки витка, не менее	$h_{a10}^*$	$1,0+c_2^*$		
Высоты ножки витка, не менее	$h_{f10}^*$	1,0 + c ₁ *		
Граничной высоты ножки витка, не менее	h*110	2,0 + c ₂ *		
Высоты головки до начала закругления, не менее	$h_{ak10}^*$	1,0		
Расчетной толщины витка, не менее	s ₀ *	$s^*\cos(\gamma-\gamma_0)$		
Радиуса образующей дуги окружности шлифовального кута, не более	۴10	- ρ ₁₀ * -0,2		

### Примечания:

- 1. Большее значение коэффициента  $q_0^*$  рекомендуется принимать при межосевых расстояниях  $a_w$  не более 80 мм, модулях m не более 2 мм, делительном угле подъема  $\gamma$  исходного червяка не более 5°.
- 2. Значения всех параметров исходного производящего червяка получают умножением соответствующего коэффициента на модуль *т* исходного червяка.
- Значения делительного угла подъема исходного производящего червяка рассчитывают по формуле

$$tg \ \gamma_0 = \frac{z_{10}}{q_0} \ ,$$

где  $z_{10}$  —число витков исходного производящего червяка.

Передачи с однозаходным червяком вызывают большие потери на трение. Червяки с  $z_1 = 1$  применяют при кратковременных периодах работы в кинематических (отсчетных) передачах, так как однозаходные червяки точней многозаходных.

Направление витков следует назначать правое; левое направление витков применяют лишь в особых случаях.

Червячные колеса. Число зубьев червячного колеса  $z_2$  выбирают в зависимости от передаточного отношения и числа заходов червяка. В силовых передачах надо стремиться к такой заходности червяка, чтобы  $z_2 = 30 \div 70$ . При  $z_2$ , близком к нижнему пределу, несколько уменьшаются габариты передачи; но одновременно снижается ее КПД, так как приходится ставить червяки с малым числом заходов  $z_1$ , поэтому  $z_2$ =30÷50 рекомендуется лишь при сравнительно небольших передаваемых мощностях. При больших мощностях надо стремиться повышать КПД, увеличивая  $z_2$  до  $60 \div 70$ .

Применять  $z_2 > 80$  не рекомендуется, так как в этом случае обычно решающей становится прочность зубьев на изгиб (особенно для бронз с высокой износоустойчивостью). Брать  $z_2 < 28$  не следует во избежание подреза зуба; при меньшем числе зубьев применяют смещение исходного контура (инструмента), как у цилиндрических зубчатых колес.

При нарезании червячных колес летучими резцами число зубьев колеса по возможности не должно содержать общих множителей с числом заходов червяка z1. Это достигается при сохранении стандартных параметров червяка  $(z_1, m \lor q)$  заменой  $z_2$ =32 на  $z_2$ =31 или 33;  $z_2$ =36 на  $z_2$ =35 или 37 и т.п. Для этих передач, чтобы не выходить за пределы допустимых отклонений от u и не иметь x > 1, потребуется применять многозаходные летучие резцы (по одному на заход) или  $z_1$  раз сместить оправку с летучим резцом в направлении ее оси на величину осевого шага или же  $z_1$  раз повернуть заготовку колеса на один угловой шаг.

Число зубьев  $z_2$  стандартами не регламентируется. Их значения, приведенные в табл. 127, подобраны для нарезания колес червячными фрезами с учетом достижения по возможности одинаковых значений передаточных чисел u для соседних межосевых расстояний. В табл. 127 приведены сочетания основных параметров  $a_{w}$ , u, m, q,

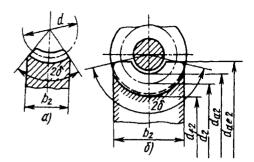



Рис. 66. Угол обхвата:

а и  $\delta$  — варианты конструкций венца в зависимости от угла  $2\delta$ 

 $z_1$ , а также числа зубьев червячных колес  $z_2$ , соответствующие принятым основным параметрам, коэффициенты смещения червяка x и фактические передаточные числа. Условный угол обхвата 28 (рис. 66) определяют по формуле

$$\sin \delta = \frac{b_2}{d_{a1} - 0.5m}.$$

Угол обхвата  $2\delta$  может быть принят для силовых передач  $2\delta = 90 \div 120^\circ$ ; для неотсчетных передач  $2\delta = 60 \div 90^\circ$ ; для несиловых отсчетных передач  $2\delta = 45 \div 60^\circ$ .

При проектировании червячных цилиндрических передач следует пользоваться данными ГОСТ 2144-76 (в редакции 1992 г.). ГОСТ 2144-76 распространяется на ортогональные цилиндрические червячные передачи для редукторов, в том числе и комбинированных (червячно-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов, и устанавливает:

межосевые расстояния  $a_w$ ;

номинальные значения передаточных чисел  $u_{\text{ном}}$ .

Стандарт не распространяется на червячные цилиндрические передачи для редукторов специального назначения и специальной конструкции (изменяющийся шаг червяка, гарантированное обеспечение самоторможения и др.).

Межосевые расстояния  $a_w$  должны соответствовать значениям:

1-й ряд: 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400 мм.

2-й ряд: 45; 56; 71; 90; 112; 140; 180; 224; 280; 355; 450; 500 мм.

Примечание. Значения ряда 1 следует предпочитать значениям ряда 2.

127. Сочетание основных параметров ортогональных червячных передач

		32:1	32		36	40:1	40	46:1	46,0
	125	32:2 6,30 8 -0,16	16	5,00 12,5 +0,750	18	40:2 5,00 10 0	50	46:2 4,00 16 +0,25	23
		32:4	36:4		6	40:4	10	46:4	11,5
		32:1	32		36	40:1	40	46:1	46,0
	100	32:2 5,00 8 0	36:2	4,00 12,5 +0,750	81	40:2 4,00 10 0	20	3,15 16 16 +0,75	23
		32:4	36:4		6	40:4	10	46:4	11,5
×		32:1	32	_	36	40:1	40	46:1	46,0
Межосевое расстояние $a_{w}$ , мм	80	32:2 4,00 8 0	36:2	3,15 16,0 -0,603	18	40:2 3,15 10 +0,4	20	2,50 16 16 +1,00	23
тояние		32:4	36:4		6	40:4	0 0	46:4	11,5
вое расс		32:1	32	_	36	40:1	6	46:1	46,0
Лежосе	63	32:2 3,15 8 0	16 36:2	2,50 12,5 +0,950	81	40:2 2,5 10 +0,2	20	2,00 1,6 16 +0,50	23
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		32:4	8 36:4		6	40:4	10	46:4	11,5
		32:1	32 36:1	<del></del>	36	40:1	40	46:1	46,0
	90	32:2 2,50 8 0	16 36:2	   2,00   12,5   +0,750	81	40:2 2,00 10 0	20	46:2 1,60 16 +0,25	23
		32:4	36:4		6	40:4	10	46:4	11,5
		32:1	32	<del></del>	36	40:1	40	46:1	46,0
	40	32:2 2,00 8 0	16 36:2	1,60 12,5 +0,750	18	40:2 1,60 10 0	20	1,25 1,25 16 +1,00	23
		32:4	8 36:4	-	6	40:4	10	46:4	11,5
метры		b c2	n 2 : 22		3	x b m l2: 22	п	22 : 22 4 4	n
TOTHE	лксия и Це <b>Ьс</b> ия	8; 16; 31,5.		9; 18; 35,5		10; 20; 40		11,2; 22,4; 45	

50:1	58:1		
50:2 4,00 12,5 0	58:2 3,15 20 +0,682 29,0	63:1 3,15 16 +0,180 63	80:1 2,5 20 0 80
50:4	58:4		
50:1	58:1		
50:2 3,15 12,5 +0,496 25	2,50 20 +1,000	63:1 2,50 16 +0,500 63	80:1 2,0 20 0 80
50:4	58:4		
50:1	58:1	_	
50:2 2,50 12,5 +0,750	2,00 2,00 +1,000	63:1 2,50 16 +0,500 63	80:1 1,6 20 0 80
50:4	58:4		
50:1	58:1		
50:2 2,00 12,5 +0,250 25	58:2   1,60   20   +0,375   29,0	63:1 1,60 16 -0,125 63	ı
50:4	58:4		
50:1	58:1		
50:2 1,60 12,5 0	58:2   1,25   20   +1,000	63:1 1,25 16 0,500 63	1
50:4	58:4		
50:1	58:2 58:1 1,00 20 +1,000 29,0 58,0		
50:2 1,25 12,5 +0,750 25		63:1 1,00 16 0,500 63	l
50:4	58:4		
n b w x 12: 22	n x b b u 12: 22:	7 : 27 x	12 : 22
12,5; 25; 50	14; 28; 56	63	08

Продолжение табл. 127

проболжение таки. 127		32:1	32	36:1	_	36	40:1	_	40	46:1		46,0
m anua	250	32:2 12,5 8,0 0	16	36:2	10,0 12,5 +0,750	81	40:2	10,0 10 0	20	46:2	8,0 16 +0,250	23,0
rinoodi 1		32:4	∞	36:4		6	40:4		01	46:4	_	11,5
		32:1	32	36:1	_	36	40:1	_	40	46:1		46,0
	225	32:2 10,0 12,5 +0,25	16	36:2	10,0 8,0 +0,500	81	40:2	8,00 16 +0,125	70	46:2	8,0 10 +0,125	23
		32:4	8	36:4		6	40:4		01	46:4	_	11,5
<u> </u>		32:1	32	36:1	_	36	40:1	_	40	46:1		46,0
Межосевое расстояние а _w , мм	200	32:2 10,0 8,0 0	91	36:2	8,0 12,5 +0,750	18	40:2	8,0 10 0	70	46:2	6,3 16 +0,750	23,0
стояни		32:4	8	36:4	77-4	6	40:4		01	46:4		11,5
вое рас		32:1	32	36:1		36	40:1	_	40	46:1		46,0
Межосе	180	32:2 8,0 12,5 +0,25	16	36:2	8,0 8,0 +0,500	<u>8</u>	40:2	6,3 16 +0,571	70	46:2	6,3 10 +0,571	23,0
		32:4	∞	36:4		6	40:4		10	46:4		11,5
		32:1	32	36:1		36	40:1		40	46:1		46,0
	160	32:2 8,0 8,0 0	91	36:2	6,3 14,0 +0,397	18	40:2	6,3 10 +0,397	20	46:2	5,0 16 +1,000	23,0
		32:4	∞	36:4		6	40:4		10	46:4		11,5
		32:1	32	36:1		36	40:1		40	46:1		46,0
	140	32:2   6,3   12,5   -0,03	92	36:2	6,3 8,0 -0,222	- T	40:2	5,0 16 0	20	46:2	5,0 16 0	23,0
		<u> </u>	∞	36:4		6	40:4		2	46:4		11,5
метры		\$	n	12:2	E & X	2	2 : 21	E 6 X	2	12:22	E & X	п
нон _и	Перели	8; 16; 31,5			9; 18; 35,5			10; 20; 40			11,2; 22,4; 45	

50:1	58:1			
\$0:2 8,0 12,5 0	58:2 6,3 20,0 +0,682 29,0	63:1 6,3 16,0 +0,182 63	l	80:1 5,00 20 0 80
50:4	58:4			
i	58:1			
50:2 6,3 20,0 +0,710	6,3 12,5 +0,464 29,0	63:1 6,3 12,5 -1,000 63	73:1 5,00 16 +0,50 73	1
50:4	58:4			
1	58:1			
6,3 12,5 +0,496	58:2 5,0 20 +1,000	63:1 5,0 16,0 +0,500 63	1	80:1 4,00 20 0 80
50:4	58:4			
	58:1			
50:2 5,0 20,0 +0,100	55,0 5,0 12,5 +0,750	63:1 5,0 12,5 -0,750 63	73:1 4,00 16 +0,50 73	ı
50:4	58:4			
	58:1			
50:2 5,0 12,5 +0,750	25,0 4,0 20,0 +1,00	63:1 4,0 16,0 +0,500 63	1	80:1 3,15 20 +0,794 80
50:4	58:4			
50:1	58.1			
4,0 20,0 0	25,0 4,0 12,5 -0,250	I	73:1 3,15 16 -0,56	ı
50:4	58:4			
x b m 12:2:	n x b m m l2: 52	n b w z: z;	22: 22	n b w x 2: 21
12,5; 25; 50	14; 28; 56	63	71	80

~
. >
•
~
$\boldsymbol{a}$
~
67
•
•
~
>
0

											ı					l		
		32:1				36:1					40:1	_			40	46:1		46,0
	200	32:2	- 1			36:2		I			40:2	20,0	10	0	20	46:2	16,0	23,0
		32:4	_			36:4	_				40:4	-			10	46:4	<b>-</b>	11,5
·		32:1				36:1				36	40:1				40	46:1		46,0
	450	32:2	-			36:2	20,0	8,0	+0,500	18	40:2	16,0	16	+0,125	20	46:2	16,0 1 10 10	23
		32:4	-			36:4	-			6	40:4	-			10	46:4	·	11,5
		32:1			32	36:1				36	40:1				40	46:1		46,0
aw, w	400	32:2	20,02	0	16	36:2	16,0	12,5	+0,750	18	40:2	16,0	01	0	20	46:2	12,5 1 16 +1 000	23,0
Межосевое расстояние а _w , мм	,	32:4	-		∞	36:4	_			6	40:4	-			01	46:4	·	11,5
oe pacc		32:1			32	36:1				36	40:1				40	46:1		46,0
ежосев	355	32:2	16,0	-0,063	16	36:2	16,0	8,0	+0,187	18	40:2	12,5	16	+0,400	20	46:2	12,5   10   10	23,0
2		32:4	_		8	36:4	_			6	40:4	-			01	46:4	<b>-</b>	11,5
		32:1			32	36:1				36	40:1				40	46:1		46,0
	315	32:2	16,0	-0,300	16	36:2	12,5	12,5	+0,950	18	40:2	12,5	01	+0,200	20	46:2	10,0 16 +0.500	23,0
		32:4	_		8	36:4	_			6	40:4	-			01	46:4	-	11,5
		32:1	_		32	36:1				36	40:1				40	46:1		46,0
	280	32:2	12,5	+0,150	91	36:2	12,5	8,0	+0,400	18	40:2	10,01	91	0	20	46:2	10,01 10,0	23,0
		32:4			8	36:4	_			6	40:4	-			10	46:4	<b>-</b>	11,5
rerbri	ларал	12:22	£ 0		п	12:22		6	×	n	12:22	£	ь	×	п	12:22	ш 6	ζ 3
эмньог Точные	Переда числа		8; 16; 31,5	•	:		9; 18;	35,5				10;	20; 40				11,2; 22,4; 45	

50:1	58:1			
50:2 16,0 12,5 0	58:2 12,5 20,0 +1,000	63:1 12,5 16,0 +0,500 63	1	80:1 10,0 20 0 80
50:4	58:4			
50:1	58:1			
50:2 12,5 20,0 +1,00 25,0	58:2 12,5 12,5 +0,750 29,0	61:1 12,5 12,5 -0,750 61	73:1 10,0 16 +0,500 73	I
50:4	58:4			
50:1	58:1			
50:2 12,5 12,5 +0,75 25,0	58:2 10,0 20,0 +1,000	63:1 10,0 16,0 +0,500 63	1	80:1 8,0 20 0 80
50:4	58:4			
50:1				
50:2 10,0 20,0 +0,50	58:2 10,0 12,5 +0,250 29,0	1	73:1 8,00 16 -0,125	1
50:4	58:4			
50:1				
50:2 10,0 12,5 +0,25 25.0	\$8:2 8,0 20,0 +0,375	63:1 8,0 16,0 -0,125 63	1	80:1 6,3 20 0 80
50:4	58:4			
50:1	58:1			
8,0 20,0 0	8,0 12,5 -0,250	l	73:1 6,3 16 -0,056	l
50:4	58:4			
x b u 12:72	n b d x	n b d x 72: 21	22: 21 22: 21	n d x x
12,5; 25; 50	14; 28; 56	63	71	08

Номинальные передаточные числа  $u_{\text{ном}}$  должны соответствовать значениям:

1-й ряд: 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100.

2-й ряд: 9; 11,2; 14; 18; 22,4; 28; 35,5; 45; 56; 71; 90.

Примечания: 1. Значения ряда 1 следует предпочитать значениям ряда 2.

2. Передаточные числа 90 и 100 применять не рекомендуется.

Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 4%.

Примечание. Для нормализованных редукторов общемашиностроительного применения допускается в технически обоснованных случаях отклонение факти-

ческих значений передаточных чисел от номинальных до 6,3%.

Червяки передач, за исключением случаев, обусловленных кинематикой привода, должны иметь линию витка правого направления.

### ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ

Расчет геометрии червячной передачи по ГОСТ 19650—74 предусматривает передачи с углом скрещивания осей червяка и колеса, равным 90°, и исходным червяком по ГОСТ 19036—94. Формулы и пример расчета червячной передачи приведены в табл. 128.

128. Формулы и пример расчета цилиндрической червячной передачи

Параме	гры и обозначения	Формулы и указания	Числовые значения
Модуль <i>т</i> Коэффициен Число витког Вид червяка	т диаметра червяка <i>q</i>	ходные данные В данном примере ZL	6,3 MM 10 2
Исходный червяк по ГОСТ 19036—94	Угол профиля $\alpha_X$ или $\alpha_n$ , $\alpha_n T$ , $\alpha_n S$ , $\alpha_0$ Коэффициент высоты витка $h^*$ Коэффициент высоты головки $h_a^*$ Коэффициент расчетной толщины $s^*$ Коэффициент радиуса кривизны переходной кривой $\rho_f^*$	В данном примере $lpha_n$	20° 2+0,2 cos γ 1,0 1,571 0,3
Межосевое расстояние $a_w$ Коэффициент смещения червяка $x$ Передаточное число $u$			160 мм — 20

Примечания: 1. Межосевое расстояние  $a_w$  входит в состав исходных данных, если его значение задано.

2. Коэффициент смещения червяка x входит в состав исходных данных, если значение межосевого расстояния  $a_m$  не задано.

Расчет геометрических параметров									
Число зубьев червячного колеса Z ₂	В общем случае: $z_2 = uz_1 = 20.2 = 40$ ; округляется до ближайшего целого числа; допускается изменение величины $z_2$ , после чего уточняется окончательное значение $u$	Принимаем $z_2 = 39$ . Уточненное значение $u = 39:2 = 19,5$							

Продолжение табл. 128

Параметр	ы и обозначения	Формулы и указания	Числовые значения
Коэффициент с	мещения червяка Х	$x = \frac{a_w}{m} - 0.5(z_2 + q) =$ $= \frac{160}{6.3} - 0.5(39 + 10)$ Коэффициент смещения червяка рекомендуется принимать в пределах $1 \ge x \ge -1$	0,897
Межосевое рас дит в исходные	естояние (если $x$ вхо- е данные) $a_w$	$a_w = 0.5(z_2 + q + 2x)m$	
Pa	счет диаметров	червяка и червячного кол	teca
Делительный д	наметр:	$d_1 = qm = 10.6,3$	63 мм
червяка $d_1$ колеса $d_2$		$d_2 = z_2 m = 39.6,3$	245,7 мм
Начальный диа	аметр червяка $d_{m{w}1}$	$d_{w1} = (q+2x)m = (10+2\cdot0.897)6.3$	74,30 мм
Делительный уг	гол подъема у	$tg_{Y} = \frac{z_{1}}{q} = \frac{2}{10} = 0,2$	γ = 11°19′
Начальный уго	ол подъема $\gamma_w$	$tg\gamma_w = \frac{z_1 m}{d_{w1}} = \frac{2 \cdot 6.3}{74.3} = 0.1696$	γ _w = 9°37′
Основной угол	подъема γ _ь	$\cos \gamma_b = \cos \alpha_n \cdot \cos \gamma =$ $= \cos 20^\circ \cdot \cos 11^\circ 19' = 0.9214$	$\gamma_b = 22^{\circ}52'$
		Определяется для червяка ZL	
Основной диам	иетр червяка $d_b$	$d_b = \frac{z_1 m}{\lg y_b} = \frac{2 \cdot 6.3}{\lg 22^\circ 52'}.$	29,89 мм
		Определяется для червяка ZL	
Высота витка	нервяка <i>h</i> 1	$h_1 = h^* m = (2 + 0.2 \cos 11^\circ 19') 6.3$	13,84 мм
Высота головк	и витка червяка $\emph{h}_{a1}$	$h_{a1} = h_a^* m = 1,0.6,3$	6,3 мм
Диаметр вершин	витков червяка $d_{a1}$	$d_{a1} = d_1 + 2h_a^* m = 63 + 2 \cdot 1 \cdot 6,3$	75,6 мм
	зубьев колеса $d_{a2}$	$d_{a2} = d_2 + 2(h_a^* + x) m =$ = 245,7 + 2(1,0 + 0,897) 6,3	269,6 мм

Продолжение табл. 128

Параметры и обозначения	Формулы и указания	Численные значения
Наибольший диаметр червячного колеса $d_{ae2}$	$d_{ae2} \le d_{a2} + \frac{6m}{z_1 + 2} =$ $= 269,6 + \frac{6 \cdot 6,3}{2 + 2}$	279,05 мм Принимаем d _{ae2} = 279 мм
нарезанной	в, характеризующих форм части червяка и венца вячного колеса	у
Раднус кривизны переходной кривой червяка $ ho_{f1}$	$\rho_{f1} = \rho_f^* m = 0.3 \cdot 6.3$	1,9 мм
Длина нерезанной части червяка $\emph{b}_1$	Определяют по формулам табл. 129 $b_1 \geq (12+0.1z_2)m = (12+0.1\cdot39)  6.3 = \\ = 100.17  \text{ мм}$	Принимаем для шлифованного червяка $b_1$ =125 мм
Ширина венца червячного колеса <i>b</i> ₂	Рекомендуется принимать: $b_2 \leq 0{,}75d_{a1} \ \text{при} \ z_1 \leq 3;$	56,7 мм; принимаем <i>b</i> ₂ =55 мм
	$b_2 \le 0,67d_{a1}$ при $z_1 = 4$ ;	
	В данном примере	
	$b_2 = 0.75d_{a1} = 0.75 \cdot 75.6$	
для контрол	счет размеров ия взаимного положения пей витков червяка	•
Расчетный шаг червяка $p_1$	$p_1 = \pi m = 3,1416 \cdot 6,3$	19,792 мм
Ход витка $p_{Z1}$	$p_{z1} = p_1 z_1 = 19,792 \cdot 2$	39,584 мм
Делительная толщина по хорде вит- ка червяка $\bar{s}_{\sigma 1}$	$\bar{s}_{a1} = s^* m \cos \gamma = 1,571.6,3 \cos 11^{\circ}19^{\circ}$	9,71 мм
Высота до хорды витка $\bar{h}_{a1}$	$\bar{h}_{a1} = h_a^* m + 0.5 \bar{s}_{a1} \times$	6,314 мм
	$ \times \operatorname{tg} \left( 0.5 \arcsin \frac{\overline{s_{a1} \sin^2 \gamma}}{d_1} \right) = $ $ = 1.0 \cdot 6.3 + 0.5 \cdot 9.71 \times $ $ \times \operatorname{tg} \left( 0.5 \arcsin \frac{9.71 \sin^2 11^{\circ}19^{\circ}}{63} \right) = $ $ = 6.3 + 0.014 $	
	= 0,0+0,014	1

Продолжение табл. 128

Параметры и обозначения	Формулы и указания	Численные значения
<b>Диаметр измерительных роликов D</b>	$D \ge 1,67 \ m = 1,67.6,3$ Рекомендуется принимать величину $D$ равной ближайшему большему значению диаметра ролика по ГОСТ 2475-88 (глава IX, табл. 38)	10,5 мм Принимаем D = 10,95 мм
Размер червяка по роликам $M_1$	$M_{\rm I} = d_{\rm I} - (\rho_{\rm I} - s_m^*) \frac{\cos \gamma}{{ m tg}\alpha} +$ $+ D \left( \frac{1}{\sin \alpha} + 1 \right) =$ $= 63 - (19,792 - 1,571 \cdot 6,3) \times \times \frac{\cos 11^{\circ}19'}{{ m tg}20^{\circ}} + 10,95 \left( \frac{1}{\sin 20^{\circ}} + 1 \right).$ Для червяков ZL $\alpha = 20^{\circ}$	79,51 мм

129. Расчет длины нарезанной части червяка  $b_1$ 

Коэффициент	Расчетные формулы при $z_1$ , равном						
смещения х	1 и 2	4					
-1,0	$b_1 \ge (10.5 + z_1)m$	$b_1 \ge (10.5 + z_1)m$					
-0,5	$b_1 \ge (8 + 0.06z_2)m$	$b_1 \ge (9.5 + 0.09 z_2) m$					
0	$b_1 \ge (11 + 0.06z_2)m$	$b_1 \ge (12.5 + 0.09z_2)m$					
+0,5	$b_1 \ge (11 + 0.1z_2)m$	$b_1 \ge (12,5+0,1z_2)m$					
+1,0	$b_1 \ge (12 + 0.1z_2)m$	$b_1 \geq (13+0.1z_2)m$					

 $\Pi$  р и м е ч а н и я : 1. При промежуточном значении коэффициента смещения x длину  $b_1$  вычисляют по ближайшему пределу x, который дает большее значение  $b_1$ .

2. Для шлифуемых и фрезеруемых червяков полученную по таблице длину  $b_1$  следует увеличить:

на 25 мм при m < 10 мм;

на 35 - 40 мм при m = 10 + 16 мм;

на 50 мм при m > 16 мм.

ГОСТ 19650—74 предусматривает расчет размеров для контроля осевого профиля витка.

# Допуски цилиндрических червячных передач (по ГОСТ 3675—81)

Стандарт распространяется на червячные цилиндрические передачи и червячные пары (без корпуса), выполняемые в соответствии с ГОСТ 19036-94, с архимедовыми червяками ZA, эвольвентными червяками ZI, конволютными червяками ZN всех типов и с червяками типов ZK, образованными конусом, с межосевым утлом, равным  $90^{\circ}$ , с модулем от 1 до 25 мм, с делительным диаметром червяка до 450 мм и делительным диаметром червячного колеса до 6300 мм.

#### Степени точности и виды сопряжений.

1. Устанавливаются двенадцать степеней точности червяков, червячных колес, червячных пар и червячных передач, обозначаемых в порядке убывания точности цифрами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.

Примечание. Для степеней точности 1-4, 11 и 12 допуски и предельные отклонения см. ГОСТ 3675-81.

- 2. Для червяков, червячных колес, червячных пар и червячных передач каждой степени точности устанавливаются нормы кинематической точности, нормы плавности работы и нормы контакта зубьев и витков. Степень точности передачи или пары определяется по элементу (червяку, червячному колесу или корпусу) с наиболее низкими показателями. Для нерабочих боковых поверхностей (сторон) зубьев червячного колеса и витков червяка, используемых в течение ограниченного времени при пониженных нагрузках, допускается снижение точности, но не более чем на две степени.
- Допускается комбинирование норм кинематической точности, норм плавности работы и норм контакта зубъев и витков разных степеней точности.
- 4. При комбинировании норм разных степеней точности нормы плавности работы червяков, червячных колес, червячных пар и червячных передач могут быть не более чем на две степени точнее или на одну ступень грубее норм кинематической

точности; нормы контакта зубьев червячного колеса и витков червяка не могут быть грубее норм плавности работы червячных передач.

5. Устанавливаются шесть видов сопряжений червяка с червячным колесом (табл. 130) A, B, C, D, E, H и восемь видов допуска  $T_{jn}$  на боковой зазор x, y, z, a, b, c, d, h.

Обозначения приведены в порядке убывания величины бокового зазора и допуска на него.

Рекомендуемое соответствие между видами сопряжения червяка с червячным колесом в передаче и степенью точности по нормам плавности работы указано в табл. 130.

6. Видам сопряжений H и E соответствует вид допуска на боковой зазор .h, а видам сопряжений D, C, B, и A — вид допуска d, c, b и a соответственно.

Соответствие между видом сопряжения элементов червячной передачи и видом допуска на боковой зазор, указанное в этом пункте, допускается изменять. При этом также могут быть использованы виды допуска на боковой зазор x, y, z.

7. Точность изготовления червячных передач задается степенью точности, а требования к боковому зазору — видом сопряжения по нормам бокового зазора и видом допуска на боковой зазор.

Пример условного обозначения точности червячной передачи или пары со степенью точности 7 по всем трем нормам, с видом сопряжения и видом допуска на боковой зазор:

#### 7-C TOCT 3675-81

8. При комбинировании норм разных степеней точности и изменении соответствия между видом сопряжения и допуска на боковой зазор точность червяка, червячного колеса, червячной передачи и червячной пары обозначается последовательным написанием трех цифр и двух букв.

Между собой и от слитно пишущихся букв цифры разделяются тире. Первая цифра обозначает степень по нормам колеса кинематической точности, вторая — степень по нормам плавности работы, третья — степень по нормам контакта зубьев червячного и витков червяка, первая из

Виды сопряжений АВС ДЕН	Вид сопряжения	Степень точности по нормам плав- ности работы
Допуски на боковые за-	A	5—12
Гарантированные	В	5—12
SOKOBIE 3030PH JAMEN	С	3—9
	D	3—8
Нулевая линия	E	26
AUHUR 0-U	н	2—6
7		

130. Виды сопряжений и гарантированные боковые зазоры

букв — вид сопряжения, а вторая — вид допуска на боковой зазор.

Пример условного обозначения точности червячной передачи со степенью  $\delta$  по нормам кинематической точности, со степенью  $\delta$  по нормам плавности, со степенью  $\delta$  по нормам контакта зубьев червячного колеса и витков червяча с видом сопряжения червяка и червячного колеса B и видом допуска на боковой зазор a:

Нормы точности. 1. Показатели кинематической точности, плавности работы и контакта устанавливаются по табл. 131, 132, 133.

- 2. Допуски и предельные отклонения по нормам кинематической точности, нормам плавности работы и нормам контакта зубьев червячного колеса и витков червяка для различных степеней точности червячной передачи и ее элементов устанавливаются по табл. 134—145. Значения, приведенные в скобках, в указанных таблицах даны для справок.
- 3. При соответствии плавности работы червячных передач требованиям ГОСТ 3675—81 контроль плавности работы червячных колес и червяков не является обязательным.
- 4. При соответствии суммарного пятна контакта червячной пары или передачи

требованиям ГОСТ 3675—81 контроль по другим показателям, определяющим контакт зубьев червячного колеса и витков червяка, не является обязательным.

- 5. Нормы кинематической точности, кроме  $F_r$  и  $F'_i$  и нормы плавности работы, кроме  $f''_i$ , в зависимости от условий работы червяка и червячного колеса по правым и левым профилям допускается назначать из разных степеней точности.
- 6. В тех случаях, когда производится продольная или профильная модификация боковых поверхностей зубьев колеса и витков червяка и предусматриваются специальные требования к форме и расположению суммарного пятна контакта или к способам его обнаружения, показатели и нормы, определяющие контакт зубьев червячного колеса и витков червяка в передаче, устанавливаются независимо от указанных в табл. 144 и 145.
- 7. Комплексы показателей точности в соответствии с п. 1 устанавливаются изготовителями передач. Каждый установленный комплекс показателей, используемый при приемке червяков, червячных колес, червячных пар и червячных передач, является равноправным с другими, хотя при сравнительных (например, расчетных) оценках влияния точности передач на их эксплуатационные качества основными

и единственно пригодными во всех случаях являются функциональные показатели  $F'_{ior}$ ,  $f_{zzor}$ ,  $f_{zkor}$ , мгновенное и суммарное пятна контакта.

131. Показатели или комплексы показателей кинематической точности

Контролируе- мый объект	Показатель точности или ком- плекс	Степень точности
	$F'_{ir}$	1—8
	$F_{Pr}, F_{Pkr}$	16
	$F_{Pr}$	7,8
Червячное колесо	$F_{cr}, F_{rr}$	1—8
	$F_{ir}^{\prime\prime},F_{cr}$	8
	F _{ir}	9—12
	F _{rr}	9—12
Червячная пара и передача	F' _{ior}	1—8

Примечания: 1. Допускается, чтобы одна из величин, входящих в комплекс  $F_{cr}$ ,  $F_{rr}$  или  $F_{ir}^{\prime\prime}$ ,  $F_{cr}$ , превосходила предельное значение, если суммарное влияние обеих величин не превышает  $F_i^{\prime}$ .

2. При соответствии кинематической точности червячной передачи требованиям настоящего стандарта контроль кинематической точности червячного колеса не является необходимым.

8. Непосредственный контроль червяков, червячных колес, червячных пар и червячных передач, кроме передач степени точности 1—3, по всем показателям уста-

132. Показатели или комплексы показателей плавности работы

nonaction interpretation proofing									
Контроли- руемый объект	Показатель плавности работы или комплекс	Степень точности							
<del></del>	$f_{hsr}, f_{hr}, f_{hkr}$	2-6							
Червяк	$f_{hr}, f_{hkr}, f_{hlr}$	2—6							
	$f_{Pxr}, f_{Pxkr}, f_{f1r}$	4—8							
	$f_{Pxr}, f_{rr}, f_{f1r}$	7—12							
	f _{zkr}	2—7							
Червячное	$f_{ir}^{\prime\prime}$	8—12							
колесо	$f_{Ptr}, f_{f2r}$	5—8							
	$f_{Ptr}$	8—12							
Червячная пара и передача	f _{zkor} , f _{zzor}	28							
	· . · · · · · · · · · · · · · · · · · ·								

Примечания: 1. Для разноходовых червяков предпочтительно использовать первые два из приведенных в таблице комплексов показателей.

2. Для многовитковых червяков первой и второй из указанных в таблице комплексов дополняются показателями  $f_{Pxr}$  и  $f_{Pxkr}$ 

 Показатели, определяющие контакт зубьев червячного колеса с витками червяка для червячных пар и передач

Контролируемый объект	Показатель точности или комплекс	Степень точности	
Червячная пара и передача с регулируе- мым расположением осей	Суммарное пятно контакта	2—12	
Червячная передача с нерегулируемым расположением осей	$f_{ar}, f_{\Sigma r}, f_{xr}$	2—12	

134. Нормы кинематической точности, мкм (показатели  $F_{ir}',\ F_{rr},\ F_{cr},\ F_{ir}''$ )

	Γ	<u> </u>							
				,	Целитель	ный диам	иетр $d_2$ , м	им	
Степень точности	Обозначение	Модуль <i>m</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
=	$F_i'$	От 1 до 10			$F_p+f_{f2}$ (c)	м. п. 2 пр	имечани	я)	
5	F _r	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	16 18 20	22 25 28 32	28 32 38 40	34 36 40 45	38 40 45 50	42 45 50 56	_ 50 53 60
	$F_c$	От 1 до 10	9	18	28	45	67	95	140
	$F_i'$	От 1 до 16	$F_p + f_{\it \Omega}$ (см. п. 2 примечания)						
6	F _r	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	25 28 32	36 40 45 50	45 50 56 63	53 56 62 71	56 63 71 80	63 71 80 90	 80 85 95
	F _c	От 1 до 16	14	28	45	71	100	150	220
	$F_i'$	От 1 до 25			F _p +f _{f2} (ca	и. п. 2 пр	имечания	a)	
7	$F_r$	OT 1 DO 3,5 CB. 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25	36 40 45 —	53 56 63 71 80	63 71 80 90 100	75 80 90 100 112	80 90 100 112 125	90 100 110 125 140	112 120 140 160
	$F_c$	От 1 до 25	20	40	63	100	150	210	300
	$F_i'$	От 1 до 25		<u>,                                    </u>	F _p +f _{f2} (ca	и. п. 2 пр	имечания	1)	
8	$F_r$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	45 50 56 —	63 71 80 90 100	80 90 100 112 125	90 100 112 125 140	105 112 125 140 160	112 125 140 160 180	140 150 170 200
	F _i "	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	63 71 80 —	90 100 112 125	112 125 140 160	125 140 160 180	_ _ _		
	F _c	От 1 до 25	28	50	90	140	190	260	420

Продолжение табл. 134

	ە ق		Делительный диаметр $d_2$ , мм						
Степень точности	Обозначение	Модуль <i>т</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300
	F _r	От 1 до 3,5 Св. 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25	56 63 71 —	80 90 100 112 125	100 112 125 140 160	120 125 140 160 180	130 140 160 180 200	140 160 170 200 224	170 190 220 280
9	F _i "	Or 1 до 3,5 CB. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	80 90 100 —	112 125 140 160	140 160 180 200	160 180 200 224	_ _ _ _	  	_ _ _ _
	Fr	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	71 80 90 —	100 112 125 140 160	125 140 160 180 200	150 160 180 200 224	160 180 200 224 250	180 190 220 250 280	220 240 280 320
10	F;"	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	100 112 125 —	140 160 180 200	180 200 224 250	200 224 250 280	- - -		_ _ _ _

Примечания: 1. Принятые обозначения:  $F_i'$  — допуск на кинематическую наибольшую погрешность червячного колеса;  $F_r$  — допуск на радиальное биение червячного колеса;  $F_c$  — допуск на погрешность обката;  $F_i''$  — допуск на колебание измерительного межосевого расстояния за оборот червячного колеса.

2. Для определения  $F_i$ : принимается  $F_P = F_{Pk}$  и назначается в соответствии со степенью кинематической точности по табл. 135 при длине дуги, соответствующей числу зубьев червячного колеса, равного  $k = z_2 / 2$  (или дуге, соответствующей ближайшему большому целому числу зубьев);

 $f_{12}$  — назначается в соответствии со степенью плавности работы по табл. 136.

 При комбинировании кинематической точности и плавности работы разных степеней точности допуск на колебание измерительного межосевого расстояния за оборот червячного колеса определяется по формуле

$$\begin{bmatrix} F_i' \end{bmatrix}_{\texttt{KOM6}} = \begin{bmatrix} F_r \end{bmatrix}_{\texttt{HOPM8 KUHEM. TOHI.}} + \begin{bmatrix} F_{i''} \end{bmatrix} - \begin{bmatrix} F_r \end{bmatrix}_{\texttt{HOPM8 ПЛАВН.работ}},$$

где допуск, входящий в первое слагаемое, принимается по степени для норм кинематической точности, а допуски, входящие во второе слагаемое, принимаются по степени для норм плавности работы.

4.  $F'_{i0} = F_P + f_{zzo}$ , где  $F_P$  назначается в соответствии со степенью кинематической точности;  $f_{zzo}$  назначается в соответствии со степенью плавности работы.

tb Tri				Длина дуги $L$ , мм					
Степень точности	Обозна- чение	Модуль т, мм	До 11,2	Св. 11,2 до 20	Св. 20 до 32	Св. 32 до 50	Св. 50 до 80	Св. 80 до 160	
5 6 7 8	F _{Pk}	От 1 до 16 » 1 » 16 » 1 » 25 » 1 » 25	7 11 (16) (22)	10 16 (22) (32)	12 20 (28) (40)	14 22 (32) (45)	16 25 (36) (50)	20 32 (45) (63)	

135. Нормы кинематической точности (показатель  $F_{Pk}$ , мкм)

### Длина дуги L, мм

	Св. 160	Св. 315	Св. 630	Св. 1000	Св. 1600	Св. 2500	Св. 3150	Св. 4000	Св. 5000
	до 315	до 630	до 1000	до 1600	до 2500	до 3150	до 4000	до 5000	до 7200
5	28	40	50	63	71	90	100	112	125
6	45	63	80	100	112	140	160	180	200
7	(63)	(90)	(112)	(140)	(160)	(200)	(224)	(250)	(280)
8	(90)	(125)	(160)	(200)	(224)	(280)	(315)	(355)	(400)

 $\Pi$  р и м е ч а н и я : 1.  $F_{Pk}$  — допуск на накопленную погрешность k шагов.

- 2. Допуск  $F_P = F_{Pk}$  при  $k = \frac{z_2}{2}$  (или ближайшему большему целому числу).
- 3. При отсутствии специальных требований допуск на  $F_{Pk}$  назначается для длины дуги средней делительной окружности, соответствующей 1/6 части числа зубьев червячного колеса (или дуги, соответствующей ближайшему целому числу зубьев).

новленного комплекса не является обязательным, если изготовитель существующей у него системой контроля точности производства гарантирует выполнение соответствующих требований ГОСТ 3675—81.

9. ГОСТ 3675—81 устанавливает требования к точности червяков и червячных колес, находящихся на рабочих осях. Погрешности, вносимые при использовании в качестве измерительной базы поверхностей, имеющих неточности формы и расположения, относительно рабочей оси, должны быть учтены или компенсированы введением производственного допуска.

При назначении в чертеже червяка или червячного колеса требований к их точности

относительно другой оси (например, оси отверстия под вал), которая может не совпадать с рабочей осью, измеренная погрешность изделия будет отличаться от погрешности относительно рабочей оси.

10. Для червячных передач с углом профиля исходного червяка  $\alpha$ , не равным  $20^\circ$ , допуск на радиальное биение витка червяка  $f_r$ , допуск на колебание измерительного межосевого расстояния на одном зубе  $f_i^u$ , а также предельные отклонения межосевого расстояния  $\pm f_a$ , должны быть умножены на коэффициент, равный отношению

$$\frac{\sin 20^{\circ}}{\sin \alpha}$$

136. Нормы плавности работы, мем (показатели  $f_{f2p}$ ,  $f_{Ptr}$ ,  $f_{ir}$ )

	6			Делительный диаметр $d_2$ , мм						
Степень точности	Обозначение	Модуль <i>m</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300	
	f Pi	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	±6 ±8 ±9 	±7 ±9 ±10 ±11	±8 ±9 ±11 ±13	±9 ±10 ±11 ±13	±10 ±11 ±13 ±14	 ±13 ±14 ±16	_ ±15 ±17	
5	$f_{\mathcal{L}}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	6 7 8 —	7 8 9 11	9 10 11 13	11 13 14 15	16 17 18 20	21 22 24 25	32 34 36	
	f _{Pt}	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	±10 ±13 ±14	±11 ±14 ±16 ±18	±13 ±14 ±18 ±20	±14 ±16 ±18 ±20	±16 ±18 ±20 ±22	±18 ±20 ±22 ±25	±22 ±24 ±28	
6	$f_{f2}$	OT 1 DO 3,5 CB. 3,5 * 6,3 * 6,3 * 10 * 10 * 16	8 10 12 —	9 11 13 16	12 14 16 18	17 18 20 22	24 25 28 30	32 34 36 38		
	f Pt	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±14 ±18 ±20 —	±16 ±20 ±22 ±25 ±32	±18 ±20 ±25 ±28 ±36	±20 ±22 ±25 ±28 ±36	±22 ±25 ±28 ±32 ±40	±25 ±28 ±32 ±36 ±40	±32 ±34 ±38 ±45	
7	f 12	OT 1 DO 3,5 CB. 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25	11 14 17 —	13 16 19 22 30	17 20 24 26 36	24 28 30 34 42	36 38 40 45 53	50 53 56 60 67	75 80 85 95	
	f pr	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±20 ±25 ±28 —	±22 ±28 ±32 ±36 ±45	±25 ±28 ±36 ±40 ±50	±28 ±32 ±36 ±40 ±50	±32 ±36 ±40 ±45 ±56	±36 ±40 ±45 ±50 ±56	- ±45 ±48 ±53 ±63	
8	$f_{R}$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	14 20 22 —	18 22 28 32 45	25 28 36 40 56	36 40 45 50 63	50 56 63 71 80	71 80 90 90 100	120 125 130 140	

Продолжение табл. 136

	Лe		Делительный диаметр $d_2$ , мм							
Степень точности	Обозначение	Модуль <i>т</i> , мм	До 125	Св. 125 до 400	Св. 400 до 800	Св. 800 до 1600	Св. 1600 до 2500	Св. 2500 до 4000	Св. 4000 до 6300	
8	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	28 36 40 —	32 40 45 50	36 40 45 56	40 45 50 56		_ _ _ _	- - - -	
	f _{Pt}	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±28 ±36 ±40 —	±32 ±40 ±45 ±50 ±63	±36 ±40 ±50 ±56 ±71	±40 ±45 ±50 ±56 ±71	±45 ±50 ±56 ±63 ±80	±50 ±56 ±63 ±71 ±80	 ±63 ±67 ±75 ±90	
9	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	36 45 50 —	40 50 56 63	45 50 56 71	50 56 63 71	1 1 1	_ _ _ _	- - - -	
	fpı	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±40 ±50 ±56 —	±45 ±56 ±63 ±71 ±90	±50 ±56 ±71 ±80 ±100	±56 ±63 ±71 ±80 ±100	±63 ±71 ±80 ±90 ±112	±71 ±80 ±90 ±100 ±112	 ±85 ±95 ±105 ±125	
10	$f_i''$	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10 » 10 » 16	45 56 63 —	50 63 71 80	56 63 71 90	63 71 80 90	_ _ _ _	_ _ _ _		

Примечание. Принятые обозначения:  $f_{f2}$  — допуск на погрешность профиля зуба колеса;  $f_{Pt}$  — предельные отклонения шага колеса;  $f_i''$  — допуск на колебание измерительного межосевого расстояния на одном зубе.

137. Нормы плавности работы (показатель  $f_{220}$ ), мкм

Уровень точности по функцио- нальным показателям плавности работы $f_{zzor}$			Частота $k$ циклической погрешности ( $k=z_2$ ) за оборот колеса						
	Модуль <i>т</i> , мм	До 16	Св. 16 до 32	Св. 32 до 63	Св. 63 до 125	Св. 125 до 250	Св. 250 до 500	Св. 500	
5	От 1 до 3,5 Св. 3,5 » 6,3 » 6,3 » 10	6,7 8 10	7,1 8,5 10,5	7,5 9 11	8 10 12	8,5 10,5 13	9,5 12 15	10,5 14 17	

Продолжение табл. 137

Уровень точности по функцио-			Частота		иеской по оборот ко		ти ( <i>k=z</i> ₂ )	
нальным показателям плавности работы $f_{zzor}$	Модуль т, мм	До 16	Св. 16 до 32	Св. 32 до 63	Св. 63 до 125	Св. 125 до 250	Св. 250 до 500	Св. 500
6	От 1 до 3,5	10	10,5	11	12	13	14	16
	Св. 3,5 » 6,3	12	13	14	15	16	18	21
	» 6,3 » 10	14	16	17	18	19	22	25
7	От 1 до 3,5	15	16	17	18	19	21	24
	Св. 3,5 » 6,3	18	19	20	22	24	28	30
	» 6,3 » 10	22	24	24	26	30	33	38
8	От 1 до 3,5	22	24	24	25	28	(30)	(34)
	Св. 3,5 » 6,3	28	28	30	32	34	(40)	(45)
	» 6,3 » 10	32	34	36	38	42	(48)	(56)
9	От 1 до 3,5	(32)	(34)	(36)	(38)	(40)	(45)	(50)
	Св. 3,5 » 6,3	(40)	(40)	(42)	(45)	(50)	(56)	(67)
	» 6,3 » 10	(48)	(48)	(50)	(56)	(60)	(67)	(75)

Примечания: 1. Принятое обозначение  $f_{zzo}$  — допуск на циклическую погрешность зубцовой частоты в передаче.

2. Уровни точности передач по функциональному показателю плавности их работы  $f_{zzor}$  устанавливаются по табл. 138 в зависимости от сочетаний степеней точности по геометрическим показателям и величин эффективного коэффициента осевого перекрытия  $\varepsilon_{be}$ .

138. Соответствие уровней точности по функциональному показателю  $f_{zzor}$  степеням точности по плавности работы при различных значениях эффективного коэффициента осевого перекрытия  $\epsilon_{be}$ 

	Степень то	чности по показ	ателю плавнос	ги работы
Эффективный коэффициент	5	6	7	8
осевого перекрытия є _{ве}	Урс	вень точности п	о показателю <i>f</i>	zzor
До 0,45	5	6	7	(8)
Св. 0,45 » 0,58	4	5	6	7
» 0,58 » 0,67	3	4	5	6
<b>»</b> 0,67	2	3	4	5

 $\Pi$  р и м е ч а н и е . Эффективный коэффициент осевого (по колесу) перекрытия может определяться по приближенной формуле

$$\varepsilon_{\beta e} = K_s \cdot K_v \frac{z_1}{\pi} ,$$

где  $K_s$  — отношение размера суммарного пятна контакта по длине зуба червячного колеса (без учета разрыва пятна контакта) к ширине зубчатого венца, червячного колеса;

 $m{K_v}$  — отношение ширины зубчатого венца червячного колеса к делительному диаметру червяка;

 $z_1$  — число витков червяка.

MKM)
•
sto V
ИЛИ
Ţ
(показатели
работы
плавности
Hopmei
ë.

		1	ļ			1
		Св. 4000 до 6300		CB.6,3 до 10	25 18 14 10,5 8,5 7,0 7,0 6,0 6,0 6,0	40 28 21 17 17 11 10 9,0 8,5
		CB.		£,8 or 1 tO	20 15 11 8,5 7,1 6,0 5,5 5,0 4,5	32 24 18 18 11 10 9,5 7,6 7,6
		Св. 2500 до 4000		01 og £,3.aO	21 15 11 9,0 7,1 6,0 5,3 5,0 4,5	36 20 20 115 112 10,5 8,5 8,0 8,0
		Св.		£,8 on 1 10	18 13 10 10 6,3 6,3 4,8 4,0 4,0	28 21 16 112 10 8,0 7,5 6,7 6,3 6,0
		Св. 1600 до 2500		OI OE 6,3.40	19 14 10,5 8,0 6,7 6,7 5,6 4,5 4,5	34 24 18 14 11 10 8,5 8,0 7,5 7,1
мкм)	$d_2$ , MM	Св. до 2		E, 0 on 1 tO	16 11 8,5 7,1 5,6 4,2 4,0 3,6	26 18 14 11 9,0 7,5 6,7 6,3 5,6
<b>ІЛ</b> Н <i>Гако</i> ,	циаметр	Св. 800 до 1600	Модуль т, мм	01 og £,3.aO	18 13 10 7,5 6,3 6,3 4,8 4,0 4,0	30 22 16 113 10,5 9,0 8,0 7,1 6,7 6,3
139. Нормы плавности работы (показатели $f_{\it zt}$ или $f_{\it zto}$ , мкм)	Делительный диаметр $d_2$ , мм	CB.	Модул	£,8 on 1 10	14 10,5 8,0 6,3 6,3 3,6 3,4 3,2	24 17 13 10 8,0 7,5 7,0 6,3 6,0 5,0
(показа	Делит	Св. 400 до 800	· ·	01 og £,2.aO	14 10,5 8,0 6,0 5,0 4,2 3,6 3,2 3,2 3,2	24 118 113 110 8,5 7,1 6,0 5,6
г работы		Св.		£, 0 or 1 tO	13 9,5 7,1 5,6 4,5 3,4 3,0 2,8 2,8	21 15 11 9,0 7,1 6,0 5,3 5,0 4,8
лавности		Св. 125 до 400		01 on £,6,8AO	11 8,0 6,3 4,8 3,2 3,0 2,6 2,5 2,5	19 10,5 10,5 6,0 6,0 5,0 4,5 4,5
Тормы п.		CB.	-	£,8 on 1 TO	10 7,1 7,1 3,6 3,4 2,8 2,2 2,2	16 11 8,5 6,7 7,6 3,8 3,8 3,6 3,6
139. F		До 125	:	01 on E, 3.aO	8,5 6,0 6,0 3,6 2,8 2,1 1,9 1,8	14 10 8,0 6,0 5,0 3,4 3,2 3,2
		До		£,3 on 1 tO	7,1 5,0 3,8 3,8 3,0 2,5 2,1 1,9 1,7 1,6	11 8,0 6,0 6,0 3,2 3,2 3,0 2,6 2,5
			ного			
,	•		$\Psi_{acrora} \ k$ за оборот червячного	eca	63 16 16 16 16 16 16 16 16 16 16 16 16 16	60 4 8 8 16 8 16 8 16 8 8 8 8 16 8 16 8 16
			Частота <i>k</i> орот червя	колеса	2 до 4 * 8 8 * 16 * 32 * 16 * 32 * 63 * 125 * 250 * 500 * 1000	2 до 4 % 8 % 116 % 32 % 63 % 1125 % 500 %
			3a o6		Q * * * * * * * * * * * * * * * * * * *	£ 5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
			Степень		v	9

	000		CB.6,3 go 10	71 50 38 30 24 24 18 16	95 71 71 73 42 42 34 28 26 27 27 21
	Св. 4000 до 6300		£,8 on 1 TO	50 28 22 22 11 11	75 53 40 32 25 21 19 18 16
and it	Св. 2500 до 4000		01 or £, 6.a.	63 45 28 22 19 17 17	90 67 88 38 30 24 22 10 10
	CB.		€,8 on 1 tO	45 32 33 19 11 11 10	63 445 34 22 22 19 17 17 17
	Св. 1600 до 2500		01 on £, 2.a.d	60 42 32 25 21 17 17 13	85 60 36 30 30 22 22 20 19 18
<i>d</i> 2, мм	CB.		£,8 oπ 1 τΟ	40 30 22 17 14 11 9,5 9,0	56 42 30 24 20 20 17 17 13
Делительный диаметр d2, мм	Св. 800 до 1600	Модуль <i>т</i> , мм	01 of £,3.aO	25 28 28 28 28 28 28 28 28 28 28 28 28 28	23 25 25 21 21 11 17 16 15
ельный	CB.	Модул	£,8 on 1 tO	36 26 20 20 16 11 11 10 8,5 8,0	53 28 22 22 18 17 11
Делит	400		01 on £, 2.a.	42 30 22 22 18 18 11 10 9,0	60 32 25 20 20 17 17 13
	CB.		£,8 on 1 TO	32 24 18 18 19 10 8,5 8,0 7,5	45 32 25 25 19 10 10
	Св. 125 до 400		01 on £, 3.aD	34 25 25 18 14 10 9,0 8,0 7,5	48 20 20 16 17 10
	CB		ξ, ∂ οπ Ι τΟ	25 18 13 10 9,0 7,5 6,0 5,6	36 26 10 10 10 8,0 8,0 8,0
	До 125		01 од £,6.8О	26 19 14 11 9,0 7,5 6,7 6,0 5,6	36 26 20 16 11 9,5 9,0 8,0
	Дс		£,8 on 1 TO	17 13 10 8,0 6,0 5,3 4,5 4,2 4,0 3,8	25 113 113 110 8,5 6,0 6,0 5,6
		$\Psi$ астота $k$ за оборот червячного	Колеса	От 2 до 4 Св. 4 * 8 * 8 * 16 * 16 * 32 * 32 * 63 * 125 * 125 * 125 * 250 * 250 * 500 * 500 * 1000 * 1000	От 2 до 4 Св. 4 » 8 * 8 * 16 » 16 » 32 » 32 » 63 » 125 » 63 » 125 » 250 » 250 » 500 » 500 » 1000 » 1000
	итэ	оньот	Степень	7	∞

 $\Pi$  р и м е ч а н и е . Принятые обозначения:  $f_{tk}$  — допуск на циклическую погрешность червячного колеса;  $f_{tko}$  — допуск на циклическую погрешность передачи.

140. Нормы плавности работы для червяка, мкм (показатели  $f_{hsr}$ ,  $f_{hr}$ ,  $f_{hkr}$ ,  $f_{Pxr}$ ,  $f_{Pxkr}$ ,  $f_{ftr}$ )

Степень			M	бодуль <i>т</i> , м	м	
точности	Обозначение	От 1 до 3,5	Св. 3,5 до 6,3	Св. 6,3 до 10	Св. 10 до 16	Св. 16 до 25
5	f h3 f h f hk f Px f Pxk f Pxh	3,8 7,1 14 ± 4,8 ± 8,5 7,1	4,5 8,5 17 ± 6,3 ± 10 9,0	6 11 22 ±7,5 ±13 12	15 30 ± 10 ± 17 16	   
6	f h3 f h f hk f Px f Pxk f f f	5,6 11 22 ±7,5 ±13 11	6,7 14 28 ± 9,0 ± 16 14	8 18 36 ± 12 ± 21 19	10 24 45 ± 16 ± 28 25	- - - - - -
7	f h3     f h     f hk     f Px     f Pxk     f f1	8,5 17 34 ± 12 ± 21 18	10 21 42 ± 15 ± 26 24	12 28 56 ±19 ± 34 30	16 36 75 ± 25 ± 45 40	20 50 100 ± 34 ± 60 56
8	f h3 f h f hk f Px f Pxk f f1	(12) 28 53 ± 19 ± 32 28	(16) 34 67 ± 24 ± 40 36	(18) 45 90 ± 30 ± 53 48	(22) 56 120 ± 40 ± 67 63	(26) 80 160 ± 53 ± 90 90
9	f _{Px} f _f i	± 30 45	± 36 56	± 48 75	± 63 100	± 85 130
10	$f_{Px} \ f_{fl}$	± 45 70	± 56 90	± 75 120	± 100 160	± 130 220

 $\Pi$  р и м е ч а н и е . Принятые обозначения:  $f_{hs}$  — допуск на погрешность винтовой поверхности витка червяка;

 $f_h$  — допуск на погрешность винтовой линии в пределах оборота червяка;

 $f_{hk}$  — допуск на погрещность винтовой линии на длине нарезанной части червяка;

 $f_{Px}$  —предельное отклонение шага червяка;

 $f_{Pxk}$  — допуск на накопленную погрешность k шагов;

 $f_{\Lambda}$  — допуск на погрещность профиля витка.

141. Нормы плавности работы (показатель fr, мкм)

					Дел	ительный,	циаметр че	Делительный диаметр червяка $d_{ m l}$ , мм	ММ			
Степень точности	Модуль <i>т</i> , мм	От 6 до 10	Св. 10 до 18	Св. 18 до	CB. 30 40 50	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	Св. 180 до 250	Св. 250 до 315	Св. 315 до 400	CB.
5	От 1 до 16	(1,7)	(7,1)	(7,5)	(8,0) (13)	(9,0)	(10)	(11,5)	(14)	(16)	(18)	(21)
7 8 9 10	От 1 до 25	15 20 25 32	16 20 25 32	17 21 26 34	18 22 28 36	20 25 32 40	22 28 36 45	25 32 40 50	30 38 48 60	34 45 56 71	40 50 63 80	48 60 75 95

П р и м е ч а н и е . Принятое обозначение  $f_r$  — допуск на радиальное биение витка червяка.

142. Нормы контакта (показатель ± fs, мкм)

Межосевое расстояние а», мм	400 CB. 500 CB. 630 Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro	36         40         42         46         50         53         56         63         67           56         63         67         75         80         85         90         95         105           90         95         105         118         125         130         140         160         170           140         160         170         180         190         200         240         260           240         250         280         300         340         360         400         420           360         280         420         480         530         560         600         670
	Св. 180 Св. 250 Св. до 250 до 315 до	26 28 32 42 45 50 67 75 80 105 110 125 160 180 200 260 280 300
	Св. 80 Св. 120 (до 120 до 120 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180 до 180	20 24 32 38 50 60 80 90 130 150 200 220
	До 80	18 28 45 71 110 180
	Степень	5 7 8 8 10

 $\Pi$  р и м е ч а н и е . Принятое обозначение  $\pm f_a$  — предельные отклонения межосевого расстояния в передаче.

143. Нормы контакта (показатель  $\pm f_X$ , мкм)

							Межосе	вое расс	Межосевое расстояние а», мм	Iw, MM						
Степень точности	До 80	Св. 80 Св. до 120 до 1	Св. 120 до 180	Св. 180 до 250	Св. 250 до 315	Св. 315	Св. 400 до 500	Св. 500 до 630	Св. 630 до 800	Св. 800 до 1000	Св. 1000 до 1250	Св. 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150	Св. 3150 до 4000
5	14	91	18	20	22	24	26	28	30	32	34	38	40	45	48	53
9	22	25	78	32	36	40	42	45	48	53	99	09	29	71	75	80
7	34	4	45	50	92	09	19	20	75	85	8	95	105	110	120	130
œ	53	63	7.1	80	8	100	105	110	120	130	140	150	160	170	190	200
6	85	100	110	130	140	150	160	170	190	200	220	240	260	180	300	320
10	130	130	180	200	220	240	260	280	300	320	340	375	400	450	480	200
			_		_	_	_	_	_	-	_		_		_	

 $\Pi$  р и м е ч а н и е . Принятое обозначение  $\pm f_x$  — предельные смещения средней плоскости в передаче.

нтакта)
TTHO KO
арное пз
(CYMINE
KOHTAKTA
HOPMEN
144. I

Степень	Относительные разме и отклонени	тельные размеры суммарного пятна и отклонение контакта, %	Степень	Относительные размеры суммарного пятна и отклонение контакта, ${\mathscr H}$	ы суммарного пятна контакта, %
точности	по высоте зубьев	по длине зубьев	точности	по высоте зубьев	по длине зубьев
5	75-10	70-10	8 6	55-15	50-15
9	65-10	60-10	10	45-15	40-15

Ширина зубчатого венца			Степень т	очности		
червячного колеса, мм	5	6	7	8	9	10
До 63	7,1	9	12	16	22	28
Св. 63 » 100	9,5	12	17	22	28	36
» 100 » 160	13	17	24	30	40	50
» 160 » 250	19	24	32	42	56	71
» 250		_	48	63	80	100
		_				

145. Нормы контакта (показатель  $f_{\Sigma r}$ , мкм)

 $\Pi$  р и м е ч а н и я : 1. Принятое обозначение  $\pm f_{\Sigma r}$  — предельные отклонения межосевого угла передачи.

- 2. Предельное отклонение межосевого расстояния в обработке  $f_{ac}$ , предельное отклонение межосевого угла в обработке  $f_{\Sigma c}$  и предельное смещение средней плоскости червячного колеса в обработке  $f_{xc}$  червячных передач всех степеней точности по нормам плавности работы не должны превышать  $0.75f_a$ ,  $0.75f_{\Sigma}$ ,  $0.75f_x$  соответственно.
- 3. При осуществлении модификации боковых поверхностей зубьев червячных колес нерегулируемых червячных передач степеней точности 7 10 (по нормам плавности работы) в обоснованных случаях допускается изменять номинальные значения межосевого расстояния ( $a_c$ ), межосевого угла ( $\Sigma_c$ ) в обработке, а при постоянстве величины и знака деформаций элементов передачи и номинальное положение средней плоскости червячного колеса.
- 4. Если суммарное пятно контакта в существенно большей его части сдвинуто от средней плоскости колеса по направлению вращения червяка, то допускается нормировать его относительные размеры независимо от табл. 144. Выход уплотненного контакта на кромку зубьев не допускается. В этом случае допускается принимать несимметричное расположение поля допуска.

**Нормы бокового зазора.** 1. Величина гарантированного бокового зазора для различных видов сопряжений устанавливается по табл. 146 независимо от степеней точности и их комбинирования.

2. Показателями, обеспечивающими гарантированный боковой зазор при всех видах сопряжений, являются:  $j_{n \text{ min}}$  — для червячных передач с регулируемым положением осей (табл. 146);  $E_{s}$  и  $T_{s}$ — для червячных передач с нерегулируемым расположением осей (табл. 147, 148 и 149).

146. Нормы бокового зазора, мкм (  $J_{\mu \, ext{min}} - ext{гарантированный боковой зазор})$ 

							Межосе	Boe pacc	Межосевое расстояние аш, мм	w, MM						
Без сопря- жения	До 80	Св. 80 Св. до 120 до 1	Св. 120 до 180	Св. 180 до 250	Св. 250 до 315	Св. 315 Св. до 400 до 5	Св. 400 Св. по био био био био био био био био био би	500	Св. 630 до 800	Св. 800 до 1000	Св. 1000 до 1250	Св. 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150	Св. 3150 до 4000
Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ш	30	35	\$	46	52	57	63	70	80	06	105	125	150	175	210	260
D	46	54	63	72	81	88	97	110	125	140	165	195	230	280	330	410
ပ	74	87	100	115	130	140	155	175	700	230	260	310	370	440	240	099
В	120	140	160	185	210	230	250	280	320	360	420	200	009	700	098	1050
4	190	220	250	290	320	360	400	440	200	260	099	780	920	1100	1350	1650

147. Нормы бокового зазора, мкм (показатель  $E_{_{\rm SS}}$ , слагаемое I)

							Межосе	вое расс	Межосевое расстояние $a_w$ , мм	w, MM						
Без сопря- жения	До 80	Св. 80 Св. до 120	Св. 120 до 180	Св. 180 до 250	Св. 180 Св. 250 до 250 до 315	Св. 315 до 400	0 Cв. 315 Cв. 400 Св. 500 Св. 6 5 до 400 до 500 до 630 до 8	Св. 500	Св. 630 до 800	CB. 800 40	CB. 1000 40	Св. 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150	Св. 3150 до 4000
H	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
ш	32	38	42	48	99	09	29	75	85	95	110	130	160	190	220	280
Ω	48	99		75	85	95	105	120	130	150	170	200	240	300	360	420
ပ	08	95		120	130	140	160	180	210	240	280	320	400	480	260	710
В	130	120		200	220	240	260	300	340	380	450	530	630	710	906	1100
∢	200	220		300	340	380	420	480	530	009	710	850	950	1180	1400	1800
T P I	n o n o r	Поименения 1 Прин	PULIGINO	атое обозначение.	une. F		Join May	TO TOTAL	CADUMENT CATTURE THE THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF	1	Tren nem	0,4101				

Примечание толщины витка червяка. E - + наименьшее отклонение толщины витка червяка.

E —, берется как сумма двух слагаемых I и II, определяемых по табл. 147 и 148 2. Наименьшее отклонение толщины витка

соответственно.

148. Нормы бокового зазора, мкм (показатель  $E_{-}$ , слагаемое II)

				·		'	.   ≥	Гежосе	вое рас	стояние	межосевое расстояние а _w , мм	.					
Степень точности *	Модуль, мм	До 80	CB. 80 120	CB. 120 40 180	CB. 180 40 250	CB. 250 70 315	Св. 315 до 400	CB. 400 400 500	CB. 500 40 630	CB. 630 70 800	Св. 800 до 1000	Св. 1000 до 1250	CB. 1250 40 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150	Св. 3150 до 4000
5	Or 1 до 3,5 Cb. 3,5 * 6,3 * 6,3 * 10 *10 * 16	22 25 	25 28 1	28 30 32	30 32 34 40	32 34 36 42	34 36 38 42	36 38 40 45	38 40 42 48	42 42 45 50	45 45 48 50	48 48 50 53	50 53 53 56	53 56 56 60	60 63 63	63 63 67 67	67 67 71 71
9	Or I до 3,5 CB. 3,5 * 6,3 * 6,3 * 10 *10 * 16	8911	40	45 53 -	48 50 56 63	50 53 56 67	53 56 60 71	56 60 63 71	60 63 67 75	67 67 71 80	71 71 75 80	75 75 80 85	80 80 85 90	85 90 90 95	95 95 95 100	100 100 105 110	105 110 110 120
7	Or 1 до 3,5 CB. 3,5 * 6,3 * 6,3 * 10 *10 * 16 *16 * 25	69 	62 67	71 75 85 —	75 80 90 100	80 85 95 105 130	85 90 100 110 130	90 95 105 120 140	100 100 110 120 140	105 110 120 125 140	110 120 125 130 150	120 125 130 140 160	130 130 140 150 160	140 140 150 150 170	150 150 160 160 180	160 160 170 170 190	170 170 180 190 200
∞	Or 1 Ao 3,5 CB. 3,5 * 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25	100	1100	110 120 130 —	120 130 140 160	130 140 150 170 200	140 140 160 180 210	150 150 160 180 220	160 160 170 190 220	170 170 180 200 240	180 190 190 210 240	190 200 210 220 220	210 210 220 240 260	220 220 240 250 280	240 240 250 260 280	250 250 260 280 300 ·	280 280 280 300 320
6	Or 1 до 3,5 CB. 3,5 * 6,3 * 6,3 * 10 *10 * 16 *16 * 25	150 160 —	160 180 —	180 190 210 250 -	190 210 220 260 —	210 220 240 280 320	220 240 250 280 340	240 250 260 300 340	250 260 280 300 360	260 280 300 320 380	280 300 320 340 380	300 320 340 360 400	340 340 360 380 420	360 360 380 400 450	380 380 400 420 450	400 420 420 450 480	450 450 450 480 500

									-					_			
δ	От 1 до 3,5	240	790	280	300	340	360	380	400	420	450	200	530	999	009	029	710
CB.	CB. 3,5 » 6,3	260	280	300	320	340	380	400	420	450	480	200	530	009	630	0/9	710
*	* 6,3 * 10	I	1	340	360	380	400	420	450	480	200	530	999	009	630	710	750
-	*10 * 16	ı	l	1	420	420	450	480	200	200	530	999	009	630	029	710	750
*	*16 * 25	ı		ı	ı	530	530	999	260	009	009	630	029	710	750	750	800
				_													

* В соответствии с нормами плавности.

 $\Pi$  р и м е ч а н и я: 1. Принятое обозначение: E - m наименьшее отклонение (уменьшение) толщины витка по хорде.

2. Наименьшее отклонение толщины витка E = 6 рется как сумма двух слагаемых I и II, определяемых по табл. 147 и 148  $_{\Sigma}$ соответственно.

а по хорде)	
2	
червяв	
BHTKA	
толимну витка	
H3	
туск на т	
допусь	
ļ	
T	
<b>-</b>	
MXM	
a3opa,	
93	
OKOBOL	
9	
MEI 6	
Нормы 6	
49. Нормы б	

	Св. 250 до 320	240	300	400	480	630	750	950	1180
	Св. 200 до 250	200	250	320	380	200	630	750	950
	Св. 160 до 200	160	200	260	320	400	200	630	750
	Св. 125 до 160	130	160	200	250	320	400	200	630
IKM	Св. 100	110	130	170	200	260	320	400	500
Допуск на радиальное биение червячного колеса, мкм	Св. 80 до 100	96	110	140	170	220	260	320	400
чного к	Св. 60 до 80	70	8	110	140	180	220	260	320
не червя	Св. 50 до 60	09	75	95	120	150	180	220	260
ж биень	Св. 40 до 50	50	65	80	100	130	150	180	220
диальнс	Св. 32 до 40	42	55	70	85	110	130	160	200
ж на ра	Св. 25 до 32	38	48	09	75	95	120	150	180
Допус	Св. 20 до 25	32	42	52	65	82	110	130	170
	Св. 12 Св. 16 Св. 20 до 16 до 25	28	36	45	28	75	95	120	150
		26	32	40	52	65	80	100	130
	Св. 10	24	30	36	48	09	75	95	120
	Св. 8	22	28	34	45	55	07	85	110
	Д08	21	25	30	40	52	65	80	100
Вид	допуска бокового зазора	h	P	ပ	Ф	ಡ	Z	Λ	×

# Конструкция червячных колес

Типовыми конструкциями червячных колес являются: бандажированная (рис. 67, а), болтовая (рис. 67, б), сплошная литая (рис. 67, в), составная литая (чугунный центр вставляется в форму для отливки бронзового обода).

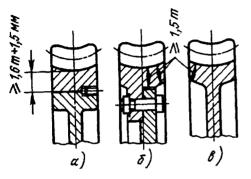



Рис. 67. Конструкция обода червячных колес

При знакопеременной нагрузке толщина венца червячного колеса (рис. 67, a) должна быть  $\geq 2~m$ , но не менее 10 мм; диаметры крепежных болтов также должны быть больше. Болты после затяжки срезают и запиливают.

Конструкция, а также размеры спиц и ступицы центра такие же, как и для цилиндрических колес (см. рис. 22, 23).

# Правила выполнения чертежей цилиндрических червяков и червячных колес

Примеры указания параметров зубчатого венца на чертежах червяков и червячных колес приведены на рис. 68,69. Неиспользуемые строки в таблицах параметров следует исключать или прочеркивать.

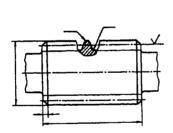
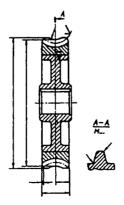




Рис. 68. Пример указания параметров зубчатого венца на чертеже червяка вида ZA (архимедова червяка)

-	Модуль	-	r
_	Verse Summel	2,	
	Bed replane	=	ZA
	Делетельные увал подъеме	7	
	Hanpolinemet Aunua Eumka.	-	
	HEEGHAL VEPÉRK	=	FRET 19434
	Степонь техности	-	
	Денные дал контроля бус- ченого положения резно- онивация профилей битка		
	Делутельный вченетр червока	4,	
	Ind Dumma	121	
		10	35



Модуль	AD.	
vezo sylvel	21	
enpeloonue ounus spõe	<b>I</b> -	
(вэффициант сугащания герояха	2	
ferförste neverbedruge splax	-	FOCT 19038
Смепень точности	<b>-</b>	
Чемесевое резетелние	a,	
Assumesenud duememp replaymese Keneca	dį	
Вид сопряменного червяна	1-	ZA
Число Витков сопрэжен- него червана	z,	
Обозначение чертежа сопряменного чербяна	Ι	1

Рис. 69. Пример указания параметров зубчатого венца на чертеже колеса, сопрягаемого с червяком вида ZA (архимедовым червяком)

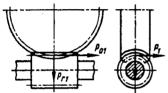
# Силы в зацеплении и КПД червячных передач

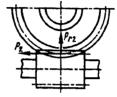
КПД червячной передачи

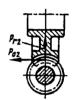
$$\eta = \eta' \eta_{\Pi} \eta_{D}$$
,

где п' учитывает потери в зацеплении;

 $\eta_{\Pi}$  — в подшипниках;  $\eta_{p}$  — на размешение и разбрызгивание смазочного масла. При ведущем червяке


$$\eta' = \eta'_{12}, = \frac{tg\gamma}{tg(\gamma + \rho')} \ .$$


При ведомом червяке


$$\eta' = \eta'_{21} = \frac{tg(\gamma - \rho')}{tg\gamma} \ .$$

### 150. Формулы для определения сил в зацеплении червячной передачи

Схема распределения составляющих сил в передаче







Силы, действующие на червяк

Силы, действующие на колесо

Ведущее звено	$P_{a1} = P_2$	$P_1 = P_{a2}$	$P_{r1} = P_{r2}$
Червяк	$\frac{2T_2}{d_2} = P_1 \times \frac{\eta_{12}}{\text{tgy}}$	$\frac{2T_1}{d_1} = P_2 \operatorname{tg} (\gamma + \rho') =$ $= P_2 \frac{\operatorname{tg} \gamma}{\eta'_{12}}$	$\frac{P_2 \operatorname{tg} \alpha_{nS}}{1 - \operatorname{tg} \gamma \operatorname{tg} \rho'} \approx P_2 \operatorname{tg} \alpha_{nS}$
Колесо	$\frac{2T_2}{d_2} = P_2 \eta_{21} \text{tgy}$	$\frac{2T_1}{d_1} = P_2 \operatorname{tg}(\gamma - \rho') =$ $= P_2 \eta'_{21} \operatorname{tg}\gamma$	$\frac{P_2 \operatorname{tg} \alpha_{nS}}{1 + \operatorname{tg} \gamma \operatorname{tg} \rho'} \approx P_2 \operatorname{tg} \alpha_{nS}$

Здесь  $\rho'$  — угол трения. В передачах с архимедовым червяком  $\alpha_{nS} = \alpha = 20^{\circ};$ 

в передачах с эвольвентным и конволютным червяками  $\alpha_{nS} = \arctan\left(\frac{\operatorname{tg}20^{\circ}}{\cos\gamma}\right)$ 

Полная сила в зацеплении:  $P_{3a\,\text{ц}} = \sqrt{P_2^2 + P_{a2}^2 + P_{r2}^2}$ 

Для передачи с чугунным колесом, работающим в паре со стальным червяком tg  $\rho' = f = 0.06 \div 0.12$  (меньшие значения при  $v_{\rm ck} \ge 2$  м/c).

Значение f и  $\rho'$  при бронзовом колесе и стальном червяке приведены в табл. 152. Меньшие значения f и  $\rho'$  соответствуют передачам со шлифованными червяками при твердости рабочих поверхностей витков > 45 HRC.

При расчете черячных передач с опорами качения следует принимать  $\eta_{\Pi}=1$ . Значение  $\eta_{p}$  при погружении передачи (колеса или червяка) в масло примерно на высоту зуба (витка) определяют по формуле

$$\eta_p = 1 - \frac{1.4 \, v_{o \, K} \, b_2 \, \sqrt{v_{o \, K} \, v}}{10^5 \, N},$$

где  $v_{ok}$ —окружная скорость погруженного в масло элемента (колеса или червяка), м/с;

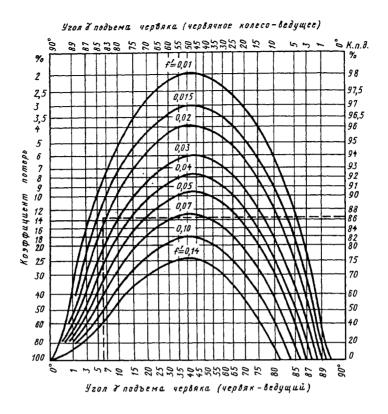



Рис. 70. График для определения КПД червячных передач

П р и м е р . Определить КПД  $\eta_{12}'$  при ведущем червяке, если  $\gamma=6°20'25''$  и f =0,017. По графику (см штриховую линию) находим, что  $\eta_{12}'\approx0,\!86$ 

v — кинематическая вязкость масла при рабочей температуре, сСт;

N—мощность, передаваемая червячным колесом, кВт;  $b_2$ —ширина обода червячного колеса, погруженного в масло, см;

если в масло погружается червяк, то вместо  $b_2$  в формулу подставляют длину рабочей части червяка  $b_1$ .

По графику на рис. 70 определяют КПД червячной передачи в зависимости от  $\gamma$  и f. Если  $\rho' = \gamma$ , то при ведомом червяке КПД  $\eta_{21} = 0$ , т.е. теоретически наступает состояние самоторможения, но практически самоторможения при вибрации не получается даже при  $\gamma = 3 \dots 6^{\circ}$ .

## Расчет на прочность цилиндрической червячной передачи

При проектировании самотормозящей червячной передачи делительный подъема у следует выбирать приблизительно в 2 раза меньще угла трения о (табл. 152). Меньшие значения коэффициента трения соответствуют цементованным. шлифованным и полированным червякам при тщательной приработке и сборке передачи и обильной смазке маслом достаточной вязкости; коэффициенты трения даны с учетом потерь в подшипниках валов червяка и червячного колеса в предположении, что оба вала смонтированы на подшипниках качения. Для обработанных чугунных червячных колес  $f = 0.06 \div 0.12$  (меньшие значения при  $v_{cK} > 2$  м/с).

151. Формулы расчета на прочность червячных колес

Параметры и обозначения	Расчетные формулы
Вращающий момент на колесе $T_2$ , $\mathbf{H} \cdot \mathbf{m}$	
Модуль т, мм	
Частота вращения червяка n _l	
Делительный угол подъема ү °	Исходные данные
Число <i>q</i> модулей в диаметре делительного ци- линдра червяка	Пелодные данные
Число зубьев колеса z ₂	
Условный угол обхвата 28°2	J
Скорость скольжения на делительном цилиндре червяка $v_{\rm CK}$ , м/с	$v_{c \kappa} = \frac{\pi d_1 n_1}{60 \cdot 1000 \cos \gamma}$
Напряжения изгиба $\sigma_F^{},$ МПа	$\sigma_F = \frac{600 T_2}{z_2 m^3 q y 2\delta_2} \le \sigma_{FP}$
Контактные напряжения $\sigma_H$ , МПа	$\sigma_H = \frac{500}{mz_2} \sqrt{\frac{T_2}{2d_1 2\delta_2}} \le \sigma_{HP}$
(Контактные напряжения в зависимости от скорости скольжения даны в табл. 154)	
Значения коэффициента у приведены в табл. 153	
Допустимые напряжения $\sigma_{HP}$ и $\sigma_{FP}$ приведены	
в табл. 155.	

# 152. Коэффициент трения fи угол трения $\rho'$ при червячном колесе из фосфористой бронзы и стальном червяке

υ _{ск} , м/с	f	ρ'	υ _{ск} , м/с	f	ρ΄
0,01 0,10 0,25 0,5 1,0 2,5	0,11 — 0,12 0,08 — 0,09 0,065 — 0,075 0,055 — 0,065 0,045 — 0,055 0,04 — 0,05	6°17' — 6°51' 4 34 — 5 09 3 43 — 4 17 3 09 — 3 43 2 35 — 3 09 2 17 — 2 52	2,0 2,5 3,0 4,0 7,0 10	$\begin{array}{c} 0,035 - 0,045 \\ 0,03 - 0,04 \\ 0,028 - 0,035 \\ 0,023 - 0,030 \\ 0,018 - 0,026 \\ 0,016 - 0,024 \\ 0,014 - 0,020 \end{array}$	2°00' — 2°35' 1 43 — 2 17 1 36 — 2 00 1 19 — 1 43 1 02 — 1 29 0 55 — 1 22 0 48 — 1 09

### 153. Значения коэффициентов у

z 2	у	z 2	у	z 2	у	z 2	у	z 2	у	z ₂	у
16	0,095	20	0,100	26	0,107	35	0,120	50	0,136	150	0,150
17	0,096	21	0,101	28	0,110	37	0,123	60	0,141	300	0,160
18	0,098	22	0,103	30	0,113	40	0,128	80	0,148		
19	0,099	24	0,105	32	0,116	45	0,133	100	0,152		

154. Контактные напряжения в зависимости от скорости скольжения

Марка материала		$\sigma_{HP}$ , МПа, при скорости скольжения $v$ , м/с					
червяка	колеса	0	0,25	0,5	1	2	3
Чугун СЧ 15 СЧ 18 СЧ 20	Чугун СЧ 10 СЧ 15	220	200	190	170	140	100
Сталь 20 цементо- ванная Бронза	Чугун СЧ 10 СЧ 15 Бронза Бр АЖ 9—4Л	190	160	130	110	90	
Сталь Ст6 Сталь 45	CY 10 CY 15	170	140	120	100	70	_

## 155. Допускаемые напряжения для зубьев червячных колес

	Допускаемые напряжения, МПа				
Способ отливки	изгиба	контактные σ _{НР}			
	σ _{FP}	червяк до 45 HRC	червяк Св. 45 HRC		
В песчано-глинистые формы В кокиль	60 80	170 250	200 300		
Центробежный	95	270 330			
В песчано-глинистые формы В кокиль Центробежный	55 60 70	150 170 210	190 200 260		
В песчано-глинистые формы	55	150	190		
В песчано-глинистые формы В кокиль	10 11	В зависимости от скоро- сти скольжения			
		и материа	ла червяка		
	1				
_					
	В песчано-глинистые формы В кокиль  Центробежный  В песчано-глинистые формы В кокиль Центробежный  В песчано-глинистые формы В песчано-глинистые формы	Способ отливки       изгиба от FP         В песчано-глинистые формы В кокиль       60 80         Центробежный       95         В песчано-глинистые формы В кокиль Центробежный       55 60 70         В песчано-глинистые формы       55         В песчано-глинистые формы       55	Способ отливки         изгиба         контакти червяк до 45 HRC           В песчано-глинистые формы В кокиль         60 170 250           Центробежный         95 270           В песчано-глинистые формы В кокиль Центробежный         55 150 170 210           В песчано-глинистые формы В песчано-глинистые формы В песчано-глинистые формы В кокиль         55 150           В песчано-глинистые формы В кокиль         10 10 10 10 10 10 10 10 10 10 10 10 10 1		

### Дополнительные источники

**Передачи** зубчатые цилиндрические. Основные параметры. — ГОСТ 2185—66.

**Передачи** зубчатые турбин и компрессорных машин. Технические требования. Методы контроля. — ГОСТ 8889—88.

Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические мелкомодульные. Допуски. — ГОСТ 9178—81.

Основные нормы взаимозаменяемости. Передачи зубчатые конические мелкомодульные. Допуски. — ГОСТ 9368—81.

**Передачи** глобоидные. Основные параметры. — ГОСТ 9369—77.

Основные нормы взаимозаменяемости. Передачи зубчатые. Исходный контур зубчатых мелкомодульных колес.—ГОСТ 9587—81.

Основные нормы взаимозаменяемости. Передачи червячные мелкомодульные. Допуски. — ГОСТ 9774—81.

**Передачи** зубчатые конические. Основные параметры. — ГОСТ 12289—76.

Основные нормы взаимозаменяемости. Передачи зубчатые реечные мелкомодульные. Допуски. — ГОСТ 13506—81.

Передачи зубчатые цилиндрические мелкомодульные с часовым профилем. Типы. Основные параметры и размеры, допуски. — ГОСТ 13678—73.

Колеса зубчатые цилиндрические мелкомодульные прямозубые и косозубые. Типы. Основные параметры и размеры.—ГОСТ 13733—77.

Колеса зубчатые цилиндрические передач типа Новикова. Модули. — ГОСТ 14186—69.

**Передачи** Новикова цилиндрические с двумя линиями зацепления. Исходный контур. — ГОСТ 15023—76.

Основные нормы взаимозаменяемости. Передачи глобоидные. Допуски.— ГОСТ 16502—83.

**Передачи** глобоидные. Расчет геометрии. — ГОСТ 17696—89.

**Передачи** Новикова с двумя линиями зацепления цилиндрические. Расчет геометрии. — ГОСТ 17744—72.

Основные нормы взаимозаменяемости. Передачи червячные цилиндрические мелкомодульные. Исходный червяк и исходный производящий червяк.—ГОСТ 20184—81.

**Передачи** спироидные. Термины, определения и обозначения. — ГОСТ 22850—77.

**Передачи** глобоидные. Исходный червяк и исходный производящий червяк. — ГОСТ 24438—80.

**Решетов Д.Н.** Детали машин. Изд. 4-е. М.: Машиностроение, 1989.

**Курсовое** проектирование деталей машин. Учебное пособие для техникумов/С. А. Чернавский, К. Н. Боков, И. М. Чернин и др. М.: Машиностроение, 1987.

**Передачи** червячные. Термины, определения и обозначения — ГОСТ 18498-89.

**Передачи** зубчатые цилиндрические эвольвентные внешнего зацепления. Расчёт на прочность — ГОСТ 21354—87.

Справочник по геометрическому расчёту эвольвентных зубчатых и червячных передач. Изд. 2-е /Под ред. И. А. Болотовского. М.: Машиностроение, 1986.

Машиностроение. Энциклопедия в 40 томах. Том V-1. Детали машин. Конструкционная прочность. Трение, износ, смазка. М.: Машиностроение, 1995.

# Глава V

# ЦЕПНЫЕ ПЕРЕДАЧИ

# ПРИВОДНЫЕ РОЛИКОВЫЕ И ВТУЛОЧНЫЕ ЦЕПИ (по ГОСТ 13568—75 в ред. 1990 г.)

# Внимание! ГОСТ 13568-97, который введен с 1 июля 2000 г., приведен на с. 892.

Однорядные и многорядные приводные роликовые и втулочные цепи применяют для машин и механизмов.

Виды климатического исполнения У1 или УХЛ1.1 по ГОСТ 15150—69.

Приводные роликовые и втулочные цепи изготовляют следующих типов:

ПРА — приводные роликовые однорядные нормальной точности;

ПР — приводные роликовые однорядные повышенной точности:

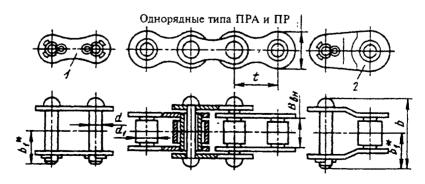
2ПР — приводные роликовые двухрядные повыщенной точности;

3ПР — приводные роликовые трехрядные повышенной точности;

4ПР — приводные роликовые четырехрядные повышенной точности;

ПРД — приводные роликовые длиннозвенные;

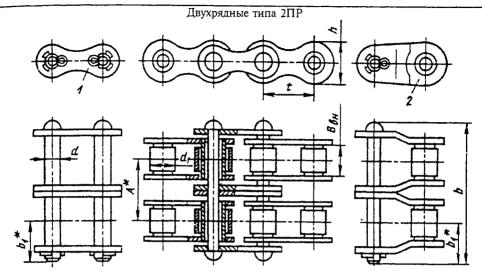
ПВ — приводные втулочные однорядные;


2ПВ — приводные втулочные двухрядные;

ПРИ — приводные роликовые с изогнутыми пластинами.

Типы, основные параметры и размеры цепей, соединительных и переходных звеньев должны соответствовать указанным в табл. 1-3.

Значения площади опорной поверхности шарнира цепей приведены в табл. За.


### 1. Цепи роликовые однорядные типа ПРА и ПР, двухрядные типа 2ПР Размеры, мм



I — звено соединительное; 2— звено переходное

Размер для справок.

# Продолжение табл. 1



I — звено соединительное; 2 — звено переходное

^{*} Размер для справок.

Обозначение цепи	t	В _{вн} , не менее	d	$d_1$	A	h H	<i>b</i> е болес	<i>b</i> ₁	Разрушающая нагрузка, кН, не менее	Масса l м цепи, не более
ПРА-25,4—6000 ПРА-31,75—8900 ПРА-38,1—12700 ПРА-44,45—17240 ПРА-50,8—22700	25,4 31,75 38,1 44,45 50,8	15,88 19,05 25,40 25,40 31,75	7,92 8,53 11,10 12,70 14,27	15,88 19,05 22,23 25,40 28,58	- - - -	24,2 30,2 36,2 42,4 48,3	39 46 58 62 72	22 24 30 34 38	6000 8900 12700 17240 22700	2,6 3,8 5,5 7,5 9,7
ПР-8—460 ПР-9,525—910 ПР-12,7—1000—1 ПР-12,7—900—2 ПР-12,7—1820—1 ПР-12,7—1820—2 ПР-15,875—2300—1 ПР-15,875—2300—2 ПР-19,05—3180 ПР-25,4—6000 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900 ПР-31,75—8900	8,0 9,525 12,7 12,7 12,7 15,875 15,875 15,875 19,05 25,4 31,75 38,1 44,45 50,8 63,5	3,0 5,72 2,4 3,3 5,4 7,75 6,48 9,65 12,7 15,88 19,05 25,4 31,75 38,1	2,31 3,28 3,66 3,66 4,45 4,45 5,08 5,08 5,94 7,92 9,53 11,10 12,70 14,27 19,84	5,0 6,35 7,75 7,75 8,51 8,51 10,16 10,16 11,91 15,88 19,05 22,23 25,40 28,58 39,68		7,5 8,5 10,0 10,0 11,8 11,8 14,8 14,8 24,2 30,2 30,2 36,2 42,4 48,3 60,4	12 17 10,5 12 19 21 20 24 33 39 46 58 62 72 89	7 10 6,3 7 10 11 11 13 18 22 24 30 34 38 48	460 910 1000 900 1820 1820 2300 3180 6000 8900 12700 17240 22700 35400	0,20 0,45 0,30 0,35 0,65 0,75 0,8 1,0 1,9 2,6 3,8 5,5 7,5 9,7
2ПР-12,7—3180 2ПР-15,875—4540 2ПР-19,05—6400	12,7 15,875 19,05	7,75 9,65 12,70	4,45 5,08 5,96	8,51 10,16 11,91	13,92 16,59 22,78	11,8	35 41 53,4	11 13 17,75	3180 4540 6400	1,4 1,9 2,9

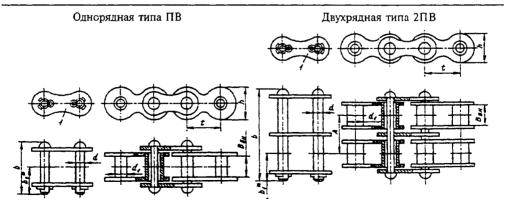
Продолжение табл. 1

						h	Ь	<i>b</i> ₁	щая кН,	Масса 1 м
Обозначение цепи	t	В _{вн} , не менее	d	$d_1$	A	не	более		Разрушающая нагрузка, кН, не менее	цепи, не более
2ПР-25,4—11400 2ПР-31,75—17700 2ПР-38,1—25400 2ПР-44,45—34480 2ПР-50,8—45360	25,4 31,75 38,1 44,45 50,8	15,88 19,05 25,40 25,40 31,75	7,92 9,53 11,10 12,70 14,27	15,88 19,05 22,23 25,40 28,58	29,29 35,76 45,44 48,87 58,55	24,2 30,2 36,2 42,24 48,3	68 82 104 110 130	22 24 30 34 38	11 400 17 700 25 400 34 480 45 360	5,0 7,3 11,0 14,4 19,1

Примечания: 1. Допускается снижение разрушающей нагрузки переходных звеньев на 20%.

2. В ГОСТ 13568-75 приведены также размеры цепей типов ЗПР и 4ПР.

Примеры условных обозначений:


цепи приводной роликовой однорядной нормальной точности, шага 25,4 мм с разрушающей нагрузкой 6000 даН:

соединительного звена цепи приводной роликовой однорядной нормальной точности, шага 25,4 мм с разрушающей нагрузкой 6000 даН:

переходного звена цепи приводной роликовой однорядной нормальной точности, шага 25,4 мм с разрушающей нагрузкой 6000 даН:

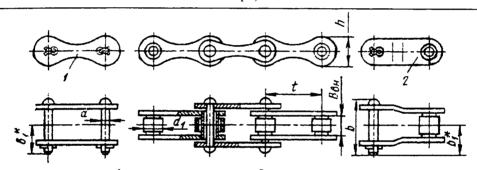
двойного переходного звена цепи приводной роликовой двухрядной повышенной точности, шага 15,875 мм с разрушающей нагрузкой 4540 даН:

### 2. Цепи однорядные и двухрядные типа ПВ и 2ПВ Размеры, мм



1 — соединительное звено

Размер для справок.


		_	_
HDOC	олжение	таол.	-2

						h	ь	$b_1$	щая кН,	Macca 1 м
Обозначение цепи	t	<i>В</i> _{вн} , не менее	ď	$d_1$	A	н	е более		Разрушаю нагрузка, не менее	цепи, не более
ПВ-9,525—1150 ПВ-9,525—1300	9,525	7,60 9,52	3,59 4,45	5,0 6,0	_	8,80 9,85	18,5 21,2	10,0 12,0	1150 1300	0,50 0,65
2ПВ-9,525—2000		5,20	4,45	6,0	10,75	9,85	27,5	8,5	2000	1,00

Пример условного обозначения цепи приводной втулочной шага 9,525 мм с разрушающей нагрузкой 1300 даН

Цепь ПВ-9,525 — 1300 ГОСТ 13568—75

### 3. Длиннозвенные цепи типа ПРД Размеры, мм



I — соединительное звено; 2 — переходное звено

^{*} Размер для справок.

					h	Ь	b ₁	щая кН,	Macca 1 M
Обозначение цепи	t	В _{вн} , не менее	d	$d_1$		не более	:	Разрушаю нагрузка, не менес	цепи, не более
ПРД-31,75—2300 ПРД-38,1—3180 ПРД-38—3000 ПРД-38—4000 ПРД-50,8—6000 ПРД-63,5—8900 ПРД-76,2—12700	31,75 38,1 38,0 38,0 50,8 63,5 76,2	9,65 12,7 22,0 22,0 15,88 19,05 25,4	5,08 5,94 7,92 7,92 7,92 9,53 11,10	10,16 11,91 15,88 15,88 15,88 19,05 22,23	14,8 18,2 21,3 21,3 24,2 30,2 36,2	24 31 42 47 39 46 57	13 17 23 26 22 24 30	2 300 3 180 3 000 4 000 6 000 8 900 12 700	0,60 1,10 1,87 2,10 1,90 2,60 3,90

 $\Pi$  р и м е ч а н и е . Допускается снижение разрушающей нагрузки переходных звеньев на 20%.

Пример условного обозначения цепи приводной роликовой длиннозвенной с шагом 38,1 мм, с разрушающей нагрузкой 3180 даН:

Цепь ПРД-38,1 — 31800 ГОСТ 13568—75

За. Площадь опорной поверхности шарнира однорядной цепи

Обозначение цепи	Плошадь опорной поверхности шарнира однорядной цепи, см²	Обозначение цепи	Площадь опорной поверхности шар- нира однорядной цепи, см ²
ПР-8—460	0,11	ПРА-31,75—8900	2,62
ПВ-9,525—1150	0,4	ПР-31,75—8900	2,62
ПВ-9,525—1300	0,56	ПРД-63,5—8900	2,62
ПР-9.525—910	0,28	ПРД-38—3000	2,24
ПР-12.7—1000—1	0,13	ПРД-38—4000	2,37
ПР-12.7—900-2	0,22	ПРА-38,1—12700	3,95
ПР-12,7—1820—1	0,39	ПР-38,1—12700	3,94
ПР-12,7—1820—2	0,50	ПРД-76,2—12700	3,95
ПР-15,875—2300—1	0,51	ПРА-44,45—17240	4,73
ПР-15,875—2300—2	0,67	ПР-44,45—17240	4,72
ПРД-31.75—2300	0,67	ПРА-50,8—2270	6,37
ПР-19,05—3180	1,05	ПР-50,8—22700	6,45
ПРД-38,1—3180	1,05	ПР-63,5—35400	10,89
, , ,	· '	ПРИ-78,1—36000	10,29
ПРА-25,4—6000 ПР-25,4—6000	1,79 1,79	ПРИ-78,1—40000	11,31
ПР-23,4—6000	1,79	ПРИ-103,2—65000	19,68
111 Д-30,6—6000	1,77	ПРИ-140—120000	43,20

Примечание. Плошадь опорной поверхности шарнира многорядной цепи равна произведению плошади опорной поверхности шарнира однорядной цепи на число рядов в цепи.

**Обозначение цепей,** соединительных и переходных звеньев **при экспорте** должно соответствовать указанному в табл. 36.

Для обозначения соединительных звеньев при экспорте перед обозначением цепи через тире указывают цифру 1, а для переходных — цифру 2.

Пример обозначения соединительного звена к цепи 16А:

Звено соединительное 1—16А.

Число рядов цепи при маркировке не приводят.

36. Обозначение цепей, соединительных и переходных звеньев при экспорте

Обозначен	ние цепей	Обозначен	ние цепей
по ГОСТ 13568	при экспорте	по ГОСТ 13568	при экспорте
ПР-8—460	05B	2ПР-19,05—6400	12A-2
ПР-9,525—910	06B	2ΠP-25,4—11400	16A-2
ПР-12,7—1000—1	082	2ΠP-31,7517700	20A-2
ПР1-12,7—900—2	081	2ΠP-38,1—25400	24A-2
ПР-12,7—1850—1	086	2ΠP-44,45—34480	28A-2
ПР-12,7—1850—2	08 <b>B</b>	2ΠP-50,8—45360	32A-2
ПР-15,875—2300—1	101		
ПР-15,875—2300—2	10B	3ПР-12,7—4540	08B-3
ПР-19,05—3180	12A	3ΠP-15,875—6810	10B-3
ПР-25,4—6000	16A	3ПР-19,05—9600	12A-3
ПР-31,75—8900	20A	3ПР-25,4—17100	16A-3
ПР-38,1—12700	24A	3ПР-31,75—26550	20A-3
ПР-44,45—17240	28A	3ПР-38,1—38100	24A-3
ПР-50,8—22700	32A	3ПР-44,45—51720	28A-3
ПР-63,535400	40A	3ПР-50,8—68040	32A-3
2ΠΡ-12,7—3180	08B2	ПРД-38—3000	2121
2ПР-15,875—4540	10B-2		

Технические требования. 1. Пластины и пружинные замки должны изготавливаться из холоднокатаного проката нормальной или повышенной точности по толщине, свертные втулки — из обрезного холоднокатаного проката повышенной или нормальной точности по толщине и ширине или плющеной ленты, ролики — из холоднокатаного проката, плющеной ленты или калиброванной стали, валики — из калиброванной стали или круглой холоднотянутой проволоки. Для пластин цепей типов ПРД, ПРИ допускается применение горячекатаного проката.

2. Детали цепей должны быть термически или химико-термически обработаны до твердости, соответствующей табл. 4.

Поле рассеяния показателя твердости не должно превышать 8 единиц. Отношение глубины диффузионного слоя (эвтектоидный и половина переходного слоя) к толщине ролика, втулки или диаметру валика при химико-термической обработке должно соответствовать табл. 5.

Глубина обезуглероженного слоя на пластинах после термической обработки не должна превышать 0,3 мм.

Для оценки твердости этот слой должен быть удален.

- 3. Детали цепей не должны иметь окалины, трещин, заусенцев, раковин и коррозионных поражений, снижающих 'работоспособность цепи и ухудшающих ее товарный вил.
- 4. Пластины цепей должны иметь защитно-декоративное покрытие. Допускается наличие покрытия в отверстиях пластин.
- 5. Собранная цепь должна иметь легкую (без заедания) подвижность в шарнирных соединениях.
- 6. Суммарный зазор между наружными и внутренними пластинами собранных однорядных цепей должен быть не более указанного в табл. 6.

Суммарный зазор многорядных цепей не должен быть более 0,8 суммарного зазора для однорядной цепи, умноженного на число рядов.

# 4. Твердость термически обработанных деталей цепей

Наимен	Твердость НКС, не менее	
Пластины		32
Валики и втулки	до 15,875 мм	59,5
цепей с шагом	св. 15,875 мм	48,5
Ролики	43,5	

- 7. Цепи типа ПР, ПВ с шагами 8—15,875 мм должны быть подвергнуты растяжению нагрузкой, равной 15—33% разрушающей нагрузки согласно табл. 1 и 2.
- 8. Вращающие моменты при испытании на проворачивание валика и втулки в одной пластине не должны быть ниже значений в табл. 7.
- Предельное отклонение длины отрезка цепи от номинального значения должно быть только положительным и соответствовать указанному в табл. 8.

Число звеньев в измеряемом отрезке цепи должно соответствовать указанному В табл. 9.

 Предельное отклонение наружного и внутреннего шага звеньев от номинального значения не должно превышать величин в табл. 10.

Указания по эксплуатации. Цепи типа ПР со свертными роликами и типов ПРА, ПРД, ПРИ должны эксплуатироваться при скорости движения не выше 5 м/с.

Валы цепных передач должны быть проверены на параллельность осей. Допуск параллельности осей валов не должен быть более 0,2 мм на каждые 100 мм длины валов.

# 5. Отношение глубины диффузионного слоя к толщине детали

		Относительная глубина диффузионного слоя, %					
Типы	Шаг <i>t</i> , мм	валиков	втулок	роликов			
ПР и ПВ	8 15,875	4,0 11,0	8 30	6 20			
ПРА, ПР и ПРД	19,05 76,2	3,5 11,0	12 30	10 25			
ПРИ	78,1 140		12 30	<del>_</del>			

# 6. Суммарный зазор между наружными и внутренними пластинами собранных однорядных цепей

Шаг, мм	8	9,525	12,7	15,875 31,75*	19,05 38,1*	25,4 50,8*
Зазор, мм	0,4	0,5	0,5	0,5	0,8	1,0
Шаг, мм	31,75 63,5 *	38 *	38,1 76,2 *	44,45	50,8	63,5
Зазор, мм	1,2	1,0	1,2	1,3	1,3	1,4

Примечания: 1. При применении для пластин холоднокатаного проката нормальной точности по толщине и горячекатаного проката допускается увеличение суммарного зазора на 50%.

### 2. Знаком * отмечены цепи типа ПРД.

# Вращающие моменты при испытании на проворачивание валика и втулки в одной пластине

Шаг	, MM		нющий , даН · м	Шаг, мм		Вращающий момент, даН · м	
		Валик	Втулка			Валик	Втулка
8		0,05	0,03	31,75	63,5 *1	2,90	1,79
9,525	12,7 *2	0,08	0,05		38 *1	1,20	0,70
12,7		0,25	0,15		38 *3	1,44	0,85
15,875	31,75 *1	0,35	0,20	38,1	76,2 *i	4,00	2,40
19,05	31,1 *1	0,60	0,35	44,45		5,50	3,30
25,4	50,8 *1	1,50	0,90	50,8		7,50	4,20
				63,5		12,00	7,20

^{*1} Для цепей типа ПРД.

^{*2} Для цепей ПР-12,7—1000—1 и ПР-12,7—900—2.

^{*3} Для цепей ПРД-38-4000.

Венцы звездочек, работающих в одном контуре, должны быть проверены на расположение в одной плоскости. Смещение венцов звездочек (отклонение от плоскостности) для передач с межцентровым расстоянием до 1000 мм не должно быть более 2 мм, допуск увеличивается на 0,2 мм на каждые 100 мм межцентрового расстояния свыше 1000 мм.

Звездочки цепных передач по радиальному и осевому биению должны отвечать требованиям ГОСТ 591—69, ГОСТ 592—82.

Цепь, устанавливаемая на звездочках, должна быть отрегулирована на натяжение.

Натяжение считается нормальным, если при межцентровом расстоянии звездочек 1000 мм стрела провисания ведомой цепи составляет (40±10) мм при приложении силы (160±10) Н.

При увеличении или уменьшении межцентрового расстояния на каждые 100 мм стрела провисания соответственно увеличивается или уменьшается на (4±1) мм.

Для наклонных передач (более 45°) должна быть принята нижняя граница указанных величин.

Стрела провисания измеряется при двухзвездной цепной передаче посередине ведомой ветви, при многозвездной передаче посередине цепи между ведущей и натяжной звездочками.

Допускается эксплуатация цепей в условиях, где значения климатических факторов выходят за пределы установленных номинальных значений для исполнений У1 или УХЛ1.1. При этом значения климатических факторов, а также при необходимости дополнительные требования к цепям, их хранению и обслуживанию устанавливаются в нормативно-технической документации по согласованию между потребителем и изготовителем цепей при наличии специального технического обоснования.

Показатели надежности приведены в табл. 10а. Для цепей типов ПРА, ПР, ПВ и ПРД они даны применительно к режимам ускоренных стендовых испытаний на надежность базовых цепных контуров. Критерием предельного состояния для всех цепей является заданное увеличение длины измеряемого отрезка. Разрушение деталей при этом не допускается.

8. Предельные отклонения длины отрезка цепи

Типы цепей	Шаг <i>t</i> , мм	Предельные отклонения длины отрез-ка от номинами-
ПР, 2ПР, 3ПР, 4ПР, ПВ, 2ПВ	8,0 63,5	0,15
ПРА и ПРД	25,4 и более	0,225
ПРИ	78,1 и более	0,50

9. Число звеньев в измеряемом отрезке цепи

Типы цепей	Шаг <i>t</i> , мм	Число звеньев в измеряемом отрезке
ПРА, ПР,	8,0 25,4	49
2ПР, 3ПР,	31,75	47
4ПР, ПРД,		
ПВ и 2ПВ	38 и 38,1	39
	44,45	33
	50,8	29
	63,5	23
	76,2	19
ПРИ	78,1	19
	103,2	15
	110,0	11

Цепи не должны иметь пропеллерности и серповидности, препятствующих замыканию цепей в контур усилием от руки.

Номинальные значения климатических факторов на цепи — по ГОСТ 13568—75 и ГОСТ 15150—69 для видов климатического исполнения У1 или УХЛ1.1, но при этом допускается эксплуатация цепей в условиях исполнения УХЛ1.1, если:

- 1) нижнее значение температуры окружающего воздуха не ниже минус 45°C;
- 2) осуществляется защита цепей от коррозии путем периодической смазки в процессе эксплуатации и их консервация в нерабочем состоянии. Периодичность и виды смазки должны устанавливаться в технических условиях на конкретные виды изделий.

Условия периодических ускоренных стендовых испытаний на надежность приводных роликовых и втулочных цепей.

- 1. Установлены следующие группы цепей:
- А для цепей, работающих преимущественно в передачах мотоциклов, мотороллеров и велосипедов, в масляной ванне или при периодической смазке;
- Б для цепей, работающих преимущественно в открытых тихоходных передачах при периодической смазке (передачи сельскохозяйственных и им подобных машин);
- В для цепей, работающих в приводах машин общепромышленного назначения в условиях периодической смазки;
- $\Gamma$  для цепей, работающих преимущественно в быстроходных передачах в масляной ванне.
- Условия стендовых испытаний цепей на надежность должны соответствовать указанным в табл. 10a.
- 3. Расчетная нагрузка для многорядных цепей типов 2ПР, 3ПР, 4ПР, испытываемых по режимам табл. 10а, определяется путем умножения расчетной нагрузки для соответствующих однорядных цепей на коэффициент:
  - 1,8 для двухрядной цепи;
  - 2,5 для трехрядной цепи;
  - 3,0 для четырехрядной цепи.
- 4. Продолжительность испытания согласно табл. 10а указана с учетом времени периода приработки.

Для многорядных цепей типов 2ПР, 3ПР и 4ПР среднюю наработку до отказа и установленную безотказную наработку определяют умножением средней наработки до отказа и установленной безотказной наработки для соответствующих однорядных цепей на коэффициент, равный соответственно 0,8; 0,6; 0,5.

5. В табл. 10а предельное увеличение длины отрезка цепи от его начального значения с числом звеньев по табл. 9 дано без износа в период приработки.

10. Предельное отклонение шага цепи

Типы цепей	Шаг <i>t</i> , мм	Предельное отклонение шага от номинала, %
ПР, 2ПР, 3ПР, ПВ и 2ПВ	8,0 15,875	±0,90
ПРА, ПРД и ПРИ	25,4 76,2	+0,90 -0,40
ПР, 2ПР, 3ПР, 4ПР	19,05	+0,90 -0,40
	25,4	+0,70 -0,40
	31,75	+0,60 -0,20
	38,1 и 44,45	+0,50 -0,20
	50,8 и 63,5	+0,36 -0,20

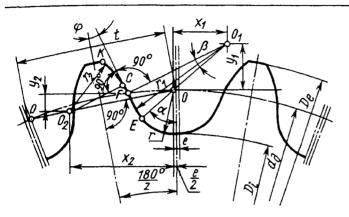
10а. Условия стендовых испытаний цепей на надежность

	Парамет	Параметры базового корпуса	корпуса		Pey	кимы и резул	Режимы и результаты испытаний	ний	
	Число	Число звезд	Число зубьев звездочки			Период	Средняя	Установ- ленная	
Обозначение цепи	звеньсв в контуре	ведущей	ведомой	<i>п</i> , мин ⁻¹	<i>Р</i> , даН	прира- ботки	наработка до отказа	безотказная наработка	$\Delta L$ , mm
							h		
			Ţ	Группа испъттания	ния А				
ПР-8—460	120	21	21	3200	25	01	1000	099	1,2
ПР-9,525—910	120	21	21	3000	09	15	1100	700	1,4
ПВ-9,525—1150	44	15	31	2600	36	40	1100	700	2,0
TIB-9,525-1300	99	24	52	2600	53	40	1100	700	2,0
2ПВ-9,525—2000	99	24	52	2600	99	40	1100	700	3,0
ПР-12,7—1000—1	112	61	48	1200	40	20	950	009	1,9
ПР-12,7—900—2	112	61	48	1200	20	20	950	009	1,9
ПР-12,7—1820—1	110	17	40	1200	125	09	1100	700	2,5
ПР-12,7—1820—2	110	17	44	1280	140	09	1100	700	2,5
ПР-15,875-2300-1	001	91	42	1180	175	09	1100	700	3,1
ПР-15,875-2300-2	100	91	42	1180	220	09	1100	700	3,1
	•		<u></u>	Группа испъгтан	тания В				
ПРА-25,4—6000	011	61	61	200	400	99	006	570	2,8
ПРА-31,75—8900	100	17	17	200	605	100	850	540	3,6
ПРА-38,1—12700	001	17	17	400	945	150	850	540	3,4
ПРА-44,45—17240	001	17	17	300	1025	200	800	200	2,7
ПРА-50,8—22700	94	17	17	240	1470	250	750	460	2,7
				Группа испыта	ния Г			•	
IIP-19,05-3180	011	61	61	1200	200	40	1200	760	6,1
ПР-25,4—6000	011	61	61	800	400	65	006	570	6,1
ПР-31,75—8900	001	17	17	009	605	100	850	540	2,4
ПР-38,1—12700	001	17	11	450	945	150	820	540	2,3
ПР-44,45—17240	100	17	17	350	1025	200	800	200	8,1
11P-50,8-12700	94	17	17	280	1470	250	750	460	8,1
ПР-63,5—35400	94	17	17	220	2320	300	650	410	1,5

3,7

ПРД-63,5—8900 ПРД-76,2—12700

۰	_
	. •
	~
١	_
۹	-
	~
	ğΖ
	-
	~
	•
	0
	•
	-
	-
	_
	-
	an.
	•
	~
	~
	- *
	~
	~
	•
ŕ	~
٠	•
	$\sim$
	$\simeq$
	₽.
١	_


<u> </u>				Ц	ЕПЬ	ЫЕ	ПЕ	РЕД	ΝРА
		$\Delta L$ , mm			6,2	5,2	5,9	4,2	3,8
пытаний	Установ-	безотказная наработка	h		200	200	200	200	200
Режимы и результаты испытаний	Средняя	наработка до отказа			320	320	320	320	320
Режимы		<i>Р</i> , даН			140	300	360	145	380
		<i>п</i> , мин- ¹		Группа испытания Б	300	200	200	275	200
корпуса	Число зубьев звездочки	ведомой		Группа	17	17	17	17	17
Параметры базового корпуса	Число зубь	ведущей			17	17	17	11	17
Парам	Число	звеньев в контуре			100	100	100	001	94
	Обозначение цепи				ПРД-31,75—2300	ПРД-38—3000	ПРД-384000	ПРД-38,1—3180	ПРД-50,8—8000

 боз начения: P — передаваемая нагрузка;  $\Delta L$  — предельное увеличение длины измеряемого отрезка цепи; n — частота вращения ведущей звездочки. Примечание. Для многорядных цепей 2ПР, 3ППР, 4ПР, испытываемых по режимам табл. 10а, следует определять расчетную нагрузку, среднюю наработку до отказа и безотказную наработку умножением данных табл. 10а на соответствующие переводные коэффициенты, приводимые на стр. 656.

# звездочки приводных цепей

ГОСТ 591—69 (в ред. 1989 г.) устанавливает два профиля зубьев звездочек: без смещения центров дуг впадин; со смещением центров дуг впадин

# 11. Метод расчета и построение профиля зубьев звездочек для приводных роликовых и втулочных цепей



Профиль зубьев со смещением¹ центров дуг впадин

Параметры			Расчетны	ые формуль	ы	
Шаг цепи $t$ Диаметр элемента зацепления цепей $D_{\mathbf{u}}$ : втулочных $D_{\mathbf{u}} = d_2$ роликовых $D_{\mathbf{u}} = d_3$		еры по ст Т 21834—70	андартам на 6	а цепи по	FOCT 135	668—75 и
Геометрическая характеристика зацепления λ			λ	$=\frac{t}{D_{II}}$		
Число зубьев звездочки г				_		
Диаметр делительной окружно- сти $d_{\hat{d}}$			$d_{\partial=t\cos\sec}\frac{1}{2}$	$\frac{80^{\circ}}{z} = \frac{t}{\sin \frac{18}{z}}$	30° z	
Диаметр делительной окружности выступов $D_e$			$D_e = t \left( F \right)$	$K + \operatorname{ctg} \frac{180^{\circ}}{z}$		-
Коэффициент высоты зуба $K$	λ	св. 1,40 до 1,50	св. 1,50 до 1,60	св. 1,60 до 1,70	св. 1,70 до 1,80	св. 1,80 до 2,00
	K	0,480	0,532	0,555	0,575	0,565

Продолжение табл. 11

Параметры	Расчетные формулы
Диаметр окружности впадин $D_i$	$D_i = d_{\partial} - 2r$
Наибольшая хорда (для контроля звездочек с нечетным числом зубьев) $L_{\rm x}$	$L_x = d_{\partial} \cos \frac{95^{\circ}}{z} - 2r$
Радиус впадин <i>r</i>	$r = 0.5025D_{\text{tt}} + 0.05 \text{ mm}$
Радиус сопряжения <i>г</i> ₁	$r_1 = 0.8D_{11} + r = 1.3025d_1 + 0.05 \text{ MM}$
Радиус головки зуба r ₂	$r_2 = D_{\text{LL}}(1,24\cos\varphi + 0.8\cos\beta - 1.3025) - 0.05 \text{ MM}$
Половина угла впадины α	$\alpha = 55^{\circ} - \frac{60^{\circ}}{z}$
Угол сопряжения β	$\beta = 18^{\circ} - \frac{56^{\circ}}{z}$
Половина угла зуба ф	$\varphi = 17^{\circ} - \frac{64^{\circ}}{z} = 90^{\circ} - \frac{180^{\circ}}{z} - (\alpha + \beta)$
Прямой участок профиля <i>FC</i>	$FC = D_{\rm tt}(1.24\sin\varphi - 0.8\sin\beta)$
Расстояние от центра дуги впадины до центра дуги головки зуба $OO_2$	$OO_2 = 1,24D_{u}$
Смещение центров дут впадин е	e = 0.03t
Координаты точки <i>О</i> 1	$x_{l} = 0.8D_{u} \sin \alpha$ $y_{l} = 0.8D_{u} \cos \alpha$
Координаты точки <i>О</i> 2	$x_2 = 1.24 D_{\text{LL}} \cos \frac{180^{\circ}}{z}$ $y_2 = 1.24 D_{\text{LL}} \sin \frac{180^{\circ}}{z}$

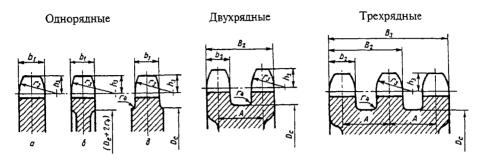
 $^{^1}$  Для зубьев, образуемых без смещения центров дуг впадин,  $e{=}0$ ,

$$L_x = d_{\partial} \cos \frac{90^{\circ}}{z} - 2r .$$

ГОСТ 591—69 устанавливает профиль зубьев звездочек для цепей с геометрической характеристикой  $\lambda \le 2$  .

Диаметр окружности выступов  $D_e$  вычисляют с точностью до  $0,1\,$  мм; остальные линейные размеры — до  $0,01\,$  мм, а угловые — до 1'.

Для определения диаметров  $d_{\hat{\partial}}$  и  $D_{e}$  следует пользоваться табл. 14.


12. Значения величин для расчета и построения профиля зубъев звездочек

Обозначение цепей					Обозначение цепей		,		
по ГОСТ 13568—75	,	71	$OO_2$	в	по ГОСТ 13568—75	,	'1	2	e e
ПР-8—460 ПР-9,525—910	2,56 3,24	6,56 8,32	6,20 7,87	0,24 0,29	ПР-25,4—6000	8,03	20,73	69'61	0,76
ПВ-9,525—1150	2,56	95'9	6,20	0,29	ПРА-25,4—6000 2ПР-25,4—11400	8,03	20,73	19,69	0,76
ПВ-9,525—1300 2ПВ-9,525—2000	3,07	7,87	7,44	0,29	ПР-31,75—8900 ПРА-31,75—8900 2ПР-31,75—17700	9,62	24,86	23,62	96'0
ПР-12,7—1000—1	3,94	10,14	9,61	0,38	ПРА-38,1—12700 ПР-38,1—12700 2ПР-38,1—25400	11,22	29	27,57	1,14
ПР-12,7—1820—1 ПР-12,7—1820—2 2ПР-12,7—3180	4,33	11,13	55'01	0,38	ПР-44,45—17240 ПРА-44,45—17240 2ПР-44,45—34480	12,81	33,13	31,5	1,33
ПР-15,875—2300—1 ПР-15,875—2310—2 2ПР-15,875—4540	5,16	13,28	12,6	0,48	ПР-50,8—22700 ПРА-50,8—22700 2ПР-50,8—45360	14,41	37,28	35,44	1,52
ПР-19,05—3180 2ПР-19,05—6400	6,03	15,56	14,77	0,57	ПР-63,535400	20,05	51,89	49,35	06,1

Табличные значения  $d_{\partial}$ ,  $D_{e}$ ,  $D_{l}$ ,  $D_{c}$ ,  $L_{x}$ ,  $r_{2}$ ,  $x_{l}$ ,  $y_{l}$  в зависимости от z и типов цепей даны в приложении к ГОСТ 591—69.

Расчет и построение основных размеров зубьев и венцов однорядной, двухрядной и многорядной звездочки в поперечном сечении следует выполнять в соответствии с табл. 13.

### 13. Зубья и венец звездочки в поперечном сечении



Параме	тр	Расчетная формула
1. Диаметр элемента зацепления $D_{\text{ц}} = d_2$	и цепей $D_{ m u}$ :	
роликовых $D_{II} = d_3$		Размеры выбирают по ГОСТ
2. Ширина пластины цепи (наи	большая) <i>h</i>	13568—75 и ГОСТ 21834—76
3. Расстояние между внутренни	ми пластинами цепи $b_3$	
4. Расстояние между осями цеп	и А	
5. Радиус закругления зуба (наи	меньший) <i>г</i> ₃	$r_3 = 1.7 D_{u}$
6. Расстояние от вершины зу закруглений $h_3$	ба до линии центров дуг	$h_3 = 0.8D_{11}$
7. Диаметр обода (наибольший)	$D_c^*$	$D_c = t \cot \frac{180^\circ}{z} - 1.3h$
	при шаге <i>t</i> ≤35 мм	r ₄ = 1,6 mm
8. Радиус закругления $r_4$	при шаге <i>t</i> >35 мм	r ₄ = 2,5 mm
	однорядной $b_{ m I}$	b ₁ =0,93 b ₃ -0,15, мм
9. Ширина зуба звездочки	двухрядной и трехрядной $b_2$	<i>b</i> ₂ =0,90 <i>b</i> ₃ -0,15, мм
	многорядной <i>b_n</i>	<i>b_n</i> =0,86 <i>b</i> ₃ -0,30, мм
10. Ширина венца многорядно	й звездочки <i>В</i>	$B_n = (n-1)A + b_n$

^{*} При  $d_{\partial} < 150\,$  мм допускается  $D_c = t\,$  tg  $\frac{180^{\circ}}{z} - 1,2h$  .

Размеры зуба и венца звездочки в поперечном сечении вычисляют с точностью до  $0,1\,$  мм; для варианта a допускается округление величины  $b_1$  до  $1\,$  мм в меньшую сторону. Размер  $D_c$  округляют до  $1\,$  мм.

Для определения диаметра  $D_{c}$  пользоваться табл. 14.

14.	Значение	$\csc \frac{180^{\circ}}{z}$	И	$ctg \frac{180^{\circ}}{z}$	В	зависимости от Z
-----	----------	------------------------------	---	-----------------------------	---	------------------

	,			· · · · · · · · · · · · · · · · · · ·				
z	cosec $\frac{180^{\circ}}{z}$	$ctg \frac{180^{\circ}}{z}$	z	cosec $\frac{180^{\circ}}{z}$	$ctg \frac{180^{\circ}}{z}$	z	cosec $\frac{180^{\circ}}{z}$	$\cot \frac{180^{\circ}}{z}$
7	2,3048	2,0765	33	10,5203	10,4727	59	18,7893	18,7626
8	2,6131	2,4142	34	10,8379	10,7916	60	19,1073	19,0811
9	2,9238	2,7475	35	11,1560	11,1111	61	19,4245	19,3996
10	3,2361	3,0777	36	11,4737	11,4301	62	19,7420	19,7176
11	3,5495	3,4057	37	11,7913	11,7488	63	20,0613	20,0363
12	3,8637	3,7321	38	12,1093	12,0679	64	20,3800	20,3555
13	4,1786	4,0572	39	12,4278	12,3875	65	20,6987	20,6745
14	4,4939	4,3813	40	12,7455	12,7062	66	21,0168	20,9930
15	4,8097	4,7046	41	13,0639	13,0251	67	21,3338	21,3103
16	5,1258	5,0273	42	13,3820	13,3446	68	21,6537	21,6306
17	5,4423	5,3496	43	13,6993	13,6628	69	21,9717	21,9489
18	5,7588	5,6713	44	14,0178	13,9821	70	22,2895	22,2671
19	6,0756	5,9927	45	14,3356	14,3007	71	22,6068	22,5847
20	6,3925	6,3137	46	14,6536	14,6194	72	22,9256	22,9038
21	6,7095	6,6346	47	14,9720	14,9385	73	23,2431	23,2215
22	7,0266	6,9550	48	15,2898	15,2571	74	23,5614	23,5401
23	7,3439	7,2755	49	15,6085	15,5764	75	23,8802	23,8593
24	7,6613	7,5958	50	15,9260	15,8945	80	25,4713	25,4517
25	7,9787	7,9158	51	16,2439	16,2121	85	27,0626	27,0442
26	8,2963	8,2358	52	16,5516	16,5314	90	28,6537	28,6363
27	8,6138	8,5555	53	16,8809	16,8512	95	30,2452	30,2287
28	9,9319	8,8742	54	17,1984	17,1693	100	31,8362	31,8205
29	9,2490	9,1948	55	17,5163	17,4877	112	35,6536	35,6306
30	9,5668	9,5144	56	17,8354	17,8073	125	39,7929	39,7804
31	9,8846	9,8339	57	18,1535	18,1260			
32	10,2023	10,1532	58	18,4717	18,4446			

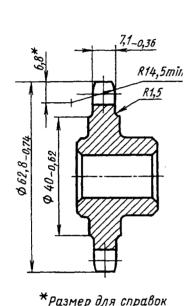
Размеры зубьев и венцов звездочек для  $z > \frac{45}{\sqrt{t}}$  приведены в табл. 16.

Допуски. ГОСТ 591—69 устанавливает три группы точности размеров зубьев и венцов звездочек. Предельные отклонения размеров зубьев и венцов звездочек по группам точности должны соответствовать приведенным в табл. 15.

Параметр шероховатости поверхности зубьев Ra следует принимать в зависимости от окружающей скорости до 8 м/с не более 6,3 мкм, свыше 8 м/с — не более 3,2 мкм.

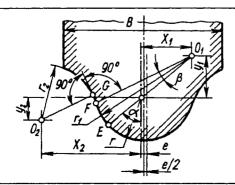
Предельные отклонения диаметра отверстия ступицы звездочки следует принимать не ниже Н8.

15. Предельные отклонения и допуски на размеры зубьев и венцов звездочек


ОТКЛОНЕНИЯ И ДОПУСКИ, МКИ, ПРИ ЛИВИМЕТРЕ ЗВЕЗДОМКИ, ММ 2 3 2 40 250 250 250 250 250 250 250 250 250 25					A					Группы точности В	г точнос В	ти					၁		
170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170						0	тклоне	ния и	допуск	и, мкм	, при д	иаметр	е звез	точки,	MM				
40         50         60         80         100         120         160         —         160         200         250         250         250         250         320         400         500           60         80         100         120         100         120         160         200         250         320         400         500         630         800           80         100         120         160         20         250         250         320         400         50         630         800           A11         A11         A12         A12         A12         A11         A12         A11         A12         A11         A12         A11         A12         A11         A12         A11         A12         A11         A12         A12         A12         A12         A11         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12         A12	To 120		CB. 120	CB. 260	CB.500	CB. 800	CB.1250	No 120	CB.120	CB. 260	Св.500	Св.800 до 1250	CB.1250	No 120	CB.120 Ao 260	CB. 260 до 500	CB.500	CB. 800	CB.1250
60         80         100         120         120         120         250         250         320         400         —         400         500         630         800           h11         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12         h12	25		32 40	40	50 60	09	1 1	09	08 100	100	120	160	11	160	200 250	250 320	320 400	400 500	
h10         h11         h12         h14         -2000 -2400           h10         h11         h12         h12         h12           h10         h11         h12         h12         h12           h11         h12         h14         1200 -2400         -2400           120         250         250         320         400         630         630         630         1000         1250	9		50	80	80 100	100	120	100	120 160	200	200	250 320	320	250	320 400	400 500	500	800	1000
h10         h11         h12         h12           h10         h11         h12         h12           h11         h12         h14           120         160         250         250         320         400         530         630         630         800         1000         1250		1 .		ļ ų						] III	2				h14		-2000	-2400	-3000
h10         120         160         250         250         250         250         320         400         500         630         630         630         630         1000         1250				h1	01					h 1						"	12		
100   120   160   250   250   250   320   400   500   630   630   630   1000   1250				h	0	i				14	_					4	12		
120         160         200         250         200         250         320         400         500         630         630         800         1000         1250		l		h1	-					h1	2					ų ų	14		
	80	· · · · · · · · · · · · · · · · · · ·	001	120	160	200	250	200	250	320	400	200	630	200	630	008	1000		1600

* Допуск для варианта a (см. рис. к табл. 13) ГОСТом не нормируется.

16. Размеры зубьев и венцов звездочек для  $z>\frac{45}{\sqrt{t}}$ 


							10	!					
Обозначение цепей по ГОСТ 13568—75	Н	£	74	<i>m</i> 1	m ₂	$B_2$	Обозначение цепей по ГОСТ 13568—75	Н	r3	1.4	1 <i>ш</i>	m2	$B_2$
ПР-8—460	4,0	8,5		2,6	1	l	ПР-25,4—6000	12,7	27,0		14,6	1	l
ПР-9,525—910	5,1	8,01		5,2	1	ı	ПРА-25,4—6000	12,7	27,0		14,6	1	1
ПВ-9,525—1150	4,0	8,5		6'9	ı	1	2ПР-25,4—11400	12,7	27,0		1	14,1	43,4
ПВ-9,525—1300	4,8	10,2		8,7	ı	1	ПР-31,75—8900	15,2	32,4	1,6	9,71	1	!
2ПВ-9,525—2000	4,8	10,2		ı	4,5	15,3	ПРА-31,75—8900	15,2	32,4		17,6	1	ŀ
ПР-12,7—1000—1	6,2	13,2		2,1		ı	2ПР-31,75—17700	15,2	32,4		1	17	52,8
ПР-12,7—900—2	6.2	13,2	1,6	2,9	-	ı	ПРА-38,1—12700	17,8	37,8		23,5	1	l
ПР-12,7—1820—1	8,9	14,5		4,9	1	-	ПР-38,1—12700	17,8	37,8		23,5	ı	l
ПР-12,7—1820—2	8,9	14,5	-	7,1	۱	1	2ПР-38,1—25400	17,8	37,8		1	22,7	68,2
2ПР-12,7—3180	8,9	14,5		1	8,9	20,7	ПР-44,45—17240	20,3	43,2		23,5	ı	ì
ПР-15,875—2300—1	8.	17,3	· · · · · · · · · · · · · · · · · · ·	6,5	ı	1	ПРА-44,45—17240	20,3	43,2		23,5	ı	1
ПР-15,875—2300—2	8,1	17,3	<u> </u>	8,8	1		2ПР-44,45—34480	20,3	43,2	2,5	1	22,7	71,6
2ПР-15,875—4540	8,1	17,3			8,5	25,1	ПР-50,822700	22,9	48,6		29,4	ı	ŀ
ПР-19,05-3180	9,5	20,5		11,7	1	l	ПРА-50,8—22700	22,9	48,6		29,4	1	ļ
2ПР-19,05—6400	9,5	20,2		ı	11,3	36,8	2ПР-50,8—45360	22,9	48,6		ı	28,4	87,0
				· · · · · · · · · · · · · · · · · ·			ПР-63,535400	31,7	67,4	······································	35,3	1	I

17. Пример выполнения чертежа венца звездочки для приводной однорядной цепи (ГОСТ 2.408—68 в ред. 1996 г.)

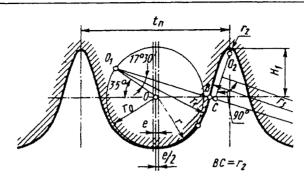


Число зуб	ьев	τ	14
Сопря- гаемая	Шаг	t	12,7
цепь	Диаметр ролика	<i>d</i> ₂	8,51
Профиль 591—69	зуба по ГОСТ	_	Без смещения
Группа ГОСТ 591	точности по 1—69	_	С
Диаметр впадин	окружности	$D_i$	48,45 _{-0,25}
Допуск шагов	на разность	_	0,16
Допуск р ения окр дин	адиального би- ружности впа-	_	0,5
1 ' ' '	торцового би натого венца	_	0,5
Диаметр окружно	делительной сти	d _ð	57,07
Сопря- гаемая	Ширина внутренней пластины	h	11,8
цепь	Расстояние между внутренними пластинами	В _{вн}	7,75

 Расчет и построение профиля дисковой фрезы для нарезания звездочек с числом зубьев z ≥ 7



Профиль зуба звездочек, получаемый методом деления при нарезании дисковыми фрезами, полностью соответствует теоретическому (исходному) профилю только при расчетном числе зубьев  $z_1$  данной группы.


Линейные размеры червячных и дисковых фрез вычисляют с точностью до  $0,01\,$  мм, а утловые — до 1'.

Продолжение табл. 18

Параметры		Расчетн	ая формула и	величина	
Шаг цепи $t$ Диаметр элемента зацепления цепей $D_{\rm u}$ :  втулочных $D_{\rm u}=d_2$ роликовых $D_{\rm u}=d_3$	Размеры в ГОСТ 2183		о ГОСТ 13568	<b>—</b> 75,	
Номер группы (фрезы)	1	2	3	4	5
Число зубьев нарезаемой звез- дочки z	7—8	9—11	12—17	18—35	36 и бо- лее
Расчетное число зубьев для группы $z_1$	7,5	10	14	25	56
Радиус головки фрезы <i>r</i>		r =	: 0,0525 D ₁₁ + 0,0	)5мм	
Радиус сопряжения r _l		$r_1 = 0.8 D$	$_{\text{LL}} + r = 1,3025 L$	) _ц + 0,05мм	
Радиус впадины фрезы <i>г</i> ₂	0,711 <i>D</i> _u — 0,05 мм	0,698 <i>D</i> _u - 0,05 мм	0,685 <i>D</i> _u — 0,05 мм	0,668 <i>D</i> _ц — 0,05 мм	0,655 <i>D</i> _и — 0,05 мм
Половина угла головки фрезы α	47°00′	49°00′	50°43′	52°36′	53°56′
Угол сопряжения β	10°32′	12°24′	14°00′	15°45′	17°00′
Прямой участок профиля <i>FG</i>	0,036 <i>D</i> _u	0,056 <i>D</i> _u	0,073 <i>D</i> _u	0,092 <i>D</i> _u	0,105 <i>D</i> _ц
Координаты точки $O_1$ : $x_1$	0,5851 <i>D</i> ц	0,6038 <i>D</i> _u	0,6192 <i>D</i> _u	0,6355 <i>D</i> _ц	0,6466 <i>D</i> _u
у ₁	0,5456 <i>D</i> ը	0,5248 <i>D</i> ນ	0,5066 <i>D</i> _u	0,4859 <i>D</i> _u	0,4710 <i>D</i> _u
Координаты точки $O_2$ : $x_2$	1,1328 <i>D</i> _u	1,1793 <i>D</i> _u	1,2089 <i>D</i> _u	1,2302 <i>D</i> _u	1,2381 <i>D</i> _u
<i>y</i> ₂	0,5044 <i>D</i> _u	0,3832 <i>D</i> _u	0,2759 <i>D</i> _u	1,1554 <i>D</i> _u	0,0695 <i>D</i> _u
Смещение центров дуг головки фрезы $e^*$			e = 0.03t		
Ширина фрезы <i>В</i> , не менее	B = 1,14	1 t	$B=1,11\ t$	В:	= 1,08 <i>t</i>

^{*} При расчете дисковых фрез для нарезания звездочек без смещения центров дуг впадин величину e следует принимать равной нулю.

### 19. Расчет и построение профиля инструмента для нарезания звездочек с числом зубьев $z \ge 9$



Расчет и построение профиля основной рейки в нормальном сечении при изготовлении зубьев звездочки методом обкатки по диаметру делительной окружности  $d_{\partial}$  даны в таблице и на рисунке. Центр дуги радиуса  $r_3$  лежит на пересечении перпендикуляра, восстановленного из середины отрезка  $O_2C$ , с продолжением линии  $O_1BC$ .

Профиль зуба звездочек, получаемый методом огибания, на участке *EFCK* (см. рисунок к табл. 11) отклоняется от теоретического (исходного) профиля. Величина отклонения зависит от числа зубьев и не превышает в нормальном направлении к теоретическому профилю на участке EFC - 0.01t и на участке CK - 0.015t.

Шаг цепи $t$ Диаметр элемента зацеплен втулочных $D_{\rm II} = d_2$ , роликовых $D_{\rm II} = d_3$	ния цепей $D_{ m u}$ :	Размеры на цепь по ГОСТ 13568—75
Шаг основной рейки $t_n$		t _n = 1,011t
<ul> <li>Радиус вспомогательный г</li> <li>» головки зуба г</li> <li>» выпуклости зуба г₁</li> </ul>	· ·	$r_0 = 0.5D_{\text{LL}}$ $r = 0.5025D_{\text{LL}} + 0.05 \text{ MM}$ $r_1 = 0.5D_{\text{LL}} + r = 1.0025D_{\text{LL}} + 0.05 \text{ MM}$
Радиус впадины зуба <i>г</i> ₂	при t >10 при t ≤10	$r_2 = 0.03t$ $r_2 = 0.05t$
Высота ножки зуба $H_1$	при t >10 при t ≤10	$H_1 = 0.28t + r_2 = 0.31t$ $H_1 = 0.23t + r_2 = 0.28t$
Смещение центров дут рад	иуса <i>r</i> головки зуба е*	e = 0.03t

Технические требования на звездочки для приводных роликовых и втулочных цепей с шагами до 25,4 мм включительно. Число зубьев звездочек выбирают из следующего ряда: 9, 10, 11, 12, (13), 14, (15), 16, (17), 18, (19), 20, (22), 25, (28), 32, (36), 40, (45), 50, (56), 63, (71), 80.

Рекомендуется принимать число зубьев не менее 13; при больших скоростях и для ответственных передач принимают большие значения, но не свыше 120. При четном числе звеньев цепи следует выбирать нечетное число зубьев звездочки.

Посадочные отверстия звездочек под вал выполняют с предельными отклонениями по Н8.

Звездочки изготовляют из стали марок 40 и 45 или 40Л и 45Л, группа II.

Твердость поверхностного слоя венцов в пределах 42 ... 52 HRC на глубину не менее:

1,0 мм — при ширине зуба звездочки до 3 мм:

1,5 мм — при ширине зуба звездочки более 3 до 6 мм;

2,5 мм — при ширине зуба звездочки бопее 6 мм.

Допускается изготовление звездочек:

а) из стали марок 15 и 20 (глубина слоя цементации на венцах 1,0-1,5 мм, твердость  $54 \dots 62$  HRC).

б) из чугуна не ниже марки СЧ 18 с термической обработкой (твердость венца 363 ... 429 НВ при шаге до 25,4 мм и окружной скорости до 2 м/с.

Основные условия применения передач приводными цепями. Передаточное отношение i должно быть не более 7; при скорости цепи  $v \le 3$  м/с при постоянстве рабочей нагрузки можно брать  $i \le 10$ . Для цепных передач металлорежущих станков рекомендуется выбирать i из следующего ряда: 1; 1,12; 1,25; 1,4; 1,6; 1,8; 2; 2,25; 2,8; 3,15; 3,5; 4; 4,5; 5; 5,6; 6,3; 7,1.

Частота вращения звездочки, мин-1, наибольшая для втулочно-роликовых цепей, приведена в табл. 20. Она соответствует наибольшей скорости цепи  $v \approx 18$  м/с. При низком качестве изготовления цепи указанную в табл. 20 частоту вращения следует уменьшать на 25—30%.

Скорость набегания цепи на звездочку или средняя скорость цепи, м/с:

$$v = \frac{znt}{60 \cdot 1000},$$

где z—число зубьев звездочки; n— частота вращения звездочки, мин $^{-1}$ ; t— шаг цепи, мм.

Шаг цепи t в зависимости от частоты вращения меньшей звездочки и ее числа зубьев z следует принимать по табл. 20.

Для выбора шага можно также руководствоваться зависимостью

$$t=\frac{A}{30\div 50}\,,$$

где A — межосевое расстояние, мм.

Следует стремиться к выбору меньшего шага, так как работоспособность цепной передачи с малым шагом выше, чем цепи с большим шагом.

Частота ударов звеньев цепи сильно влияет на ее работоспособность. Число ударов звена в секунду определяют по формуле

$$U = \frac{4zn}{60m}$$

где т— число звеньев цепи.

Для проверки допустимого числа ударов для втулочно-роликовой цепи можно пользоваться табл. 21.

Среднее значение КПД цепной передачи (без учета потерь в подшипниках валов)  $\eta$ =0,97.

Конструкция звездочек. Звездочки диаметром свыше 200 мм рекомендуется делать составными, как показано на рис. 1, при этом втулка может быть из чугуна; или сварными, как показано на рис. 2.

Положение цепной передачи. Горизонтальное или наклонное (с углом не свыше 45° к горизонту) положение цепной передачи является наиболее благоприятным. Вертикальных установок следует избегать ввиду необходимости частого регулирования провисания ветвей цепи.

Для регулирования провисания и создания нужного предварительного натяжения, а также для компенсации вытяжки цепей применяют устройства с натяжными или оттяжными звездочками или роликами. Число зубьев регулирующей звездочки рекомендуется принимать не менее числа зубьев малой звездочки передачи. Ролики, как правило, применяют при вертикальном или близком к нему расположении цепи.

Наиболее желательны для регулирования провисания передвижные опоры передачи.

20. Наибольшая допустимая частота вращения звездочки, мин-1

Число				Ша	г цепи <i>t</i> , г	мм			
зубьев <i>z</i>	12	15	20	25	30	35	40	45	50
15	2300	1900	1350	1150	1000	800	750	650	600
19	2400	2000	1450	1200	1050	850	800	700	650
23	2500	2100	1500	1250	1100	900	800	750	650
27	2500	2150	1550	1300	1100	900	850	750	700
30	2600	2200	1550	1300	1100	900	850	750	700

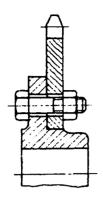



Рис. 1. Конструкция составной звездочки

Допустимое межосевое расстояние. Наименьшее расстояние  $A_{\min}$  определяют в зависимости от передаточного числа i и диаметров звездочек.

При  $i \le 4$  можно принимать

$$A_{\min} = 1.2 \frac{D_{e1} + D_{e2}}{2} + (30 \div 50) \text{ MM},$$

где  $D_{e1}$  и  $D_{e2}$  — диаметры окружностей выступов ведущей и ведомой звездочек, мм.

Межосевое расстояние, создающее благоприятные условия работы,

$$A = (30 \div 50) t$$

Наибольшее расстояние между осями звездочек  $A_{\max} = 80 \, t$ .

Длина цепи и межосевое расстояние. Число звеньев

$$m = \frac{2A'}{t} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2\pi}\right)^2 \frac{t}{A'},$$

где A' — межосевое расстояние, назначаемое конструктивно в пределах, указанных выше;  $z_1$  и  $z_2$  — числа звездочек.

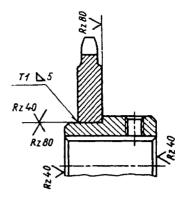



Рис. 2 Конструкция сварной звездочки

Значение m желательно округлять до ближайшего четного числа (во избежание переходного звена).

Уточненное расчетное межосевое расстояние

$$A = \frac{t}{4} \left[ m - \frac{z_1 + z_2}{2} + \sqrt{\left( m - \frac{z_1 + z_2}{2} \right)^2 - 8\left( \frac{z_2 - z_1}{2\pi} \right)^2} \right]$$

Значения 
$$\left(\frac{z_2-z_1}{2\pi}\right)^2$$
 приведены

табл. 22.

Полученное расчетное расстояние обычно округляют в меньшую сторону на 2-5 мм для обеспечения некоторого провисания цепи.

### 21. Допустимое число ударов для втулочной и роликовой цепи

Шаг цепи <i>t</i> , мм	8-12,7	15,875	19,05	25,4	31,75	38,1	44,45	50,8
Наибольшее допустимое число ударов в секунду	60	50	35	30	25	20	15	12

22. Значения 
$$\left(\frac{z_2 - z_1}{2\pi}\right)^2$$

z ₂ - z ₁	$\left(\frac{z_2-z_1}{2\pi}\right)^2$	z ₂ - z ₁	$\left(\frac{z_2-z_1}{2\pi}\right)^2$	z ₂ - z ₁	$\left(\frac{z_2-z_1}{2\pi}\right)^2$	z ₂ - z ₁	$\left(\frac{z_2-z_1}{2\pi}\right)^2$	$z_2 - z_1$	$\left(\frac{z_2-z_1}{2\pi}\right)^2$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0,025 0,101 0,228 0,405 0,633 0,912 1,24 1,62 2,05 2,53 3,07 3,65 4,28 4,97 5,70 6,49 7,32 8,21 9,14 10,13	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	11,17 12,26 13,40 14,59 15,83 17,12 18,47 19,86 21,3 22,8 24,3 25,9 27,6 29,3 31,0 32,8 34,7 36,6 38,5 40,5	41 42 43 44 45 46 47 48 49 50 51 52 23 24 55 56 57 58 59 60	42,6 44,7 46,8 49,0 51,3 53,6 56,0 58,4 60,8 63,3 65,9 68,5 71,2 73,9 76,6 79,4 82,3 85,2 88,2 91,2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	94,3 97,4 100,5 103,8 107,0 110,3 113,7 117,1 120,6 124,1 127,7 131,3 135,0 138,7 142,5 146,3 150,2 154,1 158,1 162,1	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	166,2 170,3 174,5 178,7 183,0 187,3 191,7 196,2 200,6 205,2 209,8 214,4 219,1 223,8 228,6 233,4 233,3 243,3 248,3 253,3

# РАСЧЕТ РОЛИКОВОЙ ЦЕПНОЙ ПЕРЕЛАЧИ

О работоспособности роликовой цепи судят в основном по износу в ее шарнирах. Расчет производят по допустимым нагрузкам в шарнирах (табл. 23).

Номинальную допустимую мощность, Вт, определяют по формуле

$$N=\frac{Pv}{k_2},$$

где v — скорость цепи, м/с;

P = pF — допустимая окружная сила, H; p — по табл. 23;

F = dB — проекция плошали опорной поверхности шарнира, мм²; d—диаметр валика цепи, мм;  $B_{\rm BH}$  — длина втулки (ширина внутреннего звена цепи, мм), B=1,4÷1,7 $B_{\rm BH}$ ; d и  $B_{\rm BH}$  берут из таблицы размеров цепей;

 $k_3$  — коэффициент, учитывающий условия эксплуатации передачи:

$$k_3 = k_1 k_2 k_3 k_4$$
;

здесь  $k_1$  — коэффициент, учитывающий

характер нагрузки (при спокойной нагрузке  $k_I$ = 1,0; при толчкообразной  $k_I$  = 1,2÷1,4);

 $k_2$  — коэффициент, учитывающий способ смазки (при непрерывном смазывании — масляная ванна или от насоса  $k_2 = 0.8$ ; при капельном  $k_2 = 1.0$ ; при периодическом  $k_2 = 1.5$ );

 $k_3$  — коэффициент, учитывающий продолжительность работы передачи (при односменной работе  $k_3 = 1,0$ ; при двухсменной  $k_3 = 1,25$ ; при трехсменной  $k_3 = 1,45$ ):

 $k_4$  — коэффициент, учитывающий расстояние между осями звездочек [ $k_4$  = 1,0 при расстоянии между осями A = (30÷60)t;  $k_4$  =1,1 при A<30 t;  $k_4$  = 0,9 при A = (70÷80)t1.

Нагрузка на валы зависит главным образом от окружной силы, в меньшей степени — от предварительного натяжения и может быть определена из зависимости  $Q_{\rm B}$  = 1,15P, H .

Шаг цепи			Частот	а враще	ния мені	ьшей зве	здочки,	мин-1		
t, mm	<50	200	400	600	800	1000	1200	1600	2000	2400
12,7-15,875		31,5	28,7	26,2	24,2	22,4	21,0	18,5	16,6	15
19,05-25,4		30,0	26,2	23,4	21,0	19,0	17,5	15,0	_	_
31,75-38,1	35	28,7	24,2	21,0	18,5	16,6	15,0		_	_
44,45-50,8		26,2	21,0	17,5	15,0	_	_	_	_	_

# 23. Допустимое давление p в шарнире для роликовых цепей, МПа, при $k_a$ =1 (для z=15÷30)

Для цепей повышенной точности и прочности значения p можно повышать на 30-40%.

Нагрузку на опоры определяют в соответствии с их расположением по отношению к посаженным на валу звездочкам, а также и значениям  $Q_{\rm p}$ .

**Пример.** Определить для нормальных условий работы  $(k_3 = 1)$  мощность  $N_3$  в Вт, которую может передать роликовая цепь с шагом t=25,4 мм и разрушающей нагрузкой Q=60000 H (см. табл. 1).

Частота вращения ведущего вала n=850 мин⁻¹.

Цепь работает на звездочках с числом зубьев  $z_1$ =21 и  $z_2$ =105.

Межосевое расстояние A=900 мм, или в шагах  $A_t = \frac{900}{25,4} = 35$  (расстояние регулируется).

Расположение передачи — горизонтальное.

По формуле мощности после ее преобразования

$$N_{9} \leq \frac{vpdB}{k_{2}}$$
,

где d=7,92 мм,  $B_{\rm BH}=15,88$  мм (из табл. 1). Если толщина звеньев неизвестна,  $B=(1,4\div1,7)$   $B_{\rm BH}$ , т.е.  $B=1,4\cdot15,88=22,23$  мм. По табл. 23 при t=25,4 мм и n=850 мин⁻¹ давление p=20,5 МПа.

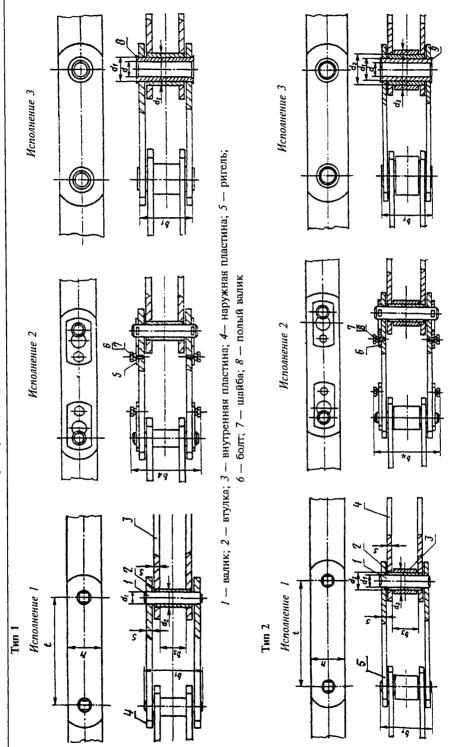
$$v = \frac{z_1 nt}{60.1000} = \frac{21.850.25,4}{60.1000} \approx 7,56 \text{ m/c};$$

$$N_9 \le \frac{7,56 \cdot 20,5 \cdot 7,92 \cdot 22,23}{1} = 27270 \text{ Bt}.$$

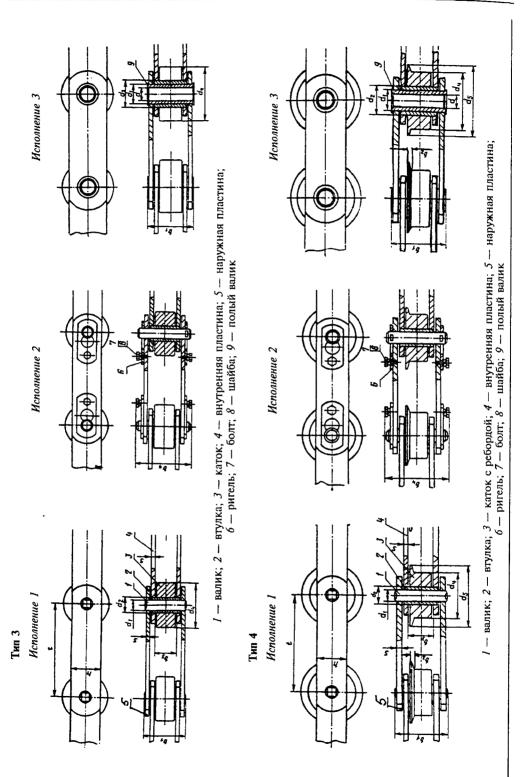
# ТЯГОВЫЕ ПЛАСТИНЧАТЫЕ ЦЕПИ (по ГОСТ 588—81 в ред. 1987 г.)

Тяговые пластинчатые втулочные, катковые и роликовые цепи применяются в подъемно-транспортных машинах и других механизмах.

Тяговые пластинчатые цепи должны изготовляться следующих типов:


- I втулочные;
- 2 роликовые:
- 3 катковые с гладкими катками с подшипниками скольжения;
- 4 катковые с ребордами на катках с подшипниками скольжения.

Цепи каждого типа изготовляют в трех исполнениях:


- I неразборная цепь со сплошными валиками (индекс М);
- 2 разборная цепь со сплошными валиками (индекс М);
- 3 неразборная цепь с полыми валиками (индекс МС).

Основные параметры и размеры втулочных, катковых и роликовых цепей приведены в табл. 24. 25.

# 24. Основные параметры и размеры тяговых пластинчатых цепей, мм



I — валик; 2 — втулка; 3 — ролик; 4 — внутренняя пластина; 5 — наружная пластина; 6 — ригель; 7 — болт; 8 — шайба; 9 — полый валик



Продолжение таба. 24

Размеры, мм

8		2,5 3,0 3,5	4,0 5,0 6,0	7,0 8,0 10,0	12,0 14,0 16,0	20,0 22,0 3,0	4,0 6,0 8,0
h ,	не более	18 20 25	30 35 40	45 56 60	70 85 105	120 150 26	36 51 72
d.	Ϋ́	35 40 45	55 65 75	90 105 125	150 175 210	250 276 45	65 90 125
d.	4	25 30 36	42 50 60	70 85 100	120 140 170	200 236 36	50 70 100
d.	£	12,5 15,0 18,0	21,0 25,0 30,0	36,0 42,0 50,0	60,0 70,0 85,0	100,0 118,0 22,5	27,0 38,0 53,0
<i>P</i>	ζ,	9,0 10,0 12,5	15,0 18,0 21,0	25,0 30,0 36,0	42,0 50,0 60,0	71,0 85,0 17,5	21,0 29,0 41,0
d.	<del>;</del> '	6,0 7,0 8,5	10,0 12,0 15,0	18,0 21,0 25,0	30,0 36,0 44,0	50,0 60.0 13,0	15,5 22,0 31,0
р		111	111	111	111	8,3	10,3 14,3 20,3
<i>b</i> 4,	не более	49 56 63	72 86 101	117 134 154	185 214 254	310	1   1
<i>b</i> ₃ ,	не	15 17 19	23 27 31	36 42 47	55 65 76	90 110 170	23 31 42
b ₂ ,	не более	3,5 4,0 4,5	5,0 6,0 7,0	8,5 10,0 12,0	14,0 16,0 18,0	22,0 24,0 4,5	5,0 7,0 10,0
,1 _q	не более		52 62 73				1
Шаг цепи	f *	40**-160 50**-200 63 -250	63**-250 80 -315 80**-400	100**-500 125**-630 160**-630	200 —800 250 —1000 250**—1000	315**—1000 400 —1000 63 —160	80 –250 100 –315 160 –500
Разруша- ющая	нагрузка, кН, не менее	20 28 40	56 80 112	160 224 315	450 630 900	1250 1800 28	56 112 224
Номер	цепи	M20 M28 M40	M56 M80 M112	M160 M224 M315	M450 M630 M900	M1250 M1800 MC28	MC56 MC112 MC224

* Шаг цепи выбирается из ряда: 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000 мм. ** Применение шагов, отмеченных **, для катковых цепей не допускается.

Примечания: 1. Для соединения отрезков неразборной цепи исполнений 1 и 3 должны применяться соединительные звенья в виде наружных звеньев с одной съемной пластиной.

2. Допускается в звеньях разборных цепей неразборное соединение валиков с одной пластиной (например, расклепкой).

25. Масса 1 м цепи, кг, не более

Номер						Шаг	цепи t,	MM					
цепи	63	80	100	125	160	200	250	315	400	500	630	800	1000
						Тип	1						
M20	1,05	0,96	0,93	0,88	0,85		_	_	_	_	-	_	_
M28	1,45	1,34	1,26	1,20	1,15	1,10	1	-	-	_ '	-	_ '	_
M40	2,10	2,05	1,90	1,76	1,70	1,65	1,58	_	_	_	_	_	_
M56	3,34	3,06	2,82	2,62	2,46	2,38	2,30	-	-	_	_ ]		_
M80	_	4,80	4,40	3,95	3,80	3,66	3,47	3,30	_	_	_	_	_
M112	_	7,26	6,00	5,80	5,30	5,05	4,80	4,55	4,40	_	_	_	_
M160		_	9,15	8,20	7,75	7,05	6,64	6,28	5,95	5,75	_	-	_
M224		_	-	12,70	11,40	10,70	9,80	9,28	8,76	8,45	8,00	_	_
M315		_	-		15,90	15,60	13,60	12,60	12,00	11,47	10,89	_	_
M450	_		_	_		21,60	20,00	18,60	17,20	16,80	15,78	15,30	_
M630	_	_		_	_		29,50	27,60	25,80	24,60	23,00	22,20	21,50
M900		_			_	_	44,50	41,60	37,65	35,35	33,65	32,00	30,75
M1250	_	_		_ '		-	_	61,20	57,10	52,90	50,60	48,00	46,00
M1800	_	_			_		_	_	74,20	78,40	73,10	68,50	66,10
MC28	2,26	2,05	1,88	1,74	1,62	_		_	_	_ '	_		_
MC56	_	4,19	3,80	3,49	3,22	3,04	2,88	_	_	_	_	_	_
MC112	_	_	9,09	8,22	7,44	6,89	6,46	6,10		_	_	-	
MC224	_	_		_	16,92	15,43	14,22	13,23	12,42	11,81	_	_	_
	•	'	•	•	ı	Тип	2	•	•	•	•	,	•
<b>M</b> 20	1,16	1,04	1,00	0,93	0,80	_	_	_	_ '	_	_	_	_
M28	1,64	1,50	1,40	1,30	1,22	1,16		_		_	_	_	_
M40	2,38	2,28	2,10	2,00	1,82	1,75	1,70		_	-		_	_
M56	3,23	3,45	3,15	2,85	2,65	2,55	3,37	-	_	_	_	_	_
M80	_	5,40	4,90	4,35	4,10	3,90	3,67	3,46	_	_		-	_
M112	_	8,40	6,40	6,10	5,90	5,46	5,15	4,80	4,65	-	_	-	-
M160	_	_	10,60	9,35	8,70	7,80	7,25	6,75	6,30	6,05	_	_	-
M224	-	_	_	14,30	12,70	11,70	10,60	9,95	9,27	8,86	8,20	_	–
M315	-	_	-	-	18,10	16,40	15,00	13,70	12,90	12,17	11,53	_	_
M450	-	_	-	_	-	24,80	22,40	20,60	18,70	18,00	16,77	15,98	_
M630	-	-	-	-	_		33,30	30,65	28,20	26,40	24,60	23,40	22,50
M900	_	-	-	-	-	_	51,30	46,90	41,90	38,75	36,40	34,00	32,50
M1250	-	-	-	-	-	_	-	69,90	64,00	58,40	55,00	54,40	48,60
M1800	_	-	_	_	-		_	-	88,40	1	<b>.</b>	74,70	71,10
MC28	2,56	2,29	2,07	1,89	1,74	_	_	_	_	_	-	_	_
MC56	-	4,65	4,18	3,79	3,45	3,23	3,03	_	_	_	_	_	_
MC112	-	_	10,20	9,11	8,13	7,45	6,90	6,45		_	_	-	_
MC224	-	_	_	-	18,70	16,85	15,36	14,13	13,13	12,38	_	-	-
	<u> </u>	L	L	L	<u> </u>	L	L	<u> </u>	<u> </u>	<u> </u>	L		<u> </u>

Продолжение табл. 25

_						<del> </del>					Продолж	ение т	10/1. 25
Номер						Ш	[аг цеп	и t, мм	1				
цепи	63	80	100	125	160	200	250	315	400	500	630	800	1000
						Tx	іп 3						
M20	1,58	1,37	1,26	1,15	1,05	-		-	-	-	-		_
M28	2,44	2,22	1,89	1,70	1,55	1,40	-		-	-	-	-	_
M40	3,47	3,14	2,78	2,47	2,25	2,05	1,95			-		-	
M56	_	4,90	4,30	3,80	3,38	3,15	2,85	-	-	-	-	-	_
M80	-	8,05	7,00	6,05	5,38	4,96	4,50	4,10	-	-	-	-	_
M112	-	-	10,00	9,32	8,12	7,24	6,58	5,95	5,50		- 1	-	_
M160	-	_	_	13,65	12,00	10,48	9,38	8,45	7,65	7,12	-	-	
M224		_	-	-	18,80	16,60	14,50	13,00	11,70	10,62	9,82	_	_
M315	_	-	_	-	-	23,78	20,90		16,56	15,12	13,88	-	_
M450	-	-	-	_		37,15	32,35	28,45	24,90	22,98	20,77	19,18	_
M630	-					_	49,20	43,20	38,10	34,40	29,90	28,40	26,40
M900	-	-	_	_	_	_	_	67,90	59,35	52,15	47,50	42,80	39,50
M1250	-	-	_		_	_	-	_	91,35	80,30	72,45	65,10	
M1800	-	_	-	-	-	_		-	132,00	124,80	110,00	97,50	89,30
MC28	3,99	3,41	2,97	2,61	2,30	_	_	-	_		-	_	_
MC56	_	7,99	5,92	3,49	5,12	4,56	4,09		_	_	_		_
MC112	_	-	14,83	8,22	12,61	11,02	9,76	8,72	<b>-</b>	_			
MC224	-	_	_	- '	31,39	27,00	23,48	20,57	18,20	16,44		_	
	•	•				T	ип 4						
M20	1,80	1,52	1,38	1,25		1	_	_			_	_	
M28	2,45	2,35	2,05	1,85	1,65	1,50	-		-		_	_	-
M40	3,80	3,40	3,00	2,60	2,38	2,18	2,15	-			-	_	-
M56		5,38	4,68	4,10	3,60	3,30	3,10	-	-	-	-	_	
M80		8,80	7,00	6,50	5,78	5,26	4,75	4,38	-	_	-	_	-
M112	_	-	10,80	10,00	8,00	7,55	6,88	6,17	5,70	_	-	_	-
M160		-	_	13,80	12,10	10,60	9,45	8,50	7,70	7,15	-	_	-
M224		_	_		19,60	17,10	15,00	13,40	12,00	11,05	10,75		-
M315	-	-	-	-	-	25,70	22,50		17,60	16,00	14,50	_	-
M450	—	_	-	_	-	40,40	34,00	30,50		24,30	21,70	20,00	
M630	-	-	-		_	_	53,30	46,50	40,60	36,40	32,50	29,60	27,45
M900	-	_			_	-	-	74,20			1 '	44,80	41,00
M1250	-	-	-	_	-	-	-	-	97,90	1	1	68,40	62,10
M1800	-	-	-	-	-	-	-	-	138,60	130,00	114,10	100,70	91,90
MC28	4,13	3,53	3,06	2,68	2,35	-	_	-	_	-	-	_	-
MC56	-	8,32	7,11	6,13	5,29	4,69	4,20	-	-		-	-	-
MC112	-	-	18,07	15,40	13,05	11,38	10,05		-	-	-	-	-
MC224	-	-	-	-	32,66	28,03	24,29	21,21	18,71	16,85	-		-
	ــــــــــــــــــــــــــــــــــــــ	<u></u>	L	J	L	L	<u> </u>	<u> </u>	L	L			<u></u>

Примечание. Масса 1 м цепи М20 при шаге 40 мм: 1,26 кг (тип 1) и 1,42 кг (тип 2); при шаге 50 мм: 1,14 кг (тип 1), 1,27 кг (тип 2), 1,8 кг (тип 3), 2,04 кг (тип 4).

26. Твердост	гь на	поверхности
дета	лей і	депей

	Твердость HRC					
Деталь	Цементуемая сталь	Нецементуе- мая сталь				
Пластина Валик Втулка Ролик Каток	55 63 51,5 59 51,5 59 51,5 59	32 41,5 41,5 51,5  41,5 51,5 34 41,5				

### Суммарный зазор между наружными и внутренними пластинами

Номер цепи	Суммарный зазор, мм, не более	Номер цепи	Суммарный зазор, мм, не более
M20; M28;	1,5	M315; M450	6,0
MC28		M630; M900	7,0
M40; M56; MC56	2,5	M1250; M1800	8,0
M80; M112; MC112	4,0		
M160; M224; MC224	5,0		

Технические требования на тяговые пластинчатые цепи. Твердость поверхностей деталей цепей должна соответствовать указанной в табл. 26. Твердость пластин регламентируется только для их концов на длине не менее ширины пластины.

При применении легированных нецементуемых сталей для валиков допускается увеличение твердости до 51,5 ... 59 HRC.

Допускается изготовление катков из чугуна с твердостью не менее 37 HRC.

Глубина диффузионного слоя при химико-термической обработке деталей должна составлять 10-25% толщины стенки втулки и ролика и не менее 4% диаметра валика. Детали цепей не должны иметь окалин, трещин, заусенцев, раковин, вмятин, рисок, коррозии, влияющих на прочность цепи. Заделка трещин и раковин не допускается. Собранная цепь должна иметь легкую, без заедания, подвижность в шарнирных соединениях.

28. Вращающие моменты проворачивания и сила выпрессовки

Номер цепи	Вращ мом да Е	Сила выпрес- совки	
	Валик	втулки, кН	
M20	0,6	0,45	1,3
M28; MC28	1,1	0,8	2,0
M40	1,7	1,3	2,7
M56;MC 56	2,9	2,2	3,7
M80	4,0	3,0	5,3
M112; MC112	4,3	3,2	8,0
M160	6,4	4,8	12,0
M224; MC224	9,5	7,1	15,0
M315	14,3	10,7	22,0
M450	22,0	16,5	32,0
M630	33,0	24,8	44,0
M900	50,0	37,5	62,0
M1250	75,0	56,3	68,0
M1800	110,0	82,5	116,0

### 29. Отклонение длины измеряемого отрезка

Шаг цепи t, мм	Число звеньев в измеряемом отрезке	Отклонения длины от- резка от номинала, %		
40-63	15	0,30		
80-125	10	0,28		
160-250	8	0,24		
315; 400	5	0,20		
500; 630	4	0,18		
800;1000	3	0,16		

Суммарный зазор между наружными и внутренними пластинами собранных цепей не должен быть более указанного в табл. 27. Вращающие моменты при испытании на проворачивание валика (без лысок) и втулки (без лысок) в одной пластине и силы выпрессовки одной втулки из пластины не должны быть ниже значений, указанных в табл. 28. Предельное отклонение длины измеряемого отрезка цепи от номинального значения должно быть только положительным и не превышать величины, указанной в табл. 29.

	Наработка, ч				
Номер цепи	средняя до отказа	установленная безотказная			
M20	560	350			
M28; MC28	540	330			
M40; M56; MC56; M80	520	320			
M112; MC112	540	330			
M160	530	330			
M224; MC224	510	320			
M315; M450; M630; M900	500	310			
M1250	490	300			
M1800	480	300			

29а. Показатели надежности цепи

Показатели надежности цепного контура единичной длины (10 звеньев) приведены в табл. 29а.

Критерием отказа является увеличение длины измеряемого отрезка цепи с числом звеньев, указанным в табл. 29, более 3%.

Примечание. Для цепного контура, состоящего из n звеньев, показатели надежности увеличиваются в 0.1n раз.

# ОСНОВНЫЕ ТИПЫ, ИСПОЛНЕНИЯ И РАЗМЕРЫ ПРИСОЕДИНИТЕЛЬНЫХ ЭЛЕМЕНТОВ

Для тяговых пластинчатых цепей устанавливаются следующие типы присоединительных элементов (табл. 30):

- 1.1 специальные пластины с одним отверстием в полке:
- 1.2 специальные пластины с двумя отверстиями в полке;
- 1.3 специальные пластины с тремя отверстиями в полке;
- 2.1 специальные пластины без полки с одним отверстием;
- 2.2 специальные пластины без полки с двумя отверстиями;
- 2.3 специальные пластины без полки с тремя отверстиями;
  - 3 удлиненные валики.

Примечание. В цепях неразборной конструкции исполнения 1 с присоединительными элементами типа 3 допускается их установка на звеньях разборной конструкции.

Устанавливаются четыре исполнения специальных пластин по межцентровому расстоянию отверстий:

- 0 отсутствует (одно отверстие);
- 1 наименьшее:
- 2 среднее;
- 3 наибольшее.

Для присоединительных элементов устанавливается следующее их расположение в цепи:

- 1 одностороннее;
- 2 двустороннее.

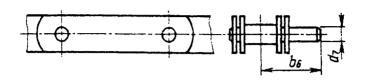
Основные параметры и размеры присоединительных элементов должны соответствовать указанным в табл. 30.

Число и чередование специальных пластин в цепи устанавливается по согласованию с потребителем.

Допускается изготовлять специальные пластины с отверстиями некруглой формы,

Допускается изготовлять цепи со специальными пластинами и удлиненными валиками иных типов, исполнений и размеров.

Пример условного обозначения:


тяговой пластинчатой цепи с разрушающей нагрузкой 112 кН типа 2, с шагом 100 мм исполнения 1, с присоединительными элементами типа 1.3, исполнения 3, с односторонним их расположением (1) и чередованием через 3 шага:

Цепь M112—2—100—1—1.3—3—1—3 ГОСТ 588—81

# 30. Основные размеры присоединительных элементов, мм

Тип 1.2 Тип 1.1 ds Тип 1.3 Тип 2.1 Тип 2.2 Тип 2.3

Тип 3



			<u></u>						Ти	пы		
Номер	- 1						1.2 и 2.2		1.2 и 2.2		1.3 и 2.3	
цепи		$d_7$	h ₁	$A_1$	$A_1$ $b_5$ , не $b_6$ более $b_6$				Испол	нения		
		!						1 2		2	3	 }
							t*	A	<i>t</i> *	A	t*	A
M20	6,6	7	16	54	84	30	63	20	80	35	100	50
M28	9,0	8	20	64	100	34	80	25	100	40	125	65
M40	9,0	10	25	70	112	40	80	20	100	40	125	65
M56	11,0	12	30	88	140	49	100	25	125	50	160	85
M80	11,0	15	35	96	160	57	125	50	160	85	200	125
M112	14,0	18	40	110	184	. 67	125	35	160	65	200	100
M160	14,0	22	45	124	200	79	160	50	200	85	250	145
M224	18.0	25	55	140	228	94	200	65	250	125	315	190
M315	18,0	30	65	160	250	111	200	50	250	100	315	155
M450	18,0	35	75	180	280	129	250	85	315	155	400	240
M630	24,0	_	90	230	380	_	315	100	400	190	500	300
M900	30,0	-	110	280	480	_	315	65	400	155	500	240

^{*} Минимальный щаг t цепи при расстоянии A между отверстиями.

То же, с присоединительными элементами типа 1.1, исполнения 0, с односторонним их расположением (1) и чередованием через 3 шага:

То же, с присоединительными элементами типа 3, с односторонним их расположением (1) и чередованием через 3 шага:

То же, с присоединительными элементами типа 1.2 (с размерами  $h_1$ = 31,5 и  $d_6$ =9), исполнения 1 (с размером A = 30), с односторонним их расположением (1) (с полурасстоянием  $A_1/2$ , для наружных специальных пластин, равным 50, и для внутренних — 45) и чередованием через 3 шага:

Цепь 
$$M112-2-100-1-1$$
 ( $h_1 = 31,5$ ) · 2 ( $d_6 = 9$ ) —  $1$  ( $A = 30$ )— $1$ ( $A_1/2 = 50/45$ )— $3$  ГОСТ  $588-81$ 

То же, с присоединительными элементами типа 2.1 (с прямоугольными отверстиями размером  $9\times31$ ), исполнения 0, с двусторонним их расположением (2) и чередованием через 2 щага:

То же, с присоединительными элементами типа 3 (с размером  $d_7 = 15$ ) с односторонним их расположением (с размером  $b_6 = 72$ ) и чередованием через 4 шага:

Цепь 
$$M112-2-100-1-3$$
  $(d_7=15)-1$   $(b_6=72)-4$  ГОСТ  $588-81$ 

Примечание. Для тяговых пластинчатых цепей со специальными пластинами, имеющими иную от установленной

на рис. табл. 30 форму отверстий и присоединительные элементы с размерами, отличающимися от указанных в табл. 30, после соответствующего условного обозначения типа исполнения и расположения присоединительных элементов в скобках следует указывать обозначение размера и фактическое его значение.

# ЗВЕЗДОЧКИ ДЛЯ ПЛАСТИНЧАТЫХ ЦЕПЕЙ (по ГОСТ 592—81)

Устанавливаются три типа звездочек:

- 1 одноходовые звездочки с геометрической характеристикой зацепления  $\lambda \le 2,2$ ;
- 2 одноходовые звездочки с геометрической характеристикой зацепления  $\lambda > 2.2$  ;
- 3 двухходовые и двухзаходные звездочки с геометрической характеристикой зацепления  $\lambda \ge 3.5$ .

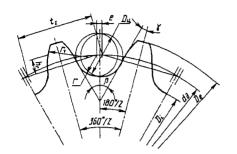
Одноходовые звездочки для пластинчатых цепей работают при скоростях до 5 м/с.

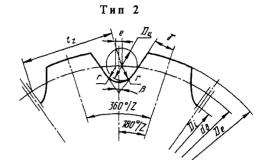
Расчет и построение профиля зубьев звездочек приведен в табл. 31; расчет венца звездочек в поперечном сечении — в табл. 33.

Диаметр наружной окружности звездочек для пластинчатых цепей, имеющих присоединительные устройства, установленные поперек цепи, должен рассчитываться по формуле

$$D_e = t K_z + (1,2 \dots 1,6) h_1$$
,

где  $h_1$  — расстояние от оси шарнира до полки специальной пластины, мм:  $(1,2 \dots 1,6)$  — коэффициент, который увеличивают пропорционально увеличению числа зубьев z интерполяцией в интервале  $5 \le z \le 60$ .


Диаметры делительной окружности вычисляют с точностью до 0,01 мм, остальные линейные размеры — с точностью до 0,1 мм, угловые — с точностью до 1'.


# 31. Расчет и построение профиля зубьев звездочек типов 1 и 2

Для цепей с геометрической характеристикой  $\lambda \le 2,2$ 

Для цепей с геометрической характеристикой  $\lambda > 2,2$ 

Тип 1

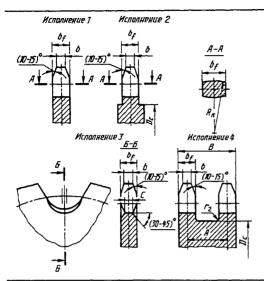




Наименование параметров		Обо- значе- ние	Расчетная формула	Примечание	
Шаг цепи		t	_	Значения по табл. 1, 2, 3, 24	
Диаметр элем ния цепей: втулочных роликовых катковых грузовых	втулочных роликовых катковых		$D_{u} = d_{2}$ $D_{u} = d_{3}$ $D_{u} = d_{4}$ $D_{u} = d_{1}$	Значения по табл. 1, 2, 3, 24	
•	Геометрическая характеристика зацепления		$\lambda = \frac{t}{D_{U}}$	Значения по табл. 35-37	
Шаг зубьев зве	здочки	t _z	$t_Z = t$	_	
	для привод- ных цепей		z≥9		
Число зубьев звездочки	для тяговых и транспор- терных це- пей	z	z≥6	_	
для грузовых цепей			z ≥ 5		
Диаметр делительной	в шагах	d _t	$d_t = \csc \frac{180^\circ}{z}$	Значения по табл. 38	
окружности	в мм	$d_{\partial}$	$d_{\partial} = d_t t$	_	

Продолжение табл. 31

Наименование параметров		Обо- значе- ние	Расчетная формула			Примечание	
Диаметр наружной окружно- сти		$D_{e}$	$D_e = t \left( K + K_z - \frac{0.31}{\lambda} \right)$			_	
				ζ	<i>D</i> ₁₁ ≤ 80	D ₁₁ > 80	
	для тяговых и грузовых		5—10	0,	56		
Коэффици- ент высоты зуба	цепей	K	11—25	0,46	0,35	-	
•			26—60	0,65	0,50		
	для привод- ных и транс- портерных цепей			0,7			
Коэффициент	числа зубьев	Kz	$K_z = \operatorname{ctg} \frac{180^{\circ}}{z}$			Значения по табл. 39	
Диаметр окружности	для привод- ных и транс- портерных цепей	$D_i$	$D_i = d_{\partial} - (D_{II} + 0.175\sqrt{d_{\partial}})$			_	
впадин	для тяговых и грузовых цепей			$D_i = d_{\partial} - D_{i}$			
Смещение цен	нтров дуг впа-	е	$e_{\min} = 1.01t$ $e_{\max} = 0.05t$			_	
Радиус впа- дины зубьев	для привод- ных и транс- портерных цепей	r	$r = 0.5(D_{\rm II} - 0.05t)$			Центр дуги радиу- са <i>r</i> располагается ниже линии дели- тельной окружно- сти, на расстоя- нии <i>r</i> от окружно- сти впадин	
	для тяговых и грузовых цепей		$r = 0.5D_{\text{II}}$				
Половина угла заостре- ния зуба	для тяговых транспортер- ных и при- водных це- пей $\gamma$			_			
	для грузовых цепей			γ = 12 ÷ 15°			


Продолжение табл. 31

			iipooononeenae maon. 51
Наименование параметров	Обо- значе- ние	Расчетная формула	Примечание
Угол впадины зуба	β	При изготовлении звездочек методом деления, например радиальной штамповкой	Значения по табл. 32
		$\beta = 2\gamma + \frac{360^{\circ}}{z}$	
Радиус закругления головки зуба при $\lambda \le 2,2$	Ę	$r_i = (t - 0.5D_{II} - 0.5e)\cos\gamma$	-
Высота прямолинейного участка профиля зуба при $\lambda \le 2,2$	h _r	$h_r = r_i \sin \gamma$	_
Наибольшая хорда для контроля звездочки с нечетным числом зубьев	$L_{\chi}$	$L_{x} = d_{\partial} \cos \left( \frac{90^{\circ}}{z} + \arcsin \frac{e}{d_{\partial}} \right) - 2r$	
Предельно допускаемое увеличение шага цепи по зацеплению со звездочкой	Δt	Δ <i>t</i> ≤ 3%	_

#### 32. Значения угла впадины зуба в

z	6—8	9—11	12—15	16—22	23—45	Св. 45
β	86	68	60	52	48	42

#### 33. Расчет венца звездочек в поперечном сечении



### Форма боковой поверхности зубьев звездочек

Допускается скругление боковой поверхности зуба радиусом  $b_f \le R \le 1,6 b_f$  вместо скосов под углом  $10-15^\circ$ .

Для звездочек транспортерных цепей допускается скос под углом 10—20°.

Допускается изготовление звездочек с бочкообразным зубом с радиусом  $R_{\rm K}$  при установке звездочек со смещением.

Допускается технологическое скругление вершины зуба.

Звездочки с формой боковой поверхности зуба исполнения 3 следует применять в передачах, работающих в загрязненных средах.

Наименовани	ие параметр	ов	Обозна- чение	Расчетная формула
Шаг цепи			t	
Расстояние между стинами	внутренни	ми пла-	$b_3$ , $B_{\mathtt{BH}}$	Значения по табл. 1, 2, 3 и 24
Ширина пластины			h	
Диаметр катка			$d_4$	
Диаметр реборды ка	тка		<b>d</b> 5	Значения по табл. 24
Ширина реборды ка	тка		<i>b</i> ₂	
	для цепе 1, 2, 3 по	й типов табл. 24		$b_{f \text{ max}} = 0.9b_3 - 1$ $b_{f \text{ min}} = 0.87b_3 - 1.7$
Ширина зуба звез- дочки	для цепе (ГОСТ 58	й типа 4 8—81)	$b_f$	$b_{f \text{ max}} = 0.9(b_3 - b_2) - 1$ $b_{f \text{ min}} = 0.87B(b_3 - d_2) - 1.7$
	для траз ных цепе	нспортер- й		$b_{f \max} = 0.9b_3$
	для	тип 1		$b = 0.83 \ b_f$
Ширина	цепей	тип 2	ь	$b = 0.75 b_f$
вершины зуба	по	тип 3	ļ	$b = 0.72 b_f$
	табл. 24	тип 4		$b = 0,60 \ b_f$
	для це ГОСТ 13:	пей по 568—75		$b=0,75\ b_f$
Опорная длина впадины зуба (исполнение 3)			С	$C=0,26\ b_f$

Продолжение табл. 33

Наименовани	ие параметров	Обозна- чение	Расчетная	формула	
Расстояние между р	ядами цепи	A	Значения по ГОСТ 13568-75		
Радиус сопряжения зуба со ступенью	для приводных, тяговых и грузо- вых цепей	<i>r</i> ₂	r ₂ = 1	1,6	
	для транспортер- ных цепей		$r_2 = 1.6$	2,5	
Ширина венца двух	рядной звездочки	В	B = A	+ b _f	
Диаметр венца	для цепей типов 1, 2 по табл. 24, всех типов — по табл. 1, 2,3	$D_{\mathrm{c}}$	$D_c = t K_z - 1,3h$	Значения <i>К_z</i> по табл. 39	
	для цепей типа 3		$D_c = tK_z - (d_4 + 0.25h)$		
	для цепей типа 4		$D_c = tK_z - (d_5 + 0.25h)$		
Радиус выпуклости		$R_{\kappa}$	$R_{\rm K} = \frac{28,65b_3}{\varphi_{\rm c}}$		
Расчетный угол уч звездочек	словного смещения	φс	φ _c = 3 10°		

Предельные отклонения. Для изготовления зубьев звездочек установлены две степени точности.

Степень точности 1 для звездочек, работающих в цепных передачах при скорости  $v=3\div 5$  м/с.

Степень точности 2 для звездочек, работающих в цепных передачах и устройствах при скорости  $v < 3 \,\mathrm{m/c}$ , а также для звездочек, представляющих собой сборочную единицу.

Предельные отклонения основных размеров звездочек для степеней точности 1 и 2 приведены в табл. 34.

34. Предельные отклонения основных размеров звездочек для степеней точности 1 и 2

Наименование	Тип	Предельные отклонения для степеней точности, мм				
параметра	звездочки	1	2			
Разность шагов	1, 2	$\delta_{tz} = 0.01 \sqrt{tz}$	$\delta_{tz} = 0.025 \sqrt{t z}$			
	3	$\delta_{tz} = 0.01 \sqrt{t \frac{z_n}{n}}$	$\delta_{tz} = 0.025 \sqrt{t \frac{z_n}{n}}$			

Продолжение табл. 34

Наименование	Тип	Предельные отклонения для степеней точности, мм				
параметра	звездочки	1	2			
Диаметр окружности	1, 2	$\delta_{Di} = -0.032\sqrt{tz}$	$\delta_{Di} = -0.080\sqrt{tz}$			
впадин	3	$\delta_{Di} = -0.032 \sqrt{t \frac{z_n}{n}}$	$\delta_{Di} = -0.080 \sqrt{t \frac{z_n}{n}}$			
Радиальное биение окружности впадин и осевое биение зубчатого венца	1, 2, 3	$\delta_z = 0.001 D_i + 0.1$ , но не более 1,2	$\delta_z = 0,005 D_i$ , но не более 2,0			

Примечание. n — число ходов (число зубьев на один шаг цепи);  $z_n$  — число зубьев звездочки: для двухходовой  $z_n$  — четное число, для двухзаходной  $z_n$  — нечетное число.

35. Значения геометрической характеристики зацепления  $\lambda = \frac{t}{D_{\mathrm{u}}}$  для цепей типа 1 по ГОСТ 588—81

Размеры, мм

1	Диаметр элемента зацепления $D_{ m u}=d_2$										
цепи t 9,0	10,0	12,5	15,0	18,0	21,0	25,0	30,0	36,0	42,0	50,0	60,0
40 4,45 50 5,55 63 7,0 80 8,95 100 11,1 125 13,9 160 17,8 200 250 315 400 500 630 800	5,0 6,3 8,0 10,0 12,5 16,0 20,0	5,03 6,40 8,0 10,0 12,8 16,0 20,0	4,20 5,33 6,66 8,30 10,65 13,35 16,65	4,45 5,55 6,94 8,90 11,15 13,90 17,50	3,81 4,75 5,95 7,60 9,56 11,90 15,00 19,05	4,00 5,00 6,40 8,00 10,00 12,60 16,00 20,00	4,16 5,31 6,65 8,31 10,40 13,35 16,70 21,00	4,45 5,55 6,95 8,75 11,12 13,90 17,50	4,77 5,95 7,50 9,50 11,90 15,00 19,00	5,00 6,27 8,00 10,00 12,60 16,00	4,17 5,26 6,67 8,34 10,50 13,35

# 36. Значения геометрической характеристики зацепления $\lambda = \frac{t}{D_{\mathrm{ll}}}$ для цепей типа 2 по ГОСТ 588—81

#### Размеры, мм

Шаг	Диаметр элемента зацепления $D_{\mathrm{u}}=d_3$											
цепи t	12,5	15,0	18,0	21,0	25,0	30,0	36,0	42,0	50,0	60,0	70,0	85,0
40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000	3,20 4,0 5,04 6,40 8,00 10,00 12,80	3,32 4,20 5,32 6,65 8,32 10,65 13,35	3,50 4,45 5,54 6,92 8,86 11,10 13,90	3,00 3,85 4,75 5,95 7,60 9,50 11,90	3,20- 4,00 5,00 6,40 8,00 10,00, 12,60	2,63 3,32 4,16 5,34 6,67 8,35 10,50 13,32	2,73 3,43 4,45 5,55 6,95 8,80 11,12 13,90	2,94 3,80 4,76 5,95 7,50 9,51 11,95 15,00	3,20 4,00 5,00 6,30 8,00 10,00 12,60	3,32 4,16 5,25 6,67 8,33 10,50 13,35	3,53 4,50 5,70 7,15 9,00 11,40 14,30	2,92 3,72 4,70 5,86 7,44 9,40 11,75

### 37. Значения геометрической характеристики зацепления $\lambda = \frac{t}{D_{_{11}}}$

#### для роликовых цепей по ГОСТ 13568-75

#### Размеры, мм

Шаг цепи <i>t</i>	Диаметр элемента зацепления $D_{ m u}$	λ	Шаг цепи <i>t</i>	Диаметр элемента зацепления <i>D</i> _u	λ	
Ц	епи типа П	P	44,45 50,8	25,4 28,58	1,75 1,78	
12,7 15,875	8,51 10,16	1,49 1,56	Цепи типа ПРД			
19,05 25,4 31,75 38,1	11,91 15,88 19,05 22,23	1,60 1,60 1,67 1,71	31,75 38,0 50,8	10,16 16,0 15,88	3,12 2,38 3,20	

#### 38. Значения диаметра делительной окружности

### одноходовой звездочки $d_t = \csc \frac{180^\circ}{z}$ в шагах

Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d,	Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	ď
5	1,7013	7	2,3048	9	2,9238	11	3,5495	13	4,1786
6	2,0000	8	2,6131	10	3,2361	12	3,8637	14	4,4939

Продолжение табл. 38

Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d _t	Число зубьев звез- дочек	d _t
15	4,8097	25	7,9787	34	10,8379	43	13,6993	52	16,5516
16	5,1258	26	8,2963	35	11,1560	44	14,0178	53	16,8809
17	5,4423	27	8,6138	36	11,4737	45	14,3356	54	17,1984
18	5,7588	28	8,9319	37	11,7913	46	14,6536	55	17,5163
19	6,0756	29	9,2490	38	12,1093	47	14,9720	56	17,8354
20	6,3925	30	9,5668	39	12,4278	48	15,2898	57	18,1535
21	6,7095	31	9,8846	40	12,7455	49	15,6085	58	18,4717
22	7,0266	32	10,2023	41	13,0639	50	15,9260	59	18,7893
23	7,3439	33	10,5263	42	13,3820	51	16,2439	60	19,1073
24	7,6613								

39. Значения коэффициента числа зубьев  $\text{одноходовой звездочки} \ \ K_z = \operatorname{ctg} \frac{180^\circ}{z} \ \ \text{в шагах}$ 

Число зубьев звез- дочек	K _z	Число зубьев звез- дочек	K _z	Число зубьев звез- дочек	K _z	Число зубьев звез- дочек	K _z	Число зубьев звез- дочек	K _z
5	1,38	16	5,03	27	8,56	38	12,07	49	15,58
6	1,73	17	5,35	28	8,88	39	12,39	50	15,89
7	2,08	18	5,67	29	9,19	40	12,71	51	16,21
8	2,41	19	5,99	30	9,51	41	13,05	52	16,53
9	2,75	20	6,31	31	9,83	42	13,34	53	16,85
10	3,08	21	6,63	32	10,15	43	13,66	54	17,17
11	3,41	22	6,96	33	10,47	44	13,98	55	17,49
12	3,73	23	7,28	34	10,79	45	14,30	56	17,81
13	4,06	24	7,60	35	11,11	46	14,62	57	18,13
14	4,38	25	7,92	36	11,43	47	14,97	58	18,44
15	4,70	26	8,24	37	11,75	48	15,26	59	18,76
								60	19,08

ГОСТ 592—81 предусматривает методы расчета и построения профиля зубьев для звездочек грузовых пластинчатых цепей по ГОСТ 191—82.

#### 40. Правила выполнения рабочих чертежей звездочек для пластинчатых цепей

Цепь (обозначение сопрягаемой цепи)	
Число зубьев	z
Величина смещения центров дуг впадин	e
Радиус впадин зубьев	r
Радиус закругления головки зуба	$r_{\rm i}$
Высота прямолинейной поверхности зуба	h
Угол впадины *1	β
Профиль зуба *2	
Степень точности	1 по ГОСТ 592—81
Диаметр делительной окружности	$d_{\partial}$

^{*1} Угол впадины и размеры, определяющие впадину зуба, указываются при необходимости.

Таблица параметров приведена для звездочек тяговых пластинчатых цепей.

При выполнении чертежа блока звездочек следует помещать одну таблицу с указанием всех необходимых данных для каждого венца звездочек. Венцы обозначают прописными буквами русского алфавита.

В неиспользованных графах таблицы ставят прочерки.

На чертеже звездочки, имеющей профиль, частично отличающийся от стандартизованного, кроме данных, указанных на рисунке и в таблице параметров, следует помещать изображение профиля зуба (рис. 3).

На изображении профиля:

указывают диаметр (диаметры) окружности, ограничивающей стандартизованную часть профиля;

наносят все необходимые размеры для изготовления нестандартизованной части профиля или оговаривают эту часть профиля в технических требованиях чертежа;

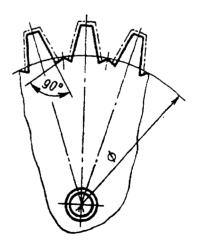
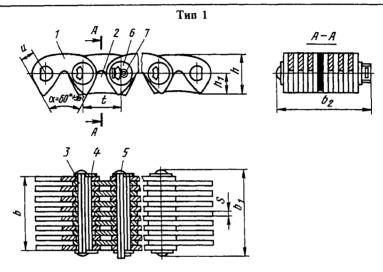
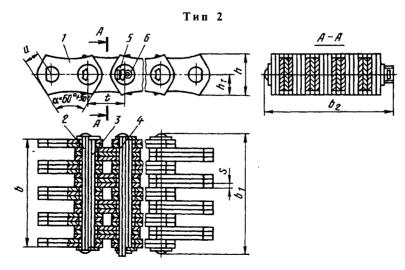



Рис. 3

стандартизованную часть профиля выделяют штрихпунктирной утолщенной линией.


^{*2} Ссылка на соответствующий ГОСТ.

## ПРИВОДНЫЕ ЗУБЧАТЫЕ ЦЕПИ (по ГОСТ 13552—81)


Приводные зубчатые цепи изготовляют двух типов:

- цепи зубчатые с односторонним зацеплением;
- 2 цепи зубчатые с двусторонним зацеплением.

#### 41. Основные параметры и размеры зубчатых цепей Размеры, мм



I — рабочая пластина; 2 — направляющая пластина; 3 — удлиненная призма; 4 — внутренняя призма; 5 — соединительная призма; 6 — шайба; 7 — шплинт



I — рабочая пластина; 2 — удлиненная призма; 3 — внутренняя призма; 4 — соединительная призма; 5 — шайба; 6 — шплинт

Продолжение табл. 41

		l	<u> </u>	l		T		Ţ	H,	T
Обозначение цепи	t	<i>b</i> , не более	<i>b</i> ₁ , не более	<i>b</i> ₂ , не более	h	$h_1$	s	и	Разрушающая нагрузка, кН, не менее	Масса 1 м цепи, не более
П3-1-12,7-26-22,5 П3-1-12,7-31-28,5 П3-1-12,7-36-34,5 П3-1-12,7-42-40,5 П3-1-12,7-49-46,5 П3-1-12,7-56-52,5	12,7	22,5 28,5 34,5 40,5 46,5 52,5	28,5 34,5 40,5 46,5 52,5 58,5	31,5 37,5 43,5 49,5 55,5 61,5	13,4	7,0	1,5	4,76	26 31 36 42 49 56	1,31 1,60 2,00 2,31 2,70 3,00
ПЗ-1—15,875—41—30 ПЗ-1—15,875—50—38 ПЗ-1—15,875—58—46 ПЗ-1—15,875—69—54 ПЗ-1—15,875—80—62 ПЗ-1—15,875—91—70	15,875	30,0 38,0 46,0 54,0 62,0 70,0	38,0 46,0 54,0 62,0 70,0 78,0	41,0 49,0 57,0 65,0 73,0 81,0	16,7	8,7	2,0	5,95	41 50 58 69 80 91	2,21 2,71 3,30 3,90 4,41 5,00
ПЗ-1—19,05—74—45 ПЗ-1—19,05—89—57 ПЗ-1—19,05—105—69 ПЗ-1—19,05—124—81 ПЗ-1—19,05—143—93	19,05	45,0 57,0 69,0 81,0 93,0	54,0 66,0 78,0 90,0 102,0	56,0 68,0 80,0 92,0 104,0	20,1	10,5	3,0	7,14	74 89 105 124 143	3,90 4,90 5,91 7,00 8,00
ПЗ-2—25,4—101—57 ПЗ-2—25,4—132—75 ПЗ-2—25,4—164—93 ПЗ-2—25,4—196—111	25,4	57,0 75,0 93,0 111,0	66,0 84,0 102,0 120,0	68,0 86,0 104,0 122,0	26,7	13,35	3,0	9,52	101 132 164 196	8,40 10,80 13,20 15,40
П3-2—31,75—166—75 П3-2—31,75—206—93 П3-2—31,75—246—111 П3-2—31,75—286—129	31,75	75,0 93,0 111,0 129,0	85,0 103,0 121,0 139,0	88,0 106,0 124,0 142,0	33,4	16,70	3,0	11,91	166 206 246 286	14,35 16,55 18,80 21,00

Приводные зубчатые цепи (табл. 41) работают более плавно, с меньшим шумом, чем приводные цепи других типов. Конструктивно они сложнее роликовых цепей.

Зубчатые цепи обеспечивают высокую кинематическую точность передачи за счет равномерного изменения шага в процессе работы, они обладают повышенной надежностью вследствие отсутствия роликов и втулок, а также благодаря тому, что разрыв одной пластины не приводит к разрыву всего звена.

Зубчатая цепь с одним и тем же шагом может быть использована для передачи мощностей с большим диапазоном благодаря возможности изменения ширины цепи в больших пределах (табл. 41).

Зацепление цепи со звездочкой осуществляется зубообразным профилем пластин, набор которых образует две опорные поверхности. Зацепление зубчатой цепи по наклонной поверхности набора пластин снижает кинетическую энергию в момент столкновения звена цепи с зубом звездочки.

Соединительная призма с шайбой и шплинтом предназначена для соединения концов цепи при монтаже и разъединении при демонтаже.

Приводные зубчатые цепи целесообразно применять там, где требуется высокая кинематическая точность, повышенная плавность и бесшумность работы передачи;

в цепных передачах, работающих при повышенных скоростях движения цепи

Шаг цепи, <i>t,</i> мм	12,7	15,875	19,05	25,4	31,75
Толщина диффузионного слоя, мм	0,2-0,4	0,25—0,45	0,30,5	0,4—0,6	0,5-0,7

42. Толщина диффузионного слоя призм после химико-термической обработки

 $(v \ge 5 \text{ м/c})$  и больших передаваемых мощностях;

в основном в быстроходных приводах машин, например в приводах металлорежущих станков.

Пример обозначения приводной зубчатой цепи типа 1 с шагом 19,5 мм, разрушающей нагрузкой 74 кН и рабочей шириной 45 мм:

Технические требования. Детали цепей изготовляют из сталей, обеспечивающих после термообработки или химикотермической обработки разрушающие нагрузки, указанные в табл. 41.

Общая толщина диффузионного слоя (эффективная толщина и переходная зона) после химико-термической обработки должна соответствовать указанной в табл. 42.

На поверхности деталей не должно быть трещин, волосовин и других дефектов. Исправление лефектов не допускается.

Отклонение расстояния от центра шарнира до рабочей грани пластины  $\Delta u$  не должно превышать значений, указанных в табл. 43.

Поверхности пластин должны иметь защитное или зашитно-декоративное покрытие по ГОСТ 9.306—85. Вид покрытия устанавливается по согласованию с потребителем.

Несовпадение рабочих граней пластин собранной цепи допускается не более 0,15 мм.

Цепь в собранном виде должна иметь подвижность в шарнирных соединениях. Смежные звенья должны свободно проворачиваться от руки.

Предельное отклонение длины измеряемого отрезка цепей типа 1 в 49 звеньев и цепей типа 2 шага 25,4 в 37 звеньев, шага 31,75 мм в 29 звеньев от номинального значения должно быть только положительным и не превышать 0,25%.

Цепи должны изготовляться отдельными отрезками с четным числом звеньев: шага 12,7 мм — 80 звеньев, 15,875 мм—64 звена, 19,05 мм— 54 звена, 25,4 мм — 40 звеньев, 31,75 мм—32 звена. К каждому отрезку цепи должен поставляться один комплект соединительных элементов: соединительная и внутренняя призма, шайба и шплинт.

Допускается по требованию потребителя изготовление отрезков других длин с другим количеством комплектов соединительных элементов.

Показатели надежности цепного контура приведены в табл. 43а. Критерием отказа является увеличение длины контрольного отрезка цепи из 11 звеньев более 5%.

Примечание. Показатели надежности приведены применительно к режимам стендовых испытаний на надежность, указанным в табл. 436.

Периодические стендовые испытания на надежность проводят раз в полгода. Объем выборки для  $\delta$ =0,2 и  $\gamma$ =0,8 по ГОСТ 27.502 при нормальном распределении наработки. Контроль показателей надежности — по ГОСТ 27.401 методом доаерительных границ.

Гарантийный срок эксплуатации — 12 мес со дня ввода цепей в эксплуатацию.

### 43. Отклонение $\Delta u$ расстояния от центра шарнира до рабочей грани пластины

Шаг цепи, t, мм	12,7	15,875	19,05	25,4	31,75
Δи, мм	00	,048	0 0,	058	00,07

#### 43а. Показатели надежности цепного контура

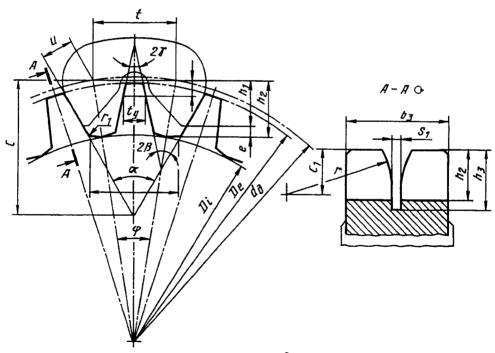
	Наработка, ч					
Типорпзмер цепи	средняя до отказа	установленная безотказная				
П3-1—12,7—26—22,5	250	160				
П3-1—15,875—41—30	470	300				
П3-1—19,05—74—45	940	600				
П3-2-25,4-101-45	2000	1250				
П3-2—31,75—166—75	4300	2700				

#### 436. Режимы стендовых испытаний приводных зубчатых цепей на надежность

		Допуска-						
Типоразмер цепи	Число Число зубьег звеньев звездочки		-	Частота вращения	Расчетная	Время	емое уве- личение длины	
	в кон- туре	веду- щей	ведо- мой	ведущей звездочки, мин ⁻¹	окружная сила, кН	испы- тания, ч	контроль- ного от- резка, %	
П3-1-12,7-26-22,5	90	23	46	2500	0,35	250	5,1	
П3-1-15,875-41-30	90	23	46	1850	0,60	350	3,8	
П3-1—19,05—74—45	90	23	46	1400	1,20	470	2,6	
ПЗ-2-25,4-101-57	76	22	44	900	2,00	600	1,5	
П3-2—31,75—166—75	76	22	44	650	3,00	800	1,0	

#### Примечания:

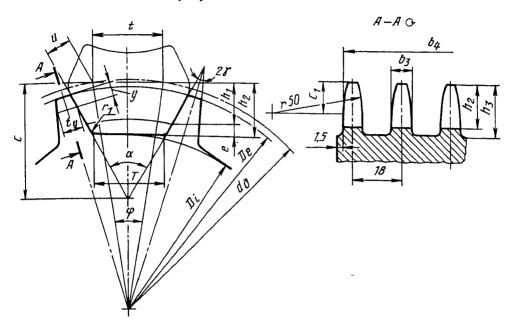
- 1. Испытываемые цепи смазывают один раз за 7 ч работы.
- 2. В процессе испытаний не должно быть разрушения деталей цепи.
- 3. При испытании цепей других типоразмеров, не указанных в таблице, окружная сила увеличивается пропорционально рабочей ширине цепи.


### ЗВЕЗДОЧКИ ДЛЯ ПРИВОДНЫХ ЗУБЧАТЫХ ЦЕПЕЙ (по ГОСТ 13576—81)

ГОСТ 13576—81 распространяется на звездочки для приводных зубчатых цепей по 13552—81. Стандарт устанавливает метод расчета и построения профиля зубьев звездочек для приводных зубчатых цепей с односторонним и двусторонним зацеплением (табл. 44—48) и предельные отклонения (табл. 50).

#### 44. Расчет и построение профиля зубьев звездочек

Размеры, мм


Профиль зубьев звездочек для зубчатых цепей с односторонним зацеплением — тип !



- 2ү угол заострения зуба;
- 2β утол впадины зуба;
- α утол наклона рабочих граней зуба;
- ф угол поворота звена на звездочке

#### Продолжение табл. 44

### Профиль зубьев звездочек для зубчатых цепей с двусторонним зацеплением — тип 2



Наименование	Обозначе-	Расчетные фор	мулы для цепи					
параметров	ния	типа 1	типа 2					
	Ис	ходные данные						
Шаг цепи	t							
Расстояние от центра шарнира до рабочей грани звена	и							
Расстояние от оси пластины до верши- ны зуба звена	$h_1$	Размеры по ГОСТ 13552—81						
Ширина цепи	ь							
Толщина пластины	S							
Угол наклона рабо- чих граней	α	60°						
Число зубьев звез- дочки	z	z от 17 до 96	z* от 22 до 96					

#### Продолжение табл. 44

Наименование	Обозначе-	Расчетные фор	омулы для цепи			
параметров	кин	типа 1	типа 2			
	Геоме	трический расчет				
Диаметр делительной окружности	$d_{\partial}$	$d_{\hat{\partial}} = \frac{t}{\sin \frac{180^{\circ}}{z}}$	$d_{\partial} = K \frac{t}{\sin \frac{180^{\circ}}{z}}$			
Диаметр наружной окружности	$D_e$	$D_e = \frac{t}{\text{tg} \frac{180^{\circ}}{z}}$	$D_e = K \frac{t}{\lg \frac{180^\circ}{z}}$			
Коэффициент высо- ты зуба	K	_	$K = 0.99$ для $z \le 40$ K = 0.995 для $z > 40$			
Диаметр окружности впадин	$D_i$	$D_i = d_{\partial} - 1$	$2\frac{h_2}{\cos\frac{180^\circ}{z}}$			
Высота зуба	h ₂	$h_2 = h_1 + e$				
Радиальный зазор	е	e =	0,11			
Угол поворота звена на звездочке, град	φ	φ = -	360° z			
Угол впадины зуба, град	β	$2\beta = \alpha - \varphi$	-			
Половина угла за- острения зуба,°	γ	γ = 30	Ͻ° – φ			
Ширина зуба звез- дочки	<i>b</i> ₃	$b_3 = b + 2s$	b ₃ = 2,55s			
Ширина венца	<i>b</i> ₄	$b_4 = b_3$	$b_4 = b + 1,58s$			
Расстояние от вер- шины зуба до линии центров	$C_1$	$C_1 \approx 0.4t$				
Радиус закругления торца зуба и направляющей проточки	r	r≈t	r = 50			

Продолжение табл. 44

Наименование	Обозначе-	Расчетные формулы для цепи			
параметров	ния	типа 1	типа 2		
Глубина проточки	h ₃	h ₃ =	0,75 <i>t</i>		
Ширина проточки	$s_1$	$s_1$ $s_1 = 2s$			
	Конт	рольные размеры			
Толщина зуба на высоте у	t _y	$t_y = t - 2(u \text{ co}$	$s \gamma - 0,1t \sin \gamma$		
Измерительная вы- сота зуба	у	$y = u \sin \gamma + 0.1t \cos \gamma$			
Расстояние между кромками рабочих граней зубьев при $\alpha$ =60°	Т	$T = t + \frac{2u - h_2}{0,866}$			

^{*} Приведено теоретическое число зубьев звездочки для расчета ее параметров. Фактическое число зубьев звездочки, при регламентированном стандартном зацеплении цепи через шаг, равно половине теоретического.

#### 45. Расчетные величины основных параметров звездочек

#### Размеры, мм

Наименование параметров	Расчетные величины						
Шаг цепи <i>t</i>	12,7	15,875	19,05	25,4	31,75		
Расстояние от центра шарнира до рабочей грани звена <i>и</i>	4,76	5,95	7,14	9,52	11,91		
Высота зуба $h_2$	8,3	10,3	12,4	15,9	19,9		
Радиальный зазор <i>е</i>	1,3	1,6	1,9	2,5	3,2		
Расстояние между кромками рабочих граней зубьев $T$ при $lpha=60^{\circ}$	14,11	17,73	21,22	28,33	35,35		
Расстояние от точки пересечения рабочих граней до наружной окружности С	20,52	25,65	30,76	41,03	51,34		
Радиус закругления впадины зуба r ₁	1,5	2,0	2,0	2,5	3,5		

Высоту зуба  $h_2$  и зазор e вычисляют с точностью до 0,1 мм, остальные линейные размеры поперечного профиля зубьев — с точностью до 0,01 мм, а угловые — с точностью до 1'.

46. Величины  $d_{\partial}$  и  $D_e$  в зависимости от z при t=10

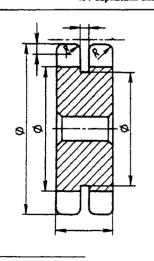
		ей типа l	Для цепей	і типа 2
z	$d_{\partial}$	$D_e$	$d_{\partial}$	$D_e$
17	54,42	53,49	_	
18	57,59	56,71	- 1	
19	60,76	59,93		_
20	63,93	63,14		<del></del>
21	67,10	66,35	-	
22	70,27	69,56	69,57	68,86
23	73,44	72,76	72,71	72,03
24	76,61	75,96	75,84	75,20
25	79,79	79,16	78,99	78,37
26	82,96	82,36	82,13	81,54
27	86,14	85,55	85,28	84,69
28	89,31	88,75	88,42	87,86
29	92,42	91,95	91,49	91,03
30	95,67	95,14	94,71	94,19
31	98,85	98,34	97,86	97,36
32	102,02	101,54	101,00	100,52
33	105,20	104,72	104,15	103,67
34	108,38	107,92	107,30	106,84
35	111,56	111,11	110,44	110,00
36	114,74	114,30	112,46	111,33
37	117,92	117,49	116,74	116,31
38	121,10	120,70	119,89	119,49
39	124,28	123,87	123,04	122,63
40	127,46	127,06	126,18	125,79
41	130,63	130,24	129,98	129,59
42	133,82	133,46	133,15	132,79
43	137,00	136,61	136,31	135,93
44	140,18	139,82	139,48	139,12
45	143,36	143,00	142,64	142,28
46	146,54	146,20	145,81	145,47
47	149,42	149,37	148,67	148,62
48	152,90	152,57	152,13	151,81
49	156,23	155,76	155,45	154,98
50	159,26	158,94	158,46	158,14
51	162,44	162,13	161,63	161,32
52	165,62	165,32	164,79	164,49
53	168,80	168,51	167,96	167,67
54	171,98	171,70	171,12	170,84
55	175,17	174,83	174,29	173,95
56	178,35	178,07	177,46	177,18
57 58	181,53	181,26	180,52	180,35
58 50	184,71	184,45	183,79	183,53 186,69
59 60	187,89	187,63	186,95	189,85
60	191,07	190,81	190,11	193,03
61	194,25	194,00	193,28	
62 63	197,44	197,20	196,45	196,21 199,37
63 64	200,62	200,37	199,62	202,53
04	203,80	203,55	202,78	202,33

 $\Pi$  р и м е ч а н и е . Для определения диаметров окружностей звездочки другого шага табличные значения умножаются на отношение этого шага к 10.

ГОСТ 13576—81 предусматривает также  $d_{\partial}$  и  $D_{e}$  для  $z=65\div96$ .

Пример: при t=15,875 мм и z=25  $d_{\partial}=79,79\frac{15,875}{10}=126,63$  мм .

47. Основные контрольные размеры зубьев звездочек y и  $t_y$  в зависимости от z и шага цели, мм


Число					Шаг це	пи, мм				
зубьев звез-	12	.,7	15,8	375	19,	05	25	5,4	31	,75
дочки г	у	t _y	у	t _y	у	t _y	у	ty	у	t _y
17	1,99	3,68	2,48	4,59	2,98	5,52	3,97	7,36	4,96	9,18
18	2,08	3,76	2,60	4,70	3,12	5,64	4,15	7,53	5,19	9,39
19	2,16	3,84	2,70	4,79	3,24	5,76	4,32	7,68	5,40	9,58
20	2,23	3,91	2,79	4,89	3,35	5,87	4,46	7,83	5,58	9,77
21	2,30	3,98	2,87	4,97	3,45	5,97	4,59	7,96	5,74	9,93
22	2,36	4,04	2,94	5,05	3,53	6,07	4,71	8,09	5,89	10,09
23	2,41	4,11	3,02	5,13	3,61	6,17	4,82	8,22	6,03	10,26
24	2,46	4,16	3,07	5,19	3,69	6,24	4,92	8,32	6,15	10,38
25	2,50	4,21	3,13	5,26	3,75	6,32	5,01	8,42	6,26	10,51
26	2,54	4,26	3,18	5,32	3,82	6,39	5,09	8,52	6,36	10,63
27	2,58	4,30	3,23	5,38	3,87	6,46	5,16	8,61	6,45	10,75
28	2,62	4,35	3,27	5,43	3,92	6,52	5,23	8,70	6,54	10,85
29	2,65	4,39	3,31	5,48	3,97	6,58	5,30	8,73	6,62	10,96
30	2,68	4,43	3,35	5,53	4,02	6,64	5,36	8,86	6,70	11,05
31	2,71	4,46	3,38	5,57	4,06	6,70	5,41	8,93	6,76	11,15
32 33 34 35	2,73 2,76 2,78 2,80	4,50 4,53 4,56 4,59	3,42 3,45 3,47 3,50	5,62 5,66 5,70 5,73	4,10 4,14 4,17 4,20	6,75 6,80 6,84 6,89	5,47 5,51 5,56 5,60	9,00 9,06 9,13	6,83 6,90 6,95	11,23 11,31 11,39
36 37 38	2,82 2,84 2,86	4,62 4,65 4,67	3,53 3,55 3,55 3,57	5,77 5,80 5,83	4,20 4,21 4,26 4,29	6,93 6,97 7,01	5,64 5,68 5,72	9,19 9,24 9,29 9,35	7,01 7,06 7,10 7,15	11,46 11,53 11,60 11,66
39	2,88	4,70	3,59	5,86	4,31	7,04	5,75	9,39	7,19	11,72
40	2,89	4,72	3,61	5,89	4,34	7,08	5,78	9,44	7,23	11,78
41	2,91	4,74	3,63	5,92	4,36	7,11	5,81	9,48	7,27	11,84
42	2,92	4,76	3,65	5,95	4,38	7,14	5,84	9,53	7,30	11,85
43	2,93	4,78	3,67	5,97	4,40	7,17	5,87	9,56	7,34	11,93
44	2,95	4.80	3,69	6,00	4,42	7,20	5,90	9,61	7,38	11,99
45	2,96	4,82	3,70	6,02	4,44	7,23	5,92	9,65	7,40	12,04
46	2,97	4,84	3,71	6,04	4,46	7,26	5,95	9,68	7,43	12,08
47	2,98	4,86	3,73	6,07	4,47	7,28	5,97	9,71	7,46	12,13
48	2,99	4,87	3,74	6,09	4,49	7,31	5,99	9,75	7,49	12,17
49	3,00	4,89	3,76	6,11	4,51	7,33	6,01	9,78	7,52	12,21
50	3,02	4,91	3,77	6,13	4,53	7,36	6,03	9,80	7,55	12,25
51	3,03	4,92	3,78	6,15	4,54	7,38	6,05	9,84	7,57	12,29
52	3,04	4,93	3,79	6,17	4,55	7,40	6,07	9,88	7,59	12,33
53	3,04	4,95	3,80	6,18	4,57	7,43	6,09	9,90	7,61	12,36
54 55 56 57	3,05 3,06 3,07	4,96 4,97 4,99	3,82 3,83 3,84	6,21 6,22 6,23	4,58 4,59 4,60	7,45 7,46 7,48 7,50	6,11 6,12 6,14 6,16	9,93 9,95 9,98 10,00	7,64 7,66 7,68 7,69	12,39 12,42 12,46 12,49
58 59 60	3,08 3,09 3,09 3,10	5,00 5,01 5,02 5,03	3,85 3,85 3,86 3,87	6,24 6,25 6,26 6,28	4,61 4,62 4,63 4,64	7,50 7,52 7,54 7,55	6,17 6,18 6,19	10,00 10,03 10,05 10,07	7,71 7,71 7,73 7,74	12,49 12,52 12,54 12,57
61 62 63	3,10 3,10 3,11 3,12	5,04 5,06 5,07	3,88 3,89 3,90	6,30 6,31 6,33	4,65 4.66 4,67	7,53 7,57 7,58 7,60	6,20 6,21 6,23	10,07 10,09 10,11 10,13	7,74 7,76 7,78 7,79	12,60 12,62 12,65
64	3,12	5,08	3,90	6,34	4,69	7,62	6,24	10,16	7,81	12,68

ГОСТ 13576—81 предусматривает также размеры y и  $t_y$  для z=65+96.

48. Угловые параметры зубьев звездочек  $\varphi$ ,  $\gamma$  и  $\beta$  в зависимости от z

z	φ	γ	β	τ	φ	γ	β
17	21° 10′	8° 50'	19° 25'	41	8° 47'	21° 13'	25° 36
18	20 00	10 00	20 00	42	8 34	21 26	25 43
19	18 57	11 03	20 32	43	8 22	21 38	25 49
20	18 00	12 00	21 00	44	8 11	21 49	25 55
21	17 08	12 52	21 26	45	8 00	22 00	26 00
22	16 22	13 38	21 49	46	7 50	22 10	26 05
23	15 39	14 21	22 10	47	7 40	22 20	26 10
24	15 00	15 00	22 30	48	7 30	22 30	26 15
25	14 24	15 36	22 48	49	7 21	22 39	26 20
26	13 51	16 09	23 05	50	7 12	22 48	26 24
27	13 20	16 40	23 20	51	7 03	22 57	26 28
28	12 51	17 09	23 34	52	·6 55	23 05	26 32
29	12 25	17 35	23 43	53	6 48	23 12	26 36
30	12 00	18 00	24 00	54	6 40	23 20	26 40
31	11 37	18 23	24 12	55	6 33	23 27	26 44
32	11 15	18 45	24 22	56	6 26	23 34	26 47
33	10 54	19 06	24 33	57	6 19	23 41	26 50
34	10 35	19 25	24 42	58	6 12	23 48	26 54
35	10 17	19 43	24 52	59	6 06	23 54	26 57
36	10 00	20 00	25 00	60	6 00	24 00	27 00
37	9 44	20 16	25 08	61	5 54	24 06	27 03
38	9 28	20 32	25 16	62	5 48	24 12	27 06
39	9 14	20 46	25 23	63	5 43	24 17	27 08
40	9 00	21 00	25 30	64	5 37	24 23	27 11

#### 49. Правила выполнения чертежей звездочек для зубчатых передач



Цепь (обозначение сопрягаемой цепи)	
Число зубьев звездочки	τ
Радиус построения криволиней- ного профиля зуба *	R
Наибольший зазор между рабочей гранью пластины и зубом *	K
Профиль зуба	ГОСТ
Класс точности	2-й класс ГОСТ
Диаметр делительной окружности	$d_{\partial}$

^{*} Указывается при необходимости.

На размеры зуба звездочки установлены два класса точности. Предельные отклонения выбирают в зависимости от класса точности по табл. 50.

	Π	Предельные отклонения в мкм для диаметра делительной окружности звездочки, мм								
Наименование		l-ro	класса т	очности			2-ro	класса т	очности	
параметров	До 120	От 120 до 260	От 260 до 500	От 500 до 800	От 800 до 1250	До 120	От 120 до 260	От 260 до 500	От 500 до 800	От 800 до 1250
Разность шагов $\Delta t$ (одной звездочки), мкм: для t до 19,05 мм для t от 25,4 мм	25 32	32 40	40 50	50 60	60 80	60 80	80 100	100 120	120 160	160 200
Диаметр наружной окружности $D_e$		h7				h8				
Диаметр окружности впадин $D_i$		h11				h12				
Ширина зуба <i>b</i> 3		hll				h12				
Толщина зуба <i>t_y</i>		h7			h8					
Радиальное бие- ние окружности впадин	8-я степень точности по ГОСТ 24648—81			о 10-я степень точности по ГОСТ 24643—81				по по		
Торцевое биение зубчатого венца		9-я степень точности по ГОСТ 24643—81				11-я степень точности по ГОСТ 24643-81			і по	

#### НЕКОТОРЫЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ ЦЕПНЫХ ПЕРЕДАЧ [3]

Соединения деталей. Валики и втулки приводных цепей всех видов, кроме цепей с изогнутыми пластинами, изготовляют без уступов по концам.

Надежное взаимное расположение деталей цепи обеспечивают только посадками с натягом. Массовое использование таких соединений и повышенная их ответственность (при сползании пластины с концов втулок цепь теряет подвижность в шарнирах, а при смещении внутрь втулочной или открытошарнирной цепи нарушается зацепление) предопределяют особые подходы к выбору натягов в соединениях. Их значе-

ния принимают намного большими, чем предусмотрено стандартными посадками (табл. 51).

Этим удешевляется производство, а пластическое деформирование отверстий пластин, неизбежное при столь больших натягах, существенно повышает сопротивление усталости пластин (в 1,6—1,7 раза).

Зазоры в сопряжениях цилиндрических деталей следует выбирать с учетом того, что концы тонкостенных втулок деформируются при посадке с большими натягами, а сами втулки, кроме того, при взаимодействии с зубом звездочки сплющиваются, что уменьшает зазор между ними и валиками.

Детали, фиксирующие положение валиков в цепях с изогнутыми пластинами, и

Параметр	Цепи									
Hapamerp		Приво	дные			Тяговые				
Шаг, мм	12,7	19,05	38,1	50,8	100	125*	160*-315	315*		
Номинальный диа- метр, мм	3,65 5,24	<u>5,94</u> 8,60	11,10 17,04	14,27 21,00	15,00 21,00	21,00 30,00	25,00 36,00	30,00 42,00		
Натяг в соединении с пластинами, мкм	<u>45-110</u> 20-100	60-160 60-160	70-250 80-240	120-310 80-260	100-320 100-440	<u>Зазор</u> 0-530	<u>Зазор</u> 0-570	<u>Зазор</u> 0-530		
Относительный натяг (отношение среднего натяга к диаметру)	0,021 0,012	0,019 0,013	0,014 0,009	0,015 0,012	0,014 0,013	<u>Зазор</u> 0,009	<u>Зазор</u> 0,007	<u>Зазор</u> 0,006		
Зазор между вали-ком и втулкой, мкм	70-130	100-200	220-390	250-440	430-810	330-410	440-700	430-720		

51. Натяги и зазоры в соединениях валиков и втулок пластинчатых роликовых цепей

 $\Pi$  р и м е ч а н и е . В числителе приведены параметры для валиков, в знаменателе — для втулок.

положение пластины соединительного звена, посаженной с зазором, имеют важное значение. Шплинтовые соединения мало надежны; разрушение шплинта ведет к выпаданию валика, что равнозначно разрыву цепи.

Способы смазки (см. табл. 53). Для тихоходных передач ( $v < 1 \div 2$  м/с) используют периодическую смазку, при средних и высоких скоростях — непрерывную.

Преимущественное применение имеют жидкие масла, реже, пластичные и твердые смазки. Выбор смазочного материала диктуется условиями работы цепи, принятым способом смазки и конструкцией смазочного устройства.

Разновидности периодического способа смазки — ручная и внутришарнирная. При ручной смазке используют жидкие масла, при внутри-шарнирной — пластичные смазки.

Смазывание вручную осуществляют поливом из масленки, подачей жидкого масла с помощью кисти, фитиля, ручного насоса (лубрикатора).

Внутришарнирную смазку осуществляют окунанием очищенной цепи в ванну с разогретой пластичной смазкой; периодичность до 80 ч. Для непрерывной смазки цепи маслом используют следующие спосо-

бы: капельный; погружением в масляную ванну; масляной струей; разбрызгиванием; распылением воздушной струей. При непрерывных способах смазки передачу размещают в маслонепроницаемом кожухе. Эти способы смазки рекомендуют при скоростях свыше 2—4 м/с.

В цепных передачах массового и крупносерийного производства (исключая автомобили и некоторые другие виды машин), в целях экономии при изготовлении, применяют преимущественно периодические способы смазки не только при малых, но и при довольно значительных скоростях (4— 6 м/с), что снижает их долговечность. Более совершенные непрерывные способы смазки существенно повышают технический уровень цепных передач многих машин.

Защитные устройства цепных передач в виде кожухов из листовой стали имеют многоцелевое назначение: при непрерывных способах смазки кожух служит резервуаром (картером) для масла, в периодически смазываемых передачах предотвращает его разбрызгивание и во всех случаях защищает передачу от пыли и грязи, обеспечивает безопасность, способствует снижению щума. Сетчатые кожухи обеспечивают лишь защиту персонала.

^{*} Валики фиксируются относительно пластин стопорными планками; втулки имеют двусторонние лыски.

#### ХАРАКТЕРИСТИКИ ЦЕПНЫХ ПЕРЕДАЧ [3]

Мощность и КПД. Цепные передачи обеспечивают передачу мощности в широком диапазоне — от долей до 5000 кВт (высокоскоростные передачи с параллельными контурами многорядных цепей). В передачах общего назначения мощность редко достигает 25-50 кВт.

Мощность (кВт) цепной передачи

$$P = \frac{Fv}{1000n} \,, \tag{1}$$

где F — передаваемая окружная сила, H; v — скорость цепи;  $\eta$  — КПД передачи.

КПД цепной передачи зависит от силы, передаваемой цепью, и способа смазывания. Для передач, работающих с номинальной нагрузкой ( $F>0,1\,Q_{\rm B}$  где  $Q_{\rm B}$  — разрущающая нагрузка цепи),  $\eta=0,95\div0,97$  — при постоянном обильном смазывании (масляная ванна, 1 циркуляционное смазывание, масляный туман);  $\eta=0,92\div0,94$  — при нерегулярном периодическом смазывании;  $\eta=0,9\div0,92$  — при работе без смазки.

Натяжение цепй, динамические нагрузки и давление на опоры. Расчетная сила натяжения (H) ведущей ветви цепи

$$F_{\rm p} = F + F_{\rm l} + F_{\rm muh}$$
, (2)

где F— полезная (окружная) сила, передаваемая цепью, H;  $F_1 = F_0 + F_{u}$ — сила натяжения ведомой ветви цепи;  $F_0$  — сила натяжения от собственной силы тяжести холостой ветви;  $F_u$  — сила натяжения от действия центробежных сил;  $F_{дин}$  — динамическая нагрузка.

При известной передаваемой мощности

$$F = \frac{1000P}{r} \quad . \tag{3}$$

Натяжение от силы тяжести (Н) при горизонтальном (и близком к нему) положении линии, соединяющей оси звездочек,

$$F_0 = \frac{m g a^2}{8 f} = 1.2 m a^2 / f,$$
 (4)

где m — масса 1 м цепи, кг; g = 9.81 м/с² — ускорение свободного падения; a — межосевое расстояние, м; f — стрела провисания ветви.

При вертикальном (и близком к нему) положении линии центров звездочек

$$F_0 = mga . (5)$$

Натяжение цепи от действия центробежных сил

$$F_{\rm II} = mv^2 \ . \tag{6}$$

Расчетная динамическая нагрузка, обусловленная неравномерностью движения,

$$F_{\pi \text{ и H}} = F'_{\pi \text{ и H}} + F''_{\pi \text{ и H}} = \frac{n_1^2}{90} \left( \lambda \frac{J}{R_2} + \frac{m_1 t}{2} \right) \Delta_y, \quad (7)$$

где  $F'_{\text{дин}} = \lambda n_1^2 J / 90$  — динамическая нагрузка от неравномерности движения ведомой звездочки и приведенных к ней масс:

 $F_{\text{дин}}^{"} = m_1 n_1^2 t / 180$  — динамическая нагрузка от неравномерности движения цепи;  $\lambda = \pi / z_2$  — коэффициент, учитывающий

влияние числа зубьев ведомой звездочки:

 $n_1$ — частота вращения ведущей звездоч-ки;

J — момент инерции ведомой звездочки и всех сопряженных вращающихся деталей на ее валу;

 $m_1 = am$ — масса ведущей ветви;

t - шаг цепи;

 $\Delta_y$  — коэффициент, учитывающий влияние упругости и провисания цепи ( $\Delta_y$ =0,5 при a=30t;  $\Delta_y$ =0,75 при a=80t).

Центробежная сила на валы и опоры не передается. Нагрузку на них от полезного натяжения и собственной силы тяжести цепи условно принимают равной  $1,15\ F$  для горизонтальных передач и  $1,05\ F$  — для вертикальных.

Скоростные параметры передачи и выбор шага цепи. Скорость цепи и частоты вращения звездочек ограничиваются износом и прочностью тонкостенных деталей шарниров цепи. С увеличением скорости возрастает суммарный путь трения в единицу времени, а также сила удара шарниров цепи о зубья звездочек, усиливается шум передачи.

Допускаемая скорость цепи зависит от многих факторов, в наибольшей степени от точности цепи, шага ее звеньев, числа зубьев  $z_1$  ведущей звездочки, способа смазки.

Скорость цепи обычно принимают не более 15 м/с. При особо благоприятных условиях (высокая точность, малый шаг, большое число зубьев ведущей звездочки, небольшая нагрузка) скорость цепи может достигать 30—35 м/с.

При конструировании передач задают частоту вращения ведущей звездочки,  $n_1$  и выбирают число зубьев малой (обычно ведущей) звездочки. после чего, руководствуясь известными зависимостями предельно допустимой частоты вращения от числа зубьев звездочки и шага цепи (рис. 1, табл. 52), выбирают значение последнего. По этим трем параметрам вычисляют скорость цепи (м/с)

$$v = \frac{z_1 n_1 t}{60.1000} \quad , \tag{8}$$

где  $z_1$  — число зубьев малой (ведущей) звездочки;  $n_1$  — частота ее вращения, мин⁻¹.

По найденному значению скорости и шагу цепи выбирают способ смазки цепи (табл. 53).

Передаточное отношение и неравномерность вращения ведомой звездочки. При постоянной угловой скорости вращения ведущей звездочки  $w_1$  скорость цепи v, угловая скорость вращения ведомой звездочки  $w_2$  и передаточное отношение  $u=w_1/w_2$  не остаются постоянными. Это обстоятельство учитывают при расчете передач, к которым предъявляют требования по кинематической точности вращения ведомого вала.

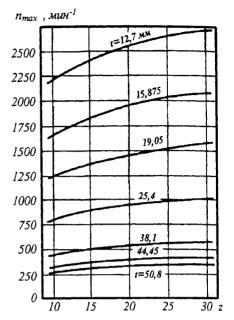



Рис. 1. Зависимости предельно допустимой частоты вращения звездочки от числа ее зубьев и шага цепи

При допущении прямолинейности ведущей ветви цепи (рис .2) скорость цепи

$$v = w_1 R \cos \alpha, \tag{9}$$

где  $\alpha$  — текущий угол поворота ведущей звездочки относительно перпендикуляра к ведущей ветви.

Так как угол  $\alpha$  изменяется в пределах  $0 - \pi/z_1$ , то скорость v при повороте на один угловой шаг колеблется в пределах от  $v_{\text{max}} = w_1 R_1$  до  $v_{\text{min}} = w_1 R_1 \cos(\pi/z_1)$ .

52. Наибольшие рекомендуемые $n_p$ и предельные $n_{mp}$ частоты вращения
малой звездочки передач с роликовыми и втулочными цепями

Частота		Шаг цепи, мм										
вращения, мин ⁻¹	8	9,52	12,7	15,875	19,05	25,4	31,75	38,1	44,45	50,8	63,5	78,1
np	3000	2500	1250	100	900	800	630	500	400	300	200	150
n _{np}	6000	5000	3100	2300	1800	1200	1000	900	600	450	300	210

Примечания:

- 1. При частоте вращения  $n_p$  число зубьев малой звездочки должно быть  $z_1 \ge 15$ .
- 2. При частоте  $n_{\rm np}$  число зубьев  $z_1 \ge 20$ ; необходимы также повышенная точность изготовления звездочек и монтажа передачи, обильная смазка и применение цепей повышенной точности и прочности.

53.	Способы	смазывания	цепных	передач
-----	---------	------------	--------	---------

Парамет	ры передачи	
Скорость цепи <i>v</i> , м/с	Шаг цепи <i>t</i> , мм	Смазка
1,5 1,0 0,5	19,05 25,4—38,1 44,45—50,8	Ручная через 8—10 ч
1	38,1—50,8	Внутришарнирная
4 3 1,6	15,875 19,05—31,75 38,1—50,8	Капельная
8 6 4	15,875 19,05—31,75 38,1—50,8	Масляная ванна
12 10 7	15,875 19,05—31,75 38,1—50,8	Струйная
15 12 8	15,875 19,05—31,75 38,1—50,8	Разбрызгиванием
12 8	31,75 38,1—50,8	Распылением (масляный туман)

Мгновенная угловая скорость ведомой звездочки

$$w_2 = \frac{v}{R_2 \cos \beta} , \qquad (10)$$

где угол  $\beta$  меняется в пределах от 0 до  $\pi/z_2$ .

$$u = \frac{w_1}{w_2} = \frac{R_2 \cos \beta}{R_1 \cos \alpha} . \tag{11}$$

Коэффициент неравномерности вращения ведомой звездочки при равномерном вращении ведущей звездочки

$$\varepsilon = \frac{w_{2 \max} - w_{2 \min}}{w_{2 \text{cp}}} . \tag{12}$$

Среднее передаточное число из условия равенства средней скорости цепи на звездочках  $z_1$   $n_1$   $t=z_2$   $n_2$  t

$$u = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{R_2}{R_1}.$$
 (13)

Максимальное значение передаточного числа ограничивается дугой обхвата цепью малой (ведущей) звездочки и числом шарниров, находящихся на этой дуге. Рекомендуется угол обхвата принимать не менее  $120^{\circ}$ , а число шарниров на дуге обхвата — не менее пяти-шести. Это условие выполняется при любых межосевых расстояниях a, если u < 3.5, а при u > 7 величина a выходит за пределы оптимальных. Поэтому обычно принимают  $u \le 6$  и лишь в исключительных случаях  $u = 7 \dots 10$ .

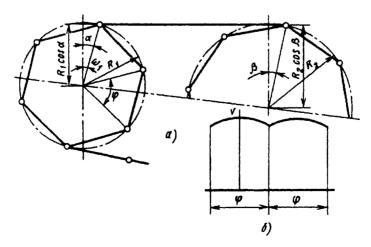



Рис. 2. Кинематическая схема цепной передачи (в) и график скорости цепи (б)

Параметры исходного цепного контура. Предпочтительны двухзвездные передачи с горизонтальным или близким к нему расположением линии, соединяющей оси звездочек. Рекомендуется избегать вертикального расположения ведомой ветви, так как при этом уменьшается ее натяжение от силы тяжести [см. (4) и (5)] и ухудшается зацепление.

Ведущей может быть как верхняя, так и нижняя ветвь. Однако в передачах с малым расстоянием между осями звездочек (a < 30t) при u > 2, во избежание захлестывания ведомой ветви, а также в горизонтальных передачах с a > 60t и малым числом зубьев звездочек, во избежание соприкосновения ветвей, ведущей должна быть верхняя ветвь. При малых расстояниях между цепью и стенками картера, наоборот, ведущей целесообразно делать нижнюю ветвь.

Число зубьев звездочек. С уменьшением числа зубьев возрастают нагрузки в шарнирах и путь трения при их повороте, увеличивается неравномерность движения и скорость удара шарниров о зубья звездочек, снижается долговечность передачи, усиливается шум. Поэтому предельно допустимые минимальные значения чисел зубьев  $z_{min}$ =7 нежелательны даже для тихоходных и малонагруженных передач.

Для силовых передач общего назначения минимальное число зубьев

$$z_1 = z_{\min} = 29 - 2u \ge 13. \tag{14}$$

Для обеспечения равномерного износа зубьев звездочки и самой цепи при обычно принимаемом четном числе звеньев в контуре значение  $z_1$ , вычисляемое по этой зависимости, округляют до ближайшего большего из ряда: 13, 15, 17, 21, 23, 25; при этом предпочтение отдают простым числам (13, 17, 23 и т.д.).

Для высокоскоростных передач с v > 20 м/с принимают  $z_{\min} \ge 35$ . Максимальное число зубьев большой (обычно ведомой) звездочки может достигать  $z_2 = 120$  и более. Максимальное число зубьев звездочки лимитирует предельно допустимое увеличение шага цепи по зацеплению  $\Delta t$  %. При заданном значении  $\Delta t$  % наибольшее число зубьев большой (обычно ведомой) звездочки

$$z_2 = z_1 u \le \frac{0.9128/(\Delta t \cdot t/D)}{128}$$
, (15)

где D — диаметр ролика цепи (для втулочных цепей — диаметр втулки).

Расстояние между осями

(центрами) звездочек. Минимальное расстояние между осями звездочек, мм:

при  $u \leq 3$ 

$$a_{\min} = R_{1e} + R_{2e} + (30 \dots 50);$$
 (16)

при u > 3 (из условия обеспечения угла обхвата цепью малой звездочки  $\ge 120^\circ$ )

$$a_{\min} = (R_{1e} + R_{2e}) \frac{9+u}{10}$$
 (17)

Оптимальное межосевое расстояние

$$a = (30 \dots 50) t$$
. (18)

Значение a рекомендуется принимать в пределах

$$a_{\min} \le a \le 80t \tag{19}$$

Число звеньев в контуре двухзвездной передачи

$$W_0 = \frac{2a_0}{t} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2\pi}\right)^2 \frac{t}{a_0}, \quad (20)$$

где  $a_0$  — предварительно выбранное расстояние между осями звездочек.

Значение, вычисленное по (20), округляют до ближайшего большего четного числа W, имеющего с числами зубьев звездочек  $z_1$  и  $z_2$  меньшие общие делители (например, 2). Четное число звеньев в контуре позволяет избежать применения переходных звеньев. После уточнения числа звеньев в контуре уточняют требуемое расстояние между центрами звездочек:

$$a = \frac{t}{4} \left[ W - \frac{z_1 + z_2}{2} + \sqrt{\left( W - \frac{z_1 + z_2}{2} \right)^2 - 8\left( \frac{z_2 - z_1}{2\pi} \right)^2} \right]$$
(21)

и определяют длину контура Wt.

#### Дополнительные источники

- 1. Готовцев А.А., Котенок И.П. Проектирование цепных передач. Справочник. М.: Машиностроение, 1982.
- 2. Справочник по расчету и конструированию втулочных и втулочно-роликовых цепных передач / Г.А. Романовский, М.В. Окунев, М. Б. Блонский и др. М.: Машиностроение, 1966.
- 5. Машиностроение. Энциклопедия в 40 томах. Т. IV-1. Детали машин. Конструкционная прочность. Трение, износ, смазка. Под ред. Решетова Д.Н. М.: Машиностроение, 1995.

#### Глава VI

### РЕМЕННЫЕ ПЕРЕДАЧИ

#### общие сведения

В зависимости от сечения ремня различают передачи: плоскоременную (рис. 1,a), клиноременную (рис.  $1,\delta$ ), поликлиновую (рис.  $1,\epsilon$ ), многопрофильным ремнем (рис.  $1,\epsilon$ ), круглоременную (рис.  $1,\delta$ ) и вариаторную широким ремнем (рис.  $1,\epsilon$ ).

Мощность передач — до нескольких тысяч кВт.

Некоторые возможные схемы передач приведены в табл. 1; способы натяжения ремней — в табл. 2.

Плоскоременную передачу можно выполнять при двух валах по всем схемам табл. 1; клиноременную передачу применяют преимущественно как открытую по

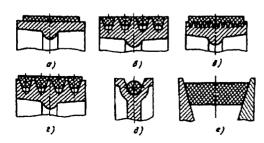


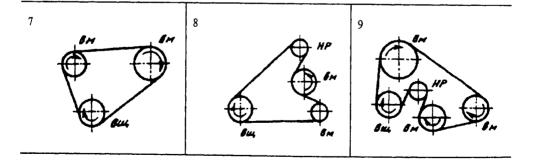

Рис. 1. Сечения ремней

схеме 1, реже по схемам 2, 3, 5. Распростространены также передачи с несколькими ведомыми валами (например, схемы 7, 9), с противоположным направлением вращения валов (схемы 4, 8) и со сдвоенным клиновым ремнем шестигранного сечения.

Натяжение ремня можно осуществлять:

- 1) с использованием упругости ремня назначением соответственно меньшей его длины или укорочением при сшивке;
- 2) то же перемещением одного вала (табл. 2, схемы a и  $\delta$  перемещением электродвигателя по салазкам или поворотом плиты), оттяжным (схема  $\epsilon$ ) или натяжным (схема  $\epsilon$ ) роликом;
- 3) автоматически силой тяжести качающейся системы (табл. 2, схема 3), или пружиной, действующей на качающуюся систему (табл. 2 схема u), или гидроцилиндром;
- 4) автоматически реактивным моментом, действующим на двигатель (табл. 2, схема ж) или редуктор (табл. 2, схема е).

При первом способе натяжение устанавливается по наибольшей нагрузке с запасом на вытяжку ремня, что сокращает ресурс ремня; при втором способе запас на вытяжку меньше; при третьем — он не требуется; при четвертом — натяжение изменяется в зависимости от нагрузки и ресурс ремня наибольший.

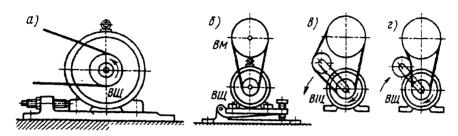

Передачи по схемам 2, 8 и 9 табл. 1 и все передачи с автоматическим натяжением нереверсивны.

#### 1. Схемы ременных передач

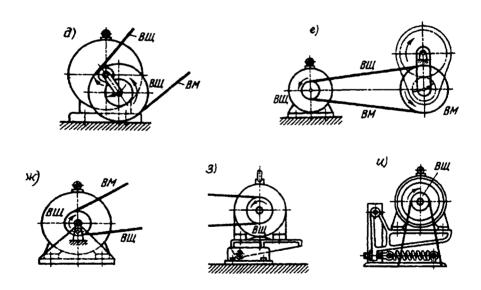
Передачи с одним ведомым валом

с параллельны	с непараллельными осями	
с одинаковым направлением вращения	с обратным направлением вращения	валов
6 tu, 6 m	3 6m	5 Bu Bri
2 Sin Sin	4 AP AP AP	6 HP BM

Передачи с несколькими ведомыми валами




 $\Pi$  р и м е ч а н и я : 1. Схемы 1, 3, 5 — передачи с двумя шкивами; схемы 2, 4, 6, 7, 8, 9 — передачи с натяжными или направляющими роликами.


2. Обозначения:  $\epsilon \omega$  — ведущий шкив;  $\epsilon \omega$  — ведомый шкив: HP — натяжной или направляющий ролик

#### 2. Способы натяжения ремней

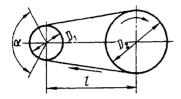
#### Натяжение вследствие упругости ремня



Автоматическое натяжение



#### Примечания:


- 1. При конструировании натяжных устройств следует учитывать, что вытяжка ремней в процессе работы может доходить до 5% их первоначальной длины.
- 2. Натяжное устройство должно обеспечивать изменение межосевого расстояния в пределах от -0.03~a до +0.06~a, где a номинальное значение межосевого расстояния.

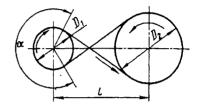
#### ПЛОСКОРЕМЕННАЯ ПЕРЕДАЧА

#### типы передач и выбор ремня

#### 3. Типы передач

Открытая передача




$$\frac{D_1}{D_2} = \frac{1}{5} \div 5$$

Допускается

$$\frac{D_1}{D_2} = \frac{1}{7} \div 7$$

Нижняя часть - ведущая

Перекрестная передача



$$\frac{D_1}{D_2} = \frac{1}{6} \div 6$$

Допускается

$$\frac{D_1}{D_2} = \frac{1}{8} \div 8$$

#### 4. Выбор приводных ремней

	Ремни				
Определяющий параметр	хлопчатобумажные тканые	прорезиненные			
Основные характеристики					
Удельная тяговая способность Стабильность начального натяжения	Средняя Неудовлетворительная	Высокая Хорошая			
Условия работы					
Резкие колебания рабочей нагрузки (удары)	Допустимы	Не рекомендуются			
Кратковременные перегрузки	30-40%	20-30%			
Перекрестные передачи, отводки, шкивы ступенчатые или с закраинами (ребордами)	Непригодны	Пригодны (без обкладок)			
Повышенная температура	Устойчивы до 50°C	Пригодны при колебаниях до 60°C (без обкладок)			
Повышенная влажность	Непригодны	Пригодны с двусторонней обкладкой			
Водяной пар	*	Пригодны (с обкладками)			
Пыль	Не рекомендуется	Пригодны (с обкладками)			

#### РЕМНИ ПЛОСКИЕ ПРИВОДНЫЕ РЕЗИНОТКАНЕВЫЕ

(ГОСТ 23831-79 в ред. 1990 г.)

Настоящий стандарт распространяется на плоские приводные резинотканевые ремни (далее — ремни), предназначенные для плоскоременных передач, транспортеров рядковых жаток, а также для водоподъемников, элеваторов и норий в качестве тягового элемента.

Стандарт полностью соответствует MC ИСО 22-75.

#### Основные параметры

Ремни изготовляют трех видов: общего назначения, морозостойкие и антистатические.

Ремни общего назначения и антистатические должны быть работоспособны в интервале температур окружающего воздуха от минус 25 до плюс 60°С; морозостойкие ремни — от минус 45 до плюс 60°С.

Ремни состоят из тканевого каркаса нарезной конструкции и имеют резиновые прослойки между прокладками.

Каркас ремней изготовляют из тканей, приведенных в табл. 5.

#### 5. Ткани, применяемые для изготовления плоских ремней

Прочность по основе,	Ткани с основой и утком из					
Н/мм ширины прокладки	комбинированных нитей	синтетических нитей по ГОСТ 18215—87				
61	_	_				
65	БКНЛ-65 и БКНЛ-62—2	_				
150	_	TA-150				
200	_	TK-200—2				
300	_	ТА-300 и ТК-300				

Ремни на основе тканей из комбинированных нитей (комбинация полиэфирного и хлопчатобумажного волокна) допускается изготовлять без резиновых прослоек по согласованию изготовителя с потребителем.

Морозостойкие и антистатические ремни изготовляют с наружными резиновыми обкладками. Для наружных обкладок морозостойких ремней используют резины класса М, антистатических ремней — резины класса Б.

Допускается использовать антистатические ремни при эксплуатации от минус 45 до плюс 60°С с наружными обкладками из резины класса М.

Ремни общего назначения изготовляют наружными резиновыми обкладками

(одной или двумя) и без резиновых обкладок. Наружные обкладки для ремней общего назначения изготовляют из резин классов Б, М и С.

На одной из внешних прокладок ремня допускается не более одного стыка, расположенного под углом от 45 до 70° к продольной оси ремня, на длине, указанной в табл. 7.

Число прокладок и ширина ремней должны соответствовать указанным в табл. 6.

#### 6. Число прокладок и ширина ремней

Ширина ремней, мм	Число г	Число прокладок при прочности ширины прокладки, Н/мм					
	55	150	200	300			
20, 25, (30), 32 40	3—5	_	_	_			
50, (60), 63, (70), 71, (75)	3—5	3—4	3-4	3			
80, (85), 90, 100, 112	3—6	3—4	3-4	3			
(115), (120), 125, 140, (150)	3—6	3—4	3-4				
160, (175)	3-6	3—4	3—4				
180, 200, 224, (225), 250	3—6	3-4	3-4	3			
(275), 280, (300), 315, (350)	3—6	3—4	3—6	3			
355, (375)	36	3—5	3—6				
400, 450	36	3—5	3—6	_			
500, (550), 560, (600)	3—6	3—5	3—6	-			
700	3—6	3—5	36	3-4			
750, 800, (850), 900, 1000, (1050)	3—6	3—5	3—6	3—6			
1100, 1200	36	3—6	3-6	36			

Предельные отклонения ширины ремней не должны быть более указанных ниже.

Ширина ремней, мм	Пред. откл., мм	Для ремней св. 750 до 1200 мм
До 63 включительно Св. 63 до 125 включительно » 125 » 250 » » 250 » 750 »	±2,0 ±3,0 ±4,0 ±5,0	включительно предельные отклонения по ширине должны быть ±1,5% ширины ремня

 $\Pi$  р и м е ч а н и я : 1. Ремни, ширина которых дана в скобках, не должны выбираться при проектировании новых передач и машин.

- 2. По требованию потребителя допускается изготовлять бесконечные ремни с другим числом прокладок.
- 3. По согласованию изготовителя с потребителем для импортного оборудования допускается изготовлять ремни другой ширины и числа прокладок.

Резинотканевые ремни изготовляют конечными. Длина конечных ремней в зависимости от ширины приведена в табл. 7.

Допускается изготовлять ремни бесконечными, при этом размеры ремней устанавливаются по согласованию изготовителя с потребителем.

Предельные отклонения длины конечных ремней не должны превышать минус 1,5%; предельные отклонения длины бесконечных ремней  $\pm 1,5\%$ .

#### 7. Длина конечных ремней

Ширина, мм	Длина, м, не менее
До 90 включительно	8
Св. 90 до 250 включ.	20
» 250	30

Толщина (расчетная) наружных обкладок: 1,0; 1,5; 2,0; 3,0; 4,0; 5,0; 6,0 мм; для антистатических ремней — не менее 2,0 мм.

Толщины (расчетные) тканевых прокладок каркаса ремня приведены в табл. 8; масса (расчетная) ремней — в табл. 9.

Толщины (расчетные) наружных резиновых обкладок и тканевых прокладок каркаса приведены в качестве справочных для

расчета общей толщины ремня и не подлежат контролю в готовом виде.

Толщина ремня (расчетная) должна быть равна сумме толщин (расчетных) тканевых прокладок и толщин (расчетных) наружных резиновых обкладок (там, где они имеются).

Предельные отклонения фактической средней толщины ремня не должны превышать для ремней толщиной: до  $10\,$  мм включ.  $\pm 1,0\,$  мм; более  $10\,$  мм  $\pm 10\%$ .

8.	Толщина	(расчетная)	тканевой	прокладки,	MM
----	---------	-------------	----------	------------	----

Номинальная проч- ность прокладки по основе,	Синтетические Комбинированные нити нити в основе и утке		Комбинированные нити
Н/мм ширины не менее	для ремней с резиновой	для ремней без резино- вой прокладки	
55	1,20	_	1,00
150	-	1,30	_
200	<del>-</del>	1,40	-
300	<del>~</del>	1,50	-

#### 9. Масса (расчетная) плоских тканевых прорезиненных ремней

Поверхностная плотность прокладки ремня в зависимости от наличия резиновой прослойки указана ниже

Наименование ткани	Конструкция ремня	Масса 1 м ² прокладки ремня, кг	
БКНЛ-65; БКНЛ-65—2	Без резиновой прослойки	0,9	
	С резиновой прослойкой	1,3	
TA-150	С резиновой прослойкой	1,3	
TK-200-2	То же	1,4	
TA-300; TK-300	»»	1,5	

Массу ремня G, в кг, вычисляют по формуле

$$G = (mz + \delta \cdot 1150)b \cdot l$$

где m — поверхностная плотность прокладки ремня, кг/м²;

т — число прокладок;

δ — толщина обкладок, м;

b — ширина ремня, м;

1150 — плотность резиновой обкладки, кг/м²;

l — длина ремня, м.

Максимально допускаемую (расчетную) рабочую нагрузку ремня по основе рассчитывают, умножая величину максимально допускаемой рабочей нагрузки одной прокладки по основе на ширину ремня в миллиметрах (сантиметрах) и число прокладок каркаса.

Максимально допускаемая рабочая нагрузка прокладки ремня должна соответствовать табл. 10.

Ремни по физико-механическим показателям должны соответствовать нормам, приведенным в табл. 11.

10.	Максимально	допускаемая	рабочая	нагрузка	прокладки,
		Н/мм ш	ирины		

Номинальная прочность	Ремни, используемые				
прокладки, Н/мм ширины	как элементы приводов	в качестве тяговы элементов			
55	3,0	5,5			
150	10,0	15,0			
200	13,0	20,0 30,0			
300	20,0				

# ПРАВИЛА МОНТАЖА И УСЛОВИЯ ЭКСПЛУАТАЦИИ ПЛОСКИХ ПРИВОДНЫХ РЕМНЕЙ

- 1. При транспортировании и хранении ремней при минусовой температуре монтаж ремней проводят только после выдержки их в течение суток при температуре плюс 15—25°С или в течение 30 мин при температуре плюс 50°С.
- 2. Рабочая поверхность шкивов должна быть ровной, так как всякие неровности обусловливают и неправильную работу ремня и вызывают преждевременный износ его.
- Шкивы должны быть тщательно отцентрированы и вращаться без заметной вибрации.
- 4. Стык ремня, прилегающий к шкиву, должен быть обращен в сторону, обратную движению ремня.
- 5. Ремни должны устанавливаться на шкивы при помощи натяжного приспособления и не должны быть перекошены от неправильной сщивки.
- 6. В целях отвода статического электричества в огнеопасных местах необходимо устанавливать заземленные металлические щитки вблизи шкивов.

- 7. Натяжение ремней должно быть таким, чтобы не было пробуксовки.
- 8. Переключение ремней с одной скорости на другую должно производиться при минимальном обороте передачи.
- 9. Ширина шкивов B в мм должна быть для передач:

открытых B = 1,10b+10; перекрестных B = b+50; полуперекрестных B = 1,5b, где b — ширина ремня, мм.

- 10. Диаметр минимального шкива передач в зависимости от скорости и числа прокладок приводного ремня должен соответствовать указанному в табл. 12.
- 11. Число прокладок в ремне z вычисляют по формуле

$$z = \frac{T}{bT_{\text{pa6}}},$$

где T — тяговая сила на всю ширину ремня, H, определяемая потребителем в зависимости от условий работы ремня;

 $T_{\rm pa6}$  — максимальная допускаемая рабочая нагрузка прокладки, H/мм ширины (см. табл. 10)

12. При продолжительном простое оборудования ремни следует снять со шкивов либо ослабить натяжение.

11. Физико-меха	анические г	<b>токазатели</b>	резинотка	невых рем	неи	
			Ткани и	з нитей		
Наименование показателя	комбинированных с прочностью ширины прокладки		синтетических с прочностью прокладки, Н/мм			ширины
		I/мм	150,	200	30	00
		···	Катег		·	
	В	K	В	K	В	K
1. Относительное удлинение по основе при нагрузке 10% номинальной прочности образца, %, не более	3,5	4,0	3,3	3,5	3,8	4,0
2. Прочность связи при рас- слоении, Н/мм, не менее: между обкладкой толщи- ной 3 мм и более и каркасом	3,0		3,0		3,0	•
между прокладками:						
без резиновых прослоек	3,5	3,2			_	
с резиновыми прослойками	3,7	3,5	4,0	3,5	4,0	3,5
3. Поверхностное электриче- ское сопротивление ремней для норий, эксплуатируемых на предприятиях по хранению и переработке зерна, Ом, не		108	2.0	108		

11. Физико-механические показатели резинотканевых ремней

 $\Pi$  р и м е ч а н и е . Показатели прочности связи между обкладкой и прокладкой относятся к толщине обкладок не менее 3,0 мм. Прочность связи обкладок толщиной менее 3,0 мм не нормируется.

 $3.0 \cdot 10^{8}$ 

12. диаметр шкив:	а в зависимости от скорости и числа прокладок ремня
Іисло прокладок	Скорость ремня, м/с, не более

Число прокладок	Скорость ремня, м/с, не более					
	5	10	15	20	25	30
3	80	100	112	125	140	160
4	112	125	160	180	200	225
5	160	180	200	225	250	280
6	250	280	320	360	400	450
7	360	400	450	500	500	600
8	400	450	560	630	710	800
9	500	560	630	710	800	900
10	630	710	800	900	1000	1120

Условное обозначение ремня должно содержать буквенные и цифровые индексы, обозначающие вид ремня, его ширину в миллиметрах, число тканевых прокладок каркаса, сокращенное наименование ткани, расчетную толщину наружных резиновых обкладок в миллиметрах, класс обкладочной резины и обозначение настоящего стандарта.

более

Примеры условных обозначений

Ремень морозостойкий шириной 200 мм с тремя прокладками из ткани БКНЛ-65 с наружными резиновыми обкладками толщиной 3,0 мм и 1,0 мм из резины класса В.

Ремень М-200—3-БКНЛ-65—3,0—1,0-В ГОСТ 23831—79

 $3.0 \cdot 10^{8}$ 

Ремень антистатический шириной 400 мм с пятью прокладками из ткани ТК-200—2 с наружными резиновыми обкладками толщиной по 2 мм с каждой стороны из резины класса Б.

Ремень A-400—5 ТК-200—2—2,0—2,0-Б ГОСТ 23831—79

Примечание. Условное обозначение ремней для районов с тропическим климатом дополняют индексом в соответствии с ГОСТ 15152.

#### ПРИВОДНЫЕ ХЛОПЧАТОБУМАЖНЫЕ ЦЕЛЬНОТКАНЫЕ ПРОПИТАННЫЕ РЕМНИ

Цельнотканые приводные ремни из хлопчатобумажной пряжи в несколько слоев, пропитанные специальным составом, работают при скорости не более 25 м/с.

Изготовляют следующие типы ремней: четырехслойные, шестислойные, восьмислойные.

В зависимости от наличия пороков внешнего вида и количества разрезов устанавливают два сорта ремней: первый и второй.

В первом сорте пороки внешнего вида и разрезы не допускаются.

Во втором сорте допускаются два разреза. Длина отреза должна быть не менее 3 м. Длина ремня в рулоне от 30 до 300 м

По размерам и физико-механическим показателям ремни должны соответствовать требованиям, указанным в табл. 13.

13. Физико-механические показатели ремней

Ширина,	Толщина, мм	Масса 1 м.	TO 00		рывная нагрузка снове, H, не менее		
мм (отклоне	(отклонение ±0,5)	г, не менее	полоски размером 50×200 мм	по всей ширине	1 см ² поперечного сечения	Удлинение в момент разрыва, %, не более	
Ремни четырехслойные							
30±2,0		124		5460	4050		
40±2,0		160	_	7290	4050		
50±2,0		226	_	9110	4050		
60±3,0	4,5	272	9110	10930	4050	20	
75±3,0		336	9110	13650	4050		
90±3,0		375	9110	15660	4050		
100±3,0		458	9110	18220	4050		
		Ремни	шестисл	ойные	•		
50±2,0		280	11400	11400	3500		
60±3,0		333	11400	13650	3500		
75±3,0		418	11400	17100	3500		
90±3,0	6,5	492	11400	20500	3500	22	
100±3,0		545	11400	22750	3500		
125±4,0		684	11400	28400	3500		
150±5,0		822	11400	34100	3500		
		Ремни	восьмисл	ойные			
100±3,0		741	14900	29750	3500		
125±4,0		927	14900	37200	3500		
150±5,0		1112	14900	44600	3500		
175±5,0	8,5	1283	14900	52100	3500	25	
200±6,0		1468	14900	59500	3500		
250±6,0		1839	14900	74400	3500		

#### РАСЧЕТ ПЕРЕДАЧИ С ХЛОПЧАТОБУМАЖНЫМИ ЦЕЛЬНОТКАНЫМИ ПРОПИТАННЫМИ РЕМНЯМИ

**Расчетные данные.** Для проектного расчета передачи должны быть известны:

назначение и режим работы передачи; тип двигателя на ведущем валу;

N - передаваемая мощность, кВт;

 $n_1$  и  $n_2$  - частота вращения соответственно ведущего и ведомого шкивов, мин $^{-1}$ ;

a - приблизительное межосевое расстояние (рис. 2), м;

D - диаметр одного из шкивов, м.

**Днаметры шкивов.** Если ни один из диаметров не известен, то можно задаться им в соответствии с рекомендуемыми минимальными диаметрами (табл. 14) или исходя из ориентировочной скорости  $v=10\div20$  м/с (иногда 5-25 м/с).

Зная один из диаметров, другой находят из уравнения

$$D_2 = iD_1 ,$$

где  $i = n_1 / n_2$  - передаточное отношение.

Диаметр  $D_{\rm l}$  ведущего шкива, как правило, округляют до ближайшего большего, а ведомого  $D_{\rm 2}$  - до ближайшего меньшего значения.

**Межосевое расстояние.** Если межосевое расстояние a не известно, то можно определить минимальную его величину по эмпирическим формулам:

для обыкновенной открытой передачи

$$a_{\min} \geq 2(D_1 + D_2);$$

для передачи с натяжным роликом

$$a_{\min} = D_1 + D_2.$$

**Угол обхвата.** Угол обхвата ремнем шкива (меньшего из двух) для открытой передачи рассчитывают по приближенной формуле

$$\alpha = 180^{\circ} - \frac{D_{\text{max}} - D_{\text{min}}}{a} 60^{\circ}.$$

Рекомендуется принимать  $\alpha$  не менее 150°, иначе придется увеличить межосевое расстояние a или применить натяжной ро-

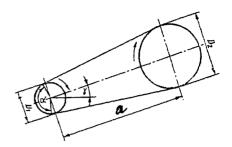



Рис. 2. Основные геометрические данные для расчета передачи

лик. Углы обхвата для передачи с роликом лучше всего определять графически по схеме передачи, вычерченной в масштабе (рис. 3).

Для перекрестной передачи  $\alpha = 180^{\circ} + \frac{D_1 + D_2}{a} 60^{\circ}$ .

**Натяжной ролик**. Диаметр ролика  $D_0 = D_{\min} + 0.8 D_{\min}$ .

Помещать ролик (на ведомой ветви) желательно так, чтобы угол  $2\phi$ , огибая его ремнем, был не более  $120^{\circ}$ , а центр ролика располагался от центра малого шкива на расстоянии  $A \geq D_0 + (0.5 \div 1) D_{min}$ .

Применение натяжного ролика возможно лишь при соответствующем соединении

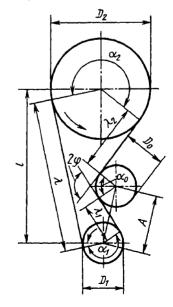



Рис. 3. Схема для графического определения угла обхвата передачи с роликом

концов ремня. При натяжном ролике передаточное отношение

$$i = \frac{D_1}{D_2} = \frac{1}{10} \div 10.$$

**Длина ремня.** Определив a и диаметры шкивов, вычисляют длину ремня. Для открытой передачи

$$L = 2a + 1,57(D_{\text{max}} + D_{\text{min}}) +$$

$$+\frac{\left(D_{\max}-D_{\min}\right)^2}{4a}.$$

Для передачи с натяжным роликом

$$L = \sum \frac{D}{2} \alpha + \sum \lambda ;$$

по вычерченной в масштабе схеме передачи, зная  $D_1$ ,  $D_2$  и  $D_0$ , определяют углы  $\alpha_1$ ,  $\alpha_2$  и  $\alpha_0=\pi-2\phi$  (выражая их в радианах) и находят длины прямолинейных участков  $\lambda$ ,  $\lambda_1$  и  $\lambda_2$  с учетом масштаба.

Полученная длина L является геометрической длиной ремня, к которой необходимо прибавить отрезок  $\Delta L$ , зависящий от способа соединения концов.

**Число пробегов.** Для обеспечения нормальной долговечности приводных ремней рекомендуется проверить число пробегов ремня в единицу времени (в секунду)

$$u=\frac{v}{L}\,,$$

где L - длина ремня, M;

$$V = \frac{\pi Dn}{60}$$
 - скорость ремня, м/с.

Число пробегов должно быть: в открытой передаче  $u \le u_{\max} \le 3$  (в крайнем случае  $\le 5$ ); в передаче с натяжным роликом  $u \le u_{\max} \le 2$  (в крайнем случае  $\le 3$ ).

Если число пробегов превышает предельные значения, то для снижения u необходимо соответственно увеличить межосевое расстояние a и длину ремня L, иначе ремень будет иметь пониженный срок службы.

Ширина ремня, мм.

$$b=\frac{P}{pc_0c_1c_2c_3},$$

где 
$$P = \frac{1020N}{v}$$
 (  $N$  в кВт), или  $P = \frac{2M_{\rm kp}}{D}$  -

окружная сила, H;  $v = \frac{\pi Dn}{60}$  - окружная

скорость, м/с, p - допускаемая удельная окружная сила на единицу ширины, Н/мм (см. табл. 14);  $c_0$  - поправочный коэффициент, зависящий от рода и расположения передачи (табл. 15);  $c_1$  - поправочный коэффициент на влияние угла обхвата (табл. 16);  $c_2$  - поправочный коэффициент на влияние скорости (табл. 17);  $c_3$  - поправочный коэффициент на влияние режима работы (табл. 18);  $M_{\rm KP}$  - крутящий момент, Н-м; D - диаметр шкива, м.

Ширину ремня b округляют до стандартного размера (см. табл. 13), как правило, в большую сторону.

Ширину шкивов B выбирают по ширине ремня b. Ширину натяжного ролика принимают равной ширине шкивов.

Допускаемая нагрузка. Передаваемые силы на единицу ширины принимают для обыкновенных передач по табл. 14.

При поверочном расчете допускаемая окружная сила, H,

$$P = pbc_0c_1c_2c_3,$$

допускаемая мощность, кВт,

$$N = \frac{Pv}{1020}.$$

Работоспособность ремня зависит от его рабочего натяжения  $\sigma_0 = 1,6 \div 2,0$  МПа.

 $\sigma_0$ =1,6 МПа следует вводить в расчет передач с a = const при коротком межосевом расстоянии либо при почти вертикальном расположении привода:

 $\sigma_0$ =1,8 МПа рекомендуется принимать при расчете передач  $a={\rm const}$ , но при достаточном межосевом расстоянии и при угле наклона привода к горизонту не более 60° и с  $a={\rm var}$ , но когда ремень подтягивается периодически;

 $\sigma_0 = 2,0$  МПа можно вводить в расчет передач с автоматическим регулируемым натяжением, как при a = const (натяжной ролик), так и при a = var (самонатяжные приводы).

14. Допустимые удельные окружные силы p (в H/мм) в зависимости от толщины  $\delta$  ремня и диаметра D шкива (в мм), (меньшего из двух в передаче)

	Ремни четырехслойные			Ремни шестислойные			Ремни восьмислойные		
D	δ=4,0	δ=4,5	δ=5,0	δ=6,0	δ=6,5	δ=7,0	δ=8,0	δ=8,5	δ=9,0
80	(5,4)								
90	(5,7)	(6,1)							
100	6,0	(6,4)	(6,7)						
112	6,3	6,7	(7,1)						
125	6,5	7,0	7,5	(8,2)					
140	6,7	7,3	7,8	(8,7)	(9,1)				
160	6,9	7,5	8,1	9,2	(9,7)	(10,1)			
180	7,1	7,7	8,4	9,6	10,1	(10,6)	]		
200	7,2	7,9	8,6	9,9	10,5	11,0	(12,0)		
225	7,3	8,1	8,8	10,2	10,8	11,4	(12,6)	(13,0)	
250	7,4	8,2	9,0	10,5	11,1	11,8	13,0	(13,5)	(14,0)
280	7,5	8,3	9,1	10,7	11,4	12,1	13,4	14,0	(14,6)
320	7,6	8,5	9,3	10,9	11,7	12,4	13,8	14,4	15,1
360		8,6	9,5	11,1	11,9	12,7	14,1	14,8	15,5
400			9,6	11,3	12,1	12,9	14,4	15,1	15,9
450				11,4	12,3	13,1	14,7	15,4	16,2
500				11,5	12,4	13,3	14,9	15,7	16,5
560					12,5	13,4	15,1	15,9	16,7
630						13,5	15,3	16,1	16,9
710				,	ı		15,5	16,3	17,1
800							15,6	16,5	17,3
900								16,7	17,5
1000									17,7

Для самонатяжных передач, в частности, для передачи с натяжным роликом можно повысить табличные значения p на 0,5 H/мм для четырехслойных, на 0,7 H/мм для шестислойных и на 0,9 H/мм для восьмислойных ремней.

Нормы нагрузки даны не только для нормальных толщин ремней, но и для предельных. Значения p, поставленные в скобки, приведены лишь в справочных целях для проверочного расчета существующих передач.

Для проектного расчета новых передач в таблице между двумя линиями даны значения допускаемых нагрузок, соответствующих минимальным допустимым и минимальным рекомендуемым диаметрам шкивов. Наименьший шкив является минимально допустимым, и .его можно применять лишь на второстепенных (тихоходных) передачах.

# 15. Коэффициент со

Вид передачи	К	Коэффициент $c_0$ при угле $\gamma^\circ$				
2	рид порода и			60—80	80—90	
Самонатяжная (с автоматический ремня)	м 1,	1,0		1,0		
Натяжная и простая открытая (с подтягиванием или перешивкой ре	м 1,	1,0		0,8		
Перекрестная	0,	0,9		0,7		
	16. Коэфф	рициент c ₁				
Угол обхвата α°	150	160	170	180	190	
Коэффициент $c_1$	0,91	0,94	0,97	1,00	1,03	
Угол обхвата а°	200	210	220	230	240	
Коэффициент <i>c</i> _i	1,06	1,09	1,12	1,15	1,18	

### 17. Скоростной коэффициент с2

Ремни		$c_2$ при скорости ремня, м/с							
	1	5	10	15	20	25	30		
Обыкновенные плоские	1,04	1,03	1,00	0,95	0,88	0,79	0,68		
Плоские синтетические	1,03	1,01	1,00	0,99	0,97	0,96	0,92		

Для самонатяжных передач скоростной коэффициент  $c_2 = 1$  при любой скорости.

#### 18. Коэффициент режима работы с3

Пусковая нагрузка, % ном нальной	1- 120	150	200	300
Коэффициент <i>с</i> ₃	1,0	0,9	0,8	0,7

При работе в две смены значения  $c_3$  уменьшаются на 0,1; при трехсменной работе - на 0,2.

Приведенное напряжение, МПа,

$$k_0 = c_a - 10 \frac{\delta}{D},$$

где  $c_a$  =2,3 при  $\sigma_0$  =1,6 МПа;  $c_a$  =2,5 при  $\sigma_0$  =1,8 МПа;  $c_a$  =2,7 при  $\sigma_0$  =2,0 МПа.

Формула приведенного напряжения относится к открытой передаче с углом обхвата  $\alpha=180^\circ$  и скоростью  $\upsilon=10$  м/с, при спокойной и равномерной нагрузке и нормальных условиях в помещении, где находится передача. Для иных режимов работы вводят поправочные коэффициенты, позволяющие найти полезное напряжение k в МПа:

$$k=k_0c_0c_1c_2c_3\,,$$

где  $c_0, c_1, c_2, c_3$  - коэффициенты по табл. 5—8.

#### давление на валы

При параллельных ветвях ремня и для самонатяжных передач (рис. 4) нагрузка на валы, H,

$$Q = 2\sigma_0 F$$
.

У передач простых и натяжных после перетяжек при полуторном запасе натяжения (так как новым или долгое время не работавшим ремням сообщают начальное натяжение приблизительно в 1,5 раза больше нормального) на валы будет действовать сила, H,

$$Q_{\max} = 1.5Q = 3\sigma_0 F ,$$

где  $\sigma_0$  - натяжение ремня, равное 1,6; 1,8 и 2,0 МПа; F - площадь поперечного сечения ремня, мм².

При непараллельных ветвях ремня ( $\alpha \neq 180^{\circ}$ ) и для самонатяжных передач (рис. 5) нагрузка на валы в Н

$$Q = 2\sigma_0 F \sin \frac{\alpha}{2}.$$

Для простых и натяжных передач при полуторном запасе натяжения нагрузка на валы, H,

$$Q_{\max} = 3\sigma_0 \sin \frac{\alpha}{2} ,$$

где  $\alpha$  - угол обхвата на малом шкиве, не менее 150°.

Угол θ отклонения сил от линии центров передачи находят по формуле

$$tg\theta = \frac{k}{2\sigma_0} ctg \frac{\alpha}{2} ,$$

где k - полезное напряжение, МПа (см. выше).

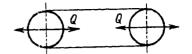



Рис. 4. Схема сил при параллельных ветвях ремня

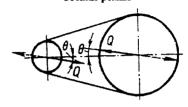



Рис. 5. Схема сил для непараллельных ветвей ремня и для самонатяжных передач

Коэффициент полезного действия при нормальных условиях работы можно принимать в среднем  $\eta$ =0,95 для расчета ременных передач со всеми видами плоских приводных ремней (кроме быстроходных).

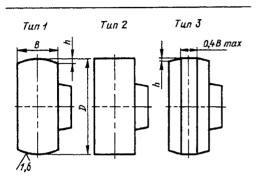
Скольжение ремней прорезиненных и хлопчатобумажных  $\leq 1\%$ .

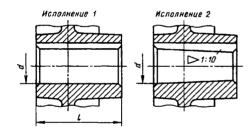
Сроки службы станочных ремней, работающих при средних скоростях, составляют 2000—2500 ч для прорезиненных ремней и 1500—2000 ч для хлопчатобумажных.

Отношение  $D_{\min}$  /  $\delta$  минимального диаметра шкива к толщине ремня для первоначальных ориентировочных расчетов приведено в табл. 19.

19. Отношение  $D_{\min}/\delta$ 

	D _{min} / δ				
Ремни	рекомен- дуемое	допусти- мое			
Прорезиненные	≥40	≥30			
Хлопчатобумаж- ные ткани	≥30	≥25			


20. Минимальные диаметры шкивов


Ремни	Толщина	Число прок-	Диаметр $D_{\min}$ ,		
	δ, мм	ладок	рекомен- дуемый	допуска- емый	
Хлоп- чатобу- мажные	4,5 6,5 8,5	4 6 8	140 200 320	112 180 280	

Допускаемые значения  $D_{\min}$  /  $\delta$  и  $D_{\min}$  используют для второстепенных передач или при требовании наибольшей компактности привода.

## ШКИВЫ ДЛЯ ПЛОСКИХ ПРИВОДНЫХ РЕМНЕЙ

21. Типы, исполнения и основные размеры шкивов Размеры, мм





D	•	Рекоменду-
Откло- нение	B*1	емая ширина ремня <i>б</i> *²
±0,5	16-40	10-32
±0,6	16-50	10-40
	16-63	10-50
±0,8	16-63	10-50
-	16-71	10-63
±1,0	16-80	10-71
	16-90	10-80
±1,2	16-100	10-90
	16-112	10-100
±1,6	16-125	10-112
	16-140	10-125
	Откло- нение ±0,5 ±0,6 ±0,8 ±1,0	Отклонение     B*1       ±0,5     16-40       ±0,6     16-50       16-63     16-63       ±0,8     16-63       16-71     16-80       ±1,0     16-80       ±1,2     16-100       16-112     16-125

Продолжение табл. 21

	D		Рекоменду-
Номи- нал	Откло- нение	B*1	емая ширина ремня <i>b</i> *2
160		20-160	16-140
180	±2,0	20-180	16-160
200		25-200	20-180
224	±2,5	25-224	20-200
250		32-250	25-224
280		32-280	25-250
315	±3,2	40-315	32-280
355		40-355	32-315
400		50-400	40-355
450	±4,0	50-450	40-400
500		63-500	50-450
560		63-560	50-500
630	±5,0	71-630	63-560
710		80-630	71-560
800		90-630	80-560
900	±6,3	100-630	90-560
1000		112-630	100-560
1120		125-630	112-560
1250	±8,0	140-630	125-560
1400		160-630	140-560
1600		180-630	160-560
1800	±10,0	200-630	180-560
2000		224-630	200-560

^{*1} Размер В в указанных пределах брать из ряда: 16; 20; 25; 32; 40; 50; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 312; 355; 400; 450; 500; 560; 630.

^{*2} Размер *b* в указанных пределах брать из ряда: 10; 16; 20; 25; 32; 40; 50; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 315; 355; 400; 450; 500; 560.

Для перекрестных и полуперекрестных ременных передач

$$b = \frac{B}{2} \div \frac{B-10}{1,4}$$
 MM.

Отклонения ширины шкивов, мм:  $\pm 1$  для  $B = 16 \div 71$  мм;  $\pm 1,5$  для  $B = 80 \div 140$  мм;  $\pm 2$  для  $B = 160 \div 280$  мм;  $\pm 3$  для  $B = 315 \div 630$  мм.

Выпуклость шкива h для  $D = 40 \div 355$  мм (см. рис. табл. 21):

D	h	D	h	D	h
40-112	0,3	160; 180	0,5	250; 280	0,8
125-140	0,4	200; 224	0,6	315; 355	1,0

22. Выпуклость шкива h для D=400÷2000, мм (см. рис. табл. 21)

				h при В			
	≤125	140-160	180-200	224-250	280-315	355	400
400		1,2	1,2	1,2	1,2	1,2	1,2
450							
500			1,5	1,5	1,5	1,5	1,5
560				į			
630	1,0			2,0	2,0	2,0	2,0
710		1,5					
800			2,0		2,5	2,5	2,5
900				2,5			
1000					3,0	3,0	3,0
1120	1,2	1,5	2,0	2,5	3,0	3,0	3,5
1250						3,5	4,0
1400	1,5	2,0	2,5	3,0	3,5	4,0	5,0
1600							
1800	2,0	2,5	3,0	3,5	4,0	5,0	5,0
2000							5,6

**Технические требования.** Допускается изготовлять шкивы с буртиком на ободе и с конусностью посадочного отверстия 1:5.

Часть шкива между ступицей и ободом может быть выполнена в виде прямого или конического диска с облегчающими отверстиями или без них, а также в виде спиц.

На поверхности обода шкивов, работающих с окружной скоростью свыше 40 м/с, должны быть проточены кольцевые

канавки, облегчающие выход воздуха изпод ремня.

Шкивы в зависимости от окружной скорости должны изготовляться из материалов, обеспечивающих их работу в условиях эксплуатации.

Каждый шкив при работе его со скоростью свыше 5 м/с должен быть статически отбалансирован.

Значения допускаемого дисбаланса приведены ниже:

Балансировку шкивов, установленных на вал со шпонкой, проводят на балансировочных станках, обеспечивающих требуемую точность при статической балансировке в динамическом режиме.

Концы валов для шкивов с цилиндрическим отверстием - по ГОСТ 12080-66; с коническим отверстием - по ГОСТ 12081-72, предельное отклонение диаметра ступицы d по H9.

Предельное отклонение угла конусного отверстия -  $\pm \frac{AT10}{2}$  по ГОСТ 8908-81.

Предельные отклонения размеров необрабатываемых поверхностей для шкивов:

из чугуна и стали - по 7-му классу точности ГОСТ 26645-85;

из других материалов - по 16-му квалитету.

Допуск радиального биения поверхности наружного диаметра шкива относительно оси посадочного отверстия должен быть не грубее 7-й степени точности, а торцового биения - 10-й степени точности по ГОСТ 24643-81.

# КЛИНОРЕМЕННАЯ ПЕРЕДАЧА

### ПРИВОДНЫЕ КЛИНОВЫЕ РЕМНИ (по ГОСТ 1284.1-89 и ГОСТ 1284.2-89)

Бесконечные клиновидные резинотканевые приводные ремни изготавливают кордтканевыми и кордшнуровыми. При малых диаметрах шкивов, а также при высоких скоростях следует применять кордшнуровые ремни, при сравнительно больших диаметрах шкивов - кордтканевые.

В зависимости от применяемых материалов и технологии изготовления ремни выпускают классов 0; I; II; III; IV по ГОСТ 1284.2-89.

Бесконечные резинотканевые клиновые приводные ремни нормальных сечений предназначены для приводов станков, промышленных установок и сельскохозяйственных машин, работающих при температуре окружающего воздуха:

от минус 30 до плюс 60 °C - для умеренного и тропического климата;

от минус 60 до плюс 40 °C - для холодного и очень холодного климата.

Допускается изготовлять ремни, предназначенные для районов с умеренным климатом, в тропическом исполнении.

Температурный предел хрупкости резин для ремней, предназначенных для районов с холодным и очень холодным климатом, должен быть не выше минус 60 °C.

**Наработка**  $N_{\text{оц}}$  и удлинение ремней всех сечений, проверяемых на стендах, приведены в табл. 23.

После достижения нормативной наработки при стендовых испытаниях на ремнях не должно быть признаков предельного состояния - обрывов, продольного расслоения более чем на 1/3 длины, поперечных трещин глубиной до несущего слоя со сколами резины слоя сжатия.

**Средний ресурс ремней** приведен в табл. 24.

Комплектность. Ремни комплектуют по требованию потребителя. Комплектом считают два или более ремней, предназначенных для одновременной работы в групповом приводе. В комплект входят ремни одного класса, одного сечения, одной группы и одного сорта в соответствии с табл. 25.

Большее основание сечения ремня должно быть прямолинейным или выпуклым, меньшее основание - прямолинейным или вогнутость для ремней сечений Z(O), A, B(E), C(B) должна быть не более 1,0 мм, для ремней сечений  $D(\Gamma)$ , E(I), EO(E),  $40 \times 20$  - не более 2.0 мм.

Ремни состоят из несущего слоя на основе материалов из химических волокон (кордшнур или кордная ткань), оберточной

23.	Наработка	$N_{\rm ou}$ и	удлинение	ремней.	проверяемя	лх на	стенлах

Сечение ремня	Класс ремня	Наработка <i>N</i> _{оц} , млн. циклов	Удлинение ремней при заданной наработке, %, не более					
Стенды с передачей мощности								
	0	0,7	2,5					
	I	1,5	2,5					
Все сечения	11	2,0	2,0					
	ш	2,5	1,5					
	IV	3,0	1,5					
	Стенд	ы без передачи мощно	СТИ					
Z(O), $A$ , $B(E)$ , C(B), $D(F)$	0	2,3	2,5					
$E(\mathcal{A})$ , $EO(E)$ , $40 \times 20$		1,2	2,5					
$Z(O)$ , $A$ , $B(E)$ , $C(B)$ , $D(\Gamma)$	I	4,6 4,7	1,8*; 2,5**					
$E(\mathcal{A})$ , $EO(E)$ , $40 \times 20$		2,5						
	II	5,7	1,8					
Все сечения	111	7,0	1,5					
	ΙV	8,0	1,0					

^{*} Для станков, оборудования и стационарных сельхозмашин.

П р и м е ч а н и е . Наработку ремней  $\mathit{T}_{0}$  в часах вычисляют по формуле

$$T_0 = N_{\rm ou} \, \frac{L_{\rm p}}{60 \, \pi \, d_{\rm p} n} \, , \label{eq:T0}$$

где  $N_{\rm ou}$  - наработка ремня, циклы;  $L_{\rm p}$  - расчетная длина ремня, мм;  $d_{\rm p}$  - расчетный диаметр шкива, мм; n - частота вращения ведущего шкива, мин-1.

ткани и резины, свулканизированных в одно изделие. Несущий слой располагается в продольном направлении ремня.

Ремни всех сечений с расчетной длиной до 8,0 м должны иметь в несущем слое

кордшнур. Ремни свыше 1,6 м допускается изготовлять с кордтканью в несущем слое.

За расчетную ширину ремня  $W_{\rm p}$  принимают ширину его поперечного сечения (находящегося под натяжением) на уровне

^{**} Для движущихся сельхозмашин.

Машины,		Ресурс ремней	, с, для класса	l
оборудование	I	II	III	IV
Самоходные и прицепные сельхозма- шины, $T_{\rm p}$ , не менее:				
в простых контурах	800	850	1500	1700
в сложных контурах	450	500	750	800
Промышленное оборудование и стационарные сельхозмашины в среднем режиме работы, $T_{\rm p(cp)}$	2000	2500	2700	3700

#### 24. Ресурс ремней в эксплуатации (ГОСТ 1284.2-89)

 $\Pi$  р и м е ч а н и я : 1. Ресурс ремней класса 0 устанавливают по результатам эксплуатационных испытаний.

2. При легких, тяжелых и очень тяжелых режимах работы на промышленном оборудовании и стационарных сельскохозяйственных машинах средний ресурс ремней  $T_{\rm p}$  вычисляют по формуле

$$T_{\mathbf{p}} = T_{\mathbf{p}(\mathbf{c}\mathbf{p})} K_1 K_2 ,$$

где  $K_1$  - коэффициент режима работы, равный: 2,5 - для легкого режима работы; 0,5 - для тяжелого режима работы, и стационарных сельскохозяйственных машин со шкивами; 0,25 - для очень тяжелого режима работы, перекрестных и полуперекрестных передач и двух шкивных передач с натяжным роликом вне контура;

- $K_2$  коэффициент, учитывающий климатические условия эксплуатации, равный: 1 для центральных и других зон, кроме районов с холодным и очень холодным климатом; 0.75 для районов с холодным и очень холодным климатом.
- 3. Режим работы для конкретных машин и число ремней в передаче устанавливают по ГОСТ 1284.3.

нейтральной линии, не изменяющейся при изгибе ремня (табл. 26).

Расчетные длины ремней, измеренные под натяжением, и разность между расчетной и внутренней длинами ремня  $\Delta L$  должны соответствовать указанным в табл. 27.

За расчетную длину  $L_{\rm p}$  принимают длину ремня на уровне нейтральной линии.

За внутреннюю длину  $L_{\rm BH}$  принимают длину ремня по меньшему основанию.

Примеры условных обозначений ремней:

Ремень сечения C(B) с расчетной длиной 2500 мм для районов с умеренным климатом:

# Ремень С(В) -2500 ГОСТ 1284.1

То же, для районов с холодным и очень холодным климатом:

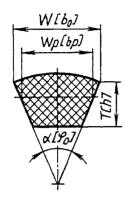
Условное обозначение ремней для районов с тропическим климатом дополняют индексом в соответствии с ГОСТ 15152.

Допускается вместо расчетной длины ремня указывать внутреннюю длину, при этом в условное обозначение вводится символ «вн».

Предельные отклонения по длине ремней и наибольшая разность между длинами комплектуемых ремней должны соответствовать указанным в табл. 28.

Группы комплектуемых ремней по длинам (ГОСТ 1284.2-89)
 Размеры, мм

					т аэмсры, мм					
Номер группы	До 850	900-1180	1250-1400	1500-1900	1950-3150	3200-4250	4350-5000	5300-6700	7100-10000	10600-18000
	Гр	Группы ком	ы комплектуемых		ремней для передач повышенной	редач по	вышенно	й точности	ги	_
ľ	Or8	Or -10	Or -12	Or -12	Or -12	Or -14	OT 18	Or -24	Or -32	OT48
		до —8	до —10		8— ол	6- ол	до —12	до —18	до —24	до —39
16	[	1	CB. —10	$C_{B.} - 10$	CB. —8	CB9	C _B . —12	C _B 18	CB24	C _B . —39
			до —8	70 −-8	ло —4	до4	до —6	до —12	до —16	до30
<u>2a</u>	CB. —6	CB8	CB. —8	CB. —8	CB4	CB4	CB6	CB12	CB. —16	CB. —30
	до —4	70 — or	до — о	до —6	до 0	до +1	до о	ДО —0	до —8	17— OT
56		1	C _B . –6	CB. —6	CB. 0	CB. +1	CB. 0	CB. —6	CB. —8	$\frac{\text{CB.} - 21}{\text{Ho} - 12}$
			ДО —4	ДО —4	40 T4	40 ± 0	40 ± 0	0 07	AO 0	AU
3a	C _B . —4	C _B . —6	CB4	CB4	CB. +4	CB. +6	C _B . +6	C _B . 0	CB. 0	CB12
	до —2	до —4	до —2	до —2	74 от 48	до +11	до +12	40 то	до +8	до —3
36	1	1	C _B 2	C _B . —2	C _B . +8	CB. +11	CB. +12	CB. +6	C _B . +8	C _B . —3
			ДО 0	до 0	до +12	до +16	до +18	до +12	до +16	до +6
4a	CB2	C _B 4	CB. 0	C _B . 0	CB. +12	CB. +16	CB. +18	CB. +12	CB. +16	C _B . +6
	до 0	до —2	до +2	до +2	до +16	до +21	до +24	до +18	до +24	до +15
46	1	1	C _B . +2	C _B . +2	C _B . +16	CB. +21	CB. +24	C _B . +18	C _B . +24	C _B . +15
			до +4	до +4	до +20	до +26	до +30	до +24	до +32	до +24
5a	CB. 0	C _B . —2	CB. +4	C _B . +4	C _B . +20	CB.+26	CB. +30	C _B . +24	C _B . +32	C _B . +24
	до +2	до 0	9+ оп	9+ 017	до +24	до +31	до +36	до +30	до +40	до +33
56	l		CB. +6	CB. +6	C _B . +24	C _B . +31	C _B . +36	C _B . +30	CB. +40	C _B . +33
			до +8	740 +8	до +28	до +36	до +42	до +36	до +48	до +42
6a	C _{B.} +2	C _B . 0	C _B . +8	CB. +8	l	ı	1	CB. +36	C _B . +48	C _B . +42
	до +4	до +2	до +10	до +10				до +42	до +56	до +51
99	l	1	C _B . +10	C _B . +10	ı	l	1	C _B . +42	C _B . +56	C _B . +51
			до +12	до +12			_	до +48	до +64	70 + 00
<b>7</b> a	C _B . +4	CB. +2	C _B . +12	C _B . +12	ı	1	ı	1	i	C _B . +60
	9+ оп	до +4	до +14	до +14						70 +69


Продолжение табл. 25

7100-10000 10600-18000	— Св. +69 до +78	— Cв. +78 до +87	— Св. +87 до +96	1	1	1	1	1	1	1	1		Or -32   Or -48 40 -16   40 -30
5300-6700 7100	1	I	j	1	ı	1	ı		1	ı	<u> </u>	именения	Or -24 O
4350-5000		1	l	ı	1	l	l	I	1	1	ı	общего применения	Or —18 no —6
3200-4250	ŀ	1	l	ı	1	1	ł	ļ	1	1	1	передач о	Or -14
1950-3150	1	ı	1	1	1				ļ	ı	1	иней для	Or -12
1250-1400 1500-1900	CB. +14 до +16	CB. +16 до +18	Св. +18 до +20	CB. +20 до +22	CB. +22 до +24	l	ı		ı	1	1	пы комплектуемых ремней	Or -12
1250-1400	C _B . +14	1	l 		1	1			1	1		омплекту	Or -12
900-1180	-	CB. +4 до +6	l	CB. +6 40 +8	 	CB. +8 40 +10	1	CB. +10 Ao +12	ı	CB. +12 до +14	!	Группы к	Or -10
До 850	1	CB. +6 40 +8	<b>I</b>	Св. +8 до +10	!	C _B . +10	ì	CB. +12 до +14		l	l		Or -8
Номер	76	8a	86	9a	96	10a	106	Ha	116	12a	126		_

Св. —30	Св. —12 до +6	Св. +6 до +24	Св. +24 до +42	Св. +42 до +60	Св. +60 до +78	Св. +78 до +96	1	;	I	J
Св. —16 до 0	Св. 0 до +16	Св. +16 до +32	Св. +32 до +48	Св. +48 до +64	ļ	l	ı	I	I	I
Св. —12	Св. 0 до +12	Св. +12 до +24	Св. +24 до +36	Св. +36 до +48	I	1	l	ļ	ļ	I
Св. —6 до +6	CB. +6 до +18	Св. +18 до +30	Св. +30 до +42	l	1	İ	l	ı	1	<b>I</b>
CB4 40 +6	CB. +6 40 +16	Св. +16 до +26	Св. +26 до +36	1	l	l	l	l	ı	ı
CB. —4 до +4	Св. +4 до +12	Св. +12 до +20	Св. +20 до +28	Ì	1	l		!	1	ı
CB. —8 110 —4	Св. —4	Св. 0 до +4	CB. +4 40 +8	CB. +8 до +12	CB. +12 до +16	Св. +16 до +20	Св. +20 до +24		l	<b> </b>
CB8 404	Св. —4	Св. 0 до +4	Св. +4 до +8	CB. +8 до +12	CB. +12 до +16	1	1	ı	!	l
CB. —8 40 —6	Св. —6 до —4	Св. —4 до —2	Св. —2 до 0	CB. 0 40 +2	Св. +2 до +4	CB. +4 до +6	CB. +6 40 +8	Св. +8 до +10	CB. +10 до +12	CB. +12 до +14
CB. —6 40 —4	CB. —4 до —2	Св. —2 до 0	Св. 0 до +2	CB. +2 40 +4	CB. +4 40 +6	CB. +6 до +8	Св. +8 до +10	Св. +10 до +12	CB. +12 до +14	1
. 5	8	4	2	9	. '	œ	6	01	11	12

Примечание. При контрольной проверке длин ремней после хранения или транспортирования допускается несоответствие ремней группе, указанной в маркировке, при условии соблюдения разницы между длинами комплектуемых ремней по табл. 28.

# 26. Размеры сечений клиновых ремней, мм (ГОСТ 1284.1-89)



 $W[b_0]$  - ширина большего основания ремня, мм;

 $W_{\mathsf{D}}[b_{\mathsf{D}}]$  - расчетная ширина ремня, мм;

T[h] - высота ремня, мм;

 $\alpha[\phi_0]$  - угол клина ремня

Обозна- чение	$W_{\mathrm{p}}$	[b _p ]	W[b ₀ ]	T[	h]	α[φ ₀ ]	, град
сечения ремня	Номин.	Пред. откл.	(справоч- ный)	Номин.	Пред. откл.	Номин.	Пред. откл.
Z(0)	8,5	+0,4	10	6,0	±0,3		
A	11,0	+0,6 -0,4	13	8,0	±0,4		
B(E)	14,0	+0,7 -0,5	17	11 (10,5)	±0,5		
C(B)	19,0	+0,8 -0,5	22	14 (13,5)	±0,5	40	±l
$D(\varGamma)$	27,0	+0,9	32	20 (19,0)	±0,6		
$E(\mathcal{I})$	32,0	+1,0 -0,7	38 (40)	25 (23,5)	±0,7		
EO(E)	42,0	+1,0 -0,8	50	30	±0,8		
40 × 20	35,0	+1,0	40	20	±0,7		

Примечания: 1. Обозначения в квадратных скобках соответствуют ранее принятым в технической документации и не рекомендуются для дальнейшего применения.

^{2.} Ремни с размерами, указанными в скобках, изготовлялись до 1.01.95 г.

^{3.} Для вновь проектируемых приводов ремни сечений EO(E) и  $40 \times 20$  не применять.

# 27. Расчетная длина клиновых ремней, мм (ГОСТ 1284.1-89)

Расчетная длина ремня $L_{ m p}$			C	ечение ре	емня		
	Z(O)	A	В(Б)	C(B)	$D(\Gamma)$	Е(Д)	EO(E)
400; (425); 450; (475); 500							
(530); 560; (600)	A Selection	1 7 64			ļ		
630; (670); 710; (750); 800; (850); 900; (950); 1000; (1060); 1120; (1180); 1250; (1320); 1400; (1500); 1600; (1700)							
1800; (1900); 2000; (2120)				er son			
2240; (2360); 2500; (2650); 2800; (3000); 3150							
(3350); 3550; (3750)		ja v dejele Se v se se					
4000; (4250); 4500				ili yaka ilangan Mandalangan			
(4750); 5000; (5300); 5600; (6000)					i kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kana Kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kananan kanan		
6300; (6700)			130	(2017年2月1日日) (1117年1日日)	· 多帶 被有限 化酚酚		Paragraphic de
7100; (7500); 8000; (8500); 9000; (9500); 10000; (10600)							
11200; (11800); (13200); 14000							
(15000)					NAT.		
16000; (17000); 18000							
Разность между расчетной и внутренней длинами ремня $\Delta L$	25	33	40	59	76	95	120

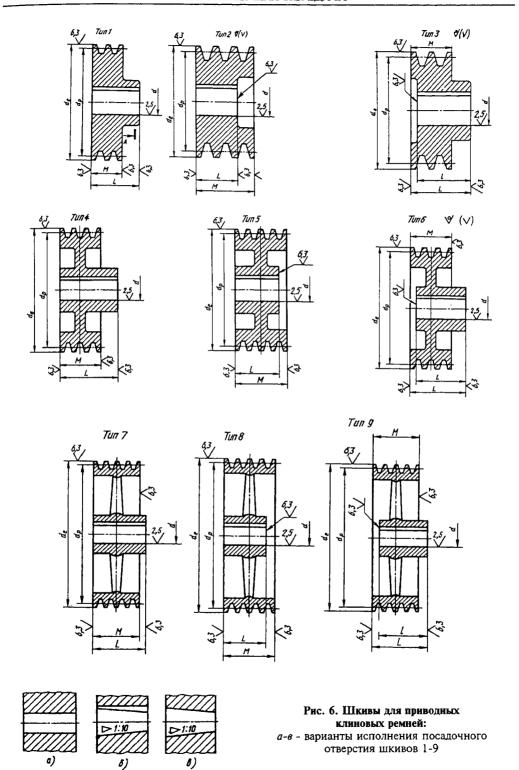
 $\Pi$  р и м е ч а н и я : 1. Расчетные длины ремней, указанные в скобках, применяют в технически обоснованных случаях.

^{2.} Стандартом допускается для станков, сельскохозяйственных машин и оборудования, находящихся в эксплуатации, изготовление ремней с другими длинами, приведенными в приложении к ГОСТ 1284.1-89.

# 28. Предельные отклонения по длине ремней и наибольшая разность длин комплектуемых ремней (ГОСТ 1284.1-89)

Размеры, мм

	Расчетная длина	$L_{\mathrm{p}}$	Наибольшая длин ремн	ей одной
	Пре	д. откл.	группы для	н передач
Номиналь- ная	для движушихся сельхозмашин	для станков промышленных установок и стационарных сельхозмашин	повышенной точности	общего применения
До 850	+8 -4	+14 -8	2	
900-1180	+10 -6	+14 -10	2	
1250-1400	+12 -8	+16 -12	2	4
1500-1900	+16 -12	+24 -12	2	4
1950-3150	+20 -12	+28 -12	4	8
3200-4250	+26 -14	+36 -14	5	10
4350-5000	+30 -18	+42 -18	6	12
5300-6700	±24	+48 -24	6	12
7100-10000	±32	+64 -32	8	16
10600-18000	±48	+96 -48	9	18


#### ШКИВЫ ДЛЯ ПРИВОДНЫХ КЛИНОВЫХ РЕМНЕЙ (по ГОСТ 20889—88)

Шкивы изготовляются типов 1-9 (рис. 6):

- монолитные с односторонней выступающей ступицей;
- 2 монолитные с односторонней выточкой;
- 3 монолитные с односторонней выточкой и выступающей ступицей;
- 4 с диском и ступицей, выступающей с одного торца обода;
- 5 с диском и ступицей, укороченной с одного торца обода;

- 6 с диском и ступицей, выступающей с одного и укороченной с другого торца обода;
- 7 со спицами и ступицей, выступающей с одного торца обода;
- 8 со спицами и ступицей, укороченной с одного торца обода;
- 9 со спицами и ступицей, выступающей с одного и укороченной с другого торца обода.

Шкивы типов 1—3 предназначены для приводных клиновых ремней с сечениями Z, A, типов 4—9 — для приводных клиновых ремней с сечениями Z, A, B, C, D, E, EO по ГОСТ 1284.1—89.



Номинальные расчетные диаметры шкивов  $d_{\rm p}$  должны соответствовать указанному ряду: 50; (53); 56; (60); 63; (67); 71; (75); 80; (85); 90; (95); 100; (106); 112; (118); 125; (132); 140; (150); 160; (170); 180; (190); 200; (212); 224; (236); 250; (265); 280; (300); 315; (335); 355; (375); 400; (425); 450; 475; 500; (530); 560; (600); (620); 630; (670); 710; (750); 800; (850); 900; (950); 1000; (1060); 1120; (1180); 1250; (1320); 1400; (1500); 1600; (1700); 1800; (1900); 2000; (2120); 2240; (2360); 2500; (2650); (2800); (3000); (3150); (3550); (3750); (4000) мм.

Примечание. Размеры, указанные в скобках, применяются в технически обоснованных случаях.

Размеры профиля канавок шкивов — по табл. 29.

Ширину шкива вычисляют по формуле

$$M = (n-1)e + 2f,$$

где n - число ремней в передаче; e и f - размеры по табл. 29.

Наружный диаметр шкива вычисляют по формуле

$$d_e = d_p + 2b ,$$

гле b - по табл. 29.

Концы валов для шкивов с цилиндрическим отверстием - по ГОСТ 12080—66; с коническим отверстием - по ГОСТ 12081—72.

Схема построения условного обозначения шкивов:

1 — тип шкива; 2 — сечение ремня; 3 — число канавок шкива; 4 — расчетный диаметр шкива; 5 — диаметр посадочного отверстия; 6 — марка материала; 7 - обозначение стандарта на шкив.

Пример условного обозна-чения шкива для приводных клиновых ремней типа 1 с сечением A, с тремя канав-ками, расчетным диаметром  $d_p = 224$  мм, с цилиндрическим посадочным отверстием d=28 мм, из чутуна марки СЧ 20

То же, с коническим посадочным отверстием:

30. Расчетный диаметр меньшего шкива передачи

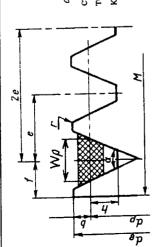
Обозначение сечения ремня	Расчетный диаметр меньшего шкива, мм
Z	63 (50)
A	90 (75)
В	125
С	200
D	315
E	500
EO	800
	i

Для получения большего срока службы ремней при эксплуатации и более высокого КПД передачи рекомендуется диаметры меньшего шкива (табл. 30) выбирать возможно большими, допускаемыми габаритными размерами передачи, но так, чтобы скорость ремней не превышала 25 м/с для сечений Z, A, B, C и 30 м/с для сечений D, E, EO.

Технические требования для шкивов клиновых ремней. Шкивы должны быть изготовлены из материалов, обеспечивающих выполнение требуемых размеров и работу шкивов в условиях эксплуатации (наличие механических усилий, нагрев, истирание).

Отливки шкивов не должны иметь дефектов, ухудшающих их внешний вид. На поверхности отливок, подвергающихся механической обработке, допускаются дефекты по ГОСТ 19200—80 в пределах припуска на механическую обработку.

Допускаемое отклонение от номинального значения расчетного диаметра шкивов h11.


Предельные отклонения угла канавки шкивов, обработанных резанием, должны быть не более:

 $\pm 1^{\circ}$  - шкивов для ремней сечений Z, A, B:

 $\pm 30'$  - шкивов для ремней сечений C, D, E, EO.

Предельные отклонения угла конусного отверстия —  $\pm \frac{AT10}{2}$  по ГОСТ 8908—81.

# Профиль канавок шкивов (ГОСТ 20889-88) Размеры, мм



 $W_{
m p}$  — расчетная ширина канавки шкива; b — глубина канавки над расчетной шириной;  $d_{
m p} \, - {
m pac}$ четный диаметр шкива;  $h \, - {
m rny}$ бина канавки ниже расчетной ширины;  $e \, - {
m pac}$ стояние между осями канавок; f — расстояние между осью крайней канавки и ближайшим торцом шкива;  $\alpha$  — угол канавки шкива;  $d_e$  — наружный диаметр шкива; r — радиус закругления верхней кромки канавки шкива; M - ширина шкива.

Сепение				в						<i>d</i> р для угла	d _р для угла канавки α	
ремня	<b>X</b>	b _{mim}	hmin	Номин.	Пред. откл.	Номин.	Пред. откл.		34°	36°	38°	40°
Z	8,5	2,5	7,0	12,0	±0,3	0,8	±1,0	6,0	50—71	80—100	112—160	>180
*	11,0	3,3	8,7	15,0	±0,3	0,01	+2,0	0,1	75—112	125—160	180—400	>450
В	14,0	4,2	8,01	0,61	±0,4	12,5	+2,0	1,0	125-160	180—224	250—500	>560
Ü	0,61	5,7	14,3	25,5	₹0,5	17,0	+2,0	5,1	[	200—315	355-630	≥710
a	27,0	8,	6,61	37,0	9,0±	24,0	+3,0	2,0	l	315450	200—900	>1000
E	32,0	9,6	23,4	44,5	±0,7	29,0	+4,0	2,0	ı	200—260	630—1120	. ≥1250
EO	42,0	12,5	30,5	58,0	∓0,8	38,0	+5,0 -1,0	2,5	1	l	800—1400	≥1600

Предельные отклонения размеров необрабатываемых поверхностей для шкивов: из чугуна и стали — по 7-му классу точности ГОСТ 26645—85; из других материалов с расчетным диаметром:

до 500 мм — по 16-му квалитету;

св. 500 мм — по 15-му квалитету.

Допуск биения конусной рабочей поверхности канавки шкива в заданном направлении на каждые 100 мм расчетного диаметра относительно оси должен быть не более:

0,20 мм — при частоте вращения шкива до 8 с $^{-1}$ :

0,15 мм при частоте вращения шкива св. 8 с $^{-1}$  до 16 с $^{-1}$ ;

0,10 мм — при частоте вращения шкива св.  $16 \, \mathrm{c}^{-1}$ .

Допуск радиального биения поверхности наружного диаметра относительно оси посадочного отверстия — по 9-й степени точности по ГОСТ 24643—81 при контроле расчетного диаметра методом А. Радиальное биение наружного диаметра при контроле расчетного диаметра методом Б по ГОСТ 25069—81.

Допуск цилиндричности наружных диаметров — по 8-й степени точности по ГОСТ 24643—81.

Каждый шкив, работающий со скоростью свыше 5 м/с, должен быть сбалансирован.

Нормы точности статической балансировки приведены в табл. 31.

Допуск торцового биения обода и ступицы относительно оси посадочного отверстия должен быть не грубее 10-й степени точности по ГОСТ 24643—81.

Предельное отклонение диаметра ступицы d по H9.

Неуказанные предельные отклонения размеров обрабатываемых поверхностей: H14; h14;  $\pm \frac{t_2}{2}$ .

Значение параметра шероховатости по ГОСТ 2789—73 рабочих поверхностей канавок шкива должно быть  $Ra \le 2,5$  мкм.

В шкивах со спицами ось шпоночного паза должна совпадать с продольной осью спицы.

Средний ресурс шкивов в эксплуатации для среднего режима работы устанавливается не менее 63000 ч до капитального ре-

31. Нормы точности статической балансировки шкивов для клиновых ремней

Окружная скорость шкива, м/с	Допустимый дисбаланс, г⋅м
От 5 до 10	6
Св. 10 до 15	3
» 15 » 20	2
» 20 » 30	1

монта: установленный ресурс — не менее 30 000 ч до капитального ремонта.

Нерабочие поверхности металлических шкивов должны быть окрашены по ГОСТ 9.032—74 и ГОСТ 12.4.026-76.

На нерабочей поверхности каждого шкива должны быть четко нанесены краской: условное обозначение сечения ремня, расчетный диаметр, диаметр посадочного отверстия, марка материала и обозначение стандарта.

**Методы проверки**  $\alpha$ , b и  $d_{\rm p}$ . Угол канавки  $\alpha$  контролируют предельными угловыми калибрами по рис.7 и 8.

Верхний и нижний пределы угловых калибров должны соответствовать углу канавки шкива с учетом наибольшего и наименьшего допусков.

Угол канавки можно контролировать глубиномером (рис. 9).

Расчетный диаметр определяют методом A или Б в зависимости от формы наружной поверхности шкива.

Метод А применяют при цилиндрической наружной поверхности шкива.

Для определения расчетного диаметра шкива измеряют наружный диаметр  $d_e$  и глубину канавки b над расчетной шириной. Глубину канавки измеряют глубиномером, как показано на рис. 9.

Расчетный диаметр шкива, мм,


$$d_{\rm p}=d_{\rm e}-2b\;.$$

Метод Б применяют, если цилиндричность наружной поверхности шкива не установлена.

Для определения расчетного диаметра шкива используют два цилиндрических



Рис. 7. Предельный угловой калибр для канавки шкива



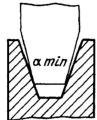



Рис. 8. Положение предельного углового калибра в канавке шкива

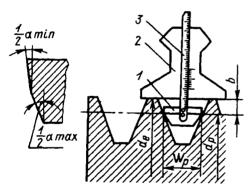



Рис. 9. Глубиномер для контроля угла канавки:

1 - шуп; 2 - неподвижная часть; 3 - подвижная часть

ролика диаметром *d*, указанным в табл. 32. Значения *d* установлены для каждого сечения канавки таким образом, что контакт роликов с двумя боковыми сторонами канавки проходит на уровне расчетного диаметра или очень близко к нему. Два ролика помещают в контрольную канавку до соприкосновения с ней, как показано на рис. 10. Затем измеряют расстояние *K* 

32. Диаметры цилиндрических роликов d и размеры X, мм

Обозна- чение сечения ремня	Номи- нальный диаметр ролика d	Предельное отклонение диаметра ролика $\Delta d$	X
Z	9,0	-0,036	6,0
$\boldsymbol{A}$	12,0	-0,043	8,5
В	15,0	-0,110	10,2
С	20,0	-0,130	13,1
D	28,0	-0,130	17,7
E	34,0	-0,160	22,6
EO	45,0	-0,160	30,6

между касательными плоскостями роликов, расположенными параллельно оси шкива.

Расчетный диаметр шкива в миллиметрах вычисляют по формуле

$$d_{\mathbf{p}} = K - 2X \; ,$$

где K — расстояние между касательными плоскостями роликов, расположенными параллельно оси шкива, измеряемое с погрешностью  $\Delta K$ , мм; X — расстояние от расчетного диаметра шкива до касательной плоскости к ролику, расположенной параллельно оси шкива (табл. 32);

$$\Delta K = \Delta d_{\rm p} + 2\delta ,$$

где  $\Delta d_{\rm p}$  — предельное отклонение диаметра по h11, мм; 28 — отклонение глубины цилиндрического ролика диаметром d в канавке шкива, мм;

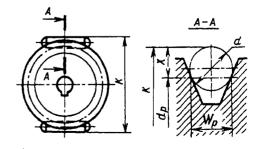



Рис. 10. Схема к определению расчетного диаметра  $d_p$  с помощью двух цилиндрических роликов

$$2\delta = \Delta d \left( \frac{1}{\sin \frac{\alpha}{2}} + 1 \right),$$

где  $\Delta d$  - предельное отклонение диаметра d (табл. 32);  $\alpha$  - угол канавки шкива.

#### РАСЧЕТ И КОНСТРУИРОВАНИЕ ПЕРЕЛАЧИ

ГОСТ 1284.3-96 распространяется на бесконечные резинотканевые приводные клиновые ремни нормальных сечений по ГОСТ 1284.1 и ГОСТ 1284.2.

ГОСТ 1284.3-96 соответствует стандарту ИСО 5292-80 в части расчета номинальной мощности.

Сечения ремней A, B(B), C(B),  $D(\Gamma)$ , E(A) выбирают в соответствии с рис. 11. Ремни сечения Z(O) применяют при передаваемых мощностях до 2 кВт, сечения EO(E) - при мощностях свыше 200 кВт.

Расчетную передаваемую мощность P вычисляют по формуле

$$P = P_{\text{HOM}}C_{\text{p}}$$

где  $P_{\text{ном}}$  - номинальная мощность, потребляемая приводом, кВт;  $C_{\text{p}}$  - коэффициент динамичности нагрузки и режима работы.

Номинальной считают нагрузку, вероятность распределения которой на стационарных режимах не превышает 80 %.

Коэффициент динамичности нагрузки и режима  $C_p$  определяют по табл. 33 и 34.

Схема расчета двухшкивной клиноременной передачи приведена на рис. 12.

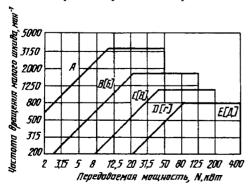



Рис. 11. График для определения сечения ремня

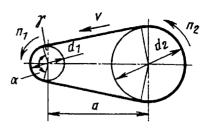



Рис. 12. Схема для расчета ременной передачи

Линейную скорость ремня  $\upsilon$  (в м/с) вычисляют по формуле

$$v = \frac{\pi d_1 n_1}{60000} = \frac{\pi d_2 n_2}{60000},$$

где  $d_1$ ,  $d_2$  - расчетные диаметры соответственно меньшего и большего шкивов, мм;  $n_1$ ,  $n_2$  - частота вращения соответственно меньшего и большего шкивов, мин⁻¹.

Расчетные диаметры шкивов выбирают в соответствии с требованиями ГОСТ 20889. Диаметр меньшего шкива передачи следует брать возможно большего значения, но не более предельно допустимой скорости ремня 30 м/с. Для сельскохозяйственных машин допускается применять шкивы по нормативной документации.

Расчетный диаметр большего шкива

$$d_2 = id_1$$
.

Передаточное число

$$i = \frac{n_1}{n_2} \approx \frac{d_2}{d_1} \; .$$

Угол обхвата ремнем меньшего шкива  $\alpha$  вычисляют по формулам

$$\alpha = 180 - 57 \frac{d_2 - d_1}{a}$$
 при  $\alpha > 110^{\circ}$ ,

$$\alpha = 2 \arccos \frac{d_2 - d_1}{2a}$$
 при  $\alpha \le 110^\circ$ ,

где a - межцентровое расстояние, мм.

Минимальный угол обхвата ремня шкивом рекомендуется брать не менее 90°.

Межцентровое расстояние определяется конструктивными особенностями привода. Рекомендуемое межцентровое расстояние вычисляют по формуле

$$0,7(d_1+d_2)< a< 2(d_1+d_2).$$

Коэффициент С_р динамичности нагрузки и режима работы ремней в приводах промышленного оборудования (ГОСТ 1284.3-96)

	в приводах промышленного соорудования (1 СС 1 1204-13-70)		то осорудо	Samps (1 C)	от 1704год При числе	Ср при числе смен работы ремней	оты ремн	ž		
		_	2	3	-	2	3		2	3
Режим работы; тип машины	Характер нагрузки	Эле пере общеп п эле пост шунт	Электродвигатель переменного тока общепромышленного применения, электродвигатель постоянного тока шунтовой, турбины	тель тока нного я, гель гока бины	Элен пост компаут внутрен частотой	Электродвигатель постоянного тока компаундный, двигатель внутреннего сгорания с частотой вращения свыше	гель ока игатель ания с я свыше	Элек перес с по пуское элек пост сериес внутрен частотой	Электродвигатель переменного тока с повышенным пусковым моментом; электродвигатель постоянного тока сериесный; двигатель внутреннего сгорания с частотой вращения ниже 600 мин -1	ыр ЭКа М ТТОМ; ЛЪ ЭКа ПТЕЛЬ 1 НИЖС
Легкий режим. Станки с непрерывным процессом резания: токарные, сверлильные, шлифовальные, легкие вентиляторы, насосы и компрессоры центро-бежные и ротационные, ленточные конвейеры, веялки, сепараторы, леткие грохоты, машины для очистки и погрузки зерна и др.	Спомбйная. Максимальная кратковременная нагрузка до 120 % номинальной	0,1	1.1	1,4	1,1	1,2	1,5	1,2	4,1	1,6
Средний режим. Станки фрезерные, зубофрезерные и револьверные, полиграфические машины, электрические генераторы; поршневые насосы и компрессоры с тремя и более цилиндрами, вентиляторы и воздуходувки, цепные транспортеры, элеваторы, дисковые пилы для дерева, трансмиссии прядильные, бумажные, пищевые машины, тяжелые грохоты, вращающиеся печи, станки скоростного шлифования и др.	Умеренные коле- бания нагрузки. Максимальная кратковременная нагрузка до 150 % номинальной	1,0	1,2	5,1	1,2	1,4	1,6	1,3	1,5	7,1

Продолжение табл. 33

	1 2	Режим работы; Характер Нагрузки Электродвигатель переменного тока общепромышленного применения, электродвигатель постоянного тока шунтовой, турбины	Тажелый режим.  Станки строгальные, долбежные, лебание нагрузки. зубодолбежные и деревообрабаты- Максимальная вающие, насосы и компрессоры кратковременная поршневые с одним или двумя нагрузка до 200 % цилиндрами, вентиляторы и воз- номинальной духодувки тяжелого типа, конвей-еры винтовые, скребковые, дезинеграторы, прессы винтовые с относительно тяжелым маховиком, ткацкие машины, хлопкоочистингальные машины, хлопкоочистингальные машины, машины для прессования и брикетирования кормов и др.	Очень тажелый режим. Подъемники, экскаваторы, драги, неравномерная прессы винтовые и эксцентрико- нагрузка. Максивые с относительно легким махо- мальная кратко- виком, ножницы, молоты, бетуны, временная нагруз- глиномялки, мельницы шаровые, ка до 300 % номи- жерновые. вальцовые. дробулуки, нальной
Срп	3	ъль ока 1ного 1, ель ока йны	9,1	1,7
ри числе с	-	Элек постс компаун внутрен частотой 6	ε:	4,
Ср при числе смен работы ремней	2	Электродвигатель постоянного тока компаундный, двигатель внутреннего сгорания с частотой вращения свыше 600 мин-1	5,1	1,6
ы ремней	3	ть ка атель ия с свыше	1,7	8.1
_	_	Элек перем с пс пусков элек пост сериесі внутрен частотой	1,4	1,5
	2	Электродвигатель переменного тока с повышенным пусковым моментом; электродвигатель постоянного тока сериесный; двигатель внутреннего сгорания с 600 мин -1	1,6	7,1
	3	ыр ж м том; ль жа птель ния с	1,9	2,0

34. Коэффициент Ср динамичности нагрузки и режима работы ремней в приводах сельхозмашин (ГОСТ 1284.3-96)

			Српр	Ср при числе смен работы ремней	работы ремн	тей	
		-	2	3	1	2	3
Режим работы; тип машины и агрегата сельхозмашин	Характер нагрузки	(J) II	Электродвигатель переменного и постоянного тока	Tb r Ka	внуті	Двигатель внутреннего сгорания	ания
Легкий режим. Равномерно врашающиеся роторы, пенточные и цепочно-планчатые элеваторы, клавишные соломотря-сы, шнековые питатели, подборшики стеблей, вентиляторы очистки, гидронасосы, погрузчики тюков, плющилки травы, стеклоподъемники	Спокойная. Кратковре- менная перегрузка до 120 % номинальной	0,1	1,1	1,4	1,1	1,2	5,1
Средний режим. Мотовило, шнеки жаток, грохоты, гидростатическая передача, питающие транспортеры, легкие ротационные почвообрабатывающие органы; приводы ходовой части самоходных машин	Умеренная колебатель- ная. Кратковременная перегрузка до 150 % но- минальной	13	1,2		1,2	1,4	1,6
Гяжелый режим. Молотильные барабаны, режущие аппараты, измельчители стеблей, вентиляторы измельченной массы, пресы для соломы (сена), разбрасыватели удобрений, тяжелые грохоты и ротационные почвообрабатывающие органы	Значительные колеба- тельные. Кратковремен- ная перегрузка до 200 % номинальной	1,2	1,3	1,6	1,3	1,5	1,7

Примечание. При реверсировании, частом пуске и установке натяжного шкива на ведущей ветви коэффициент Ср увеличивается на 0,1.

В зависимости от выбранного межцентрового расстояния расчетную длину ремня  $L_{\rm p}$  (в мм) вычисляют по формулам:

$$L_{\rm p} = 2a + \frac{\pi}{2}(d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a};$$

$$L_{\rm p} = 2a\sin\frac{\alpha}{2} + \frac{\pi}{2}(d_1 + d_2) + \frac{\pi\gamma}{180}(d_2 - d_1) ,$$

где 
$$\gamma$$
 - угол, равный  $\left(90^{\circ} - \frac{\alpha}{2}\right)$ , град.

Вычисленную расчетную длину округляют до ближайшей стандартной расчетной длины ремня в соответствии с ГОСТ 1284.1.

Номинальное межцентровое расстояние  $a_{\text{HOM}}$  в мм:

$$a_{\text{HOM}} = 0.25 \left[ \left( L_{\text{p}} - \omega \right) + \sqrt{\left( L_{\text{p}} - \omega \right)^2 - 8q} \right],$$

` где

$$\omega = \pi \frac{d_1 + d_2}{2} ,$$

$$q = \left(\frac{d_2 - d_1}{2}\right)^2.$$

Для компенсации отклонений от номинала по длине ремня, его удлинения в процессе эксплуатации, а также для свободной установки новых ремней в передаче должна быть предусмотрена регулировка межцентрового расстояния шкивов.

Возможное увеличение межцентрового расстояния  $\Delta_1$  относительно номинального  $a_{\text{ном}}$  должно удовлетворять условию

$$\Delta_1 \geq S_1 L_p$$
,

где  $S_1$  - коэффициент, определяемый по табл. 35.

Уменьшение межцентрового расстояния  $\Delta_2$  должно удовлетворять условию

$$\Delta_2 \geq S_2 L_{\rm p} + 2W_{\rm p} \,,$$

где  $S_2$  - коэффициент, определяемый по табл. 35;  $W_{\rm p}$  - расчетная ширина канавки шкива для ремня выбранного сечения, мм; определяют по ГОСТ 20889.

35. Значения коэффициентов S₁ и S₂

Класс ремня (ГОСТ 1284.2)	$\mathcal{S}_1$	$S_2$
I,II	0,025	0,009
III, IV	0,020	0,009

Примечание. По согласованию потребителя с разработчиком ремней для движущихся сельхозмащин допускается изменять пределы регулирования межцентрового расстояния.

Схемы расчета трехшкивных передач приведены на рис. 13. Третий шкив схемы (рис. 13, a) может быть как рабочим, так и натяжным, а схемы на рис. 13,  $\delta$  - только натяжными. Натяжные шкивы должны располагаться на ведомой ветви передачи. Более предпочтительным является внутреннее расположение шкива в контуре.

Расчетный диаметр натяжного шкива, расположенного внутри контура, должен быть не менее меньшего расчетного диаметра рабочего шкива передачи. Диаметр натяжного шкива вне контура должен превышать диаметр меньшего рабочего шкива передачи не менее чем в 1,35 раза. При невыполнении этого условия коэффициент  $C_{\rm p}$  (табл. 33 и 34) увеличивают на 0,1.

Натяжные шкивы должны обеспечивать необходимое регулирование длины контура клиноременной передачи.

Максимальная длина контура

$$L_{\max} \ge (1 + 2S_1)L_{\mathsf{p}} \ .$$

Минимальная длина контура

$$L_{\min} \leq (1 - 2S_2)L_p - 4W_p.$$

Расчетные формулы для определения геометрических параметров трехшкивных передач приведены в табл. 36.

Расчеты клиноременной передачи по мощности при двухшкивной схеме проводят по шкиву меньшего диаметра. При числе рабочих шкивов 3 и более расчеты по мощности проводят для ведущего шкива. Передача необходимой мощности на каждом из ведомых шкивов, угол обхвата или диаметр которых меньше, чем ведушего шкива, должна быть проверена дополнительно.

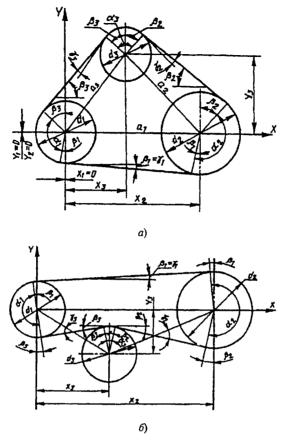



Рис. 13. Схемы расчета трехшкивных передач

Необходимое число ремней в приводе K находят по формуле

$$K = \frac{P_{\text{HOM}}C_{\text{p}}}{P_{0}C_{\alpha}C_{L}C_{K}},$$

где  $P_0$  - номинальная мощность, кВт, передаваемая одним ремнем определенного сечения и длине при угле обхвата  $\alpha=180^\circ$  и спокойном режиме работы (табл. 37-43);  $C_\alpha$  - коэффициент угла обхвата (табл. 44);  $C_L$  - коэффициент, учитывающий длину ремня (табл. 45);

 $C_K$  - коэффициент, учитывающий число ремней в передаче (табл. 46).

Номинальную мощность  $P_0$  в зависимости от сечения ремня, расчетных диаметров шкивов и частоты вращения следует выбирать по табл. 37-43. Для промежуточных частот вращения и передаточных чисел

номинальную мощность вычисляют линейной интерполяцией.

Предварительное натяжение ветви одного ремня  $F_0$  (в H) для передач с закрепленными центрами вычисляют по формуле

$$F_0 = 500 \frac{(2.5 - C_{\alpha})P_{\text{HOM}}C_{\text{p}}}{C_{\alpha}vK} + m_{\text{n}}v^2$$
, (1)

где  $m_{\rm fl}$  - погонная масса ремня по ГОСТ 1284.1, кг/м;

 $C_{\rm p}$  - коэффициент динамичности нагрузки и режима работы при односменной работе.

Для передач с автоматическим натяжением расчет  $F_0$  ведется по первому члену правой части формулы (1).

Расчет предварительного натяжения ремней при других способах натяжения и проверку передач по тяговой способности проводят по PTM 38.405-51/3-2-2.

# 36. Геометрический расчет трехшкивной клиноременной передачи.

Исходные данные: диаметры шкивов d ; координаты центров шкивов x , y (ГОСТ 1284.3-96)

Величина	Номер рисунка	Расчетная формула
Межцентровое расстояние	13, <i>a</i>	$a_1 = x_2$ ; $a_2 = \sqrt{(x_2 - x_3)^2 + y_3^2}$ ; $a_3 = \sqrt{x_3^2 + y_3^2}$
	13, б	$a_1 = x_2$ ; $a_2 = \sqrt{(x_2 - x_3)^2 + y_3^2}$ ; $a_3 = \sqrt{x_3^2 + y_3^2}$
Углы наклона ветвей к линиям, соединяющим	13, a	$\gamma_1 = \arcsin \frac{d_1 - d_2}{2a_1}$ ; $\gamma_2 = \arcsin \frac{d_2 - d_3}{2a_2}$ ;
центры шкивов, рад		$\gamma_3 = \arcsin \frac{d_1 - d_3}{2a_3}$
	13, δ	$\gamma_1 = \arcsin \frac{d_1 - d_2}{2a_1}$ ; $\gamma_2 = \arcsin \frac{d_2 + d_3}{2a_2}$ ;
		$\gamma_3 = \arcsin \frac{d_1 + d_3}{2a_3}$
Углы наклона ветвей к оси $x$ , рад	13, <i>a</i>	$\beta_1 = \gamma_1; \ \beta_2 = \operatorname{arctg} \frac{y_3}{x_2 - x_3} - \gamma_2;$
		$\beta_3 = \arctan \frac{y_3}{x_3} - \gamma_3$
	13, <i>δ</i>	$\beta_1 = \gamma_1; \ \beta_2 = \operatorname{arctg} \frac{y_3}{x_2 - x_3} - \gamma_2;$
		$\beta_3 = \arctan \frac{y_3}{x_3} - \gamma_3$
Углы обхвата шкивов, рад	13, a	$\alpha_1 = \pi + \beta_1 - \beta_2$ ; $\alpha_2 = \pi - \beta_1 - \beta_2$ ; $\alpha_3 = /\beta_2 + \beta_3 /$
	13, <i>6</i>	$\alpha_1 = \pi + \beta_1 - \beta_3$ ; $\alpha_2 = \pi - \beta_1 - \beta_2$ ; $\alpha_3 = /\beta_2 + \beta_3 /$
Длина ремня	13, a	$L = a_1 \cos \gamma_1 + a_2 \cos \gamma_2 + a_3 \cos \gamma_3 +$
		$+\frac{d_1}{2}\alpha_1 + \frac{d_2}{2}\alpha_2 + \frac{d_3}{2}\alpha_3$
	13, σ	$L = a_1 \cos \gamma_1 + a_2 \cos \gamma_2 + a_3 \cos \gamma_3 +$
		$+\frac{d_1}{2}\alpha_1 + \frac{d_2}{2}\alpha_2 + \frac{d_3}{2}\alpha_3$

37. Номинальная мощность, кBт, передаваемая одним ремнем 0, I и II классов сечения Z(O) при  $L_{
m p}$  =1320 мм

частота врашения меньшего шкива, мин- ¹	1600 2000 2400 2800 3200 3600 4000 4500 5000 5500 6000	0,70 0,78 0,85 0,91 0,97 1,03 1,07 1,10 1 0,72 0,80 0,88 0,94 1,00 1,06 1,11 1,14 1 0,75 0,83 0,91 0,98 1,04 1,10 1,14 1,17 1 0,77 0,86 0,94 1,01 1,07 1,13 1,18 1,21 1 0,79 0,88 0,97 1,04 1,10 1,17 1,22 1,25	0,98         1,07         1,15         1,22         1,29         1,38         1,38           1,01         1,11         1,19         1,27         1,34         1,39         1,43           1,05         1,14         1,23         1,31         1,39         1,44         1,48           1,08         1,18         1,27         1,35         1,43         1,52           1,11         1,22         1,31         1,48         1,54         1,57	1,07     1,20     1,31     1,41     1,49     1,57     1,60       1,11     1,24     1,34     1,46     1,54     1,63     1,68       1,15     1,28     1,40     1,51     1,60     1,68     1,74       1,18     1,32     1,45     1,56     1,65     1,74     1,80       1,22     1,36     1,49     1,60     1,70     1,79     1,86	1,28     1,43     1,56     1,67     1,77     1,85     1,90     1,90       1,33     1,48     1,62     1,73     1,83     1,91     1,96     1,97       1,37     1,53     1,67     1,79     1,89     1,98     2,03     2,03       1,42     1,58     1,73     1,85     1,95     2,04     2,09     2,10       1,46     1,63     1,78     1,91     2,01     2,11     2,16     2,17	1,49 1,65 1,80 1,92 2,01 2,09 2,111 1,84 1,99 2,08 2,16 2,19 1,59 1,77 1,93 2,05 2,15 2,23 2,24 1,64 1,83 1,99 2,12 2,22 2,31 2,34 1,69 1,89 2,05 2,19 2,29 2,38 2,41	1,51     1,72     1,91     2,06     2,19     2,27     2,32     2,30     2,21       1,56     1,78     1,97     2,14     2,26     2,35     2,40     2,38     2,29       1,61     1,84     2,04     2,21     2,34     2,43     2,48     2,46     2,36       1,66     1,90     2,11     2,28     2,42     2,51     2,57     2,54     2,44       1,72     1,96     2,17     2,35     2,49     2,59     2,65     2,63     2,52	
Hac.	400 700 800 950 1200 1450	0,17 0,27 0,30 0,34 0,41 0,48 0,17 0,27 0,31 0,35 0,42 0,49 0,18 0,28 0,32 0,36 0,44 0,51 0,19 0,29 0,33 0,38 0,45 0,53 0,19 0,30 0,34 0,39 0,47 0,54	0,20 0,33 0,37 0,42 0,51 0,59 0,61 0,52 0,21 0,34 0,38 0,44 0,53 0,61 0,22 0,35 0,40 0,46 0,56 0,66 0,23 0,37 0,42 0,48 0,58 0,68 0,68	0,25         0,40         0,44         0,51         0,62         0,72           0,25         0,41         0,46         0,53         0,64         0,75           0,26         0,42         0,47         0,55         0,66         0,77           0,27         0,44         0,49         0,56         0,68         0,80           0,28         0,45         0,50         0,58         0,71         0,82	0,47 0,53 0,61 0,74 0,49 0,54 0,62 0,77 0,50 0,56 0,65 0,79 0,52 0,58 0,67 0,82 0,54 0,60 0,69 0,84	0,54 0,61 0,71 0,86 1 0,56 0,63 0,78 0,89 1 0,58 0,65 0,75 0,92 1 0,60 0,67 0,78 0,95 1 0,62 0,70 0,80 0,98 1	0,39 0,63 0,71 0,82 1,00 1,17 0,40 0,65 0,73 0,88 1,07 1,21 0,42 0,68 0,76 0,88 1,07 1,25 0,43 0,70 0,78 0,91 1,10 1,29 0,44 0,72 0,81 0,94 1,14 1,33	
	а ₁ , 1 дим 200	1,00 0,09 1,05 0,10 63 1,20 0,10 1,50 0,10 ≥3,00 0,11		1,00 0,14 1,05 0,14 80 1,20 0,15 1,50 0,15 ≥3,00 0,15	1,00 0,16 1,05 0,17 90 1,20 0,17 1,50 0,18 ≥3,00 0,18	1,00 0,18 1,05 0,19 1,00 1,20 0,20 1,50 0,20 23,00 0,21	112 1,00 0,21 112 1,05 0,22 и более 1,20 0,23 1,50 0,23 ≥3,00 0,24	

38. Номинальная мощность, кВт, передаваемая одним ремнем 0, I и II классов сечения A при  $L_{
m p}\!=\!1700$  мм

						Î				The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	7 1 11 11	NIACCO.	THAT A		}				
$d_1$ ,								Часто	та враш	Частота вращения меньшего шкива, мин ⁻¹	ньшего	шкива,	мин-1						
MM		200	400	700	800	950	1200	1450	1600	1800	2000	2200	2400	2600	2800	3200	3600	4000	4500
	1,00	0,22	0,39	0,61	99'0	7,00	0,93	1,07	1,15	1,24	1,34	1,42	1,50	1,58	1,64	1,75	1,83	1,87	1,88
	1,05	0,23	0,40	0,63	0,70	0,80	96'0	1,10	1,19	1,29	1,38	1,47	1,56	1,63	1,70	1,81	1,89	1,94	1,94
90	1,20	0,24	0,41	0,65	0,72	0,83	66,0	1,14	1,23	1,33	1,43	1,52	1,61	1,69	1,76	1,87	1,96	2,00	2,01
	1,50	0,24	0,43	29,0	0,75	0,85	1,02	1,18	1,27	1,38	1,48	1,57	1,66	1,74	1,82	1,94	2,02	2,07	2,07
	>3,00	0,25	0,44	69'0	0,77	88'0	1,05	1,21	1,31	1,42	1,53	1,62	1,71	1,80	1,87	2,00	2,09	2,14	2,14
	1,00	0,26	0,47	0,74	0,83	96,0	1,14	1,32	1,42	1,54	1,66	1,77	1,87	1,97	2,05	2,19	2,28	2,34	2,33
	1,05	0,27	0,48	0,77	0,85	86,0	1,18	1,36	1,47	1,60	1,72	1,83	1,94	2,04	2,12	2,26	2,36	2,42	2,42
100	1,20	0,28	0,50	0,79	0,88	1,01	1,22	1,41	1,52	1,65	1,78	1,90	2,01	2,10	2,19	2,34	2,44	2,50	2,50
	1,50	0,29	0,52	0,82	0,91	1,05	1,25	1,45	1,57	1,71	1,84	1,96	2,07	2,17	2,27	2,42	2,52	2,58	2,58
	>3,00	0,30	0,53	0,84	0,94	1,08	1,30	1,50	1,62	1,76	1,89	2,02	2,14	2,24	2,34	2,49	2,60	2,66	2,66
	1,00	0,31	95'0	06'0	1,00	1,15	1,39	1,61	1,74	1,89	2,04	2,18	2,30	2,41	2,51	2,68	2,78	2,83	2,79
	1,05	0,32	0,58	0,93	1,04	1,19	1,4	1,67	1,80	1,96	2,11	2,25	2,38	2,50	2,60	2,77	2,88	2,93	2,89
112	1,20	0,34	09'0	96'0	1,07	1,23	1,49	1,72	1,86	2,03	2,18	2,33	2,46	2,58	2,69	2,86	2,98	3,03	2,99
	1,50	0,35	0,62	66'0	1,11	1,27	1,54	1,78	1,92	2,09	2,25	2,40	2,54	2,67	2,78	2,96	3,08	3,13	3,09
	≥3,00	96,0	0,64	1,02	1,14	1,31	1,59	1,84	1,98	2,16	2,33	2,48	2,62	2,75	2,87	3,05	3,17	3,22	3,18
v, v	а∕м ,а	2	۵,	5				10				15			20	_			

			30	25 3	2		20	2		15		0	01		5	2		и, м/с	a,
			5,22	5,18	5,07	4,92	4,72	4,48	4,19	3,87	3,61	3,12	2,59	2,24	2,00	1,24	89,0	>3,00	
			5,05	5,02	4,92	4,77	4,58	4,34	4,07	3,75	3,50	3,03	2,51	2,17	1,94	1,20	99,0	1,50	
			4,90	4,86	4,76	4,62	4,43	4,20	3,94	3,63	3,38	2,93	2,43	2,10		1,16	0,63		и более
			4,74	4,70	4,61	4,47	4,29	4,07	3,81	3,52	3,27	2,83	2,35	2,04	1,82	1,12	0,61	1,05	180
			4,58	4,54	4,45	4,32	4,14	3,93	3,68	3,40	3,16	2,74	2,27	1,97	1,76	1,09	0,58	1,00	
		4,75	4,78	4,63	4,50	4,33	4,13	3,90	3,64	3,35	3,11	2,69	2,22	1,93	1,72	1,07	0,58	>3,00	
		4,60	4,63	4,49	4,36	4,20	4,01	3,78	3,53	3,24	3,02	2,60	2,15	1,87	1,67	1,03	0,57	1,50	
		4,46	4,48	4,35	4,22	4,07	3,88	3,66	3,41	3,14	2,92	2,52	2,09	1,81	1,62	1,00	0,55	1,20	160
		4,31	4,34	4,20	4,09	3,93	3,75	3,54	3,30	3,04	2,82	2,44	2,02	1,75	1,56	0,97	0,53	1,05	_
		4,17	4,19	4,06	3,95	3,80	3,63	3,42	3,19	2,94	2,73	2,36	1,95	1,69	1,51	0,94	0,51	1,00	
3,92	4,19	4,24	4,16	3,97	3,83	3,67	3,48	3,27	3,04	2,79	2,59	2,24	1,85	1,60	1,43	68'0	0,49	≥3,00	
3,80	4,06	4,11	4,03	3,85	3,71	3,56	3,38	3,17	2,95	2,71	2,51	2,17	1,79	1,56	1,39	98'0	0,48	1,50	
3,68	3,93	3,98	3,91	3,72	3,60	3,44	3,27	3,07	2,86	2,62	2,43	2,10	1,74	1,51	1,35	0,84	0,46	1,20	140
3,56	3,80	3,85	3,78	3,60	3,48	3,33	3,16	2,97	2,76	2,54	2,36	2,03	1.68	1,46	1,30	0,81	0,45	1,05	
3,44	3,67	3,79	3,65	3,48	3,36	3,22	3,06	2,87	2,67	2,45	2,28	1,96	1,62	1,41	1,26	0,78	0,43	1,00	
3,62	3,74	3,72	3,60	3,40	3,27	3,12	2,96	2,78	2,58	2,36	2,19	1,89	1,57	1,36	1,22	92,0	0,42	>3,00	
3,50	3,62	3,60	3,49	3,30	3,17	3,03	2,87	5,69	2,50	2,29	2,13	1,83	1,52	1,32	1,18	0,74	0,41	1,50	
3,39	3,51	3,49	3,38	3,19	3,07	2,93	2,78	2,61	2,42	2,22	2,06	1,77	1,47	1,28	1,14	0,71	0,39	1,20	125
3,28	3,39	3,37	3,27	3,09	2,97	2,84	5,69	2,52	2,34	2,15	1,99	1,72	1,42	1,23	1,10	69'0	0,38	1.05	
3,17	3,28	3,26	3,16	2,98	2,87	2,74	2,60	2.44	2,26	2,07	1,92	1,66	1,37	1.19	1.07	0.67	0.37	00	

39. Номинальная мощность, кBт, передаваемая одним ремнем 0, I и II классов сечения B(E) при  $L_{
m p}$  =2240 мм

															·				
<i>d</i> 1 ,	•							Частс	та врац	ения ме	Частота вращения меньшего шкива, мин ⁻¹	шкива,	мин-1						
MM		200	300	400	200	009	700	800	950	0001	1200	1450	1600	1800	2000	2200	2400	2600	2900
125	1,00 1,05 1,20 1,50 ≥3,00	0,48 0,50 0,52 0,53 0,53	0,67 0,69 0,72 0,74 0,74	0,84 0,87 0,90 0,93 0,93	1,00	1,16 1,20 1,24 1,28 1,32	1,30 1,35 1,39 1,44 1,48	1,44 1,49 1,59 1,59	1,64 1,69 1,75 1,81 1,81	1,70 1,76 1,82 1,88 1,93	1,93 2,00 2,07 2,13 2,13	2,19 2,27 2,35 2,42 2,50	2,33 2,41 2,50 2,58 2,66	2,50 2,59 2,67 2,76 2,76 2,85	2,64 2,73 2,83 2,92 3,01	2,76 2,86 2,95 3,05 3,15	2,85 2,95 3,05 3,15 3,15	2,92 3,02 3,12 3,22 3,33	2,96 3,06 3,16 3,27 3,27
140	1,00 1,05 1,20 1,50 ≥3,00	0,59 0,61 0,64 0,66 0,68	0,83 0,86 0,89 0,92 0,95	1,05 1,09 1,12 1,16 1,16	1,26 1,30 1,34 1,39 1,43	1,45 1,50 1,55 1,61 1,66	1,64 1,70 1,76 1,81 1,81	1,82 1,89 1,95 2,01 2,08	2,08 2,15 2,22 2,30 2,37	2,16 2,24 2,31 2,39 2,46	2,47 2,56 2,64 2,72 2,82	2,82 2,91 3,01 3,10 3,21	3,00 3,11 3,21 3,32 3,42	3,23 3,34 3,45 3,68 3,68	3,42 3,54 3,66 3,78 3,90	3,58 3,70 3,83 3,95 4,08	3,70 3,83 3,96 4,09 4,22	3,79 3,93 4,06 4,19 4,33	3,85 3,98 4,11 4,25 4,38
160	1,00 1,05 1,20 1,50 ≥3,00	0,74 0,76 0,79 0,82 0,82	1,04 1,08 1,11 1,15 1,15	1,32 1,37 1,41 1,46 1,46	1,59 1,64 1,76 1,75 1,81	1,84 1,91 1,97 2,04 2,10	2,09 2,16 2,23 2,31 2,38	2,32 2,40 2,48 2,57 2,57	2,66 2,75 2,84 2,94 3,03	2,76 2,86 2,96 3,05 3,15	3,17 3,28 3,39 3,50 3,61	3,62 3,75 3,87 4,00 4,13	3,80 4,00 4,13 4,27 4,40	4,15 4,30 4,44 4,59 4,73	4,40 4,55 4,70 4,86 5,01	4,60 4,76 4,92 5,08 5,24	4,75 4,91 5,08 5,25 5,41	4,85 5,02 5,19 5,35 5,35	4,89 5,06 5,23 5,40 5,58
180	1,00 1,05 1,20 1,50 23,00	0,88 0,91 0,98 1,00	1,25 1,29 1,33 1,38 1,42	1,59 1,64 1,70 1,76 1,81	1,91 1,98 2,05 2,12 2,18	2,23 2,30 2,38 2,46 2,54	2,53 2,61 2,70 2,79 2,88	2,81 2,91 3,01 3,11 3,21	3,22 3,33 3,45 3,56 3,67	3,35 3,47 3,59 3,70 3,82	3,85 3,98 4,11 4,25 4,38	4,39 4,55 4,70 4,85 5,01	4,68 4,85 5,01 5,17 5,34	5,02 5,20 5,37 5,37 5,55	5,30 5,49 5,67 5,86 6,05	5,52 5,71 5,91 6,10 6,29	5,67 5,87 6,07 6,27 6,47	5,75 5,95 6,16 6,36 6,56	5,76 5,96 6,16 6,36 6,56
a, 1	<i>v</i> , м/с			2					01		15			20		2	25		

_				
6,43 6,66 6,88 7,11 7,33				
6,50 6,73 6,90 7,19 7,45	7,17 7,47 7,72 7,97 8,22			
6,47 6,70 6,93 7,15 7,42	7,25 7,55 7,80 8,08 8,31	7,89 8,10 8,44 8,71 8,99		
6,35	7,19	7,97	8,53	
6,57	7,49	8,24	8,83	
6,79	7,74	8,52	9,12	
7,01	8,00	8,80	9,42	
7,24	8,25	9,07	9,72	
6,13	7,02	7,87	8,60	30
6,35	7,26	8,16	8,90	
6,56	7,55	8,42	9,20	
6,78	7,80	8,70	9,50	
6,99	8,05	8,97	9,80	
5,83	6,73	7,63	8,46	100
6,04	6,96	7,89	8,76	
6,24	7,20	8,16	9,05	
6,45	7,48	8,43	9,35	
6,65	7,71	8,69	9,64	
5,46	6,33	7,20	8,13	25
5,65	6,55	7,49	8,41	
5,84	6,77	7,74	8,69	
6,03	7,00	8,00	8,97	
6,22	7,22	8,25	9,26	
5,13	5,97	6,82	7,76	
5,31	6,18	7,06	8,03	
5,49	6,39	7,30	8,30	
5,67	6,60	7,58	8,57	
5,85	6,81	7,82	8,84	
4,50	5,26	6,04	6,90	20
4,66	5,44	6,25	7,14	
4,82	5,63	6,47	7,42	
4,97	5,81	6,68	7,66	
5,13	6,00	6,89	7,91	
3,93 4,07 4,20 4,34 4,48	4,60 4,76 4,92 5,08	5,30 5,49 5,67 5,86 6,04	6,08 6,29 6,50 6,72 6,93	15
3,77	4,42	5,10	5,85	
3,91	4,58	5,28	6,06	
4,04	4,73	5,46	6,26	
4,17	4,89	5,63	6,47	
4,30	5,04	5,81	6,67	
3,30	3,86	4,46	5,13	-
3,41	4,00	4,62	5,31	
3,53	4,13	4,77	5,49	
3,64	4,27	4,93	5,67	
3,76	4,40	5,08	5,85	
2,96	3,47	4,00	4,61	
3,06	3,59	4,14	4,77	
3,16	3,71	4,28	4,93	
3,27	3,83	4,42	5,10	
3,37	3,95	4,56	5.26	
2,60	3,05	3,53	4,06	01
2,70	3.16	3,65	4,21	
2,79	3,27	3,77	4,35	
2,88	3,37	3,90	4,49	
2,88	3.48	4.02	4,63	
2,24 2,32 2,39 2,47 2,47 2,55	2,62 2,71 2,80 2,89 2,89	3,03 3,13 3,24 3,34 3,45	3,49 3,61 3,73 3,86 3,86	
1,85	2,17	2,50	2,89	
1,92	2,24	2,59	2,99	
1,98	2,32	2,68	3,09	
2,05	2,40	2,77	3,19	
2.11	2,47	2,77	3,29	
1,45	1,67	1,95	2,25	2
1,50	1,75	2,02	2,33	
1,55	1,81	2,09	2,41	
1,60	1,87	2,16	2,49	
1,65	1,93	2,16	2,57	
1,02	1,19	1,37	1,58	
1,06	1,24	1,42	1,64	
1,10	1,28	1,47	1,69	
1,13	1,32	1,52	1,75	
1,17	1,36	1,57	1,80	
1,00	1,00	1,00	1,00	2/1
1,05	1,05	1,05	1,05	
1,20	1,20	1,20	1,20	
1,50	1,50	1,50	1,50	
≥3,00	≥3,00	≥3,00	≥3,00	
200	224	250	280 и более	∞, м/с

40. Номинальная мощность, кВт, передаваемая одним ремнем 0, I и II классов сечения C(B) при  $L_{\rm p}{=}3750$  мм

$d_1$ ,	i			Частота і	вращени	я меньше	его шкив	а, мин ⁻¹		
мм		50	100	200	300	400	500	600	700	800
	1,00	0,44	0,79	1,39	1,92	2,41	2,87	3,30	3,69	4,07
	1,05	0,46	0,81	1,44	1,99	2,50	2,97	3,41	3,82	4,21
200	1,20	0,47	0,84	1,48	2,06	2,58	3,07	3,53	3,95	4,35
	1,50	0,49	0,87	1,53	2,12	2,67	3,17	3,64	4,08	4,49
	≥3,00	0,51	0,90	1,58	2,19	2,75	3,27	3,76	4,21	4,64
	1,00	0,53	0,95	1,70	2,37	2,99	3,58	4,12	4,64	5,12
	1,05	0,55	0,99	1,76	2,45	3,10	3,70	4,27	4,80	5,30
224	1,20	0,57	1,02	1,82	2,54	3,20	3,83	4,41	4,96	5,47
	1,50	0,59	1,05	1,88	2,62	3,31	3,95	4,56	5,12	5,65
	≥3,00	0,61	1,09	1,94	2,70	3,41	4,08	4,70	5,29	5,83
	1,00	0,63	1,13	2,03	2,85	3,62	4,33	5,00	5,64	6,23
	1,05	0,65	1,17	2,11	2,95	3,74	4,48	5,18	5,83	6,45
250	1,20	0,67	1,21	2,18	3,05	3,87	4,64	5,35	6,03	6,66
	1,50	0,69	1,25	2,25	3,15	4,00	4,79	5,53	6,23	6,88
	≥3,00	0,71	1,29	2,32	3,25	4,12	4,94	5,71	6,43	7,10
	1,00	0,74	1,34	2,42	3,40	4,32	5,19	6,00	6,76	7,52
	1,05	0,76	1,38	2,50	3,52	4,48	5,37	6,21	7,00	7,78
280	1,20	0,79	1,43	2,59	3,64	4,63	5,55	6,42	7,24	8,04
	1,50	0,81	1,48	2,67	3,76	4,78	5,73	6,63	7,52	8,30
	≥3,00	0,84	1,52	2,76	3,88	4,93	5,92	6,84	7,76	8,57
	1,00	0,86	1,57	2,86	4,04	5,14	6,17	7,14	8,09	8,92
	1,05	0,89	1,63	2,96	4,18	5,32	6,39	7,43	8,37	9,24
315	1,20	0,92	1,68	3,06	4,32	5,50	6,60	7,68	8,65	9,55
	1,50	0,95	1,74	3,16	4,46	5,68	6,82	7,93	8,93	9,86
	≥3,00	0,98	1,79	3,26	4,60	5,86	7,03	8,18	9,21	10,17
	1,00	1,00	1,84	3,36	4,75	6,05	7,27	8,45	9,50	10,46
	1,05	1,05	1,90	3,47	4,91	6,26	7,57	8,74	9,83	10,83
355	1,20	1,07	1,97	3,59	5,08	6,47	7,82	9,04	10,16	.11,19
	1,50	1,11	2,03	3,71	5,25	6,69	8,08	9,33	10,49	11,56
	≥3,00	1,14	2,10	3,82	5,41	6,90	8,33	9,62	10,82	11,92
	1,00	1,16	2,13	3,91	5,54	7,06	8,52	9,82	11,02	12,10
400	1,05	1,20	2,21	4,04	5,73	7,30	8,81	10,71	11,41	12,52
	1,20	1,24	2,29	4,18	5,93	7,60	9,11	10,51	11,79	12,94
	1,50	1,28	2,36	4,32	6,12	7,84	9,41	10,85	12,17	13,37
	≥3,00	1,32	2,43		6,31	8,09			12,56	-
	1,00	1,33	2,46	4,51	6,40	8,20	9,81	11,29	12,63	13,80
	1,05	1,38	2,56	4,67	6,62	8,48	10,16	11,69	13,07	14,28
450 и	1,20	1,43	2,63	4,83	6,85	8,77	10,50	12,08	13,51	14,76
более	1,50	1,47	2,72	4,99	7,07	9,05	10,84	12,48	13,95	15,24
	≥3,00	1,52	2,80	5,15	7,30	9,34	11,18	12,87	14,39	15,72
υ,	м/с				5	1	0	1	5	
							_			

Продолжение табл. 40

$d_1$ ,	i			Частота і	зращени	я меньш	его шкив	за, мин ⁻¹		<u> </u>
мм		950	1000	1100	1200	1300	1450	1600	1800	2000
	1,00	4,58	4,73	5,03	5,29	5,53	5,84	6,07	6,28	6,34
	1,05	4,74	4,90	5,20	5,48	5,73	6,04	6,29	6,50	6,57
200	1,20	4,90	5,06	5,38	5,66	5,92	6,25	6,50	6,72	6,79
	1,50	5,06	5,23	5,55	5,85	6,11	6,45	6,71	6,94	7,01
	≥3,00	5,22	5,40	5,73	6,03	6,31	6,66	6,93	7,16	7,23
	1,00	5,78	5,98	6,36	6,71	7,01	7,45	7,75	8,00	8,00
	1,05	5,98	6,19	6,58	6,94	7,26	7,71	8,02	8,28	8,35
224	1,20	6,18	6,40	6,81	7,18	7,55	7,97	8,29	8,56	8,63
	1,50	6,38	6,61	7,03	7,45	7,80	8,23	8,56	8,84	8,91
	≥3,00	6,58	6,82	7,25	7,69	8,04	8,49	8,83	9,12	9,19
	1,00	7,04	7,29	7,79	8,21	8,58	9,04	9,38	9,63	9,62
	1,05	7,28	7,59	8,07	8,50	8,88	9,36	9,71	9,96	9,95
250	1,20	7,58	7,84	8,34	8,78	9,18	9,67	10,03	10,30	10,29
	1,50	7,82	8,10	8,64	9,07	9,48	9,99	10,36	10,63	10,62
	≥3,00	8,07	8,35	8,88	9,36	9,78	10,30	10,69	10,97	10,96
	1,00	8,49	8,78	9,32	9,81	10,22	10,72	11,00	11,22	11,04
•••	1,05	8,78	9,06	9,65	10,15	10,58	11,10	11,44	11,61	11,42
280	1,20	9,08	9,39	9,97	10,49	10,94	11,47	11,83	12,00	11,81
	1,50	9,37 9,67	9,70	10,30 10,62	10,83	11,29	11,84	12,21 12,60	12,39 12,79	12,19
	≥3,00	ļ	10,00	i	11,17	11,65	12,22		J	12,58
	1,00	10,05 10,40	10,38 10,75	11,00 11,38	11,53 11,93	11,97 12,39	12,46	12,72 13,16	12,67 13,11	12,14 12,56
315	1,05 1.20	10,40	11,11	11,76	12.33	12,39	12,89 13.33	13,60	13.56	12,99
313	1,50	11,10	11,47	12,15	12,73	13,22	13,76	14,05	14,00	13,41
	≥3,00	11,45	11,83	12,53	13,14	13,64	14,20	14,49	14,44	13,83
	1,00	11,73	12,10	12,76	13,31	13,73	14,12	14,19	13,73	,,
	1,05	12,14	12,52	13,20	13,77	14,21	14,61	14,68	14,21	
355	1,20	12,55	12,94	13,65	14 23	14.69	15,10	15,18	14,69	
	1,50	12,95	13,36	14,09	14,70	15,17	15,59	15,67	15,17	
	≥3,00	13,36	13.79	14,54	15,16	15,64	16,09	16,17	15,65	
	1,00	13,48	13,86	14,53	15,04	15,37	15,53		ı	
	1,05	13,95	14.35	15,04	15,56	15,91	16,07			
400	1,20	14,42	14.83	15,24	16,08	16,44	16,61			
	1,50	14,89	15,32	16.05	16,61	16,98	17,15			
	≥3,00	15,36	15,80	16,56	17,13	17,52	17,70			
	1.00	15,23	15,61	16,21	16,59	16,74	-			
	1,05	15,76	16,15	16,78	17,17	17,32				
450 и	-1,20	16,29	16,70	17,34	17,75	17,90				
более	1,50	16,82	17,24	17,91	18,33	18,49				
	≥3,00	17,35	17,78	18,47	18,91	19,07				
v,	L м/с	20	2	5	3	0				

41. Номинальная мощность, кВт, передаваемая одним ремнем 0, I и II классов сечения D(I) при  $L_{\rm p}{=}6000$  мм

$d_1$ ,	i			Часто	га вращ	ения ме	ньшего	шкива,	мин-1		
мм		50	100	150	200	250	300	350	400	450	500
	1,00	1,69	3,01	4,20	5,31	6,36	7,35	8,34	9,24	10,09	10,90
	1,05	1,75	3,11	4,35	5,50	6,58	7,65	8,63	9,56	10,44	11,28
355	1,20	1,81	3,22	4,50	5,69	6,81	7,91	8,92	9,88	10,79	11,66
ì	1,50	1,87	3,32	4,64	5,87	7,03	8,17	9,21	10,20	11,14	12,04
	≥3,00	1,92	3,43	4,79	6,06	7,25	8,43	9,50	10,52	11,50	12,42
	1,00	2,03	3,66	5,14	6,52	7,88	9,13	10,32	11,45	12,52	13,55
	1,05	2,10	3,79	5,32	6,75	8,16	9,45	10,68	11,85	12,96	14,02
400	1,20	2,18	3,91	5,50	6.98	8,43	9,76	11,03	12,25	13,40	14,49
	1,50	2,25	4,04	5,68	7,21	8,70	10,08	11,39	12.64	13,83	14,96
	≥3,00	2,32	4,17	5,86	7,48	8,98	10,40	11,75	13,04	14,27	15,44
	1,00	2,41	4,37	6,17	7.90	9,50	11,20	12,47	13,85	15,16	16,40
,	1,05	2,50	4,52	6,38	8,17	9,83	11,49	12,91	14.33	15,69	16,98
450	1,20	2,58	4,68	6,60	8.45	10,16	11,79	13,34	14,82	16,22	17,55
	1,50	2,67	4,83	6,81	8,72	10,49	12,17	13,78	15,30	16,75	18,12
	≥3,00	2,75	4,98	7,03	9,00	10.82	12,56	14,21	15.78	17,28	18,69
	1,00	2,79	5,08	7,18	9,21	11,09	12,88	14,58	16,20	17,73	19,17
	1,05	2,89	5,25	7,48	9,53	11,48	13,33	15,09	16,77	18,35	19,84
500	1,20	2,99	5,43	7,73	9,85	11,86	13,78	15,60	17,33	18,97	20,51
	1,50	3,08	5,61	7,98	10,17	12,25	14,23	16,11	17,90	19,59	21,18
	≥3,00	3,18	5,79	8,23	10,49	12,64	14,68	16,62	18,46	20,21	21,85
	1,00	3,24	5,91	8,43	10,76	12,97	15,07	17,06	18,95	20,72	22,38
	1,05	3,35	6,12	8,72	11,14	13,42	15,60	17,66	19,61	21,44	23,16
560	1,20	3,46	6,33	9,02	11,51	13,88	16,12	18,25	20,27	22,17	23,94
	1,50	3,58	6,53	9,31	11,89	14,33	16,65	18,85	20,93	22,89	24,72
	≥3,00	3,69	6,74	9,60	12,26	14,78	17,17	19,45	21,59	23,61	25,50
	1,00	3,75	6,88	9,82	12,54	15,13	17,57	19,88	22,05	24,07	25,94
	1,05	3,88	7,12	10,16	12,98	15.65	18,18	20,57	22,82	24,91	26,84
630	1,20	4,02	7,36	10,50	13,42	16,18	18,80	21,27	23,59	25,75	27,75
	1,50	4,15	7,65	10,84	13,86	16,71	19,41	21,96	24,36	26,59	28,66
	≥3,00	4,28	7,89	11,19	14,29	17,24	20,02	22,66	25,13	27,43	29.56
	1,00	4,34	8,01	11,38	14,55	17,54	20,35	22,99	25,45	27,71	29,76
	1,05	4,49	8,29	11,78	15,05	18,15	21,06	23,80	26,34	28,68	30,80
710	1,20	4,64	8,57	12,17	15,56	18,75	21,78	24,60	27,23	29,64	31,84
	1,50	4,79	8,85	12,57	16,07	19,37	22,49	25,40	28,12	30,61	32,88
	≥3,00	4,94	9,13	12,97	16,58	19,99	23,20	26,21	29,01	31,58	33,92
	1,00	4,99	9,22	13,11	16,76	20,18	23,39	26,36	29,08	31,55	33,72
800 и	1,05	5,16	9,55	13,57	17,34	20,89	24,20	27,28	30,10	32,65	34,90
более	1,20	5,33	9,87	14,03	17,93	21,59	25,02	28,20	31,12	33,75	36,08
	1,50	5,51	10,19	14,48	18,51	22,30	25,84	29,12	32,13	34,85	37,26
	≥3,00	5,68	10,51	14,94	19,10	23,00	26,66	30,04	33,15	35,96	38,44
υ,	м/с		5		1	0		1	15	2	20

Продолжение табл. 41

$d_1$ ,	i	Частота вращения меньшего шкива, мин- ¹								
мм		550	600	700	800	950	1000	1100	1200	
355	1,00	11,67	12,39	13,70	14,83	16,15	16,48	16,98	17,25	
	1,05	12,07	12,82	14,18	15,35	16,71	17,06	17,58	17,85	
	1,20	12,48	13,25	14,66	15,86	17,28	17,63	18,17	18,45	
	1,50	12,89	13,68	15,13	16,38	17,84	18,21	18,76	19,06	
	≥3,00	13,29	14,12	15,61	16,90	18,40	18,78	19,36	19,66	
400	1,00	14,51	15,42	17,07	18,46	20,06	20,45	20,90	21,20	
	1,05	15,02	15,96	17,66	19,11	20,76	21,16	21,72	21,94	
	1,20	15,52	16,50	18,26	19,75	21,46	21,87	22,45	22,68	
	1,50	16,03	17,04	18,85	20,40	22,16	22,59	23,19	23,42	
	≥3,00	16,54	17,57	19,45	21,04	22,86	23,30	23,92	24,16	
	1,00	17,57	18,67	20,63	22,25	24,01	24,39	24,84	24,84	
450	1,05	18,19	19,32	21,35	23,03	24,84	25,24	25,71	25,71	
	1,20	18,80	19,97	22,07	23,81	25,68	26,10	26,58	26,58	
	1,50	19,41	20,62	22,79	24,58	26,52	26,95	27,45	27,44	
	≥3,00	20,03	21,28	23,51	25,36	27,36	27,80	28,32	28,31	
	1,00	20,53	21,78	23,90	25,76	27,50	27,82	28,02	27,61	
500	1,05	21,24	22,54	24,82	26,66	28,46	28,79	29,00	28,57	
	1,20	21.96	23,30	25,66	27,56	29,42	29,76	29,98	24,54	
	1,50	22,68	24,06	26,50	28,45	30,38	30,73	30,96	30,50	
	≥3,00	23,39	24,82	27,34	29,35	31,34	31,70	31,94	31,47	
	1,00	23,91	25,32	27,73	29,55	31,04	31,17	30,85	•	
560	1,05	24,75	26,21	28,70	30,59	32,13	32,26	31,92		
	1,20	25,58	27,09	29,67	31,62	33,21	33,35	33,00		
	1,50	26,42	27,98	30,64	32,65	34,30	34,44	34,08		
	≥3,00	27,25	28,86	31,61	33,68	35,38	35,53	35,16		
	1,00	27,64	29,18	31,68	33,38	34,19				
	1,05	28,61	30,19	32,79	34,54	35,38				
630	1,20	29,57	31,21	33,90	35,71	36,58				
	1,50	30,54	32,23	35,01	36,88	37,78				
	≥3,00	31,51	33,25	36,11	38,04	38,97				
710	1,00	31,59	33,18	35,59	36,87	36,35				
	1,05	32,69	34,34	36,83	38,16	37,62				
	1,20	33,80	35,50	38,08	39,44	38,90				
	1,50	34,90	36,66	39,32	40,73	40,17				
	≥3,00	36,00	37,82	40,57	42,02	41,44				
	1,00	35,59	37,13	39,14	39,55					
800 и более	1,05	36,83	38,43	40,51	40,94					
	1,20	38,08	39,73	41,88	42,32					
	1,50	39,32	41,03	43,25	43,70					
	≥3,00	40,57	42,33	44,61	45,08					
υ, M/c		25		3	0					

42. Номинальная мощность, кВт, передаваемая одним ремнем 0, I и II классов сечения  $E(\mathcal{L})$  при  $L_{\rm p}{=}7100$  мм

$d_1$ ,	i	Частота вращения меньшего шкива, мин ⁻¹								
мм		50	100	150	200	250	300	350	400	450
	1,00	3,42	6,12	8,60	10,86	12,97	14,96	16,81	18,55	20,16
500	1,05	3,54	6,33	8,90	11,24	13,42	15,48	17,40	19,20	20,87
	1,20	3,66	6,54	9,20	11,61	13,88	16,00	17,99	19,85	21,57
	1,50	3,78	6,76	9,50	11,99	14,33	16,52	18,58	20,49	22,28
	≥3,00	3,90	6,97	9,79	12,37	14,78	17,04	19,16	21,14	22,98
	1,00	4,06	7,32	10,33	13,09	15,67	18,10	20,38	22,49	24,45
	1,05	4,20	7,62	10,69	13,54	16,22	18,73	21,09	23,28	25,31
560	1,20	4,35	7,87	11,05	14,00	16,77	19,37	21,80	24,07	26,16
	1,50	4,49	8,13	11,41	14,46	17,31	20,00	22,51	24,85	27,02
	≥3,00	4,63	8,39	11,77	14,91	17,86	20,63	23,22	25,64	27,87
	1,00	4,80	8,75	12,32	15,65	18,77	21,69	24,42	26,95	29,26
	1,05	4,97	9,05	12,75	16,19	19,42	22,45	25,27	27,89	30,29
630	1,20	5,14	9,36	13,18	16,74	20,08	23,21	26,13	28,83	31,31
	1,50	5,31	9,66	13,61	17,28	20,73	23,96	26,98	29,77	32,33
	>3,00	5,48	9,97	14,04	17,83	21,39	24,72	27,83	30,71	33,35
	1,00	5,64	10,31	14,56	18,52	22,23	25,69	28,89	31,33	34,49
710	1,05	5,84	10,67	15,07	19,17	23,01	26,59	29,90	32,94	35,69
	1,20	6,04	11,03	15,58	19,82	23,78	27,48	30,91	34,06	36,90
	1,50	6,23	11,39	16,09	20,46	24,56	28,38	31,92	35,17	38,10
	≥3,00	6,43	11,75	16,59	21,11	25,34	29,28	32,93	36,28	39,31
	1,00	6,57	12,05	17,05	21,70	26,03	30,06	33,73	37,05	40,00
800	1,05	6,80	12,47	17,64	22,46	26,94	31,10	34,90	38,35	41,40
	1,20	7,08	12,89	18,24	23,21	27,85	32,15	36,08	39,64	42,79
	1,50	7,26	13,31	18,83	23,97	28,76	33,20	37,26	40,94	44,19
	≥3,00	7,54	13,74	19,43	24,73	29,67	34,25	38,44	42,23	45,59
900	1,00	7,64	13,96	19,76	25,15	30,14	34,71	38,84	42,49	45,63
	1,05	7,91	14,44	20,45	26,03	31,19	35,92	40,20	43,98	47,22
	1,20	8,17	14,94	21,14	26,91	32,24	37,13	41,55	45,46	48,82
	1,50	8,44	15,42	21,84	27,79	33,30	38,35	42,91	46,95	50,41
	≥3,00	8,70	15,91	22,53	28,67	34,35	39,56	44,27	48,43	52,01
	1,00	8,65	15,84	22,44	28,52	34,11	39,17	43,66	47,52	50,69
	1,05	8,95	16,40	23,22	29,52	85,31	40,54	45,19	49,18	52,47
1000 и	1,20	9,26	16,95	24,00	30,52	36,50	41,91	46,71	50,84	54,24
более	1,50	9,56	17,50	24,79	31,51	37,69	43,28	48,24	52,51	56,01
	≥3,00	9,86	18,06	25,57	32,51	38,88	44,65	49,77	54,17	57,78
υ, м/c		5		10		15		20		

Продолжение табл. 42

$d_1$ ,	i			Частота	вращени	я меньш	его шки	за, мин ⁻¹		
мм		500	550	600	650	700	750	800	850	950
	1,00	21,65	23,00	24,21	25,29	26,21	26,97	27,57	28,00	28,32
	1,05	22,40	23,80	25,06	26,17	27,12	27,92	28,54	28,98	29,31
500	1,20	23,16	24,61	25,91	27,05	28,04	28,86	29,50	29,96	30,30
	1,50	23,92	25,41	26,75	27,94	28,96	29,80	30,46	30,94	31,28
	≥3,00	24,67	26,21	27,60	28,82	29,87	30,74	31,43	31,92	32,27
	1,00	26,25	27,86	29,30	30,55	31,59	32,42	33,03	33,40	33,40
	1,05	27,16	28,84	30,33	36,61	32,69	33,55	34,18	34,57	34,57
560	1,20	28,08	29,81	31,35	32,68	33,80	34,69	35,34	35,74	35,74
	1,50	29,00	30,79	32,37	33,75	34,90	35,82	36,49	36,90	36,90
	≥3,00	29,91	31,76	33,40	34,82	36,01	36,95	37,65	38,07	38,07
	1,00	31,36	33,22	34,83	36,19	37,26	38,04	38,52	38,66	37,92
	1,05	32,45	34,38	36,05	37,45	38,56	39,37	39,86	40,02	39,24
630	1,20	33,55	35,54	37,27	38,72	39,87	40,70	41,21	41,37	40,57
	1,50	34,65	36,70	38,49	39,98	41,17	42,03	42,56	42,72	41,89
	≥3,00	35,74	37,86	39,70	41,25	42,47	43,36	43,90	44,07	43,22
	1,00	36,85	38,88	40,58	41,92	42,87	43,41	43,52	43,18	
	1,05	38,13	40,24	42,00	43,39	44,37	44,93	45,05	44,69	
710	1,20	39,42	41,60	43,42	44,85	45,87	46,45	46,57	46,20	
	1,50	40,71	42,96	44,84	46,32	47,37	47,97	48,09	47,71	
	≥3,00	42,00	44,32	46,26	47,78	48,87	49,49	49,61	49,22	
	1,00	42,53	44,63	46,26	47,38	47,96	47,97		·	
	1,05	44,02	46,19	47,87	49,04	49,64	49,65			
800	1,20	45,51	47,75	49,49	50,69	51,32	51,33			
	1,50	47,00	49,31	51,11	52,35	52,99	53,01			
	≥3,00	48,48	50,87	52,73	54,01	54,67	54,68			
	1,00	48,20	50,17	51,48	52,09		ı			
	1,05	49,89	51,92	53,28	53,91					
900	1,20	51,57	53,68	55,08	55,73					
	1,50	53,26	55,43	56,88	57,56					
	≥3,00	54,94	57,18	58,68	59,38					
	1,00	53,12	54,73	55,45						
1000 и	1,05	54,97	56,64	57,39						
более	1,20	56,83	58,55	59,38						
i	1,50	58,69	60,47	61,27						
	≥3,00	60,55	62,38	63,21						
υ, 1	м/с	25	3	0						

43. Номинальная мощность, кВт, передаваемая одним ремнем 0, I и II классов сечения EO(E) при  $L_{
m p}$  =8500 мм

								- HAN GARAM GARAM GARAMA	o de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	NA COUNTY	1-DAM COUNTY OF STREET				
<i>ά</i> 1, ΜΜ	-	50	100	150	200	250	300	350	400	450	200	550	009	650	700
	1,00	7,29	13,25	18,40	23,26	27,67	31,65	35,18	38,27	40,85	43,35	44,38	45,26	45,34	44,82
	1,05	7,51	13,62	18,99	24,14	28,70	32,83	36,58	39,89	42,61	44,89	46,59	47,69	47,99	50,34
008	2,5	7,65	14,06	19,58	25,61	30,73	34,00 35,18	30,45	41,51	44,45	46,88	51.08	52.48	53,43	53,14
	23,00 ≥3,00	8,17	14,87	20,83	26,49	31,87	36,51	40,85	44,82	48,21	50,93	53,29	54,90	56,08	55,94
	1,00	8,61	15,23	22,08	27,82	33,56	38,20	42,17	45,70	48,43	50,71	52,62	52,62	52,33	
	1,05	8,83	15,60	22,67	28,70	34,59	39,38	43,49	47,39	50,19	52,69	54,83	55,05	24,98	
906	0,70	8,98	15,97	23,26	29,51	35,62	40,55	44,89	49,02	52,03	56,76	50,75	50,41	59 67	
	0,50 ≥3,00	9,20 9,42	16,78	24,43	31,13	37,61	43,05	47,77	52,26	55,86	58,73	61,53	62,26	63,00	
	1.00	10.01	18.25	25.76	32,60	38,64	44,08	48,65	52,69	55,57	57,78	58,29	58,36		
	1,05	10,23	18,69	26,35	33,41	39,59	45,34	50,12	54,24	57,41	59,76	60,49	60,79		
0001	1,20	10,38	19,14	26,94	34,22	40,63	46,44	51,52	55,86	59,25	61,75	62,71	63,29		
	1,50	10,59	19,43	27,53	35,03	41,66	47,32	52,99	57,48	61,01	64,55	64,99	66,17		
	>3,00	10,82	19,87	28.11	35,84	42,69	49,02	54,39	59,17	62,93	66,53	61,19	68,15		
	1,00	11,63	21,34	30,03	37,90	44,97	51,08	56,30	61,97	62,85	64,40	64,77			
	1,05	11,85	21,64	30,62	38,64	45,93	52,26	57,70	63,59	64,62	66,46	66,98			
1120	1,20	12,07	22,08	31,28	39,52	46,96	53,43	59,17	65.21	66,46	68,45	69,18			
	1,50	12,29	22,45	31,79	40,33	41,99	54,68	59,91	66,83	68,37	70,51	71,39			
	≥3,00	12,44	22,96	32,38	40,55	49,05	55,94	62,04	68,45	70,21	72,49	73,60			
	1,00	12,81	24,43	34,44	43,67	51,45	58,14	63,81	67,27	69,55	69,92				
	1,05	13,03	24,88	35,11	44,45	52,40	59,32	65,21	68,89	71,39	71,91				
1250	1,20	13,25	25,32	35,62	45,26	53,43	60,57	89'99	71,24	73,30	73,97				
	1,50	13,47	25,76	36,21	46,00	54,46	61,82	80,89	72,57	75,07	76,03				
	≥3,00	13,62	26,13	36,87	46,74	55,57	63,07	69,55	73,75	76,91	78,02				
	1,00	15,38	28,19	39,59	49,68	58,51	62,79	71,02	74,26	74,70					
1400	1,05	15,60	28,56	40,18	50,64	59,47	06'99	72,42	75,88	76,54					
и более	_	15,75	28,99	40,77	51,45	60,49	68,15	73,82	77,50	78,38					
	1,50	15,97	29,44	41,44	52,26	61,53	69,48	75,22	79,12	80,22					
	>3,00	16,19	79,81	47,07	66,25	05,20	/0,00	17,71	80,81	07,00					
v, M/c	4/c	5		10	15		20 25	2	30	0					
					A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA										!

44. Коэффициент угла обхвата С
--------------------------------

Угол обхвата α, °	$C_{\alpha}$	Угол обхвата α, °	$C_{\alpha}$	Угол обхвата α, °	$C_{\alpha}$
220 210 200 190 180	1,08 1,06 1,04 1,02 1,00	170 160 150 140 130	0,98 0,95 0,92 0,89 0,86	120 110 100 90	0,82 0,78 0,74 0,69

# 45. Коэффициент $C_L$ , учитывающий влияние длины ремня

Расчетная длина	$C_L$ для	ремней с	ечением	Расчетная длина		$C_L$ для $_{ m I}$	ремней с	ечением	
ремня $L_{ m p}$ , мм	Z(O)	A	В(Б)	ремня $L_{ m p}$ , мм	Z(O)	A	В(Б)	C(B)	$D(\Gamma)$
400	0,49			1500	1,05	0,97	0,91		
425	0,51			1600	1,08	0,98	0,93		
450	0,53	~		1700	1,11	1,00	0,94		
475	0,56			1800	1,13	1,02	0,95	0,85	
500	0,58			1900	1,16	1,03	0,96	0,86	
530	0,61			2000	1,18	1,04	0,98	0,87	_
560	0,63	0,71		2120	1,20	1,06	0,99	0,89	i i
600	0,66	0,72		2240	1,23	1,07	1,00	0,90	
630	0,68	0,74		2360	1,25	1,09	1,01	0,91	
670	0,71	0,75	-	2500	1,27	1,10	1,02	0,92	ĺ
710	0,73	0,77		2650		1,12	1,04	0,93	
750	0,76	0,78		2800		1,13	1,05	0,94	
800	0,78	0,80		3000		1,15	1,06	0,96	
850	0,81	0,82		3150		1,16	1,07	0,97	0,89
900	0,84	0,83	0,80	3350	_	1,18	1,08	0,98	0,80
950	0,86	0,85	0,81	3550		1,20	1,10	0,99	0,91
1000	0,88	0,86	0,82	3750		1,21	1,11	1,00	0,92
1060	0,91	0,87	0,84	4000		1,23	1,13	1,01	0,93
1120	0,93	0,89	0,85	4250			1,14	1,03	0,94
1180	0,95	0,90	0,86	4500		–	1,15	1,04	0,95
1250	0,98	0,92	0,87						
1320	1,00	0,93	0,89						
1400	1,03	0,95	0,90						
Расчетная длина				$^{\cdot}$ $C_L$ для ре	мней сеч	ением			

Расчетная длина			· C	$\mathcal{L}_L$ для ремн	ей сечени	ем		
ремня $L_{ m p}$ , мм	Z(O)	A	<b>B</b> ( <b>B</b> )	C(B)	$D(\Gamma)$	Е(Д)	EO(E)	40 × 20
4750			1,16	1,05	0,96	0,94		-
5000			1,17	1,06	0,97	0,95	-	
5300		1	1,19	1,07	0,98	0,96	}	0,94
5600			1,20	1,08	0,99	0,96		0,95

Продолжение табл. 45

Расчетная длина			С	_L для ремн	ей сечение	:м		
ремня $L_{ m p}$ , мм	Z(O)	A	В(Б)	C(B)	$D(\Gamma)$	Е(Д)	EO(E)	40 × 20
6000 6300			1,21 1,22	1,09 1,10	1,00 1,01	0,97 0,98	0,92	0,96 0,97
6700 7100				1,12 1,13	1,02 1,03	0,99 1,00	0,94 0,96	0,98 0,98
7500 8000	_			1,14 1,15	1,04 1,05	1,01 1,02	0,97 0,98	0,99 1,00
8500 9000		_		1,16 1,17	1,06 1,07	1,03 1,04	1,00 1,01	1,01 1,02
9500 10000				1,19 1,20	1,08 1,09	1,04 1,05	1,02	1,02 1,03
10600 11200			_	1,21	1,10	1,06 1,07	1,04	1,04 1,05
11800 12500					1,12 1,13 1,14	1,08 1,09 1,09	1,07 1,08 1,09	1,05 1,06 1,07
13200 14000 15000				_	1,14	1,10	1,10	1,08 1,09
16000 16000 17000 18000					_	1,12 1,13 1,14	1,12 1,14 1,16	1,10 1,11 1,11

46. Коэффициент  $C_{\kappa}$ , учитывающий число ремней в комплекте

Число ремней в передаче	C _K
2	0,80-0,85
3	0,77-0,82
4	0,76-0,80
5-6	0,75-0,79
Св. 6	0,75

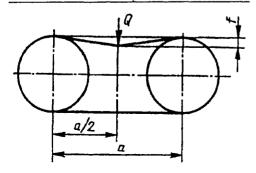



Рис. 14. К расчету прогиба ремня

Натяжение ремня контролируют по прогибу ветви f под воздействием силы Q (рис. 14).

Прогиб ветви f (в мм)

$$f = 1,55 \frac{a}{100} \,. \tag{2}$$

Сила Q (в H) для нового ремня

$$Q = \frac{CF_0 + C_0}{16} \,; \tag{3}$$

для приработанного ремня

$$Q = \frac{F_0 + C_0}{16} \,, \tag{4}$$

где C - коэффициент, равный 1,2-1,4;  $C_0$  - коэффициент, зависящий от жесткости ремня (табл. 47).

Для компенсации отклонений от номинала по длине ремня, его удлинения во время эксплуатации, а также для свободной установки новых ремней в передаче должна быть предусмотрена регулировка межосевого расстояния или установка натяжных устройств.

		-
Сечение	<i>C</i> ₀ , Н, для кл	асса ремней
ремня	I, II	II, IV
Z(O)	5	10
$\boldsymbol{A}$	5	10
B(E)	10	20
C(B)	15	30
$D(\Gamma)$	35	40
$E(\mathcal{A})$	50	55
EO(E)	80	90
40 × 20	45	50
	1	1

47. Рекомендуемые значения Со

Наименьшее значение межосевого расстояния должно быть установлено в зависимости от длины ремня, уменьшенной на 2 % при длине ремня до 2 м и на 1 % при длине свыше 2 м.

Наибольшее значение межосевого расстояния должно быть установлено из расчета длины ремня, увеличенной на 5,5 %.

#### ОСОБЫЕ ВИДЫ КЛИНОРЕМЕННЫХ ПЕРЕДАЧ

Передача с натяжными приспособлениями. Натяжное приспособление кулисного типа показано на рис. 15; основные размеры шкивов приведены в табл. 48.

Натяжные ролики в клиноременных передачах не рекомендуется применять. При установке роликов их следует располагать

на ведомой ветви внутри контура передачи во избежание знакопеременных перегибов.

Передача с вертикальными валами. Для предотвращения сбега ремней со шкивов канавки выполняют глубокими (табл. 49).

При расчете передач с вертикальными валами мощность  $N_0$  (табл. 37) следует принимать на 10-12% меньше, нежели для передачи с горизонтальными валами.

**Полуперекрестные передачи.** Применяют их при передаточных числах, близких к единице. Расстояние между центрами шкивов

$$l \geq 5 \left( d_{\text{p.6}} + M \right),\,$$

где  $d_{\mathrm{p.6}}$  - расчетный диаметр большого шкива; M — ширина этого шкива.

Шкивы полуперекрестных передач выполняют с глубокими канавками. Мощность  $N_0$ , указанную в табл. 37-43, следует уменьшать на 20 %.

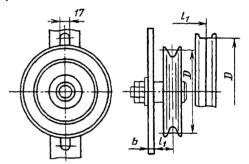



Рис. 15. Натяжное приспособление кулисного типа

## 48. Основные размеры желобчатого и гладкого шкивов при одном ремне (рис. 15)

Параметры	Пр	офиль обода шкива	
	желобчатый	глад	кий
Обозначение ремня по ГОСТ 1284.1-89	A, B, C	А, В, С	D
Расчетный диаметр $d_{ m p}$ , мм	100; 125; 140	100; 160	160; 200
Вылет $I_1$ , мм	25,5	25,5	36; 21,5*

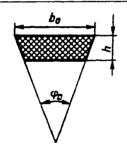
^{*} Размер 21,5 для шкива с расчетным диаметром 200 мм.

				<u>_</u>			
Элементы			Ce	чения ремн	ей		
канавок	Z	A	В	С	D	E	EO
<i>b</i>	5	7	9	12	17,5	20	25
b+h	13	17	20	28	38	45	56
e	15	19	24	32	44	52	65
f	9	11	14	20	27	32	42

# 49. Размеры глубоких канавок, мм (см. рис. к табл. 29)

**Технические требования к передаче.** Валы шкивов передачи располагают параллельно, а канавки - одну против другой.

Допускается непараллельность осей вращения не более 1 мм на 100 мм длины, а допуск на смещение канавок шкивов не более 2 мм на 1 м межосевого расстояния, который увеличивается не более чем на 0,02 мм на каждые 100 мм межосевого расстояния свыше 1 м.


Шкивы и особенно их канавки должны быть чистыми. Необходимо исключить возможность попадания в них смазок и растворителей.

При работе ремней комплектами в случае выхода из строя одного из ремней снимается весь комплект.

#### ВАРИАТОРНЫЕ КЛИНОВЫЕ РЕМНИ

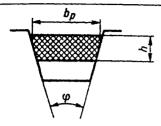
Бесконечные клиновые резинотканевые (кордтканевые или кордшнуровые) вариаторные ремни трапецеидального сечения предназначены для промышленных установок (ГОСТ 24848.1—81 ÷ ГОСТ 24848.3—81) и сельскохозяйственных машин (ГОСТ 26379—84).

50. Размеры сечений вариаторных ремней в свободном состоянии



 $b_0$  - ширина большего основания, мм;

h - высота (толшина) ремня, мм;


 $\phi_0$  - угол клина ремня, равный  $34 \pm 1^\circ$ ;

для кордшнурового ремня  $45 \times 22$  угол  $\phi_0 = 40 \pm 1^{\circ}$ .

Ремни п	ромышленных у	становок	Ремни сель	скохозяйственн	ых машин
Обозначение сечения	Ширина <i>b</i> ₀ , мм	Высота (толщина) <i>h</i> , мм	Обозначение сечения	Ширина <i>b</i> ₀ , мм	Высота (толщина) <i>h</i> , мм
1-B16	17	5	1—B80	85	25
1—B20	22	6,5	CB-25	25	12,5
1—B25	27	8	CB-32	32	15
1—B32	34	10	CB-38	38	17
1-B40	43	13	CB-45	45	20
1—B50	53	16	CB-50	50	22
1—B63	67	20	45×22	50	22

# Номинальные размеры сечений ремня, измеряемые под натяжением в канавке измерительного шкива

Размеры, мм



 $b_{
m p}$  - расчетная ширина ремня, расположенного в канавке измерительного шкива;

h - высота ремня:

ф - угол клина измерительного шкива, равный

 $26^{\circ} \pm 15'$ ; для ремня  $45 \times 22$  угол  $\varphi = 34^{\circ} \pm 15'$ .

Pe	мни промы	шленных	установо	K	Рем	ни сельско	хозяйстве	нных маши	H TH
Обозна-	$b_{ m p}$		/	1	Обозна-	,	p	h	
чение сечения ремня	Номин.	Пред. откл.	Номин.	Пред. откл.	чение сечения ремня	Номин.	Пред откл.	Номин.	Пред. откл.
1-B16	16	+0,7	6,4	±0,5	CB-25	23	+1,0	12,5	±0,5
1-B20	20	-0,4 +0,8 -0,5	6,5	±0,5	CB-32	29	-0,5 +1,0 -0,5	15,0	±0,6
1-B25	25	+0,9	8,0	±0,5	CB-38	35	+1,2	17,5	±0,6
1-B32	32	-0,6 +1,0 -0,7	10,0	±0,5			-0,5		

Предельные отклонения размеров сечения ремней даны для проектирования технологической оснастки.

ГОСТ 26379-84 предусматривает также ремни: 40×20; 28×16.

Примеры условных обозначений:

Ремень сечения 1-B25 с расчетной длиной 1000 мм кордшнуровой конструкции:

Ремень 1-B25—1000Ш ГОСТ 24848.1—81÷ ГОСТ 24848.3—81

Ремень сечения 1-B25 с расчетной длиной 1000 мм кордшнуровой конструкции, зубчатый:

Ремень сечения 1-B25—1000Ш зубчатый ГОСТ 24848.1—81÷ ГОСТ 24848.3—81

Ремень сечения CB-50 с расчетной длиной 4000 мм кордтканевой конструкции:

Ремень CB-50—4000T ГОСТ 26379—84 **Технические требования**. Большее основание трапеции должно быть плоским или выпуклым, меньшее основание - плоским или вогнутым.

Углы при основаниях ремня могут иметь радиус закругления.

Ремни должны быть работоспособными при изменении температуры окружающей среды от -30 до +60 °C.

Ремни с расчетной длиной до 2000 мм могут выпускаться зубчатыми. Ремни длиной свыше 2000 мм выпускаются зубчатыми по согласованию между потребителем и изготовителем. Для промышленных установок рекомендуется применять только зубчатые ремни (табл. 52).

#### 52. Размеры зубьев зубчатых ремней, мм

Параметры		Высота	ремней	
	≤11	12-15	16-18	≥20
Глубина паза	3±0,5	5±1,0	7±1,0	9±1,0
Ширина паза	2-4	3-5	4-6	5-7
Шаг зуба	8-12	12-16	14-18	14-18

Примечание. В одном и том же ремне отклонения по шагу зуба и ширине паза должны быть не более 1 мм. Допускается в одном месте ремня отклонение шага зуба до 50%.

53. Расчетные длины  $L_{\scriptscriptstyle \mathrm{D}}$  ремней, измеренные под натяжением

Расчетная	:				Обоз	начен	ия сеч	ения р	емня				
длина ремня, ММ	1-B16	1-B20	1-825	1-B32	1-B40	1-B50	1-B63	1-B80	CB-25	CB-32	CB-38	CB-45	CB-50
560	14												
630													
710													
800													
900				3.41									
1000													
1120					Ď.								
1250											77.7		
1400						(m#4)			* 14			<b>K</b> 713-7	•
1600							***			į, * <b>*</b>			
1800										11			
2000				<b>(4)</b> * (4)	44		計畫	<del></del>					
2240											4		4
2500								10-11 10-11 10-11 10-11				H	
2800							A TA						
3150						de Se	412444						
3550													
4000							12. T	ųΣ.				•	i.
4500													
5000													
Разность между расчетной и внутренней длинами ремня, мм	23	30	38	47	61	75	94	118	55	65	74	84	91

Примечания: 1. Допускается применение ремней промежуточных длин по ряду R40 ГОСТ 8032-84.

^{2.} За расчетную длину принимают длину ремня на уровне расчетной ширины; за внутреннюю длину - длину ремня по меньшему основанию.

			Размер	ы, мм		
	Расчетная д	лина ремня	Наибольшая разность	Расчетная д	лина ремня	Наибольшая разность
_	Номинал	Отклонение	между длинами*	Номинал	Отклонение	между длинами*
_	560-900	+8 -14	2	2240-2500	+16 -32	8
	1000-1250	+9 -15	3	2800-4000	+20 -30	10
	1400-1600	+12 -18	3	4000-5000	+20 -40	12
	1800-2000	+15	5		}	

54. Предельные отклонения на длины ремней и наибольшая разность между длинами комплектуемых ремней Размеры, мм

-25

#### ШКИВЫ ВАРИАТОРНОЙ ПЕРЕДАЧИ

Основные требования по шкивам для вариаторных клиновых ремней приведены в табл. 55, 56.

Угол клина шкивов  $\phi$  вариаторов малой мощности с широким диапазоном регулирования составляет 26°, вариаторов средней мощности со средним диапазоном регулирования и большой мощности с низким диапазоном регулирования — 28°. Предельное отклонение угла канавки шкивов  $\pm 30'$ .

**Технические требования.** Шкивы должны быть изготовлены из материалов, обеспечивающих выполнение требуемых размеров и работу шкивов в условиях эксплуата-

ции, т. е. наличие механических усилий, нагрев, истирание и др.

Шкивы не должны иметь пористости, пузырей, царапин, вмятин на боковых поверхностях канавок. Дефекты могут исправляться только газовой сваркой, пайкой или компаундом на основе эпоксидных смол, обеспечивающих работоспособность канавок не ниже, чем при пайке.

Шероховатость рабочих поверхностей канавок шкивов *Ra* должна быть не более 2.5 мкм по ГОСТ 2789—73

Кромки канавок шкивов должны быть притуплены.

Биение конусной рабочей поверхности шкива на каждые 100 мм диаметра шкива,

55. Минимальные расчетные диаметры шкивов

Обозна- чение	диам	альный расч истр шкива, углом клина	мм,	Обозна- чение	диам	альный расч етр шкива, г углом клина	мм,
сечения ремня	26° для зубчатых ремней	28° для зубчатых ремней	28° для гладких ремней	сечения ремня	26° для зубчатых ремней	28° для зубчатых ремней	28° для гладких ремней
1-B16 1-B20 1-B25 1-B32	28 36 45 56	  67 85	- 95 120	1-B63 1-B80 CB-25 CB-32	112 140 84 108	170 212 106 130	270 320 150 200
1-B40 1-B50	71 90	106 135	200	CB-38 CB-45 CB-50	126 148 170	160 180 212	230 270 310

^{*} Между длинами ремней одной группы.

$D_{ m H}$ - наружный диаметр шкива; $d_{ m p}$ - расчетный диаметр шкива	Обозна- чение	$b_{ m p}$	h ₀	Н
	сечения ремня		не м	енее
S	1-B16	16	4,0	4,6
	1-B20	20	5,2	5,8
	1-B25	25	5,2	7,8
	1-B32	32	5,2	10,8
\	1-B40	40	6,6	13,4
a la la la la la la la la la la la la la	1-B50	50	6,7	17,3
Δ / Δ _p / Δ	1-B63	63	8,2	21,8
	1- B80	80	10,5	23,5
$\pm$	CB-25	23	4,7	16
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CB-32	29	5,4	17
9	CB-38	35	6,2	20
	CB-45	41	8,0	21
	CB-50	45	10	22

56. Верхнее и нижнее положение ремня в шкивах вариаторов  $h_0$  и H Размеры, мм

измеренное перпендикулярно образующей конуса, не должно превышать:

- $0,20\,$  мм при частоте вращения шкива до  $500\,$  мин⁻¹;
- 0,15 мм при частоте вращения шкива 500-1000 мин $^{-1}$ ;
- 0,10 мм при частоте вращения выкива более 1000 мин $^{-1}$ .

Каждый шкив при работе со скоростью свыше 5 м/с должен подвергаться балансировке. Нормы точности балансировки выбираются по ГОСТ 22061—76, но не ниже 5-го класса точности балансировки. Точность балансировки устанавливают в зависимости от назначения и условий работы машины.

#### РЕКОМЕНДУЕМЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА И КОНСТРУИРОВАНИЯ ВАРИАТОРОВ

- Основные конструктивные схемы вариаторов:
- I с симметричным регулированием обоих шкивов;
- II с несимметричным регулированием обоих шкивов;
- III с одним регулируемым шкивом и с ведущим шкивом постоянного диаметра;
- IV с одним регулируемым шкивом и с ведомым шкивом постоянного диаметра.

- 2. Конструктивную схему вариатора следует выбирать в соответствии с требуемым видом регулирования так, чтобы силовая характеристика вариатора отвечала требованиям рабочей машины.
- 3. Вариаторы должны соответствовать трем основным группам:

группа A - вариаторы малой мощности с широким диапазоном регулирования;

группа Б - вариаторы средней мощности со средним диапазоном регулирования;

группа В - вариаторы большой мощности с низким диапазоном регулирования.

# РАСЧЕТ ПЕРЕДАЧ И ПЕРЕДАВАЕМЫЕ МОЩНОСТИ (по ГОСТ 24848.3-81)

Стандарт устанавливает расчет передач и передаваемые мощности для клиновых вариаторных ремней промышленного оборудования по ГОСТ 24848.1-81 и ГОСТ 24848.2-81.

Схема и основные параметры передачи с вариаторным ремнем приведены на рис. 16.

Для вариаторов с регулируемым межосевым расстоянием: x - увеличение межосевого расстояния для натяжения ремня, y - уменьшение межосевого расстояния для свободного надевания ремня.

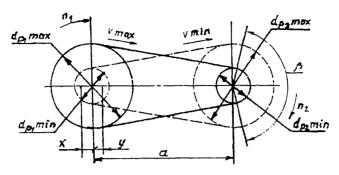



Рис. 16

 $d_{
m p_1\,min}$  и  $d_{
m p_1\,max}$  - минимальный и максимальный расчетные диаметры ведущего шкива;  $d_{
m p_2\,min}$  и  $d_{
m p_2\,max}$  - минимальный и максимальный расчетные диаметры ведомого шкива;  $\beta$  - угол обхвата шкива;  $\alpha$  - межосевое расстояние

Положение ремня при максимальной скорости ведомого шкива  $v_{\rm max}$  обозначено сплошной линией; положение ремня при минимальной скорости ведомого шкива  $v_{\rm min}$  - штриховой линией.

Геометрические параметры вариаторов приведены в табл. 57.

Расчет мощности вариатора проводят при минимальной и максимальной скоростях ремня, при максимальной передаваемой мощности, при максимальной окружной силе.

Расчетную мощность вариатора  $N_1$ , кВт, передаваемую одним ремнем в условиях эксплуатации, вычисляют по формуле

$$N_1 = \frac{N_0 K_1 K_2 K_4}{K_3} \,,$$

где  $N_0$  - номинальная мощность, передаваемая одним ремнем при скорости v=20 м/с, угле обхвата шкива  $\beta=180^\circ$  и спокойном режиме работы (табл. 58);

 $K_1$  - коэффициент, учитывающий влияние угла обхвата шкива на минимальном диаметре (табл. 59);

 $K_2$  - коэффициент, учитывающий скорость ремня (табл. 60);

 $K_3$  - коэффициент, учитывающий характер нагрузки и режим работы (табл. 61);

 $K_4$  - коэффициент, учитывающий конструктивную схему вариатора (табл. 62).

Угол обхвата ремнем шкива с минимальным расчетным диаметром вычисляют по формулам:

$$\beta = 180 - 57 \frac{d_{p_2 \max} - d_{p_1 \min}}{a}$$

или

$$\beta = 180 - 57 \frac{d_{p_1 \max} - d_{p_2 \min}}{a}$$

Окружная скорость ремня υ, м/с,

$$v = \frac{\pi d_1 n_1}{60} = \frac{\pi d_2 n_2}{60} ,$$

где  $d_1$  и  $d_2$  - расчетные диаметры ведущего и ведомого шкивов, м;

 $n_1$  и  $n_2$  - частота вращения ведущего и ведомого шкивов, мин $^{-1}$ .

Межосевое расстояние a, мм,

$$a = p + \sqrt{p^2 - q} ,$$

где 
$$\beta = 0.25L_p - 0.393(d_1 + d_2);$$
  
 $q = 0.125(d_1 - d_2)^2.$ 

Расчетную длину ремней определяют по формуле

$$L_{\rm p} = 2a + 1.57(d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a}$$
.

Для компенсации возможных отклонений от номинала по длине ремня и вытяжки его в процессе эксплуатации должна быть предусмотрена регулировка межосевого расстояния или уменьшение рабочего диапазона регулирования против теоретического из расчета увеличения номинальной расчетной длины ремня на 6 %.

Примечание. В зависимости от условий эксплуатации по согласованию потребителя с изготовителем допускается предусматривать компенсацию вытяжки ремня из расчета увеличения расчетной длины на величину менее 6%, но не менее чем 3,5%.

Геометрические параметры вариаторов основных групп Размеры, мм

Обозна-		Ремень з	Ремень зубчатый с с=26° тмина A			Ремень зубчатый с n=78° гиуппа Б	убчатый			Ремень гладкий с ф=28°, группа В	ладкий руппа В	
чение			rpjuna or									
ремня	d p min	<i>d</i> р тах	dp max dp min	μ,	d _p min	d _{p max}	dp max dp min	д.	$d_{ m p}$ min	d p max	d _{p max}	Д*
1-B16	28	81	2,9	8,0	ı	ľ	ı	l	1	1	ı	1
1-B20	36	104	2,9	8,4	ı	ı	1	1	1	1	ı	1
I-B25	45	132	2,9	9,8	19	146	2,2	4,8	95	174	8,1	3,3
1-B32	95	891	3	6	85	188	2,2	4,9	120	220	1,8	3,3
1-B40	71	212	٣	6	901	235	2,2	4,9	160	288	8,1	3,2
1-B50	06	268	ю	6	135	300	2,2	4,9	200	365	1,8	3,3
1-B63	112	340	ъ	6	170	378	2,2	4,9	270	480	8,1	3,2
1-B80		1	ı	I	212	475	2,2	5	320	580	1,8	3,2
CB-25	84	152	8,1	3,3	901	991	1,6	2,5	150	210	1,4	2
CB-32	106	861	6,1	3,5	130	212	1,6	2,6	200	280	1,4	2
CB-38	126	236	6,1	3,5	160	260	1,6	2,6	230	330	1,4	2
CB-45	148	280	6,1	3,5	180	300	9,1	2,6	270	390	1,4	2,1
CB-50	170	320	6,1	3,5	212	345	9,1	2,6	310	445	4,1	2

 *   $_{\phi}$  - угол клина шкива; Д - диапазон регулирования симметричного вариатора;  $d_{
m p\,min}$  ,  $d_{
m p\,max}$  - минимальные и максимальные расчетные диаметры шкивов.

Обозна-	Широкий д гулирования	-	Средний диа лирования			Низкий диапазон регулирования вариаторов		
чение сечения		Ремни з	зубчатые		Ремни без зубьев			
ремня	$d_{\mathrm{pmin}}$ , MM	N ₀ , кВт	$d_{ m pmin}$ , MM	$N_0$ , к $B$ т	$d_{\text{pmin}}$ , MM	<i>N</i> ₀ , кВт		
1-B16	28	0,54	-	_				
1-B20	36	0,75	-	_	-	-		
1-B25	45	1,35	67	1,9	95	2,9		
1-B32	56	2,25	85	3,1	120	4,6		
1-B40	71	3,60	106	5,2	160	7,8		
1-B50	90	6,00	135	9,0	200	13,5		
1-B63	112	9,00	170	13,5	270	20,0		
1-B80	-	_	212	20,0	320	30,0		

58. Номинальная мощность  $N_0$ , передаваемая одним ремнем

 $\Pi$  р и м е ч а н и я : 1. При увеличении минимальных диаметров обоих шкивов мощность  $N_0$  увеличивается пропорционально отношению принятых диаметров к минимальным.

2. При увеличении диаметра нерегулируемого шкива для вариаторов с одним регулируемым шкивом мощность  $N_0$  увеличивается пропорционально увеличению диаметра по отношению к минимальному диаметру, но не более чем на 25 %.

59. Коэффициент	$K_1$	в зависимости	ОТ	угла	обхвата
-----------------	-------	---------------	----	------	---------

β	180°	170°	160°	150°	140°	130°	120°	110°	100°	90°	80°	70°
$K_1$	1,0	0,98	0,95	0,92	0,89	0,86	0,82	0,78	0,73	0,68	0,62	0,56

Примечание. При промежуточных значениях угла обхвата коэффициент  $K_1$  рассчитывают методом линейной интерполяции.

## 60. Коэффициент К2 в зависимости от скорости

υ, м/c	5	10	15	20	25	30	35*
K ₂	0,30	0,60	0,85	1,00	1,10	1,05	0,9

Примечание. При промежуточных значениях скорости коэффициент  $K_2$  рассчитывают методом линейной интерполяции.

----

^{*} Допускается для сельскохозяйственных машин.

61. Значения коэффициента К, характера нагрузки и режима работы для промышленных установок

	Электродвигатель переменного тока с повышенным пусковым моментом; электродвигатель постоянного тока сериесный; двигатель внутреннего сгорания с частотой вращения ниже 600 мин -1		3	1,6	1,7		
	Электродвигатель переменного тока с повышенным пусковым моментом; электродвигатель постоянного тока сериесный; двигатель нутреннего сгорания истотой вращения ниж		7	4,1	1,5		
	Элек пере с пс пуског элек пост сериес сериес внутрен частогой			1,2	1,3		
	гель гока игатель ания с я свыше	и ремней	8	1,5	1,6		
	Электродвигатель постоянного тока компаундный, двигатель внутреннего сгорания с частогой вращения свыше	Число смен работы ремней	2	1,2	1,4		
	Элен пост компаун внутрен частотой	Число см		<u> </u>	1,2		
cond museum	тель тока я, гель гока бины		3	1,4	1,5		
mar by ann a bea	Электродвигатель переменного тока обшепромышленного применения, электродвигатель постоянного тока шунтовой, турбины				2	<u> </u>	1,2
au adarum	Эле пер обще л эле пос пос		-	0'1	-:		
day See management & .	Характер нагрузки			Спокойная. Максимальная кратковременная нагрузка до 120 % номинальной	Умеренные коле- бания нагрузки. Максимальная		
	Режим работы; тип машины			Легкий режим. Станки с непрерывным процессом резания: токарные, сверлильные, шлифовальные, легкие вентиляторы, насосы и компрессоры центробежные и ротационные, ленточные конвейеры, веялки, сепараторы, легкие грохоты, машины для очистки и погрузки зерна и др.	Станки фрезерные, зубофрезерные Умеренные коле- и револьверные; полиграфические бания нагрузки. машины; электрические генерато Максимальная		

ры; поршневые насосы и компрес- кратковременная соры с тремя и более цилиндрами; нагрузка до 150 % вентиляторы и воздуходувки; цеп- номинальной ные конвейеры, элеваторы, дисковые пилы для дерева; трансмиссии; прядильные, бумажные, пищевые машины; тяжелые грохоты; вра- щающиеся печи и др.	кратковременная нагрузка до 150 % номинальной	:								
Тяжелый режим.  Станки строгальные, долбежные, зубодолбежные и деревообрабатывающие; насосы и компрессоры поршневые с одним или двумя цилиндрами; вентиляторы и воздуходувки тяжелого типа, конвейеры винтовые, скребковые, дезингераторы; прессы винтовые эксцентриковые с относительно тяжелым маховиком; ткацкие машины, хлопкоочистительные машины, машины для прессования и брикетирования кормов и др.	Значительные колебания нагрузки. Максимальная кратковременная нагрузка до 200 % номинальной	1,2	£, .	1,6	1,3	1,5	1,7	1,4	9'1	6,1
Очень тижелый режим. Подъемники, экскаваторы, драги; прессы винтовые и эксцентриковые с относительно легким маховиком; ножницы, молоты, бегуны, глиномялки; мельницы шаровые, жерновые, вальцовые; дробилки, лесопильные рамы и др.	Ударная и рез- конеравномер- ная нагрузка. Максимальная кратковремен- ная нагрузка до 300 % номи- нальной	1,3	1,5	1,7	4,1	1,6	1,8	5,1	1,7	2,0

Симметричное регулирование обоих шкивов	регулирование регулирование		Один регулируемый шкив с ведомым шкивом постоянного диаметра
1,0	1,1	0,9	0,8

#### 62. Коэффициент К4, учитывающий конструктивную схему вариатора

 $\Pi$  р и м е ч а н и е . Для вариатора с двухступенчатым регулированием коэффициент  $K_4$  выбирают отдельно для каждой ступени.

#### ПРАВИЛА МОНТАЖА И ЭКСПЛУАТАЦИИ ВАРИАТОРНЫХ РЕМНЕЙ И ШКИВОВ

- 1. Вариаторные клиновые ремни (один или несколько) работают в шкивах с канав-ками или между профилированными дисками. Профили ремней и канавок таковы, что имеется контакт только между боковыми (рабочими) поверхностями ремней и боковыми гранями канавок шкивов или дисков.
- 2. Рабочие канавки шкивов и дисков должны быть чистыми; необходимо исключить возможность попадания в них смазки и растворителей.
- 3. При работе ремней комплектами, в случае выхода из строя одного из ремней, снимается весь комплект. Недопустима комплектация новых ремней с ремнями, бывшими в эксплуатации. Ремни, бывшие в употреблении, подбирают отдельными комплектами.

Комплект состоит из ремней, входящих в одну и ту же группу, номер которой маркируют на ремне. Всего групп 1-11: чем выше номер группы, тем точнее длины ремней.

4. Натяжные ролики в клиноременных вариаторах не должны применяться.

## Дополнительные источники

Вариаторы типа ВР с широким клиновым ремнем с двумя регулируемыми шкивами. Основные параметры - ГОСТ 22931—78.

Ремни вентиляторные клиновые и шкивы для двигателей автомобилей, тракторов и комбайнов - ГОСТ 5813—76.

**Ремни плоские** приводные резинотканевые. Технические условия - ГОСТ 23831—79.

Ремни приводные клиновые и шкивы для сельскохозяйственных машин - ГОСТ 1284.1—89.

Машиностроение. В 40 томах. Том IV-1. Детали машин. Конструкционная прочность. Трение, износ, смазка / Под ред. Д.Н. Решетова. М.: Машиностроение, 1995.

# Глава VII

# ВИНТОВЫЕ ПЕРЕДАЧИ И ХРАПОВОЕ ЗАЦЕПЛЕНИЕ

## ВИНТОВЫЕ ПЕРЕДАЧИ

#### РАСЧЕТ ХОДОВЫХ ВИНТОВ

Исходные данные. Тяговое усилие Q, H; наружный d, средний  $d_2$  и внутренний  $d_1$  диаметры винта, мм; ход винтовой линии S, мм; число заходов резьбы z; длина гайки l, мм; предел текучести  $\sigma_{\rm T}$  материала винта, МПа. Резьбу ходовых винтов делают преимущественно трапецеидальной.

Расчет на прочность (рис. 1). Угол подъема винтовой линии резьбы

$$\operatorname{tg} \beta = \frac{S}{\pi d_2}.$$

КПД передачи

$$\eta = \frac{\operatorname{tg}\beta}{\operatorname{tg}(\beta + \rho)},$$

где при малых скоростях скольжения (  $\approx 0{,}01$  м/c) угол трения  $\rho \approx 6 + 8^{\circ}$  .

Допускаемое напряжение в материале винта,  $M\Pi a$ ,

$$\left[\sigma_{\rm B}\right] = \frac{\sigma_{\rm T}}{3 \div 3.5} \ .$$

Расчетная площадь сечения винта, мм2,

$$F = 0,785d_1^2$$

Приведенное напряжение винта, МПа,

$$\sigma_{\rm np} = \frac{Q}{F} \sqrt{1 + 1.6 \left(\frac{S}{\eta d_1}\right)^2} ;$$

$$\sigma_{\rm np} \le [\sigma_{\rm B}].$$

**Расчет на износостойкость.** Рабочая высота витка резьбы, мм,

$$t_2=\frac{d-d_1}{2}.$$

Среднее давление на рабочих поверхностях резьбы, МПа,

$$q=\frac{1}{\pi}\frac{QS}{lzd_2t_2}\;,$$

где [q] - по табл. 1.

Расчет на устойчивость (рис. 2). За расчетную длину винта *L* принимают наибольшее возможное расстояние между опорами винта.

Дополнительные исходные данные: диаметр левой опоры винта  $d'_{\rm on}$ , мм; диаметр правой опоры винта  $d'_{\rm on}$ , мм; длина левой опоры винта  $l'_{\rm on}$ , мм; длина правой опоры винта  $l'_{\rm on}$ , мм; модуль упругости материала винта E, МПа.

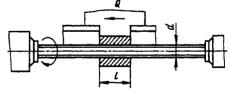



Рис. 1. Схема и данные для расчета на прочность и износостойкость

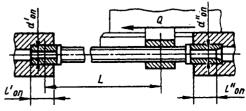



Рис. 2. Схема и данные для расчета на устойчивость

Винтовые передачи	Мате	ериал	[q], МПа
	винта	гайки	
Для точных расчетных перемещений (винты	Сталь	Бронза	5,0
рабочих подач винторезных и других станков)	Сталь	Чугун	2,0
Другие ответственные передачи (в механизмах	Сталь	Бронза	12,0
подачи фрезерных и других станков)	Сталь	Чугун	8,0

#### 1. Допускаемые значения среднего давления

 $\Pi$  р и м е ч а н и я : 1. При  $\frac{l}{d_2}$  = 2,5 приведенные в таблице значения можно повышать примерно на 20 %.

2. Для разъемных маточных гаек, у которых часть резьбы срезана, приведенные в таблице значения [q] следует уменьшать на 15—20 %.

#### 2. Закрепление винта в опоре и значения коэффициента т

Схема закрепления винта	m	Схема закрепления винта	m
Ipu You >3	40	$\frac{11pu \lambda_{0n} = 4.5 \div 3}{\frac{316}{316}}$ $11pu \lambda_{0n} = 4.5 \div 3$	18
Πρυ λοη >3 Γ Γ Πρυ λοη =4,5÷3	28	S How han = 4	
Ilpu $\lambda_{on} < 4.5$	20	Ilpu λgn< 1,	10

Расчетный момент инерции поперечного сечения винта, мм⁴,

$$J_{\text{pacy}} = 0.01 \left( 2 \div 3 \frac{d}{d_1} \right) d_1^4$$
.

Характеристика левой опоры винта  $\lambda_{\rm O\Pi}' = \frac{l_{\rm O\Pi}'}{d_{\rm O\Pi}'} \;,\; {\rm правой}\;\; \lambda_{\rm O\Pi}'' = \frac{l_{\rm O\Pi}''}{d_{\rm O\Pi}''} \;;\; {\rm для}\;\; {\rm опорной}\;\;$  гайки за  $d_{\rm O\Pi}$  принимается средний диаметр

Расчетный запас устойчивости

 $d_2$  резьбы.

$$n_{y} = m \frac{E J_{\text{pacq}}}{Q l^{2}},$$

где m - по табл. 2.

Вид опор винта устанавливают в зависимости от  $\lambda_{\text{оп}}$ :

при  $\lambda_{OR} < 1,5$  - опора шарнирная;

при  $\lambda_{on} > 3$  - винт заделан в опоре;

при  $\lambda_{\text{оп}} = 1,5 \div 3$  - винт закреплен в опоре упруго. Это справедливо и для неразъемных гаек; разъемные гайки следует рассматривать как шарнирную опору.

Класс	В пределах	ŀ	Іа длине, мм	ſ	На каждые следующие	На всей длине
точности винта	одного шага	25	100	300	300 мм длины добавляется	винта, не более
0	±2	2	3	5	2	10
1	±3	5	6	9	3	20
2	±6	9	12	18	5	40
3	±12	18	25	35	10	80
4	±25	35	50	70	20	100

#### 3. Допускаемая накопленная ошибка шага винтов, мкм

Необходимые значения запаса устойчивости n_v:

- а) для вертикальных ходовых винтов  $n_{\rm y}$  =2,5, если на винт не действуют поперечные силы и расчетное усилие Q является минимальным, в противном случае  $n_{\rm y}$  =3,5÷4;
- б) для горизонтальных ходовых винтов  $n_v = 4.5$ ;

в винторезных станках и во фрезерных станках  $n_v = 3 \div 4$ .

Материалы для ходовых винтов. Для термически необработанных ходовых винтов к токарным станкам нормальной и повышенной точности лучшим материалом является горячекатаная сталь А40Г. Применяют также сталь 45 и 40Х улучшенную.

Для ходовых винтов 0 и 1-го классов точности в случае окончательной обработки резцом применяют сталь У10А. Сталь отжигают на твердость 197НВ.

Для закаливаемых и шлифуемых по профилю резьбы ходовых винтов 0 и 1-го классов точности применяют сталь марок 40ХГ и 65Г, обладающую высокой износостойкостью.

Гайки для винтов 0; 1 и 2-го классов точности изготовляют из бронзы марок БрО10Ф1 и БрО6Ц6С3; для винтов 3 и 4-го классов точности - из антифрикционного чугуна.

Допускаемые отклонения винтов. В зависимости от назначения, точности и

предъявляемых в эксплуатации требований устанавливают 5 классов точности ходовых винтов: 0, 1, 2, 3 и 4.

- 1. Наибольшая допускаемая накопленная ошибка шага приведена в табл. 3.
- 2. Допуски на наружный, средний и внутренний диаметры резьбы винтов устанавливают не более соответствующих допусков на трапецеидальную резьбу по ГОСТ 9484-81 с полем допуска 7H по ГОСТ 9562-81.
- 3. Для обеспечения требуемой точности винтов по шагу и для предохранения резьбы винтов от быстрой потери точности в результате местного износа присвоены отклонения на овальность среднего диаметра винта, приведенные в табл. 4.

4. Допускаемое отклонение среднего диаметра винта на овальность, мкм

Класс точно-	Овальн	ость прі мм	и шаге,	Конусо- образ-
сти винта	3-5	6-10	12-20	ность, мкм
0	3	3	5	5
1	5	5	7	8
2	7	8	10	10
3	10	12	15	15
4	15	18	20	20

	,,		<u> </u>	
Класс	Д	ля винт	а длиной	, м
точности винта	До 1	Св. 1 до 2	Св. 2 до 4	Св. 4 до 6
0	20	40	_	_
1	40	60	_	-
2	80	100	150	200
3	120	150	200	300
4	200	250	300	-
	1	I	i .	f

#### 5. Допускаемое биение наружного диаметра винтов, мкм

6. Допускаемые отклонения на половину угла профиля, минуты

Класс	При	шагах винта,	, мм
точности винта	3-5	6-10	12-20
0	12	10	8
1	15	12	10
2	20	18	15
3	30	25	20

Примечание. Для винтов 4-го класса точности отклонения не регламентируются и ограничиваются лишь величиной допуска на средний диаметр.

Допускаемые отклонения шага и профиля ходовых винтов 0 и 1-го классов точности должны обеспечиваться соответствующей жесткостью, характеризуемой отношением  $L/d_2$ :

для 0-го класса точности  $L/d_2 \le 20$ ;

для 1-го класса точности  $L/d_2 \le 25$ , где L - длина резьбы;  $d_2$  - средний диаметр резьбы.

4. Наружный диаметр винта в одном перпендикулярном его оси сечении должен отличаться от наружного диаметра в любом таком же сечении винта не более чем на величину допуска по h5 для винтов 0, 1 и 2-го класса точности, по h6 для винтов 3-го класса и по f7 для винтов 4-го класса точности.

В тех случаях, когда наружный диаметр винта служит технологической базой (при нарезании резьбы), его выполняют по h5 для винтов 0, 1 и 2-го класса точности, по h6 для винтов 3-го класса; по f7 для винтов 4-го класса точности.

- 5. Биение наружного диаметра ходовых винтов при проверке их в центрах допускается в пределах, указанных в табл. 5.
- 6. Для каждой половины угла профиля резьбы винтов устанавливают допускаемые отклонения, приведенные в табл. 6.

Допускаемые отклонения гайки. 1. Допуски на наружный, средний и внутренний диаметры резьбы гаек устанавливают не более соответствующих допусков на трапецеидальную резьбу по ГОСТ 9484—81 с полем допуска Н8 по ГОСТ 9562—81.

- 2. Для разрезной гайки ее наружный диаметр резьбы назначают из условий обеспечения прилегания гайки к винту по профилю, поэтому его задают большим на 0,5 мм, чем по ГОСТ 9484—81.
- 3. В тех случаях, когда внутренний диаметр гайки служит технологической базой (для окончательной обработки корпуса гайки), внутренний диаметр резьбы гайки выполняют по Н6 для гаек к винтам 0, 1 и 2-го класса точности, Н7 для гаек к винтам 3-го класса, Н8 для гаек к винтам 4-го класса точности.

Для разрезной гайки ее внутренний диаметр резьбы назначают из условий обеспечения необходимого зазора, поэтому его задают большим на 0,5 мм, чем по ГОСТ 9484—81.

- 4. Внутренний диаметр гайки в одном перпендикулярном к ее оси сечении должен отличаться от внутреннего диаметра в любом таком же сечении гайки не более чем на величину допуска по Н6 для гаек к винтам 0, 1 и 2-го класса точности, Н7 для гаек к винтам 3-го класса, Н8 для гаек к винтам 4-го класса точности.
- 5. Величины допускаемых отклонений профиля и шага гаек не регламентируются, а ограничиваются величиной допуска на средний диаметр.

Щероховатость поверхности сторон профиля винтов и гаек приведена в табл. 7.

7. Параметры шероховатости
поверхности Ка сторон профиля
трапецеидальной резьбы, мкм

Классы точности	Ходовые _. винты	Гайки
0	0,20	_
1	0,40	_
2	0,80	0,80
3	1,6	1,6
4	1,6	2,5

#### УСТРАНЕНИЕ ЗАЗОРОВ В ВИНТОВОЙ ПАРЕ

Наличие зазора между резьбами винтовой пары является причиной возникновения мертвого хода. Особенно это проявляется при поступательно-возвратном движении. Уменьшение мертвого хода или полное его устранение достигается конструкцией гаек.

Во время сборки и отладки, а затем в процессе эксплуатации устраняют зазоры между работающими поверхностями резьб посредством поджима резьбы специальными устройствами, как, например, показано на рис. 3, или сдвоенными, или разрезанными гайками, которые стягивают до полного устранения зазоров.

#### РАСЧЕТ ГРУЗОВЫХ ВИНТОВ

Внутренний диаметр винта ориентировочно определяют из расчета на сжатие по пониженному (примерно на 30%) допускаемому напряжению:

$$\frac{\pi d_1^2}{4} = \frac{Q}{0.7[\sigma_{\rm cx}]}$$

или

$$d_1 = \sqrt{\frac{4Q}{\pi \cdot 0.7 \left[\sigma_{\text{cx}}\right]}} \; ,$$

где Q - нагрузка, H;  $d_1$  - внутренний диаметр винта, мм.

Должно быть самоторможение винта, т.е. угол подъема винтовой линии  $\beta$  должен быть меньше угла трения  $\rho$ :

$$tg\beta = \frac{P}{\pi d_2},$$

где P - шаг резьбы винта;  $d_2$  - средний диаметр резьбы винта.

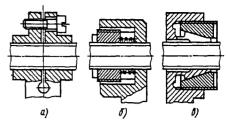



Рис. 3. Способы устранения зазоров: a - за счет стягивания винтом; b - пружиной; b - цанговым зажимом

Если принять коэффициент трения в резьбе f = 0,1, то  $tg \rho = 0,1$ , или  $\rho = 5^{\circ}43'$ .

Винт проверяют на совместное действие сжатия и кручения, а при значительной длине - и на устойчивость (продольный изгиб). Крутящий момент

$$M_{\rm KP} = Q \frac{d_2}{2} \operatorname{tg} (\beta + \rho) .$$

Приведенное напряжение

$$\sigma_{\rm np} = \sqrt{\sigma_{\rm cx}^2 + 4\tau_{\rm Kp}^2} ,$$

где  $\tau_{\rm Kp} = \frac{M_{\rm Kp}}{0.2d_1^3}$  - касательное напряжение,

МПа.

Условие достаточной прочности

$$\sigma_{np} \leq \left[\sigma_{p}\right]$$
.

Допускаемое напряжение на растяжение  $[\sigma_p]$  =70÷90 МПа.

На устойчивость винт проверяют по формуле Эйлера

$$P_{\rm Kp} = \frac{\pi^2 E J_{\rm pacy}}{l^2} \,,$$

где  $P_{\rm KP}$  - критическая сила, H;

E - модуль упругости, МПа;  $J_{\text{расч}}$  - момент инерции поперечного сечения винта, мм⁴;

$$J_{\text{pacy}} = 0.01 \left( 2 \div 3 \frac{d}{d_1} \right) d_1^4 ,$$

где d - наружный диаметр винта;  $d_1$  - внутренний диаметр винта; l - длина винта, мм (расстояние от середины гайки до опорной поверхности головки винта при вывернутом до отказа винте, причем винт рассматривается как стержень с шарнирно закрепленными концами).

Запас устойчивости

$$n_{y} = \frac{P_{KP}}{Q},$$

рекомендуется  $n_{\rm V} \ge 4$ .

#### 8. Лопускаемые давления

Материал	[q], МПа
Сталь по чугуну Сталь по антифрикционному чугуну	5-6 10-13
Сталь по стали Сталь по бронзе	7-13 7-13

Формула Эйлера применима при условии, что гибкость стержня  $\lambda = \frac{l}{i}$  больше предельной ( $\lambda > \lambda_{\rm пред}$ ), где i - радиус инерции поперечного стержня (для круглого сечения  $i = \frac{d}{4}$ ).

Для стали  $\lambda_{\text{пред}} \approx 100$ . При гибкости меньше предельной определяют критическое напряжение в МПа:

$$\sigma_{KP} = 321 - 1.16 \frac{l}{i};$$

$$P_{KP} = \frac{\pi d_1^2}{4} \sigma_{KP}.$$

При гибкости  $\lambda$  <60 расчет на устойчивость является излишним.

Высоту гайки определяют из расчета на допускаемое давление [q] (табл. 8) между витками винта и гайки:

$$H = zP$$
,

где P - шаг резьбы; z - полезное число витков, z должно быть не более 10, так как остальные витки не будут работать.

Если z > 10, то переходят либо на другие материалы, либо увеличивают d и  $d_1$ :

$$z \geq \frac{400}{\pi \left(d^2 - d_1^2\right)[q]}.$$

Усилие рабочего  $P_{\rm p}$ , необходимое для подъема груза Q. Из уравнения

$$P_0 = Q \operatorname{tg} (\beta + \rho) + \frac{2Qf \left(d_3^3 - d_4^3\right)}{3d_2 \left(d_3^2 - d_4^2\right)}$$

определяют  $P_0$  - усилие, необходимое для вращения винта, приложенное по среднему диаметру резьбы. Первый член правой части уравнения представляет собой часть

этого усилия, необходимую для подъема груза и преодоления трения в резьбе, а второй член - часть усилия, необходимую для преодоления силы трения на кольцевой поверхности стыка между вращающимся винтом и неподвижной чашкой. При длине рукоятки L усилие  $P_{\rm p}$  находят из условия равенства моментов сил  $P_{\rm 0}$  и  $P_{\rm p}$  относительно оси винта:

$$P_0 \frac{d^2}{2} = P_p L .$$

КПД домкрата

$$\eta = \frac{A_{\Pi}}{A_{2}} ,$$

где  $A_{\Pi} = QP$  - полезная работа подъема груза за один оборот винта;

 $A_3 = P_0 \pi d_2$  - затраченная работа за один оборот винта.

Резьбу грузовых винтов делают прямоугольной и трапецеидальной.

Пример расчета домкрата. Произвести проверочный расчет домкрата с  $Q = 60~000~\mathrm{H}$  с данными, приведенными на рис. 4.

Винт изготовлен из стали 35, гайка - из бронзы, резьба однозаходная с шагом 10 мм

- 1. Определим КПД домкрата:
- а) угол  $\beta$  подъема винтовой линии прямоугольной резьбы (при среднем диаметре  $d_2$ )

$$tg\beta = \frac{P}{\pi d_2} = \frac{10}{3,14 \cdot \frac{40 + 50}{2}} = \frac{10}{3,14 \cdot 45} = 0,0707,$$

или  $\beta = 4^{\circ}03'$ ;

- б) угол трения  $\rho$  при f = 0.12  $tg \rho = 0.12$ , или  $\rho = 6°51'$ ;
- в) условие самоторможения будет при  $\beta \le \rho$ ;
- г) условие преобразования поступательного движения во вращательные будет при  $\beta \ge 2o$ :
- д) работа за один оборот винта, необходимая для подъема груза и преодоления силы трения в резъбе,

$$A_p = Q\pi d_2 \operatorname{tg} (\beta + \rho) =$$
= 60 000 · 3,14 · 45 tg (4°03′ + 6°51′) =  
= 60 000 · 141 · 0,1925 ≈  
≈ 1630 000 H · MM;

е) работа за один оборот винта, необходимая для преодоления трения на торцовой части винта при  $f_1$  =0,14:

$$A_{\rm T} = \frac{2}{3} \frac{Q f_1 \left(d_3^3 - d_4^3\right)}{d_3^2 - d_4^2} \pi =$$

$$= \frac{2 \cdot 60000 \cdot 0,14 \left(60^3 - 32^3\right)3,14}{3 \left(60^2 - 32^2\right)} =$$

= 1252000 H · мм; ж) полезная работа подъема груза

$$A_{\Pi} = QP = 60000 \cdot 10 =$$
  
= 600000 H · MM:

КПД

$$\eta = \frac{A_{\rm n}}{A_{\rm p} + A_{\rm T}} =$$

$$= \frac{600\,000}{2\,882\,000} \,100 = 20.9\,\%;$$

2. Определяем усилие рабочего  $P_{\rm p}$  при подъеме груза. При длине рукоятки 1000 м работа за один оборот

$$A_3 = P_p \cdot 2\pi L = P_p \cdot 6,28 \cdot 1000 =$$
  
= 6280 $P_p$ ;

эта работа должна быть равна  $A_{\rm p}+A_{\rm T}$  , т.е.  $6280P_{\rm p}=2\,882\,000\,$  H·мм, откуда

$$P_{\rm p} = \frac{2882\,000}{6280} = 458$$
 H.

Усилие  $P_{\rm p}$  очень велико, поэтому придется приложить усилие двух рабочих, так как на одного рабочего принимают  $P_{\rm p}=150\div300$  H.

- 3. Проверяем напряжение в винте:
- а) расчетная длина винта

$$l = 390 + 70 - \frac{100}{2} = 410$$
 MM;

б) радиус инерции круга диаметром  $d_1 = 40$  мм

$$i = \frac{d_1}{4} = \frac{40}{4} = 10$$
 MM;  
 $\lambda = \frac{l}{i} = \frac{410}{10} = 41$ ,

при такой малой гибкости проверки на устойчивость не требуется;

в) нормальное напряжение

$$\sigma_{cxc} = \frac{Q}{F} = \frac{60000}{\frac{3,14 \cdot 40^2}{4}} = 47,8 \text{ M}\Pi a;$$

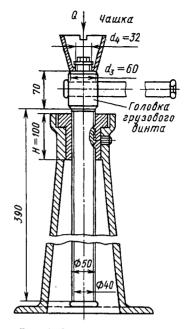



Рис. 4. Схема к расчету домкрата

г) касательное напряжение

$$\tau_{\rm KP} = \frac{M_{\rm KP}}{0.2d_1^3} = \frac{260\,000}{0.2\cdot40^3} = 20.3 \text{ M}\Pi a,$$

где крутящий момент

$$M_{\rm KP} = Q \frac{d_2}{2} \operatorname{tg}(\beta + \rho) =$$
  
=  $60\,000 \frac{45}{2} \, 0.1925 = 260\,000 \, \text{H} \cdot \text{MM};$ 

д) приведенное напряжение

$$\sigma_{\Pi p} = \sqrt{\sigma_{C x x}^2 + 4\tau_{K p}^2} =$$

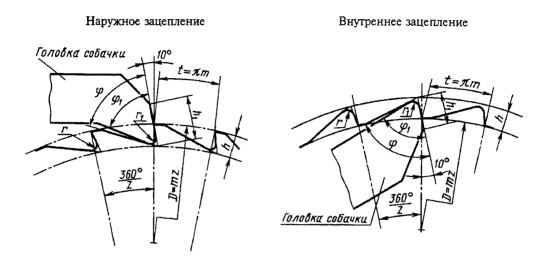
$$= \sqrt{47.8^2 + 4 \cdot 20.3^2} = 62.7 \,\text{M}\,\Pi a,$$

для винта из стали 35 при статической нагрузке допустимо  $\sigma_B = 85,0 \text{ M}\Pi a$ .

- 4. Проверяем высоту гайки:
- а) число витков в гайке

$$z = \frac{H}{P} = \frac{100}{10} = 10$$
;

б) удельное давление


$$q = \frac{4Q}{z\pi \left(d^2 - d_1^2\right)} \approx 8.5 \text{ M}\Pi a.$$

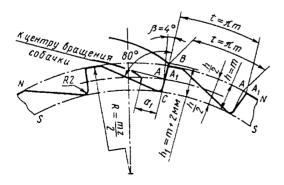
Результат расчета удовлетворительный, так как величина находится в пределах, указанных в табл. 8.

# храповое зацепление

# виды храповиков

#### 9. Мелкомодульные храповики




Для внутреннего зацепления брать значения  $\it D$  , не отмеченные звездочкой.

		Общие ра	змеры, мм	ſ			Зацеп	ление	
Модуль	Шаг					нару	жное	внутр	еннее
m	t	h	h ₁	r	η	φ°	φĵ	φ°	φĵ
0,6 0,8 1,0	1,88 2,51 3,14	0,8 1,0 1,2	3	0,3	0,4	55	50	65	60
1,25 1,5	3,92 4,71	1,5 1,8	4						
2,0 2,5	6,28 7,85	2 2,5	5	0,5	0,8	60	55	70	65

Продолжение табл. 9

Модуль		Д	иаметр <i>D</i> за	цепления пр	ои числе зуб	ьев	
m	20	24	30	36	45	50	60
0,6	_	_	_	-	_	30*	36*
0,8	-	-	_	_	36 <b>°</b>	40*	48*
1,0	-	_	-	36*	45 <b>*</b>	50*	60
1,25	-	_	37,5*	45 <b>*</b>	56,2*	62,5	75
1,5		36*	45*	54*	67,5	75	90
2,0	40°	48*	60	72	90	100	120
2,5	50*	60 <b>*</b>	75	90	112,5	125	150
Модуль		Д	иаметр <i>D</i> за	цепления пр	ри числе зуб	ьев	-
m	72	90	100	120	144	180	200
0,6	43,2*	54 <b>*</b>	60	72	86,4	108	120
0,8	57,6*	72	80	96	115,2	144	160
1,0	72	90	100	120	144	180	200
1,25	90	112,5	125	150	180	_	_
1,5	108	135	150	180	_	- '	_
2,0	144	180		-	-	~	_
2,5	180	_	~	_	_	_	_

10. Храповик переключения (число зубьев z от 12 до 30) Размеры, мм



 $t = \pi m - \text{шаг, мм};$ 

2R = mz - диаметр начальной окружности, мм;

h = m - высота зуба, мм

Мо- дуль	20	22	24	26	30	36	42
$a_1$	14	15	16	17	19	21	24

Построение профиля. Разделить внешнюю окружность NN на z равных частей (AA=t), через точки деления провести радиусы и построить угол  $\beta = 4^{\circ}$ . В точке С пересечения образующей угла  $\beta$  с окружностью SS, ограничивающей впадины зубьев, построить угол  $A_1CB=80^{\circ}$  искомого профиля.

 Остановочные храповики с наружным и внутренним зацеплениями (число зубьев z от 8 до 30)

2R = mz - диаметр начальной окa=m - длина хорды AB, мм h = 0.75m - Bысота зуба, мм;  $t = \pi m - \text{utar}$ , MM; ружности, мм; _M2 SOBURU mx=, врашения t=x1 К центру бращения, coganka

Размеры, мм

							Модуль т	1b M					
Параметры	ğ	9	8	10	12	14	16	16 18	20	22	24	26	30
Храповика	,	18,85	25,13	31,42	37,70	43,98	50,27	56,55	56,55 62,83	69,12	75,40 81,68	81,68	
	l l	4,5	9	7,5	6	10,5	12	13,5	15	16,5	18	19,5	22,5
Собачки	lμ	9	8	10	12	14	14	91	18	20	20	22	25
	lв	4	4	9	9	8	8	12	12	12	41	14	91

Построение профилей наружного и внутреннего зацеплений (в скобках дана величина углов при внутреннем зацеплении). Описывают начальную окружность NN и окружность оснований зубьев SS. Окружность NN делят шагом 1 на равные части. От любой точки деления откладывают хорду AB=a. На хорде BC при точке C строят угол в 30° (20°). В середине хорды BC восстанавливают перпендикуляр LM до пересечения в точке 0 со стороной угла СК. Из точки 0 радиусом 0С описывают окружность. Точка F пересечения этой окружности с окружностью SS есть вершина угла в 60° (70°).

#### РАСЧЕТ ХРАПОВИКОВ

В качестве исходных данных необходимо знать требуемый угол поворота храпового колеса  $\alpha$ ° и передаваемый крутящий момент на валу храпового колеса.

Предварительное число зубьев храпового колеса  $z_{\rm пp} = \frac{360^{\circ}}{\alpha}$ ; принимают  $z = 8 \div 48$ , предпочтительно  $z = 12 \div 20$ .

Фактический угол поворота храпового колеса (на один зуб)

$$\alpha = \frac{360^{\circ}}{z}.$$

Модуль храпового колеса, мм: для наружного зацепления

$$m = 1,75 \sqrt[3]{\frac{M_{\rm Kp}}{z\psi[\sigma_{\rm H}]}} ;$$

для внутреннего зацепления

$$m=1,1\,\sqrt[3]{\frac{M_{\rm Kp}}{z\psi[\sigma_{\rm H}]}}\,,$$

где  $M_{\rm kp}$  - крутящий момент на валу храпового колеса, Н $\cdot$ мм;

ψ - отношение ширины колеса к модулю;

$$\Psi = \frac{b}{m}.$$

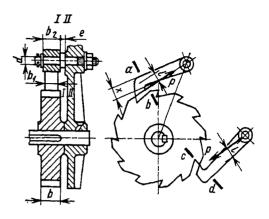



Рис. 5. Схема к расчету храповиков

Расчетный модуль округляют до стандартного. Проверку линейного давления производят по формуле

$$\frac{2M_{\rm KP}}{mzb} \le q \ ,$$

где b - ширина зуба, мм;  $\left[\sigma_{\mathbf{H}}\right]$  - допускаемое напряжение на изгиб для материала колеса, МПа:

q - допускаемое давление на единицу длины зуба, Н/мм. Ширина собачки  $b_1 \le b$ .

Значения  $\psi$ , q и  $[\sigma_{\mathsf{H}}]$  для различных материалов храповых колес приведены в табл. 12.

12. Значения w, q и [он]

Материал храпового колеса	Отношение ψ	Допускаемое линейное давление <i>q</i> , Н/мм	Допускаемое напряжение изгиба [о _и ], МПа
Чутун СЧ 18; СЧ 15	1,5-6,0	150	30
Сталь марок 35Л и 45Л	1,5-4,0	300	80
Поковка из стали Ст3	1,0-2,0	350	100
Поковка из стали 45	1,0-2,0	400	120

Храповые колеса и их собачки изготовляют закаленными и цементованными с закалкой.

Напряжение в опасном сечении a-b или c-d собачки (рис. 5)

$$\sigma_{\mathcal{H}} = \frac{M_{\mathcal{H}}}{W} + \frac{P}{F} \leq \left[\sigma_{\mathcal{H}}\right],$$

где окружная сила

$$P=\frac{2M_{\rm KP}}{mz};$$

Изгибающий момент

 $M_u = Pl$  (здесь l - плечо изгиба);

$$W = \frac{b_1 x^2}{6}$$
;  $F = b_1 x$ .

Диаметр оси собачки: в сечении I - I

$$d = \sqrt[3]{\frac{P}{0, \mathbb{I}[\sigma_{H}]} \cdot \frac{b_2}{2}} ;$$

в сечении II - II

$$d = \sqrt[3]{\frac{P}{0, l[\sigma_H]} \cdot \left(\frac{b_2}{2} + e\right)},$$

где  $\left[\sigma_{H}\right] \leq 50$  МПа для оси собачки из стали Ст5 или стали 45.

## Дополнительные источники

**Краткий** справочник конструктора нестандартного оборудования / Под ред. В.И. Бакуменко. М.: Машиностроение, 1995.

Машиностроение. Энциклопедия в 40 томах. Том IV-1. Детали машин. Конструкционная прочность. Трение, износ, смазка / Под ред. Д.Н. Решетова. М.: Машиностроение, 1995.

# Глава VIII

# ШАРИКОВЫЕ ВИНТОВЫЕ ПЕРЕДАЧИ

#### ОБЩИЕ СВЕДЕНИЯ

Шариковая винтовая передача (ШВП) состоит из винта и гайки и служит для преобразования вращательного движения в поступательное.

В шариковинтовых передачах на винте *1* и в гайке *2* выполнены винтовые канавки (резьба) криволинейного профиля, служащие дорожками качения для шариков, размещенных между витками винта и гайки (рис. 1). Наибольшее распространение получила резьба с полукруглым профилем. При этом вращение закрепленной от осевых перемещений гайки вызывает поступательное перемещение винта, или вращение закрепленного от осевых перемещений винта приводит к поступательному перемещению гайки.

Основные геометрические параметры передачи: номинальный диаметр  $d_0$ , т.е. диаметр расположения центров тел качения, шаг P резьбы и диаметр  $D_w$  тел качения (обычно  $D_w = 0.6P$ ).

Достоинства шариковинтовой передачи: возможность создания больших осевых сил; малые потери на трение (КПД передачи

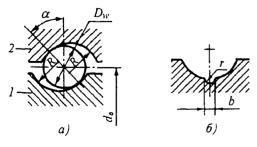



Рис. 1. Основные параметры полукруглого профиля резьбы

0,9 и выше); возможность получения поступательного перемещения с высокой точностью; малые габариты при высокой несущей способности; значительный ресурс.

К недостаткам можно отнести сложность конструкции гайки, необходимость высокой точности изготовления и хорошей защиты передачи от загрязнений.

Шариковинтовые передачи применяют в механизмах точных перемещений, в следящих системах и в ответственных силовых передачах (станкостроение, робототехника, авиационная и космическая техника, атомная энергетика, кузнечно-прессовое оборулование и до.).

Устройство и принцип работы. При вращении винта шарики увлекаются в движение по винтовым канавкам, поступательно перемещают гайку и, выкатываясь из резьбы, через перепускной канал (канал возврата) возвращаются в исходное положение. Таким образом перемещение шариков происходит по замкнутому внутри гайки контуру. Наиболее распространена конструкция ШВП, в которой канал возврата соединяет два соседних витка.

В станкостроении применяют трехконтурные гайки. Перепускной канал выполняют в специальном вкладыше, который вставляют в овальное окно гайки. В трехконтурной гайке предусматривают три вкладыша, расположенные под углом 120° один к другому и смещенные по длине гайки на один шаг резьбы по отношению друг к другу. Таким образом шарики в гайке разделены на три (по числу рабочих витков) независимых группы. При работе передачи шарики, пройдя по винтовой канавке на винте путь, равный длине одного витка, выкатываются из резьбы в перепускной канал вкладыша и возвращаются обратно в исходное положение на тот же виток гайки.

Номинальный диаметр $d_0$	Шаг резьбы <i>P</i>	ь	r	Номинальный диаметр $d_0$	Шаг резьбы <i>Р</i>	ь	r
16	2,5		-	50	10,0	1,50	0,85
25	5,0	1,00	0,55	50	12,0	1,80	0,95
25	10,0	1,50	0,85	63	10,0	1,50	0,85
32	5,0	1,00	0,55	80	10,0	1,50	0,85
32	10,0	1,50	0,85	80	20,0	3,00	1,60
40	5,0	1,00	0,55	100	10,0	1,50	0,85
40	6,0	1,00	0,55	100	20,0	3,00	1,60
40	10,0	1,50	0,85	125	20,0	3,00	1,60
50	5,0	1,00	0,55				

#### 1. Размеры разгрузочных канавок, мм

**Профиль резьбы.** Основные параметры полукруглого профиля резьбы (рис. 1, a): R=(0,515...0,525)  $D_w$  - радиус канавок;  $\alpha$ =45° - угол контакта шариков;  $\psi$ =arctg  $\left[P_Z / \left(\pi d_0\right)\right]$  - угол подъема резьбы (здесь z - число заходов резьбы).

На рис. 1, б показан в нормальном сечении профиль резьбы винта с разгрузочной канавкой, а в табл. 1 приведены размеры разгрузочных канавок по ОСТ 2 Р31-5-89.

**ШВП с предварительным натягом**. С целью устранения осевого зазора в сопряжении винт-гайка и повышения тем самым осевой жесткости и точности перемещения ведомого элемента ШВП собирают с предварительным натягом.

Для передачи с полукруглым профилем резьбы натяг создают установкой двух гаек с последующим относительным их осевым смещением. Относительное смещение гаек осуществляют установкой прокладок между ними или их относительным угловым поворотом.

Профиль резьбы и конструкцию гайки (канал возврата шариков, регулирование натяга и т.д.) определяет завод-изготовитель.

#### ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

Шариковые винтовые передачи применяют в широком диапазоне размеров (табл. 2).

•	no.		TO OTT 3 2330 03
L.	Типоразмеры шариковых	винтовых передач	10 TUCL 25329-82

Номинальный диаметр $d_0$ ,				Номин	альны	й шаг	P, $MM$			
ММ	2,5*	3	4	5*	6	8	10*	12	16	20"
6 8 10 12 16 20 25 32 40 50 63 80 100 125 160 200	++++++	+ + +	+ + + +	+ + + + + + +	+++++++	++++++++	+ + + + + + + + + + + + + + + + + + + +	++++++++	+ + + + + + +	+ + + + +

^{*} Предпочтительные шаги.

Технические условия на шариковинтовые передачи, применяемые в станкостроении, установлены ОСТ 2 Р31-5-89. Этот стандарт распространяется на ШВП, применяемые для комплектации металло- и деревообрабатывающих станков, промышленных роботов, кузнечнопрессового оборудования.

Стандарт устанавливает основные размеры, основные параметры, комплектность, маркировку, порядок и состав приемосдаточных испытаний, упаковку, условия транспортирования и хранения, указания по эксплуатации и гарантии заводаизготовителя централизованно изготовляемых ШВП.

B стандарте учтены требования ISO/DP 8931, ISO/DP 8932, ISO/DP 3408, ISO/DP 9783, ISO/DP 9784.

Основные размеры ШВП приведены:

корпусных - в табл. 3, бескорпусных - в табл. 4. Размеры даны для трехконтурных гаек. Для гаек с иным числом контуров размеры должны быть пересчитаны.

*Корпусные передачи* изготовляют в 4-х исполнениях:

- ШВП с одной или двумя гайками без корпуса:
- II ШВП с двумя гайками в цилиндрическом корпусе, имеющем фланец;
- III ШВП с двумя гайками в призматическом корпусе, имеющем сквозные крепежные отверстия;
- IV ШВП с двумя гайками в призматическом корпусе, имеющем глухие резьбовые крепежные отверстия.

Применение ШВП исполнения III является непредпочтительным.

Бескорпусные ШВП рекомендуют применять при новом проектировании.

#### 3. Основные размеры корпусных ШВП, мм

Номинальный диаметр d ₀	Шаг резьбы <i>Р</i>	Диаметр шарика $D_{w}$	Общая длина винта $L_{\mathrm{B}}$ , не более	Длина резьбы винта $L_{ m p}$ , не более	Диаметр опор- ных шеек $d_1$ , не более
25 32	5	3,0 3,0	710 1000	630 800	21,7 28,7
40	5 6 10	3,0 3,5 6,0	1200	1000	36,7 36,2 33,7
50	5 10 12	3,0 6,0 7,0	1500	1250	46,7 43,7 42,7
63	10	6,0	2500	2200	56,7
80	10 20	6,0 10,0	6000	3600	73,7 69,7
100	10 20	6,0 10,0	6000	4500	93,7 89,7

# 4. Основные размеры бескорпусных ШВП, мм

Номинальный диаметр $d_0$	Шаг резьбы <i>Р</i>	Диаметр шарика $D_w$	Номинальный диаметр $d_0$	Шат резьбы <i>Р</i>	Диаметр шарика $D_{\it w}$
16	2,5	1,5	50	10,0	6,0
25	5,0	3,0	63	10,0	6,0
	10.0	6,0	80	10,0	6,0
32	5,0	3,0		20,0	10,0
	10,0	6,0	100	10,0	6,0
40	5,0	3,0		20,0	10,0
	10,0	6,0	125	20,0	16,0
50	5,0	3,0			

#### нормы точности

По точностным параметрам ШВП разделяют на позиционные и транспортные (ОСТ 2 Р31—7—88). Позиционные ШВП позволяют произвести косвенное измерение осевого перемещения в зависимости от угла поворота и хода резьбы винта. В транспортных ШВП перемещения измеряют прямым методом с помощью отдельной измерительной системы, не зависящей от угла поворота винта.

Классы кинематической и геометрической точности ШВП должны соответствовать ОСТ 2 Р31-4-88. Согласно этому стандарту установлены классы точности для позиционных (П) и транспортных (Т) ШВП соответственно: П1, П3, П5, П7 и Т1, Т3, Т5, Т7, Т9. Т10.

Кинематическую точность ШВП характеризуют кинематической погрешностью винтовой пары - разностью между действительным и номинальным осевыми перемещениями одной из сопряженных деталей винтовой пары в их относительном движении. Под наибольшей кинематической погрешностью понимают наибольшую алгебраическую разность значений кинематической погрешности винтовой пары в пределах заданной длины осевого перемещения.

Зависимость кинематической погрешности винтовой пары от номинального осевого перемещения представлена на рис. 2. Отклонение кинематической погрешности на всей измеряемой длине  $l_{\rm u}$  резьбы не должно превышать допускаемого значения  $e_{\rm p}$ .

В качестве других нормируемых показателей кинематической точности приняты:

 $V_{\rm иp}$  - ширина полосы колебаний кинематической погрешности на измеряемой длине  $l_{\rm H}$  резьбы;




Рис. 2

 $V_{\rm 300p}$  - ширина полосы колебаний кинематической погрешности в пределах 300 мм измеряемой длины резьбы;

 $V_{2\pi p}$  - ширина полосы отклонения пульсаций кинематической погрешности в пределах одного оборота, т.е. в пределах хода  $P_h$  резьбы.

Допускаемые значения нормируемых показателей (табл. 5 и 6) регламентированы ОСТ 2 Р31-4-88, в котором учтены требования ИСО.

Внутризаводские приемосдаточные нормы кинематической точности (ОСТ 2 Р31-5-89). Ширина полосы колебаний отклонения действительного перемещения от номинального, оцениваемая параметром  $V_{\rm up}$ , для позиционных ШВП на всей измеряемой длине  $I_{\rm u}$  резьбы по внутризаводским приемосдаточным нормам кинематической точности должна быть не более значений, указанных в табл. 7.

Внутризаводские приемосдаточные нормы точности на внутришаговое отклонение  $V_{2\pi p}$  не подлежат ужесточению, так как они находятся на уровне лучших мировых стандартов и на пределе возможностей технических измерений.

5. Допускаемые значения показателей  $V_{300\mathrm{p}}$  и  $V_{2\pi\mathrm{p}}$  , мм

Показа-			Класс то	учности		
тель	П1, Т1	П3, Т3	П5, Т5	П7, Т7	Т9	T10
V _{300p}	0,006	0,012	0,023	0,052	0,100	0,210
V _{2πp}	0,004	0,006	0,008	0,012	_	_

6. Допускаемые значения показателей	$e_{\mathbf{p}}$	И	$V_{\rm HD}$	кинематической точности. мм
-------------------------------------	------------------	---	--------------	-----------------------------

Измер	яемая				Класс	точности			
	$l_{H}$ , MM	п	[1	Π	13	П	[5		П7
Св.	До	$e_{ m p}$	$V_{\rm up}$	$e_{ m p}$	$V_{\rm up}$	$e_{ m p}$	$V_{\rm up}$	$e_{ m p}$	$V_{\rm up}$
	315	0,006	0,006	0,012	0,012	0,023	0,023	0,052	0,052
315	400	0,007	0,006	0,013	0,012	0,025	0,025	0,056	0,055
400	500	0,008	0,007	0,015	0,013	0,027	0,026	0,062	0,058
500	630	0,009	0,007	0,016	0,014	0,030	0,029	0,070	0,062
630	800	0,010	0,008	0,018	0,016	0,035	0,031	0,079	0,068
800	1000	0,011	0,009	0,021	0,017	0,040	0,035	0,091	0,074
1000	1250	0,013	0,010	0,024	0,019	0,046	0,039	0,105	0,082
1250	1600	0,015	0,011	0,029	0,022	0,054	0,044	0,124	0,093
1600	2000	0,018	0,013	0,035	0,025	0,065	0,051	0,148	0,106
2000	2500	0,022	0,015	0,041	0,029	0,077	0,059	0,176	0,123
2500	3150	0,026	0,017	0,050	0,034	0,093	0,069	0,213	0,143
3150	4000	0,032	0,021	0,062	0,041	0,115	0,082	0,261	0,170
4000	5000	_	_	0,076	0,049	0,140	0,099	0,320	0,203
5000	6300	-	-	-	_	0,170	0,110	0,393	0,244
6300	8000	_		-	-	_	-	0,473	0,298

Примечание. Для транспортных ШВП всех классов точности значения  $V_{\rm up}$  не регламентируют, а значение  $e_{\rm p}$  =2  $l_{\rm u}$   $V_{\rm 300p}$  /300.

7. Нормы кинематической точности, мм

Измеряемая длина <i>I</i> и		$V_{ m up}$ для классов точности						
		по	OCT 2 P31-4	-88	приемосдаточные			
Св.	До	П1	П3	П5	П1	П3	П5	
	315	0,006	0,012	0,023	0,005	0,008	0,018	
315	400	0,006	0,012	0,025	0,005	0,010	0,020	
400	500	0,007	0,013	0,026	0,005	0,010	0,020	
500	630	0,007	0,014	0,029	0,006	0,012	0,023	
630	800	0,008	0,016	0,031	0,007	0,013	0,025	
800	1000	0,009	0,017	0,035	0,008	0,015	0,027	
1000	1250	0,010	0,019	0,039	0,009	0,016	0,030	
1250	1600	0,011	0,022	0,044	0,010	0,018	0,035	
1600	2000	0,013	0,025	0,051	0,011	0,021	0,040	
2000	2500	0,015	0,029	0,059	0,013	0,024	0,046	
2500	3150	0,017	0,034	0,069	0,015	0,029	0,054	
3150	4000	0,021	0,041	0,082	0,018	0,035	0,065	
4000	5000		0,049	0,099	_	0,041	0,077	
5000	6300	-	_	0,119	_	_	0,093	

#### ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ШВП

Согласно ОСТ 2 Р31-5-89 качество материалов, обработки и сборки ШВП должно соответствовать ГОСТ 7599-82, а для поставок на экспорт - ОСТ2 Н06-1-86.

Радиальный зазор между винтом и гайкой до создания преднатяга для ШВП с полукруглым профилем должен соответствовать значениям, приведенным в табл. 8.

Радиальный зазор измеряют при смещении собранной гайки в радиальном направлении под действием силы, превышающей силу тяжести гайки в 1,5-2 раза. Измерительный наконечник индикатора должен касаться наружной поверхности гайки.

8. Радиальный зазор ШВП до создания преднатяга

Номинальный	Шаг резьбы <i>Р</i> , мм	Радиальный зазор, мм			
диаметр $d_0$ , мм	_	максимальный	минимальный		
16	2,5	0,020/	0,056/		
25	5,0	0,093/0,107	0,067/0,073		
25	10,0	0,170/0,170	0,110/0,113		
32	5,0	0,096/0,110	0,064/0,075		
32	10,0	0,170/0,171	0,110/0,112		
40	5,0	0,096/0,110	0,064/0,072		
40	6,0	0,101/0,113	0,059/0,065		
40	10,0	0,161/0,173	0,119/0,126		
50	5,0	0,101/0,110	0,059/0,061		
50	10,0	0,163/0,175	0,117/0,125		
50	12,0	0,183/0,197	0,137/0,146		
63	10,0	0,165/0,177	0,115/0,123		
80	10,0	0,167/0,179	0,113/0,121		
80	20,0	0,247/0,273	0,193/0,211		
100	10,0	0,170/0,192	0,110/0,118		
100	20,0	0,250/0,276	0,180/0,198		
125	20,0	0,422/0,430	0,338/0,350		

Примечание. В знаменателе приведены значения радиального зазора для винтов с разгрузочными канавками (рис. 1,  $\delta$ ).

Осевая жесткость. Под осевой жесткостью понимают отношение действующей на передачу осевой силы, приложенной к гаечной группе, к ее осевому перемещению относительно винта при условии, что винт не проворачивается.

Значения осевой жесткости должны быть не менее значений, приведенных в табл. 9 и 10.

При измерении жесткости корпус гаечной группы и винт удерживают от проворота. На винте закрепляют измерительное приспособление, позволяющее одновременно производить измерения смещения корпуса (гайки) относительно винта в трех равномерно расположенных по окружности точках при помощи датчиков линейного перемещения. К винту прикладывают осевую силу F. Значения силы F, приклады-

ваемой к винту при определении осевой жесткости, приведены в табл. 11.

**Грузоподъемностъ.** Значения динамической  $C_a$  и статической  $C_{0a}$  грузоподъемностей, а также минимальные и максимальные значения момента  $T_{\rm XX}$  холостого хода ШВП приведены в табл. 12.

Шариковинтовые передачи характеризуются базовой статической осевой  $C_{0a}$  и базовой динамической осевой  $C_a$  грузоподъемностью.

Базовая статическая осевая грузоподъемность  $C_{0a}$  - статическая осевая сила (H), которая вызывает общую остаточную пластическую деформацию шарика, канавок винта и гайки, равную 0,0001 диаметра шарика.

9. Осевая жесткость корпусных ШВІ	9.	Осевая	жесткость	корпусных	швп
-----------------------------------	----	--------	-----------	-----------	-----

Номинальный	Шаг резьбы <i>P</i> , мм	Жесткость для классов точности, Н/мкм					
диаметр $d_0$ , мм		П1 Т1	П3 Т3	П5 Т5	П7 Т7	- T9	— Т10
25	5	500	460	420	400	_	-
32	5	700	650	590	560	-	_
	5	950	880	800	760	~	_
40	6	830	770	705	660	-	_
	10	<b>74</b> 0	680	620	590	-	
	5	1250	1150	1050	990	_	_
50	10	1000	920	840	800	-	_
	12	900	825	750	705	_	
63	10	1350	1260	1150	1100	-	_
80	10	1700	1570	1430	1350	_	-
	20	1450	1360	1240	1180	_	-
100	10	2200	2040	1860	1770		-
	20	2100	1950	1780	1700	_	-

Примечания: 1. Жесткость для классов точности Т9 и Т10 не регламентируют.

#### 10. Осевая жесткость бескорпусных ШВП

Номинальный	Шаг резьбы <i>P</i> ,	Жесткость для классов точности, Н/мкм					
диаметр $d_0$ , мм		П1 Т1	П3 Т3	П5 Т5	П7 Т7	– Т9	- T10
16	2,5	230	215	200	190	_	
25	5	560	540	490	460		
	10	460	440	400	380	_	_
32	5	760	730	665	630		_
	10	610	590	535	500	_	_
40	5	1050	1000	950	900	_	-
	10	820	780	715	680	_	_
50	5	1250	1200	1100	1050	-	-
	10	1100	1050	980	930	_	-
63	10	1550	1500	1370	1300	_	_
80	10	1900	1800	1650	1570		_
	20	1650	1580	1440	1370	-	
100	10	2450	2350	2150	2050		
	20	2350	2250	2075	1970		
125	20	2850	2750	2525	2400	-	

Примечание. Жесткость для классов точности Т9 и Т10 не регламентируют.

^{2.} Для исполнения с одной гайкой жесткость не регламентируют, с двумя - согласно приведенным в таблице значениям (при этом гайки заключают в технологический корпус).

Типоразмер $d_0 \times P$ , мм	<i>F</i> , кH	Типоразмер $d_0 \times P$ , мм	<i>F</i> , кН	
16×2,5	0,5	50×10	3,75	
25×5	1,6	50×12	6,9	
25×10	3,0	63×10	7,5	
32×5	2,3	80×10	9,15	
32×10	2,5	80×20	12,0	
40×5	4,6	100×10	15,0	
40×6	3,0	100×20	25,95	
40×10	3,25	125×20	40,0	
50×5	4,85	1		

11. Значения осевой силы F при определении жесткости ШВП

12. Основные характеристики ШВП

Типоразмер	Грузоподъ	емность, Н	$T_{XX}$ , $H ext{-}M$		
$d_0 \times P$ , MM	статическая $C_{0a}$	динамическая $C_a$	min	max	
16×2,5	9600	5000	0,05	0,20	
25×5	28100	16580	0,08	0,32	
25×10	48800	46400	0,11	0,35	
32×5	37500	17710	0,18	0,56	
32×10	65000	49800	0,22	0,60	
40×5	49400	19170	0,30	0,84	
40×6	56400	23700	0,32	0,83	
40×10	85900	54700	0,45	0,95	
50×5	62800	20640	0,50	1,35	
50×10	112500	57750	0,48	1,23	
50×12	119900	65400	0,49	1,09	
63×10	149700	62030	0,75	2,03	
80×10	197700	66880	1,23	3,25	
80×20	297600	143400	2,30	3,88	
100×10	251100	71840	2,04	5,20	
100×20	386400	151800	2,75	5,23	
125×20	729000	278000	2,80	5,50	

Примечание. Приведенные значения для корпусных ШВП соответствуют исполнениям II, III и IV.

Базовая динамическая осевая грузоподъемность  $C_a$  - осевая сила (H), которую шариковинтовая передача может воспринимать при базовой долговечности, составляющей 1 миллион оборотов винта.

Базовые грузоподъемности соответствуют передаче, выполненной из обычно применяемых сталей [1, 3]. При отличии

свойств материала от обычных, а также в зависимости от класса точности, твердости рабочих поверхностей и др. вычисляют значение скорректированной статической  $C_{0ap}$  и скорректированной динамической  $C_{ap}$  грузоподъемности:

$$C_{0ap} = K_0 C_{0a}$$
 и  $C_{ap} = K C_a$ ,

где  $K_0$  и K - корректирующие коэффициенты (см. с. 798).

Момент холостого хода замеряют в контролируемой передаче, установленной в центрах стенда, при вращении винта с частотой 100 мин⁻¹.

Все параметры в табл. 9-12 указаны для ШВП с трехконтурными гайками. Для ШВП, имеющих гайки с количеством контуров 1, 2, 4, 5 или 6 значения осевой жесткости, статической грузоподъемности должны быть уменьшены в 3; 1,5; 0,75; 0,6 или 0,5 раза соответственно. Значения динамической грузоподъемности должны быть уменьшены в 2,57; 1,42; 0,78; 0,64 или 0,55 раза соответственно.

В ШВП с вкладышами, установленными в окна гаек с помощью элементов ориентации, совмещающими канал возврата с резьбой гайки в зоне контакта шариков с гайкой, динамическая грузоподъемность выше в 1,02 раза, а долговечность - 1,06 раза.

Значения критической осевой силы должны соответствовать ОСТ 2 Н62-6-85.

**ШВП с предварительным натягом.** С целью устранения осевого зазора в сопряжении винт-гайка и повышения тем самым осевой жесткости и точности перемещения ведомого элемента ШВП собирают с предварительным натягом.

Передачи, применяемые в станкостроении, выполняют с натягом; они состоят из двух гаек, каждая из которых имеет по три рабочих витка. Перепускные каналы в специальных вкладышах соединяют два соседних витка. Шарики в этом случае разделены на три циркулирующие группы.

Профиль резьбы - полукруглый. Натяг создают относительным осевым смещением гаек, которое осуществляют установкой прокладок между ними или их относительным угловым поворотом. В последнем случае соединение гаек с корпусом выполняют зубчатыми муфтами, у которых наружные зубья нарезаны на фланцах гаек, а внутренние - на корпусе. Числа зубьев муфт отличаются на единицу, что позволяет поворачивать гайку одну относительно другой на малый угол, осуществляя осевое смещение на очень малую величину.

Если число зубьев на фланце одной из гаек z, а на фланце другой (z+1), то поворот обеих гаек в одну сторону на k зубьев приводит при шаге P к их осевому смещению на

$$\Delta = Pk / \left[ z \left( z + 1 \right) \right].$$

Например, при z = 92, P = 10 мм и k = 1 имеем  $\Delta = 1,2$  мкм.

Поворот гаек выполняют вне винта на специальной оправке - трубе с наружным диаметром, равным внутреннему диаметру резьбы винта по впадинам, после чего гайки вместе с корпусом навинчивают на винт.

#### ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Технические требования на основные детали шариковинтовых передач, применяемых в станкостроении, установлены ОСТ 2 Р31-5-89 (табл. 13). Нормы точности винта - по ОСТ2 Р31-4-88.

13	Технические	требования	на основные	летали	ШВП

Наименование детали	Материал	Твердость рабочих поверхностей HRC ₃	Параметр <i>Ra</i> , мкм, шероховатости рабочей поверхности, не более
Винт	Сталь 8ХФ ГОСТ 5950-73 Сталь 8ХФВД ТУ 3-213-84	59-63	0,63
Гайка	Сталь 9ХС ГОСТ 5950-73 Сталь ШХ15 ГОСТ 801-78	59-63	0,63
Вкладыши	Сталь 9XC ГОСТ 5950-73 Сталь 40X ГОСТ 4543-71 Порошок железный ПЖВ 3.160.24 ГОСТ 9849-86	40-50	2,5
Шарики	Сталь ШХ 15 ГОСТ 801-78	63-67	0,040

Примечания: 1. Термообработка по РТМ2 МТ11-1-81.

2. Для шариков степень точности 20 по ГОСТ 3722-81.

3. Разноразмерность шариков в одной передаче не более 0,001 мм

4. Отклонение среднего диаметра шариков при  $D_w < 5\,$  мм -  $\pm 0,0025\,$  мм;  $D_w \ge 5\,$  мм -  $\pm 0,0050\,$  мм

Винты изготовляют также из сталей марок XBГ и 7Г2ВМ с объемной закалкой, стали марки 8XВ с закалкой при индукционном нагреве, стали марки  $20X3MB\Phi$  с азотированием.

Для гаек применяют сталь марки XBГ с объемной закалкой и цементуемые стали марок 18XГТ, 12XH3A, 12X2H4A.

Шарики изготовляют из хромистой стали марки ШX20СГ.

Материалы винта, гайки и тел качения должны обеспечить твердость рабочих поверхностей не ниже  $61~\mathrm{HRC}_{3}$ .

Полость гайки при сборке заполняют пластичным смазочным материалом марки ЦИАТИМ-201 или ЦИАТИМ-203.

Передачи требуют хорошей защиты от загрязнений. Наиболее часто применяют гармоникообразные меха, телескопические кожухи и съемники загрязнений - пластмассовые уплотняющие гайки с двумятремя выпуклыми витками по профилю канавок. Съемники загрязнений крепят к каждому торцу основной гайки.

# НОМЕНКЛАТУРА ПОКАЗАТЕЛЕЙ КАЧЕСТВА

Номенклатура показателей качества, используемых при оценке уровня качества ШВП, применяемых в металло- и деревообрабатывающих станках, участках, линиях, комплексах, промышленных роботах и кузнечно-прессовом оборудовании, установлена ОСТ 2 Р31-6-87.

Классификационные группы. Различают следующие группы ШВП:

с предварительным натягом;

без предварительного натяга (передачи с зазором).

Номенклатура показателей качества продукции, обозначения и характеризуемые свойства должны соответствовать приведенным в табл. 14. В этой же таблице приведены данные по применяемости показателей качества ШВП в научно-технической документации. Соответствующие знаки означают: "+" - применяемость; "±" - ограниченную применяемость; "-" - неприменяемость показателя качества.

Для передач с натягом показатели 1.4, 1.5, 1.7 и 1.11 являются основными, показатель 1,10 не применяют, показатели 1.3, 1.8, 1.9 и 1.12 имеют ограниченную применяемость.

Для передач с зазором основные показатели - 1.4, 1.10, показатели 1.5-

1.9, 1.11 не применяют, показатель 1.3 имеет ограниченную применяемость.

Номенклатура показателей качества может быть дополнена или видоизменена введением других показателей качества, которые отражают особенности конструкции или уточняют показатели, приведенные в табл. 14.

Так, показателем технической эффективности могут служить показатели  $e_{\rm p}$ ,  $V_{\rm up}$ ,  $V_{\rm 300p}$ ,  $V_{\rm 2\pi p}$  кинематической точности, характеризующие точность (нестабильность) позиционирования, а показателем экономичного использования энергии коэффициент полезного действия  $\eta$ , характеризующий эффективность использования энергии.

# СХЕМЫ МОНТАЖА ОПОР ВИНТОВ И ГАЕК

Гайку с опорой рассматривают как заделку: гайку, перемещаемую в направляющих и поддерживающую винт,- как шарнирную опору.

Конструктивно винт представляет собой длинный вал с нарезанной резьбой и гладкими участками под опоры, обычно располагаемыми по концам. Длина винтов в станках не превышает 2-3 м, предельная длина винта 7-8 м ограничена технологическими и эксплуатационными требованиями.

Винты передачи подвержены воздействию значительной осевой силы. В зависимости от схемы осевой фиксации вращающиеся винты работают на растяжение или сжатие.

Возможные схемы закрепления винта приведены в табл. 15.

Схема 1. Одна опора воспринимает осевую в обоих направлениях и радиальную нагрузки, вторая опора отсутствует: один конец заделан жестко, второй - свободный.

Схема 2. Каждая из опор воспринимает осевую в одном направлении и радиальную нагрузки: оба конца - опорные.

Схема 3. Одна опора воспринимает осевую в обоих направлениях и радиальную нагрузки, вторая - только радиальную (как вариант дополнительно осевую одного направления): один конец заделан жестко, второй опорный.

Схема 4. Каждая из опор воспринимает осевую в обоих направлениях и радиальную нагрузки: оба конца заделаны жестко.

# 14. Показатели качества ШВП

Наименование	Обозначение	Характеризуемое	Прим	омэкнэ	сть в д	окуме	нтах*
показателя	!	свойство		3	OCT	ТУ	КУ
			НИР	OKP			<u>.                                    </u>
T	Ĭ.	ватели назначени !	Я I	1 .			
<ol> <li>1.1. Типоразмер передачи (номинальный диаметрх шаг), мм</li> </ol>		_	_	+	+	+	+
1.2. Габаритные размеры гайки передачи, мм	l×d	Возможность установ- ки передачи в станке, участке, комплексе или роботе	_	+	+	+	+
1.3. Максимальные дли- ны винта и резьбы, мм	<del>-</del>	Габариты передачи	_	+	+	+	+
1.4. Точность перемещения, мкм	$\Delta P_{360}$ ; $\Delta P_{\Sigma}$	Соответствие условиям эксплуатации	+	±	+	+	+
1.5. Максимальный мо- мент холостого хода, Н⋅м	M _{xx max}	То же	+	+	+	+	+
1.6. Минимальный мо- мент холостого хода, Н·м	M _{xx min}	«	+	+	+	+	+
1.7. Колебание момента холостого хода в пределах одного оборота винта, Н·м	Δ <i>M</i> _{XX}	ų.	+	+	+	+	+
1.8. Динамическая грузо- подъемность, Н	С	Долговечность пере- дачи	+	+	+	±	+
1.9. Статическая грузо- подъемность, Н	C ₀	Предельная нагрузоч- ная способность	+	+	+	±	+
1.10. Максимальный осевой зазор, мм	_	Нестабильность позиционирования	+	+	+	+	+
<ul><li>1.11. Осевая жесткость,</li><li>Н/мкм</li></ul>	_	Точность позициони- рования	+	+	+	+	+
1.12. Значение радиального биения резьбы винта относительно центровых отверстий, мм	_	-	_	±	+	±	_
2. Показате 2.1. Удельная масса	1	много использов	ания І	мета   ±	аллон	± .	1 .
<ol> <li>Удельная масса (отношение массы гаеч- ной группы к номиналь- ному диаметру), кг/мм</li> </ol>		Эффективность использования материала в конструкции				<u>.</u>	
	•	атель надежност					ı
3.1. Долговечность, млн. об.		Свойство объекта сохранять работоспо- собное состояние при установленной систе- ме технического об- служивания и ремонта		±	+	+	_
	. Показат	ель технологичн	ости		, ,		1
4.1. Удельная трудоем- кость производства, нор- мо-час	_	Приспособленность к условиям производст- ва. Экономичность по трудоемкости и ис- пользованию металла	-	±	-	_	

Продолжение табл. 14

Наименование	Обозначение	Характеризуемое	Прим	омэкня	сть в д	окуме	нтах*
показателя		свойство	7	3	OCT	ТУ	КУ
			НИР	OKP			
5. Пок	азатель ста	ндартизации и у	иниф 1	икаці	ии		
5.1. Коэффициент пр меняемости, %о	и-	Степень заимствования	_	±	-	_	-
(	. Патентно	-правовой показ	ател	Ь			
6.1. Коэффициент п тентной чистоты	a-  -	Приоритет внутри страны и за рубежом	-	±	-	_	-

^{*} ТЗ - техническое задание; НИР - научно-исследовательская работа; ОКР - опытно-конструкторская работа; ОСТ - отраслевой стандарт; ТУ - технические условия; КУ - карта технического уровня.

### 15. Схемы закрепления винта

N₂	Способ заделки винта	Схема
1	Один конец заделан жестко, второй свободный	#
2	Оба конца опорные	++
3	Один конец заделан жестко, второй опорный	<del>                                     </del>
4	Оба конца заделаны жестко	##

Преимущественное применение в станкостроении имеют схемы с односторонней (схема 3) и двусторонней (схема 4) осевой заделкой.

Жестко заделанную опору могут составлять, например, два радиально-упорных шариковых или роликовых подшипника, или два упорно-радиальных подшипника с углом контакта 60°, или один комбинированный (двойной упорный совместно с радиальным).

Шарнирную опору составляет один радиальный шарикоподшипник или упорный роликовый подшипник совместно с радиальным шариковым.

Например, в опорах винтовых механизмов приводов подач рабочих органов станков и гибких сверлильно-фрезернорасточных производственных модулей применяют (ОСТ 2 H62-6-85):

- комбинированные роликовые подшипники по ГОСТ 26290-90;
- упорные роликовые подшипники по ГОСТ 23526-79;
- радиальные шарикоподшипники по ГОСТ 7242-81.

Затяжку подшипников выполняют гай-ками шлицевыми по ГОСТ 11871-88.

Для компенсации тепловых удлинений в механизмах по схемам 3 и 4 винт может быть растянут силой, равной максимальной осевой нагрузке.

В ОСТ 2 Н62-6-85 приведены также числовые значения жесткостей комбинированных и упорных подшипников, расчет жесткости ШВП, основные параметры и размеры муфт привода подач с ШВП, рекомендуемые исполнения местных защитных устройств и их размеры, рекомендуемые исполнения общей защиты.

# ВЫБОР И РАСЧЕТ ШАРИКОВИНТОВОЙ ПЕРЕДАЧИ (ШВП)

**Критерии работоспособности и расчета ШВП.** Шариковинтовая передача должна удовлетворять следующим критериям работоспособности:

 контактной статической прочности рабочих поверхностей винта, гайки и шариков;

- сопротивлению контактной усталости рабочих поверхностей;
  - заданной жесткости;
  - статической устойчивости;
  - динамической устойчивости;
  - прочности стержня винта.

Расчет передачи. В соответствии с основными критериями работоспособности шариковинтовых передач расчет ведут по динамической грузоподъемности для предупреждения усталостного разрушения (выкращивания рабочих поверхностей) и по статической грузоподъемности для предупреждения пластического деформирования тел и поверхностей качения.

**Исходные данные для расчета.** Основными исходными параметрами при проектном расчете шариковинтовой передачи являются:

- исполнение (корпусная, бескорпусная);
- тип передачи (с предварительным натягом, с зазором);
  - число заходов резьбы ( $z = 1 \div 3$ );
  - число рабочих витков гайки ( $i_B = 1 \div 6$ );
- минимально необходимая жесткость (*R*, H/мкм);
  - требуемый ресурс ( $L_h$ , ч);
- вероятность безотказной работы ( $P_t$ , %);
  - класс точности по ОСТ 2 Р31-4-88;
- твердость рабочих поверхностей  $(HRC_9)$ ;
  - ведущий элемент (винт, гайка);
  - схема закрепления винта;
  - длина неопорной части винта (1, мм);
- коэффициент запаса по частоте вращения ( $K_B$ );
- коэффициент трения качения ( $f_{\rm K}$ , мм);
- качество материала деталей передачи (характеристика плавки);
- циклограмма нагружения, задаваемая значениями осевой силы  $F_i$  (H), частоты вращения  $n_i$  (мин⁻¹) и времени работы  $t_i$  (%) на каждом уровне.

Переменный режим может быть представлен общим числом r уровней нагружения. Из них j - число уровней нагружения с осевыми силами одного (положитель-

ного) направления и (r-j) - с осевыми силами противоположного (отрицательного) направления. Условно за положительное можно принять направление действия осевой силы на передачу со стороны левой гайки, за отрицательное - со стороны правой гайки.

Выявление максимальных параметров. Из числа заданных в циклограмме нагружения выявляют наибольшую:

- силу (по абсолютной величине), Н,

$$F_{\max} = |F_{i \max}|, \qquad (1)$$

- частоту вращения, мин-1,

$$n_{\max} = n_{i \max} . \tag{2}$$

Определение корректирующих коэффициентов. Влияние точности изготовления передачи учитывают введением в расчетные формулы коэффициентов  $K_{\rm T}$ ,  $K_{\rm T0}$ ,  $K_{\rm TR}$  (табл. 16).

При выполнении расчетов для вероятности  $P_t$  безотказной работы более 90 % вводят коэффициент  $K_p$  (табл. 17).

Обычно применяют одноконтурную (z=1) трехвитковую гайку:  $i_B=3$ . Для передач с другим числом рабочих витков вводят в расчет коэффициенты  $K_i$ ,  $K_{i0}$  учета числа витков гайки (табл. 18).

Такие параметры передачи, как грузоподъемность и жесткость, указаны в стандарте для ШВП с трехвитковыми гайками. При числе витков 1, 2, 4, 5 и 6 значения динамической грузоподъемности должны быть уменьшены в  $K_i$  раз, а значения статической грузоподъемности и осевой жесткости - в  $K_{i0}$  раз.

Снижение динамической и статической грузоподъемности с уменьшением твердости поверхности качения ниже  $61 \mathrm{HRC_3}$  учитывают соответственно коэффициентами  $K_H$  и  $K_{H0}$ , значения которых вычисляют по формулам [4]:

$$K_H = (HRC_3/61)^3$$
;  $K_{H0} = (HRC_3/61)^{4,4}$ .

Влияние качества материала деталей передачи на сопротивление контактной усталости учитывают введением коэффициента  $K_{\rm M}$ . Обычно  $K_{\rm M}=1$ , но при изготовлении ШВП из высококачественных сталей, полу-

ченных электрошлаковым или вакуумным переплавом, принимают  $K_{\rm M}$  равным 1,4 и 1,7 соответственно.

Таким образом, корректирующие коэффициенты K и  $K_0$  для вычисления рас-

четных значений соответственно динамической и статической грузоподъемности

$$K = K_T K_D K_H K_M / K_i$$
;

$$K_0 = K_{T0}K_{H0} / K_{i0}$$
.

16. Значения коэффициентов точности  $K_{\rm T},~K_{\rm T0},~K_{\rm TR}$ 

Коэффициент		Класс	точности і	no OCT 2 P3	31-4-88	
	П1, Т1	П3, Т3	П5, Т5	П7, Т7	Т9	T10
$K_{\tau}$	1,0	0,98	0,95	0,9	0,85	0,8
$K_{r0}$	1,0	0,95	0,9	0,85	0,8	0,7
$K_{\tau R}$	1,2	1,1	1,0	0,95		_

# 17. Значения коэффициента Кр

Вероятность безотказной работы, %	90	95	96	97	98	99	99,5	99,9
<b>К</b> р	1,0	0,85	0,8	0,75	0,68	0,57	0,46	0,25

# 18. Значения коэффициентов Кі, Кі

Коэффициент			Число вит	ков гайки		
	1	2	3	4	5	6
K _i	2,57	1,42	1,0	0,78	0,64	0,55
$K_{i0}$	3,0	1,5	1,0	0,75	0,6	0,5

Предварительный выбор типоразмера ШВП. С целью ускорения выбора типоразмера ШВП из числа стандартных можно использовать следующие рекомендации.

Для передачи с натягом минимально необходимая базовая динамическая грузоподъемность из условия сохранения натяга и достижения требуемой жесткости

$$C_{a \min} = 1.25 F_{\max} / K.$$

Для передачи с зазором минимально необходимая базовая статическая грузоподъемность из условия обеспечения статической прочности

$$C_{0a \min} = F_{\max} / K_0$$
.

По таблицам стандарта отыскивают типоразмер, удовлетворяющий условию:

для передач с натягом  $C_a \ge C_{a \min}$ ;

для передач с зазором  $C_{0a} \ge C_{0a \, \mathrm{min}}$  .

Выбирают по табл. 12, 3 и 4 для выбранного типоразмера ШВП значения:

 $d_0$  - номинальный диаметр, мм;

P - шаг, мм;

 $D_w$  - диаметр шарика, мм;

 $C_a$  - базовая динамическая грузоподъемность, H;

 $C_{0a}$  - базовая статическая грузоподъемность, H.

Вычисляют значения скорректированной динамической  $C_{ap}$  и скорректированной статической  $C_{0ap}$  грузоподъемности:

$$C_{ap} = KC_a \text{ in } C_{0ap} = K_0C_{0a}.$$
 (3)

Для передачи с натягом выполняют оценку выбранного типоразмера передачи по возможной силе  $F_{\rm Hat}$  предварительного натяга и максимально достижимой жесткости  $R_{\rm max}$ .

Чтобы в процессе работы не произошло полной разгрузки нерабочей гайки, силу

 $F_{\rm Hat}$  (Н) предварительного натяга назначают равной

$$F_{\text{HaT}} = (0,1...0,2) C_{ap}$$

при условии

$$F_{\text{HaT}} \ge 0.25 F_{\text{max}}$$
.

Максимально достижимая жесткость выбранного типоразмера ШВП при силе предварительного натяга  $F_{\rm Hat} = 0.2 \, C_{ap}$  [4]:

$$R_{\text{max}} = 2.6 K_{\text{T}R} d_0^{0.89} D_w^{-0.56} (i_{\text{B}} K_z)^{0.67} (0.2 C_{ap})^{0.33},$$

где  $K_Z$  - коэффициент, учитывающий неполноту рабочего витка вследствие наличия шариков в перепускном канале,

$$K_z = 1 - 3\sin\left[\arctan\left(Pz / (\pi d_0)\right)\right].$$

Если жесткость  $R_{\rm max}$  меньше заданной R в исходных данных, то нужно перейти на следующий типоразмер передачи с большим значением динамической грузоподъемности.

Если по предварительной оценке получен положительный результат (  $R_{\max} \ge R$  ), то вычисляют фактическую жесткость  $R_{\max}$  передачи, H/мкм:

$$R_{\Phi a \kappa} = 2.6 K_{\tau R} d_0^{0.89} D_w^{-0.56} (i_B K_z)^{0.67} F_{HaT}^{0.33}$$
. (4)

При этом изменяют силу предварительного натяга в рекомендуемых пределах [  $F_{\text{HaT}} = (0,1...0,2) \, C_{ap}$  ] до выполнения условия обеспечения требуемой жесткости:

$$R_{\Phi a \kappa} \geq R$$
.

**Вычисление эквивалентной нагрузки.** При эксплуатации на ШВП воздействуют различные осевые силы, отличающиеся значением, направлением, временем действия при различных частотах вращения.

Под эквивалентной динамической нагрузкой ШВП понимают такую постоянную осевую силу, при действии которой долговечность передачи будет такой же, как при реальных условиях нагружения.

Методика определения эквивалентной нагрузки приведена в ОСТ 2 P31-5-89.

# ШВП с зазором

Средняя частота вращения ведущего элемента при действии осевых сил одного направления (с числом j ступеней такого

нагружения) в соответствии с циклограм-мой

$$n_{\pi \text{cp}} = \sum_{1}^{j} \left( n_{\pi i} t_{\pi i} \right) / \sum_{1}^{j} t_{\pi i} .$$

Эквивалентная нагрузка при действии осевых сил такого направления в соответствии с циклограммой нагружения

$$Q_{\pi E} = \sqrt[3]{\sum_{1}^{j} \left(F_{\pi i}^{3} n_{\pi i} t_{\pi i}\right) / \left(n_{\pi cp} \sum_{1}^{j} t_{\pi i}\right)}.$$

Для осевых сил противоположного направления [с числом (r-j) ступеней такого нагружения] в соответствии с циклограммой и общим числом r ее ступеней нагружения

$$n_{\text{ncp}} = \sum_{j+1}^{r} (n_{\Pi i} t_{\Pi i}) / \sum_{j+1}^{r} t_{\Pi i};$$

$$Q_{\text{nE}} = \sqrt[3]{\sum_{j=1}^{r} \left(F_{\text{n}i}^{3} n_{\text{n}i} t_{\text{n}i}\right) / \left(n_{\text{nep}} \sum_{j=1}^{r} t_{\text{n}i}\right)}.$$

При расчете на ресурс ШВП с зазором принимают в качестве эквивалентной нагрузки  $F_{\rm E}$  наибольшую из  $Q_{\rm ЛE}$  и  $Q_{\rm ПE}$ 

$$F_{\rm E} = Q_{\pi \rm E}$$
 или  $F_{\rm E} = Q_{\pi \rm E}$  (5)

и соответствующую ей среднюю частоту вращения

$$n_{\rm cp} = n_{\rm \pi cp}$$
 или  $n_{\rm cp} = n_{\rm \pi cp}$ . (6)

При расчете на статическую грузоподъемность ШВП с зазором расчетной силой  $F_{\rm p}$  служит наибольшая по абсолютной величине из заданных в циклограмме [см. (1)]:

$$F_{\rm p} = F_{\rm max}$$
.

#### ШВП с натягом

Для передачи с натягом эквивалентную нагрузку находят с учетом силы  $F_{\text{нат}}$  предварительного натяга [1].

ШВП с натягом состоит из двух гаек, каждая из которых после сборки нагружена осевой силой  $F_{\text{нат}}$  натяга. Внешняя осевая сила F изменяет силы, действующие на гайки, нагружая одну гайку (рабочую) и разгружая другую (нерабочую). Как показали исследования [4], при достижении силой

F значений, в ~2,83 раза превышающих силы  $F_{\rm HaT}$  натяга, происходит полная разгрузка нерабочей гайки и всю внешнюю осевую силу воспринимает рабочая гайка.

В зависимости от направления внешней осевой силы F рабочей может быть как одна (левая), так и другая (правая) гайка.

Циклограмма нагружения представлена общим числом r уровней нагружения. Из них j уровней нагружения с осевыми силами  $F_{\pi i}$  положительного направления, за которое принято направление действия осевой силы на передачу со стороны левой гайки.

При этом сила  $Q_i$ , нагружающая на каждом уровне (i от 1 до j):

- левую (рабочую) гайку

$$Q_{\pi i} = F_{\text{HaT}} (1 + 0.25 F_{\pi i} / F_{\text{HaT}})^2;$$

- правую (нерабочую) гайку

$$Q_{\pi i} = Q_{\pi i} - F_{\pi i} .$$

Циклограмма нагружения представлена числом (r-j) уровней нагружения с осевыми силами  $F_{\Pi i}$  отрицательного направления, за которое принято направление действия осевой силы на передачу со стороны правой гайки.

При этом сила  $Q_i$ , нагружающая на каждом уровне  $\{i \text{ от } (j+1) \text{ до } r\}$ :

- правую (рабочую) гайку

$$Q_{\Pi i} = F_{\text{HaT}} (1 - 0.25 F_{\Pi i} / F_{\text{HaT}})^2;$$

левую (нерабочую) гайку

$$Q_{\pi i} = Q_{\pi i} + F_{\pi i}.$$

В приведенных формулах силы  $F_{\pi i}$  и  $F_{\pi i}$  подставляют со своими знаками:

силы  $F_{\pi i}$  - со знаком плюс;

силы  $F_{\Pi i}$  - со знаком минус.

Средняя частота вращения при задании времени  $t_i$  работы на каждом уровне в %:

$$n_{\rm cp} = 0.01 \sum_{i=1}^{r} n_i t_i \ . \tag{8}$$

Эквивалентная нагрузка для расчета ресурса левой гайки

$$Q_{\pi E} = \sqrt[3]{0.01 \sum_{i=1}^{r} \left(Q_{\pi i}^{3} n_{i} t_{i}\right) / n_{\text{cp}}}$$

Эквивалентная нагрузка для расчета ресурса правой гайки:

$$Q_{\Pi E} = \sqrt[3]{0.01 \sum_{i=1}^{r} \left(Q_{\Pi i}^{3} n_{i} t_{i}\right) / n_{cp}}$$
.

При расчете на ресурс ШВП с натягом принимают в качестве эквивалентной нагрузки  $F_{\rm E}$  наибольшую из  $Q_{\rm NE}$  и  $Q_{\rm TE}$ :

$$F_{\rm E} = Q_{\rm nE}$$
 или  $F_{\rm E} = Q_{\rm nE}$ . (9)

При расчете на статическую грузоподъемность ШВП с натягом расчетной силой  $F_{\rm p}$  служит наибольшая из двух

$$F_{\rm p} = Q_{\pi i \, \text{max}}$$
 или  $F_{\rm p} = Q_{\pi i \, \text{max}}$ , (10)

где  $Q_{\pi i \, \text{max}}$  (или  $Q_{\pi i \, \text{max}}$ ) - наибольшая из общего числа r уровней нагружения с учетом преднатяга сила, действующая на левую (или правую) гайку передачи.

Расчет на статическую прочность. Статическая прочность поверхности качения обеспечена, если расчетная осевая сила  $F_p$  [см. (7), (10)] не превосходит скорректированную статическую грузоподъемность  $C_{0ap}$  [см. (3)]:

$$F_{\rm p} \leq C_{0ap}$$
.

**Расчет передачи на заданный ресурс.** Фактический ресурс  $L_{hb}$  передачи в ч:

$$L_{h\Phi} = 10^6 (C_{ap} / F_{E})^3 / (60 n_{cp}),$$

где  $C_{ap}$  - скорректированная динамическая грузоподъемность, H [см. (3)];

 $F_{\rm E}$  - эквивалентная нагрузка, Н [см. (5), (9)].

 $n_{\rm cp}$  - средняя частота вращения, мин-1.

Передача пригодна, если  $L_{h\Phi} \ge L_h$ , где  $L_h$  - заданный ресурс. При невыполнении этого условия следует перейти на типоразмер передачи с большей динамической грузоподъемностью.

Проверка винта на статическую устойчивость. Винты передачи подвержены воздействию значительной осевой силы. В зависимости от схемы осевой фиксации вращающиеся винты работают на растяжение или сжатие.

Вычисляют значение критической силы  $F_{\rm Kp}$ , H, по Эйлеру:

$$F_{\rm Kp} = \pi^3 E d^4 / \left[ 64 S(\mu I)^2 \right],$$

где E - модуль упругости материала винта, МПа (для стали  $E=2,1\cdot10^5$  МПа); d - диаметр резьбы винта по впадинам, мм; для предварительных расчетов можно принимать,  $d=d_0-D_w$ ; S - коэффициент запаса,  $S=1,5\div4$  (обычно S=3);  $\mu$  - коэффициент, зависящий от способа закрепления винта (табл. 19); l - длина нагруженного

(неопорного) участка винта, мм.

Статическая устойчивость обеспечена, если

$$F_{\max} \leq F_{\kappa D}$$
,

где  $F_{\text{max}}$  - наибольшая осевая сила (H), нагружающая винт на длине l [см. (1)].

В ОСТ 2 Н62-6-85 приведены номограммы для выбора типоразмера ШВП по допустимой величине осевой силы для различных схем монтажа.

17. Charenna Ruswwhithenius u n	19.	Значения	коэффициентов	ш	И	ν
---------------------------------	-----	----------	---------------	---	---	---

Способ закрепления винта	Схема	μ	ν
Один конец заделан жестко, второй свободный	<del>                                      </del>	2	0,7
Оба конца опорные	1 2 1	1	2,2
Один конец заделан жестко, второй опорный	<del>   3   </del>	0,7	3,4
Оба конца заделаны жестко	<del>    4      </del>	0,5	4,3

Примечание. Принятые условные обозначения: #- заделка; +- шарнир.

Проверка на динамическую устойчивость. В соответствии с ОСТ 2 Р31-5-89 предельную частоту  $n_{\rm пред}$  вращения ШВП регламентируют двумя факторами: критической частотой  $n_{\rm kp}$  вращения и линейной скоростью движения шарика, последнюю в свою очередь ограничивают фактором

$$d_0 n \le 8.10^4$$
, мм·мин⁻¹.

В технически обоснованных случаях допускают  $d_0 n \le 12 \cdot 10^4$ , мм·мин⁻¹.

Критическую частоту  $n_{\rm Kp}$ , мин⁻¹, вращения вычисляют из условия предотвращения резонанса:

$$n_{\rm KD} = 5.10^7 \, v K_{\rm B} d / l^2$$

где v - коэффициент, зависящий от способа закрепления винта (табл. 19);  $K_{\rm B}$  - коэффициент запаса по частоте вращения,  $K_{\rm B}$  =0,5÷0,8; d и l - в мм.

В качестве предельной частоты  $n_{\rm пред}$ , мин⁻¹, вращения принимают наименьшую из  $n_{\rm пред} = n_{\rm Kp}$  и  $n_{\rm пред} = 8 \cdot 10^4 / d_0$ .

Частота вращения находится в допустимых пределах при выполнении условия

$$n_{\max} \leq n_{\text{прел}}$$
,

где  $n_{\text{max}}$  - наибольшая частота вращения, мин⁻¹ [см. (2)].

Определение КПД. Коэффициент полезного действия шариковинтовой передачи, преобразующей вращательное движение в поступательное:

при ведущем винте

$$\eta = tg\psi K_{HaT} / tg (\psi + \rho);$$

при ведущей гайке

$$\eta = tg (\psi - \rho) K_{HaT} / tg\psi$$

где у - угол подъема резьбы, рад:

$$\psi = \arctan \left[ Pz / (\pi d_0) \right];$$

 $K_{\text{нат}}$  - коэффициент, учитывающий влияние натяга;  $\rho$  - приведенный угол трения в резьбе, рад:

$$\rho = \arctan\left[f_{K} / (0.5D_{w} \sin \alpha)\right].$$

Здесь  $f_{\rm K}$  - коэффициент трения качения, мм ( $f_{\rm K}$  =0,005...0,015 мм);  $\alpha$  - угол контакта,  $\alpha$ =45°=0,785 рад.

Коэффициент  $K_{\rm HaT}=1$  для передач без натяга (с зазором) и для передачи с небольшим натягом: при  $F_{\rm HaT} \leq F_{\rm max}/3$ . Силу  $F_{\rm HaT}$  устанавливают из расчета жесткости передачи, см. (4);  $F_{\rm max}$  - см. (1).

Для передачи со значительным натягом (при  $F_{\rm HaT} > F_{\rm max} / 3$ )

$$K_{\rm HAT} = \frac{F_{\rm max} \ / \ F_{\rm HAT}}{\left(1 + 0.65 \ F_{\rm max} \ / \ F_{\rm HAT}\right) - \left[\left(1 - 0.35 F_{\rm max} \ / \ F_{\rm HAT}\right) {\rm tg}(\psi - \rho) \ / \ {\rm tg}(\psi + \rho)\right]} \, .$$

Момент холостого хода для передачи с натягом, H-м:

$$T_{xx} = 0.5 \cdot 10^{-3} F_{\text{Har}} d_0 \sin(2\rho) / \left[ K_{\tau} \cos(\psi + \rho) \cos(\psi - \rho) \right],$$

где  $K_{\rm T}$  - коэффициент, учитывающий влияние точности изготовления (табл. 16);  $F_{\rm Hat}$  - в H;  $d_0$  - в мм.

Наибольший момент завинчивания,  $H \cdot M$ :  $T_{3aB} = 0.5 \cdot 10^{-3} \, F_{\rm max} \, z \, P \, / \, \left(\pi \eta\right) + T_{\rm XX}$ , где P – шаг резьбы, мм; z – число заходов резьбы;  $F_{\rm max}$  – в H [см. (1)].

Наибольшая линейная скорость v, м/с, перемещения ведомого элемента вычисляют в зависимости от частоты вращения  $n_{\text{max}}$ , мин⁻¹ [см. (2)]:

$$v = Pzn_{\text{max}} / 60000.$$

**Расчет геометрии профиля резьбы.** Радиус шарика, мм:  $r_w = D_w / 2$ .

Радиус профиля резьбы, мм (рис. 3):

$$r_{\rm np} = (1,03...1,05)r_{\rm w}$$
.

Число шариков в одном витке гайки:

$$z_{III} = \pi d_0 / (D_w \cos \psi).$$

Число рабочих шариков в одном витке с вкладышем:  $z_p = z_{uu} - z'$ , где z' - число шариков в канале возврата,  $z' = 3P / D_w$ .

Расчетное число шариков в  $i_{\rm B}$  витках:

$$z_{\text{pacy}} = 0.7 z_{\text{p}} i_{\text{B}}$$
.

Нормальная сила, нагружающая один шарик, Н:  $F_n = F_p / (z_{pact} \sin \alpha \cos \psi)$ , где  $F_p$  - расчетная сила, Н [см. (7), (10)].

Параметры площадки контакта между телом качения и дорожкой качения (здесь E - модуль упругости,  $M\Pi a$ ):

$$A_{b} = (1 - r_{w} / r_{\Pi p})(1 - 2r_{w} \cos \alpha / d_{0});$$

$$M = (1,32 - 0.98A_{b})^{2};$$

$$A = M \sqrt[3]{F_{n}r_{w}r_{\Pi p} / [E(r_{\Pi p} - r_{w})]}, MM;$$

$$\gamma = A / r_{w}, pa\pi.$$

Радиус галтели винта, мм:  $r_{\rm B}\approx 0.2\,r_{\rm w}$ . Радиус галтели гайки, мм:  $r_{\rm T}\approx 0.15\,r_{\rm w}$ . Наружный диаметр резьбы винта, мм:

$$d_1 = d_0 - 2[(r_w + r_B)\cos(\alpha + \gamma) - r_B].$$

Смещение центра радиуса профиля, мм:  $c_{\Pi p} = (r_{\Pi p} - r_w) \sin \alpha$ .

Внутренний диаметр резьбы винта, мм:  $d_{2B} = d_0 + 2c_{\Pi D} - 2r_{\Pi D}$ .

Наружный диаметр резьбы гайки, мм:

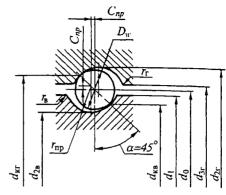



Рис. 3

$$d_{2r} = d_0 - 2c_{np} + 2r_{np} \ .$$

Внутренний диаметр резьбы гайки, мм:

$$d_{3r} = d_0 + 0.5(d_0 - d_1).$$

Диаметр качения по винту, мм:

$$d_{\rm KB} = d_0 - 2r_w \cos\alpha \ .$$

Диаметр качения по гайке, мм:

$$d_{K\Gamma} = d_0 + 2r_w \cos\alpha.$$

Расчет стержня винта на прочность. Напряжения  $\sigma$ , МПа, растяжения-сжатия при нагружении силой  $F_{\rm max}$ , H [см. (1)]:

$$\sigma = 4F_{\text{max}} / \left(\pi d_{2B}^2\right).$$

Напряжения  $\tau$ , МПа, кручения при нагружении наибольшим моментом  $T_{3aB}$ ,  $H \cdot M$ , завинчивания:  $\tau = 10^3 T_{3aB} / \left(0.2 d_{3n}^3\right)$ .

Прочность винта проверяют по эквивалентному напряжению, МПа:

$$\sigma_E = \sqrt{\sigma^2 + 3\tau^2} \le [\sigma].$$

Допускаемое напряжение  $[\sigma] = \sigma_T / 3$ , где  $\sigma_T$  - предел текучести материала винта, МПа.

Осевая жесткость  $C_{\rm B}$ ,  ${\rm H/mkm}$ , винта диаметром  $d_{\rm kB}$ , мм, и длиной l, мм, при закреплении:

по схемам 1-3 (табл. 19)

$$C_{\rm B} = \pi d_{\rm KB}^2 E / \left(4 \cdot 10^3 l\right);$$

по схеме 4 (табл. 19)

$$C_{\rm B}=\pi d_{\rm KB}^2 E/\left(10^3 l\right)\,,$$

где E - модуль упругости материала винта, МПа.

Смещение гаек для создания предварительного натяга, мкм:

$$\delta = 1.3 \sqrt[3]{\left[F_{\text{HaT}} / \left(z_{\text{pac}} \sin \alpha \cos \psi\right)\right]^2 / D_w}.$$

Здесь  $F_{\text{нат}}$  - в H;  $D_w$  - в мм.

# Глава IX

# РАЗЪЕМНЫЕ СОЕДИНЕНИЯ

# БОЛТОВЫЕ СОЕДИНЕНИЯ

# НЕНАПРЯЖЕННЫЕ СОЕДИНЕНИЯ (БЕЗ ПРЕДВАРИТЕЛЬНОЙ ЗАТЯЖКИ, рвс. 1)

Напряжения возникают после приложения рабочей нагрузки. Ненапряженные болты работают только на растяжение или сжатие.

Условие прочности болта

$$\frac{\pi d_1^2}{4} \left[ \sigma_p \right] = P,$$

откуда

$$d_1 = \sqrt{\frac{4P}{\pi \left[\sigma_{\rm p}\right]}} \; ,$$

где P - сила, действующая вдоль оси болта, H;  $d_1$  - внутренний диаметр резьбы, мм;  $\left[\sigma_p\right]$  - допускаемое напряжение при растяжении (сжатии), МПа.

**Пример.** Определить диаметр нарезанной части хвостовика грузового крюка (рис. 2) для силы P=100 000 H. Гайку заворачивают, но не затягивают

$$d_1 = \sqrt{\frac{4P}{\pi[\sigma_p]}} =$$

$$= \sqrt{\frac{4 \cdot 100000}{3,14 \cdot 125}} \approx 32 \text{ MM}.$$

Принимаем резьбу с наружным диаметром d = M36.

Величина [ $\sigma_p$ ] взята для стали 35 по II случаю нагрузки (см. т. 1, гл. 1).

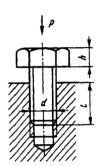



Рис. 1



Рис. 2

# НАПРЯЖЕННЫЕ СОЕДИНЕНИЯ (С ПРЕДВАРИТЕЛЬНОЙ ЗАТЯЖКОЙ, рис. 3)

При затяжке гаек в болтах возникают значительные растягивающие усилия и усилия скручивания.

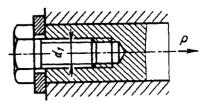



Рис. 3

1. Допускаемые постоянные нагрузки и моменты затяжки для болтов с метрической резьбой из стали 35

Параметры						Ho	Номинальный диаметр резьбы, мм	яй диаме	тр резьбы	I, MM				
		9	∞	10	12	14	10 12 14 16 18	18	20	22	24	27	30	36
Нагрузка, Н А 1200	٨	1200	2200	3800	2800	8500	12 000	16 000	24 000	32 000	40 000	8500 12 000 16 000 24 000 32 000 40 000 53 000 74 000 110 000	74 000	110 000
	Р	Б 2200	0006	15 000	21 000	30 000	40 000	50 000	65 000	000 08	95 000	9000 15 000 21 000 30 000 40 000 50 000 65 000 80 000 95 000 120 000 150000 220 000	150000	220 000
Момент затяжки, Н.м		3,0	9,8	17,0	30,0	48,0	77,0	100,0	150,0	210,0	260,0	77,0 100,0 150,0 210,0 260,0 380,0 520,0 920,0	520,0	920,0

A - неконтролируемая затяжка, нагрузка без учета усилия затяжки; E - контролируемая затяжка, точный учет нагрузок, включая усилие затяжки. Момент затяжки соответствует напряжению  $\sigma_{\text{зат}} \approx 0.4\sigma_{\text{T}}$ .

Упрощенно болты в напряженных соединениях рассчитывают только на растяжение, скручивание же учитывают увеличением растягивающей силы P на 25-35%.

# СОЕДИНЕНИЯ С ПОПЕРЕЧНОЙ НАГРУЗКОЙ

Болт точеный, поставлен без зазора (плотно, с небольшим натягом, рис. 4). Болт работает на срез и смятие.

На срез болт рассчитывают по формуле

$$\frac{\pi d^2}{4} \left[ \tau_{\rm cp} \right] \ge P ,$$

откуда диаметр точеного стержня, мм,

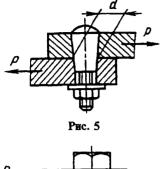
$$d = \sqrt{\frac{4P}{\pi \left[\tau_{\rm cp}\right]}} \; ,$$

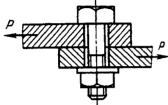
где P - сила, действующая поперек болта, H;  $[\tau_{cp}]$  - допускаемое напряжение на срез, МПа (см. т. 1, гл. 1); часто принимают  $[\tau_{cp}] = (0,2 \div 0,3) \, \sigma_{\tau}$ ; ( $\sigma_{\tau}$  - предел текучести).

На смятие болт рассчитывают по формуле

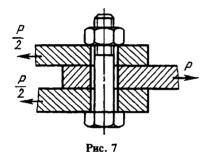
$$dh[\sigma_{CM}] \geq P$$
,

откуда


$$h \geq \frac{P}{d\left[\sigma_{\mathsf{CM}}\right]},\,$$


где h - высота участка смятия, мм;  $\left[\sigma_{\mathsf{cM}}\right]$  - допускаемое напряжение на смятие, МПа.

Болт конусный (рис. 5). Конусной формой устраняется зазор. Такой болт рассчитывают как точеный.


Болт с зазором (рис. 6). В этом случае затяжкой болта обеспечивают достаточную силу трения между стянутыми деталями для предупреждения сдвига их и перекоса болта.







Puc. 6



Болт рассчитывают на силу затяжки

$$Q = \frac{P}{f} = \frac{\pi d_1^2}{4} \left[ \sigma_{\mathbf{p}} \right],$$

где сила P - в H, f - коэффициент трения; для чугунных и стальных поверхностей без смазки f =0,15÷0,2;  $d_1$  - внутренний диаметр резьбы, мм;  $\left[\sigma_p\right]$  - допускаемое напряжение при растяжении, МПа (см. т. 1; гл. 1).

Для двух и более стыков (рис. 7)

$$Q=\frac{P}{f\,i}\,,$$

где і - число стыков.

# РАЗГРУЗОЧНЫЕ УСТРОЙСТВА

Разгрузочные устройства (рис. 8, a - со шпонкой;  $\delta$  - с уступом;  $\epsilon$  - со штифтом;

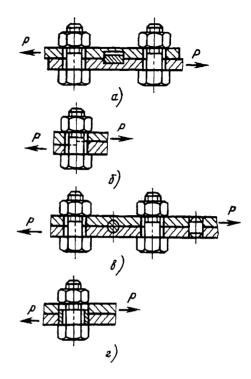



Рис. 8

 $\varepsilon$  - со втулкой) применяют для восприятия поперечных сил.

### КЛЕММОВЫЕ СОЕДИНЕНИЯ

Клеммовые соединения (рис. 9) применяют в том случае, когда место закрепления рычага на валу непостоянно.

Вследствие действия силы P, сжимающей клеммы и растягивающей болт, между поверхностями ступицы рычага и вала возникает сила трения, равная Nf, где N нормальное давление между половинами ступицы, создаваемое затяжкой болта, а f - коэффициент трения.

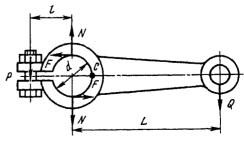



Рис. 9

Затяжка болтов должна быть такой, чтобы момент трения  $N\!f\!d$  равнялся внешнему моменту QL или для надежности был бы больше, обычно на 20 %, т.е.  $N\!f\!d$  =1,2 QL, откуда

$$N=\frac{1,2QL}{fd},$$

где Q - усилие на рычаге, H; L - длина рычага, MM; d - диаметр вала, MM.

Приближенно зависимость между силой P и давлением N определяют, приравнивая моменты сил P и N относительно точки C:

$$P\left(1+\frac{d}{2}\right)=N\frac{d}{2},$$

или

$$P=\frac{1,2QL}{f(2l+d)},$$

где l – расстояние от оси болта до центра вала, мм; P – сила, сжимающая клеммы и растягивающая болт, H.

По найденной силе P болт рассчитывают как затянутый (см. рис. 3).

**Пример.** Груз Q=300 Н закреплен на одном плече горизонтального рычага длиной L=500 мм; другое плечо рычага связано клеммовым соединением с валом диаметром d=40 мм. Нагрузка статическая. Определить диаметр клеммовых болтов.

Решение.

Расчетная нагрузка для болта

$$P=\frac{1,2QL}{f(2l+d)},$$

принимают f = 0,2; l = 40 мм, тогда

$$P = \frac{1,2 \cdot 300 \cdot 500}{0,2(2 \cdot 40 + 40)} \approx 7500$$
 H.

Выбирают болт М16, площадь его сечения F=141 мм². Рабочее напряжение растяжения

$$\sigma_{\rm p} = \frac{P}{F} = \frac{7500}{141} \approx 53 \, {\rm M}\Pi{\rm a},$$

что вполне допустимо.

# КРЕПЛЕНИЕ КРЫШЕК (ПРОЧНО-ПЛОТНЫЕ БОЛТОВЫЕ СОЕДИНЕНИЯ, рис. 10)

Шаг t между болтами выбирают в зависимости от давления p:

$$t$$
, MM...  $\leq 150$   $\leq 120$   $\leq 100$   $\leq 80$   $p$ , M $\Pi$ a... 0,5-1,5 2,5 5 10

Сила, открывающая крышку и растягивающая болты,

$$Q=\frac{\pi D^2}{4}p,$$

где D - внутренний диаметр сосуда, мм; p - давление газа, пара или жидкости в сосуде, МПа.

Сила, передаваемая одному болту,

$$Q_2 = \frac{Q}{i} ,$$

гле i - число болтов.

Расчетная нагрузка на болт

$$P = Q_1 + \beta Q_2$$

где  $\beta$  - коэффициент, зависящий от упругих свойств, входящих в соединение частей;  $Q_1$  - сила затяжки одного болта, H.

Практически можно считать  $Q_1 = Q_2$ , тогла

$$P = Q_2(1+\beta).$$

Ориентировочно коэффициент β для прокладки из резины принимают равным 0,75; из картона или асбеста - 0,55; из мягкой меди - 0,35.

Если упругие свойства скрепленных деталей неизвестны и не требуется высокой точности расчета, то для надежности при-



Рис. 10

нимают  $P = 2Q_2$ , и болты рассчитывают по уравнению

$$\left[\sigma_{\mathbf{p}}\right] = \frac{2Q}{i\frac{\pi d_1^2}{4}},$$

где  $d_1$  - внутренний диаметр резьбы болта, мм;  $[\sigma_p]$  - допускаемое напряжение при растяжении, МПа.

Примечание. Болты с диаметром  $d \le 12$  мм, затягиваемые вручную, при рабочем усилии на ключе  $P_{\rm p} = 300 \div 400~{\rm H}$  могут разорваться. Поэтому в ответственных соединениях органы технического надзора не разрешают устанавливать болты диаметром меньше  $16~{\rm Mm}$ .

**Пример.** Крышка цилиндра высокого давления привернута 12 шпильками. Определить их диаметр, если максимальное давление пара в цилиндре p=1,2 МПа, а внутренний диаметр цилиндра D=200 мм.

Решение.

Сила, открывающая крышку,

$$Q = \frac{\pi D^2}{4} p =$$

$$=\frac{3,14\cdot 200^2}{4}1,2\approx 37\ 700\ H.$$

Принимают для надежности расчетную нагрузку P = 2Q; тогда

$$2Q \leq F[\sigma_{p}]i$$
,

где F - площадь сечения шпильки по внутреннему диаметру резьбы, мм 2 ; i - число шпилек.

Определяют [  $\sigma_p$  ]:

$$F[\sigma_p] = \frac{2 \cdot 37700}{12} \approx 6300 \text{ H};$$

$$\left[\sigma_{\mathbf{p}}\right] = \frac{6300}{F};$$

если берут шпильку M16, то ее сечение  $F = 141 \text{ мм}^2$ , следовательно,

$$\left[\sigma_{\rm p}\right] = \frac{630}{141} \approx 45 \text{ M}\Pi\text{a},$$

что вполне допустимо.

# **КРЕПЛЕНИЕ СТЫКОВ** (УПРОШЕННЫЙ РАСЧЕТ)

Кронштейн (рис. 11) скреплен со стеной двумя болтами, при этом на него действуют следующие силы: Q - внешняя нагрузка (или ее составляющие H и N), H; P - сила затяжки болтов, H; R - сила реакции стены, H, определяемая по формуле

$$R = \sigma_{\rm CM} F$$
,

где  $\sigma_{\rm cm}$  - напряжение смятия опоры от затягивания болтов силой 2P, МПа; допускаемое напряжение смятия [ $\sigma_{\rm cm}$ ] для кирпичной кладки принимают 0.8-1.2 МПа, для дерева 1.2-2 МПа, для чугуна и стали 120-180 МПа; F - опорная площадь плиты, мм².

Точка приложения силы R находится на расстоянии  $\frac{1}{3}h$  от нижнего края плиты, где h - высота плиты, см.

Используя условие равновесия и принимая за центр моментов точку пересечения оси нижнего болта со стеной, получают

$$Hb + Na + Re - Pk = 0$$
.

Из уравнения находят силу P затяжки болта, по которой определяют его диаметр. Допускаемое напряжение  $\left[\sigma_{p}\right]$  см. в т. 1, гл. 1.

Полученное значение силы P необходимо проверить на скольжение кронштейна по стене:

$$f(2P-H)\geq N.$$

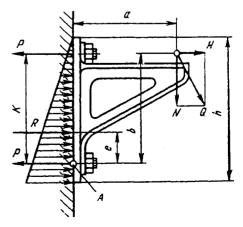



Рис. 11

т. е. вследствие затяжки болтов должна возникнуть сила трения 2Pf, которая предотвратила бы скольжение кронштейна по стене под действием сдвигающей силы N.

Коэффициент трения можно принять для чугуна по кирпичной кладке 0,4-0,45; для чугуна по дереву 0,4-0,45 и для чугуна по чугуну 0,18-0,2.

# КОЛЬЦЕВАЯ ФОРМА СТЫКА (рис. 12)

Сила затяжки болта, поставленного в отверстие с зазором,

$$Q = \frac{3M_{\rm KP} \left(D_2^2 - D_1^2\right)}{z f \left(D_2^3 - D_1^3\right)}$$

или при небольщой сравнительно с  $D_0$  ширине кольцевой поверхности стыка

$$Q=\frac{3M_{\rm kp}}{z\,f\,D_0}\,,$$

где  $M_{\rm KD}$  - крутящий момент;

z - число болтов;

f - коэффициент трения.

При соединении точеными болтами без зазоров момент трения, вызванный затяжкой, в расчет не принимают или принимают только 25—35% его величины.

Поперечная нагрузка, приходящаяся на каждый болт,

$$Q=\frac{3M_{\rm Kp}}{zD_0}\,.$$

Болт рассчитывают на срез и смятие по диаметру точеного стержня.

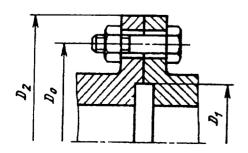



Рис. 12

# СОЕДИНЕНИЕ С ЭКСЦЕНТРИЧНОЙ НАГРУЗКОЙ (рис. 13)

Под действием растягивающей силы  $P_B$  болте возникают напряжения растяжения и изгиба:

$$\begin{split} &\sigma_{\text{CYM}} = \sigma_{\text{p}} + \sigma_{\text{M3}} = \\ &= \frac{P}{\frac{\pi d_1^2}{4}} + \frac{Pe}{\frac{\pi d_1^3}{32}} = \\ &= \frac{4P}{\pi d_1^2} \left( 1 + 8 \frac{e}{d_1} \right), \end{split}$$

где  $\sigma_{\text{сум}}$  - суммарное напряжение при растяжении и изгибе, МПа;

 $\sigma_{p}$  - рабочее напряжение при растяжении, МПа:

 $\sigma_{\text{из}}$  - рабочее напряжение при изгибе, МПа:

e - расстояние от точки приложения силы P до оси болта, мм;

 $d_1$  - внутренний диаметр резьбы, мм.

Даже при сравнительно малой величине е напряжения изгиба в болте могут во много раз превосходить напряжения растяжения, что потребует значительного увеличения диаметра резьбы. Поэтому болты с эксцентричной нагрузкой следует применять только при особой необходимости.

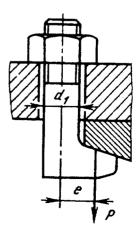



Рис. 13

0,25

+0,2

3,3

+0,2

4,0

-0,015

+0,018

0

+0,036

7×7

Св. 22 до 30

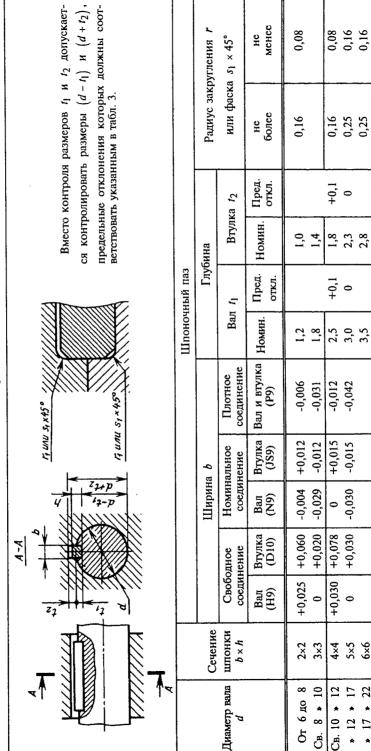
-0,051

-0,018

-0,036

+0,098

0


0

0

# ППОНОЧНЫЕ СОЕДИНЕНИЯ ПРИЗМАТИЧЕСКИЕ ШПОНКИ

# 2. Размеры сечений пазов и их предельные отклонения (по ГОСТ 23360-78)

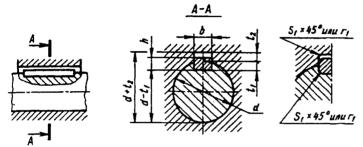
Размеры, мм



Продолжение табл. 2

							Шпоночный паз	ный паз				
	Сечение			Ширина в	a b			Linye	Глубина		Радиус закругления	угления г
Диаметр вала d	шпонки $b \times h$	Свобо	Свободное соединение	Номинальное соединение	альное нение	Плотное соединение	Ban f	Į,	Втулн	Втулка 12	или фаск	или фаска $s_1 \times 45^\circ$
		Вал (Н9)	Втулка (D10)	Bar (N9)	Втулка (JS9)	Вал и втулка (Р9)	Номин.	Пред. откл.	Номин.	Пред. откл.	не более	не менес
Св. 22 до 30	8×7	+0,036	+0,098	0	+0,018	-0,015	4,0		3,3		0,25	0,16
* 30 * 38	10×8	0	+0,040	-0,036	-0,018	-0,051	5,0	. — <del></del>	3,3	<u> </u>	0,4	0,25
Св. 38 до 44	12×8						5,0		3,3	<u> </u>		
* 44 * 50	14×9	+0,043	+0,120	0	+0,021	-0,018	5,5		3,8		0,4	0,25
* 50 * 58	16×10	0	+0,050	-0,043	-0,021	-0,061	0,9		4,3			
* 58 * 65	18×11						7,0	+0,2	4,4	+0,2		
Св. 65 до 75	20×12						7,5	0	4,9	0		
* 75 * 85	22×14	+0,052	+0,149	0	+0,026	-0,022	0,6		5,4			
* 85 * 95	24×14	0	+0,065	-0,052	-0,026	-0,074	0,6		5,4			
	25×14										9,0	0,4
<b>*</b> 95 <b>*</b> 110	28×16						10,0		6,4			
Ca 110 до 130	32×18	+0,062	+0,180	0	+0,031	-0,026	11,0		7,4			
		0	+0,080	-0,062	-0,031	-0,088	-		, , , ,			

Примечания: 1. Допускаются для ширины паза и втулки любые сочетания полей допусков, указанных в табл. 2. 2. Для термообработанных деталей допускаются предельные отклонения размера ширины паза вала Н11, если это не влияет на работо-


способность соединения.

3. В ответственных шпоночных соединениях сопряжения дна паза с боковыми сторонами выполняются по радиусу, величина и предельные отклонения которого должны указываться на рабочем чертеже.

4. Допускается в обоснованных случаях (пустотелые и ступенчатые валы, передачи пониженных вращающих моментов и т.п.) применять меньшие размеры сечений стандартных шпонок на валах больших диаметров, за исключением выходных концов валов.

Высота шпонок	<i>d-t</i> ₁	d+t ₂	
От 2 до 6	0 -0,1	+0,1	Предельные отклонения
Св. 6 → 18	0 -0,2	+0,2	размера длины паза вала должны соответствовать
<b>*</b> 18 <b>*</b> 50	0 -0,3	+0,3 0	полю допуска Н15

# 4. Шпоночные назы валов и втулок (по ГОСТ 10748-79)

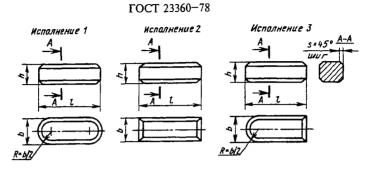


На рабочем чертеже должен проставляться один размер для вала  $t_1$  (предпочтительный вариант) или d- $t_1$  и для втулки d+ $t_2$ 

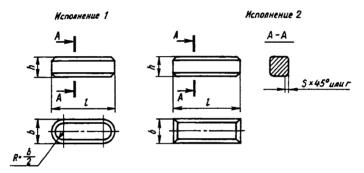
Размеры, мм

			Глуб	ина паза		Радиус зак пазов <i>г</i> и	
Диаметр вала	Сечение шпонки	вал	a t ₁	втуль	си t ₂	$S_1 \times$	•
d	$b \times h$	Номин.	Пред. откл.	Номин.	Пред. откл.	не менее	не более
Св. 30 до 38	10×9	5,5		3,8			
* 38 * 44	12×11	7,0		4,4			
* 44 * 50	14×12	7,5		4,9	ļ	0,25	0,4
» 50 » 58	16×14	9,0	+0,2	5,4	+0,2	,	
* 58 * 65	18×16	10,0	0	6,4	0		
Св. 65 до 75	20×18	11,0		7,4	1		
» 75 » 85	22×20	12,0		8,4		1	İ
* 85 * 95	25×22	13,0	+0,3	9,4	+0,3	0,4	0,6
* 95 * 110	28×25	15,0	0	10,4	0		
<b>*</b> 110 <b>*</b> 130	32×28	17,0		11,4			
* 130 * 150	36×32	20,0		12,4		0,7	1,0

ГОСТ 23360—78 и ГОСТ 10748—79 предусматривают также сечение шпонок и пазов для валов диаметром до 500 мм.


Размеры призматических шпонок по ГОСТ 23360-78 и призматических высоких по ГОСТ 10748-79 приведены в табл. 5.

Размеры призматических направляющих шпонок - по ГОСТ 8790-79 (табл. 6). Отклонения размеров призматических шпонок и пазов - по ГОСТ 23360-78 (табл. 2,3 и 5).


Допускается в отдельных обоснованных случаях (пустотелые и ступенчатые валы и т.п.) применять меньшие размеры сечений шпонок на валах больших диаметров, за исключением выходных концов валов.

# 5. Призматические шпонки (по ГОСТ 23360-78) и призматические высокие шпонки (по ГОСТ 10748-79) Размеры, мм

_____



ΓΟCT 10748-79



<i>b</i> (по h9)	2	3	4	5	6	8	10	12
h (по h11; h9*)	2	3	4	5	6	7	8(9)	8(11)
S или r		0,16-0,25			0,25-0,40		0,40-	0,60
l ** (по h14)	6-20	6-36	8-45	10-56	14-70	18-90	22-110	28-140
b (по h9)	14	16	18	20	22	25	28	32
n (по hll)	9(12)	10(14)	11(16)	12(18)	14(20)	14(22)	16(25)	18(28)
S или <i>r</i>		0,40-0,60				0,60-0,80		
l ** (по h14)	36-160	45-180	50-200	56-220	63-250	70-280	80-320	90-360

 $^{^*}$  У шпонок высотой h от 2 до 6 мм предельные отклонения соответствуют h9.

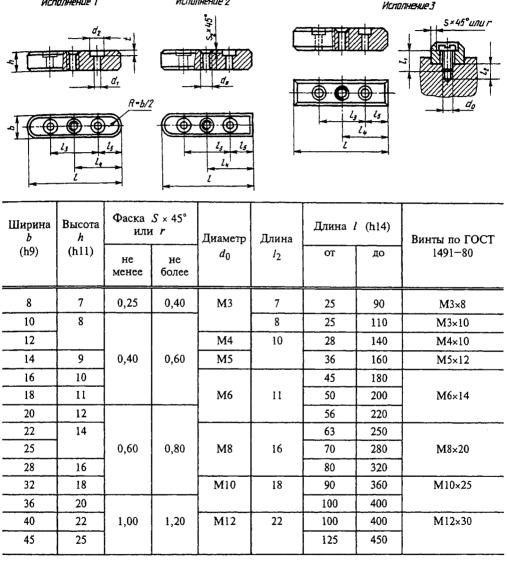
Допускается применять шпонки с длиной, выходящей за пределы диапазона, указанного в табл. 5.

Пример обозначения шпонки исполнения 1, размерами  $b=18,\ h=11$  и l=100 мм:

Шпонка 18×11×100 ГОСТ 23360-78

То же, исполнения 2:

Шпонка 2-18×11×100 ГОСТ 23360-78


Материал шпонок - сталь с временным сопротивлением разрыву не менее 590 МПа.

^{**} Размер *I* в указанных пределах брать из ряда: 6; 8; 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220; 250; 280; 320; 360 мм. В скобках размеры *h* для шпонок по ГОСТ 10748—79.

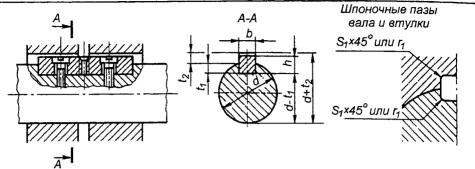
# 6. Призматические направляющие плонки с креплением на валу (no FOCT 8790-79) Размеры, мм

Исполнение 2

Испалнение 1



Примечания: 1. Длины шпонок должны выбираться из ряда 22; 25; 28; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140: 160; 180; 200; 220; 250; 280; 320; 360; 400; 450 mm.


- Длины шпонок свыше 450 мм должны выбираться из ряда Ra 20 по ГОСТ 6636—69.
- 3. Допускается применять шпонки с длиной, выходящей за пределы длин, указанных в табл. 1.
  - 4. Допускается применять предельные отклонения для щирины b по f9.
- 5. В технически обоснованных случаях допускается применение винтов по ГОСТ 1491-80 увеличенной длины с соответствующим увеличением глубины  $l_2$ .
  - 6. Размеры 13, 14, 15 по табл. 2 ГОСТ 8790-79.

7. Теоретическая масса призматических направляющих шпонок с креплением на валу (по ГОСТ 8790-79)

5 25 602,0 6 22 512,0 36 2 402,0 357,0 18 32 253,0 288,0 323,0 28 16 Теоретическая масса 1000 шпонок исполнения 3, 164,8 219,4 246,7 192,1 7 25 124,9 141,7 165,7 189,7 213,7 7 22 Размеры, мм 104,9 93,1 119,0 137,0 156,0 175,0 12 20 64,4 74,5 84,7 96,3 112,0 127,0 143,0 8 Ξ 4,4 6,99 76,2 88,8 101,0 114,0 16 2 58,1 27,6 32,0 37,1 47,7 54,3 61,6 71,5 81,4 91,4 4 6 20,6 16,5 26,2 29,9 33,7 48,8 38,4 43,3 56,3 63,9 71,4 23,1 12 ∞ 15,0 17,5 20,0 22,5 25,6 28,8 32,5 36,9 47,6 52,9 13,1 60,1 9 00 9,8 11,7 13,4 15,2 17,4 9,61 22,2 25,2 28,4 32,6 ∞ 25 28 32 9 36 4 5 20 4 56 63 70 8 8 100

110		6,39	78,9	0,101	126,0	158,0	194,0	237,7	274,0	358,0	447,0	0,693	675,0	
125			89,2	0,911	145,0	181,0	222,0	273,8	314,9	310,0	514,0	651,0	775,0	0,7001
140			100,4	131,0	164,0	205,0	250,0	309,8	355,9	464,0	583,0	738,0	882,0	1143,0
160				149,0	189,0	236,0	288,0	357,8	410,5	534,0	673,0	851,0	1021,0	1319,0
180					214,0	267,0	326,0	405,8	475,1	604,0	764,0	964,0	1159,0	1496,0
200	-					298,0	364,0	453,9	519,7	675,0	854,0	1077,0	1297,0	1673,0
220							401,0	6,108	574,3	745,0	945,0	1190,0	1435,0	1849,0
250								573,9	656,2	851,0	1080,0	1360,0	1642,0	2114,0
280									738,1	0,956	1216,0	1530,0	1849,0	2379,0
320										1084,0	1388,0	1743,0	2112,0	2715,0
360											1557,0	1968,0	2387,0	3066,0
400												2192,0	2678,0	3439,0
450														3856,0
Для шпонок исполнения 1 масса умень-	9,76	1,35	1,94	2,97	4,31	00'9	8,09	11,2	15,1	21,0	31,1	43,7	59,3	85,3
Для шпонок исполнения 2 масса умень- шается на	0,38	0,67	76,0	1,48	2,15	3,00	4,04	5,6	7,5	10,5	15,5	21,8	29,6	42,6

# 8. Размеры сечений пазов и предельные отклонения глубины паза, мм (по ГОСТ 8790-79)



На рабочем чертеже должен проставлять один размер для вала  $t_1$  (предпочтительный вариант). или  $(d-t_1)$  и для втулки  $(d+t_2)$ .

				Шп	і йынгоно	123		
Диаметр вала <i>d</i>	Сечение шпонки	Ширина		Глу	<b>Бина</b>		Радиус за ния д ил	
:	b × h	ь	Вал	$t_1$	Втулі	(a t ₂	$S_1 \times$	45°
:			Номин.	Пред. откл.	Номин.	Пред. откл.	не менее	не более
От 22 до 30	8×7	8	4		3,3		0,16	0,25
Св. 30 до 38	10×8	10	5					
Св. 38 до 44	12×8	12		-	3,8			
<b>*</b> 44 <b>*</b> 50	14×9	14	5,5				0,25	0,40
» 50 » 58	16×10	16	6		4,3			
» 58 » 65	18×11	18	7	+0,2 0	4,4	+0,2 0		
Св. 65 до 75	20×12	20	7,5		4,9			
<b>*</b> 75 <b>*</b> 85	22×14	22	9		5,4			
<b>»</b> 85 <b>»</b> 95	25×14	25					0,40	0,60
<b>»</b> 95 <b>»</b> 110	28×16	28	10		6,4			
<b>→</b> 110 <b>→</b> 130	32×16	32	11		7,4			

Продолжение табл. 8

				Глуб	бина		Радиус за ния г _і и	
Диаметр вала $d$	Сечение шпонки	Ширина <i>b</i>	Bar	ı <i>t</i> 1	Втуль	$t_2$	$S_1 \times$	45°
	b × h		Номин.	Пред. откл.	Номин.	Пред. откл.	не менее	не более
Св. 130 до 150	36×20	36	12		8,4			
* 150 * 170	40×22	40	13	+0,3 0	9,4	+0,3 0	0,70	1,00
» 170 » 200	45×25	45	15		10,4			

Вместо контроля размеров  $t_1$  и  $t_2$  допускается контролировать размеры  $\left(d-t_1\right)$  и  $\left(d+t_2\right)$ , предельные отклонения которых указаны ниже.

Высота шпонок h	$d-t_1$	$d+t_2$
От 7 до 18	0	+0,2
	-0,2	0
Св. 18 » 45	0	+0,3
	-0,3	0

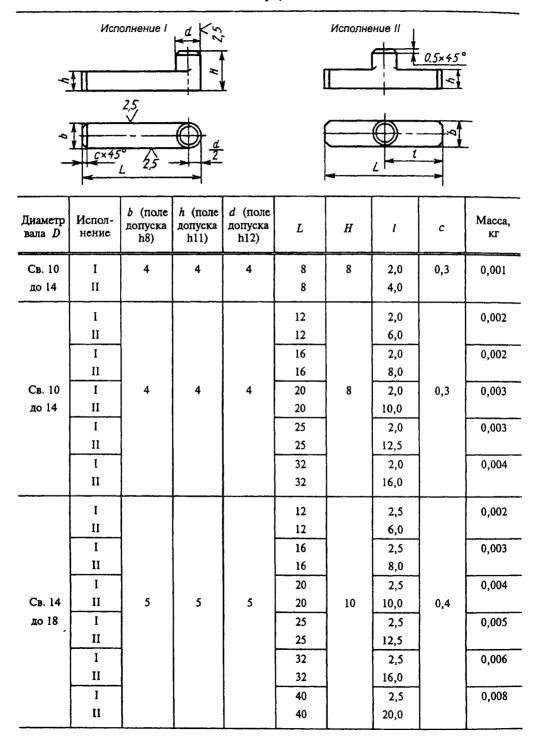
Пример условного обозначения шпонки исполнения 1, размерами b=18, h=11 и l=100 мм:

Шпонка 18×11×100 ГОСТ 8790-79

То же, исполнения 2:

Шпонка 2—18×11×100 ГОСТ 8790—79

Размеры  $d_1$  и их предельные отклонения - по 2-му ряду ГОСТ 11284—75. Размеры  $d_2$  и t и их предельные отклонения - по 2-му ряду ГОСТ 12876—67.


Фаски  $S_2 \times 45^{\circ}$  - по ГОСТ 10549-80.

Материал шпонок - сталь чистотянутая для шпонок по ГОСТ 8787—68. Допускается применять другую сталь с временным сопротивлением разрыву не менее 590 МПа.

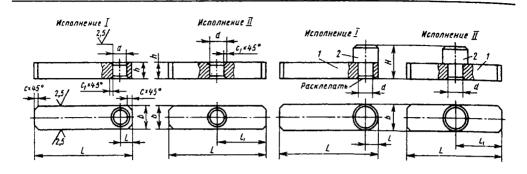
Размеры сечений пазов и предельные отклонения глубины паза должны соответствовать указанным в табл. 8. Предельные отклонения ширины шпоночного паза *b* должны соответствовать полям допусков: Н9 - по валу; D10 - по втулке.

Для термообработанных деталей допускаются предельные отклонения размера ширины паза вала, соответствующие полю допуска H11.

# 9. Призматические скользящие шпонки Размеры, мм



Продолжение табл. 9


	<del>,</del>	T		<del></del>	<del> </del>	<del></del>	<del></del>	1	пие тиол.
Диаметр вала <i>D</i>	Испол- нение	b (поле допуска h8)	<ul><li>h (поле допуска h11)</li></ul>	d (поле допуска h12)	L	H	1	с	Масса, кт
	I				16		3,0		0,005
	II				16		8,0		ĺ
	I				20	1	3,0	1	0,006
	II				20		10,0		-
Св. 18	I	6	6	6	25	12	3,0	0,6	0,008
до 24	II				25		12,5		
	I				32	]	3,0		0,010
	II				32		16,0		
	I				40		3,0		0,011
	II				40		20,0		
	I				20		4,0		0,012
	II				20		10,0		
	I				25		4,0		0,014
	II				25		12,5		
	I				32		4,0		0,017
Св. 24	II	8	7	8	32	14	16,0	0,6	
до 30	I				40		4,0		0,020
	II				40		20,0		
	I				50		4,0		0,025
	II				50		25,0		
	I				63		4,0	· [	0,030
	II				63		31,5		
	I				25		5,0	ĺ	0,020
	II			ļ	25		12,5	L	<u> </u>
	I				32		5,0		0,025
	II				32		16,0	ļ	
	I		_		40		5,0		0,030
Св. 30	II	10	8	10	40	16	20,0	0,7	
до 36	I		į		50		5,0		0,036
	II	}		}	50		25,0	1	
	I			}	63		5,0		0,044
	II				63		31,5		
	I	-		1	80		5,0		0,055
	II				80		40,0		<del> </del>

Материал шпонок - сталь марки 45 по ГОСТ 1050—88. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки 45. Твердость шпонки - 30...34 HRC₃.

Неуказанные предельные отклонения размеров: валов - h14, остальных -  $\pm \frac{t_2}{2}$ .

Допуски и посадки шпоночных соединений по ГОСТ 23360—78. Покрытие - Хим. Окс. прм. (обозначение покрытия - по ГОСТ 9.306—85).

# 10. Призматические скользящие сборные шпонки (по ГОСТ 12208-66) Размеры, мм



l = b / 2;  $l_1 = L / 2$ . 1 - шпонка; 2 - палец

Обозн изде		Диаметр	<i>d</i> (поле	L	H	<i>b</i> (поле	<i>h</i> (поле	с	$c_1$	Macca
исполне- ния 1	исполне- ния 2	вала <i>D</i>	допуска Н8)			допуска h8)	допуска hll)			в сборе, кт
7031-0251 7031-0253 7031-0255 7031-0257 7031-0259	7031-0252 7031-0254 7031-0256 7031-0258 7031-0260	Св. 36 до 42	6	32 40 50 63 80	16	12	8	0,8	1,0	0,032 0,037 0,045 0,054 0,068
7031-0261 7031-0263 7031-0265 7031-0267 7031-0271 7031-0273	7031-0266 7031-0268 7031-0270	Св. 42 до 48	8	40 50 63 80 100 125	18	14	9	0,8	1,0	0,082 0,01 0,01 0,04 0,08 0,10 0,15
7031-0275 7031-0277 7031-0279 7031-0281 7031-0283 7031-0285	7031-0278 7031-0280 7031-0282 7031-0284	Св. 48 до 55	10	50 63 80 100 125 160	20	16	10	1,0	1,6	0,079 0,095 0,116 0,141 0,177 0,217

Продолжение табл. 10

							т			· · · · · · · · · · · · · · · · · · ·
Обозна изде		Диаметр	<i>d</i> (поле	L	H	<i>b</i> (поле	<i>h</i> (поле	с	$c_1$	Macca
исполне- ния 1	исполне- ния 2	вала <i>D</i>	допуска Н8)			допуска h8)	допуска hll)			в сборе, кг
7031-0287	7031-0288			50						0,100
7031-0289	7031-0290			63						0,120
7031-0291	7031-0292	Св. 55	12	80	22	18	11	1,0	1,6	0,147
7031-0293	7031-0294	до 65		100						0,178
7031-0295	7031-0296	,		125						0,217
7031-0297	7031-0298			160						0,271
7031-0299	7031-0300			63						0,148
7031-0301	7031-0302			80						0,180
7031-0303	7031-0304	Св. 65	12	100	24	20	12	1,6	2,0	0,218
7031-0305	7031-0306	до 75		125						0,265
7031-0307	7031-0308			160						0,331
7031-0309	7031-0310			200						0,406
7031-0311	7031-0312			80						0,261
7031-0313	7031-0314			100						0,313
7031-0315	7031-0316	Св. 75	16	125	28	24	14	1,6	2,0	0,380
7031-0317	7031-0318	до 90		160						0,472
7031-0319	7031-0320			200						0,578
7031-0321	7031-0322			100						0,428
7031-0323	7031-0324			125						0,517
	7031-0326	Св. 90	20	160	32	28	16	2,0	2,5	0,639
7031-0327	7031-0328	до 105		200						0,780
7031-0329	7031-0330			250						0,955

ГОСТ 12208-66 предусматривает шпонки с b = 10; 32 и 36 мм.

Материал шпонок призматических скользящих сборных (детали 1, 2) - сталь марки 45 по ГОСТ 1050—88. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки 45.

Твердость: шпонки (деталь 1) - 36,5...41,5 HRC₃; пальца (деталь 2) - 30...34 HRC₃.

Неуказанные предельные отклонения размеров: h14,  $\pm \frac{t_2}{2}$ .

Допуски и посадки шпоночных соединений по ГОСТ 23360-78.

Смещение оси диаметра d пальца (деталь 2) относительно номинального положения - не более 0,006 мм.

Покрытие - Хим. Окс. прм. (обозначение покрытия - по ГОСТ 9.306-85).

Пример обозначения призматической скользящей сборной ш понки сразмерами b=12 мм и L=50 мм исполнения 1:

Шпонка 7031-0255 ГОСТ 12208-66

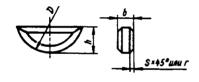
В обозначениях шпонки (деталь 1) добавляются цифры 001, например 7031-0251/001; 7031-0253/001; 7031-0255/001 и т.д.

Пример обозначения шпонки (деталь 1) с размерами d=6 мм и L=50 мм исполнения 1:

Шпонка 7031-0255/001 ГОСТ 12208-66

11.	Палец (деталь	2)
	Размеры, мм	

d, Rz40/(V)	Обозначение детали	d (поле допуска s7)	d ₁ (поле допуска h12)	$H_1$	h ₁	Macca, kr
1×45	7031-0251/002	6	12	16	8	0,009
	7031-0263/002	8	14	18	9	0,015
* ************************************	7031-0275/002	10	16	20	10	0,022
4 111	7031-0287/002	12	18	22	11	0,032
0,5145	7031-0299/002	12	20	24	12	0,040
	7031-0311/002	16	24	28	14	0,072
2	7031-0321/002	20	28	32	16	0,117
	7031-0331/002	22	32	36	18	0,167


Пример обозначения пальца диаметром  $d_1 = 12$  мм:

Палец 7031-0251/002 ГОСТ 12208-66

# СЕГМЕНТНЫЕ ШПОНКИ (по ГОСТ 24071-80)

# 12. Размеры шпонок, мм

# Исполнение 1



ГОСТ 24071-80 соответствует ИСО 3912-77.

Допускается притупление острого угла фаской или радиусом до  $0,1\ b$ 





Ширина <i>b</i> (h9)			Фаска 5 радиу	Теоретическая масса 1000	
			не менее	не более	шпонок в кг
1,0	1,4	4			0,031
1,5	2,6	7	1		0,152
2,0	2,6	7	0,16	0,25	0,204
2,0	3,7	10	1		0,414
2,5	3,7	10			0,510

Продолжение табл. 12

Ширина <i>b</i> (h9)	Высота <i>h</i> (h11)	Диаметр <i>D</i> (h12)	Фаска S > радиу	Теоретическая масса 1000 шпонок в кт	
			не менее		
3,0	5,0	13	0,16	0,25	1,050
3,0	6,5	16			1,600
4,0	6,5	16			2,120
4,0	7,5	19			3,240
5,0	6,5	16			2,680
5,0	7,5	19	0,25	0,40	4,040
5,0	9,0	22			5,660
6,0	9,0	22	]		6,780
6,0	10,0	25			8,480
8,0	11,0	28	0,40	0,60	13,800
10,0	13,0	32			24,100

Пример условного обозначения шпонки исполнения 1 сечением  $b \times h = 5 \times 6.5$  мм:

Шпонка 5×6,5 ГОСТ 24071-80

то же, исполнения 2 сечением  $b \times h_1 = 5 \times 5,2$  мм:

# Шпонка 2-5×5,2 ГОСТ 24071-80

Материал шпонок - сталь чистотянутая для сегментных шпонок по ГОСТ 8786—68. Допускается применение другой стали с временным сопротивлением разрыву не менее 590 МПа.

# 13. Размеры сечений пазов и предельные отклонения глубины паза на валу и во втулке для сегментных шпонок

# Шпоночные пазы вала и втулки A-A В S₁ × 45°или б₁ S₁× 45°или г₁

В зависимости от принятой базы обработки и измерения на рабочем чертеже должен указываться один размер для вала  $t_1$  (предпочтительный вариант) или  $d-t_1$  и для втулки  $d+t_2$ .

Продолжение табл. 13

Размеры, мм

Диаметр вала <i>d</i> для шпонок			Шпоночный паз							
передающих фиксирую-		Размеры шпонки	Ши-	Глубина				Фаска S ₁ × 45° или радиус		
вращающий момент	щих элементы	$b \times h \times D$	рина <i>b</i>	b Вал т ₁ Втулка т ₂ Номин. Пред. Номин. Пред.		$t_1$ Втулка $t_2$		закругления η		
						Пред. откл.	не менее	не более		
От 3 до 4	От 3 до 4	1×1,4×4	1,0	1,0		0,6				
Св. 4 » 5	Св. 4 » 6	1,5×2,6×7	1,5	2,0		0,8				
Св. 5 » 6	Св. 6 » 8	2×2,6×7	2,0	1,8	+0,1	1,0				
* 6 * 7	<b>*</b> 8 <b>*</b> 10	2×3,7×10		2,9	0	1,0		0,08	0,16	
Св. 7 до 8	Св. 10 до 12	2,5×3,7×10	2,5	2,7		1,2				
Св. 8 до 10	Св. 12 до 15	3×5×13	3,0	3,8	3,8					
* 10 * 12	<b>*</b> 15 <b>*</b> 18	3×6,5×16		5,3		1,4	+0,1			
Св. 12 до 14	Св. 18 до 20	4×6,5×16	4,0	5,0	+0,2	1,8	0			
» 14 » 16	» 20 » 22	4×7,5×19		6,0	0	1,8				
Св. 16 до 18	Св. 22 до 25	5×6,5×16		4,5		2,3				
* 18 * 20	<b>*</b> 25 <b>*</b> 28	5×7,5×19	5,0	5,5		2,3		0,16	0,25	
Св. 20 до 22	Св. 28 до 32	5×9×22		7,0		2,3				
Св. 22 до 25	Св. 32 до 36	6×9×22	6,0	6,5		2,8				
<u>* 25 * 28</u>	<b>»</b> 36 <b>»</b> 40	6×10×25		7,5	+0,3	2,8				
Св. 28 до 32	Св. 40	8×11×28	8,0	8,0	0	3,3	+0,2	0,25	0,40	
Св. 32 до 38	Св. 40	10×13×32	10,0	10,0		3,3	0			

Допускается в технически обоснованных случаях (пустотелые и ступенчатые валы, передача пониженных вращающих моментов и т.п.) применять меньшие размеры сечений шпонок на валах больших диаметров, за исключением выходных концов валов.

Предельные отклонения ширины паза b должны соответствовать полям допусков, указанным ниже.

Вид соединения	Поля допусков ширины шпоночного паза				
	Вал	Втулка			
Нормальное	<i>N</i> 9	JS9			
Плотное		P9			

Примечания: 1. Допускаются для ширины паза вала и втулки любые сочетания полей допусков, указанных в таблице.

2. Для термообработанных деталей допускаются предельные отклонения размера ширины паза вала, соответствующие полю допуска H11, размера ширины паза втулки - D10.

В ответственных шпоночных соединениях сопряжения дна паза с боковыми сторонами выполняются по радиусу, величина и предельные отклонения которого должны указываться на рабочем чертеже.

14. Параметры шероховатости поверхности элементов пшоночных соединений по ГОСТ 23360-78, ГОСТ 10748-79, ГОСТ 8790-79 и ГОСТ 24071-80 в зависимости от допуска размера

Допуск	Номинальные размеры, мм								
размера по ква- литетам	До 18	Св. 18 до 50	Св. 50 до 120	Св. 120 до 500					
	Ra, мкм, не более								
IT9	3,2	3,2	6,3	6,3					
IT10	3,2	6,3	6,3	6,3					
IT11	6,3	6,3	12,5	12,5					
IT12, 13	12,5	12,5	25	25					
IT14, 15	12,5	25	50	50					

Примечания: 1. Параметры шероховатости поверхностей c неуказанными предельными отклонениями - Ra 20 мкм.

2. Параметр шероховатости дна шпоночного паза рекомендуется равным *Ra* 6,3 мкм.

# ВЫБОР ШПОНОК ЛЛЯ СТУПЕНЧАТЫХ ВАЛОВ

На участке между серединами шпонок (рис. 14) передается постоянный вращающий момент T .

Силы  $P_1$  и  $P_2$ , действующие на шпонки и приложенные на плече, равном радиусу соответствующей ступени вала, составляют

$$P_1 = \frac{2T}{D_1}$$
 in  $P_2 = \frac{2T}{D_2}$ ;

 $D_2 > D_1$ , значит, шпонка ступени  $D_2$  нагружена меньше шпонки ступени  $D_1$ . По соображениям прочности и работоспособности шпоночных соединений нет оснований к назначению для ступени  $D_2$ 

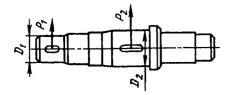



Рис. 14

шпонки большей, чем для ступени  $D_1$ . Наоборот, чем больше диаметр ступени ступенчатого вала, тем меньшим для нее может быть сечение шпонки.

Наличие на одном валу шпоночных пазов, одинаковых по сечению и длине, улучшает технологичность конструкции вала.

Таким образом, рекомендуется назначать одинаковые шпонки для всех ступеней вала исходя из ступени наименьшего диаметра, имеющего шпоночный паз.

## РАСЧЕТ ШПОНОК

 $\Pi$  ринятые обозначения  $\left[T_{\max}\right]$  - наибольший допускаемый вращающий момент, Н·м;

грабочая длина шпонки, мм;

d - диаметр вала, мм;

 $d_1$  - диаметр круглой шпонки, мм;

b и h - ширина и толщина шпонки, мм;

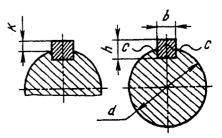
К - выступ шпонки от шпоночного паза;

[σ_{см}] - допускаемое напряжение смятия,МПа;

 $\left[ \tau_{cp} \right]$  - допускаемое напряжение среза, МПа.

При расчете принимают нагружение шпонки по длине равномерным.

Шпонки рассчитывают на смятие, а в особо ответстсвенных случаях проверяют на срез.


**Призматическая шпонка** (рис. 15). Рабочие грани проверяют на смятие, а сечение C-C - на срез.

Условие прочности на смятие:

$$[T_{\max}] = 0.5 d K l [\sigma_{\text{cm}}].$$

Условие прочности сечения C-C на срез:

$$[T_{\text{max}}] = 0.5(d + K)bl[\tau_{\text{cp}}].$$



Pac. 15

В случае установки двух противоположно расположенных шпонок вводят поправочный коэффициент 0,75.

Сегментная шпонка (рис. 16). Выступающую часть шпонки проверяют на смятие, а сечение C-C – на срез. Условие прочности выступающей части шпонки на смятие:

$$[T_{\text{max}}] = 0.5 d l K [\sigma_{\text{CM}}].$$

Условие прочности сечения C-C на срез:

$$[T_{\max}] = 0.5(d + K)lb[\tau_{\rm cp}],$$

где l = 0.95D.

**Тордовая шпонка** (рис. 17). Это призматическая шпонка, поставленная в плоскость стыка, например, при фланцевом соединении концов двух валов.

Узкая грань шпонки подвергается смятию; продольное сечение шпонки, плоскость которого совпадает с плоскостью стыка валов, испытывает напряжение среза (сдвига).

Условие прочности на смятие:

$$[T_{\text{max}}] = \frac{hlD(1 - \frac{l}{D})^2 \left[\sigma_{\text{cm}}\right]}{4}$$

**Цилиндрическая шпонка** (рис. 18). Диаметральное сечение проверяют на срез, боковую поверхность - на смятие.

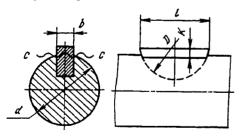



Рис. 16

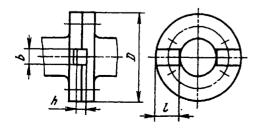



Рис. 17

Условие прочности диаметрального сечения на срез:

$$T = 0.5 dd_1 l \left[ \tau_{cp} \right].$$

Условие прочности боковой поверхности на смятие:

$$T \approx 0.2 d d_1 l [\sigma_{\rm CM}]$$
.

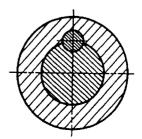
Допускаемые напряжения на смятие для шпонки обусловливаются режимами работы шпоночного соединения. При спокойном режиме принимают [ $\sigma_{cm}$ ] до 150,0 МПа.

Широко распространены в общем машиностроении значения  $[\sigma_{cM}]$ =60÷90 МПа при неподвижных шпонках для сопрягаемых элементов из чугунного литья, стального литья и стали.

В машиностроении также принимают  $\left[\sigma_{\text{см}}\right]\approx (0,3\div 0,5)\,\sigma_{\text{T}}$  для неподвижных соединений и  $\left[\sigma_{\text{см}}\right]\approx (0,1\div 0,2)\,\sigma_{\text{T}}$  для подвижных соединений, где  $\sigma_{\text{T}}$  - предел текучести материала шпонки.

Для определения допускаемого вращающего момента по заданным параметрам или для определения параметров по заданному вращающему моменту в неподвижных соединениях с призматическими шпонками можно пользоваться и номограммой (рис. 19).

Расчетная формула к номограмме


$$[T] = 0.25 Dhl[\sigma_{\rm CM}],$$

где D - диаметр вала; h - высота шпонки; l - рабочая длина шпонки;  $[\sigma_{\text{см}}]$  - допускаемое напряжение смятия менее твердой летали соединения.

Допускаемые напряжения смятия  $[\sigma_{cm}]$ :

 $[\sigma_{cM}]$ =150 МПа для поверхности с твердостью  $\leq$ 240 НВ;

 $[\sigma_{CM}]$ =250 МПа для поверхности с твердостью 270...300 НВ.



Pac. 18

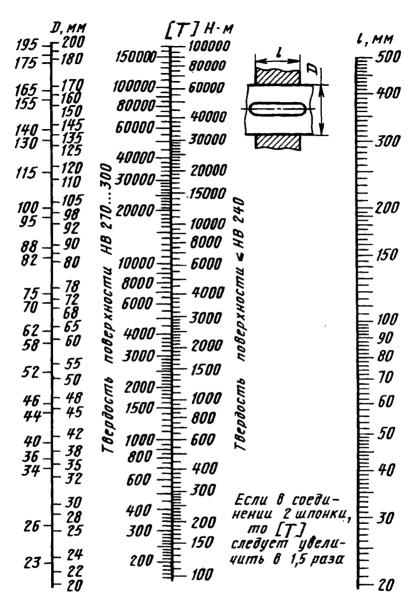
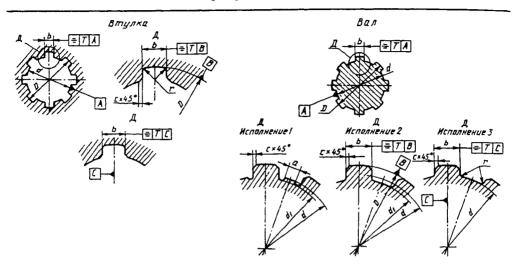



Рис. 19. Номограмма для определения параметров шпоночного соединения


# ШЛИЦЕВЫЕ СОЕДИНЕНИЯ

# ПРЯМОБОЧНЫЕ СОЕДИНЕНИЯ (по ГОСТ 1139-80 в ред. 1991 г.)

Стандарт распространяется на прямобочные шлицевые соединения общего назначения, имеющие зубья вала, расположенные параллельно продольной

оси соединения, и с боковыми сторонами профиля, параллельными оси симметрии шлица вне окружности диаметра.

# 15. Размеры прямобочных соединений



Размеры,	MM
----------	----

	Число	1		ь	$d_1$ ,	a,	с		r,
$z \times d \times D$	зубьев г		D		не ме- нее	не ме- нее	Номин.	Пред. откл.	не бо- лее
Легкая серия									
6×23×26	6	23	26	6	22,1	3,54	0,3	+0,2	0,2
6×26×30	6	26	30	6	24,6	3,85	0,3	+0,2	0,2
6×28×32	6	28	32	7	26,7	4,03	0,3	+0,2	0,2
8×32×36	8	32	36	6	30,4	2,71	0,4	+0,2	0,3
8×36×40	8	36	40	7	34,5	3,46	0,4	+0,2	0,3
8×42×46	8	42	46	8	40,4	5,03	0,4	+0,2	0,3
8×46×50	8	46	50	9	44,6	5,75	0,4	+0,2	0,3
8×52×58	8	52	58	10	49,7	4,89	0,5	+0,3	0,5
8×56×62	8	56	62	10	53,6	6,38	0,5	+0,3	0,5
8×62×68	8	62	68	12	59,8	7,31	0,5	+0,3	0,5
10×72×78	10	72	<b>7</b> 8	12	69,6	5,45	0,5	+0,3	0,5
10×82×88	10	82	88	12	79,3	8,62	0,5	+0,3	0,5
10×92×98	10	92	98	14	89,4	10,08	0,5	+0,3	0,5
10×102×108	10	102	108	16	99,9	11,49	0,5	+0,3	0,5
1 <b>0</b> ×112×120	10	112	120	18	108,8	10,72	0,5	+0,3	0,5
			Сре	дняя с	ерия	•		-	
6×11×14	6	11	14	3,0	9,9	_	0,3	+0,2	0,2
6×13×16	6	13	16	3,5	12,0	_	0,3	+0,2	0,2
6×16×20	6	16	20	4,0	14,5	_	0,3	+0,2	0,2
6×18×22	6	18	22	5,0	16,7	_	0,3	+0,2	0,2
6×21×52	6	21	25	5,0	19,5	1,95	0,3	+0,2	0,2

Продолжение табл. 15

	Проболжение таол. 13									
	Число	_	_		$d_1$ ,	a ,		c	r,	
$z \times d \times D$	зубьев г	d	D	b	не ме- нее	не ме- нее	Номин.	Пред. откл.	не бо- лее	
6×23×28	6	23	28	6,0	21,3	1,34	0,3	+0,2	0,2	
6×26×32	6	26	32	6,0	23,4	1,65	0,4	+0,2	0,3	
6×28×34	6	28	34	7,0	25,9	1,70	0,4	+0,2	0,3	
8×32×38	8	32	38	6,0	29,4	_	0,4	+0,2	0,3	
8×36×42	8	36	42	7,0	33,5	1,02	0,4	+0,2	0,3	
8×42×48	8	42	48	8,0	39,5	2,57	0,4	+0,2	0,3	
8×46×54	8	46	54	9,0	42,7	_	0,5	+0,3	0,5	
8×52×60	8	52	60	10,0	48,7	2,44	0,5	+0,3	0,5	
8×56×65	8	56	65	10,0	52,2	2,50	0,5	+0,3	0,5	
8×62×72	8	62	72	12,0	57,8	2,40	0,5	+0,3	0,5	
10×72×82	10	72	82	12,0	67,4	<u> </u>	0,5	+0,3	0,5	
10×82×92	10	82	92	12,0	77,1	3,00	0,5	+0,3	0,5	
10×92×102	10	92	102	14,0	87,3	4,50	0,5	+0,3	0,5	
10×102×112	10	102	112	16,0	97,7	6,30	0,5	+0,3	0,5	
10×112×125	10	112	125	18,0	106,3	4,40	0,5	+0,3	0,5	
	•	•	' Тяж	' елая с	ерия	'	,			
10×16×20	10	16	20	2,5	14,1	l –	0,3	+0,2	0,2	
10×18×23	10	18	23	3,0	15,6	_	0,3	+0,2	0,2	
10×21×26	10	21	26	3,0	18,5	<del>-</del>	0,3	+0,2	0,2	
10×23×29	10	23	29	4,0	20,3	_	0,3	+0,2	0,2	
10×26×32	10	26	32	4,0	23,0	_	0,4	+0,2	0,3	
10×28×35	10	28	35	4,0	24,4	_	0,4	+0,2	0,3	
10×32×40	10	32	40	5,0	28,0	l —	0,4	+0,2	0,3	
10×36×45	10	36	45	5,0	31,3	-	0,4	+0,2	0,3	
10×42×52	10	42	52	6,0	36,9	_	0,4	+0,2	0,3	
10×46×56	10	46	56	7,0	40,9	-	0,5	+0,3	0,5	
16×52×60	16	52	60	5,0	47,0	<u> </u>	0,5	+0,3	0,5	
16×56×65	16	56	65	5,0	50,6	-	0,5	+0,3	0,5	
16×62×72	16	62	72	6,0	56,1	_	0,5	+0,3	0,5	
16×72×82	16	72	82	7,0	65,9	_	0,5	+0,3	0,5	
20×82×92	20	82	92	6,0	75,6	_	0,5	+0,3	0,5	
20×92×102	20	92	102	7,0	85,5	-	0,5	+0,3	0,5	
20×102×115	20	102	115	8,0	94,0		0,5	+0,3	0,5	
_20×112×125	20	112	125	9,0	104,0	_	0,5	+0,3	0,5	

Примечания: 1. Исполнение 1 дано для изготовления валов соединений легкой и средней серий методом обкатывания. Вал соединений тяжелой серии методом обкатывания не изготовляются.

^{2.} Шлицевые валы исполнении 1 и 3 изготовляются при центрировании по внутреннему диаметру, исполнения 2 - при центрировании по наружному диаметру и боковым сторонам зубьев.

^{3.} Фаска у пазов отверстия втулки может быть заменена круглением с радиусом, равным величине фаски c.

Стандарт не распространяется на специальные шлицевые соединения, отличающиеся от приведенных номинальными размерами и видом центрирования.

#### ДОПУСКИ И ПОСАДКИ ШЛИЦЕВЫХ ПРЯМОБОЧНЫХ СОЕДИНЕНИЙ

Общие положения, допуски и основные отклонения размеров d, D, b шлицевого соединения - по ГОСТ 25346—89.

Поля допусков шлицевых валов и втулок для образования посадок при различных видах центрирования должны соответствовать указанным в табл. 16, 17, 18.

Поля допусков, заключенные в квадратные скобки, являются рекомендуемыми, а поля допусков, отмеченные звездочками предпочтительными из числа рекомендуемых (поля допусков, применяемые в ИСО).

При длине шлицевого вала или втулки, превышающей длину комплексного калибра, предельные отклонения от параллельности сторон зубьев вала и пазов втулки относительно оси центрирующей поверхности не должны превышать на длине 100 мм:

0,03 мм - в соединениях повышенной точности, определяемой допуском на размер b от IT6 до IT8;

 $0,05\,$  мм - в соединениях нормальной точности при допусках на размер b от IT9 по IT10.

Обозначения шлицевых соединений валов и втулок должны содержать:

букву, обозначающую поверхность центрирования;

число зубьев z и номинальные размеры d, D и b соединения вала и втулки;

обозначения полей допусков или посадок диаметров, а также размера b, помещенные после соответствующих размеров.

Допускается не указывать в обозначении допуски нецентрирующих диаметров.

Пример условного обозначения соединения с числом зубьев z=8, внутренним диаметром d=36 мм, наружным диаметром D=40 мм, шириной зуба b=7 мм, с центрированием по внутреннему диаметру, с посадкой по диаметру

центрирования  $\frac{H7}{f7}$  по нецентрирующему

диаметру  $\frac{H12}{a11}$  и по размеру  $b \frac{H9}{f9}$ :

$$d-8 \times 36 \frac{H7}{f7} \times 40 \frac{H12}{a11} \times 7 \frac{H9}{f9}$$

То же, при центрировании по наружному диаметру с посадкой по диаметру центрирования  $\frac{H7}{h7}$  и по размеру  $b = \frac{F10}{h9}$ :

$$D-8 \times 36 \times 40 \frac{H7}{h7} \times 7 \frac{F10}{h9}$$
.

То же, при центрировании по боковым сторонам:

$$b-8 \times 36 \times 40 \frac{\text{H}12}{\text{a}11} \times 7 \frac{\text{D}9}{\text{f8}}$$

Пример условного обозначения втулки того же соединения при центрировании по внутреннему диаметру:

$$d-8 \times 36 \text{ H7} \times 40 \text{H12} \times 7 \text{H9}$$
.

То же, вала:

$$d-8 \times 36 \text{ f7} \times 40 \text{a} 11 \times 7 \text{f9}$$
.

#### Рекомендации по контролю прямобочных шлипевых соединений.

1. Шлицевые соединения контролируют комплексными калибрами, при этом поэлементный контроль осуществляют непроходными калибрами или измерительными приборами.

В спорных случаях контроль комплексным калибром является главным.

2. При использовании комплексных калибров отверстие считают годным, если комплексный калибр-пробка проходит, а диаметры и ширина паза не выходят за установленные верхние пределы; вал считают годным, если комплексный калибркольцо проходит, а диаметры и толщина зуба не выходят за установленные нижние пределы.

 Поля допусков шлицевых валов и втулок для образования посадок при центрировании по внутреннему диаметру

		,2		Н8			7sį			
		9u	F8	F10		h7		[js7]		
106				H8			[js7]			
еподвиж	Неподвижное [H7]*	[js6]* js7		D3		[js7]	[k7]			
Ĥ		ij	F8	F10		h7	[js7]	[k7]		
		*[7 _A ]	Н8	6H	H11]	[Lu] 94		h8 [h10]*		
		h7	62	F10		82		[64]		
		37]*	.[6H]	[HIII]*		[410]*		.[6J]		
				[86] [87]		F8		73		[h7]
			60	F10		82	Р4	64		
Подвижное	[H7]*		[H9]*	[H111]			[410]*	.[63]		
Ĭ		<u>.</u>		F8		13	82	h7	h9	
		·[[1]]	,	D3			64			
			[60]	[F10]		e8 f7	e9 f8	[69]	:	
	H8	89	[60]	D10	[F10]	6р	8	[69]		
Вид соединения	Втулка	Вал		Втулка			Вал			
Coeg	p				q					

Примечания:

- 1. Поля допусков F10 и H11 применяются только для закаленных нешлифованных втулок.
  - 2. Поле допуска h9 применяется при чистовом фрезеровании незакаленных шлицевых валов.

## 17. Поля допусков пілицевых валов и втулок для образования посадок при центрировании по наружному диаметру

	Вид инения			Под	вижное		~		Неподвижное		
		Н8									
D	Втулка	H10		[H7]					(H	.7]	
		H11									
		d8							1		
	Вал	e8		[f7] [g6] [h7]			[h7]	[js6]			
		h7									
		D9	[D9]	[ <b>F</b> 8]		D9		D9	D9	D9	
	Втулка	F8	F8	[F10]	D9	[F8]	F8	F8	[ <b>F</b> 8]	F8	
b		H11	[F10]								
		<b>d</b> 8	[d9]	[f7]	f7	f7			h8	h8	
	Вал	e8	e8	[f8]	h8	h9	h8	f7	[js7]	js7	
		d10	[h9]	h8	h9						

#### Примечания:

- 1. Поля допусков H10 и H11 применяются только для закаленных втулок, не подлежащих дополнительной обработке.
- 2. Поле допуска h9 применяется при чистовом фрезеровании незакаленных шлицевых валов.

#### Поля допусков шлицевых валов и втулок для образования посадок при центрировании по боковым сторонам шлицев

Вид соединения		Подвижное	Неподвижное		
	Втулка	[D9] F8 [F10]	D9 [F8] F10		
Поля допусков размера	Вал	d9 [e8] e9 [f8]	[js7] k7		
		f9 h8 h9			

Примечание. Рекомендуется применять поле допуска е 9 для незакаленных валов.

· 19.	Поля	допусков	нецентрир	ующих	диаметров	4
-------	------	----------	-----------	-------	-----------	---

		Поле допуска					
Нецентрирующий	Вид	Ва					
диаметр	центрирования	Подвижное соединение	Неподвижное соединение	Втулка			
d	По <i>D</i> или <i>b</i>	_		H11			
D	По <i>d</i> или <i>b</i>	[all] dl0, f9	[a11] f9, h10	H10, H11 H12			

Допуски симметричности боковых сторон шлицев в диаметральном выражении по отношению к оси симметрии центрирующего элемента должны соответствовать указанным ниже.

<i>b</i>	2,5; 3	3,5; 4; 5; 6	7; 8; 9; 10	12; 14; 16; 18
IT7	0,010	0,012	0,015	0,010

#### 20. Центрирование по внутреннему диаметру по ГОСТ 1139-80 Посадки центрирующего диаметра

Поле	Основное отклонение вала								
допуска втулки	е	f	g	h	js	n			
H7; H8	H8 e8	H7 f7	$ \begin{array}{ c c } \hline H7 \\ g6 \end{array} $ $ \begin{array}{ c c } \hline H7 \\ g7 \end{array} $	H7 h7	H7 js6 H7 js7	H7 n6			

#### Посадки по боковым сторонам пілицев

Поле	Основное отклонение вала						
допуска втулки	d	e	f	h	js	k	
D9	<u>D9</u> d9	D9 D9 e8 e9	D9 D9 D9 f9	D9 D9 h8 h9	D9 js7	D9 k7	
D10	<u>D10</u>	D10 e9	_	-	-	_	
F8	-	_	F8 F8 f7 f8	$ \begin{bmatrix} F8 \\ h7 \end{bmatrix} $ $ \frac{F8}{h9} $	F8 js7	F8 k7	
F10	F10 d9	F10 F10 e9	$\begin{array}{c c} \underline{F10} & \underline{F10} & \underline{F10} \\ \hline f7 & f8 & \underline{f9} \end{array}$	F10 F10 F10 h9	F10 js7	F10 k7	
Н8		_	_	- <u>H8</u> <u>H8</u> h8		_	
Н9	H9 d10		H9 f9	$ \begin{array}{ c c c c c }\hline H9 & H9 & H9 \\\hline h7 & h8 & h10 \\\hline \end{array} $	_		
Hii	H11 d10		H11 f9	$\begin{array}{ c c c c c }\hline H11 \\ \hline h7 \\ \hline \end{array} \begin{array}{ c c c c }\hline H11 \\ \hline h8 \\ \hline \end{array} \begin{array}{ c c c c c }\hline H11 \\ \hline h10 \\ \hline \end{array}$		_	

#### Центрирование по наружному диаметру по ГОСТ 1139-80 Посадки центрирующего диаметра

Поле	Поле допуска вала								
допуска втулки	d	e	f	g	h	js	n		
H7	-	-	H7 f7	$\frac{H7}{g6}$	H7 h7	H7 js6	H7 n6		
H8	H8 d8	H8 e8	_	_	H8 h7	_	_		
H10	H10 d8	H10 e8	_	_	_	_	_		

#### Посадки по боковым сторонам плицев в

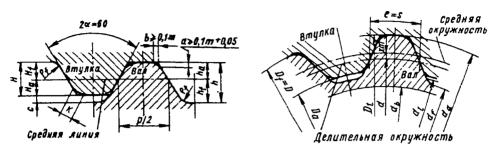
Поле	Поле допуска вала							
допуска втулки	đ	e	f	h	js			
D9	D9 d9	D9 e8	<u>D9</u> f7	D9 D9 h8 h9	<u>D9</u> js7			
F8	_	F8 e8	$ \begin{array}{ c c } \hline F8 \\ \hline f7 \end{array} \begin{array}{ c c } \hline F8 \\ \hline f8 \end{array} $	F8 h8	F8 js7			
F10	F10 d9	F10 e8	F10 F10 f8	F10 h9				

#### 22. Центрирование по боковым сторонам шлицев Посадка по боковым сторонам шлицев

Поле			Поле допу	ска вала		
допуска втулки	d	е	f	ħ	js	k
D9	<u>D9</u> d9	D9 e8	D9 D9 f9	D9 D9 h8 h9	<u>D9</u> js7	<u>D9</u> k7
F8	<b>-</b>	F8 e8	F8 f8	-	$\frac{\overline{F8}}{js7}$	_
F10	F10 d9	F10 e8	F10 F10 f9	F10 F10 h9	F10 js7	F10 k7

# ШЛИЦЕВЫЕ ЭВОЛЬВЕНТНЫЕ СОЕДИНЕНИЯ С УГЛОМ ПРОФИЛЯ 30° (по ГОСТ 6033-80)

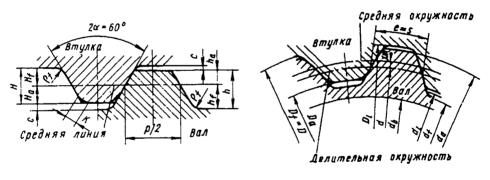
Стандарт распространяется на шлицевые соединения с эвольвентным профилем зубьев, расположенных параллельно оси соединения, с углом профиля 30° и устанавливает исходный контур, форму зубьев, номинальные диаметры, модули и числа зубьев, номинальные размеры и измеряе-


мые величины при центрировании по боковым поверхностям зубьев, а также допуски и посадки.

Стандарт не распространяется на специальные шлицевые соединения, которые отличаются от регламентируемых номинальными размерами и видом центрирования.

На поверхности вершин зубьев вала, полученных методом накатки, допускаются углубления.

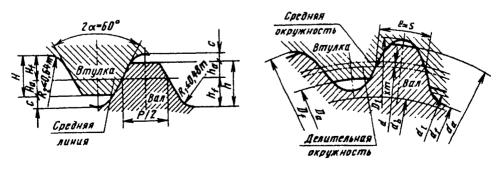
#### 23. Исходный контур, форма зубьев и зависимости для определения их размеров


#### Центрирование по наружному диаметру



Исходный контур

Форма зубьев вала и втулки


#### Центрирование по боковым поверхностям зубьев при плоской форме дна впадины



Исходный контур

Форма зубьев вала и втулки

## Центрирование по боковым поверхностям зубьев при закругленной форме дна впадины



Исходный контур

Форма зубьев вала и втулки

Продолжение табл. 23

Наименование параметра и обозначение	Расчетная формула	Наименование параметра и обозначение	Расчетная формула	
Модуль т		Диаметр окружности впадин втулки при плоской форме дна	$D_f = D$	
Делительный окруж- ной шаг зубьев р	$p = \pi m$	впадины $D_f$	$D_a = D - 2m$	
Угол профиля зуба α	α=30°	Диаметр окружности вершин зубьев втул- $D_a$	D _a = D = 2m	
Число зубьев г		Смещение исходного	$x m = \frac{1}{2} \times$	
Диаметр делительной окружности d	d = mz	Възрата положи побо	$\times (D-mz-1,1m)$	
Диаметр основной окружности $d_b$	$d_b = mz \cos \alpha$	Высота головки зуба вала $h_a$ : при центрировании по боковым поверхностям зубьев при центрировании	$h_a = 0,45m$ $h_a = 0,55m$	
Высота зуба вала h	$h_{\min} = h_a + h_{f \min}$	по наружному диа- метру		
Высота зуба втулки Н	$H = H_a + H_f$	Высота головки зуба втулки <i>Н</i> _а	H _a = 45m	
Номинальная дели- тельная окружная толщина зуба вала <i>s</i>	$s = \frac{\pi}{2}m + +2xm \operatorname{tg}\alpha$	Высота ножки зуба втулки при плоской форме дна впадины $H_f$	$H_{f \text{ min}} = 0.55m$ $H_{f \text{ max}} = 0.65m$	
Номинальная дели- тельная окружная ширина впадины втулки е	$e = \frac{\pi}{2}m + +2xm \operatorname{tg}\alpha$	Высота ножки зуба вала при плоской форме дна впадины $h_f$	$h_{f \min} = 0,55m$ $h_{f \max} = 0,65m$	
Номинальный	D = mz + 2xm +	Радиус кривизны переходной кривой зуба $\rho_f$	$\rho_{f \min} = 0.15m$	
(исходный) диаметр соединения <i>D</i>	+1,1 <i>m</i>	Диаметр окружности впадин вала при плоской форме дна впадины	$d_{f \max} = D - 2.2m$	

Продолжение	табл.	23

Наименование параметра и обозначение	Расчетная формула	Наименование параметра и обозначение	Расчетная формула
Диаметр окружности вершин зубьев вала $d_a$ при центрировании:		Диаметр окружности граничных точек зуба вала $d_1$	$d_{l \max} = D_a - F_r$
по боковым поверх- ностям по наружному диа- метру	$d_a = D - 0.2m$ $d_a = D$	Фаска или радиус при- тупления продольной кромки зуба втулки <i>К</i>	K = 0,15m
Диаметр окружности граничных точек зуба втулки $D_l$	$D_{l\min} = d_a + F_r$	Радиальный зазор <i>с</i>	$c_{\min} = 0.1m$

 $\Pi$  р и м е ч а н и я : 1. Предельные значения радиального биения венца  $F_r$  по табл. 28.

2. Допускается применять сочетания профилей зубьев с различной формой дна впадины.

3. Допускается применять центрирование по внутреннему диаметру.

Выбор значений параметров шлицевых соединений  $H_f$  и  $h_f$  в зависимости от вида применяемого инструмента:

- 1. Номинальный (исходный) диаметр шлицевого эвольвентного соединения *D* по стандарту, как правило, должен быть равен номинальному диаметру отверстия шарикоподшипника.
- 2. Значения диаметра окружности впадин втулки  $D_f$  и диаметра окружности впадин вала  $d_f$  являются номинальными при высоте ножки зуба  $H_f = h_f = 0.55m$ .
- 3. Диаметр окружности впадины втулки при обработке универсальным инструментом увеличивается по сравнению с номинальным значением на величину, равную 0.2m, т.е.

$$H_f = 0,65m.$$

4. Диаметр окружности впадин вала при обработке универсальным инструментом уменьшается по сравнению с номинальным значением на величину, равную 0,1m (при обработке червячной фрезой), и на величину, равную 0,2m (при обработке долбяком). В этом случае высота ножки зуба вала принимается соответственно равной  $h_f=0,6m$  и  $h_f=0,65m$ .

ГОСТ 6033-80 устанавливает номинальные диаметры, модули, числа зубьев и измеряемые величины: номинальные размеры по роликам и длины общей нормали (рис. 20, 21, 22).

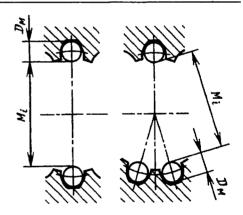



Рис. 20. Размер между роликами

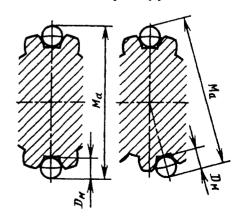



Рис. 21. Длина общей нормали

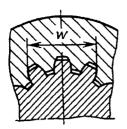



Рис. 22. Длина общей нормали

#### ДОПУСКИ И ПОСАДКИ ШЛИЦЕВЫХ ЭВОЛЬВЕНТНЫХ СОЕДИНЕНИЙ

Допуски и посадки при центрировании по боковым поверхностям зубьев. 1. Расположение полей допусков ширины впадины втулки е и толщины зуба вала s, а также обозначения допусков, основных отклонений и предельных отклонений должны соответствовать указанным на рис. 23.

Предельные отклонения ширины впадины втулки и толщины зуба вала следует отсчитывать от их общего номинального размера на дуге делительной окружности.

 Устанавливаются два вида допусков ширины впадины втулки и толщины зуба вала:

> Расположение поля допуска ширины впадины е втулки

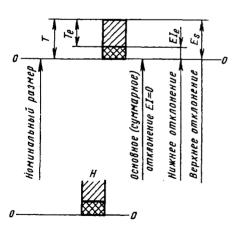
 $T_e(T_s)$  - допуск собственно ширины впадины втулки (толщины зуба вала), контролируемый отдельно в случаях, когда не применяется комплексный калибр:

Т - суммарный допуск, включающий отклонение собственно ширины впадины (толщины зуба) и отклонение формы и расположения элементов профиля впадины (зуба), контролируемый комплексным ка-

либром.

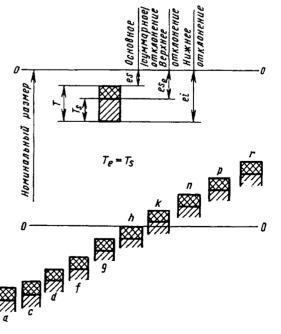
 $\bar{3}$ . Устанавливаются следующие степени точности элементов соединения, определяющие величины T и  $T_e$  для втулки и вала, обозначаемые числами:

ширина впадины втулки 7; 9; 11; толщина зуба вала 7; 8; 9; 10; 11.


4. Устанавливаются следующие ряды основных отклонений, обозначаемых буквами латинского алфавита (строчной - для вала и прописной - для втулки):

для ширины впадины втулки - Н;

для толщины зуба вала - r, p, n, k, h, g, f, d, c, a.


5. Устанавливается обозначение полей допусков размеров е и s в виде числа, показывающего степень точности, за которым следует буква, показывающая основное отклонение (для отличия от обозначе-

Расположение поля допуска толщины зуба з вала



Поле допуска собственно ширины впадины |толщины зуба|

Мале допуска для отклонений формы и расположения элементов профиля



24. Отклонение размера е для втулок

				Диам	етр делит	ельной ок	ружности	I, MM	
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
				]	Предельнь	іе отклон	ения, мкм	1	<u> </u>
		ES	+25	+28	+32	+36	+40	T -	_
	От 0,5 до 1,5	EI _e	+9	+10	+12	+14	+15	_	_
		EI	0	0	0	0	0	-	_
		ES	1	+32	+36	+40	+45	+50	-
7H	От 2 до 4	EI,	-	+12	+14	+15	+17	+18	-
		EI	_	0	0	0	0	0	_
		ES	-	-	+40	+45	+50	+56	+63
	От 5 до 10	EI.	-		+15	+17	+18	+20	+23
		EI	_	_	0	0	0	0	0
		ES	+50	+56	+63	+71	+80	-	-
	От 0,5 до 1,5	EI _e	+18	+20	+23	+26	+30	_	_
		EI	0	0	0	0	0		
		ES	-	+63	+71	+80	+90	+100	_
9H	От 2 до 4	EI.	-	+23	+26	+30	+34	+37	_
		EI	_	0	0	0	0	0	
		ES	-	-	+80	+90	+100	+112	+125
	От 5 до 10	EI.	_		+30	+34	+37	+41	+45
		EI			0	0	0	0	0
		ES	+100	+112	+125	+140	+160	_	-
	От 0,5 до 1,5	EI.	+37	+41	+45	+50	+60	-	-
		EI	0	0	0	0	0		
11 <b>H</b>		ES	-	+125	+140	+160	+180	+200	-
	От 2 до 4	EI,	-	+45	+50	+60	+68	+75	-
;		EI	_	0	0	0	0	0	
		ES	-	-	+160	+180	+200	+224	+250
	От 5 до 10	EI,	-	_	+60	+68	+75	+84	+90
		EI			0	0	0	0	0

25. Отклонение размера з для валов

				Диам	етр делит	ельной ок	ружности	, MM	
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
				Ι	Іредельнь	іе отклоне	ния, мкм	(	
		es	+64	+72	+80	+88	+100	_	-
	От 0,5 до 1,5	es _e	+46	+52	+57	+62	+70	_	_
		ei	+14	+16	+17	+17	+20	_	_
		es	-	+80	+88	+100	+112	+128	-
9r	От 2 до 4	es _e	_	+57	+62	+70	+78	+91	-
		ei	_	+17	+17	+20	+22	+28	
		es	_	_	+100	+112	+128	+144	+160
	От 5 до 10	es _e	-	_	+70	+78	+91	+103	+115
		ei	_		+20	+22	+28	+32	+35
		es	+48	+54	+60	+66	+75	_	_
	От 0,5 до 1,5	es _e	+34	+39	+43	+48	+55	_	
		ei	+12	+14	+15	+16	+19		
		es	_	+60	+66	+75	+84	+96	-
8p	От 2 до 4	es _e	_	+43	+48	+55	+61	+70	_
		ei		+15	+16	+19	+21	+25	-
		es	_	-	+75	+84	+96	+108	+120
	От 5 до 10	ese	_	_	+55	+61	+70	+78	+86
		ei	_		+19	+21	+25	+28	+30
		es	+32	+36	+40	+44	+50	-	-
	От 0,5 до 1,5	ese	+23	+26	+28	+30	+35	-	-
		ei	+7	+8	+8	+8	+10		
7n		es	-	+40	+44	+50	+56	+64	-
	От 2 до 4	es _e	_	+28	+30	+35	+39	+46	-
		ei	_	+8	+8	+10	+11	+14	
		es	-	_	+50	+56	+64	+72	+80
	От 5 до 19	es _e	-	-	+35	+38	+46	+52	+57
		ei		_	+10	+11	+14	+16	+17

Продолжение табл. 25

				Диам	етр делит	ельной ок	ружности	I, MM	
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
				I	Тредельнь	ие отклоне	ния, мкм	<u> </u>	<del></del>
		es	+16	+18	+20	+22	+25	T -	_
	От 0,5 до 1,5	es _e	+2	+3	+3	+4	+5	_	_
		ei	-20	-22	-25	-28	-31	-	-
		es	_	+20	+22	+25	+28	+32	_
8k	От 2 до 4	ese	-	+3	+4	+5	+5	+6	_
		ei	_	-25	-28	-31	-35	-39	
		es	-	Τ	+25	+28	+32	+36	+40
	От 5 до 10	es _e	-	-	+5	+5	+6	+6	+6
		ei	_	_	-31	-35	-39	-44	-50
		es	0	0	0	0	0	_	_
	От 0,5 до 1,5	es _e	<b>-</b> 9	-10	-12	-14	-15	_	_
		ei	-25	-28	-32	-36	-40		
		es	_	0	0	0	0	0	-
7h	От 2 до 4	es _e	_	-12	-14	-15	-17	-18	_
		ei		-32	-36	-40	-45	-50	
		es	-	_	0	0	0	0	0
	От 5 до 10	ese	_	_	-15	-17	-18	-20	-23
		ei	_	_	-40	<u>-45</u>	-50	-56	-63
		es	0	0	0	0	0	_	-
	От 0,5 до 1,5	es _e	-18	-20	-23	-26	<b>—30</b>	-	-
		ei	<b>—50</b>	-56	-63	<u>-71</u>	<u>_80</u>	-	
9h		es	_	0	0	0	0	0	_
	От 2 до 4	es _e	-	-23	-26	-30	-34	-37	-
		ei	_	-63	<del>-71</del>	-80	<del>-90</del>	-100	
		es	-		0	0	0	0	0
	От 5 до 10	es,	-	_	-30	-34	<b>—37</b>	-41	-45
		ei		<u> </u>	-80	<del>-90</del>	-100	-112	-125

Продолжение табл. 25

				Диам	иетр делит	ельной ок	ружности	, MM	<del></del>
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
				]	Предельнь	ле отклон	ения, мкм	[	<u> </u>
		es	8	<b>-9</b>	-10	-11	-12	_	T -
	От 0,5 до 1,5	es _e	26	-29	-33	-37	-42	_	_
		ei	<b>—58</b>	<b>–</b> 65	<b>—73</b>	-82	-92	_	_
		es	-	-10	-11	-12	-14	-16	
9g	От 2 до 4	es _e	-	<b>—33</b>	-37	-42	-48	-53	_
		ei	-	<del>73</del>	<u>-82</u>	-92	-104	-116	
		es	-	-	-12	-14	-16	-18	-20
	От 5 до 10	es _e	-	-	<b>-42</b>	-48	-53	-59	-65
		ei	_	-	<u>-92</u>	-104	-115	-130	-145
		es	-16	-18	-20	-22	-25	-	_
	От 0,5 до 1,5	es _e	-24	-28	-32	-36	-40	-	_
		ei	-41	<b>-46</b>	<b>-52</b>	-58	-65		
		es	-	-20	-22	-25	<b>—28</b>	-32	-
7 <b>f</b>	От 2 до 4	es _e	-	<b>-32</b>	-36	-40	-45	-50	-
		ei	-	-52	52	-65	<del>-73</del>	-82	
		es	-	-	-25	-28	-32	-36	<b>-40</b>
	От 5 до 10	ese	-	_	-40	45	-50	-56	-63
<del></del>		ei	-		65	<u>-73</u>	<u>-82</u>	<u>-92</u>	-103
		es	-16	-18	-20	-22	-25	-	-
	От 0,5 до 1,5	es _e	-30	-33	-37	<b>—40</b>	-45	-	
		ei	-32	-58	-65	<u>-72</u>	<u>-81</u>		
8f		es	-	-20	-22	-25	-28	-32	-
	От 2 до 4	es _e	-	<b>—37</b>	<b>40</b>	-45	-51	58	-
		ei		<del>-65</del>	-72	<u>-81</u>	<u>-91</u>	-103	
		es	-		-25	-28	-32	-36	40
	От 5 до 10	es _e	-	-	<b>-45</b>	-51	-58	66	74
		ei		-	-81	<b>-91</b>	-103	-116	-130

Продолжение табл. 25

				Диам	етр делит	ельной ок	ружности	I, MM	
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
					Тредельнь	е отклоне	ния, мкм	1	
		es	-32	-36	-40	-44	-50	_	T-
	От 0,5 до 1,5	es _e	<b>—</b> 50	<b>~</b> 56	-63	-70	-80	_	_
		ei	<b>—82</b>	<b>-</b> 92	-103	-115	-130	_	_
		es	_	<b>—40</b>	-44	-50	-56	-64	_
9d	От 2 до 4	es _e	-	63	<b>—70</b>	-80	<b>—90</b>	-101	-
		ei	_	-103	-115	-130	-146	-164	
		es	-	_	50	-56	-64	<u>_72</u>	-80
	От 5 до 10	es _e	-	_	80	<b>—90</b>	-101	-113	-125
		ei		-	130	-146	-164	-184	-205
		es	-32	<b>—36</b>	-40	-44	-50	-	-
	От 0,5 до 1,5 От 2 до 4	es _e	58	<b>–</b> 66	-74	-81	-91	-	-
		ei	-102	-116	-130	-144	-162		
		es	-	<b>40</b>	-44	-50	<b>—56</b>	-64	-
10d		es _e	_	74	<del>-81</del>	<b>-91</b>	-101	-114	-
		ei	_	-130	-144	-162	-181	-204	
		es	-	-	-50	-56	<u>-64</u>	<b>—72</b>	-80
	От 5 до 10	ese	_	-	-91	-101	-114	-132	-148
		ei		_	-162	-181	-204	-232	-260
		es	48	<b>—54</b>	60	-66	<del>-75</del>	-	-
	От 0,5 до 1,5	es _e	-85	<del></del> 95	-105	-116	-135	-	-
		ei	-148	-156	-185	-206	-235		
11c		es	_	<del>6</del> 0	-66	<del>-75</del>	-84	<b>-</b> 96	-
	От 2 до 4	ese	_	105	-116	-135	-152	-171	_
		ei	_	-185	-206	-235	-264	-296	
		es	_	-	-75	-84	-96	-108	-120
	От 5 до 10	es _e	-	_	-135	-152	-171	-192	-210
		ei		-	-235	-264	-296	-332	-370

Продолжение табл. 25

				Диам	етр делит	ельной ог	сружности	I, ММ				
Поле допуска	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400			
•				Предельные отклонения, мкм								
		es	-80	<b>90</b>	-100	-110	-125		_			
	От 0,5 до 1,5	es _e	-117	-131	-145	-160	-185	_				
		ei	-180	-202	-225	-250	-285	_				
		es	_	-100	-110	-125	-140	-160	_			
lla	От 2 до 4	ese	-	—145	-160	-185	-208	-235	-			
		ei	-	-225	-250	-285	-320	-360				
		es	_	_	-125	-140	-160	-180	-200			
	От 5 до 10	es _e	_	_	-185	-208	-235	-264	-290			
		ei	_	_	-285	-320	-360	-404	<b>-450</b>			

#### 26. Поля допусков ширины впадины втулки e и толщины зуба вала s

	Втулка					В	ал						
Степень точности		Основное отклонение											
•	Н	г	р	n	k	h	g	f	d	С	a		
7	7H			7n		7h		. 7f					
8			8р		8k			8f					
9	9H	9r				9h	9g		9d				
10									10d				
11	11H								<u> </u>	llc	lla		

Поля допусков, заключенные в рамки, являются предпочтительными для посадок с зазором.

#### 27. Посадки по боковым поверхностям зубьев

Поле допуска ширины		Поле допуска толщины зуба вала										
впадины втулки	9r	8p	7n	8k	7h	9h	9g	7f	8f	10d		
7H	7 <u>H</u> 9r	7 <u>H</u> 8p	7 <u>H</u> 7n	7 <u>H</u> 8k	7 <u>H</u> 7h							
9Н				9 <u>H</u> 8k		9 <u>H</u> 9h	9 <u>H</u> 9g	9 <u>H</u> 7f	9 <u>H</u> 8f			
11 <b>H</b>										11H 10d		

Допускается применение других посадок, образованных сочетанием полей допусков из табл. 26.

28. Допуски ширины впадины втулки e и толщины зуба вала s и рекомендуемые предельные значения радиального биения  $F_r$ 

	-			Диам	етр делите	льной ок	ружності	1, MM	
Степень точно- сти	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
			До 12         Св. 12 до 25         Св. 25 до 50         Св. 50 до 100         Св. 100 до 200         Св. 200 до 400         Св. 400           Допуски и предельные значения радиального биения, мкм         12         14         16         18         20         —         —           8         9         10         11         12         —         —           6         7         8         9         10         —         —           —         16         18         20         22         25         —           —         16         18         20         22         25         —           —         10         11         12         14         16         —           —         8         9         10         11         12         —           —         12         14         16         18         20           —         10         11         12         14         16           18         20         22         25         28         —         —           11         12         14         16         18         —         —           11         12         14						
		T	12	14	16	18	20	_	_
	От 0,5 до 1,5	Te	8	9	10	11	12	_	_
		$\mathbf{F}_r$	6	7	8	9	10	-	
		Т	-	16	18	20	22	25	_
5	От 2 до 4	T _e	_	10	11	12	14	16	_
		$\mathbf{F}_r$	_	8	9	10	11	12	
		Т	_	_	20	22	25	28	32
	От 5 до 10	T _e	-	_	12	14	16	18	20
		F _r	_		10	11	12	14	16
		Т	18	20	22	25	28	-	_
	От 0,5 до 1,5	T _e	11	12	14	16	18	-	_
		$F_r$	9	10	11	12	14	_	
	От 2 до 4	Т	-	22	25	28	32	36	-
6		T _e	-	14	16	18	20	22	_
		F,		11	12	14	16	18	
		Т		_	23	32	36	40	45
	От 5 до 10	Te	-	_	18	20	22	25	28
		F,			14	16	18	20	22
		Т	25	28	32	36	40	-	-
	От 0,5 до 1,5	Te	16	18	20	22	25		-
		F _r	12	14	16	18	20		
		T	-	32	36	40	45	50	_
7	От 2 до 4	Te	_	20	22	25	28	32	_
		F,		16	18	20	22	<del> </del>	<u> </u>
		Т	-	-	40	45	l	i	1
	От 5 до 10	Te	-	-	25	1	1	1	
		F,	_	<u> </u>	20	22	25	28	32
		Т	36	40	45	50	56	_	_
8	От 0,5 до 1,5	Te	22	25	28	32	36	_	-
		F,	18	20	22	25	28		<u> </u>

Продолжение табл. 28

			Диаметр делительной окружности, мм						
Степень точно- сти	Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
			Допу	ски и пре	дельные зн	ачения р	адиально	го биени	я, мкм
		T	_	45	50	56	63	71	
	От 2 до 4	Te	_	28	32	36	40	45	_
8		$F_r$	_	22	25	28	32	36	_
		T	_	_	56	63	71	80	90
	От 5 до 10	T _e	_	- ,	36	40	45	50	56
		F,		_	28	32	36	40	45
		Т	50	56	63	71	80	-	_
	От 0,5 до 1,5	Te	32	36	40	45	50	-	_
		F,	25	28	32	36	40		
		Т	-	63	71	80	90	100	_
9	От 2 до 4	Te	_	40	45	50	56	63	
		F,	_	32	36	40	45	50	
	От 5 до 10	Т	-	_	80	90	100	112	125
		T _e	_		50	56	63	71	80
		F _r	-	_	40	45	50	56	63
	От 0,5 до 1,5	T	71	80	90	100	112	_	_
		T _e	45	50	56	63	71	_	_
		F,	36	40	45	50	56	_	
		Т		90	100	112	125	140	_
10	От 2 до 4	T _e	-	56	63	71	80	90	-
		F,		45	50	56	63	71	
		Т	_	-	112	125	140	160	180
	От 5 до 10	T,	-	-	71	80	90	100	112
		F _r	_		56	63	71	80	90
	-	T	100	112	125	140	160	_	_
	От 0,5 до 1,5	Te	63	71	80	90	100	_	_
		F _r	50	56	63	71	80		
		Т	-	125	140	160	180	200	_
11	От 2 до 4	T _e	_	80	90	100	112	125	_
		$F_r$		63	71	80	90	100	_
		Т	_	_	160	180	200	224	250
	От 5 до 10	T _e	_	_	100	112	125	140	160
		F,			80	90	100	112	125

29. Основные (суммарные) отклонения, мкм, толщины зуба вала

		Диаметр делительной окружности, мм						
Модуль, мм	Обозна- чение	До 12	Св. 12 до 25	Св. 25 до 50	Св. 50 до 100	Св. 100 до 200	Св. 200 до 400	Св. 400
	Г	+64	+72	+80	+88	+100		_
	р	+48	+54	+60	+66	+75	-	_
	n	+32	+36	+40	+44	+50	-	_
	m	+24	+27	+30	+33	+37	-	_
	k	+16	+18	+20	+22	+25	–	-
	i	+8	+9	+10	+11	+12	-	
От 0,5 до 1,5	h	0	0	0	0	0	-	_
	g	-8	-9	-10	-11	-12	-	_
•	f	-16	-18	-20	-22	-25	-	_
	e	-24	-27	-30	-33	-37	-	_
	d	-32	-36	-40	-44	-50	-	_
	С	-48	-54	-60	-66	-75	-	<u> </u>
	ь	-64	-72	-80	-88	-100	_	-
	a	-80	-90	-100	-110	-125		
	г	-	+80	+88	+100	+112	+128	_
	P	-	+60	+66	+75	+84	+96	_
	n	_	+40	+44	+50	+56	+64	-
	m	-	+30	+33	+37	+42	+48	_
	k	-	+20	+22	+25	+28	+32	-
	i	-	+10	+11	+12	+14	+16	_
От 2 до 4	h	-	0	0	0	0	0	_
	g	-	-10	-11	-12	-14	-16	_
	f	-	-20	-22	-25	-28	-32	_
	e	-	-30	-33	-37	-42	-48	_
	d		-40	-44	-50	-56	-64	_
	С	-	-60	-66	-75	-84	-96	_
	b	-	-80	-88	-100	-112	-128	_
	a	<del>  -</del> -	-100	-110	-125	-140	-160	+160
	r	-	-	+100	+112 +84	+128 +96	+144 +108	+120
	P	_	-	+75 +50	+56	+64	+72	+80
	n		-	+30	+42	+48	+54	+60
	m	-	_	+25	+28	+32	+36	+40
	k	-	_	1	+14	+16	+18	+20
0-610	1	-	-	+12 0	0	0	0	0
От 5 до 10	h	_	_	-12	-14	-16	-18	-20
	g f			-25	-28	-32	-36	-40
	1		}	-37	-42	-48	-54	-60
	e d	1 -		-50	-56	-64	-72	-80
	1	_		-75	-84	-96	-108	-120
	c b	_		-100	-112	-128	-144	-160
		_		-125	-140	-160	-180	-200
	a			-123				

ний, принятых в гладких соединениях, где число следует за буквой).

- 6. Поля допусков ширины впадины втулки е и толщины зуба вала з должны соответствовать указанным в табл. 26.
- 7. Предельные отклонения размера *е* для втулок должны соответствовать указанным в табл. 24, а размера *s* для валов в табл. 25.

Допускается применение специальных полей допусков и посадок, которые могут быть получены различным сочетанием допусков и основных отклонений в соответствии с табл. 28 и 29. Их применение допускается только в технически и экономически обоснованных случаях, если поля допусков, указанные в табл. 26. не могут обеспечить требований, предъявляемых к изделиям.

Рекомендуемые предельные значения радиального биения зубчатого венца относительно центрирующих диаметров принимать согласно табл. 28.

Допуски и посадки при центрировании по наружному диаметру. Допуски и основные отклонения для диаметров окружности впадины втулки  $D_f$  и окружности вершин зубьев вала  $d_a$  - по ГОСТ 25346—89.

Поля допусков и их сочетания для центрирующих диаметров  $D_f$  и  $d_a$  должны соответствовать указанным в табл. 30.

30. Поля допусков и их сочетания для центрирующих диаметров  $D_f$  и  $d_a$ 

Центри-	Поле допуска			
рующий диаметр	Ряд 1	Ряд 2		
$D_f$	H7	Н8		
$d_a$	n6, js6, h6, g6, f7	n6, h6, g6, f7		

Примечание. При выборе полей допусков ряд 1 следует предпочитать ряду 2.

Поля допусков ширины e впадины втулки должны соответствовать 9H, 11H, а предельные отклонения размера e табл. 24. Поля допусков толщины зуба вала s должны соответствовать 9h, 9g, 9d, 11c, 11a, а предельные отклонения размера s данным табл. 25.

Допуски и посадки при центрировании по внутреннему диаметру. 1. Допуски и основные отклонения для диаметров окружности вершин зубьев втулки  $D_a$  и окружности впадин вала  $d_f$ , а также нецентрирующих диаметров - по ГОСТ 25346—89.

- 2. Поля допусков и их сочетания для центрирующих диаметров  $D_a$  и  $d_f$  установлены в табл. 31.
- Поля допусков ширины впадины втулки е и толщины зуба вала з назначают, как при центрировании по наружному диаметру.
- 4. Поля допусков нецентрирующих диаметров:

h12 - для диаметра  $d_a$ ;

H16 - для диаметра  $D_f$  для втулки с плоской формой дна впадины;

 $f_{\rm max} = D + 2,2m$  - для диаметра  $D_f$  для втулки с закругленной формой дна впадины.

31. Поля допусков и их сочетания для центрирующих диаметров

Центри-	Поле допуска			
рующий диаметр	Ряд 1	Ряд 2		
$D_a$	Н7	Н8		
$d_f$	n6, h6, g6	n6, h6, g6		

Примечание. При выборе полей допусков ряд 1 следует предпочитать ряду 2.

Вид центрирования	Нецентри- рующий диаметр	Поле допуска				
	$D_f$	При плоской форме дна впадины	H16			
По боковым поверхностям зубьев	$D_a$	H11				
	$d_a$	d9, h12				
	$d_f$	При плоской форме дна впадины	hl6			
По наружному диаметру	$D_a$	HII				
	$d_f$	При плоской форме дна впадины	h16			

32. Поля допусков нецентрирующих диаметров

Допуски нецентрирующих диаметров. Допуски и основные отклонения для нецентрирующих диаметров - по ГОСТ 25347—82.

Поля допусков нецентрирующих диаметров должны соответствовать указанным в табл. 32.

Предельные отклонения от параллельности сторон зубьев вала и втулки. Предельные отклонения от параллельности сторон зубьев вала и втулки относительно оси центрирующей поверхности устанавливаются в стандартах на комплексные калибры.

**Условные обозначения**. Обозначения шлицевых соединений, валов и втулок должны содержать:

номинальный диаметр соединения D; модуль m; обозначение посадки соединения (полей допусков вала и втулки), помещаемое после размеров центрирующих элементов; обозначения посадки по нецентрирующим размерам, обозначение настоящего стандарта.

Примеры условных обозначений: соединения D=50 мм, m=2 мм с центрированием по боковым сторонам

зубьев, с посадкой по боковым поверхностям зубьев 9H/9g:

50×2×9H/9g ΓΟCT 6033-80

то же, для внутренних шлицев соединения:

50×2×9H FOCT 6033-80

то же, для наружных шлицев соединения:

50×2×9g ΓΟCT 6033-80

Условное обозначение соединения D=50 мм, m=2 мм с центрированием по наружному днаметру  $D_f$ , с посадкой по диаметру центрирования H7/g6, с посадкой по нецентрирующим поверхностям зубьев 9H/9h:

50×H7/g6×2×9H/9h ΓΟCT 6033-80

то же, для внутренних шлицев соединения:

то же, для наружных шлицев:

50×g6×2×9h ΓΟCT 6033-80

Условное обозначение соединения D=50 мм, m=2 мм с центрированием по внутреннему днаметру  $d_f$  с посадкой по диаметру центрирования H7/g6, с посадкой по нецентрирующим боковым поверхностям зубъев 9H/9h:

i50×2×H7/g6 9H/9h FOCT 6033-80

то же, для внутренних шлицев соединения:

i50×2×H7 9H ΓΟCT 6033-80

то же, для наружных шлицев соединения:

i50×2×g6 9h ΓΟCT 6033-80

#### ТРЕУГОЛЬНЫЕ ЗУБЧАТЫЕ СОЕЛИНЕНИЯ

Треугольные зубчатые соединения (рис. 24) применяют главным образом для неподвижного соединения деталей при передаче небольших вращающих моментов, чтобы избежать прессовых посадок, а также при тонкостенных втулках.

На рис. 20 обозначено:  $\beta$  - угол зуба и впадины отверстия;  $D_{\rm B}$  - наружный диаметр вала;

 $d_a$  - внутренний диаметр отверстия;

 $d_{\rm B}$  - диаметр впадины вала;

 $D_a$  - диаметр впадины отверстия.

Основные параметры соединений: число зубьев 20—70; модуль 0,2—1,5 мм; угол впадин вала 90; 72 и 60°. Центрирование только по боковым сторонам зубьев.

Наряду с цилиндрическими соединениями применяют и конические (см. рис. 24). Обычно конусность 1:16, угол уклона впадины 1°37'; размеры зубьев устанавливают по большому основанию конуса (сечение A-A).

Соединения впадин зуба на валу 90° с числом зубьев 36 и 48 и номинальными диаметрами от 5 до 75 мм принимают по табл. 33, допуски - по табл. 34. Формулы для определения параметров треугольных соединений приведены в табл. 35.

**Выбор размеров, допусков и посадок.** Номинальные размеры  $M_{\rm B}$  и  $M_{\rm a}$  выбирают по табл. 36 в зависимости от принятого номинального диаметра, равного наружному диаметру вала.

На чертежах отверстия и вала указывают число зубьев z, угол 90° (см. рис. 24), угол  $\beta$ , диаметр начальной окружности d.



Рис. 24

33.	Основные	размеры	TDe	<b>УГОЛЬНЫХ</b>	соединений,	мм

* <u>*</u>			Отверстие и	вал	Отверстие		Вал		
Номинальный диаметр $D_{ m B}$	в z В в z		зуоьев 2 Угол β° Диаметр начальной окружности		метр шинам ¹	иметр дин min	нний р <i>d</i> a	ный гр <i>D</i> в	lerp 1H 1X
Номина диаметр	Число зубьев	Угол	Диаметр начальной окружност d	наруж- ный <i>D</i> _l	внутрен- ний $D_2$	Диаметр впадин $D_{a}$ min	Внутренний диаметр $d_a$	Наружный диаметр <i>D</i>	Диаметр впадин d _{в max}
5			4,891	5,124	4,658	5,03	4,72	5	4,69
6			5,863	6,142	5,584	6,03	5,66	6	5,63
8			7,793	8,164	7,422	8,03	7,52	8	7,49
10			9,721	10,184	9,258	10,03	9,38	10	9,35
12	36	80	11,674	12,230	11,118	12,03	11,26	12	11,23
15			14,556	15,250	13,862	15,03	14,04	15	14,01
16			17,430	18,260	16,599	18,03	16,81	18	16,78
20			19,339	20,260	18,418	20,03	18,66	20	16,63
22			21,527	22,280	20,774	22,03	20,97	22	20,94
25			24,455	25,310	23,600	25,03	23,82	25	23,79
28			27,373	28,330	26,416	28,03	26,66	28	26,63
30			29,325	30,350	28,300	30,03	28,57	30	28,54
32			31,277	32,370	30,184	32,05	30,47	32	30,42
35			34,195	35,390	33,000	35,05	33,31	35	33,26
38			37,113	38,410	35,816	38.05	36,15	38	36,10
40	48	82,5	39,064	40,430	37,698	40,05	38,05	40	38,00
42			41,016	42,450	39,582	42,05	39,95	42	39,90
45			43,944	45,480	42,408	45,05	42,81	45	42,76
50			48,833	50,540	47,126	50,05	47,57	50	47,52
55			53,722	55,600	51,844	55,05	52,33	55	52,28
60			58,621	60,670	55,572	60,05	57,10	60	57,05
65			63,519	65,740	61,298	65,05	61,88	65	61,83
70			68,409	70,800	66,017	70,05	66,64	70	66,59
75			73,298	75,860	70,736	75,05	71,40	75	71,35

 $^{^1}$  Теоретические диаметры по вершинам указывают на чертеже: наружный  $D_1$  только на отверстии, внутренний  $D_2$  - на валу.

#### 34. Допуски для треугольных соединений

Предельные отклонения, мм						
•		внутреннего диа- метра отверстия	наружного диа- метра вала			
отверстий	вала	$d_a$	$D_{\mathtt{B}}$			
Но	рмальная точн	ность				
+0,025	-0,040	+0,025	-0,025			
+0,025	-0,040	+0,030	-0,030			
+0,030	-0,045	+0,035	-0,035			
+0,030	0,045	+0,045	-0,045			
+0,035	-0,050	+0,050	0,050			
+0,040	-0,060	+0,060	-0,060			
	окруж отверстий Н о +0,025 +0,025 +0,030 +0,030 +0,035	диаметров начальных окружностей вала  Нормальная точн +0,025 -0,040 +0,025 -0,040 +0,030 -0,045 +0,030 -0,045 +0,035 -0,050	диаметров начальных окружностей вала Внутреннего диаметра отверстия  Нормальная точность  +0,025			

Продолжение табл. 34

	Предельные отклонения, мм						
Номинальный диаметр, мм	диаметров окружн		внутреннего диа- метра отверстия	наружного диа- метра вала $D_{\mathtt{B}}$			
	отверстий	вала	$d_a$				
	Пон	иженная точ	ность				
Св. 3 до 6	+0,050	-0,080	+0,048	-0,048			
» 6 » 10	+0,050	-0,080	+0,058	-0,058			
* 10 * 18	+0,060	-0,090	+0,070	-0,070			
* 18 * 30	+0,060	-0,090	+0,084	-0,084			
* 30 * 50	+0,070	-0,0100	+0,100	-0,100			
> 50 > 75	+0,080	-0.0120	+0,120	-0,120			

Допуски даны для посадки H9/h8.

Кроме того, на чертеже отверстия задают наружный диаметр по вершинам  $D_1$ , диаметр впадин  $D_a$  с надписью «минимум» и внутренний диаметр  $d_a$ , а на чертеже вала – внутренний диаметр по вершинам  $D_2$ , наружный диаметр  $D_{\rm B}$  и диаметр впадин  $d_{\rm B}$  с надписью «максимум».

Допуски выбирают по табл. 34. В зависимости от назначения соединения принимают нормальную или пониженную точность. Последняя предназначена преимущественно для грубых соединений с отверстием, имеющим разрез и стяжку, а также для грубых конических соединений. Допуски на диаметры начальной окружности даны для скользящей посадки с зазорами от нуля до суммы допусков на диаметры отверстия и вала.

Допуск на толшину зуба отверстия равен допуску на диаметр начальной окружности (так как угол равен 90°). Допуск на толщину зуба вследствие того, что угол равен 80 или 82,5°, на несколько тысячных миллиметра точнее, чем допуск на диаметр начальной окружности, и практически может считаться также равным допуску на диаметр начальной окружности. Таким образом, допуски на диаметр начальной окружности дают полное представление о характере посадки по толщине зуба и боковым зазорам.

При необходимости назначения другой посадки следует применять систему отверстия, чтобы сохранить неизменным допуск на отверстие. Характер посадки должен быть отражен отклонениями на диаметр начальной окружности вала, которые могут быть даны в два минуса для посадки с гарантированным зазором, в два плюса или один плюс для посадок с натягами и зазорами.

При выборе посадок для вала рекомендуется придерживаться посадок, приведенных в табл. 37.

Для конических валов рекомендуются переходные посадки (т.е. вал с более полным зубом).

Допуски на диаметр начальной окружности включают: собственно допуск на диаметр начальной окружности, отклонение шага и отклонение угла профиля.

Допуски на внутренний диаметр отверстия  $d_a$  и наружный диаметр вала  $D_{\rm B}$  для нормальной точности даны по 8—9 квалитету ГОСТ 25347—82, а для пониженной по 9—10 квалитету.

Диаметр проволочек для измерения зубьев и номинальные размеры между проволочками для отверстия и по проволочкам для вала выбирают из табл. 35. Все диаметры проволочек берут по ГОСТ 2475—88 для измерения резьб. Номинальные размеры между проволочками и по проволочкам определены по табл. 35 и дают соединение без зазора.

На чертеже должны быть указаны: диаметры проволочек и номинальный размер между проволочками для отверстия и по проволочкам для вала, на чертеже делают надпись: «Отклонения по диаметру начальной окружности».

При увеличении  $d'_{\rm B}$  следует вычитать  $K_{\rm B}$  из  $M_{\rm B}$  (см.  $D_{\rm T}$  в табл. 36); при увеличении  $d'_{a}$  следует складывать  $K_{\rm a}$  с  $M_{\rm a}$  (см.  $D_{\rm R}$  в табл. 36).

Допуски на размеры  $M_{\rm B}$  и  $M_{\rm a}$  (см. рис. 24) те же, что на диаметр начальной окружности.

Размеры  $M_{\rm B}$  и  $M_{\rm a}$  на чертежах должны быть снабжены надписью: «Отклонения по диаметру начальной окружности».

35. Номинальные размеры между проволочками и по проволочкам, мм								
		Отверстие		Вал				
Номи- нальный диаметр $D_{\rm B}$	Диаметр прово- лочки $d_{_{ m B}}^{'}$	Номинальный размер между проволочками $M_{ m B}$	Изменение размера <i>М</i> _в на 0,001 d' _в К _в	Диаметр прово- лочки $d_a'$	Номинальный размер по проволочкам $M_a$	Изменение размера		
5	0,260	4,460	0,0026	0,348	5,486	0,0024		
6	0,343	5,265	0,0026	0,402	6,555	0,0024		
8	0,402	7,137	0,0026	0,511	9,656	0,0024		
10	0,511	8,878	0,0026	0,572	10,639	0,0024		
12	0,572	10,768	0,0026	0,796	10,040	0,0024		
15	0,796	13,216	0,0026	1,008	16,296	0,0024		
18	0,866	16,047	0,0026	1,047	19,392	0,0024		
20	0,866	17,584	0,0026	1,157	21,551	0,0024		
22	1,008	20,101	0,0025	1,302	23,302	0,0024		
25	1,047	22,773	0,0025	1,517	26,393	0,0024		
28	1,157	25,418	0,0025	1,302	29,559	0,0024		
30	1,157	27,438	0,0025	1,441	31,770	0,0024		
32	1,302	29,093	0,0025	1,553	33,933	0,0024		
35	1,441	31,764	0,0025	1,591	36,841	0,0024		
38	1,553	34,502	0,0025	1,833	40,241	0,0024		
40	1,591	36,426	0,0025	1,833	42,123	0,0024		
42	1,732	38,091	0,0025	2,020	44,459	0,0024		
45	1,833	40,867	0,0025	2,071	47,408	0,0024		
50	2,020	45,456	0,0025	2,311	52,705	0,0024		
55	2,217	50,021	0,0025	2,595	58,109	0,0024		
60	2,311	54,854	0,0025	2,886	63,539	0,0024		

0,0025

0.0025

0,0025

35. Номинальные размеры между проволочками и по проволочкам, мм

## ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТОВ ТРЕУГОЛЬНЫХ СОЕДИНЕНИЙ

2.595

2,886

3,106

65

70

75

59,209

63,537

68,043

Основной расчетной величиной является диаметр начальной окружности *d*, который делит пополам теоретическую высоту зубьев по вершинам профиля.

Теоретические диаметры по вершинам профиля - наружный  $D_1$  и внутренний  $D_2$  - служат для вычисления размеров по проволочкам для вала и отверстия и размеров режущего и мерительного

инструмента.

3,106

3,310

3,580

Размеры по проволочкам, подсчитанные по этим диаметрам, дают в соединении вала и отверстия нулевой зазор.

68,797

74,008

79,379

0,0024

0,0024

0,0024

Диаметры  $d_{\rm B}'$  и  $d_{a}'$  по ГОСТ 2475—88. Размеры  $M_{\rm B}$ ,  $M_{\rm a}$  дают соединение отверстия и вала без зазора.

Для вала допустимая зона касания проволочек  $\pm 0,05$  относительно диаметра начальной окружности (см.  $D_{\Pi}$  в табл. 36).

36. Формулы для определения параметров треугольных соединений

Определяемый	Формулы для соединений с числом зубьев				
параметр	36	48			
Диаметр начальной окружно- сти	d=0,954519 D ₁	d=0,966222 D₁			
Наружный диаметр по вершинам (теоретический)	D ₁ =1,047648 d	D ₁ =1,034959 d			
Внутренний диаметр по вершинам (теоретический)	D ₂ =0,952352 d	D ₂ =0,965041 d			
Расчетный диаметр проволоч- ки, касающейся профиля зубь- ев по начальной окружности вала	d ₁ =0,06585005 d	$d_1 = 0.0485955 d$			
То же, для отверстия	d ₂ =0,05309792 d	$d_2 = 0.04133332 d$			
Фактический диаметр проволочки для вала	$d_a'$ подбирают по ГОСТ 2475—88 (табл. 38)				
То же, для отверстия	$d_{ m B}^{'}$ подбирают по ГОСТ 2475-	-88 (табл. 38)			
Размер по проволочкам вала	$M_a = D_2 +$	- 2,41421 <i>d'a</i>			
Размер между проволочками для отверстия	$M_{\rm B} = D_1 - 2,55572 \ d'_{\rm B}$	$M_{\rm B} = D_1 - 2,51665 \ d'_{\rm B}$			
Диаметр касания фактической проволочки вала	$D_{\Pi} = D_2 + 0.70711 \ d'_a + 0.001 \ d$				
Диаметр касания фактической проволочки отверстия	$D_{T} = D_{1} - 0.91293 \ d'_{B} + + 0.001 \ d$	$D_{\rm T} = D_1 - 0.85733 \ d'_{\rm B} + + 0.001 \ d$			

37.	Посадки	вала
P	азмеры, 1	мм

Диаметр начальной	Для норма	эльной точнос	ги посадка	Для пониженной точности посадка			
окружности вала <i>d</i>	с натягом	переходная	с зазором	с натягом	переходная	с зазором	
Св. 3 до 10	+0,065	+0,040	-0,025	+0,130	+0,080	-0,025	
+0,025		10,040	-0,065	+0,050	1 0,000	-0,105	
Св. 10 до 30	+0,075	+0,045	-0,030	+0,150	+0,090	-0,030	
	+0,030	10,045	-0,075	+0,060		-0,120	
Св. 30 до 50	+0,085	+0,050	-0,035	+0,170	+0.100	-0,035	
Св. 30 до 30	+0,035	10,050	-0,085	+0,070	10,100	-0,135	
Св. 50 до 80	+0,100	+0,060	-0,040	+0,200	+0,120	-0,040	
Св. 50 до 60	+0,040	7 0,000	-0,100	+0,080	10,120	-0,160	

#### 38. Проволочки и ролики для измерения резьб и плищев (по ГОСТ 2475-88)

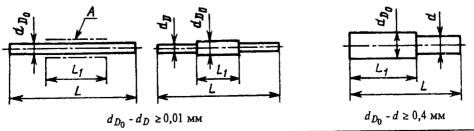
Стандарт распространяется на проволочки и ролики для измерения среднего диаметра наружной резьбы, а также измерения толщины зубьев и ширины впадин шлицевых валов и втулок с эвольвентным профилем.

Проволочки и ролики изготавливаются трех типов: I - проволочки гладкие; II - проволочки ступенчатые; III - ролики. Проволочки и ролики для измерения среднего диаметра наружной резьбы следует изготовлять двух классов точности: 0 и 1; для измерения шлицевых эвольвентных соединений - класса точности 1.

Пример условного обозначения гладких проволочек диаметром  $d_{D_0}$  =0,101 мм класса точности 0:

Проволочки І-0,101 кл. 0 ГОСТ 2475-88

Пример условного обозначения ступенчатых проволочек диаметром  $d_{D_0}$  =2,095 мм класса точности 1:


Проволочки II-2,095 кл. 1 ГОСТ 2475-88

Пример условного обозначения роликов диаметром  $d_{D_0}$  =5,207 мм класса точности 0:

Ролики III-5,207 кл. 0 ГОСТ 2475-88

## Номинальные диаметры проволочек и роликов $d_{D_0}$ для измерения среднего диаметра наружной резьбы в зависимости от шага

Размеры, мм



Примечание. A - рабочая поверхность проволочки типа I должна располагаться посередине проволочки на длине  $L_1$ .

Продолжение табл. 38

	Вид резьбы и угол профиля							
Шаг Р	мет	метрическая α=60°			трапецеидальная α=30°		упорная α=33°, β=30°, γ=3°	
	$d_{D_0}$	$d_{D_{ m max}}$	$d_{D  \mathrm{min}}$	$d_{D_0}$	$d_{D_{\max}}$	$d_{D_0}$	$d_{D_{\max}}$	
0,075	0,045	0,054	_					
0,08	0,048	0,058	0,040					
0,09	0,052	0,062	0,045	<u> </u>				
0,1	0,058	0,070	0,051					
0,125	0,073	0,088	0,063	İ				
0,15	0,088	0,106	0,076					
0,175	0,101	0,121	0,089					
0,2	0,115	0,138	0,102			1		
0,225	0,130	0,156	0,114	_	_		_	
0,25	0,144	0,172	0,127					
0,25	0,173	0,208	0,152					
0,35	0,202	0,242	0,177		1			
0,4	0,231	0,266	0,203	1	İ			
0,45	0,260	0,312	0,228					
0,43	0,289	0,347	0,253					
0,5	0,289	0,415	0,304			1		
0,7	0,404	0,485	0,354		}			
0,75	0,433	0,520	0,379		1			
0,73	0,462	0,554	0,405					
1,0	0,577	0,692	0,506					
1,25	0,722	0,866	0,632					
			0,758	0,776	0,866	1		
1,5	0,866	1,039		0,776	0,866			
1,75	1,010	1,212	0,885	1 025	1 155	1.006	1 172	
2,0	1,155	1,386	1,011	1,035	1,155	1,086	1,173	
2,5	1,443	1,732	1,264	1.552	1 722	1 (20	1.750	
3,0	1,732	2,078	1,516	1,553	1,732	1,629	1,759	
3,5	2,021	2,425	1,769	2.071	2 270	2 172	2 247	
4,0	2,309	2,771	2,021	2,071	2,278	2,173	2,347	
4,5 5.0	2,598	3,118	2,274	2.500	2 047	2716	2 022	
5,0	2,887	3,464	2,527	2,588	2,847	2,716	2,933	
5,5	3,175	3,810	2,779	2 106	2 417	2 250	2.520	
6,0	3,464	4,157	3,032	3,106	3,417	3,259	3,520	
7,0 8.0				3,623	3,985	1 245	4 (02	
8,0				4,141	4,555	4,345	4,693	
9,0				4,659	5,125			
10				5,176	5,694	5,431	5,865	
12	_	_	_	6,212	6,833	6,518	7,039	
14				7,247	7,972	7,603	8,211	
16				8,282	9,110	8,690	9,385	
18				9,317	10,249	9,776	10,558	
20		,		10,353	11,388	10,950	11,826	

Продолжение табл. 38

	Вид резьбы и угол профиля							
Шаг Р	метрическая α=60°			трапецеидал	трапецеидальная α=30°		упорная α=33°, β=30°, γ=3°	
	$d_{D_0}$	$d_{D_{ m max}}$	$d_{D \min}$	$d_{D_0}$	$d_{D_{ m max}}$	$d_{D_0}$	$d_{D_{\max}}$	
22 24 23 32 36 40 44 48	_	_	_	11,388 12,423 14,493 16,565 18,634 20,706 22,774 24,845	12,527 13,665 15,942 18,222 20,497 22,777 24,951 27,329	11,948 13,133 15,207 17,362 20,152 21,863 23,896 26,069	12,904 14,184 16,424 18,760 21,764 23,612 25,808 28,154	

Примечание. Для трапецеидальной и упорной резьб значения  $d_{D \min}$  не приводят, так как проволочки и ролики этих размеров будут располагаться ниже наружного диаметра контролируемого профиля.

	Вид резьбы и угол профиля							
Число шагов на длине	унифициро	ванная (дюймо	овая) α=60°	трубная цилиндрическая и кониче- ская α=55°, дюймовая α=55°				
24,5 мм	$d_{D_0}$	$d_{D_{\max}}$	$d_{D \text{ min}}$	$d_{D_0}$	$d_{D_{\mathrm{max}}}$	$d_{D  \mathrm{min}}$		
80	0,183	0,220	0,161					
72	0,204	0,245	0,179					
64	0,229	0,275	0,201					
56	0,262	0,314	0,230	_	<del>_</del>			
48	0,306	0,367	0,268					
44	0,333	0,400	0,292					
40	0,367	0,440	0,321			ļ		
36	0,407	0,488	0,357					
32	0,458	0,550	0,402					
28	0,524	0,629	0,459	0,511	0,613	0,459		
27	0,543	0,652	0,475	_	_	-		
24	0,611	0,733	0,535	0,596	0,716	0,535		
20	0,733	0,880	0,642	0,716	0,859	0,643		
19	_	_	_	0,754	0,905	0,676		
18	0,815	0,978	0,713	0,795	0,954	0,714		
16	0,917	1,100	0,803	0,895	1,074	0,803		
14	1,048	1,258	0,917	1,023	1,228	0,918		
13	1,128	1,354	0,988		_			
12	1,222	1,466	1,070	1,193	1,432	1,071		
$11\frac{1}{2}$	1,275	1,530	1,116	_	-			
11	1,333	1,600	1,167	1,302	1,562	1,168		

Продолжение табл. 38

	Вид резьбы и угол профиля						
Число шагов на длине 24,5 мм	унифициро	ванная (дюйм	овая) α=60°	трубная цилиндрическая и кониче- ская α=55°, дюймовая α=55°			
	$d_{D_0}$	$d_{D_{\max}}$	$d_{D  \mathrm{min}}$	$d_{D_0}$	$d_{D_{ m max}}$	$d_{D  \mathrm{min}}$	
10 9 8 7 6 5 $4\frac{1}{2}$ 4	1,467 1,629 1,833 2,095 2,444 2,933 3,259 3,666	1,760 1,955 2,200 2,514 2,933 3,520 3,911 4,399	1,284 1,426 1,605 1,834 2,139 2,567 2,852 3,209	1,432 1,591 1,790 2,045 2,387 2,864 3,182 3,579	1,718 1,909 2,148 2,454 2,846 3,437 3,818 4,295	1,285 1,427 1,606 1,835 2,141 2,569 2,854 3,211	
$   \begin{array}{r}     3\frac{1}{2} \\     3\frac{1}{4} \\     3 \\     \hline     7\frac{8}{8} \\     \hline     2\frac{5}{8} \\     2\frac{1}{2} \\   \end{array} $		_	_	4,091 4,406 4,773 4,980 5,207 5,454 5,727	4,909 5,287 5,728 5,976 6,248 6,545 6,872	3,670 3,952 4,281 4,467 4,672 4,893 5,137	

## Номинальные диаметры проволочек $\,d_{\,D_0}\,$ для измерения параметров шлицевых соединений с эвольвентным профилем

	Номинальные диаметры $d_{D_0}$ , мм						
1,00	2,00	3,25	5,00	7,00	12,00	20,00	35,00
1,25	2,25	3,50	5,25	8,00	14,00	22,00	1
1,40	2,50	4,00	5,50	9,00	15,00	25,00	
1,50	2,75	4,25	6,00	10,00	16,00	28,00	
1,75	3,00	4,50	6,50	11,00	18,00	30,00	

### Длины проволочек L и рабочей поверхности $L_1$ Размеры, мм

Интервалы диаметров	L	$L_1 \pm 1,0$
До 3	От 30 до 40	14
Св. 3 до 4	* 35 * 45	14
* 4 * 5	» 40 » 50	14
» 5	» 50 » 55	40

Примечание. Длину проволочек, предназначенных для применения с приспособлением для установки на прибор, не устанавливают.

39. Предельные отклонения диаметров проволочек и роликов в зависимости от классов точности 0 и 1 (по ГОСТ 2475—88)

Интервалы	Предельные отклонения, мм		
диаметров $d_{D_0}$ , мм	Класс точности 0	Класс точности 1	
До 4,980	±0,3		
От 5,176 до 8,690	±0,4	±0,5	
От 10,353 до 26,069	±0,5	±1,0	
От 28,000 до 35,000			

Примечание. Отклонения формы рабочей поверхности проволочки и ролика (любое отклонение от круглости или профиля продольного сечения) должны находиться в пределах допуска на диаметр.

Критерием предельного состояния является несоответствие требованиям табл. 39.

**Технические требования.** Проволочки и ролики следует изготовлять размерами:

от 0,045 до 0,346 мм для типа I,

» 0,115 » 4,980 мм » » II.

» 5,176 » 35,00 мм » » III.

Конструкция проволочек должна обеспечивать возможность их применения с приспособлениями для подвешивания или установки на приборе.

Примечание. Приспособление для подвешивания проволочек на приборе должно иметь отверстие для подвешивания диаметром не менее 2,5 мм и обеспечивать расстояние от центра этого отверстия до середины длины проволочки не менее 55 мм.

Проволочки и ролики следует изготовлять из углеродистой стали У10А, У12А по ГОСТ 1435—90; из хромистой стали X - по ГОСТ 5950—73; из подшипниковой стали ШX15 - по ГОСТ 801—78.

Допускается изготовлять проволочки и ролики из быстрорежущей стали.

Рабочие поверхности проволочек и роликов диаметром  $d_{D_0} \ge 0,866$  мм должны иметь хромовое либо другое износостойкое покрытие.

Нерабочие поверхности проволочек и роликов без износостойкого покрытия должны быть подвергнуты антикоррозионной обработке.

Твердость рабочих поверхностей проволочек и роликов из углеродистой и хромистой сталей - не ниже 59  $HRC_3$ ; из быстрорежущей стали - не ниже 63  $HRC_3$ .

Допускается проволочки типа I изготовлять с твердостью не ниже  $51~HRC_2$ .

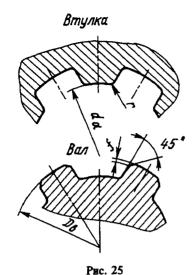
Проволочки и ролики для измерения среднего диаметра наружной резьбы следует изготовлять двух классов точности: 0 и 1. Проволочки и ролики для измерения параметров шлицевых эвольвентных соединений - класса точности 1.

Параметр шероховатости *Ra* по ГОСТ 2789—73 рабочих поверхностей проволочек и роликов - не более 0,04 мкм.

На рабочих поверхностях проволочек и роликов не должно быть дефектов, ухудшающих их эксплуатационные качества.

Проволочки и ролики следует выпускать комплектами, состоящими:

из 3 шт. одного типа с равными номинальными диаметрами - для измерения среднего диаметра наружных резьб;


из 2 шт. одного типа с равными номинальными диаметрами - для измерения параметров шлицевых соединений.

Проволочки и ролики следует подвергать старению и размагничиванию.

Полный установленный ресурс проволочек и роликов - не менее 2000 измерений.

### РАСЧЕТ НА ПРОЧНОСТЬ (рис. 25)

Боковые поверхности зубьев шлицевого соединения работают на смятие, а основание их - на изгиб и срез.



Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие:

$$\frac{10^3 T_{\text{max}}}{\varphi F l r_{\text{cp}}} \leq \left[\sigma_{\text{cm}}\right],$$

где  $T_{\rm max}$ - наибольший допустимый вращающий момент, передаваемый соединением,  ${
m H\cdot m}$ :

 $\phi$ =(0,7÷0,8) - коэффициент, учитывающий неравномерность распределения нагрузок по рабочим поверхностям зубьев; обычно принимают  $\phi$ =0,75;

F - площадь всех боковых поверхностей зубьев с одной стороны на 1 мм длины, мм 2 /мм;

$$F = z \left[ \frac{D_B - d_a}{2} - (f + r) \right]$$
 для прямобочных

(прямоугольных) зубьев;

здесь z - число зубьев;  $D_{\rm B}$  - наружный диаметр зубьев вала, мм;  $d_a$  - диаметр отверстия шлицевой втулки, мм; f - размер фаски, мм; r - радиус закрутления, мм; F = 0,8 mz для эвольвентных зубьев; m - модуль, мм;

$$F = \frac{D_B - d_a}{2}$$
 для треугольных зубьев;

1 - рабочая длина зуба, мм;

$$r_{\rm cp} = \frac{D_{\rm B} + d_a}{4}$$
 для прямобочных

(прямоугольных) зубьев;

 $r_{cp} = 0.5 d_a$  для эвольвентных и треугольных зубьев;

 $\left[\sigma_{\text{см}}\right]$  - допускаемое напряжение на смятие, МПа (табл. 40).

40. Допускаемые напряжения на смятие боковых поверхностей зубьев плицевых соединений

	Условия	Специальная термообработка рабочих поверхностей зубьев			
Соединение	эксплуатации	не производится	производится		
		[σ _{см} ], МПа			
Неподвижное	a		_		
	6	60—100	100—140		
	в	80—120	120-200		
Подвижное без нагрузки	а	15-20	20—35		
	б	20—30	30—60		
	8	25—40	40—70		
Подвижное под нагрузкой	а	_	3-10		
	б	_	5—15		
	в	-	10—20		

a - тяжелые условия эксплуатации: нагрузка знакопеременная с ударами в обоих направлениях; вибрации большой частоты и амплитуды; условия смазки (для подвижных соединений) плохие; небольшая твердость деталей соединения; невысокая точность соосности ступицы и вала;  $\delta$  - средние условия эксплуатации;  $\theta$  - легкие условия эксплуатации.

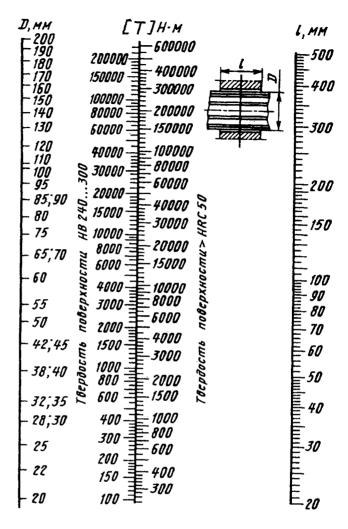



Рис. 26. Номограмма для определения параметров зубчатых (плицевых) эвольвентных соединений

Испытание на скручивание вала с прямоугольными зубьями и плоским дном впадины показывает, что его прочность эквивалентна прочности гладкого вала, диаметр которого несколько меньше внутреннего диаметра шлицевого вала.

Практически шлицевый вал рассчитывают на прочность так же, как гладкий вал, диаметр которого равен внутреннему диаметру шлицевого вала.

Для определения допускаемого вращающего момента по заданным параметрам или для определения параметров по заданному вращающему моменту в зубчатых (шлицевых) эвольвентных неподвижных соединениях для расчетов можно пользоваться номограммой (рис. 26).

Расчетная формула к номограмме:

$$[T] = \varphi z F l r_{\rm cp} [\sigma_{\rm cm}] \cdot 10^3,$$

где  $\varphi$ =0,75 - коэффициент, учитывающий неравномерность распределения сил по рабочим поверхностям зубьев;

z - число зубьев;

F = 0.8m;  $r_{\rm CD} = 0.5mz$ .

Допускаемые напряжения смятия [ $\sigma_{\text{см}}$ ]: 50,0 МПа для поверхности с твердостью 240...300 HB; 120,0 МПа для поверхности с твердостью  $\geq$ 50 HRC.

Условные изображения зубчатых валов, отверстий и их соедивений. Окружности и образующие поверхностей выступов зубьев вала и отверстия показывают сплошными основными линиями (рис. 27-32).

Окружности и образующие поверхностей впадин на изображениях зубчатого вала и отверстия показывают сплошными тонкими линиями (рис. 27), при этом сплошная тонкая линия поверхности впадин на проекции вала на плоскость, параллельную его оси, должна пересекать линию границы фаски (см. рис. 29, 30)

Образующие поверхности впадин на продольных разрезах вала и отверстия показывают сплошными основными линиями (см. рис. 27, 31, 32).

На проекции вала и отверстия на плоскость, перпендикулярную его оси, а также в поперечных разрезах и сечениях окружности впадин показывают сплошными тонкими линиями (см. рис. 31, 32).

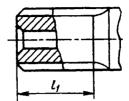
Делительные окружности и образующие делительных поверхностей на изображениях деталей зубчатых соединений показывают штрихпунктирной тонкой линией (см. рис. 29, 32).

Границу зубчатой поверхности вала, а также границу между зубьями полного профиля и сбегом показывают сплошной линией (см. рис. 27, 30).

На изображениях, полученных проецированием на плоскость, перпендикулярную оси зубчатого вала и отверстия, изображают профиль одного зуба и двух впадин.

Допускается изображать большее число зубьев и впадин.

На этих изображениях фаски на конце зубчатого вала и в отверстии не показывают.


Если секущая плоскость проходит через ось зубчатого вала и отверстия, то на разрезах и сечениях валов зубья условно совмещают с плоскостью чертежа и показывают нерассеченными (см. рис. 27), а на разрезах и сечениях отверстий впадин зубья условно совмещают с плоскостью чертежа (см. рис. 32).

При изображении зубчатого вала или отверстия в разрезе или сечении линии штриховки проводят:

в продольных разрезах и сечениях - до линий впадин (см. рис. 27, 31, 32);

в поперечных разрезах и сечениях - до линий выступов (см. рис. 27, 32).

Если секущая плоскость проходит через ось зубчатого соединения, то при его изображении на разрезе показывают только ту



PHC. 27

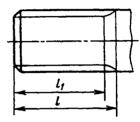



Рис. 28

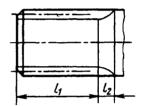



Рис. 29

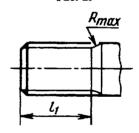



Рис. 30

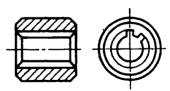



Рис. 31

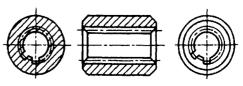



Рис. 32

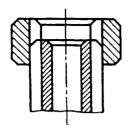



Рис. 33

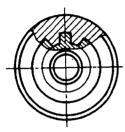



Рис. 34

часть поверхности выступов отверстия, которая не закрыта валом (рис. 33).

Радиальный зазор между зубьями и впадинами вала и отверстия не показывают (рис. 34).

Правила выполнения чертежей зубчатых валов и отверстий. Чертежи деталей зубчатых соединений должны быть выполнены в соответствии с требованиями стандартов ЕСКД и настоящими дополнениями.

На изображениях зубчатых валов, полученных проецированием на плоскость, параллельную оси, указывают длину зубьев полного профиля  $l_1$  до сбега (см. рис. 27).

Допускается дополнительно указывать полную длину зубьев или наибольший радиус инструмента R, или длину сбега  $l_2$  (см. рис. 28-30).

На чертеже детали стандартизованного зубчатого соединения указывают в технических требованиях или на полке линиивыноски условное обозначение вала или отверстия по соответствующему стандарту.

#### Дополнительные источники

Основные нормы взаимозаменяемости. Соединения шлицевые прямобочные. Размеры, допуски - ГОСТ 1139—80.

Соединения зубчатые (шлицевые) эвольвентные - ГОСТ 6033—80.

Соединения зубчатые (шлицевые) прямобочные. Метод расчета нагрузочной способности - ГОСТ 21425—75.

Основные нормы взаимозаменяемости. Соединения шпоночные с клиновыми шпонками. Размеры шпонок и сечений пазов. ДОПУСКИ и посадки - ГОСТ 24068—80

Основные нормы взаимозаменяемости. Соединения шпоночные с тангенциальными нормальными шпонками. Размеры сечений шпонок и пазов. Допуски и посадки - ГОСТ 24069—80.

Основные нормы взаимозаменяемости. Соединения шпоночные с тангенциальными усиленными шпонками. Размеры сечений шпонок и пазов. Допуски и посадки - ГОСТ 24070—80.

**Орлов П. И.** Основы конструирования. В 2-х кн. 3-е изд. Кн. 2. М.: Машиностроение, 1988.

### ПЕРЕЧЕНЬ ГОСТОВ

В 2-м томе справочника использованы ГОСТы, действующие на 1 июля 2000 г.

гост	Страница	гост	Страница
2.403-75	472	2833-77	301, 334
2.405-75	548	2893-82	84, 210, 211
4.479-87	138	3128-70	305, 383
9.032-74	738	3129-70	304
9.301-86	11, 304, 324, 325, 327, 334,	3189-89	79, 83
	352	3212-92	254, 324
9.303-84	11, 304, 325, 327, 334	3325-85	138-141, 164, 168, 171, 240
9.306-85	11, 334, 352, 819, 821	3395-89	80-83
12.4.026-76	738	3478-79	80, 81, 173
263-75	335	3675-81	624, 625, 629
270-75	335	3722-81	793
380-94	11, 254, 325	4060-78	79
520-89	80, 90, 91, 138-141, 240	4543-71	342, 352, 583-587, 793
(MCO 199-79,		465782	177, 228, 229
ИСО 492-86)		4986-79	71, 72
588-81	672, 679	514780	344-352
591-69	358	5632-72	11
801-78	793, 859	5639-82	582, 583
831-75	177, 230-234	5720-75	80, 170, 172
832-78	177, 235-240	5721-75	177, 222, 223, 286
977-88	342	5813-76	772
1050-88	11, 71, 254, 304, 315, 342,	5916-70	316, 319
	819	5950-73	793
1139-80	305, 357, 358, 379, 827, 833	6033-80	305, 358, 379, 834, 837, 849,
1284.1-89	726-733, 740		850
1284.2-89	726, 740	6402-70	316, 319
1284.3-96	740, 741-746	6636-69	825
(MCO 52-92)	_	7242-81	177, 207, 20
1412-85	254, 324	7462-73	304, 324, 325, 352
1414-75	11	7505-89	333
1435-90	859	7599-82	790
1476-93	37, 300-301, 334	7634-75	181
1491-80	813	7796-70	316, 319
1585-85	52	7872-89	187, 247, 249
1643-81	400, 438-444, 452, 459, 475-	8032-84	764
	478, 480, 557, 563, 569, 570	8328-75	177, 217-220
1758-81	529-531, 537, 545	8338-75	177, 179, 204-207
1978-81	36, 37	8545-75	224-226, 227, 286
2144-76	613	8786-68	823
2475-88	418, 438, 852, 855, 859	8790-79	811-816, 825
2789—73	59, 63, 102, 552, 557, 738	8882-75	177, 209
	L	8889-88	647

roct	Страница	гост	Страница
8908-81	16, 304, 315, 338, 342, 344,	14081-93	328-330, 333, 334
	358, 726, 736	1418669	647
9178-81	647	15023-76	647
9368-81	647	15150-69	301, 304, 311, 313, 315-317,
936977	647		325-328, 335, 338, 344, 347,
9389-75	374		350-351, 378
9484-81	775, 776	15152-69	335, 727
9562-81	775, 776	15620-93	378, 381
9563-60	399, 501	15621-77	378
9587-81	647	15622-96	379, 380
9650-80	8, 11	16202-81	500, 504-506, 512, 514, 518,
977481	647		528
9942-90	170, 188, 189	16502-83	647
10242-81	475-478	16523-89	325
1054980	817	16530-83	397
10702-78	11	16531-83	397
10748-79	16, 313, 315, 338, 342, 358,	16532-70	419
	811, 825	16473-80	316, 319
10774-80	336	17696-89	647
11284-75	817	17744-72	647
11521-82	55, 56	18215-87	713
11525-82	42, 43, 54	18498-89	606
11607-82	57-60	18511-73	255, 256, 285
11609-82	60-62	18512-73	257-263, 285
11611-82	50-54, 59, 60	18513-73	264-272, 285
11641-73	273-284	18854-94	108-112
11710-66	70	(ИСО 76-87)	1,12
11902-77	501, 503	18855-94	112
11903-77	647	(ИСО 281-89)	600 630 634
11906-77	647	19036-94	609, 620,624 736
12080-66	12, 311, 313, 328, 339, 353	19200-80	435
12081-72	12, 13, 313, 315, 339, 342,	19274-73 19326-73	501, 526
	353, 358	19624-74	498, 620
12208-66	820, 821	19650-74	623
12289-76	493, 501	19672-74	609
12876-67	817	19904-90	325
13218.1-80	286, 287 288, 289	20184-81	647
13218.3-80	290, 291	20226-82	177
13218.5-80 13218.7-80	292, 293	20720-93	338-342
13218.9-80	294-296	20742-93	353-358
13218.10-80	297, 298	20761-96	311, 313
13506-81	647	20799-75	367
13552-81	695	20884-93	335-338
13568-75	648-658	20889-88	734, 736, 737
13568-97	648	21354-87	128, 555, 561, 573-576
13576-81	696	21424-93	313, 316
13678-73	647	21425-75	863
13733-77	647	21573-76	385, 391
13754-81	398, 490, 491, 494, 496, 498	21574-88	385
13755-81	398, 415, 436, 440, 475, 555,	22850-77	647
10000 00	600 380	22931-78	772
13766-86	369	23106-78	316, 317, 327
13940-86	303	1	

ГОСТ	Страница	гост	Страница
23360-78	15, 301, 305, 313, 315, 334,	24848.1-81	762, 763
	338, 342, 358, 369, 379, 380,	24848.2-81	762, 763
	809, 811, 812, 821	24848.3-81	762, 763, 766
23831-79	713, 717, 772	24954-81	170, 172
(MCO 22-75)		25021-81	396
24068-80	863	25069-81	738
24069-80	863	25106-82	56-60
24070-80	863	25329-82	786
24071-80	16, 301, 305, 822, 823	2534689	16, 63, 77, 830, 848
(MCO 3912-		25347-82	852
77)		2629090	796
24208-80	182, 183	26379-84	762, 763
24246-80	300, 304, 310	26455-85	396
24246-96	301, 876	26643-81	726, 738
24266-94	16	26645-85	254, 324, 726, 738
24310-80	79	27365-87	184-186
24438-80	647	2842890	177, 212-216, 286
24642-81	165	P 50891-96	155
<b>24643</b> -81	43, 254, 738	P 50892-96	396
24810-81	103, 104, 154	P 50895-96	396
24832-81	38, 39	P 51208-98	396
(ИСО 4379-			
78)			
24833-81	40, 41		
(ИСО 2795—			
79)		]	

OCT 2 H62-6-85 OCT 2 P31-4-88 OCT 2 P31-5-89 793 OCT 2 P31-6-87

793,796 793 793, 799, 801 794

# ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

#### B

**Валы** – Допускаемые вращающие моменты 17, 26

- Допускаемые напряжения 24, 25
- Конструкция 30, 31
- Определение вращающего момента
   20
- Определение нагрузок 22
- Определение реакций опор и изгибающих моментов 23, 24
- Основные размеры конических и цилиндрических концов валов 12, 13
- Пример расчета 27-29
- Радиальное биение конического конца вала 16
- Расчет на жесткость 19
- Расчет на прочность 19
- Технические требования 16

**Вариаторы** – Данные для расчета и конструирования 766, 768–770

- Правила монтажа и эксплуатации
   772
- Типы 766

**Винты** грузовые — Пример расчета 777 — ходовые 773 — Расчет на износостой-

кость, прочность и устойчивость 773

Вкладыши металлических подшипников скольжения биметаллические 38

- металлические с буртиками 35, 44, 47
- чугунные или бронзовые для разъемных корпусов 50 Конструктивные размеры 50–52 Фиксация в корпусе 53

Вкладыши неметаллических подшипников скольжения гладкие из металлофторопласта 72

Втулки металлических подшипников скольжения биметаллические 35, 38

- из спекаемых материалов 40
- металлические 36
- чугунные для неразъемных и фланцевых корпусов 42

Втулки неметаллических подшипников скольжения — полимерные 66 — Рекомендуемая долговечность 73, 74

- из МФЛ 63, 64
- из углепластиков 78
- с буртиком из металлофторопласта 70, 71
- свертные 66, 69
- термопластичные 76, 77

Втулки с прямобочными шлицами 310, 311 Г

Грузоподъемность подшипников качения динамическая расчетная 112 — Формулы для расчета базовой 113 — Формулы для расчета эквивалентной нагрузки 118

Грузоподъемность подшипников качения – статическая 108 – Формулы для расчета базовой 110

Формулы для расчета статической радиальной нагрузки 111

Д

Домкрат - Расчет 879

3

# **Зазоры в винтовой паре** 77 **Зацепление храповое** 780

Звездочки для пластинчатых цепей — 670, 682—685 — Предельные отклонения основных размеров 703 — Расчет и построение профиля зубъев 683 — для приводных зубчатых цепей 659

- для приводных зубчатых цепей 659 Правила выполнения чертежей 702 Расчет и построение профиля зубьев 696-699
- для приводных цепей Наибольшая частота вращения 669 Предельные отклонения и допуски на размер зуба 663–665 Пример выполнения чертежа

венца 666 – Размеры зубьев и венцов 662, 686, 687

- Размеры контрольные зубьев 701
- Расчет и построение профиля зубьев
  666
- Расчет и построение профиля инструмента 666–668
- Технические требования 668, 669

К

Камни для перевода муфт 385

Канавки металлических подшипников скольжения – Профили и размеры 53 Карманы маслоподводящие для жидкой смазки вкладышей с буртиками 49

- гладких вкладышей 46

**Колеса зубчатые** конические — Конструкция 547 — Правила выполнения чертежей 548—550

- цилиндрические Конструкции 469
- Правила выполнения чертежей 472–474

**Колеса зубчатые цилиндрические** бандажированные 470

- пластмассовые 471, 472
- литые стальные 469
- чугунные 469

**Колеса червячные** – Конструкция 613, 642

Правила выполнения чертежей 642
 Кольца подшипников качения – Виды нагружения 101 – Твердость 102

Корпуса подшипников качения 286–298 Корпуса подшипников скольжения 54

- неразъемные на лапах 55, 56
- разъемные 57–62

**Крышки** – Дополнительные рекомендуемые размеры элементов 285

**Крышки торцовые** узлов подшипников качения 254—286

Л

Ленты металлофторопластовые 62-64

M

Материалы полимерные для втулок неметаллических подшипников скольжения 63–66

Мотор-редукторы 16

**Муфты кулачковые сцепные** 358 – Передвижная часть 360

- Расчетные формулы 361
- Элементы 359

**Муфты обгонные роликовые** — Классификация 365

- Конструкция и размеры 368-375
- Описание работы 365
- Примеры встройки 366
- Расчет геометрических параметров367
- Технические данные 376
- Указания по монтажу 367

**Муфты постоянные втулочные** Конструкция и размеры 300-305

Муфты постоянные кулачково-дисковые

Конструкция и размеры 338–341 –
 Технические требования 342

# Муфты продольно-свертные

- Конструкция и размеры Технические требования – Элементы 316–327
- с промежуточной деталью Конструкция и размеры 342 Полумуфты и призматическая деталь 343, 344

Муфты упругие втулочно-пальцевые

- Конструкция и размеры 313-316
- со звездочкой Звездочки Конструкция и размеры Полумуфты Технические требования 328–335
- с торообразной оболочкой Основные параметры, габаритные и присоединительные размеры 335-338 Технические требования 337, 338

**Муфты** фланцевые открытые – Конструкция и размеры 311, 312

- цепные с двухрядной цепью 356, 357
- цепные однорядные Конструкция и размеры 354 – Технические требования 358
- шарнирные 344 Технические требования 352 Вилка спаренная 352 Втулка 351 Крестовина 350 Палец 350 Полумуфта 347-350

**Муфты предохранительные** втулочные со срезным штифтом – Конструкция и размеры 377

- дисковые со срезным штифтом Конструкция и размеры 383
- кулачковые Конструкция и размеры 377-380 Элементы 382
- пружинно-кулачковые Конструкция и размеры 384, 385

- фрикционные Конструкция и размеры 377-380
- шариковые Конструкция и размеры 377-380

Муфты с V-образным мелким (мышинным) зубом — Основные параметры 362

- Профиль зубьев 363

Муфты трения фрикционные многодисковые — Применение 363 — Проверочный расчет 364, 365

**Муфты шарнирные** 344—347 — Вилка спаренная 352 — Втулка 351 — Крестовина 350 — Палец 350, 351 — Полумуфта 347—350

- Технические требования 352

Муфты электромагнитные многодисковые – Основные параметры и размеры 385—388

- Параметры номинального режима 396
- Размеры посадочных гладких отверстий 389, 392 Размеры поводка 395
- Размеры шлицевых отверстий 391
- Технические данные 393, 394

0

## Оси - Расчет 12

- Технические требования 11
- Типы, конструкции, размеры 8–12 Отверстия для подачи смазки 392, 393 Отверстия посадочные муфты 357, 389, 392

П

**Передачи винтовые** — Расчет грузовых винтов 777—779

- Расчет ходовых винтов 773, 774
- Устранение зазоров в винтовой паре
  777

**Передачи зубчатые конические** – Нормы бокового зазора 535, 555

- Нормы точности 530, 531
- Расчет на прочность 551-598, 603
- Степени точности и виды сопряжений 530
- Термины и обозначения 489

Передачи зубчатые конические с круговыми зубьями — Выбор коэффициента смещения 514

- Выбор осевой формы зуба и номинального диаметра зуборезной головки 507
- Исходный контур 504
- Модули 501
- Расчет угла ножек и угла головок зубьев 515
- Технические требования 528
- Угол наклона и направление линии зуба 501
- Формулы для определения сил в зацеплении 502
- Формулы и пример расчета 503, 518-526
- Числа зубьев шестерни и колеса 499 Передачи зубчатые конические с прямыми зубьями Выбор коэффициентов изменения расчетной толщины зуба исходного контура 490
- Основные параметры 499

- Термины 489
- Формулы и примеры расчета 494, 496-499
- Число зубъев шестерни и колеса 490,
  499

# **Передачи зубчатые цилиндрические** — Допуски 438—440

- -Исходный контур 398, 399
- Модули 399
- Нормы бокового зазора 441, 460-468
- Нормы точности 442, 445–459
- Обозначение 442
- Смещение колес 402, 405
- Степени точности и виды сопряжений 400, 440
- Термины 397, 398, 438

# **Передачи зубчатые цилиндрические** винтовые – Применение 431

- косозубые Значения постоянной хорды 408, 433 Значения части длины общей нормали, выраженной в долях модуля 410 Коэффициент смещения 403
- Нагрузка на опоры
- Формулы для определения основных параметров передач со смещением 415
- Формулы и пример расчета передачи без смещения 407
- прямозубые Формулы и пример расчета 432
- шевронные Коэффициент смещения 404

Передачи зубчатые цилиндрические эвольвентные внешнего зацепления — Проектировочный расчет на выносливость при изгибе 594 — Проектировоч-

- ный расчет на контактную выносливость 594
- Расчет зубьев на выносливость при изгибе 573
- Расчет зубьев на контактную прочность 555
- Расчет зубьев на прочность при изгибе 556
- Расчет на контактную выносливость561
- Расчет на контактную прочность при действии максимальной нагрузки 570
- Расчет на прочность при изгибе максимальной нагрузкой 589
- Уточненный расчет допускаемых напряжений для косозубых и шевронных передач 596
- Уточненный расчет прямозубых передач на прочность при изгибе 596
   внутреннего зацепления Основные элементы и параметры 431 Формулы для определения основных элементов 433 Формулы расчета 437

**Передачи** клиноременные – Особые виды 761 – Расчет и конструирование 740

– плоскоременная – Выбор приводных ремней 712–716 – Давление на валы 723 – Типы 712

**Передача клиноременная трехшкивная** – Расчет 745, 746

**Передачи цепные** – Вопросы проектирования 703, 704 – Характеристики 705, 706–708

Передачи ременные 709 — Схемы 710 Передачи червячные — Геометрический расчет 620—623

- Нормы бокового зазора 638–640
- Нормы точности 625-638
- Обозначения 624
- Основные параметры 606, 609
- Расчет на прочность 644-646
- Степени точности и виды сопряжений 624
- Термины 606, 607
- Силы в зацеплении и КПД 643
- Характеристика 606

Поверхности валов и корпусов посадочные — Отклонения формы и расположения 165—170

Подшипники качения – Выбор и расчет 123—133 – Выбор схем установки 107

- Грузоподъемность: динамическая 112–121, статическая 108–111
- зазоры и предварительные натяги 103-113
- Заплечики для установки 177-187
- Классификация 79
- Классы точности 90
- Материалы 102
- Обозначения условные 79
- Опоры валов зубчатых передач 189
- Показатели качества 138
- Посадки колец подшипников на вал и в корпус 138–150
- Посадочные и опорные поверхности вала и корпуса: отклонения расположения 170–172, отклонения формы 165–168 требования 164 шероховатость 164
- Предельные отклонения 91-101
- Предельные радиусы галтелей вала и корпуса 173

- Предельная частота вращения 136,
  137
- Примеры конструкций 250-253
- Размеры и основные характеристики подшипников качения 250–254
- Рекомендации по конструированию
  151
- Рекомендации по монтажу 152-154
- Ресурс расчетный подшипника 122
- Смазывание подшипников 155
- Трение в подшипниках 134, 135
- Углы взаимного переноса колец 169
- Условия общие технические 90-102
- -Характеристики подшипников 83-90
- Шероховатость поверхностей 102

**Подшипники** качения игольчатые роликовые 228, 229

- конические роликовые 241-244
- радиально-упорные шариковые однорядные 230—234 сдвоенные 235 радиальные двухрядные сферические роликовые 222
- радиальные однорядные шариковые
  204–207 с защитными шайбами 207,
  208 с уплотнением 209 со стопорной канавкой 210, 211
- радиальные роликовые с короткими цилиндрическими роликами 217–221
- радиальные сферические двухрядные212–216
- роликовые с витыми роликами
- роликовые с закрепительными втулками 227
- упорные шариковые одинарные247–248 двойные 249
- шариковые двухрядные с закрепительными втулками 224—225

Подшипники скольжения металлические радиальные — Приближенный расчет 32

- радиальные металлические Допускаемые режимы работы 33
- упорные Расчет пяты 35

Подшипники скольжения неметаллические из древесных пластиков 64, 65 — из пластифицированной древесины

- из углепластиков 66, 78
- капроновые

65

- металлофторопластовые 62, 64
- полиамидные 65
- текстолитовые 65
- упорные Допускаемые режимы работы – Расчет 34
- термопластичные 68, 69, 76-79

**Подшипниковые узлы** — Примеры конструкций 250

Пята упорного подшипника скольжения кольневая — Расчет 35

плоская – Расчет 35

P

# Редукторы 16

**Рейки зубчатые** – Допуски на изготовление 475

- Нормы бокового зазора 476, 483-487
- Нормы точности 477-483
- Правила выполнения чертежей 488
- Расчет
- Степени точности и виды сопряжений 476

**Ремни** – Сечения 761 – Способы натяжения 711

Ремни клиновые вариаторные 762 — Назначение 762 — Размеры сечений 762, 763 — Расчетные длины 764 — Технические требования 763

- приводные клиновые 726 Группы
   729 Размеры сечений 732 Расчетная
   длина 733 Типы 730
- приводные плоские 713-715, 718 Расчет 719-723
- Физико-механические показатели
   717

Ресурс расчетный подшипника качения 122

C

## Соединения болтовые клеммовые 805

- напряженные 803
- ненапряженные 803
- прочно-плотные 806
- с поперечной нагрузкой 804
- с эксцентричной нагрузкой 808

**Соединения шлицевые** 827 – Расчет на прочность 859

- прямобочные 827 Допуски и посадки 830
- Размеры 828, 829
- треугольные 850 Выбор размеров, допусков и посадок 850 Номинальные размеры между проволочками и по проволочкам 853, 854 Посадки вала 854

- Проволочки и ролики для измерения резьбы и шлицев 855 – Технические требования 859
- Формулы для определения элементов
  859
- эвольвентные 834 Допуски и посадки 838
- Основные параметры 836

Соединения шпоночные 809 — Допуски и посадки 809, 810 — Параметры шероховатости поверхности элементов 810

- IIIпонки - см. *Шпонки* 

Стыки – Кольцевая форма 808 – Крепление 807

T

Трение скольжения - Виды 32

У

Углепластики для втулок подшипников скольжения 66, 78

Устройства защитные цепных передач 704

Устройства разгрузочные в винтовых соединениях 805

**Узлы подшипниковые** – Примеры конструкций 250—253

X

Храповики - Виды 780 - Расчет 783

ч

**Червяки** 609 — Правила выполнения чертежей 642

Частота вращения предельная подшипников качения 136

П

**Цепи приводные** 649 — Обозначения 652 — Основные условия применения 669 — Показатели надежности 655 — Технические требования 653 — Условия стендовых испытаний 657, 658

**Цепи приводные** втулочные двухрядного типа 2ПВ 650, 651

- втулочные однорядные типа ПВ 650,651
- зубчатые 692 Основные параметры и размеры 693 Применение 693 Показатели надежности 695 Технические требования 694
- роликовые длиннозвенные типа ПРД
- Конструкция и размеры 651
- роликовые двухрядные типа 2ПР Конструкция и размеры 648–650
- роликовые однорядные типа ПРА и ПР – Конструкция и размеры 647–650
- Указания по эксплуатации 653 Расчет 671

**Цепи тяговые пластинчатые** — Основные параметры и размеры 673—677 — Технические требования 678 — Типы и размеры пластин 672 — Элементы присоединительные 679—682

#### Ш

## Шариковые винтовые передачи ШВ∏ 784

- Выбор, расчет 796, 797-801
- Нормы точности 788
- Параметры и размеры 786, 787
- Показатели качества 794
- Устройство 784
- Характеристики 790-793
- Схемы монтажа 794
- Технические требования 793

**Шкивы** вариаторной передачи – Правила монтажа и эксплуатации 772

- Размеры 765 Технические требования 765
- для плоских приводных ремней 717
- Основные размеры 724, 725 Технические требования 725

Шкивы для приводных клиновых ремней 734

- Методы проверки 738
- Профиль канавок 737
- Технические требования 736
- Типы 734, 735

**Шпонки** – Для конических концов валов 14, 15

- Допускаемые напряжения
- Расчет

Шпонки призматические — Размеры 809 — Размеры сечений пазов и их предельные отклонения 809, 810, 811, 816

- высокие Размеры 812 Направляющие с креплением на валу 813
- скользящие Размеры 818
- скользящие сборные Размеры 820

**Шпонки сегментные** – Размеры 822 – Расчет 825

- торцовые Расчет 826
- цилиндрические Расчет 826

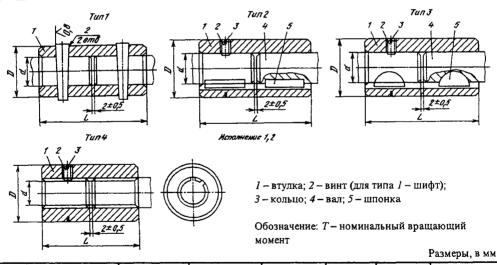
Штифты втулок закрепительные 44

#### ПРИЛОЖЕНИЕ

# муфты втулочные по гост 24246-96*

ГОСТ 24246-96 распространяется на втулочные муфты общемащиностроительного применения, предназначенные для соединения соосных цилиндрических валов и передачи вращающего момента от 1 до 12 500 Н·м без уменьшения динамических нагрузок при окружной скорости на наружном диаметре муфт до 70 м/с, климатических исполнений У и Т категорий 1-3, климатических исполнений УХЛ и О категории 4 по ГОСТ 15150.

Параметры, конструкции и размеры муфт. Муфты должны изготовляться следующих типов:


- 1 с цилиндрическим посадочным отверстием и штифтами по ГОСТ 3129;
- 2 с цилиндрическим посадочным отверстием и шпоночным пазом по ГОСТ 10748 или ГОСТ 23360:
- 3 с цилиндрическим посадочным отверстием и шпоночным пазом по ГОСТ 24071;
- 4 со шлицевым посадочным отверстием по ГОСТ 1139.

Муфты типа 2 должны изготовляться следующих исполнений:

- ! для концов валов исполнения ! по ГОСТ 12080;
- 2 для концов валов исполнения 2 по ГОСТ 12080.

Параметры, конструкция и размеры муфт должны соответствовать указанным в табл. 1.

### 1. Параметры, конструкции и размеры втулочных муфт



Т, Н∙м	Тип	Исполне- ние	<i>d</i> Ряд 1(2)	D	L	Масса, кг, не более
1	1	_	6	10	25	0,01
2	1	-	7; 8	14	30	0,03
4	1	_	9; 10			0,04
			11	16	35	0,06
8	i	-	12			0,05

^{*} Дата введения 1 июля 2000 г.

Т, Н∙м	Тип	Исполне- ние	d Ряд 1(2)	D	L	Масса, кг, не более
11,2			9			0,04
	3	-	10	16	35	0,03
			14			0,13
16	1	_	16	28	45	0,12
			11			0,05
22,4	3		12	18	40	0,04
			18			0,21
31,5	1	_	(19)	32	55	0,19
	·		20	] ~		0,18
35,5	2	1; 2	16			0,12
45	3	_	14	28	45	0,12
			20	38		0,39
50	1	[ _ [	22		65	0,36
			(24)			0,32
		1; 2	18			0,17
			(19)	32	45	0,16
			20		55	0,18
	2		20			0,37
71			22	38	65	0,34
			(24)			0,22
00			25	42	75	0,48
90			28			0,42
	1	_	28			0,73
			30	48	90	0,66
			32			0,60
125			25			0,39
	2	Ī	28			0,33
		_	25	42	65	0,39
		2	28			0,31
			16			0,27
140	4		18	38	45	0,24
			28			0,69
		1	30		90	0,63
180	2		32	48		0,55
			28			0,62
		2	30		80	0,53
			32		60	0,37
200	1			55	105	1,34

<i>Т</i> , Н·м	Тип	Исполне- ние	d Ряд 1(2)	D	L	Масса, кг, не более
			35			1,22
200	l		36	55	105	1,18
			(38)	]		1,08
		_	21			0,33
250	4		23	42	50	0,30
		]	(38)			1,66
	1		40	60	120	1,57
			(42)			1,48
		1	32		100	1,23
			35			0,94
280			36		•	0,89
			(38)	55	90	0,82
	2		32			1,11
			35			0,83
		2	36		80	0,79
			(38)		3.0	0,73
_	-		23			0,46
355	4		26	48	55	0,41
		-	(42)			2,80
	1		45	70	140	2,58
			(48)			2,30
400			(38)		110	1,42
		1	40			1,38
	2		(42)	60		1,21
			(38)			1,29
		2	40		100	1,25
			(42)			1,10
			(48)			3,89
	1	-	50	80	150	3,71
			(53)			3,44
			(42)		140	2,65
560		1	45			2,07
	2		(48)	70	120	1,87
			(42)		125	2,37
		2	45			1,90
			(48)		110	1,72
	4		26			0,87
		<u>-</u>	28	55	65	0,83

Т, Н∙м	Тип	Исполне- ние	d Ряд 1(2)	D	L	Масса, кг, не более
560	4		32	55	65	0,72
			(53)			5,74
		_	55			5,52
	1		(56)	90	170	5,41
			60			4,94
			(48)			3,72
		1	50		150	3,54
900			(53)	80		3,25
800	2		(48)			3,22
		2	50		130	3,07
			(53)			2,82
			32			1,17
	4		36	60	80	1,02
		_	60			7,32
	1		63	100	180	6,92
			(65)	<u> </u>		6,64
			(53)			5,14
			55	<u> </u>		4,93
1120		1	(56)	90	160	4,82
	2		60			4,35
			(53)		140	4,50
			55			4,32
		2	(56)			4,22
		ļ	60			3,80
			36			1,88
	4		42	70	90	1,60
		_	(65)			10,07
	1		70	110	200	9,26
	1		71	]	200	9,10
			(75)	]		8,40
1600			60			7,78
		1	63	1	200	7,33
	2		(65)	100	180	7,00
			60	100		7,00
		2	63			6,60
		1	(65)	1		6,30

Т, Н∙м	Тип	Исполне- ние	<i>d</i> Ряд 1(2)	D	L	Масса, кг, не более
1600	4		42			2,75
1000			46	80	100	2,41
		1 -	(75)			12,31
	1		80	120	220	11,29
			(85)			10,31
			70			9,59
		1	71		220	9,52
2240			(75)			8,61
	2		(65)	110	180	8,64
			70			8,28
		2	71		190	8,22
			(65)			7,44
			46			3,78
	4		52	90	110	3,36
		-	(85)			15,02
	1		90	130		13,77
	'		(95)		240	12,45
3150			80			11,61
		1	(85)			10,88
	2	2	(75)	120	190	10,12
			80		210	10,16
			(85)			9,52
			52			4,66
3150	4		(56)	100	120	4,26
		_	(95)			19,05
	1		100	140	280	17,41
			(105)			16,03
			90	]		15,99
4500		I	(95)	]	300	14,29
	2		(85)	130	210	12,33
		2	90			13,86
			(95)		260	12,38
			(56)			7,72
	4	_	62	110	130	6,10
			100			18,54
6300	2	l	(105)	140	280	16,51
		2	(95)	<u> </u>	260	16,71

<i>T</i> , Н·м	Тип	Исполне- ние	<i>d</i> Ряд 1(2)	D	L	Масса, кг, не более
	2	2	100		280	16,22
6300			(105)	140	280	14,45
			72	120	150	7,64
9000	4	_	82	130	170	9,80
12500			92	140	190	11,93

Примечание. Ряд 1 является предпочтительным.

Пример условного обозначения втулочной муфты типа 1, передающей номинальный вращающий момент 280 Н⋅м, с посадочным отверстием диаметром 38 мм, климатического исполнения У, категории 3:

Муфта втулочная 1-280-38-УЗ ГОСТ 24246-96 То же, типа 2, исполнения 1: Муфта втулочная 2-1-280-38-УЗ ГОСТ

#### 2. Крепежные изделия для муфт

24246-96.

Размеры в мм

<i>Т</i> , Н·м	Тип	Испол- нение	d	Штифт по ГОСТ 3129	Шпон- ка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Коль- ио по ГОСТ 2833		
1,0			6	1,6×12						
2,0			7; 8 9; 10	2×16						
4,0	1			2,5×20		-	_			
8,0			11	3× <b>2</b> 0						
			12							
11,2	3		9	_	_	3×5*	B.M4-6g × × 6.14H			
11,2	,		10	4×30	4×30				_	
		_	14			4 20				
16,0	1		16				_	_		
			11				B.M4-6g ×			
22,4	3		12	_		3×6,5*	× 6.14H			
			18			}				
31,5	1		19	5× <b>36</b>			_			
•			20	}		-				
35,5	2	1; 2	16	_	5×5×20		B.M6-6g × ×8.14H	26		

Т, Н∙м	Тип	Испол- нение	d	Штифт по ГОСТ 3129	Шпон- ка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Коль- цо по ГОСТ 2833
45,0	3		14	_		4×6,5*	B.M6-6g × ×8.14H	26
		_	20		_			
	1		22	6×40			_	-
50,0			24			ļ		
			18	_				
			19		6×6×20			32
	2	1; 2	20	_			B.M6-6g ×	
			20		6×6×30		×8.14H	
71,0			22					38
			24		8×7×20			
90,0			25	8×45				
			28				-   _	
	1	_	28		-	-		_
125,0			30	8×50				
125,0			32					
	2	1; 2	25		8×7×25			42
		,	28					
140,0	4	~	16		_		B.M6-6g × × 8.14M	38
			18	-				
		1; 2	28		8×7×36			
180,0	2		30					48
,		1	32		10×8×30	·		.0
		2	32			10×9×25		
			32					
200,0	1		35	10×60	_	_	_	_
		-	36					_
			38					
250,0	4		21	-			B.M6-6g × ×8.14H	42
			23					

<i>T</i> , Н·м	Тип	Ис- полне- ние	d	Штифт по ГОСТ 3129	Шпонка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Кольцо по ГОСТ 2833
	1	_	38 40 42	10×65	-		_	-
280,0		I	32 35 36		10×8×45 10×8×40			
	2	2	38 32 35 36	-		10×9×36	B.M6-6g × ×10.14H	55
355,0	4		38 23 26		-		B.M6-6g × ×8.14H	48
	1	-	42 45 48	12×80	10.0.50	-	- D.M. (-	-
400,0	2	2	38 40 42	-	10×8×50 - 12×8×45	10×9×40 -	B.M6-6g × ×10.14H	60
		2	· 40		_	12×11×36	B.M8-6g × ×12.14H	
•	1	_	48 50 53	12×90		_		-
560,0	2	!	42 45 48		12×8×65	12×11×45	B.M8-6g × ×12.14H	70
		2	42 45 48	_ 		14×12×35		
	4		26 28 32		_		B.M6-6g × ×10.14H	55
0,008	1	_	53 55 56 60	16×100		_	-	_
	2	1	48	-	14×9×70		B.M10-6g× ×16.14H	80

<i>T</i> , Н · м	Тип	Ис- полне- ние	d	Штифт по ГОСТ 3129	Шпонка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Коль- цо по ГОСТ 2833
		1	53		16×10×56	_	B.M10-6g ×	
800,0	2		48			14×12×45	×16.14H	80
		2	50	_				
			53			16×14×40		
			32		-		B.M6-6g × ×10.14H	
	4		36				B.M8-6g × ×12.14H	60
		_	60					
	1		63	16×110		_	-	_
			65					 
			53					
		,	55		16×10×75			
1120,0		1	56		,			
	2		60		18×11×70		B.M10-6g × ×16.14H	90
	] .		53	_				, ,
		2	55			16×14×56		
		2	56					
			60			18×16×45		
	4		36		-		B.M8-6g × ×12.14H	70
			42					
		-	65 70					
	I		70	20×120		-	_	-
			75					1
1600,0			60					
		l	63		18×11×95			
			65					
	2		60	-			B.M10-6g × ×20.14H	100
		2	63		_	18×16×60		
			65					
	4	-	42				B.M10-6g × ×16.14H	80

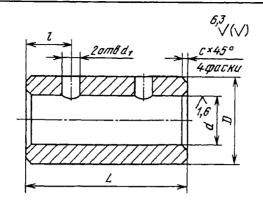
Т, Н - м	Тип	Ис- полне- ние	d	Штифт по ГОСТ 3129	Шпонка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Коль- цо по ГОСТ 2833
1600,0	4		46	_			B.M10-6g × ×16.14H	80
		] -	75		_			
	1	ļ	80	20×120		- 1	-	-
			85				····	
		<u> </u>	70					
		1	71		20×12×100			ļ
2240,0			75				B.M10-6g ×	
	2		65			18×16×75	×20.14H	110
			70	_				
		2	71			20×18×65		
			75					
	4		46		-		B.M10-6g × ×16.14H	90
			52				×16.14Ħ	
	1	-	85 90	25,,140		_	_	_
	1		95	25×140			_	
			80		20 14 110			
3150,0		i	85	i	22×14×110		B M12-6g x	120
	2		75			20×18×85	B.M12-6g × ×20.14H	.20
		2	80 85	-		22×20×75		1
		<del>                                     </del>	52	İ	_			
	4		56				B.M10-6g × ×20.14H	100
	<del> </del>	-	95					
	1		100	25×140		-	-	-
			105			ļ		
4500,0		1	90 95		25×14×140			-
1500,0	2		85			22×20×95	B.M12-6g × ×20.14H	130
		2	90					
		ļ	95		-	25×22×80		
	4	-	56 62	_		_	B.M10-6g × ×20.14H	110
		1	100		28×16×150			
6300,0	2	<b>_</b>	105 95	1		25×22×110	B.M12-6g ×	140
0300,0	-	2	100	1	-		B.M12-6g × ×20.14H	
			105			28×25×90		l

<i>T</i> , Н·м	Тип	Ис- полне- ние	d	Штифт по ГОСТ 3129	Шпонка по ГОСТ 23360	Шпонка по ГОСТ 10748	Винт по ГОСТ 1476	Коль- цо по ГОСТ 2833
6300,0			72	_	_	_	B.M12-6g ×	120
9,000	4	-	82				×20.14H	130
12500,0			92					140

^{*}Размер шпонок по ГОСТ 24071.

Примечания: 1. Число применяемых шпонок и штифтов при сборке муфт — по 2 шт., винтов и колец — по 1 шт.

- 2. Твердость штифтов 35...48 HRC.
- Установка штифтов при сборке муфты типа 1 осуществляется совместно с соединяемыми валами.
  - 4. Допуски углов конусов отверстий под штифты по 8-й степени точности ГОСТ 8908.
- 5. Допускается изготовление муфт типа 1 с цилиндрическими штифтами по ГОСТ 3128 и муфт типа 4 с эвольвентными шлицами по ГОСТ 6033.

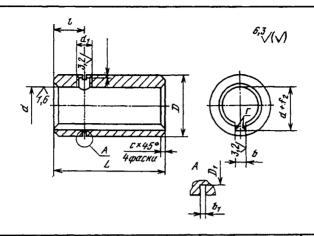

Конструкция и размеры втулок муфт должны соответствовать приведенным в табл. 3-5.

- Материал втулок сталь 45 по ГОСТ 1050. Допускается изготовлять втулки из других материалов с механическими свойствами не ниже, чем у стали 45 по ГОСТ 1050.
- Допуск радиального биения наружного диаметра втулки муфты относительно посадочного диаметра по 12-й степени точности ГОСТ 24643.
- Размеры шпоночных пазов втулок и предельные отклонения размеров шпоночных пазов по ГОСТ 10748, ГОСТ 23360 и ГОСТ 24071.
- Допуск симметричности шпоночного паза относительно оси муфты в пределах двух полей

допуска на ширину шпоночного паза.

- Допуск параллельности плоскости симметрии шпоночного паза относительно оси муфты – в пределах половины допуска на ширину шпоночного паза.
- Неуказанные предельные отклонения размеров: H14, h14;  $\pm \frac{IT14}{2}$ .
- Виды и толщина покрытия втулок в зависимости от условий хранения и эксплуатации муфт по ГОСТ 9.303, ГОСТ 9.306 и ГОСТ 7462.
- Технические требования к покрытиям по ГОСТ 9.301.
- Размеры, не определяющие параметры муфт, являются рекомендуемыми.

# 3. Конструкция и размеры втулок муфт типа 1




Размеры в мм

Т, Н∙м	d H7	d ₁	D	L	l	с	Масса, кг, не бо- лее
1	6	1,6	10	25			0,01
	7	2.0			6	0,4	0,03
2	8	2,0	14	30			0,03
	9	2.5		2.5			0,04
4	10	2,5	16	35	8		0,03
	11	2.0		40		0,6	0,05
8	12	3,0	18	40			0,04
17	14	4.0	20	45			0,12
16	16	4,0	28	45	10		0,11
	18			-			0,20
31,5	19	5,0	32	55	12		0,17
	20		_				0,16
	20						0,34
50	22	6,0	38	65	15	1,0	0,30
	24						0,27
22	25		4.5				0,43
90	28		42	75			0,38
	28	8,0			20		0,68
125	30		48	90			0,62
	. 32						0,54
	32						1,30
200	35			105	25		1,18
200	36	10,0	55	105	25	1,6	1,13
	38						1,03
280	38		60	120			1,00

Т, Н·м	d H7	$d_{\mathfrak{l}}$	D	L	l	с	Масса, кг, не бо- лее
280	40	10,0	60	120	25		1,51
	42						1,42
	42						2,72
400	45		70	140			2,50
	48	12,0			35	1,6	2,22
	48						3,81
560	50		80	150			3,62
	53						3,36
	52						5,66
	55		00	170			5,45
800	56		90	170			5,44
	60	16.0					4,86
	60	16,0			45		6,84
1120	63		100	180			6,84
	65						6,56
	65						5,66
	70			200			5,45
1600	71	]	110	200			5,44
	75	20,0					4,86
	75						12,21
2240	80	]	120	220		2,5	11,20
-	85	]			50		9,22
	85						14,90
3150	90		130	240			13,69
	95	]					12,35
4	95	25,0					18,92
4500	100		140	280	60		17,28
	105						15,92

## 4. Конструкция и размеры втулок муфт типов 2 (исполнений 1 и 2) и 3



r = 0.1; 0.2; 0.3; 0.5 c = 0.6; 1.0; 1.6; 2.5 $c_1 = 0.5; 1.0; 1.6$ 

## Размеры в мм

<i>Т</i> , Н·м, для	<i>d</i> H7	<i>d</i> + для исі нь	полне-	<i>b</i> JS9	<i>b</i> ₁	$d_1$	D	DI	ДЛЯ И нен	спол-	I	Масса, более испол	ялд,
типа 2	Π,	1	2	337					1	2		1	2
	9	10,4					1.0		25			0,04	
11,2*	10	11,4		3		M4-7H	16		35		8	0,03	
•••	11	12,8	-	4	-		18	_	40		٥	0,05	-
22,4*	12	13,8		4			18		40			0,04	
45,0*	14	16,3		5			28	24	45	-	10	0,12	_
35,5	16	18	3,8	,			20	24			2.	0,	11
	18	20	,8						4	5		0,	20
50	19	21	,8		1,0		32	28			12	0,	18
	20	22	2,8	6					5	5			17
	20	22	2,8					<u> </u>					36
71	22	24	1,8				38	34			15	<u> </u>	32
	24	27	1,3	j		M6-7H			6	5		0,	27
125	25	28	3,3	]		l	42	37	ļ				43
123	28	31	,3	8	Ì					-,,	20		36
	28	31	1,3						9	0			67
180	30	33	3,3			Ì	48	43		,			61
	32	35,3	35,8		1,2				90	60		0,53	0,36
	32	35,3	35,8					1	100	90		1,22	1,10
280	35	38,3	38,8	10			55	49	90	80	25	0,92	0,82
	36	39,3	39,8	1								0,88	0,78
		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>		

	d H7	для исі ні		b JS9	<i>b</i> ₁	$d_1$	D	$D_1$	для и	L іспол- ния	l	боле	, КГ, не е, для инения
типа 2	n,	Ī	2	137					l	2		1	2
280	38	41,3	41,8	10			55	49	90	80		0,81	0,72
	38	41,3	41,8								25	1,41	1,28
400	40	43,3	44,4		1,2	M6-7H	60	54	110	100	2.5	1,36	1,24
	42	45,3	46,4	12				<u></u>				1,20	1,09
	42	45,3	46,4			M8-7H			140	125		2,63	2,34
560	45	48,8	49,9			W10-711	70	64	120	110		2,06	1,86
	48	51,8	52,9	14					120	110	35	1,86	1,70
	48	51,8	52,9	14								3,70	3,21
800	50	53,8	54,9	}			80	74	150	130		3,50	3,04
	53	57,3	58,4		1,6				:			3,22	2,80
	53	57,3	58,4	16		M10-7H				-		5,11	4,47
	55	59,3	60,4				90	84	160	140		4,91	4,29
1120	56	60,3	61,4					]			ľ	4,79	4,19
F	60	64,4	66,4									4,33	3,79
	60	64,4	66,4								45	7,73	6,95
1600	63	67,4	69,4	18			100	94	200	180		7,28	6,55
	65	69,4	71,4									6,95	6,25
	65	69,4	71,4						_			-	8,60
Γ	70	59,3	77,4				110	103				9,54	8,24
2240	71	60,3	78,4	20					220	190	1	9,46	8,17
Γ	75	64,4	82,4	20								8,56	7,39
	75	64,4	82,4			1410 211			-	190		-	10,09
	80	85,4	88,4		2,0	M12-7H	120	113	0.40	2.0		11,57	10,08
3150	85	90,4	93,4	22					240	210	50	10,81	9,46
	85	90,4	93,4						-	210		_	12,25
4500	90	95,4	99,4				130	123	200	262		15,87	13,76
	95	100,4	104,4	25					300	260		14,20	12,31
	95	100,4	104,4						_	260		-	16,66
6300	100	106,4	110,4	20			140	133	250	200	60	20,50	17,94
	105	111,4	115,4	28					320	280		16,40	14,35

^{*} Для типа 3.

# 5. Конструкция и размеры втулок муфт типа 4

		A A		- 37 x '5 \	C,×45° 4 φα c κα  (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A A 45°	6,	(V)			Разм	еры в мм
<i>Т</i> , Н∙м	Посадочное отверстие по ГОСТ 1139	D	<i>D</i> ₁	<i>b</i> ₁	$d_1$	L	1	r	f	с	<i>c</i> ₁	Масса, кг, не более
140	6×16×20×4 6×18×22×5	38	34	1,0		45	10					0,27 0,24
250	6×21×25×5 6×23×28×6	42	37			50		0,2	0,3	1,0		0,24
355	6×23×28×6 6×26×32×6	48	43	1,2	М6-7Н	55	12				1,0	0,45
560	6×26×32×6 6×28×34×7 6×32×38×6	55	49	1,2		65	15	0,3	0,4			0,86 0,82 0,71
800	8×32×38×6 8×36×42×7	60	54			80				1,6		1,16
1120	8×36×42×7 8×42×48×8	70	64		M8-7H	90	20					1,86 1,58
1600	8×42×48×8 8×46×54×9	80	74	1,6		100	20					2,73
2240	8×46×54×9 8×52×60×10	90	84		M10-7H	110	25				1,6	3,75 3,33
3150	8×52×60×10 8×56×65×10	100	94			120		0,5	0,5			4,61 4,21
4500	8×56×65×10 8×62×72×12	110	103			130	30			2,5		7,67 6,05
6300	10×72×82×12	120	113	2,0	M12-7H	150	35					7,50
9000	10×82×92×12	130	123			170	40					9,70
12500	10×92×102×14	140	133			190	45					11,83

# ЦЕПИ ПРИВОДНЫЕ РОЛИКОВЫЕ И ВТУЛОЧНЫЕ ПО ГОСТ 13568–97*

ГОСТ 13568-97 распространяется на приводные роликовые и втулочные одно- и многорядные цепи, предназначенные для силовых механических передач разнообразных машин и механизмов, кроме буровых установок.

Устанавливает параметры, размеры и требования к приводным цепям следующих типов:

ПР - роликовые однорядные;

2ПР - роликовые двухрядные;

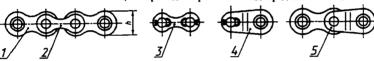
ЗПР -роликовые трехрядные;

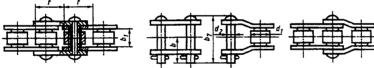
4ПР - роликовые четырехрядные;

ПВ -втулочные однорядные;

2ПВ -втулочные двухрядные;

ПРИ - роликовые с изогнутыми пластинами.


Типы, основные параметры и размеры цепей, их соединительные и переходные звенья должны соответствовать указанным в табл. 1, 2. (Эскизы в табл. 1 и 2 не устанавливают конструкцию цепей, соединительных и переходных звеньев и их деталей.)


#### 1. Цепи однорядные

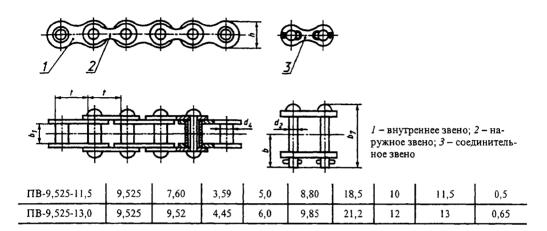
#### Размеры в мм

Типоразмер	t	<i>b</i> ₁ , не	$d_2$	$d_1, d_4$	h	b ₇	b	<i>Р</i> *, кН, не	Macca**
цепи		менее			1	не более		менее	1 м цепи, кг

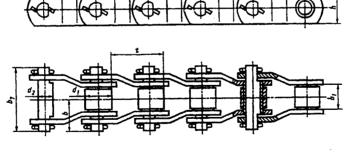
#### Цепи приводные роликовые однорядные типа ПР






I — внутреннее звено; 2 — наружное звено; 3 — соединительное звено; 4 — переходное звено; 5 — двойное переходное звено

		-	<del>-</del>	7					
ПР-8-4,6	8,0	3,00	2,31	5,00	7,5	12	7	4,6	0,2
ПР-9,525-9,1	9,525	5,72	3,28	6,35	8,5	17	10	9,1	0,45
ПР-12,7-10-1	12,7	2,40	3,66	7,75	10	10,5	6,3	10,0	0,3
ПР-12,7-9	12,7	3,30	3,66	7,75	10	12	7	9,0	0,35
ПР-12,7-18,2-1	12,7	5,40	4,45	8,51	11,8	19	10	18,2	0,65
ПР-12,7-18,2	12,7	7,75	4,45	8,51	11,8	21	11	18,2	0,75
ПР-15,875-23-1	15,875	6,48	5,08	10,16	14,8	20	11	23	0,8
ПР-15,875-23	15,875	9,65	5,08	10,16	14,8	24	13	23	I
ПР-19,05-31,8	19,05	12,70	5,94	11,91	18,2	33	18	31,8	1,9
ПР-25,4-60	25,4	15,88	7,92	15,88	24,2	39	22	60	2,6
ПР-31,75-89	31,75	19,05	9,53	19,05	30,2	46	24	89	3,8
ПР-38,1-127	38,1	25,40	11,10	22,23	36,2	58	30	127	5,5
ПР-44,45-172,4	44,45	25,40	12,70	25,40	42,4	62	34	172,4	7,5
ПР-50,8-227	50,8	31,75	14,27	28,58	48,3	72	38	227	9,7
ПР-63,5-354	63,5	38,10	19,84	39,68	60,4	89	48	354	16


^{*}Дата введения 2000-07-01.

Типоразмер цепи	į	<i>b</i> ₁ , не менее	<i>d</i> ₂	$d_1, d_4$	h	<i>b</i> ₇	b	<i>P</i> , кН, не менее	Масса Ім це-
						не более			пи,кг

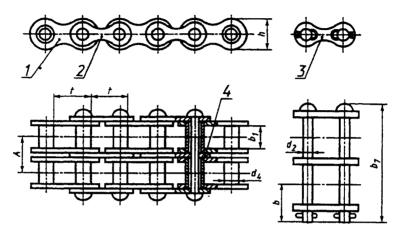
#### Цепи приводные втулочные однорядные типа ПВ



#### Цепи приводные роликовые с изогнутыми пластинами типа ПРИ



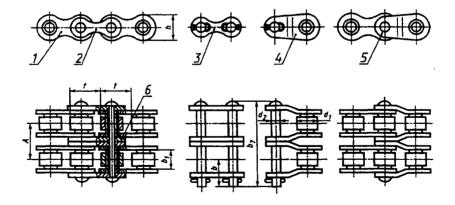
ПРИ-78,1-360	78,1	38,1	17,15	33,3	45,5	102	51	360	14,5
ПРИ-78,1-400	78,1	38,1	19	40	56	102	51	400	19,8
ПРИ-103,2-650	103,2	49	24	46	60	135	73	650	28,8
ПРИ-140-1200	140	80	36	65	90	182	94	1200	63


^{*}Р разрушающая нагрузка. **Масса I м цепи расчетная.

#### 2. Цепи многорядные

## Размеры в мм

Типоразмер це-	t	$b_1$ ,	$d_2$	$d_1$	A	h	<i>b</i> ₇	b	<i>P</i> , кН,	Macca
пи		не менее		<i>a</i> ₄		1	не более		не ме- нее	и цепи, кг

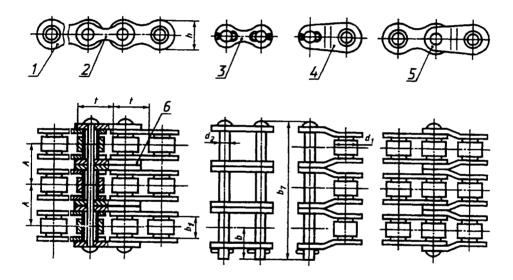

Цепи приводные втулочные двухрядные типа 2ПВ



I – внутреннее звено; 2 – наружное звено; 3 – соединительное звено; 4 – промежуточная пластина

2IIB-9,525-20 | 9,525 | 5,20 | 4,45 | 6 | 10,75 | 9,85 | 27,5 | 8,5 | 20 | 1

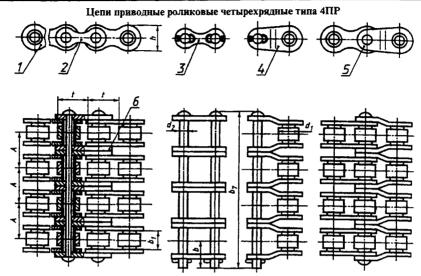
#### Цепи приводные роликовые двухрядные типа 2ПР




I – внутреннее звено; 2 – наружное звено; 3 – соединительное звено; 4 – переходное звено; 5 – двойное переходное звено; 6 – промежуточная пластина

2ПР-12,7-31,8	12,7	7,75	4,45	8,51	13,92	11,8	35	11	31,8	1,4
2ПР-25,875-45,4	15,875	9,65	5,08	10,16	16,59	14,8	41	13	45,4	1,9
2ПР-19,05-64	19,05	12,7	5,96	11,91	22,78	18,08	53,4	17,75	64	2,9

Типоразмер це- пи	t	<i>b</i> ₁ ,	d ₂	$d_1, d_4$	A	h	b ₇	b	Р, кН, не ме-	Масса І м цепи,
		менее					не более		нее	Kr Kr
2ПР-25,4-114	25,4	15,88	7,92	15,88	29,29	24,2	68	22	114	5
2ПР-31,75-177	31,75	19,05	9,53	19,05	35,76	30,2	82	24	177	7,3
2ПР-38,1-254	38,1	25,4	11,1	22,23	45,44	36,2	104	30	254	11
2ПР-44,45-344	44,45	25,4	12,7	25,40	48,87	42,24	110	34	344,8	14,4
2ПР-50,8-453,6	50,8	31,75	14,27	28,58	58,55	48,3	130	38	453,6	19,1


## Цепи приводные роликовые трехрядные типа ЗПР



I — внутреннее звено; 2 — наружное звено; 3 — соединительное звено; 4 — переходное звено; 5 — двойное переходное звено; 6 — промежуточная пластина

3ПР-12,7-45,4	12,7	7,75	4,45	8,51	13,92	11,8	50	11	45,4	2
3ПР-15,875-68,1	15,875	9,65	5,08	10,16	16,59	14,8	57	13	68,1	2,8
3ПР-19,05-96	19,05	12,7	5,96	11,91	22,78	18,08	76,2	17,75	96	4,3
3ПР-25,4-171	25,4	15,88	7,92	15,88	29,29	24,2	98	22	171	7,5
3ПР-31,75-265,5	31,75	19,05	9,53	19,05	35,76	30,2	120	24	265,5	11
3ПР-38,1-381	38,1	25,4	11,1	22,23	45,44	36,2	150	30	381	16,5
3ПР-44,45-517,2	44,45	25,4	12,7	25,4	48,87	42,24	160	34	517,,2	21,7
3ПР-50,8-680,4	50,8	31,75	14,27	28,58	58,55	48,3	190	38	680,4	28,3

Типоразмер це- пи	t	<i>b</i> _l , не	$d_2$	$d_1, d_4$	A	h	b ₇	b	Р, кН, не ме-	Масса Ім цепи,
		менее					не более		нее	KΓ



I – внутреннее звено; 2 – наружное звено; 3 – соединительное звено; 4 – переходное звено; 5 – двойное переходное звено; 6 – промежуточная пластина

19,05	12,7	5,94	11,91	22,78	18,08	17,75	101,9	128	5,75
25,4	15,88	7,92	15,88	29,29	24,2	22	129,9	228	10,9
31,75	19,05	9,53	19,05	35,76	30,2	24	157,5	355	14,7
38,1	25,4	11,1	22,23	45,44	36,2	30	197,1	508	22
50,8	31,75	14,27	28,58	58,55	48,3	38	252,3	900	38
	25,4 31,75 38,1	25,4 15,88 31,75 19,05 38,1 25,4	25,4 15,88 7,92 31,75 19,05 9,53 38,1 25,4 11,1	25,4     15,88     7,92     15,88       31,75     19,05     9,53     19,05       38,1     25,4     11,1     22,23	25,4     15,88     7,92     15,88     29,29       31,75     19,05     9,53     19,05     35,76       38,1     25,4     11,1     22,23     45,44	25,4     15,88     7,92     15,88     29,29     24,2       31,75     19,05     9,53     19,05     35,76     30,2       38,1     25,4     11,1     22,23     45,44     36,2	25,4     15,88     7,92     15,88     29,29     24,2     22       31,75     19,05     9,53     19,05     35,76     30,2     24       38,1     25,4     11,1     22,23     45,44     36,2     30	25,4     15,88     7,92     15,88     29,29     24,2     22     129,9       31,75     19,05     9,53     19,05     35,76     30,2     24     157,5       38,1     25,4     11,1     22,23     45,44     36,2     30     197,1	25,4     15,88     7,92     15,88     29,29     24,2     22     129,9     228       31,75     19,05     9,53     19,05     35,76     30,2     24     157,5     355       38,1     25,4     11,1     22,23     45,44     36,2     30     197,1     508

# Примеры условных обозначений цепей и комплектующих изделий.

Цепь приводная роликовая однорядная шага 12,7 мм с расстоянием между внутренними пластинами  $b_1 = 7,75$  мм и с разрушающей нагрузкой 18,2 кН:

Цепь ПР-12,7-18,2 ГОСТ 13568-97

То же, с расстоянием между внутренними пластинами  $b_1 = 5,40$  мм:

Цепь ПР-12,7-18,2-1 ГОСТ 13568-97 Комплектующие изделия для этой цепи: звено соединительное — Звено С-ПР-12,7-18,2 ГОСТ 13568 звено двойное переходное — Звено П2-ПР-12,7-18,2 ГОСТ 13568

звено переходное -

#### Звено П-ПР-12.7-18.2 ГОСТ 13568

Цепь приводная роликовая трехрядная шага 25,4 мм с разрушающей нагрузкой 171 кН:

#### Цепь ЗПР-25,4-171 ГОСТ 13568-97

Цепь приводная втулочная лвухрядная шага 9,525 мм с разрушающей нагрузкой 20 кH:

#### Цепь 2ПВ-9,525-20 ГОСТ 13568-97

Цепь приводная роликовая с изогнутыми пластинами шага 103,2 мм с разрушающей нагрузкой 650 кН:

Цепь ПРИ-103,2-650 ГОСТ 13568-97

## ЗАМЕЧЕННЫЕ ОПЕЧАТКИ

Стр.	Колонка, строка	Напечатано	Должно быть
33	Табл.2, 1-я графа, 1-я сверху 3-я сверху 4-я сверху	БрОФ10-1 БрОЦС 6-6-3 БрАЖ9-4	БрО10Ф1 БрО6Ц6С3 БрА9Ж3Л
35	2-я, 17-я снизу; 16-я снизу	БрОЦС5-5-5 БрАЖ9-4 БрОФ10-1	БрО5Ц5С5 БрА9Ж3Л БрО10Ф1
54	Табл. 18, 1-я графа, 2-я сверху 4-я сверху 6-я сверху	БрОЦС5-5-5 БрОФ10-1 БрАЖ9-4Л	БрО5Ц5С5 БрО10Ф1 БрА9Ж3Л
102	Табл. 51, 1-я графа, 4-я снизу	18ГТ _.	18XFT
396	2-я, 1-я снизу	№ 34	№ 2, № 3
399	1-я, 24-я снизу	М	ММ
400	Рис. 3	$d_{\omega 2} = d_1$	$d_{\omega 1} = d_1$
444	Табл. 26, 1-я графа	Контактируемый	Контролируемый
547	Рис. 42, 1-я снизу	гайка	шайба
552	Табл. 100, 2-я графа, 7-я сверху	$m_H$	$m_n$
557	Табл. 103, 1-я графа, 2-я сверху	модуль, м	модуль, мм
560	Табл. 104, 2-я графа, 4-я формула сверху	$p_{x} = \frac{\pi n}{\sin \beta}$	$p_{N} = \frac{\pi m}{\sin \beta}$
566	Табл. 105, 2-я графа, 15-я снизу	= 1300	= 1360
574	Табл. 111, 1-я графа, 5-я снизу	V _F	$n_F$

Стр.	Колонка, строка	Напечатано	Должно быть
576	Табл. 111, 1-я графа, 1-я снизу	перегрузки	нагрузки
578	Табл. 111, 2-я графа, 9-я снизу	25ХГН	25ХГМ
579	Табл. 111, 2-я графа, 19-я сверху	4·10 ⁻⁶	4·10 ⁶
	14-я снизу	$ ho_{Fn}$	$ ho_{fn}$
594	l-я, l2-я сверху	$\psi_{ba} = \frac{b_{\omega}}{d_{\omega}}$	$\psi_{ba} = \frac{b_{\omega}}{a_{\omega}}$
	2-я, 10-я снизу	напряжения	нагружения
596	1-я, 6-я снизу, ф-ла (4)	+ $\epsilon_{a2}\delta_{II}\delta_{\mathrm{HP}II}^2$	+ $\varepsilon_{a2}\delta_{II}\sigma_{\mathrm{HP}II}^2$
597	Табл. 118, 2-я графа, 2-я ф-ла сверху	$-0.5\frac{K_{II}}{u}$	$+0.5\frac{K_{II}}{u}$
606	Табл. 125, 2-я графа, 1-я ф-ла снизу	$\sqrt{\frac{\sqrt{u^2+1}}{u+b}} \frac{M_{xp}}{k_{v}} \leq \sigma_{HP}$	$\sqrt{\frac{\sqrt{u^2+1}}{ub}} \frac{M_{\rm xp}}{k_{\rm v}} \leq \sigma_{\rm HP}$
611	Табл. 126а, 13-я снизу	от 0,4 до 0,5π	от 0,4π до 0,5π
622	Табл. 128, 1-я графа, 9-я сверху	нерезанной	нарезанной
645	Табл. 152, 1-я графа, 1-я снизу	2,5	1,5
649-651	Табл. 1–3, головка, 11-я графа	Масса 1 м цепи, не более	Масса I м цепи, кг, не более
651 .	Табл. 3, 1-я снизу	31800	3180
655	1-я, 18-я сверху	ведомой цепи	ведомой ветви цепи
657, 658	Табл. 10а, головка, 2-я графа, 1-я сверху	корпуса	контура

Стр.	Колонка, строка	Напечатано	Должно быть
659	Табл. 11, 1-я графа, 3-я снизу	Диаметр делительной	Диаметр
659	Табл. 11, 2-я формула снизу	$d_{\partial = t  cosec}$	$d_{\partial} = t \operatorname{cosec}$
660	Табл. 11, 2-я графа, 4-я формула сверху	1,3025d ₁	1,3025 <i>D</i> _ц
667	Табл. 18, 2-я графа, 7-я строка	$r = 0.0525D_{\text{tt}}$	$r = 0.5025D_{11}$
693	Табл. 41, головка, 11-я графа	Macca I м цепи, не более	Масса I м цепи, кг, не более
706	Табл. 52, 5-я графа, 2-я снизу	100	1000
723	l-я, 2-я формула снизу	$=3\sigma_0\sin\frac{\alpha}{2},$	$=3\sigma_0 F \sin \frac{\alpha}{2},$
728	Табл. 24, головка, 1-я сверху	Ресурс ремней, с,	Ресурс ремней, ч, ( в часах)
767	2-я, 20-я снизу	гдеβ=	где <i>р</i> =
770	Табл. 61, заголовок	K _s	K ₃
778	l-я, 4-я сверху	поперечного стержня	поперечного сечения стержня
	2-я, 1-я формула сверху	$\frac{d^2}{2}$	$\frac{d_2}{2}$
779	1-я, 14-я сверху	1000 м	1000 мм
	2-я, 9-я снизу	$\sigma_{_{\rm B}}$	[σ _p ]
809, 810	Табл. 2, головка, 3-я строка	Номинальное соединение	Нормальное соединение
825	2-я, 2-я формула снизу	[σ _{см} ].	[σ _{см} ]·10 ⁻³
	1-я формула снизу	[τ _{cp} ].	[τ _{cp} ]·10 ⁻³
826	1-я, 1-я и 3-я формулы сверху	[o _{cM} ]	[σ _{см} ]·10 ⁻³
	2-я формула сверху	[τ _{cp} ]	$[\tau_{\rm cp}] \cdot 10^{-3}$

Стр.	Колонка, строка	Напечатано	Должно быть
826	2-я, 1-я формула сверху	[τ _φ ]	[τ _{cp} ]·10 ⁻³
	2-я и 3-я формулы сверху	$[\sigma_{_{\mathrm{CM}}}]$	[σ _{cм} ]-10 ⁻³
829	Табл. 15, 6-я снизу	Вал	Валы
836	Табл. 23, l-я графа справа, 7-я формула снизу	$H_a = 45m$	$H_a = 0.45m$
857,858	Табл. 38, головка, 1-я графа	24,5 мм	25,4 мм
862	1-я, 4-я снизу	рис. 27, 32	рис. 32

## СПРАВОЧНИК СПЕЦИАЛИСТА

## Анурьев Василий Иванович

# СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ

#### В трех томах

#### Том 2

Лицензия ЛР № 080003 от 12.09.96 г. Оформление художника T.H. Галицына Корректоры: Л.Г. Изосимова, Л.С. Рожкова, Е.М. Нуждина

Сдано в набор 10.11.00. Подписано в печать 30.11.00. Формат 70 × 100 1/16. Бумага офсетная. Гарнитура Times ET. Печать офсетная. Усл.печ.л. 74,1. Усл.кр.-отт. 74,1. Уч.-изд.л. 69,42. Заказ 5837.

Издательство "Машиностроение" 107076, Москва, Стромынский пер., 4

Отпечатано в ОАО Типография "Новости" 107005, Москва, ул. Фр. Энгельса, 46