В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНО• СТРОИТЕЛЯ

В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ

B TPEX TOMAX

В.И. АНУРЬЕВ

СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ

Издание 8-е, переработанное и дополненное

Под редакцией И.Н. Жестковой

IOM I

1

ББК 34.42я2 A73 УДК 621.001.66 (035)

Анурьев В. И.

Справочник конструктора-машиностроителя: В 3 т. Т. 1. – 8-е изд., перераб. и доп. Под ред. И. Н. Жестковой. – М.: Машиностроение, 2001. – 920 с.: ил.

ISBN 5-217-02963-3

В первом томе приведены общетехнические сведения, справочные данные по материалам, шероховатости поверхности, допускам и посадкам, предельным отклонениям формы и расположения поверхностей, конструктивным элементам деталей, крепежным изделиям, стандартизованным и нормализованным деталям и узлам.

Восьмое издание (7-е изд. 1992 г.) переработано в соответствии с новыми ГОСТами и нормативно-технической документацией, дополнено сведениями по защитно-декоративным покрытиям металлов и пластмасс, зарубежными аналогами некоторых конструкционных материалов.

Предназначен для инженеров и техников-конструкторов.

ББК 34.42.я2

iBN 5-217-02963-3 (T. 1)

SBN 5-217-02962-5

- © Издательство «Машиностроение», 1992
- (2) Издательство «Маниностроение», 1999, с изменениями и дополнениями
- © Издательство «Маниностроение», 2001, с изменениями и пополнениями

ОГЛАВЛЕНИЕ

Предисловие	10	Прокат из легированной конструкционной стали	89
		Инструментальная нелегирован-	
Глава І. ОБЩЕТЕХНИЧЕСКИЕ		ная сталь	92
СВЕДЕНИЯ	11	Прокат калиброванный	94
		Сталь качественная круглая со	
Таблицы перевода единиц изме-		специальной отделкой поверхно-	
рения	11	сти	96
Рещение треугольников и много-		Назначение конструкционных	
угольников	20	сталей основных марок	98
Тригонометрические зависимости	23	Сталь износоустойчивая в усло-	
Плоские фигуры	24	виях абразивного трения	104
Поверхности и объемы тел	31	Сталь с особыми тепловыми	
Элементы сопротивления мате-		свойствами	104
риалов	34	Твердые спеченные сплавы	104
Допускаемые напряжения и ме-		Смеси порошков для наплавки	105
ханические свойства материалов	61	Порошки из сплавов для наплав-	
Ориентировочные коэффициенты		ю	106
трения	75	Прутки для наплавки	107
Определение твердости металлов		Теплоустойчивая сталь	108
и сплавов	76	Сталь сортовая и калиброванная	
		коррозионно-стойкая, жаростой-	
Глава II. МАТЕРИАЛЫ	79	кая и жаропрочная	113
Thasa II. What Er Madibi	,,	Стали высоколегированные и	
C	79	сплавы коррозионно-стойкие,	
Стали	/9	жаростойкие и жаропрочные	115
Основные указания по выбору	79	Листовая легированная конструк-	
марки стали	/ 7	ционная сталь общего назначе-	
Сталь углеродистая обыкновен-	79	ния	120
ного качества	,,	Прокат толстолистовой и широ-	
Прокат сортовой и фасонный из углеродистой стали обыкновен-		кополосный из конструкционной	120
ного качества	82	качественной стали	120
Прокат из конструкционной ста-	74	Прокат тонколистовой из углеро	
ли высокой обрабатываемости ре-		дистой стапи качественной и обыкновенного качества общего	
занием	84	назначения	124
Прокат из углеродистой качест-		Прокат толстолистовой из угле-	
венной конструкционной стали	85	родистой стали обыкновенного	
Полнинниковая сталь	89	качества	126

Стальная горячекатаная полоса	120	цветные металлы и сплавы	15
Круглая и квадратная горячека-			
таная и шестигранная калибро-	130	Оловянные и свинцовые баббиты	19
Ванная сталь	130	Оловянные литейные бронзы	19
Кованая круглая и квадратная сталь	131	Оловянно-фосфористая литейная	
Калиброванная круглая сталь	131	бронза БрО10Ф1	19
Горячекатаная стальная лента	132	Прутки оловянно-фосфористой бронзы	19
Полосы горячекатаные и кованые	154	_	15
из инструментальной стали	132	Оловянные бронзы, обрабаты- ваемые давлением	20
Прокат стальной горячекатаный		Безоловянные литейные бронзы	20
широкополосный универсальный	134	Безоловянные бронзы, обрабаты-	-
Прокат листовой горячекатаный	134	ваемые давлением	20
Прокат листовой холоднокатаный	135	Прутки оловянно-цинковой	
Листовая волнистая сталь	136	бронзы	20
Уголки стальные горячекатаные		Бронзовые прутки	20
равнополочные	136	Проволока из кремнемарганцо-	
Уголки стальные горячекатаные		вой бронзы	20
неравнополочные	142	Медно-цинковые сплавы (лату-	
Гнутые стальные равнополочные и неравнополочные уголки	149	ни)	20
Двугавры стальные горячекатаные	153	Медно-цинковые сплавы (лату- ни) литейные	20
Швеллеры стальные горячекатаные	155	Медно-цинковые сплавы (дату-	20
ные	154	ни), обрабатываемые давлением	2
Швеллеры стальные гнутые рав-		Латунные прутки	2
нополочные	156	Листы и полосы латунные	21
Рельсы крановые	160	Ленты латунные общего назначе-	-
Рельсы для наземных и подвес-		по п	2
ных путей	162	Латунная проволока	21
Отливки из конструкционной		Антифрикционные цинковые	
нелегированной и легированной		сплавы	22
стали	163	Сплавы алюминиевые литейные.	
Стальные плетеные одинарные сетки	166	Зарубежные аналоги	22
Стальные канаты	167	Профили прессованные из алю-	٦.
Стальная низкоуглеродистая про-	107	миния и алюминиевых сплавов	23
волока общего назначения	178	Прутки прессованные из алюминия и алюминиевых сплавов	2.3
Проволока из углеродистой кон-		Листы из алюминия и алюми-	4
струкционной стали	179	ниевых сплавов	24
Низкоуглеродистая качественная		Ленты из алюминия и алюми-	_
проволока	180	нисвых сіціавов	24
		Уголки прессованные из алюми»	
ополнительные источники	180	нисвых и магнисвых сплавов	
		равнополочные	2:
Чугуны	181	Швеплеры равноголщинные и	
		равнополочные из алюминиевых и магниевых сплавов	25
Отливки из серого чугуна	181	Двугавры равнополочные прессо-	4
Отливки из высокопрочного чу-		ванные из апкоминиевых и маг-	
гуна с шаровидным графитом	187	ниевых сплавов	25
Отливки из жаростойкого чугуна	188	Профили равнополочные зето-	
Отливки из антифрикционного		вого сечения из алюминиевых и	
чугуна	193	магниевых сплавов	25
		Медь	26
ополнительные источники	194	Листы и полосы медные	26

Прутки медные круглые	261	Асбестовые шнуры	302
Медная рулонная фольга для		Технический полугрубошерстный	202
технических целей	261	войлок	303
Титан и титановые сплавы, де-		Прессовочный материал АГ-4	303
формируемые	262	Капроновая первичная смола	304
Прутки катаные из титановых	244	Литьевые сополимеры полиамида	305
сплавов	264	Фторопласт-4	306
Листы из титана и титановых	265	Листовая фибра	309
сплавов	268	Фибровые трубки	309
Плиты из титановых сплавов	208	Конвейерные резинотканевые	212
Сетки проволочные тканые с квадратными ячейками нормаль-		ленты	312
ной точности	270	Декоративная фанера	318
Сетки проволочные тканые с		Древесно-стружечные плиты	320
квадратными ячейками кон-		Техническая кожа	322
трольные и высокой точности	271	Резиновые и резинотканевые	322
		пластины	342
Дополнительные источники	274	Town Turney HAVE MOTORIUM	327
		Дополнительные источники	321
Неметаллические материалы	274	глава III. ШЕРОХОВАТОСТЬ ПО-	
Древесно-слоистые пластики		ВЕРХНОСТИ	328
(ДСП)	274	BEI AIIOCIA	020
Конструкционные текстолит и	270	Основные параметры шероховатости	
асботекстолит	278	(по ГОСТ 2789-73) и их обозначе-	
Конструкционный стеклотексто-	281	RNH	328
лит	201	Сопрягаемые поверхности	334
Листы из непластифицирован- ного поливилхлоририда (вини-		Шабреные поверхности	338
пласт листовой)	285	Пригоняемые поверхности	339
Листы из ударопрочного поли-		Поверхности отверстий и валов в	
стирола и акрилонитрилбута-		системе отверстия и вала	340
диенстирольного пластика	286	Типовые поверхности	344
Стекло органическое листовое	287	Свободные поверхности	345
Целлулоид	288	Поверхности в зависимости от	
Доски асбестоцементные элек-		методов обработки	346
тротехнические дугостойкие	289	Контроль шероховатости поверх-	
Эластичные фрикционные асбе-		ности	348
стовые материалы	289		
Асбестовые тормозные ленты	291	Дополнительные источники	349
Фрикционные изделия из рети-	202		
накса	293	глава IV. ДОПУСКИ И ПОСАДКИ	350
Асбестовые ткани	294	, ,	
Асбестовые теплоизоляционные	296	Основные определения	350
ленты	296	Единая система допусков и посадок	550
Асбестовая бумага	297	(ЕСДП)	353
Аебестовый картон	297	Система допусков и посадок ОСТ	399
Прокладки плоские эластичные	271	Допуски углов	410
Термоизоляционный прокладоч-	300		110
ный картон	300	Допуски формы и расположения по- верхностей	414
	500	Основные термины, определения	
Фторопластовый уплотнительный материал	300	и обозначения	414
Паронит и прокладки из него	301	Числовые значения допусков	
Картон прокладочный и уплот-		формы и расположения поверх-	
нительные прокладки из него	302	ностей	440

Рекомендуемые соотношения между допусками формы и рас- положения и допуском размера	446	Профиль деталей, примыкающих к прокатным профилям в сварных конструкциях	9
Указания на чертежах допусков формы и расположения поверх-		Места под ключ и под головки кре- пежных деталей, пазы Т-образные 53	5
ностей	451	Рифления 54	4
Нанесение обозначений допусков	452	Радиусы гибки листового и фасон-	
Обозначение баз	455	ного проката. Разделка уголков 54	6
Указание номинального распо-		Штрихи шкал 55	2
ложения	456	Концы ишинделей станков и хвосто-	
Обозначение зависимых допусков	456	вики инструментов 55	2
Допуски расположения осей отвер-		Направляющие станков 56	6
стий для крепежных деталей	457	Крепление к фундаменту 58	0
Выбор допусков расположения		Петли и жалюзи 58	.1
осей отверстий для крепежных деталей	457	Резьбы 58	2
Выбор позиционных допусков	137	Метрическая резьба 58	2
осей отверстий	462	Метрическая коническая резьба 59	8
Основные зависимости для пере-		Коническая дюймовая резьба с	
счета позиционных допусков на		углом профиля 60° 60	2
предельные отклонения разме-		Трубная цилиндрическая резьба 60	15
ров, координирующих оси отвер-	463	Трубная коническая резьба 60	9
стий	403	Трапецеидальная резьба 61	2
Допуски и посадки деталей из пла-	466	Упорная резьба 61	4
точность изготовления деталей		Резьба метрическая для деталей	
из пластмасс	466	из пластмасс 61	X
Поля допусков деталей из пласт-		Соединения деталей из древесины	
Macc	469	и древесных материалов 62	4
Рекомендации по образованию		Прочность соединений деревянных изделий	13
посадок	469	Дополнительные источники	
Предельные отклонения размеров с неуказанными допусками	478	gotostanialphate noto invast	
Неуказанные предельные откло-			
нения линейных размеров	478	глава VI. КРЕПЕЖНЫЕ ИЗДЕЛИЯ 63	13
Неуказанные предельные откло- нения углов	480	Технические требования на болты,	
Неуказанные предельные откло-	,,,,	винты, шпильки и гайки 63	15
нения радиусов закругления и		Болты 64	1,3
фасок	480	Винты 66	3
		Шурупы 67	4
Дополнительные источники	480	Шпильки резьбовые 68	11
		Гайки 68	45
		Шайбы)ti
Глава V. КОНСТРУКТИВНЫЕ	401	Шилингы и штифты	
элементы	481	Translation as mississing constitutions	• •
Линейные размеры, углы, конусы	481		
Фаски, галтели и радиусы закругле-	490	Глава VII. СТАНДАРТУЫЕ И НОР-	
Мана	492	мализованные дегали и уз-	
Канавки	774	лы 73	37
Выход резьбы. Сбеги, недорезы, проточки и фаски	496	Рукоятки, ручки, фиксаторы	37
Отверстия	514	Кнопки	58
Размещение отверстий под заклепки	P 4 T	Маховички 76	52
и болты в прокатных профилях	527	Штурвальные гайки и ступицы 76	
w separations reprogramme mini-			

ОГЛАВЛЕНИЕ

Зажимы	771	Группы, технические требования и классы лакокрасочных покры-	
Кольца	775	тий	849
Делительные кольца, лимбы и но-		Обозначение лакокрасочных по-	0.50
ниусы	801	крытий	859
Таблички для машин и приборов	809	Группы условий эксплуатации	0.50
Пробки и заглушки	811	лакокрасочных покрытий	859
Винты для пружин	821	Металлические и неметаллические	859
Грузовые винты, стяжные муфты	823	неорганические покрытия	859
Талрепы	829	Обозначения покрытий	037
Втулки	836	Обозначения покрытий по меж- дународным стандартам	869
Опоры	839	Общие требования к выбору по-	
Шарики и ролики	842	крытий	870
Сухари, оседержатели, петли	844	Основные характеристики покрытий	899
		Покрытия металлические и неметал- лические неорганические на пласт-	
глава VIII. ЗАЩИТНЫЕ И ЗА-		maccax	906
ПО- КРЫТИЯ МЕТАЛЛОВ	849	Перечень ГОСТов	909
Лакокрасочные покрытия	849	Предметный указатель	913

ПРЕДИСЛОВИЕ

Данный справочник уже давно является настольной книгой самого многочисленного отряда конструкторов, разрабатывающих нестандартное технологическое оборудование во всех отраслях промышленности, а также новую и экспериментальную технику.

Справочник переиздается по многочисленным просьбам читателей. Он адресован конструкторам-машиностроителям, работникам различных отраслей промышленности, преподавателям и студентам машиностроительных вузов и техникумов.

Структура и содержание восьмого издания справочника в основном соответствуют седьмому изданию.

При подготовке рукописи восьмого издания редакция стремилась сохранить материал автора, за исключением переработок, связанных с изменением действующей нормативно-технической документации. При этом были учтены замечания и предложения, возникшие у отдельных конструкторов и коллективов предприятий в процессе практической работы со справочником.

Конструкторская часть в традиционной постановке освещена в справочнике достаточно полно. Стандартизованные расчеты деталей машин (зубчатых передач, подшипников качения и т.д.) изложены также в надлежащем объеме.

В соответствии с нормативным характером и ограниченным объемом справоч-

ника в нем не приведены современные сложные расчеты деталей, а даны упрощенные расчеты, широко применяемые как предварительные при конструировании или как основные для вспомогательных деталей.

В восьмом издании значительно расширены сведения по паяным и клеевым соединениям, сварке пластмасс, пленок, конструированию деталей из пластмасс, древесных материалов и т.д.; значительно переработаны разделы по подшипникам качения, уплотнительным устройствам, муфтам, пружинам, редукторам и моторредукторам, электродвигателям и т.д. Введены новые главы по шарико-винтовым передачам, защитным и защитнодекоративным покрытиям металлов и пластмасс, приведены зарубежные аналоги некоторых конструкционных материалов.

Материал трехтомного справочника отражает требования нормативно-технической документации, действующей на 1 июля 2000г. По всему изданию отмечены международные стандарты ИСО, с которыми гармонизированы межгосударственные и российские стандарты.

Издательство благодарит всех читателей, приславших свои замечания и пожелания по улучшению содержания, изложения и оформления справочника.

Внимание!

Все изменения, связанные с появлением новых нормативных документов, будут систематически публиковаться в журнале "Справочник. Инженерный журнал" с приложением начиная с № 1, 2000 г.

Подписной индекс 72428

в каталоге агентства "Роспечать" на 2001 год.

Глава I ОБЩЕТЕХНИЧЕСКИЕ СВЕДЕНИЯ

ТАБЛИЦЫ ПЕРЕВОДА ЕДИНИЦ ИЗМЕРЕНИЯ

1. Таблица перевода единиц измерения в единицы СИ

Наименование	Единицы из	змерения	Соотношение старых единиц	Кратные и дольные
величины	старые СИ		с единицами СИ	единицы СИ
Плоский угол	° (градус) ′ (минута) ′′ (секунда)	рад (радиан)	1,745329 · 10 ⁻² рад 2,908882 · 10 ⁻³ рад 4,848137 · 10 ⁻⁶ рад	
Телесный угол	стер □° (квадрат- ный градус)	ср (стерадиан)	3,0482 · 10 ⁻⁴ cp	
Длина	М	М		км, см, мм, мкм, нм
Площадь	м ²	м ²		km^2 , $дm^2$, cm^2 , mm^2
Объем	м ³	м ³		дм ³ , см ³ , мм ³
Время	сек (далее "с")	с (секунда)		кс, мс, мкс, нс
Скорость	м/с, см/с	м/с		км/ч
Ускорение	м/c ² , см/c ²	м/с2		
Угловая ско- рость	об/с об/мин	рад/с	6,28 рад/с 0,105 рад/с	
Угловое ускорение	рад/c ²	рад/c ²		
Частота	rц	Гц (герц)		ТГц, ГГц, МГц, кГц
Частота вра- щения	об/с об/мин	c-1	$\frac{1 \text{ c}^{-1}}{1/60 \text{ c}^{-1}} = 0.016 (6) \text{ c}^{-1}$	
Macca	кг кар (карат)	КГ	2 · 10 ⁻⁴ кг	Мг, г, мг, мкг
Плотность	кг/м ³	кг/м³		Мг/м ³ , кг/дм ³ , г/см ³
Удельный объ- ем	м³/кг	м ^{,3} /кі		
Количество движения	кі - м/с	кі. • м/с		
Момент коли- чества движе- ния	кі - м ² /с	кг - м ² /с		
Момент инер- ции (динами- ческий момент инерции)	Kr· m²	Kr· M ²		

Продолжение табл. 1

Наименование	Единицы и	змерения	Соотношение старых единиц	Кратные и дольные
величины	старые	СИ с единицами СИ		единицы СИ
Сила, вес	кгс, дин	Н 9,80665H (точно) (ньютон) 10-5 Н		МН, кН, мН, мкН
Удельный вес	дин/см ³	H/м ³	10 H/м ³	
Момент силы (изгибающий момент)	кгс · м дин · см	Н∙м	9,80665 Н · м 10 ⁻⁷ Н · м	МН · м, кН · м, мН · м, мкН · м
Импульс силы	кгс · с дин · с	Н - с	9,80665 H · c 10 ⁻⁵ H · c	
Давление	ат (кгс/см ²) атм мм вод. ст. мм рт. ст. бар торр	Па (паскаль)	98066,5 Па 101325 Па 9,80665 Па 133,322 Па 10 ⁵ Па 133,322 Па	ГПа, МПа, кПа, мПа, мкПа
Напряжение (механическое)	кгс/мм ²	Па	9,80665 · 10 ⁵ Па	ГПа, МПа, кПа
Модуль упру- гости, модуль упругости при сдвиге	дин/см ² кгс/м ²	Па	0,1 Па 9,80665 Па	
Динамическая Π (пуаз) вязкость $\text{кгс} \cdot \text{c/m}^2$		Пасс	0,1 Па · с 9,80665 Па · с	
Кинематичес- кая вязкость	м ² /с Ст (стокс)	м ² /с	10 ⁻⁴ м ² /с	мм ² /с
Ударная вяз- кость	кгс · м/см ² эрг/см ²	Дж/м ²	9,80665 · 10 ⁴ Дж/м ² 10 ⁻³ Дж/м ²	кДж/м ²
Поверхностное натяжение	дин/см	Н/м	10 ⁻³ Н/м	м · Н/м
Жесткость при растяжении и сжатии	ктс/мм	Н/м	9806,65 Н/м	
Коэффициент всестороннего сжатия	см ² /дин	м ² /Н	10 м ² /Н	
Работа, энер- гия	эрг кгс · м кВт · ч эв (электрвольт)	Дж (джоуль)	10 ⁻⁷ Дж 9,80665 Дж 3,6 · 10 ⁶ Дж 1,60219 ·10 ⁻⁶ Дж	ТДж, ГДж, МДж, кДж, мДж
Мощность л.с. эрг/с кгс · м/с кал/с ккал/с		Вт (ватт)	735,499 BT 10 ⁻⁷ BT 9,80665 BT 4,1868 BT 1,163 BT	ГВт, МВт, кВт, мВт, мкВт
Гемпература	°С (обозначение t)	К (кель- вин) (обо- значение Т), допус- кается °С	$t = T - T_0,$ rge $T_0 = 273,15 \text{ K}$	

Продолжение табл. 1

	T		1	I
Наименование	Единицы и	<u>-</u>	Соотношение старых единиц	Кратные и дольные
величины	старые	СИ	с единицами СИ	единицы СИ
Температур- ный коэффи- циент	K-1	K-1		
Теплота, коли- чество теплоты	кал	Дж	4,1868 Дж (точно)	ТДж, ГДж, МДж, кДж, мДж
Тепловой по- ток	эрг/с	Вт	10 ⁻⁷ Вт	кВт
Теплопровод- ность	эрг/(с·см·°С) кал/(с·см·°С) ккал/(ч·м·°С)	Вт/(м⋅К)	10 ⁻⁵ Bt/(m·K) 4,187·10 ⁻² Bt/(m·K) 1,163 Bt/(m·K)	
Коэффициент теплопередачи	эрг/(см²·с·°С) кал/(см²·с·°С) ккал/(м²·ч·°С)	Вт/(м ² .К)	10 ⁻³ BT/(M ² · K) 4,1868 · 10 ⁴ BT/(M ² · K) 1,1630 BT/(M ² · K)	
Теплоемкость	эрг/°С	Дж/К	10 ⁻⁷ Дж/К	кДж/К
Удельная теп- лоемкость, удельная эн- тропия	эрг/(r · °C) эрг/(r · K)	Дж/(кг·К)	10 ⁻⁴ Дж/(кг·К) 10 ⁻⁴ Дж/(кг·К)	Дж/(кг · К)
Энтропия	эрг/К	Дж/К	10 ⁻⁷ Дж/К	кДж/К
Удельная энергия, удельное количество теплоты	эрг/г	Дж/кт	10-4 Дж/кг	МДж/кг, кДж/кг
Коэффициент лучеиспуска- ния	эрг/(с-см ² -K ⁴)	Вт/(м ² ·К ⁴)	$10^{-3} \text{ BT/(M}^2 \cdot \text{K}^4)$	
Поверхностная плотность по-тока энергии	эрг/(с · см ²)	Вт/м²	10-3 Вт/м²	
Удельное теп- ловыделение	ккал/(кг · ч)	Вт/кг	1,163 Вт/кг	
Тепловое со- противление	ч.°С⋅м²/ккал	м ² · K/Вт	0,8598 м ² · K/Вт	
Сила тока	а (ампер)	A		кА, мА, мкА, нА, пА
Количество электричества	К (кулон)	Кл		
Электрическое напряжение, электрический потенциал	В (вольт)	В		
Электрическая емкость	Ф (фарада)	Φ		мФ, мкФ, пФ
Напряжен- ность магнит- ного поля	Э (эрстед)	А/м	79,5775 A/M	кА/м, А/мм, А/см

				*
(аименование уличины	Единицы и	змерения СИ	Соотношение старых единиц с единицами СИ	Кратные и дольные единицы СИ
Магнитодвижу- цая сила, раз- ность магнит- ных материалов	цая сила, раз- ность магнит-		0,795775 A	кА, мА
Магнитный поток	Вб (вебер) М · кс (макс- велл)	Вб (вебер)	10-8 B 6	мВб
Магнитная индукция, плотность магнитного потока	Гс (гаусс) Вб/м ²	Тл (тесла)	10-4 Тл	мТл, мкТл, нТл
Индуктивность гн (генри) см (сантиметр)		Гн	10 ⁻⁹ Гн	мГн
Электрическое сопротивление			10 ⁻⁶ Ом · м 8,98755 · 10 ¹¹ Ом	ТОм, ГОм, МОм, кОм, мОм, мкОм
Удельное электрическое сопротивление	ом · мм²/м ед. уд. эл. сопр. СГС	Ом · м	10 ⁻⁶ Ом · м 8,98755 · 10 ⁹ Ом · м	ГОм · м, МОм · м, кОм · м, Ом · см, мОм · м, мкОм · м, нОм · м
Яркость	сб (стильб) лб (ламберт)	кд/м ² (кандела на квад- ратный метр)	10 ⁴ кд/м ² 3,193 · 10 ³ кд/м ²	
Герметичность	см ³ - атм/с	см ³ · Па/с	101 325 см ³ · Па/с	101,325 кПа · см ³ /с
Молярная внутренняя энергия	ккал/моль	Дж/моль	4187Дж/моль	
Молярная теплоемкость, молярная энтропия	ккал/(моль · °С)	Дж/(моль · К)	4187 Дж/ (моль · K)	
Температуро- проводность	м²/ч	м ² /с	2,7778 · 10 ⁴ м ² /с	
Скорость газа	кг/(см ² -мин)	кг/(м ² · c)	6 · 10 ⁵ кг/(м ² · c)	
Влагосодержа- ние	г/м ³	кг/м³	10 ⁻³ кг/м ³	

Примечания: 1. Внесистемные единицы, допускаемые к применению наравне с единицами СИ: т (тонна); мин (минута); ч (час); сут (сутки); ... ° (градус); ... ' (минута); ... ' (секунда); л (литр).

^{2.} Единицы, временно допускаемые к применению, срок изъятия которых будет установлен в соответствии с международными решениями: кар (карат); об/с; об/мин; бар.

2. Таблицы перевода единиц измерения США и Великобритании в единицы СИ

Единииы длины

- 1 миля морская (Великобр.) = 1,85318 км
- 1 миля морская (междунар.) = 1,852 км (точно)
- 1 миля морская (США) = 1,852 км (точно)
- 1 миля (междунар.) = 1,60934 км
- 1 ярд = 914,4 мм (точно)
- $1 \, \text{фут} = 304,8 \, \text{мм} \, (\text{точно})$
- 1 дюйм = 25,4 мм (точно)
- 1 линия большая (1/10 дюйма) = 2,54 мм (точно)
- 1 линия (1/12 дюйма) = 2.117 мм
- 1 мил = 25,4 мкм (точно)
- 1 микродюйм = 25,4 нм (точно)

Единицы плошади

- 1 кв. миля (междунар.) = $2,58999 \text{ км}^2$
- 1 кв. ярд = 0,836127 м²
- $1 \text{ KB. } \text{ dyr} = 929,030 \text{ cm}^2$
- 1 кв. дюйм = 645,16 мм² (точно)
- $1 \text{ кв. мил} = 645,16 \text{ мкм}^2 \text{ (точно)}$

Единицы объема

- 1 куб. ярд = 0,764555 м³
- 1 куб. фут = 28,3169 дм³
- 1 куб. дюйм = 16,3871 см³
- 1 баррель нефтяной (США) = 158,987 дм³
- 1 баррель сухой (США) = 115,627 дм³
- 1 галлон (Великобр.) = 4,54609 дм³
- 1 галлон жилкостный (США) = 3.78541 дм³
- 1 галлон сухой (США) = 4,40488 дм³

Единицы массы

- 1 тонна длинная (Великобр.) (2240 фунтов) =
- = 1,01605 T
- 1 тонна короткая (США) (2000 фунтов) = = 0.907185 T
- 1 центнер длинный (Великобр.) = 50,8023 кг
- 1 центнер короткий (США), квинтал =
- = 45,3592 kg
- 1 фунт (торговый) = 0,453592 кг
- 1 унция = 28,3495 r

Единицы плотности

$$\frac{1 \text{ фунт}}{\text{куб. фут}} = 16,0185 \text{ кг/м}^3$$

$$\frac{1 \text{ унция}}{\text{куб. фут}} = 1,00116 \text{ кг/м}^3$$

$$\frac{1 \text{ фунт}}{\text{куб. gn. I}} = 0,593276 \text{ кг/м}^3$$

$$\frac{1 \text{ фунт}}{\text{куб. дюйм}} = 2,76799 \cdot 10^4 \text{ кг/м}^3$$

Единицы скорости и ускорения

$$1\frac{\text{фут}}{\text{vac}} = 0.3048 \text{ м/ч (точно)}$$

$$1\frac{\Phi yT}{cev} = 0.3048 \text{ m/c} \text{ (точно)}$$

$$1\frac{MUJH}{VAC} = 1,60934 \text{ km/H} = 0,47704 \text{ m/c}$$

$$1\frac{\text{миля}}{\text{сек}} = 1,60934 \text{ км/с} = 5793,64 \text{ км/ч}$$

$$1 \frac{\Phi yT}{KB. CEK} = 0.3048 \text{ M/c}^2 \text{ (точно)}$$

Единицы силы

- 1 тонна-сила плинная (Великобр.) = 9.96402 кН
- 1 тонна-сила короткая (США) = 8,89644 кН
- 1 фунт-сила = 4,44822 Н
- 1 паундаль = 0,138255 Н
- 1 унция-сила = 0,278014 Н

Единицы давления, механического напряжения

$$\frac{1 \text{ фунт - сила}}{\text{кв. люйм}} = 6,89476 \text{ кПа}$$

$$\frac{1 \text{ фунт - сила}}{\text{кв. фут}} = 47,8803 \text{ Па}$$

$$\frac{1}{\kappa_{\rm B}}$$
. фут = 1,48816 Па

- 1 <u>унция сила</u> = 430,922 Па кв. дюйм
- 1 фут водяного столба = 2,98907 кПа
- 1 люйм водяного столба = 249,089 Па
- 1 дюйм ртутного столба = 3,38639 кПа

Единицы работы и энергии, количества теплоты

- 1 фунт-сила-фут = 1,35582 Дж
- 1 паундаль-фут = 42,1401 мДж
- 1 британская единица теплоты = 1,05506 кДж
- 1 британская единица теплоты (термохим.) =
- = 1,05435 кДж

Единицы линейной и поверхностной плотности

$$\frac{1 \text{ фунт}}{\text{фут}} = 1,48816 \text{ кг/м}$$

$$\frac{1 \text{ фунт}}{\text{ярд}} = 0,496055 \text{ кг/м}$$

$$\frac{1 \text{ фунт}}{\text{кв. фут}} = 4,88243 \text{ кг/м}^2$$

$$\frac{1 \text{ фунт}}{\text{кв. ярд}} = 0,542492 \text{ кг/м}^2$$

Единицы мощности, теплового потока

$$\frac{1 \ \text{фунт - сила - фут}}{\text{секунда}} = 1,35582 \ \text{Вт}$$

$$\frac{1 \ \text{фунт - сила - фут}}{\text{минута}} = 22,5970 \ \text{мВт}$$

$$\frac{1}{\text{секунда}} = 42,1401 \text{ мВт}$$

1 лошадиная сила британская = 745,700 Вт

Единицы массового и объемного расхода

$$1\frac{\Phi y_{HT}}{4ac} = 0.453592 \text{ kg/y} = 0.125998 \text{ r/c}$$

$$1\frac{\text{тонна}}{\text{час}}$$
 (Великобр.) = 1,01605 т/ч = 0,28224 кг/с

$$1\frac{\text{тонна}}{\text{час}}$$
 (США) = 0,907185 т/ч = 0,251996 кг/с

$$1\frac{\text{куб.}}{\text{мин}} = 28,3169 \text{ дм}^3/\text{мин} = 0,471947 \text{ дм}^3/\text{с}$$

$$1 \frac{\text{куб. ярд}}{\text{мин}} = 0,764555 \text{ м}^3/\text{мин} = 12,7426 \text{ дм}^3/\text{с}$$

$$1\frac{\text{галлон жидкостный}}{\text{мин}}$$
 (США) = 3,7854

$$дм^3/мин = 0,063091 дм^3/c$$

$$1\frac{\text{галлгон}}{\text{мин}}$$
 (Великобр.) = 4,54609 дм³/мин = = 0,75768 дм³/с

Единицы момента силы

Единицы удельного веса

$$1\frac{\text{фунт - сила}}{\text{куб. фут}} = 157,087 \text{ H/м}^3$$

$$1\frac{\text{паундаль}}{\text{куб. фут}} = 4,87984 \text{ H/м}^3$$

Единицы динамической и кинематической вязкости

$$1\frac{\text{фунт - сила - час}}{\text{кв. фут}} = 172,369 \text{ кПа · с}$$

$$1\frac{\text{фунт - сила - сек}}{\text{кв. фут}} = 47,8803 \ \Pi \text{a} \cdot \text{c}$$

$$1 \frac{\text{паундаль - сек}}{\text{кв. фут}} = 1,48816 \ \Pi \text{a} \cdot \text{c}$$

$$1\frac{\text{KB. } \text{фут}}{\text{сек}} = 929,030 \text{ cm}^2/\text{c}$$

Перевод миллиметров в дюймы (1 мм = 0,03937")

ММ	0	1	2	3	4	5	6	7	8	9
0	-	0,0394	0,0787	0,1181	0,1575	0,1969	0,2362	0,2756	0,3150	0,3543
10	0,3937	0,4331	0,4724	0,5118	0,5512	0,5906	0,6299	0,6693	0,7087	0,7480
20	0,7874	0,8268	0,8661	0,9055	0,9449	0,9843	1,0236	1,0630	1,1024	1,1417
30	1,1811	1,2205	1,2598	1,2992	1,3386	1,3780	1,4173	1,4567	1,4961	1,5354
40	1,5748	1,6142	1,6535	1,6929	1,7323	1,7717	1,8110	1,8504	1,8898	1,9291
50	1,9685	2,0079	2,0472	2,0866	2,1260	2,1654	2,2047	2,2411	2,2835	2,3228
60	2,3622	2,4016	2,4409	2,4803	2,5197	2,5591	2,5984	2,5378	2,6772	2,7165
70	2,7559	2,7953	2,8346	2,8740	2,9134	2,9528	2,9921	3,0315	3,0709	3,1102
80	3,1496	3,1890	3,2283	3,2677	3,3071	3,3465	3,3858	3,4252	3,4646	3,5039
90	3,5433	3,5827	3,6220	3,6614	3,7008	3,7402	3,7795	3,8189	3,8583	3,8976

Продолжение табл. 2

Перевод долей дюйма в миллиметры

Доли дюйма	мм	Доли дюйма	мм	Доли дюйма	мм	Доли дюйма	мм
1/64	0,397	3/64	1,191	5/64	1,984	7/64	2,778
9/64	3,572	11/64	4,366	13/64	5,159	15/64	5,953
17/64	6,747	19/64	7,541	21/64	8,334	23/64	9,128
25/64	9,922	27/64	10,716	29/64	11,509	31/64	12,303
33/64	13,097	35/64	13,891	37/64	14,684	39/64	15,478
41/64	16,272	43/64	17,066	45/64	17,859	47/64	18,653
49/64	19,447	51/64	20,241	53/64	21,034	55/64	21,828
57/64	22,622	59/64	23,416	61/64	24,209	63/64	25,003
1/32	0,794	3/32	2,381	5/32	3,969	7/32	5,556
9/32	7,144	11/32	8,731	13/32	10,319	15/32	11,906
17/32	13,494	19/32	15,081	21/32	16,669	23/32	18,256
25/32	19,844	27/32	21,431	29/32	23,019	31/32	24,606
1/16	1,588	3/16	4,763	5/16	7,938	7/16	11,113
9/16	14,288	11/16	17,463	13/26	20,638	15/16	23,813
1/8	3,175	3/8	9,525	5/8	15,875	7/8	22,225
1/4	6,350	1/2	12,700	3/4	19,050	1	25,400

Перевод футов в метры (1 фут = 0.3048 м)

Футы	0	1	2	3	4	5	6	7	8	9
0	-	0,305	0,609	0,914	1,219	1,524	1,829	2,133	2,438	2,743
10	3,048	3,353	3,657	3,962	4,267	4,572	4,877	5,181	5,486	5,791
20	6,096	6,401	6,705	6,010	7,315	7,620	7,925	8,229	8,534	8,839
30	9,144	9,449	9,753	10,058	10,363	10,668	10,973	11,227	11,582	11,887
40	12,192	12,497	18,897	13,106	13,411	13,716	14,021	14,325	14,630	14,935
50	15,240	15,545	15,849	16,154	16,459	16,764	17,069	17,373	17,678	17,983
60	18,288	18,593	18,897	19,202	19,507	19,812	20,117	20,421	20,726	21,031
70	21,336	21,641	21,945	22,250	22,555	22,860	23,165	23,469	23,774	24,039
80	24,384	24,689	24,993	25,298	25,603	25,908	26,213	26,518	26,822	27,127
90	27,432	27,737	28,042	28,346	28,651	28,956	29,261	29,566	29,870	30,175

Перевод фунтов в килограммы

Фунты	0	1	2	3	4	5	6	7	8	9
0	-	0,454	0,907	1,361	1,814	2,268	2,722	3,175	3,629	4,082
10	4,536	4,990	5,443	5,897	6,350	6,804	7,258	7,711	8,165	8,618
20	9,072	9,525	9,979	10,433	10,886	11,340	11,793	12,247	12,701	13,154
30	13,608	14,061	14,515	14,969	15,422	15,876	16,329	16,783	17,237	17,690
40	18,144	18,597	19,051	19,505	19,958	20,412	20,865	21,319	21,772	22,226
50	22,680	23,133	23,587	24,040	24,494	24,948	25,401	25,855	26,308	26,762
60	27,216	27,669	28,123	28,576	29,030	29,484	29,937	30,391	30,844	31,298
70	31,752	32,505	32,659	33,112	33,566	34,020	34,473	34,927	35,308	35,834
80	36,287	36,741	37,195	37,648	38,102	38,555	39,009	39,463	39,916	40,370
90	40,823	41,277	41,731	42,184	42,638	43,091	43,545	43,999	44,452	44,906

Перевод фунт-сил на квадратный фут в паскали 1 фунт-сила / кв. фут = 47,8803 Па

Фунт- сила/кв. фут	0	1	2	3	4	5	6	7	8	9
0	-	47,8803	95,7606	143,6409	191,5212	239,4015	287,2818	355,1621	383,0424	430,9227
10	478,8030	526,6833	574,5636	622,4439	670,3242	718,2045	766,0848	813,9651	861,8454	909,7257
20	957,6060	1005,4863	1053,3666	1101,2469	1149,1272	1197,0075	1244,8878	1292,7681	1340,6484	1388,5287
30	1436,4090	1484,2893	1532,1696	1580,0499	1627,9302	1675,8105	1723,6908	1771,5711	1819,4514	1867,3317
40	1915,2120	1963,0923	2010,9726	2058,8529	2106,7332	2154,6135	2202,4938	2250,3741	2298,2544	2346,1347
50	2394,0150	2441,8953	2489,7756	2537,6559	2585,5362	2633,4165	2681,2968	2729,1771	2777,0574	2824,9377
60	2872,8180	2920,6983	2968,5786	3016,4589	3064,3392	3112,2195	3160,0998	3207,9801	3255,8604	3303,7407
70	3351,6210	3399,5013	3447,3816	3495,2619	3543,1422	3591,0225	3638,9028	3686,7831	3734,6634	3782,5437
80	3830,4240	3878,3043	3926,1846	3974,0649	4021,9452	4069,8255	4117,7058	4165,5861	4213,4664	4261,3467
90	4309,2270	4357,1073	4404,9876	4452,8679	4500,7482	4548,6285	4596,5088	4644,3891	4692,2694	4740,1497

Перевод фунт-сил-фут в ньютон-метры

1 фунт-сила-фут = 1,35582 H · м

Фунт- сила- фут	0	1	2	3	4	5	6	7	8	9
0	-	1,35582	2,71164	4,06746	5,42328	6,77910	8,13492	9,49074	10,84656	12,20238
10	13,55820	14,91402	16,26984	17,62566	18,98148	20,33730	21,69312	23,04894	24,40476	25,76058
20	27,11640	28,47222	29,82804	31,18386	32,53968	33,89550	35,25132	36,60714	37,96296	39,31878
30	40,67460	42,03042	43,38624	44,74206	46,09788	47,45370	48,80952	50,16534	51,52116	52,87698
40	54,23280	55,58862	56,94444	58,30026	59,65608	61,01190	62,36772	63,72354	65,07936	66,43518
50	67,79100	69,14682	70,50264	71,85846	73,21428	74,57010	75,92592	77,28174	78,63756	79,99338
60	81,34920	82,70502	84,06084	85,41666	86,77248	88,12830	89,48412	90,83994	92,19576	93,55158
70	94,90740	96,26322	97,61904	98,97486	100,33068	101,68650	103,04232	104,39814	105,75396	107,10978
80	108,46560	109,82142	111,17724	112,53306	113,88888	115,24470	116,60052	117,95634	119,31216	120,66798
90	122,02380	123,37962	124,73544	126,09126	127,44708	128,80290	130,15872	131,51454	132,87036	134,22618

Перевод фунт-сил на квадратный дюйм в килопаскали

1 фунт-сила / кв. дюйм = 6,89476 кПа

Фунт- сила/кв. дюйм	0	1	2	3	4	5	6	7	8	9
0	-	6,89476	13,78952	20,68428	27,57904	34,47380	41,36856	48,26332	55,15808	62,05284
10	68,94760	75,84236	82,73712	89,63188	96,52664	103,42140	110,31616	117,21092	124,10568	131,00044
20	137,89520	144,78996	151,68472	158,57948	165,47424	172,36900	179,26376	186,15852	193,05328	199,94804
30	206,84280	213,73756	220,63232	227,52708	234,42184	241,31660	248,21136	255,10612	262,00088	268,89564
40	275,79040	282,68516	289,57992	296,47468	303,36944	310,26420	317,15896	324,05372	330,94848	337,84324
50	344,73800	351,63276	358,52752	365,42228	372,31704	379,21180	386,10656	393,00132	399,89608	406,79084
60	413,68560	420,58036	427,47512	434,36988	441,26464	448,15940	455,05416	461,94892	468,84368	475,73844
70	482,63320	489,52796	496,42272	503,31748	510,21224	517,10700	524,00176	530,89652	537,79128	544,68604
80	551,58080	558,47556	565,37032	572,26508	579,15984	586,05460	592,94936	599,84412	606,73888	613,63364
90	620,52840	627,42316	634,31792	641,21268	648,10744	655,00220	661,89696	668,79172	675,68648	682,58124

Галлоны	0	i	.2	3	4	5	6	7	8	9
0	-	3,78543	7,57086	11,35629	15,14172	18,92715	22,71258	26,49801	30,28344	34,06887
10	37,85430	41,63973	45,42516	49.21059	52,99602	56,78145	60,56688	64,35231	68,13774	71,92317
20	75,70860	79,49403	83,27946	87,06489	90,85032	94,63575	98,42118	102,206601	105,99204	109,7774
30	113,56290	117,34833	121,13376	124,91919	128,70462	132,49005	136,27548	140,06091	143,84634	147,6317
40	151,41720	155,20263	158,98806	162,77349	166,55892	170,34435	174,12978	177,91521	181,70064	185,4860
50	189,27150	193,05693	196,84236	200,62779	204,41322	208,19865	211,98408	215,76951	219,55494	223,3403
60	227,12580	230,91123	234,69666	238,48209	242,26752	246,05295	249,83838	253,62381	257,40924	261,1946
70	264,98010	268,76553	272,55096	276,33639	280,12182	283,90725	287,69268	291,47811	295,26354	299,0489
80	302,83440	306,61983	310,40526	314,19069	317,97612	321,76155	325,54698	329,33241	333,11784	336,9032
90	340,68870	344,47413	348,25956	352,04499	355,83042	359,61585	363,40128	367,18671	370,97214	374,7575

Перевод нефтяных баррелей в кубические метры 1 нефтяной баррель = 0,158987 м³

Баррель	0	l	2	3	4	5	6	7	8	9
0	-	0,158987	0,317974	0,476961	0,635948	0,794935	0,953922	1,112909	1,271896	1,430883
10	1,589870	1,748857	1,907844	2,066831	2,225818	2,384805	2,543792	2,702779	2,861766	3,020753
20	3,179740	3,338727	3,497714	3,656701	3,815688	3,974675	4,133662	4,292649	4,451636	4,610623
30	4,769610	4,928597	5,087584	5,246571	5,405558	5,564545	5,723532	5,882519	6,041506	6,200493
40	6,359480	6,518467	6,677454	6,836441	6,995428	7,154415	7,313402	7,472389	7,631376	7,790363
50	7,949350	8,108337	8,267324	8,426311	8,585298	8,744285	8,903272	9,062259	9,221246	9,380233
60	9,539220	9,698207	9,857194	10,016181	10,175168	10,334155	10,493142	10,652129	10,811116	10,970103
70	11,129090	11,288077	11,447064	11,606051	11,765038	11,924025	12,083012	12,241999	12,400986	12,559973
80	12,718960	12,877947	13,036934	13,195921	13,354908	13,513895	13,672882	13,831869	13,990856	14,149843
90	14,308830	14,467817	14,626804	14,785791	14,944778	15,103765	15,262752	15,421739	15,580726	15,739713

Перевод жидкостных галлонов (США) в минуту в кубические дециметры в секунду 1 жидкостный галлон / мин = 0,063091 $\rm д m^3/c$

Галлоны/ мин	0	1	2	3	4	5	6	7	8	9
0	-	0,063091	0,126182	0,189273	0,252364	0,315455	0,378546	0,441637	0,504728	0,567819
10	0,630910	0,694001	0,757092	0,820183	0,883274	0,946365	1,009456	1,072547	1,135638	1,198729
20	1,261820	1,324911	1,388002	1,451093	1,514184	1,577275	1,640366	1,703457	1,766548	1,829639
30	1,892730	1,955821	2,018912	2,082003	2,145094	2,208185	2,271276	2,334367	2,397458	2,460549
40	2,523640	2,586731	2,649822	2,712913	2,776004	2,839095	2,902186	2,965277	3,028368	3,091459
50	3,154550	3,217641	3,280732	3,343823	3,406914	3,470005	3,533096	3,596187	3,659278	3,722369
60	3,785460	3,848551	3,911642	3,974733	4,037824	4,100915	4,164006	4,227097	4,290188	4,353279
70	4,416370	4,479461	4,542552	4,605643	4,668734	4,731825	4,794916	4,858007	4,921098	4,984189
80	5,047280	5,110371	5,173462	5,236553	5,299644	5,362735	5,425826	5,488917	5,552008	5,615099
90	5,678190	5,741281	5,804372	5,867463	5,930554	5,993645	6,056736	6,119827	6,182918	6,246009

Продолжение табл. 2 Соотношения температур и градусов по различным температурным шкалам

Температурная		Ter	мпературная шка	ла	
шкала	Кельвина <i>T</i> , К	Цельсия <i>t</i> , °C	Реомюра <i>t_R</i> , °R	Фаренгейта <i>t_F</i> , °F	Ренкина <i>t_{Re}</i> , °Re
Кельвина <i>Т</i> , К		T=t+273,15	$T = 5/4t_R + +273,15$	$T = 5/9t_F + 255,37$	$T=5/9t_{Re}$
Градус	*	1 K = 1 °C	$1 K = 4/5 ^{\circ}R$	1 K ≈ 9/5 °F	1 K=9/5°Re
Цельсия t, °С	t = T - 273,15		$t = 5/4t_R$	$t=5/9(t_F-32)$	$t = 5/9t_{Re} - 273.15$
Градус	1 °C = 1 K		$1 ^{\circ}\text{C} = 4/5 ^{\circ}\text{R}$	1 °C = 9/5 °F	$1 ^{\circ}\text{C} = 9/5 ^{\circ}\text{Re}$
Pеомюра t _R , °R	$t_R = 4/5(T - 272.15)$	$t_R = 4/5t$	1	$t_R = 4/9(T_F -$	$t_R = 4/9t_{Re}$ -
Градус	- 273,15) 1 °R = 5/4 K	$1 ^{\circ}\text{R} = 5/4 ^{\circ}\text{C}$	•	- 32) 1 °R = 9/4 °F	- 218,52 1°R=9/4°Re
Фаренгейта t_F , °F	$t_F \approx 9/5T - 459,67$	$t_F = 9/5t + 32$	$t_F = 9/4t_R + 32$	1	$t_F = t_{Re} - 459,67$
Градус	$1 ^{\circ}\text{F} = 5/9 ^{\circ}\text{K}$	1 °F = 5/9 °C	1°F=4/9 °R		1°F=1°Re
Ренкина t_{Re} ,	$t_{Re} = 9/5T$	$t_{Re} = 9/5(t + 272.15)$	$t_{Re} = 9/4t_R + 491.67$	$t_{Re} = t_F + 459,67$	•
°Re Градус	1 °Re = 5/9 K	+ 273,15) 1 °Re = 5/9 °C	$1 ^{\circ}\text{Re} = 4/9 ^{\circ}\text{R}$	1°Re=1°F	

РЕШЕНИЕ ТРЕУГОЛЬНИКОВ И МНОГОУГОЛЬНИКОВ

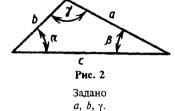
прямоугольные треугольники (рис. 1)

Задано
$$a$$
, α . Найти b , c , F . $F = \frac{a^2}{2} \operatorname{ctg} \alpha$. Задано b , α . Найти a , c , F . $F = \frac{b^2}{2} \operatorname{tg} \alpha$.

$$\sin \alpha = \frac{a}{c}; \quad \alpha = 90^{\circ} - \beta;$$

$$\cos \beta = \frac{a}{c}; \quad \beta = 90^{\circ} - \alpha;$$

$$b = \sqrt{c^2 - a^2} =$$


$$= \sqrt{(c+a)(c-a)} = c \cos \alpha =$$

$$= c \sin \beta;$$

$$F = \frac{a}{2}\sqrt{(c+a)(c-a)} = \frac{1}{2}ac \sin \beta.$$

КОСОУГОЛЬНЫЕ ТРЕУГОЛЬНИКИ

1-й случай (общий), рис. 2.

Найти $c, \alpha, \beta, F.$ $c = \sqrt{a^2 + b^2 - 2ab\cos\gamma}$

$$\sin \alpha = \frac{a \sin \gamma}{c}$$
; $tg\alpha = \frac{a \sin \gamma}{b - a \cos \gamma}$;

$$\sin \beta = \frac{b \sin \gamma}{c}$$
; $tg \beta = \frac{b \sin \gamma}{a - b \cos \gamma}$;

$$F=\frac{ab\sin\gamma}{2}.$$

Задано
$$\alpha, \beta, \gamma$$
 или α, α, β . $\beta = 180^{\circ} - (\beta + \gamma);$ $\beta = 180^{\circ} - (\alpha + \gamma);$ $\beta = 180^{\circ} - (\alpha + \beta);$ $\beta = 180^{\circ} - (\alpha + \beta).$ $\beta = 180^{\circ} - (\alpha + \beta).$

$$b = \frac{a \sin \beta}{\sin \alpha} = \frac{a \sin \beta}{\sin(\beta + \gamma)};$$

$$c = \frac{a \sin \gamma}{\sin \alpha} = \frac{a \sin \gamma}{\sin(\beta + \gamma)};$$

$$F = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha} = \frac{a^2}{2(\operatorname{ctg}\beta + \operatorname{ctg}\gamma)}.$$

2-й случай
$$a > b$$
 (поэтому β острый); $\beta < \alpha$ (рис. 2). Задано a, b, α . Найти β, γ, c, F .

$$\begin{cases} c = a\cos\beta + b\cos\alpha = \frac{a\sin\gamma}{\sin\alpha} = b\cos\alpha \pm \\ \pm \sqrt{a^2 - b^2\sin^2\alpha}; \\ \sin\beta = \frac{b\sin\alpha}{a}; \\ \cos\beta = \pm \sqrt{1 - \sin^2\beta}; \\ \gamma = 180^\circ - (\alpha + \beta); \\ F = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2}. \end{cases}$$

3-й случай b > a. Треугольник не вполне определен, возможны два решения: $\beta^{-}.90^{\circ}$ (рис. 3).

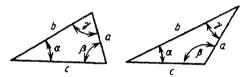


Рис. 3

Задано
$$\beta = \frac{b \sin \alpha}{a};$$
 $\cos \beta = \pm \sqrt{1 - \sin^2 \beta};$ $\gamma = 180^\circ - (\alpha + \beta) \beta;$ $\beta, \gamma, c, F.$ $\beta = \frac{ab \sin \gamma}{2} = \frac{bc \sin \alpha}{2}.$

выражение углов треугольника через стороны и полупериметр

Задано *a*, *b*, *c*. Найти α,β,γ, *F*.

Полупериметр

$$P=\frac{a+b+c}{2}.$$

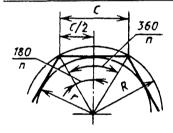
$$\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}; \qquad \sin\frac{\beta}{2} = \sqrt{\frac{(P-a)(P-c)}{ac}};$$

$$\cos\frac{\alpha}{2} = \sqrt{\frac{P(P-a)}{bc}}; \qquad \sin\beta = \frac{2F}{ac}; \cos\gamma = \frac{b^2 + a^2 - c^2}{2ab};$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{(P-b)(P-c)}{bc}};$$

$$\cos\frac{\gamma}{2} = \sqrt{\frac{P(P-c)}{ab}};$$

$$\cos\frac{\gamma}{2} = \sqrt{\frac{P(P-c)}{ab}};$$


$$\cos\frac{\gamma}{2} = \sqrt{\frac{P(P-a)(P-b)}{ab}};$$

$$\sin\gamma = \frac{2F}{ab};$$

$$\sin\gamma = \frac{2F}{ab};$$

$$F = \sqrt{P(P-a)(P-b)(P-c)}.$$

3. Правильный многоугольник

п - число сторон;

с - сторона многоугольника;

R - радиус описанного круга;

r – ралиус вписанного круга:

F - площадь многоугольника

$$c = 2R \sin \frac{180^{\circ}}{n} = 2r \operatorname{tg} \frac{180^{\circ}}{n}; \quad R = \frac{c}{2} : \sin \frac{180^{\circ}}{n} = r : \cos \frac{180^{\circ}}{n};$$

$$r = \frac{c}{2} \operatorname{ctg} \frac{180^{\circ}}{n} = R \cos \frac{180^{\circ}}{n}; \quad F = \frac{n}{2} R^{2} \sin \frac{360^{\circ}}{n} = nr^{2} \operatorname{tg} \frac{180^{\circ}}{2} = n \frac{c^{2}}{4} \operatorname{ctg} \frac{180^{\circ}}{n}.$$

n			i	R		r		F	
3	1,732R	3,464r	0,577c	2,000r	0,289c	0,500 <i>R</i>	$0,433c^2$	1,299 <i>R</i> ²	5,196r ²
4	1,414 <i>R</i>	2,000 <i>r</i>	0,707 <i>c</i>	1,414r	0,500 <i>c</i>	0,707 <i>R</i>	$1,000c^2$	$2,000R^2$	$4,000r^2$
5	1,176 <i>R</i>	1,453r	0,851 <i>c</i>	1,236r	0,688 <i>c</i>	0,809 <i>R</i>	1,721 <i>c</i> ²	2,378 <i>R</i> ²	3,633r ²
6	1,000 <i>R</i>	1,155 <i>r</i>	1,000c	1,155 <i>r</i>	0,866 <i>c</i>	0,866 <i>R</i>	2,598c ²	$2,598R^2$	3,464r ²
7	0,868 <i>R</i>	0,963r	1,152c	1,110 <i>r</i>	1,038c	0,901 <i>R</i>	3,635c ²	$2,736R^2$	3,371 <i>r</i> ²
8	0,765R	0,828r	1,307c	1,082 <i>r</i>	1,207c	0,924 <i>R</i>	4,828c ²	2,828 <i>R</i> ²	3,314r ²
9	0,684 <i>R</i>	0,728 <i>r</i>	1,462 <i>c</i>	1,064r	1,374c	0,940 <i>R</i>	$6,182c^2$	2,893 <i>R</i> ²	3,276r ²
10	0,618 <i>R</i>	0,650r	1,618c	1,052r	1,539c	0,951 <i>R</i>	7,694 <i>c</i> ²	$2,939R^2$	3,249r ²
11	0,564 <i>R</i>	0,587 <i>r</i>	1,775c	1,042 <i>r</i>	1,703c	0,960 <i>R</i>	9,364 <i>c</i> ²	2,974 R ²	3,230r ²
12	0,518 <i>R</i>	0,536r	1,932c	1,035r	1,866c	0,966 <i>R</i>	11,196 <i>c</i> ²	$3,000R^2$	$3,215r^2$
16	0,390 <i>R</i>	0,398r	2,563c	1,020r	2,514c	0,981 <i>R</i>	$20,109c^2$	3,062 <i>R</i> ²	3,183 <i>r</i> ²
20	0,313 <i>R</i>	0,317 <i>r</i>	3,196 <i>c</i>	1,013r	3,157c	0,988 <i>R</i>	$31,569c^2$	3,090 <i>R</i> ²	3,168r ²
24	0,261 <i>R</i>	0,263r	3,831 <i>c</i>	1,009r	3,798c	0,991 <i>R</i>	45,575c ²	$3,106R^2$	3,160r ²
32	0,196 <i>R</i>	0,197 <i>r</i>	5,101c	1,005r	5,077c	0,995 <i>R</i>	81,225 <i>c</i> ²	3,121 <i>R</i> ²	3,152 <i>r</i> ²
48	0,131 <i>R</i>	0,131r	7,645 <i>c</i>	1,002 <i>r</i>	7,629c	0,998 <i>R</i>	183,08c ²	$3,133R^2$	3,146 <i>r</i> ²
64	0,098 <i>R</i>	0,098r	10,190 <i>c</i>	1,001 <i>r</i>	10,178c	0,999 <i>R</i>	325,69 <i>c</i> ²	3,137 <i>R</i> ²	3,14472

ТРИГОНОМЕТРИЧЕСКИЕ ЗАВИСИМОСТИ

4. Тригонометрические формулы приведения

Тригономет- рическая функция	-α	90°±α	180°±α	270° ± α	360° ± α
sin	-Sina	+cosu	∓sin α	-cosa	sin(±α)
cos	+cosa	∓sinα	-cosa	±sinα	cos(±α)
tg	-tga	∓ctgα	±tgα	∓ctga	tg(±α)
ctg	-ctga	∓tga	±ctgα	∓tga	ctg(±α)

5. Выражение одной тригонометрической функции через другую функцию того же угла

Тригонометри- ческая функция	Sinα	cosα	tgα	ctga
sinα =	_	$\sqrt{1-\cos^2\alpha}$	$\frac{tg\alpha}{\sqrt{1+tg^2\alpha}}$	$\frac{1}{\sqrt{1+\operatorname{ctg}^2\alpha}}$
$\cos \alpha =$	$\sqrt{1-\sin^2\alpha}$	_	$\frac{1}{\sqrt{1+tg^2\alpha}}$	$\frac{ctg\alpha}{\sqrt{1+ctg^2\alpha}}$
tgα =	$\frac{\sin\alpha}{\sqrt{1-\sin^2\alpha}}$	$\frac{\sqrt{1-\cos^2\alpha}}{\cos\alpha}$	_	<u>1</u> ctgα
$ctg\alpha =$	$\frac{\sqrt{1-\sin^2\alpha}}{\sin\alpha}$	$\frac{\cos\alpha}{\sqrt{1-\cos^2\alpha}}$	$\frac{1}{tg\alpha}$	_

ОСНОВНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ

$$\sin^2\alpha + \cos^2\alpha = 1;$$

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \pm \cos\alpha \sin\beta;$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \mp \sin\alpha \sin\beta;$$

$$tg(\alpha \pm \beta) = (tg \alpha \pm tg \beta) :$$

$$(1 \mp tg \alpha tg \beta);$$

$$ctg(\alpha \pm \beta) = (ctg \alpha ctg \beta \mp 1) :$$

$$(ctg \beta \pm ctg \alpha);$$

$$\sin 2\alpha = 2\sin\alpha \cos\alpha = \frac{2}{\operatorname{ctg}\alpha + \operatorname{tg}\alpha};$$

$$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha =$$

$$= 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1;$$

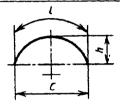
$$\operatorname{tg}2\alpha = \frac{2\operatorname{tg}\alpha}{1 - \operatorname{tg}^2\alpha} = \frac{2}{\operatorname{ctg}\alpha - \operatorname{tg}\alpha};$$

$$\operatorname{ctg}2\alpha = \frac{\operatorname{ctg}^2\alpha - 1}{2\operatorname{ctg}\alpha} =$$

$$= \frac{1}{2}(\operatorname{ctg}\alpha - \operatorname{tg}\alpha);$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{1}{2}(1 - \cos\alpha)} =$$

$$= \frac{1}{2}(\sqrt{1 + \sin\alpha} - \sqrt{1 - \sin\alpha});$$


$$\cos \frac{\alpha}{2} = \sqrt{\frac{1}{2}(1 + \cos \alpha)} = \cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{1}{2}(\sqrt{1 + \sin \alpha} + \sqrt{1 - \sin \alpha});$$

$$\cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{2\sin^2 \alpha}{1 - \cos \alpha} = 1 - \cos^2 \alpha;$$

$$\cot \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{2\sin^2 \alpha}{1 - \cos^2 \alpha} = 1 + \cos^2 \alpha.$$

плоские фигуры

Длины дуг, стрелки, длины хорд, площади сегментов при радиусе, равном единице

При пользовании таблицей при радиусах, не равных единице, следует умножить $l,\ h$ и c на величину радиуса, а площадь сегмента умножить на квадрат радиуса.

При данной длине дуги l и стрелке h находим $r=l:l_0$, где l_0 - длина дуги, соответствующая данному отношению l:h при r=1. Если r - радиус круга и α - центральный угол в градусах, то получаем:

длина хорды
$$c = 2r \sin \frac{\alpha}{2} = 2\sqrt{2rh - h^2}$$
;

стрелка
$$h = r \left(1 - \cos \frac{\alpha}{2} \right) = \frac{c}{2} \operatorname{tg} \frac{\alpha}{4} = 2r \sin^2 \frac{\alpha}{4} = r - \sqrt{r^2 - \frac{c^2}{4}}$$
;

длина дуги
$$I = \pi r \frac{\alpha}{180^{\circ}} = 0.017453 r\alpha \approx \sqrt{c^2 + \frac{16}{3}h^2}$$
;

площадь сегмента =
$$\frac{r^2}{2} \left(\frac{\pi}{180^{\circ}} \alpha^{\circ} - \sin \alpha \right)$$
.

Центральный угол в градусах	Длина дуги $\it l_0$	Стрелка <i>h</i>	$\frac{l}{h}$	Длина хорды <i>с</i>	Площадь сегмента
1	0,0175	0,0000	458,36	0,0175	0,00000
2	0,0349	0,0002	229,19	0,0349	0,00000
3	0,0524	0,0003	152,79	0,0524	0,00001
4	0,0698	0,0006	114,60	0,0698	0,00003
5	0,0873	0,0010	91,69	0,0872	0,00006
6	0,1047	0,0014	76,41	0,1047	0,00010
7	0,1222	0,0019	64,01	0,1221	0,00015
8	0,1396	0,0024	56,01	0,1395	0,00023
9	0,1571	0,0031	50,96	0,1569	0,00032
10	0,1749	0,0038	45,87	0,1743	0,00044
11	0,1920	0,0046	41,70	0,1917	0,00059
12	0,2094	0,0055	38,23	0,2091	0,00076
13	0,2269	0,0064	35,28	0,2264	0,00097
14	0,2443	0,0075	32,78	0,2437	0,00121
15	0,2618	0,0086	30,60	0,2611	0,00149
16	0,2793	0,0097	28,04	0,2783	0,00181
17	0,2967	0,0110	27,01	0,2956	0,00217
18	0,3142	0,0123	25,35	0,3219	0,00257
19	0,3316	0,0137	24,17	0,3301	0,00302
20	0,3491	0,0152	22,98	0,3473	0,00352

Продолжение табл. 6

			r	проос	мжение таол. о
Центральный угол в	Длина дуги <i>l</i> ₀	Стрелка н	$\frac{l}{h}$	Длина хорды с	Площадь сегмента
градусах					
21	0,3665	0,0167	21,95	0,3645	0,00408
22	0,3840	0,0184	20,90	0,3816	0,00468
23	0,4014	0,0201	20,00	0,3987	0,00535
24	0,4189	0,0219	19,17	0,4158	0,00607
25	0,4363	0,0237	18,47	0,4329	0,00686
26	0,4538	0,0256	17,71	0,4499	0,00771
27	0,4712	0,0276	17,06	0,4669	0,00862
28	0,4887	0,0297	16,45	0,4838	0,00961
29	0,5061	0,0319	15,89	0,5008	0,01087
30	0,5236	0,0341	15,37	0,5176	0,01180
31	0,5411	0,0364	14,88	0,5345	0,01301
32	0,5585	0,0387	14,42	0,5513	0,01429
33	0,5760	0,0412	13,99	0,5680	0,01566
34	0,5934	0,0437	13,58	0,5847	0,01711
35	0,6109	0,0463	13,20	0,6014	0,01864
36	0,6283	0,0489	12,84	0,6180	0,02027
37	0,6458	0,0517	12,50	0,6346	0,02198
38	0,6632	0,0545	12,17	0,6511	0,02378
39	0,6807	0,0574	11,87	0,6676	0,02568
40	0,6981	0,0603	11,58	0,6840	0,02767
41	0,7156	0,0633	11,30	0,7004	0,02976
42	0,7330	0,0664	11,04	0,7167	0,03195
43	0,7505	0,0696	10,78	0,7330	0,03425
44	0,7679	0,0728	10,55	0,7492	0,03664
45	0,7854	0,0761	10,32	0,7654	0,03915
46	0,8029	0,0795	10,10	0,7815	0,04176
47	0,8203	0,0829	9,80	0,7975	0,04448
48	0,8378	0,0865	9,69	0,8135	0,04731
49	0,8552	0,0900	9,50	0,8294	0,05025
50	0,8727	0,0937	9,31	0,8452	0,05331
<i>5</i> 1	0,8901	0,0974	9,14	0,8610	0,05649
52	0,9076	0,1012	8,97	0,8767	0,05978
53	0,9250	0,1051	8,80	0,8924	0,06319
54	0,9425	0,1090	8,65	0,9080	0,06673
55	0,9599	0,1130	8,49	0,9235	0,07039
56	0,9774	0,1171	8,35	0,9389	0,07417
57	0,9948	0,1212	8,21	0,9543	0,07808
58	1,0123	0,1254	8,07	0,9696	0,08212
59	1,0297	0,1296	7,94	0,9848	0,08629
60	1,0472	0,1340	7,81	1,0000	0,09059
61	1,0647	0,1384	7,69	1,0151	0,09502
62	1,0821	0,1428	7,56	1,0301	0,09958
63	1,0996	0,1474	7,46	1,0450	0,10428
64	1,1170	0,1520	7,35	1,0598	0,10911
65	1,1345	0,1566	7,24	1,0746	0,11408
66	1,1519	0,1613	7,14	1,0893	0,11919
67	1,1694	0,1661	7,04	1,1039	0,12443
68	1,1868	0,1710	6,94	1,1184	0,12982

Продолжение табл. 6

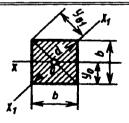
					7
Центральный угол в градусах	Длина дуги <i>l</i> ₀	Стрелка h	1/h	Длина хорды с	Площадь сегмента
69	1,2043	0,1759	6,85	1,1328	0,13535
70	1,2043	0,1808	6,76	1,1472	0,14102
70 71	1,2392	0,1859	6,67	1,1614	0,14683
72	1,2566	0,1910	6,58	1,1756	0,15270
73	1,2741	0,1961	6,50	1,1896	0,15889
73 74	1,2915	0,2014	6,41	1,2036	0,15514
75	1,3090	0,2066	6,34	1,2175	0,17154
76	1,3265	0,2120	6,26	1,2312	0,17808
70 77	1,3439	0,2174	6,18	1,2450	0,18477
78	1,3614	0,2229	6,11	1,2586	0,19160
78 79	1,3788	0,2284	6,04	1,2722	0,19859
80	1,3963	0,2340	5,97	1,2856	0,20573
81	1,4137	0,2396	5,90	1,2989	0,21301
82	1,4312	0,2453	5,83	1,3121	0,22045
83	1,4486	0,2510	5,77	1,3252	0,22804
84	1,4661	0,2569	5,71	1,3383	0,23578
85	1,4835	0,2627	5,65	1,3512	0,24367
86	1,5010	0,2686	5,59	1,3640	0,25171
87	1,5184	0,2746	5,53	1,3767	0,25990
88	1,5359	0,2807	5,47	1,3893	0,26825
89	1,5533	0,2867	5,42	1,4018	0,27675
90	1,5708	0,2929	5,36	1,4142	0,28540
91	1,5882	0,2991	5,31	1,4265	0,29420
92	1,6057	0,3053	5,26	1,4387	0,30316
93	1,6232	0,3116	5,21	1,4507	0,31226
94	1,6406	0,3180	5,16	1,4627	0,32152
95	1,6580	0,3244	5,11	1,4746	0,33093
96	1,6755	0,3309	5,06	1,4863	0,34050
97	1,6930	0,3374	5,02	1,4979	0,35021
98	1,7104	0,3439	4,97	1,5094	0,36008
99	1,7279	0,3506	4,93	1,5208	0,37009
100	1,7453	0,3572	4,89	1,5321	0,38026
101	1,7628	0,3639	4,84	1,5432	0,39050
102	1,7802	0,3707	4,80	1,5543	0,40104
103	1,7977	0,3775	4,76	1,5652	0,41166
104	1,8151	0,3843	4,72	1,5760	0,42242
105	1,8326	0,3912	4,68	1,5867	0,43333
106	1,8500	0,3982	4,65	1,5973	0,44439
107	1,8675	0,4052	4,61	1,6077	0,45560
108	1,8850	0,4122	4,57	1,6180	0,46695
109	1,9024	0,4193	4,54	1,6282	0,47845
110	1,9199	0,4264	4,50	1,6383	0,49008
111	1,9373	0,4336	4,47	1,6483	0,50187
112	1,9548	0,4408	4,43	1,6581	0,51379
113	1,9722	0,4481	4,40	1,6678	0,52586
114	1,9897	0,4554	4,37	1,6773	0,53807
115	2,0071	0,4627	4,34	1,6868	0,55041
116	2,0246	0,4701	4,31	1,6961	0,56289

Продолжение табл. 6

			,	11000	элжение таол. о
Центральный угол в градусах	Длина дуги <i>l</i> ₀	Стрелка <i>h</i>	$\frac{l}{h}$	Длина хорды <i>с</i>	Площадь сегмента
117	2,0420	0,4775	4,28	1,7053	0,57551
118	2,0595	0,4850	4,25	1,7143	0,58827
119	2,0769	0,4925	4,22	1,7233	0,60116
120	2,0944	0,5000	4,19	1,7321	0,61418
121	2,1118	0,5076	4,16	1,7407	0,62734
122	2,1293	0,5152	4,13	1,7492	0,64063
123	2,1468	0,5228	4,11	1,7576	0,65404
124	2,1642	0,5305	4.08	1,7659	0,66759
125	2,1817	0,5387	4,05	1,7740	0,68125
126	2,1991	0,5460	4,03	1,7820	0,69505
127	2,2166	0,5538	4,00	1,7899	0,70897
128	2,2340	0,5616	3,98	1,7976	0,72301
129	2,2515	0,5695	3,95	1,8052	0,73716
130	2,2689	0,5774	3,93	1,8126	0,75144
131	2,2864	0,5853	3,91	1,8199	0,76584
132	2,3038	0,5933	3,88	1,8277	0,78034
133	2,3213	0,6013	3,86	1,8341	0,79497
134	2,3387	0,6093	3,84	1,8410	0,80970
135	2,3562	0,6173	3,82	1,8478	0,82454
136	2,3736	0,6254	3,80	1,8545	0,83949
137	2,3911	0,6335	3,77	1,8608	0,85455
138	2,4086	0,6416	3,75	1,8672	0,86971
139	2,4260	0,6498	3,73	1,8733	0,88497
140	2,4435	0,6580	3,71	1,8794	0,90034
141	2,4609	0,6662	3,69	1,8853	0,91580
142	2,4784	0,6744	3,67	1,8910	0,93135
143	2,4958	0,6827	3,66	1,8966	0,94700
144	2,5133	0,6910	3,64	1,9021	0,96274
145	2,5307	0,6993	3,62	1,9074	0,97858
146	2,5482	0,7076	3,60	1,9126	0,99449
147	2,5656	0,7160	3,58	1,9176	1,01050
148	2,5831	0,7244	3,57	1,9225	1,02658
149	2,6005	0,7328	3,55	1,9273	1,04275
150	2,6180	0,7412	3,53	1,9319	1,05900
151	2,6354	0,7496	3,52	1,9363	1,07532
152	2,6529	0,7581	3,50	1,9406	1,09171
153	2,6704	0,7666	3,48	1,9447	1,10818
154	2,6878	0,7750	3,47	1,9487	1,12472
155	2,7053	0,7836	3,45	1,9526	1,14132
156	2,7227	0,7921	3,44	1,9563	1,15799
157	2,7402	0,8006	3,42	1,9598	1,17472
158	2,7576	0,8092	3,41	1,9633	1,19151
159	2,7751	0,8178	3,39	1,9665	1,20835
160	2,7925	0,8264	3,38	1,9696	1,22525
161	2,8100	0,8350	3,37	1,9726	1,24221
162	2,8274	0,8436	3,35	1,9754	1,25921
163	2,8449	0,8522	3,34	1,9780	1,27626
164	2,8623	0,8608	3,33	1,9805	1,29335

Продолжение :	табл.	6
---------------	-------	---

Центральный угол в градусах	Длина дуги <i>l</i> ₀	Стрелка <i>h</i>	1/h	Длина хорды с	Площадь сегмента
165	2,8798	0,8695	3,31	1,9829	1,31049
166	2,8972	0,8781	3,30	1,9851	1,32766
167	2,9147	0,8868	3,28	1,9871	1,34487
168	2,9322	0,8955	3,27	1,9890	1,36212
169	2,9496	0,9042	3,26	1,9908	1,37940
170	2,9671	0,9128	3,25	1,9924	1,39671
171	2,9845	0,9215	3,24	1,9938	1,41404
172	3,0020	0,9302	3,23	1,9951	1,43140
173	3,0194	0,9390	3,22	1,9963	1,44878
174	3,0369	0,9477	3,20	1,9973	1,46617
175	3,0543	0,9564	3,19	1,9981	1,48359
176	3,0718	0,9651	3,18	1,9988	1,50101
177	3,0892	0,9738	3,17	1,9993	1,51845
178	3,1067	0,9825	3,16	1,9997	1,53589
179	3,1241	0,9913	3,15	1,9999	1,55334
180	3,1416	1,0000	3,14	2,0000	1,57080

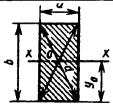

 Π р и м е р 1. Вычислить радиус окружности, у которой при стрелке h=2 мм длина дуги l=10 мм. Находим $\frac{l}{h}=\frac{10}{2}=5$. Из таблицы определяем $l_0\approx 1,6930$, так согласно указанию в табл. 6 $r = \frac{l}{l_0} = \frac{10}{1,6930} = 5,9$ мм.

 Π р и м е р 2. Вычислить стрелку h дуги окружности радиусом r=50 мм при центральном угле $\alpha = 30^{\circ}$. Из таблицы находим $h = 0.0341 \cdot 50 = 1.705$ мм.

7. Вычисление элементов плоских фигур

Обозначения в формулах:

F - площадь; P - полупериметр; L - длина окружности; l - длина дуги; n - число сторон многоугольника; R - радиус описанной окружности; r - радиус вписанной окружности; O - центр тяжести; ρ - радиус кривизны; y_0 и x_0 - величины, определяющие положение центра тяжести.



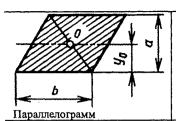
$$F = b^2 = \frac{1}{2}d^2; \ b = 0.7071d = \sqrt{F};$$

$$d = 1.414\sqrt{F} = 1.414b;$$

О - в точке пересечения диагоналей;

$$y_0 = \frac{b}{2}$$
; $y_{01} = \frac{b}{2}\sqrt{2}$

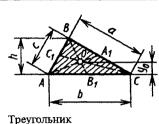
Квадрат


Прямоугольник

$$F = ab = a\sqrt{d^2 - a^2} = b\sqrt{d^2 - b^2};$$

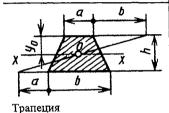
$$d = \sqrt{a^2 + b^2}; \ a = \sqrt{d^2 - b^2} = \frac{F}{b}; \ b = \sqrt{d^2 - a^2} = \frac{F}{a};$$

О - в точке пересечения диагоналей;


$$y_0 = \frac{b}{2}$$

$$F=ab; \ a=\frac{F}{b}; \ b=\frac{F}{a};$$

О - в точке пересечения диагоналей;


$$y_0 = \frac{a}{2}$$

$$F = \frac{bh}{2} = \frac{b}{2} \sqrt{a^2 - \left(\frac{a^2 + b^2 - c^2}{2b}\right)^2}; P = \frac{1}{2}(a + b + c),$$
TOTA
$$F = \sqrt{P(P - a)(P - b)(P - c)};$$

О - в точке пересечения медиан;

$$y_0 = \frac{1}{3}h; AB_1 = B_1C; CA_1 = A_1B; BC_1 = C_1A$$

$$F = \frac{(a+b)h}{2};$$
$$y_0 = \frac{h}{3} \frac{2b+a}{a+b}$$

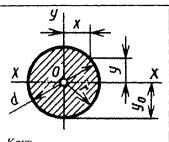
$$F = 2,598c^2 = 2,598R^2 = 3,464r^2;$$
 $R = c = 1,155r;$
 $r = 866c = 0,866R;$
 $O - в$ геометрическом центре;
 $y_0 = 0,866R;$
 $y_{01} = R$

X S S

 $\alpha = 360^{\circ} / n$; $\beta = 180^{\circ} - \alpha$;

$$F = \frac{ncr}{2} = \frac{nc}{2} \sqrt{R^2 - \frac{c^2}{4}};$$

$$R = \sqrt{r^2 + \frac{c^2}{4}}; \quad r = \sqrt{R^2 - \frac{c^2}{4}}; \quad c = 2\sqrt{R^2 - r^2};$$

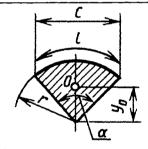

О - в геометрическом центре;

$$y_0 = 0.924R$$
.

Для восьмиутольника

$$F = 2.828R^2$$
; $r = 0.924R$; $c = 0.765R$

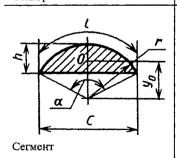
Правильный многоугольник


$$x^2 + y^2 = r^2$$
; $F = \pi r^2 = 3,1416 r^2 = 0,7854 d^2$; $L = 2\pi r = 6,2832 r = 3,1416 d$; $r = L: 6,2832 = \sqrt{F:3,1416} = 0,564\sqrt{F}$; $d = L: 3,1416 = \sqrt{F:0,7854} = 1,128\sqrt{F}$; O - в центре круга; $y_0 = r$

Kpyi

$$F = \frac{\pi r^2}{2} = 1,5708r^2 = 0,3927d^2;$$
$$y_0 = \frac{4r}{3\pi} = 0,4244r$$

Полукруг

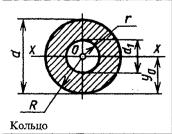


$$I = \frac{r\alpha \cdot 3,1416}{180^{\circ}} = 0,01745 r\alpha = \frac{2F}{r};$$

$$F = \frac{1}{2} rl = 0,008727 \alpha r^{2}; \quad \alpha = \frac{57,296l}{r};$$

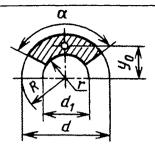
$$r = \frac{2F}{l} = \frac{57,296l}{\alpha}; \quad y_{0} = \frac{2rc}{3l}$$

Сектор



$$c = 2\sqrt{h(2r - h)}; \quad F = \frac{1}{2} [rl - c(r - h)];$$

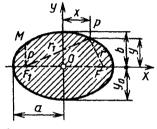
$$r = \frac{c^2 + 4h^2}{8h}; \quad l = 0.01745r\alpha;$$


$$h = r - \frac{1}{2}\sqrt{4r^2 - c^2}; \quad \alpha = \frac{57,296l}{r};$$

$$y_0 = \frac{c^3}{12F}$$

$$F = \pi \left(R^2 - r^2\right) = 3,1416 \left(R^2 - r^2\right) = 3,1416 \left(R + r\right) \left(R - r\right) =$$

$$= 0,7854 \left(d^2 - d_1^2\right) = 0,7854 \left(d + d_1\right) \left(d - d_1\right);$$
 O - в геометрическом центре;
$$y_0 = R$$



$$F = \frac{\alpha \pi}{360^{\circ}} (R^2 - r^2) = 0,00873\alpha (R^2 - r^2) =$$

$$= \frac{\alpha \pi}{4 \cdot 360^{\circ}} (d^2 - d_1^2) = 0,00218\alpha (d^2 - d_1^2);$$

$$y_0 = 76,394 \frac{(R^3 - r^3)\sin\frac{\alpha}{2}}{(R^2 - r^2)\alpha}$$

Кольцевой сектор

Эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $F = \pi ab = 3,1416ab.$ Приближенная величина периметра $2P = 3,1416\sqrt{2(a^2+b^2)}.$

Более точная величина периметра

$$2P = 3{,}1416\sqrt{2(a^2 + b^2) - \frac{(a - b)^2}{4}}.$$

О - в центре пересечения осей;

$$y_0=b;\ OF=OF_1=\sqrt{a^2-b^2};\ r_1+r=2a;$$
 ордината $F_1M=rac{b^2}{a};$

радиус кривизны в точке
$$P \rho = a^2 b^2 \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} \right)^{\frac{3}{2}} = \frac{\left(m_1 \right)^{\frac{3}{2}}}{ab};$$

эксцентриситет
$$e = \frac{\sqrt{a^2 - b^2}}{a}$$

Длина дуги всего эллипса $I pprox \pi \left[\frac{3(a+b)}{2} - \sqrt{ab} \right]$

поверхности и объемы тел

8. Вычисление поверхностей и объемов тел

Фигура*	Поверхность F . Боковая поверхность F_6	Расстояние до центра тяжести x ₀ , y ₀	Объем <i>V</i>
Цилиндр	$F = 2\pi r(r+h) =$ $= \frac{1}{2} \pi d(d+2h);$ $F_6 = 2\pi rh = \pi dh$	$y_0 = \frac{h}{2}$	$V = \pi r^2 h =$ $= \frac{\pi d^2}{4} h$

Продолжение табл. 8

Фигура*	Поверхность F . Боковая поверхность F_6	Расстояние до центра тяжести x ₀ , y ₀	Объем V
Пирамида	F = сумме площадей треугольников + + площадь основания	$y_0 = \frac{1}{4}h$	$V=$ площадь основания $\times \frac{h}{3}$
Полый цилиндр (труба)	F_6 = внутренняя + + внешняя поверхность	$y_0 = \frac{h}{2}$	$V = \pi h \left(r^2 - r_1^2\right) =$ $= \pi h \delta(r + r_1)$
Косорезаный ци-	$F_6 = \pi r (h + h_1)$	$y_0 = \frac{h + h_1}{4} + \frac{1}{4} \frac{r^2 t g^2 \alpha}{h + h_1}$	$V = \pi r^2 \frac{h + h_1}{2}$
Ulap Ulap	$F = 4\pi r^2 = \pi d^2$	_	$V = \frac{4}{3}\pi r^3 = \frac{\pi d^3}{6} = 0,5236d^3$
Шаровой сектор	$F=\frac{\pi r}{2}(4h+c)$	$y_0 = \frac{3}{4} \left(r - \frac{h}{2} \right)$	$V = \frac{2}{3}\pi r^2 h$

			Продолжение табл. 8
Фигура*	Поверхность F . Боковая поверхность F_6	Расстояние до центра тяжести x ₀ , y ₀	Объем V
Шаровой сегмент	$F_6 = 2\pi rh =$ $= \frac{\pi}{4} \left(c^2 + 4h^2 \right)$	$y_0 = \frac{3}{4} \frac{(2r - h)^2}{3r - h}$	$V = \pi h^2 \left(r - \frac{h}{3} \right) =$ $= \pi h \left(\frac{c^2}{8} + \frac{h^2}{6} \right)$
Конус	$F_6 = \pi r c =$ $= \pi r \sqrt{r^2 + h^2}$	$y_0 = \frac{1}{4}h$	$V = \frac{1}{3}\pi r^2 h$
Усеченная пирамида	F = сумме площадей трапеций, верхнего и нижнего оснований	$y_0 = \frac{h}{4} \times \left(\frac{f_2 + 2\sqrt{f_2 f_1} + 3f_1}{f_2 + \sqrt{f_2 f_1} + f_1} \right)$	$V = \frac{h}{3} \Big(f_2 + f_1 + \sqrt{f_2 f_1} \Big)$ $\Big(f_1, f_2 - \text{площади} \Big)$ верхнего и нижнего оснований)
Усеченный конус	$F_6 = \pi c(r + r_1)$	$y_0 = \frac{h}{4} \times \left(\frac{r^2 + 2r_1r + 3r_1^2}{r^2 + r_1r + r_1^2} \right)$	$V = (r^2 + r_1^2 + r_1^2) \times \frac{\pi h}{3}$
Тор *О - центр тяжести.	$F = \pi^2 Dd =$ $= 9,8696 Dd$	$y_0 = R + \frac{d}{2}$	$V = 2\pi^2 R r^2 =$ $= 19,739 R r^2$

ЭЛЕМЕНТЫ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

9. Значение модуля продольной упругости E, модуля сдвига G и коэффициента Пуассона μ (при температуре ~ 20 °C)

Материал	Модул	и, МПа	Коэффициент
matopha.	E	G	Пуассона, µ
Сталь	$(1,86 \div 2,1) \cdot 10^5$	$(7.8 \div 8.3) \cdot 10^4$	0,25 - 0,33
Чугун:			
серый серый модифицированный	$ (0.78 \div 1.47) \cdot 10^5 $ $ (1.2 \div 1.6) \cdot 10^5 $	$4,4 \cdot 10^4 (5 \div 6,9) \cdot 10^4$	0,23 - 0,27
Медь техническая	$(1,08 \div 1,3) \cdot 10^5$	4,8 · 10 ⁴	_
Бронза:			
оловянная безоловянная	$ \begin{array}{c} (0.74 \div 1.22) \cdot 10^5 \\ (1.02 \div 1.2) \cdot 10^5 \end{array} $	arteure.	0,32 - 0,35
Латунь алюминиевая	$(0.98 \div 1.08) \cdot 10^5$	$(3,6 \div 3,9) \cdot 10^4$	0,32 - 0,34
Алюминиевые сплавы	$(0,69 \div 0,705) \cdot 10^5$	2,6 · 10 ⁴	0,33
Магниевые сплавы	$(0.4 \div 0.44) \cdot 10^5$		0,34
Никель технический	$2,5 \cdot 10^5$	7,35 · 10 ⁴	0,33
Свинец технический	$(0,15 \div 0,2) \cdot 10^5$	0,7 · 10 ⁴	0,42
Цинк технический	0,78 · 10 ⁵	3,2 · 10 ⁴	0,27
Кладка из кирпича	$(0.24 \div 0.3) \cdot 10^4$	_	_
Бетон (при временном сопротив- лении) (1 - 2 МПа)	$(1,48 \div 2,25) \cdot 10^4$	_	0,16 - 0,18
Железобетон обычный:			
сжатые элементы изгибаемые элементы	$(1.8 \div 4.2) \cdot 10^4$ $(1.07 \div 2.64) \cdot 10^4$		_ _
Древесина всех пород:			
вдоль волокон поперек волокон	$(8,8 \div 15,7) \cdot 10^4$ $(3,9 \div 9,8) \cdot 10^4$	$(4,4 \div 6,4) \cdot 10^{2}$ $(4,4 \div 6,4) \cdot 10^{2}$	_ _
Фанера авиационная 1-го сорта:			
вдоль волокон поперек волокон	$12,7 \cdot 10^{3}$ $6.4 \cdot 10^{3}$	_	
Текстолит (ПТ, ПТК, ПТ-1)	$(5,9 \div 9,8) \cdot 10^3$		
Гетинакс	$(9.8 \div 17.1) \cdot 10^3$		
Винипласт листовой	$3.9 \cdot 10^3$		_
Стекло	$(4,9 \div 5,9) \cdot 10^4$	$(2,05 \div 2,25) \cdot 10^3$	0,24 - 0,27
Органическое стекло	$(2.8 \div 4.9) \cdot 10^3$		0,35 - 0,38
Бакелит без наполнителей	$(1,96 \div 5,9) \cdot 10^3$	$(6.86 \div 20.5) \cdot 10^2$	0,35 - 0,38
Целлулоид	$(1,47 \div 2,45) \cdot 10^3$	$(6,86 \div 9,8) \cdot 10^2$	0,4
Каучук	0,07 · 104	$2 \cdot 10^3$	
Стеклопласт	3,4 · 10 ⁴	$(3.5 \div 3.9) \cdot 10^3$	
(СВАМ1) вдоль волокон	- 7 - 20	(-,,// **	
Капрон	$(1,37 \div 1,96) \cdot 10^3$		
Фторопласт Ф-4	$(4,6 \div 8,3) \cdot 10^2$		

10. Осевые моменты инерции, моменты сопротивления и раднусы инерции плоских фигур

(Моменты инерции J даны для главных центральных осей. Радиус инерции $i=\sqrt{J/F}$, где F - площадь сечения)

Радиус инерции і, см	$i_{x} = i_{y} = \frac{d}{4} = \frac{r}{2}$	$i_x = i_y = \frac{1}{4} \sqrt{d^2 + d_1^2}$
Момент сопротивления W , см 3	$W_x = W_y = \frac{\pi d^3}{32} = \frac{\pi r^3}{4};$ $W_x = W_y \approx 0.1d^3$	$W_x = W_y = \frac{\pi d^3}{32} (1 - c^4);$ $W_x = W_y \approx 0.1d^3 (1 - c^4)$
Осевой момент инерции J , см 4	$J_x = J_y = \frac{\pi d^4}{64} = \frac{\pi r^4}{4}$; $J_x = J_y \approx 0,05d^4$	$J_{x} = J_{y} = \frac{\pi(d^{4} - d_{1}^{4})}{64} = \frac{\pi d^{4}}{64} (1 - c^{4});$ $J_{x} = J_{y} = \frac{\pi r^{4}}{4} (1 - c^{4});$ $J_{x} = J_{y} \approx 0.05d^{4} (1 - c^{4});$
Форма поперечного сечения	Круг	Konbilo $ \frac{y}{d} = \frac{d_1}{d} $ $ c = \frac{d_1}{d} $

Форма поперечного сечения	Осевой момент инерции Ј, см4	Момент сопротивления W, см ³	Радиус инерции і, см
Тонкостенное кольно $ \frac{s}{D=2r} $ $ s \leq \frac{D}{10} $	$J_x = J_y = \frac{\pi D^3 s}{8};$ $J_x = J_y = \pi r^3 s$	$W_x = W_y = \frac{\pi D^2 s}{4};$ $W_x = \pi r^2 s$	$i_x = i_y = \frac{D\sqrt{2}}{4} = 0,353D$
Полукруг	$J_x = 0,00686d^4 \approx 0,110r^4;$ $J_y = \frac{\pi d^4}{128} \approx 0,025d^4$	$W_x = 0.0238d^3;$ $W_y = \frac{\pi d^3}{64} \approx 0.05d^3$	$i_x = i_{\min} \approx 0,132d;$ $i_y = \frac{d}{4}$

\sim
\sim
~
-
Ċ
\boldsymbol{a}
~
~
٥,
2
-2
T.
o,
¥
7
-
ď
₹.
æ
\simeq
9
~
-

проосижение таси. 10 Радиус инерции і, см	$l_{\min} = l_x = \sqrt{\frac{J_x}{F}}$ II p и мечания: $c = 2r \sin \frac{\alpha}{2};$ $S = \pi r \frac{\alpha^2}{180^5}$	$i_x = \frac{r}{2} \sqrt{1 + \frac{\sin \alpha}{\alpha} \frac{180}{\pi}}$ $-\frac{64}{9} \frac{\sin \frac{\alpha}{2}}{\left(\alpha^2 - \pi\right)^2}$ $i_y = \frac{r}{2} \sqrt{1 - \frac{\sin \alpha}{\alpha} \frac{180}{\pi}}$
Момент сопротивления W, см ³	$W_x = \frac{J_x}{r - v_0}$	
Осевой момент инерции J, см ⁴	$J_{u} = \frac{Sr^{3}}{8} - \frac{r^{4}}{8} \sin \alpha \cos \alpha;$ $J_{x} = J_{u} - F\sqrt{6};$ $J_{y} = \frac{r^{4}}{8} \left[\alpha^{\circ} \frac{\pi}{180^{\circ}} - \sin \alpha - \frac{2}{3} \sin \alpha \sin^{2} \frac{\alpha}{2} \right]$	$J_{u} = \frac{r^{4}}{8} \left(\pi \frac{\alpha^{\circ}}{180^{\circ}} + \sin \alpha \right);$ $J_{x} = \frac{r^{4}}{8} \left(\pi \frac{\alpha^{\circ}}{180^{\circ}} + \sin \alpha - \frac{64}{9} \sin^{2} \frac{180^{\circ}}{2 \pi \alpha^{\circ}} \right);$ $J_{y} = \frac{r^{4}}{8} \left(\pi \frac{\alpha^{\circ}}{180^{\circ}} - \sin \alpha \right)$
Форма поперечного сечения	Круговой сегмент $ y $ $ y $ $ x$	Kpyroboň cektop $ \frac{y}{x} $ $ v_0 = \frac{4}{3}r \sin \frac{\alpha}{2} \frac{180^{\circ}}{\pi \alpha^{\circ}} $

		-	T.
Форма поперечного сечения	Осевой момент инерции Ј, см4	Момент сопротивления W , см 3	Радиус инерции і, см
Круговое полукольцо $ \frac{y}{q_1=2r_1} $ $ \frac{d}{d=2r_2} $ $ v_0 = \frac{4}{3\pi} \frac{r^2 + m_1 + n_1^2}{r + r_1} $	$J_x = 0.11 \left(r^4 - r_1^4 \right) - 0.283 r^2 r_1^2 \frac{r - r_1}{r + r_1};$ $J_y = \frac{\pi}{8} \left(r^4 - r_1^4 \right)$	$W_{x} = \frac{J_{x}}{r - v_{0}}$	$i_{\chi} = \sqrt{rac{J_{\chi}}{F}};$ $i_{\gamma} = \sqrt{rac{J_{\gamma}}{F}},$ где F - глющадь сечения
Сектор кругового кольца $ \frac{y}{r_1} = \frac{y}{r_2} + \frac{y}{r_3} + \frac{y}{r_4} = \frac{x}{r_4} $ $ v_0 = \frac{4}{3} \frac{r^3 - r_1^3}{r^2 - r_1^2} \frac{180^\circ}{\pi \alpha^\circ} \sin \frac{\alpha}{2} $	$J_{u} = \frac{r^{4} - r_{1}^{4}}{8} \left(\pi \frac{\alpha^{\circ}}{180^{\circ}} + \sin \alpha \right);$ $J_{x} = J_{u} - FV_{0}^{2};$ $J_{y} = \frac{r^{4} - r_{1}^{4}}{8} \left(\pi \frac{\alpha^{\circ}}{180^{\circ}} - \sin \alpha \right)$		$i_{x} = \sqrt{\frac{J_{x}}{F}};$ $i_{y} = \sqrt{\frac{J_{y}}{F}};$

Форма поперечного сечения	Осевой момент инерции J , см 4	Момент сопротивления W , см 3	Рапиус инерции і, см
Профиль с симметричными за- круглениями $\frac{y}{c}$ $\frac{z}{c}$ $\frac{z}{c}$ $\frac{d}{d}$ $\frac{z}{c}$ $\frac{d}{d}$	$J_{x} = \frac{bd^{3}}{12} + \frac{\pi d^{4}}{64};$ $J_{y} = \frac{db^{3}}{12} + \frac{\pi r^{2}}{2} \times \left(r^{2} + b^{2} + 1,696br\right)$	$W_x = \frac{bd^2}{6} + \frac{\pi d^3}{32};$ $W_y = \frac{2J_y}{b+d}$	
Эллипс А В В В В В В В В В В В В В В В В В В	$J_x = \frac{\pi a b^3}{4} \approx 0,7854 a b^3;$ $J_y = \frac{\pi a^3 b}{4} \approx 0,7854 a^3 b$	$W_x = \frac{\pi a b^2}{4} \approx 0,7854 a b^2;$ $W_y = \frac{\pi a^2 b}{4} \approx 0,7854 a^2 b$	$i_x = \frac{b}{2};$ $i_y = \frac{a}{2}$
Ksaxpar y	$J_x = J_y = \frac{b^4}{12}$	$W_{\mathbf{x}} = W_{\mathbf{y}} = \frac{b^3}{6}$	$i_x = i_y = \frac{b}{\sqrt{12}} = 0.289b$

Продолжение табл. 10	′, см³ Радиус инерции і, см	$i_x = i_y = 0.289 \sqrt{b^2 + b_1^2}$	$i_x = i_y = \frac{B}{\sqrt{6}} = 0,408B$
	Момент сопротивления W , см 3	$W_x = W_y = \frac{b^4 - b_1^4}{6b}$	$W_{x} = W_{y} = \frac{4}{3}B^{2}s$
	Осевой момент инерции J , см 4	$J_x = J_y = \frac{b^4 - b_1^4}{12}$	$J_{\chi} = J_{y} = \frac{2}{3}B^{3}s$
	Форма поперечного сечения	Польй квадрат	Толый тонкостенный квадрат

м³ Радиус инерции і, см	лов $i_x = i_y = 0,289b$ дой ния 3	$i_x = i_y = 0.289\sqrt{b^2 + b_1^2}$
Момент сопротивления W, см ³	$W_x = W_y = \frac{\sqrt{2}}{12} b^3 = 0,118 b^3.$ Срез верхнего и нижнего углов увеличивает W_x ; при срезе углов на $C = \frac{1}{18}$ диагонали с каждой стороны момент сопротивления увеличивается до $W_x = 0,124 b^3$	$W_x = W_y = \frac{\sqrt{2}}{12} \frac{b^4 - b_1^4}{b} = 0.118 \frac{b^4 - b_1^4}{b}$
Осевой момент инерции J , см 4	$J_x = J_y = \frac{b^4}{12}$	$J_x = J_y = \frac{b^4 - b_1^4}{12}$
Форма поперечного сечения	РОССИЙСКАЯ РОССИВИННИЙ НА РЕБРО В В В В В В В В В В В В В В В В В В В	Полый квадрат, поставленный на ребро

Радиус инерции і, см	$i_x = \frac{a}{\sqrt{12}} = 0,289a;$ $i_y = \frac{b}{\sqrt{12}} = 0,289b$	$i_2 = 0.289\sqrt{b^2 \cos^2 \alpha + b^2 \sin^2 \alpha}$
Момент сопротивления W , см ³	$W_x = \frac{ba^2}{6};$ $W_y = \frac{ab^2}{6}$	$W_z = \frac{ba}{6} \frac{a^2 \cos^2 \alpha + b^2 \sin^2 \alpha}{a \cos \alpha + b \sin \alpha}$
Осевой момент инерции J , см 4	$J_x = \frac{ba^3}{12};$ $J_y = \frac{ab^3}{12}$	$J_z = \frac{ba}{12} \left(a^2 \cos^2 \alpha + b^2 \sin^2 \alpha \right)$
Форма поперечного сечения	Прямоугольник У С Х С С Х С С Х С С С С С С С С С С С	Прямоугольник повернутый $\frac{y}{z}$ $v_0 = \frac{a\cos\alpha + b\sin\alpha}{z}$

		:	7-
Форма поперечного сечения	Осевой момент инерции Ј, см4	Момент сопротивления W, см ³	Радиус инерции і, см
Польій прямоугольник	$J_x = \frac{ba^3 - b_1 a_1^3}{12};$ $J_y = \frac{ab^3 - a_1 b_1^3}{12}$	$W_{x} = \frac{ba^{3} - b_{1}a_{1}^{3}}{6a},$ $W_{y} = \frac{ab^{3} - a_{1}b_{3}^{3}}{6b}$	$i_{x} = \sqrt{\frac{ba^{3} - b_{1}a_{1}^{3}}{12(ba - b_{1}a_{1})}};$ $i_{y} = \sqrt{\frac{ab^{3} - a_{1}b_{1}^{3}}{12(ba - b_{1}a_{1})}}$
Полый тонкостенный прямо- угольник $\frac{y}{s} = \frac{y}{15}$	$J_{x} = \frac{sH^{3}}{6} \left(3\frac{B}{H} + 1 \right);$ $J_{y} = \frac{sB^{3}}{6} \left(3\frac{H}{B} + 1 \right)$	$W_{\chi} = \frac{sH^2}{3} \left(3\frac{B}{H} + 1 \right);$ $W_{\gamma} = \frac{sB^2}{3} \left(3\frac{H}{H} + 1 \right)$	$i_x = 0.289H \left(\frac{3\frac{B}{H} + 1}{\frac{B}{H} + 1}; \frac{B}{H} + 1 \right)$ $i_y = 0.289B \left(\frac{3\frac{H}{H} + 1}{\frac{B}{H} + 1} \right)$

Форма поперечного сечения	Осевой момент инерции J , см 4	Момент сопротивления W, см ³	Радиус инерции і, см
Сечение из двух равных прямоугольников	$J_x = \frac{b(h^3 - h_1^3)}{12};$ $J_y = \frac{b^3(h - h_1)}{12}$	$W_{x} = \frac{b(h^{3} - h_{1}^{3})}{6h};$ $W_{y} = \frac{b^{2}(h - h_{1})}{6}$	$i_{x} = \sqrt{\frac{h^{2} + hh_{1} + h_{1}^{2}}{12}} = 0.289\sqrt{h^{2} + hh_{1} + h_{1}^{2}};$ $i_{y} = 0.289b$
Треугольник $ \frac{y}{v_0} = \frac{u}{\frac{\lambda}{3}} $	$J_x = \frac{bh^3}{36};$ $J_{u_1} = \frac{bh^3}{4};$ $J_u = \frac{bh^3}{12}$	При вычислении напряжения в вершине треугольника $W_{\chi} = \frac{bh^2}{24};$ при вычислении напряжения в точке основания $W_{\chi} = \frac{bh^2}{12}$	$i_{\chi} = \frac{h}{3\sqrt{2}} = 0,236h$

			·
Форма поперечного сечения	Осевой момент инерции J , см 4	Момент сопротивления W, см ³	Рапиус инерции і, см
Поставленный на ребро треуголь- ник	$J_x = \frac{hb^3}{48}$	$W_{x} = \frac{hb^2}{24}$	$i_x = \frac{b}{6}\sqrt{\frac{3}{2}} = 0,204b$
$\frac{g}{b}$ $V_0 = \frac{h}{3} \frac{b + 2a}{b + a}$	$J_x = \frac{h^3(b^2 + 4ba + a^2)}{36(b+a)}$	При вычислении напряжений в точках верхнего основания $W_{\chi} = \frac{h^2(b^2 + 4ba + a^2)}{12(2b + a)};$ в точках нижнего основания $W_{\chi} = \frac{h^2(b^2 + 4ba + a^2)}{12(b + 2a)};$	$i_x = \frac{h}{6(b+a)} \sqrt{2(b^2 + 4ba + a^2)}$
	$J_x = \frac{h}{48} \frac{b^4 - a^4}{b - a}$	$W_x = \frac{h}{24} \frac{b^4 - a^4}{b^2 - ba}$	$i_x = \sqrt{\frac{b^2 + a^2}{24}}$

Pattuve uhenitut i ch	$i_{x} = \sqrt{\frac{J_{x}}{F}};$ $i_{y} = \sqrt{\frac{h_{1}b^{3} + hb^{3}}{I2(bh_{1} + b_{1}h)}}$	$i_{x}=\sqrt{rac{J_{x}}{F}};$ $i_{y}=\sqrt{rac{J_{x}}{F}};$ где F - площадь сечения
Moveur connormenana W cu3	Для нижних волокон $W_{\chi} = \frac{J_{\chi}}{v_{0}}.$ Для верхних волокон $W_{\chi} = \frac{J_{\chi}}{h + h_{1} - v_{0}};$ $W_{\gamma} = \frac{hb_{1}^{3} + h_{1}b^{3}}{6b}.$	$W_{x} = \frac{J_{x}}{h + h_{1} - v_{0}};$ $W_{y} = \frac{(h + h_{1})b^{3} - h(b - 2b_{1})^{3}}{6b}$
And I utilianiti minima if in the	$J_x = \frac{bh_1^3 + b_1h^3}{12} + bh_1\left(v_0 - \frac{h_1}{2}\right)^2 + bh_1\left(\frac{h}{2} + h_1 - v_0\right)^2;$ $J_y = \frac{hb_1^3 + h_1b^3}{12}$	$J_x = \frac{bh_1^3 + 2b_1h^3}{12} + bh_1\left(v_0 - \frac{h_1}{2}\right)^2 + bh_1\left(\frac{h}{2} + h_1 - v_0\right)^2;$ $J_y = \frac{b^3(h + h_1) - h(b - 2b_1)^3}{12}$
Осима попелечного сечения	Tapp $\mathbf{v}_0 = \frac{b_1}{2(bh_1 + b_1h)}$	Корытное сечение

Форма поперечного сечения	Осевой момент инерции J , см 4	Момент сопротивления W, см ³	Радиус инердии і, см
Крестообразное сечение	$J_x = \frac{b_1 h^3 + (b - b_1) h_1^3}{12};$	$W_{\chi} = \frac{h_1 b^3 + (b - b_1) h^3}{6h};$	$l_{x} = \sqrt{\frac{J_{x}}{F}};$
	$J_{y} = \frac{h_{1}b^{3} + (h - h_{1})b_{1}^{3}}{12}$	$W_{y} = \frac{h_{1}b^{3} + (h - h_{1})b_{1}^{3}}{6b}$	$i_{\mathcal{Y}} = \sqrt{\frac{J_{\mathcal{Y}}}{F}}$
Правильный шестиугольник у	$J_{X} = J_{y} = 0,06h^{4}$ μ_{IIM} $J_{X} = J_{y} = 0,541a^{4}$	$W_x = 0.12h^3 = 0.625a^3;$ $W_y = 0.541a^3$	$i_x = i_y = 0,4565a = 0,257h$
Правильный восьмиугольник 97 17 17 17 17 17 17 17 17 17	$J_x = J_y = J_{x_1} = J_{y_1} = 0.0547h^4$	$W_{x_1} = W_{y_1} = 0.1095h^3;$ $W_x = W_y = 0.1012h^3$	$i_{\mathbf{x}} = i_{\mathbf{x}_1} = 0.257h$

pyca
прямого (
кручения
й при
сечений
кодовых
RIVE
прочности
×
жесткости
еристики
XapakT
ометрические
11. Fe

			Положение точки, в которой
	Момент инерции при кручении Момент сопі $J_{\mathbf{K}}$ см ⁴ кручені	Момент сопротивления при кручении $W_{\mathbf{K}}$ см 3	возникает наибольшее напряжение $\tau = \frac{M_K}{W_K}$
	$J_{K} = J_{\rm p} = \frac{\pi d^4}{32} \approx 0.1d^4$ $W_{\rm K} = W_{\rm p}$	$W_{\rm K} = W_{\rm p} = \frac{\pi d^3}{16} \approx 0.2d^3$	
ЮТИ	$J_{ m K}=J_{ m p}=rac{\pi r^4}{2}pprox 1,57 r^4.$ $W_{ m K}=W_{ m p}=$	$W_{ m K}=W_{ m p}=rac{\pi r^3}{2}pprox 1,57r^3.$	Наибольшее напряжение возни- кает во всех точках у наружного контура поперечного сечения
Полярный $J_{ m p}=2J$	момент инершии	Полярный момент сопротивле- ния $W_{ m p}=2W$	
ì	$J_{\rm K} = J_{\rm p} = \frac{\pi d^4}{32} (1 - \alpha^4)$ $W_{\rm K} = W_{\rm p} =$	$W_{\rm K} = W_{\rm p} = \frac{\pi d^3}{16} \approx (1 - \alpha^4)$	Наибольшее напряжение возни-
или	$J_{ m K}=J_{ m p}pprox 0,1d^4(1-lpha^4)$ $W_{ m K}=W_{ m p}$	$W_{\rm K} = W_{\rm p} \approx 0.2d^3(1 - \alpha^4)$	контура поперечного сечения
į			

Положение точки, в которой возникает наибольшее напряжение $\tau = \frac{M_{K}}{W_{K}}$	Все точки находятся в одина- ковых условиях (приближенно)	Наибольшее напряжение возни- кает в точках A . В точках B напряжение $\tau=0$
Момент сопротивления при кручении $W_{\mathbf{K}}$, см 3	$W_{\mathbf{x}} = \frac{\pi d^2 s}{2}$	$W_{\rm K} = \frac{1}{3}\pi d^2 s$
Момент инерции при кручении $J_{ m K},{ m cm}^4$	$J_{\mathbf{K}}=rac{\pi d^3 s}{4},$ d - средний диаметр	$J_{\mathbf{K}} = \frac{1}{3}\pi d^3 s$
Форма поперечного сечения бруса	Тонкостенное кольно	Heaanxniyroe тонкостенное колъ- uo S < 0,1d

Продолжение табл. 11

Положение точки, в которой возникает наибольшее напряжение $\tau = \frac{M_{K}}{W_{K}}$	Наибольшее напряжение возни- кает в середине плоского среза (точка A). В углах т = 0	Наибольшее напряжение возни- кает по дну канавки (точка A)		1,0 1,5	0,38 0,07	2,63 7,14
Положение возника напряж	Наибольшее напряжени кает в середине плоско (точка A). В углах т = 0	Наибольшее кает по дну	A OT R	0,8	0,63	1,91
фи	1.—		висимост	9,0	0,92	1,52
Момент сопротивления при кручении $W_{ m K_{ m C}}$ см 3	$W_{K} = \frac{d^{3}}{8} \frac{\left(2,6\frac{h}{d} - 1\right)}{\left(0,3\frac{h}{d} + 0,7\right)}$	$W_{K} = \frac{R^3}{K_2}$	Значение коэффициентов K_1 и K_2 в зависимости от $\dfrac{r}{R}$	0,4	1,22	1,31
омент сопр	$W_{\mathbf{K}} = \frac{d^3}{8}$	<i>y</i> x	ициентов К	0,2	1,46	1,23
			ие коэфф	0,1	1,56	1,22
Момент инерции при кручении $J_{ m K},{ m cm}^4$	$\frac{h}{d}-1$	8 4	Значени	50,0	1,56	1,22
инерции пр $J_{\rm K}$, см ⁴	$J_{\rm K} = \frac{d^4}{16} \left(2, 6 \frac{h}{d} - 1 \right)$	$J_{K}=K_{1}R^{4}$		0	1,57	0,64
Момент	**			<i>د</i> ×	K_1	K ₂
Форма поперечного сечения бруса	Круглюе сечение с лыской $\frac{d}{d}$ $1 > \frac{h}{d} > 0,5$	Круглое с круговым вырезом	-)-	D = 2R

Продолжение табл. 11

The comment of the contract of	ropoй ee K	Я	возни- ах сто- в точ-			CB. 10	0,333	0.333	
	$f, B KO$ $footbu$ $t = \frac{M}{W_1}$	напряжение гочках <i>B</i> т	жение Опинив ках A),	$\frac{M_{\mathbf{k}}}{W_{\mathbf{k}}}$		10.00	0,312	0,312	0.74
- Transfer	е точки ает наи сение	ее напря ие в точках $\tau = \frac{\tau_{\text{max}}}{n}$	напря іинах 1 (в точі жение	max =		8,00	0,307	0,307	0.74
	Положение точки, в которой возникает наибольшее напряжение $\tau = \frac{M_{\rm K}}{W_{\rm K}}$		Наибольшее напряжение возни- кает в серединах длинных сто- рон сечения (в точках A), в точ- ках B напряжение	$\tau = \gamma \tau_{\text{max}} = \gamma \frac{M_{\text{x}}}{W_{\text{x}}}$	$\frac{h}{b}$	00.9	0,299	0,299	0,74
	п	Наиболь: точках А. Напряже	Наи(кает рон ках		сти от	5,00	0,291	0,291	0,74
	иди				Значение коэффициентов α , β и γ в зависимости от $\frac{h}{b}$	4,00	0,282	0,281	0,74
	Момент сопротивления при кручении $W_{\mathbf{k}},$ см 3	.63	195		иүвза	3,00	0,267	0,229 0,249 0,263 0,281	0,75
	ент сопротивления кручении $W_{\mathbf{k}}$ см 3	$W_{\rm K} = \frac{\pi n}{2} b^3$	$W_{\mathbf{K}} = \alpha h b^2$		зв α, β	2,50	0,258	0,249	0,77
	омент с круч	<i>H</i>	<u> </u>		шиенто	2,00	0,246	0,229	0,79
	Mc				ффеом	1,75	0,239	0,196 0.214	0,82
	ении				ачение	1,50	0,231	0,196	0,86
	и круч	$\frac{1}{1}b^4$	3		3н	1,25	0,221	0,172	0,91
	рции пр $J_{\mathbf{k}}$, см 4	$J_{\mathbf{K}} = \pi \frac{n^3}{n^2 + 1} b^4$	$J_{K} = \beta h b^{3}$			1,20	0,219	0,141 0,166 0,172	0,93
	Момент инсрции при хручении $J_{ m k}$ см 4	J _K =				1,00	0,208	0,141	1,00
	Моме					h b	ಶ	β	٨
	Форма поперечного сечения бруса	Силошное элимптическое $y A$	Прямоугольное	8	A		В	Q V	$\frac{h}{b} \ge 1$

Продолжение табл. 11

			прооблжение там. 11
Форма поперечного сечения бруса	Момент инерции при кручении $J_{ m K},$ см 4	Момент сопротивления при кручении $W_{\mathbf{k}}$ см 3	Положение точки, в которой возникает наибольшее напряжение $\tau = \frac{M_{K}}{W_{K}}$
Правильный шести- или восьми-			
The state of the s	$J_{K}=Kh^{2}F.$	$W_{K} = KhF$.	
	Для шестиугольника	Для шестиугольника	Наибольшие напряжения воз- никают в середине сторон
7	K' = 0,133.	K = 0,217.	B yiyax $\tau = 0$
	Для восьмиугольника	Для восьмиугольника	
	K' = 0,130.	K=0,233	· · · · · · · · · · · · · · · · · · ·
	F- площадь сечения		
Равносторонний треутольник			
.09	$J_{K} = \frac{b^4}{46.19} = \frac{h^4}{25.98}$	$W_{K} = 0.05b^{3} = \frac{h^{3}}{12.99} = \frac{2J_{K}}{h}$	Наибольшие напряжения возникают в середине сторон. В углях $\tau = 0$
9			

12. Расчетные данные для типовых балок постоянного сечения

щий момент $M_{\rm x\ max}$, уравнение упругой линии v = v(z); значения наибольшего прогиба ${\rm v}_{\rm max}$ и углов поворота ${\rm \theta_1}$ и ${\rm \theta_2}$ соответственно край-В таблице приведены: реакции A, M_A (левой опоры) и B, M_B (правой опоры), выражение изгибающего момента $M_{x}=M_{x}(z)$ в произвольном сечении с координатой 2 (начало координат совпадает с центром тяжести левого торца балки - см. схему 1), наибольший изгибаюнего левого сечения и крайнего правого сечения балки в радианах.

Для каждой балки представлены форма упругой линии и эпюра изгибающих моментов.

Внешние нагрузки обозначены: M - момент в вертикальной плоскости, совпадающей с осью бруса z; P - сосредоточенная сила и q интенсивность распределенной нагрузки, действующие в той же плоскости; E - модуль продольной упругости; J_x - осевой момент инерции поперечного сечения относительно оси x.

m mas surremente vinesco o nontadalloll			
Схема закрепления балки, форма упругой линии, эпюра изгибающих моментов	Реактивные силы и моменты опор	Изгибающий момент в произвольном сечении, наибольший изгибающий момент	Уравнение упругой линии, наибольший прогиб, углы поворота крайних сечений балки
Схема 1			$: \frac{\chi_{X}}{2W} = V$
/		$M_x = M;$	2 EJ
7 2	$M_A=M$	$M_{\gamma \max} = M$	$V_{\text{max}} = \frac{Ml^2}{2\pi r} \text{nph } z = l;$
1		Service &	LEJ x
- A			$\phi = \dot{\phi}$, $\phi = M$
W			$\sigma_1 = 0, \sigma_2 = E_x$
Схема 2			$V = \frac{P}{2ET} \left(\frac{z^3}{2} - Iz^2 \right);$
7	A=P;	$M_x = P(z - l);$	$\frac{pl^3}{r} = \frac{pl^3}{r} \text{insu } \tau = l.$
Zer V	$M_A = Pl$	M P/	$max = 3EJ_x$ where ~ -1
	v	X max	Pl ²
•			$\theta_1 = 0$; $\theta_2 = -\frac{1}{2EJ}$
A CHILD TO THE PARTY OF THE PAR			•

Продолжение табл. 12

ироспастие проста Уравнение упругой линии, наибольший прогиб, углы поворота крайних сечений балки	$v = \frac{q}{12EJ_x} \left(2l\chi^3 - 3l^2\chi^2 - \frac{\chi^4}{2} \right);$ $v_{\text{max}} = -\frac{ql^4}{8EJ_x} \text{ IIph } \chi = l;$ $\theta_1 = 0; \theta_2 = -\frac{ql^2}{6EJ_x}$	$v = \frac{M}{2EJ_x} \left[-\frac{z^3}{3l} + (z - a)^2 + \right.$ $+ \left(2a - \frac{2}{3}l - \frac{a^2}{l} \right) z \right];$ $\theta_1 = \frac{M}{6EJ_x} \left(6a - \frac{3a^2}{l} - 2l \right).$ $\Pi pn \ a = \frac{l}{2} \theta_1 = \theta_2 = \frac{Ml}{24EJ_x}$
Изгибающий момент в произвольном сечении, наибольший изгибающий момент	$M_x = q \left(kz - \frac{l^2 + z^2}{2} \right);$ $M_{x \text{ max}} = \frac{1}{2} q l^2$	$M_{x} = -M\frac{2}{l} (0 \le z \le a);$ $M_{x} = M\left(1 - \frac{2}{l}\right) (a < z \le l);$ $npH a = \frac{l}{2} M_{x max} = \frac{M}{2}$
Реактивные силы и моменты опор	$A = qI;$ $M_A = \frac{1}{2}qI^2$	$A=B=\frac{M}{l}$
Схема закрепления бапки, форма упругой линии, эпнора изгибающих моментов	Схема 3	Схема 4

Продолжение табл. 12

Уравнение упругой линии, наибольший прогиб, углы поворота крайних сечений балки	$v = \frac{P}{6EJ_x} \left[\frac{(l-a)}{l} z^3 - (z-a^3) + \frac{(l-a)^3}{l} z - (l-a)k \right];$ $\theta_1 = -\frac{Pl^2}{6EJ_x} \left[\frac{(l-a)}{l} - \left(\frac{(l-a)}{l} \right)^3 \right];$ $\text{nph } a = \frac{l}{2}$ $v_{\text{max}} = -\frac{Pl^3}{48EJ_x};$ $\theta_1 = -\frac{Pl^3}{16EJ_x};$	$V = \frac{a}{24EJ_x} \left[2lz^3 - z^4 - l^3 z \right];$ $V_{\text{max}} = -\frac{5ql^4}{384EJ_x} \text{ inpu } z = \frac{l}{2};$ $\theta_1 = -\frac{ql^3}{24EJ_x}; \ \theta_2 = \frac{ql^3}{24EJ_x}$
Изгибающий момент в произвольном сечении, наибольший изгибающий момент	$M_{x} = P(l-a)\frac{z}{l}$ $(0 \le z \le a);$ $M_{x} = P(l-a)\frac{z}{l} - P(z-a)$ $(a \le z \le l);$ $M_{x} = P(l-a)\frac{z}{l} - P(z-a)$ $(a \le z \le l);$ $npu \ a = \frac{l}{2}$ $M_{x \max} = \frac{Pl}{4}$	$M_{x} = \frac{1}{2}qz(l-z);$ $M_{x \max} = \frac{1}{8}ql^{2}$
Реактивные силы и моменты опор	$A = P \frac{l - a}{l};$ $B = P \frac{a}{l}$	$A=B=\frac{1}{2}qI$
Схема закрепления балки, форма упругой линии, эпкора изгибающих моментов	Схема 5 A P ((L-a)a VP	Схема 6

			Прооблжение табл. 12
Схема закрепления балки, форма упругой линии, эпкора изгибающих моментов	Реактивные силы и моменты опор	Изгибающий момент в произвольном сечении, наибольший изгибающий момент	Уравнение упругой линии, наибольший прогиб, утлы поворога крайних сечений балки
Схема 7 A	M = B = M	$M_{x} = -M \frac{z}{l}$ $(0 \le z \le l);$ $M_{x} = -M$ $(l \le z \le l + a);$ $W_{x \max} = M$	$V = \frac{M}{6EJ_x} \left[Iz - \frac{z^3}{l} - \frac{(z - l)^3}{l} \right];$ $\Theta_1 = \frac{Ml}{6EJ_x}$
Схема 8 4 ра В ра	$A = P \frac{a}{l};$ $B = P \frac{a+l}{l}$	$M_{x} = -P \frac{az}{l}$ $(0 \le z \le l);$ $M_{x} = -P(l + a - z)$ $(l \le z \le a + l);$ $M_{x \max} = Pa$	$V = \frac{P}{6EJ_x} \left[alz - \frac{az^3}{l} + \frac{(a+l)(z-l)^3}{l} \right];$ $\Theta_1 = \frac{1}{6} \frac{Pal}{EJ_x}$

Продолжение табл. 12

	1	
Уравнение упругой линии, наибольший прогиб, углы поворота крайних сечений балки	$v = \frac{q}{24EJ_X} \left[a^2 l_Z - \frac{a^2 z^3}{l} + 2 \left(\frac{2a^2}{l} + a \right) (z - l)^3 - \frac{1}{2} (z - l)^4 \right];$ $\theta_1 = \frac{1}{12} \frac{qa^2 l}{EJ_X}$	$v = \frac{M}{EJ_x} \left[-\frac{a(2l-a)z^3}{4l^3} + \left[\frac{3}{l} - \frac{3}{2} \frac{a^2}{l^2} - 1 \right] \frac{z^2}{2} + \frac{(z-a)^2}{2} \right];$ $\theta_1 = 0;$ $\theta_2 = \frac{M}{EJ_x} \left[(l-a) - \frac{l}{4} - \frac{3(l-a)^2}{4l} \right]$
Изгибающий момент в произвольном сечении, наибольший изгибающий момент	$M_{x} = -q \frac{a^{2}z}{2l}$ $(0 \le z \le l);$ $M_{x} = -\frac{1}{2}q(l + a - z)^{2}$ $(l \le z \le l + a);$ $M_{x \max} = \frac{1}{2}qa^{2}$	$M_{x} = -Az + M_{A}$ $(0 \le z \le a);$ $M_{x} = -Az + M_{A} + M$ $(a \le z \le l);$ $\text{ITPU } a = l$ $M_{x \text{ max}} = M$
Реактивные силы и моменты опор	$A = \frac{1}{2}q\frac{a^2}{t};$ $B = q\left(\frac{2a^2}{t} + a\right)$	$A = B = \frac{3Ma}{2} \times \frac{(2l-a)}{l^3},$ $X = M = M \left(\frac{a}{l} - 1 \right)$ $-\frac{3}{2} \frac{a^2}{l^2} - 1$
Схема закрепления балки, форма упругой линии, эпкра изгибающих моментов	Схема 9 4 4 4 4 4 4 4 4 4 4 4 4 4	Схема 10

Схема закрепления балки, форма	Реактивные силы и	Изгибающий момент в произвольном	Уравнение упругой линии,
упругой линии, эпюра изгибающих моментов	моменты опор	сечении, наибольший изгибающий момент	наибольший прогиб, углы поворота крайних сечений балки
		$M_{\chi} = P \frac{11Z - 3I}{16}$	r,
1/2 11/2	$A = \frac{11}{27}P;$	$(0 \le z < \frac{l}{z});$	$V = \frac{P}{96EL_x} \left[11z^3 - 9lz^2 - 16\left(z - \frac{l}{2}\right)^3 \right];$
	16 n = 5 p.	5	$V_{\text{max}} = -0,0093 \frac{Pl^3}{2.7}$
PIL PIL	$b = \frac{1}{16} t$,	$M_{x} = \frac{1}{16} F(\ell - \zeta)$	E) x
	$M_A = \frac{3}{16} Pl$	$\left(\frac{l}{2} \le z < l\right);$	$\lim_{n \to \infty} x = u_n > 3x,$ p_1^2
		$M_{x \max} = \frac{3}{16} Pl$	$\theta_1 = 0; \ \theta_2 = \frac{x}{32EJ_x}$
			al [2 , 7 ⁴]
7	$A = \frac{5}{8}qt;$	$M_x = qt \left(\frac{5}{2}z - \frac{1}{2}I - \frac{z^2}{z^2} \right);$	$V = \frac{x}{48EJ_x} \left[5z^3 + 3tz^2 - 2\frac{x}{l} \right];$
	, ((8 8 21)	914
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$B = \frac{3}{8}qt;$	$M_{x \max} = \frac{1}{9}ql^2$	$V_{\text{max}} = -\frac{185EJ_x}{185}$
	$M_A = \frac{1}{2}al^2$	•	при $z = 0.597I;$
3/8/5	. %		$\theta_1 = 0; \ \theta_2 = \frac{q l^3}{48 EJ}$
\			*

Продолжение табл. 12

Схема закрепления балки, форма упругой линии, эпюра изгибающих моментов	Реактивные силы и моменты опор	Изгибающий момент в произвольном сечении, наибольший изгибающий момент	Уравнение упругой линии, наибольший прогиб, углы поворога крайних сечений балки
Cxema 13 MA L/2 L/2 L/2 MB T MB T MB T T T T T T T T T T T T T	$A = B = \frac{3}{2} \frac{M}{l};$ $M_A = M_B = \frac{M}{4}$	$M_x = \frac{M}{4} \left(1 - 6\frac{z}{l} \right)$ $\left(0 \le z \le \frac{l}{2} \right);$ $M_x = \frac{M}{4} \left(5 - 6\frac{z}{l} \right)$ $\left(\frac{l}{2} \le z \le l \right);$ $M_{x \max} = \frac{1}{2}M$	$v = \frac{M}{4EI_x} \left[\frac{z^2}{2} - \frac{z^3}{l} + 2\left(z - \frac{l}{2}\right)^2 \right];$ $v_{\text{max}} = \frac{Ml^2}{216EJ_x} \text{ IIph } z = \frac{l}{3};$ $\theta_1 = \theta_2 = 0$
Схема 14 ма (1/2 Кв) ма (1/2	$A = B = \frac{1}{2}P;$ $M_A = M_B = \frac{1}{8}Pl$	$M_x = P\left(\frac{z}{2} - \frac{l}{8}\right)$ $\left(0 \le z \le \frac{l}{2}\right);$ $M_x = P\left(\frac{l - z}{2} - \frac{l}{8}\right)$ $\left(\frac{l}{2} \le z \le l\right);$ $M_{x \max} = \frac{1}{8}Pl$	$\mathbf{v} = \frac{P}{48EJ_x} \left(4z^3 - 3lz^2 \right)$ $\left(0 \le z \le \frac{l}{2} \right);$ $\mathbf{v}_{\text{max}} = -\frac{Pl^3}{192EJ_x} \text{ iph } z = \frac{l}{2};$ $\theta_1 = \theta_2 = 0$

			Thoomstend man: 14
Схема закрепления балки, форма упругой линии, эпкора изгибающих моментов	Реактивные силы и моменты опор	Изгибающий момент в произвольном сечении, наибольший изгибающий момент	Уравнение упругой линии, наибольший прогиб, углы поворога крайних сечений балки
Схема 15	$A = B = \frac{1}{2}qI;$ $M_A = M_B = \frac{1}{12}qI^2$	$M_{x} = \frac{\dot{q}l^{2}}{2} \left(\frac{z}{l} - \frac{1}{6} - \frac{z^{2}}{l^{2}} \right);$ $M_{x \text{ max}} = \frac{1}{12} q l^{2}$	$v = -\frac{qz^{2}}{24EJ_{x}}(I-z)^{2};$ $v_{max} = -\frac{qI^{4}}{384EJ_{x}} \text{ inpu } z = \frac{I}{2};$ $\theta_{1} = \theta_{2} = 0$
Схема 16	$A = \frac{3 Pa}{2 I},$ $B = P \frac{2I + 3a}{2I},$ $M_A = \frac{1}{2} Pa$	$M_{x} = \frac{Pa}{2} \left(1 - 3\frac{z}{l} \right)$ $(0 \le z \le l);$ $M_{x} = -P(l + a - z) \text{ inpu } z \ge l;$ $M_{x \text{ max}} = Pa$	$v = \frac{P}{4EJ_x} \left[az^2 - \frac{a}{l}z^3 + \frac{(2l + 3a)(z - l)^3}{3l} \right];$ $v_{\text{max}} = \frac{Pal^2}{27EJ_x} \text{ B IIPONETE IIPH } z = \frac{2}{3}l;$ $v = -\frac{Pa^2}{12EJ_x}(3l + 4a);$ $v = -\frac{Pa^2}{12EJ_x}(3l + 4a);$

ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ

Для определения допускаемых напряжений в машиностроении применяют следующие основные методы.

- 1. Дифференцированный запас прочности находят как произведение ряда частных коэффициентов, учитывающих надежность материала, степень ответственности детали, точность расчетных формул и действующие силы и другие факторы, определяющие условия работы деталей.
- 2. Табличный допускаемые напряжения принимают по нормам, систематизированным в виде таблиц (табл. 13 19). Этот метод менее точен, но наиболее прост и удобен для практического пользования при проектировочных и проверочных прочностных расчетах.

В работе конструкторских бюро и при расчетах деталей машин в данном справочнике применяются как дифференцированный, так и табличный методы, а также их комбинация. В табл. 16 - 18 приведены допускаемые напряжения для нетиповых литых деталей, на которые не разработаны специальные методы расчета и соответствующие им допускаемые напряжения. Типовые детали (например, зубчатые и червячные колеса, шкивы) следует рассчитывать по методикам, приводимым в соответствующем разделе справочника или специальной литературе.

Приведенные допускаемые напряжения предназначены для приближенных расчетов только на основные нагрузки. Для более точных расчетов с учетом дополнительных нагрузок (например, динамических) табличные значения следует увеличивать на 20 - 30 %.

Допускаемые напряжения даны без учета концентрации напряжений и размеров детали, вычислены для стальных гладких полированных образцов диаметром 6-12 мм и для необработанных круглых чугунных отливок диаметром 30 мм. При определении наибольших напряжений в рассчитываемой детали нужно номинальные напряжения $\sigma_{\text{ном}}$ и $\tau_{\text{ном}}$ умножать на коэффициент концентрации k_{σ} или k_{τ} :

 $\sigma_{\text{max}} = k_{\sigma} \sigma_{\text{HOM}}$, $\tau_{\text{max}} = k_{\tau} \tau_{\text{HOM}}$.

13. Допускаемые	напряжения* д	іля углеродисты	к сталей
обыкновенного	качества в гоп	ячекатаном сост	DEFER

					Допу	скаемь	ле нап	ряжені	ия ** , !	МПа				
Марка стали	при ј	астяж [σ _p]	ении	пр	и изги [о _{из}]	бе	при	круче [т _{кр}]	нии	п	ои срез [τ _{ср}]	ве	при тии [
	I	II	III	I	II	Ш	I	II	III	I	II	Ш	I	II
Ст2	115	80	60	140	100	80	85	65	50	70	5 0	40	175	120
Ст3	125	90	70	150	110	85	95	65	50	75	50	40	190	135
Ст4	140	95	75	170	120	95	105	75	60	85	65	50	210	145
Ст5	165	115	90	200	140	110	125	90	70	100	65	55	250	175
Стб	195	140	110	230	170	135	145	105	80	115	85	65	290	210

^{*} Горский А. И., Иванов-Емин Е. Б., Кареновский А. И. Определение допускаемых напряжений при расчетах на прочность. НИИмаш, М., 1974.

^{**} Римскими цифрами обозначен вид нагрузки: I - статическая; II - переменная, действующая от нуля до максимума, от максимума до нуля (пульсирующая); III - знакопеременная (симметричная).

14. Механические свойства и допускаемые напряження углеродистых качественных конструкционных сталей

	смя-	=	120	120	135	125	175	175	175	165	195	175	210	190	220	350	200	240	350	210	260	310
	при смя- тии [о _{см}]	ı	165	165	195	185	210	210	240	220	270	240	300	270	520	200	280	340	200	300	360	450
	Ð	H	35	35	40	9	45	45	45	50	9	55	65	55	20	110	09	80	110	65	80	95
	при срезе [тер]	Ħ	45	45	50	20	99	09	99	99	8	65	85	75	8	140	80	100	140	85	105	125
ИПа	E	I	09	65	70	75	85	85	100	8	110	100	120	110	130	200	115	140	700	125	145	185
Допускаемые напряжения **, МПа	нии	Ш	45	45	55	90	09	55	55	09	75	20	80	20	85	135	22	95	135	08	100	120
ряжен	при кручении [^с кр]	II	09	09	65	59	80	20	75	08	95	06	105	06	110	165	100	120	175	105	130	165
ые нап	иди	1	80	80	100	56	110	501	125	110	135	125	150	135	160	250	140	170	250	150	185	230
гускаем	99	Ħ	75	75	8	82	100	95	110	105	125	110	135	120	145	220	130	155	220	135	170	200
Дог	при изгибе [о _{из}]	Π	95	100	115	110	125	120	140	130	160	140	175	155	185	290	165	200	290	175	215	260
	Ĭu	H	130	145	155	150	175	170	200	180	210	200	240	210	260	400	230	270	400	240	290	360
	ении	H	09	09	70	92	80	95	8	85	100	06	105	95	115	180	105	125	180	110	135	160
	при растяжении [σ _p]	=	80	08	8	85	20	115	115	110	130	115	140	125	150	230	130	160	230	140	170	210
	иди	I	110	110	130	125	145	140	165	150	180	165	200	180	210	330	190	230	340	200	240	300
I	при кру- че- нии т.1		06	95	110	·100	120	115	135	125	155	135	160	145	175	270	155	190	270	165	205	245
Предел выносливости	при из- ги- бе о-1		150	155	180	170	200	190	225	210	250	225	270	240	290	450	260	315	450	275	345	405
	при рас- тя- же- нии б-1p	МПа	120	125	145	135	160	150	180	170	700	180	215	190	230	360	210	250	360	220	270	325
Пре-	дел теку- чести о _т		200	210	250	230	250	250	300	280	350	300	350	320	380	650	340	400	650	360	450	650
Вре-	ное соп- ро- тив- ле- ние		330	340	90	380	450	420	200	460	550	200	009	540	920	1000	580	700	1000	610	750	900
	Термо- обра- ботка *		Н	Н	Ц-В59	Н	Ц-В59	Н	Ц-В59	Н	Ц-В58	н	>	Ħ	>	B35	H	>	B35	H	Y	M35
	Мар- ка стали		08	10		15		20		25		30		35			40	-		45		

Продолжение табл. 14

	_																		
	смя-	=	310	420	260	220	310	160	190	190	240	210	290	220	290	260	310	520	
	при смя- тии [о _{см}]	I	450	009	360	310	450	220	290	270	340	300	420	320	410	360	450	209	
	υ	E	95	130	80	65	95	20	09	09	75	65	95	70	75	8	95	160	
	при срезе [тср]	III	125	170	105	85	125	65	80	80	100	85	120	8	105	105	125	210	
Ша	E E	-	185	240	145	125	185	96	115	110	140	120	170	130	165	145	185	300	
Допускаемые напряжения **, МПа	ІИИ	Ш	120	160	100	85	120	09	7.5	7.5	90	80	115	75	110	100	120	200	
ряжени	при кручении [^с кр]	Ħ	160	210	130	110	180	80	100	56	120	105	150	110	155	130	160	260	
ые нап	ифп	I	230	300	185	160	230	110	145	135	170	150	210	160	250	185	230	380	
ускаем	,e	Ш	200	270	170	145	200	100	125	125	150	135	190	145	185	170	200	330	
Доп	при изгибе [о _{из}]	II	760	340	210	185	260	130	165	160	195	175	240	185	250	210	760	430	
	đи	I	360	480	290	250	360	180	.230	210	270	240	330	760	330	290	360	600	
	нии	Ш	160	210	135	115	160	08	100	100	120	110	150	115	150	135	160	260	
	при растяжении [σ _p]	П	210	280	170	140	210	100	130	130	160	140	190	150	190	175	210	350	
	і иди	I	300	400	240	210	300	150	195	180	230	200	280	210	270	240	300	200	
сти	при кру- че- нии т.1		245	325	205	175	245	125	150	150	180	160	230	175	220	200	245	400	
Предел выносливости	при из- ги- бе б-1		405	540	340	290	405	205	255	250	305	270	380	567	370	340	405	670	
I	при рас- тя- же- нии σ-1p	МПа	325	430	270	230	325	165	205	200	245	220	350	235	300	270	325	530	
Пре-	дел теку- чести о _т		700	950	450	380	700	780	420	320	560	360	590	400	999	440	700	1250	
Вре-	ное соп- ро- тив- ле- ние		1000	1200	750	640	900	460	570	550	680	009	840	099	820	750	906	1500	
	Термо- обра- ботка *		B42	B48	TB456	н	y	Н	В	Н	В	Ħ	B45	Н	В	Н	>	M45	
	Мар- ка стали		45			20		20L		30F		40T		50F		65F			

цементация; ТВЧ - закалка с нагревом ТВЧ; В - закалка с охлаждением в воде; М - закалка с охлаждением в масле; НВ - твердость по обозначения термической обработки в табл. 14 - 16: О - отжиг; Н - нормализация; У - улучшение; Ц * Условные

Бринеллю. Число после М, В, Н или ТВЧ - среднее значение твердости по НКС.

** Римскими цифрами обозначен вид натрузки, см. табл. 13.

II р и м е ч в н и е . Марки стали 20Г, 30Г, 40Г, 50Г, 65Г являются старыми марками, действующими до 1988 г. Буква Г в них обозначата содержание мартанца около 1 %.

15. Механические свойства и допускаемые напряжения легированных конструкционных сталей

		Is. Me	ханиче	ские с	Механические своиства и допускаемые напряжения легированных конструкционных стался	и допу	Kaempi	Hamps	жени	леги	DOBAHL	IN KO	HCI Pyr	Monn	NA C	r ice				
			Вре-	Пре-	IBBIH	Предел выносливости	ти				Щ	пуска	эмые 1	тапря	кения	Допускаемые напряжения **, МПа	Па			
Марка	rocr	Термо- обра- ботка *	ное соп- ро- тив- ление	дел те- ку- чес- ти	при рас- тя- же- нии	при из- гибе о.1	при кру- че- нии т-1	pacr	при растяжении [σ _p]	и	о]	при изгибе [онз]		при кручении [т _{кр}]	и нии о]		при срезе [т _{ср}]	99	при смятии [бсм]	и гии эл]
					МПа			-	II	H	1	11	III	II	III	I	Ξ	III	I	II
10T2	4543-71	Н	430	250	175	220	125	140	110	90	170 1	135 1	110 105	5 75	9	85	65	20	210	165
09I2C	19281-89	ı	200	350	190	240	140	170	120	95	200	150 1	120 125	5 90	0 70	001	70	55	250	180
10ХСНД	19281-89	ı	540	400	215	270	155	185	140	110	220	160 1	135 140	0 100	0 80	110	98	65	280	210
20X		н	009	300	210	260	150	190	135	105	230	165 1	130 140	0 100	0 75	5 115	85	09	280	200
		>	700	200	280	350	200	240	175	140	290	220 1	175 18	180 130	0 100	0 145	105	8	360	5 60
		M59	820	630	340	420	240	290	210	170	350	145 2	210 220	0 155	5 120	0 175	125	95	430	320
40X		н	630	330	250	310	180	200	155	125	240	190	155 15	150 115	2 90) 120	6 62	75	300	230
		>	800	059	320	400	230	270	200	160	320	250 2	200 20	200 150	0 1115	5 160	1115	8	400	300
		M39	1100	900	440	550	320	380	280	770	450	340 2	270 28	280 20	200 160	0 230	165	130	260	420
		M48	1300	1100	520	650	380	440	330	760	530	410 3	320 33	330 240		190 270	195	150	670	490
45X	4543-71	Н	650	350	260	320	185	210	160	130	250	195 1	160 1:	155 11	115 90	0 125	95	7.5	310	240
		×	950	750	380	470	270	320	240	190	380	290 2	230 2	240 17	175 13	135 190) 135	105	480	360
		M48	1400	1200	999	700	400	480	350	280	270	430 3	350 30	360 26	260 20	200 290	700	160	720	520
20X		H	650	350	260	325	185	210	160	130	250	200	160 10	160 12	120 9	90 125	6	70	360	240
		M48	1500	1300	009	750	430	200	370	300	009	460 3	370 3	370 27	270 2	210 300) 220	170	750	550
35Г2	•	Н	630	370	250	315	180	200	155	125	240	190 1	160 1.	150 1.	115 9	90 120	95	75	330	230
		B, HB 249	800	650	320	400	230	270	200	160	320	250 2	200 20	200 14	145 1	115 160	1115	8	904	300
40T2		Н	019	390	270	335	195	220	170	135	790	210	170 10	165 12	120 9	95 130	95	75	330	250
		M, HB 331	1120	950	540	099	380	380	310	270	460	380 3	330 29	290 23	230 15	190 230	180	150	580	460
											1									

Продолжение табл. 15

		_	0	9	١º	0	0	٥	0	وا	0	lo	0	0	0	0	0	0	l c	0	٥
	при смятии [σ _{см}]	=	0 260	0 330	0 700	0 330	0 350	0 260	0 380	0 460	0 410	0 500	0 540	3.40	0 610	360	0 380	0 610	067	0	300
	<u> </u>	_	346	440	280	450	480	340	490	640	550	680	750	98	820	480	520	820	390	620	9 6 7
	636	E	8	95	09	105	2	ଛ	115	140	125	135	170	105	195	96	95	200	8	135	8
Ta Ta	при срезе	E	100	125	65	135	140	8	145	185	160	180	215	135	240	125	130	250	115	175	115
*, MI	=	-	140	175	115	180	190	140	200	260	220	270	300	190	330	190	200	330	155	250	160
* вин	z	E	9 2 8	120	75	130	140	100	145	180	160	170	210	130	240	115	145	240	110	170	115
ряже	при кручении [т _{кр}]	Ξ	125	155	100	165	175	125	185	230	200	230	270	170	310	155	185	310	140	220	145
Допускаемые напряжения **, МПа	∯. —	-	175	220	140	230	240	170	250	320	280	340	380	240	410	240	260	420	061	310	200
каемь	.8	Ξ	175	210	130	220	230	175	250	310	270	320	360	220	400	240	250	400	195	300	200
(orryc)	при изгибе [Сиз]	=	210	145	165	280	290	210	310	390	340	410	450	280	500	300	310	200	240	370	250
	ифи	_	270	350	230	360	390	270	400	510	440	540	009	380	999	390	410	099	310	490	320
	ИУ	E	140	170	105	180	185	140	200	250	220	260	290	180	320	190	200	320	160	240	160
	при растяжении [σ _p]	=	175	210	135	220	230	175	250	310	270	330	360	230	410	240	250	410	195	310	200
	pacı	I	230	290	190	300	320	230	330	430	370	450	200	320	550	320	340	550	760	410	270
ИТ	при кру- че- нии т-1		200	245	150	260	280	200	290	360	320	375	420	760	480	230	290	480	225	345	230
Предел выносливости	при из- гибе σ-1		350	425	790	450	470	350	500	620	550	920	725	450	800	475	200	800	390	900	400
—————————————————————————————————————	при рас- тя- же- нии с-1р	MIIa	280	340	210	360	370	280	400	200	440	520	580	360	640	380	400	640	310	480	320
Ilpe-	дел Ку- ти ти		410	200	300	200	750	430	800	1050	800	1200	1400	750	1300	750	850	1400	460	1000	909
Вре-	ное соп-		700	850	009	006	950	700	1000	1250	1100	1300	1450	006	1600	950	1000	1600	780	1200	800
	Термо- обра- ботка *	<u> </u>	H	M, HB 295	H	M	y	E	Ц-М59	M43	Ц-М59	M40	M50	M30	M50	M	M, HB 270	M50	Н	M43	M
	FOCT				<u> </u>							4543-71									
	Стали		45F2		33XC		38XC	18XIT		30XIT		20XTHP		40XФA		30XM	35XM		40XH		12XH2

Продолжение табл. 15

			Вре-	-adII	BBIH	Предел выносливости	CTM				#	опуск	аемы	э нап)	Допускаемые напряжения **, МПа	*,	MIIa				
Термо- соп- те- рас- ботка * тер де-	ное дел соп- те- ро- ку- тив- чес- ление ти ов от	дел те- ку- чес- ти о _т		при рас- тя- же- нии _{G-1p}		при из- гибе с-1	при кру- че- нии т.1	pacı	при растяжении [σ _p]	У И	иди	при изгибе [о _{из}]	. <u>o</u>	кру	при кручении [т _{кр}]		иди	при срезе [т _{ср}]		при смятии [осм]	_ # _
MIIa	MITa	MIIa	MIIa	МПа				I	11	III	-	=	Ξ	П	II	1111	I	11	III		=
y 950 700 380	950 700	700	<u> </u>	380		470	270	320	240	190	380	280	230	240	175 1	140 1	190 1	140 1	110	480	300
TB459 1000 850 400	1000 850	850		400		200	300	340	790	200	410	310	250	250	190	150 2	200	150 1	120	510	380
TB459 680 450 270	680 450	450	<u> </u>	270		340	200	230	170	135	270	210	170	170	125 1	100	140	001	08	340	260
II-M59 1100 850 440	1100 850	850		440		550	320	370	270	220	440	340	270	280	200	160 2	220 1	160	125	250	410
M 1300 1100 520	1300 1100	1100		520		650	375	440	330	260	530	400	320	330	240	190	260 1	190	150	099	200
4543-71 M 800 650 320	800 650	959		320	ĺ	400	230	270	200	160	330	250	200	200	145	115 1	160	115	8	410	300
O 600 360 240	990 360	360	L	240		300	170	200	150	120	240	185	150	150	110	85	120	8	70	300	220
y 1100 850 440	1100 850	850		440		550	320	370	270	220	440	340	270	280	700	160	220 1	160	125	250	410
M46 1500 1300 600	1500 1300	1300		009		750	430	510	380	300	620	470	380	390	270	210	310 2	220 1	170	760	570
M 800 700 320	800 700	700	_	320		400	230	280	200	160	330	250	200	200	150	115	170	120	95	410	300
M 900 750 360	900 750	750		360		450	260	310	240	190	370	290	240	230	170	135	185	140	91	460	360
M 1300 1100 520	1300 1100	1100		520		650	340	440	330	260	540	400	320	340	220	170	790	180	135	099	200
14959-79 M46 1500 1300 600	M46 1500 1300	1300		009		750	360	520	380	300	620	470	380	390	240	180	310	200	145	770	570
M, HB 269 1300 1200 520	1300 1200	1200		520		959	340	440	330	260	540	400	320	340	220	170	260	180	135	029	200
M, HB 269 1600 1400 640	1600 1400	1400		640		800	465	550	400	320	099	200	400	410	300	230	330	240	185	820	009
801-78 O 600 380 240	980 380	380	_	240		300	180	200	150	120	240	180	150	150	110	06	120	8	7.5	300	220
M62 2200 1700 460	2200 1700	1700		460		099	330	740	350	230	890	480	330	550	250	165	440	700	130	1100	520
	1	1			Į.			,													

Условные обозначения термообработки указаны в конце табл. 14.
 ** Римскими цифрами обозначен вид нагрузки, см. табл. 13.

16. Механические свойства и допускаемые напряжения для отливок из углеродистых и легированных сталей

предел выносливости	при из- при годи при годи при изгибе че- при изгибе че- при изгибе годи при годи п	1 11 111	170 100 90 63 48 110 84 68 63 50 40 50 40 32 135 95	180 110 95 65 50 115 90 72 65 52 44 52 42 35 145 105	190 115 100 70 53 120 93 76 70 55 46 55 44 36 150 110	200 120 110 74 56 130 100 80 75 60 48 60 47 38 165 120	220 130 125 84 63 150 110 88 87 65 52 70 53 42 190 125	240 145 140 92 68 170 125 96 100 74 58 75 55 43 210 150	220 130 120 83 63 145 110 88 85 65 52 65 50 40 180 125	220 130 120 83 63 145 105 88 85 65 52 65 50 40 180 125	240 145 140 92 68 170 125 96 100 74 58 75 55 43 210 150	240 145 140 92 68 170 125 96 100 74 58 75 55 43 210 150	260 155 160 100 72 190 135 105 110 79 62 88 64 50 240 155	260 160 165 100 72 200 140 105 115 82 64 90 64 50 250 165	240 145 140 92 68 170 125 96 100 74 58 75 55 43 210 150	320 190 200 125 90 240 170 130 140 98 76 110 78 60 300 200	
аемые	υ v	Ш	<u> </u>							<u> </u>					-		110
(опуск	изгиб 	\vdash	<u> </u>														00,
7	ифи]	1	110	115	120	130	150	170	145	145	170	170	190	200	170	240	100
	ІИИ	Ш	48	50	53	99	63	89	63	63	89	89	72	72	89	90	**
	при тяжен [ор]	11	63	65	70	74	84	92	83	83	92	65	100	100	92	125	
	pac	ı	8	95	100	110	125	140	120	120	140	140	160	165	140	200	
сти	при кру- че- нии с-1		100	110	115	120	130	145	130	130	145	145	155	160	145	190	
предел	при из- гибе о-1		170	180	190	200	220	240	220	220	240	240	260	260	240	320	6
BETH	при рас- тя- же- нии б-1p	MIIa	120	125	135	140	155	170	155	155	170	170	180	180	170	225	ç
Пре-	Te- Ky- Yec- TM		216	235	255	275	314	334	275	294	343	343	392	491	343	589	000
Вре-	ное соп- ро- тив- ление оъ		412	441	471	491	540	695	540	540	589	685	638	638	589	785	000
	Термо- обра- ботка *	•				н				Н	В	Н	В	M	Н	В	**
	rocr										88-226						
	Марка		20Л	25Л	30Л	35Л	45Л	50Л	20TJI	35ГЛ		30FCJI		40XJI	35XFCJI		

Условные обозначения термообработки указаны в конце табл. 14.
 Римскими цифрами обозначен вид нагрузки, см. табл. 13.

17. Механические свойства и допускаемые напряжения для отливок из серого чугуна

		и	Ш		14			18			22	
		при сжатии [осж]	II		83			95			110	
		ифи	-		145			155			165	
	Ша	энии	III		14			18			22	
	Допускаемые напряжения *, МПа	при растяжении [σ _p]	11		70			25			30	
21.7	ряжені	і идп	I		33			40			45	
100	ые нап	нии	III	22	16	13	26	70	16	35	25	22
abon a	ускаем	при кручении [^т кр]	11	30	23	18	36	27	23	45	33	28
TO SI	Доп	иди	I	53	40	33	58	43	37	62	45	40
Успая д		Qe	III	30	25	21	35	30	25	43	35	30
חשווףאת		при изгибе [о _{из}]	II	40	35	29	20	14	35	2.1	47	40
ACMINIC		ďιι	I	70	09	20	08	99	26	88	73	09
11. ILLCARINITECENE EDUNCIDA II AUIJENACMBIE NAIIPARENDA AIA ULABBUR DS CEPUL TJIJNA		Форма сечения		0	<u>100</u>	Н	6	SS	Н	©	22	Н
CBORCIB	цел ивости	при кру- че- нии т.1			50			09			80	
Dance	Предел выносливости	при из- гибе σ-1			70			80			100	
. 11174	И	при кру- че- нии г _{кр}	MIIa		240			260			280	
	Предел прочности	при сжа- тии о _{сж}	M		650			200			750	
	ш	при из- гибе _{оиз}			320			360			00+	
	Вре-	ное соп- ро- тив- ле- ние			150			180			700	
		Марка чугуна (ГОСТ 1412-85)			C4 15			C4 18			C4 20	

Продолжение табл. 17

	и	ΕI		28			37			42	
	при сжатин [о _{сж}]	111		125			165			185	
	фu	I		185			240			260	
МПа	ении	III		28			37			42	
Допускаемые напряжения *, МПа	при растяжении [σ _p]	II		35			48			55	
тряжен	иди	Ι		53			70			78	
тые на	нии	III	43	32	27	48	35	30	20	37	30
ускаем	при кручении [^т кр]	П	52	38	32	09	45	37	92	47	40
Доп	ифи	I	9	20	40	85	9	55	8	65	55
	Ige	III	52	43	35	99	20	42	65	55	45
	при изгибе [о _{из}]-	11	<i>L</i> 9	55	47	8	9	55	85	8	09
	in	I	6	80	89	115	95	80	125	100	87
	Форма		8	100	Н	8	100	Н	8	225	Н
цел 1вости	при Кру- че- нии т.1			100			110			115	
Предел выносливости	при из- гибе о.1			120			140			150	
И	при кру- че- нии ^т кр	МПа		300			390			400	
Предел	при сжа- тии осж	M		850			1100			1200	
H H	при из- гибе о _{из}			460			200			550	
Вре-	ное соп- ро- тив- ле- ние			250			300			350	
	Марка чулуна (ГОСТ 1412-85)			C4 25			C4 30			C4 35	

Продолжение табл. 17

						,			
	при сжатии [σ _{сж}]	E		43			09		
		П		190			190		
	ıdи	I		280			310		
Па	при растяжении [σ _p]	Ш		43			09		
ия *, М		11		57			75		
Допускаемые напряжения *, МПа		I		85			100		
ые нап	при кручении [т _{кр}]	Ш	80	37	30	99	20	45	
скаем		=	65	47	40	.80	09	55	
Допу		П	100	75	63	110	80	75	
	при изгибе [Оиз]	III	99	55	45	85	70	09	
		П	85	70	09	105	85	75	
		Г	130	100	06	140	115	100	
Форма			®	186	Н		.77	Н	
(ел Вости	при кру- че- нии с-1			115			150		
Предел выносливости	при из- гибе о-1			150			200		
×	при кру- че- нии	МПа		460			200		
Предел прочности	при сжа- тии осж	M		1300			1400		
	при из- гибе ^о из			009		650			
Вре- мен- ное соп- ро- тив- ле- ние				400			450	:	
Марка чугуна (ГОСТ 1412-85)				С4 40		C4 45			

* Римскими цифрами обозначен вид нагрузки, см. табл. 13.

18. Механические свойства я допускаемые напряжения для отливок из ковкого чугуна

	н нн м	=			58					63			
		при смятин [осм]	I			125					140		
	ļ		III			25					27		
		при сжатин [осж]	11			40					43		
	МПа	8 —	I			95					105		
	Допускаемые напряжения *, МПа	при растяжении [σ _p]	III			25					27		
	жкен		=			39					42		
	нап)		П			85					95		
	аемы	z	Ш	36	29		25	25	40	32		28	28
	опуск	при кручении [т _{кр}]	ш	9	37		32	32	50	40		35	35
	ď		I	65	52		45	45	70	56		20	20
	-		Ш	40	37		35	30	45	42		40	34
		при изгибе [о _{из}]	H	58	55		20	43	65	09		58	50
		<u> </u>	I	105	100		95	80	115	110		100	85
10. Illegalniscane coorcina il Acid cancinae increparati	Форма			•	+		I			+		I	
	CTM	при кру- че- нии т. і				80					96		
	Предел выносливости	при рас- тя- же- нии				55					09		
	П	при из- гибе с.1				8					100		
	Пре-		B			190					210		
10.		при сре-	МПа			270					290		
	Предел прочности	при 1 кру- с че- нии				340					345		
	Прог	при из- к из- к обиз из-	1			490				********	530		
	Вре-			300					330				
	Вр. ме. ме. ме. ме. ме. ме. ме. ме. ме. ме							КЧ 33 - 8					

Продолжение табл. 18

МПа	при смятии [σ _{см}]	=			29					70			
		-			150					155			
	при сжатии [осж]	E			30					30			
		Ħ			47					48			
		П			110					115			
іия *,	при растяжении [Фр]	Ш			30					30			
Допускаемые напряжения *, МПа		II			45					47			
е нап		1			100				.,	105			
каемы	при кручении [т _{Кр}]	Ш	43	34		30	30	45	36		31	31	
(orryca		11	55	44		38	38	57	45		40	40	
		I	75	09		52	52	80	64		55	55	
	при изгибе [G _{из}]	Ш	50	47		45	38	20	47		45	38	
		11	70	9		9	52	72	9		63	55	
		I	120	110		105	06	125	115		110	95	
Форма			•	+		I		•	+		I		
сти	при кру- че- нии т.1				95					100			
Предел выносливости	при рас- тя- же- нии σ-1p				92					65			
П	при из- гибе с.1				105					110			
Пре-			220					230					
	при сре- зе т _{ср}	МПа			300					320			
Предел прочности	при кру- че- нии ткр				350					370			
Пр	при из- гибе о _{из}				570					580			
Вре- мен- ное соп- ро- тив- ле- ние			350										
Марка чугуна			КЧ 35 - 10					K4 37 - 12 370					

Продолжение табл. 18

	ри тгии см]				80		
	при смятин [о _{см}]	-			165		
					35		
	лри сжатии [о _{сж}]	Ш			55		
Допускаемые напряжения *, МПа	<u>ა</u> —	I			125		
тия *,	ии	III			35		
ряжен	при растяжении [σ _p]	11			53		
е нап	pac	I			110		
саемы	Д	Ш	55	44		38	38
опуся	при кручении [т _{кр}]	11	65	52		45	45
Ц	ਊ	I	85	89		09	09
		Ш	09	55		53	45
	при изгибе [о _{нз}]	H	80	75		70	09
	4	I	130	120		115	100
	Форма			+		I	
сти	при кру- че- нии г.1				120		
Предел выносливости	при рас- тя- же- нии б-1p				80		
ПВВИНС	при из- гибе с-1				135		
Пре-	Te- Ky- Yec- Th	Ia			250		
	при cpe- зе т _{ср}	MIIa			340		
Предел	Предел прочности при п при п при п при п при п п при п п п п				440		
G	при из- гибе ^о из		099		•		
Вре-					450		
	Марка чугуна				КЧ 45-7		

* Римскими цифрами обозначен вид нагрузки, см. табл. 13. П р и м е ч а н и е . Ковкий чугун марок КЧ 30 - 6, КЧ 33 - 8, КЧ 35 - 10, КЧ 37 - 12 относится к ферритному классу; ковкий чугун КЧ 45 - 7 относится к перлитному классу.

17. допускаемые паприжения для инветительность до							
Пластмассы	Разрушающее напряжение при кратковременных статических испытаниях по стандартной методике, МПа			Рекомендуемые допускаемые напряжения при кратковременных нагрузках, МПа			
	σ _{p. c}	σ _p	σ _и	[σ _{p. c}]	[σ _p]	$[\sigma_{\mathtt{H}}]$	
Текстолиты	220	70	100	150	45	65	
Стеклотекстолит	30	45	65	60	35	48	
Капрон	70	60	80	35	30	40	
Поливинилхлорид	85	50	100	42	25	50	
Полиформальдегид	130	60	100	65	36	- 50	
Поликарбонат (дифлон)	80	70	85	37	35	42	
Полипропилен	60	35	50	25	17	22	
Фторопласт Ф-4	20	16	18	8	6	7	

19. Лопускаемые напряжения для пластмассовых деталей

Для пластичных (незакаленных) сталей при статических напряжениях (I вид нагрузки) коэффициент концентрации не учитывают. Для однородных сталей ($\sigma_{\rm B} > 1300$ МПа, а также в случае работы их при низких температурах) коэффициент концентрации, при наличии концентрации напряжения, вводят в расчет и при нагрузках I вида (k > 1). Для пластичных сталей при действии переменных нагрузок и при наличии концентрации напряжений эти напряжения необходимо учитывать.

Для чугунов в большинстве случаев коэффициент концентрации напряжений приближенно принимают равным единице при всех видах нагрузок (I - III).

При расчетах на прочность для учета размеров детали приведенные табличные допускаемые напряжения для литых деталей следует умножать на коэффициент масштабного фактора, равный 1,4 ... 5.

Приближенные эмпирические зависимости пределов выносливости для случаев нагружения с симметричным циклом:

для углеродистых сталей: при изгибе

$$\sigma_{-1} = (0.40 \div 0.46)\sigma_{B};$$

при растяжении или сжатии

$$\sigma_{-1n} = (0.65 \div 0.75)\sigma_{-1};$$

при кручении

$$\tau_{-1} = (0.55 \div 0.65)\sigma_{-1}$$

для легированных сталей: при изгибе

$$\sigma_{-1} = (0.45 \div 0.55)\sigma_{\rm B};$$

при растяжении или сжатии

$$\sigma_{-1p} = (0.7 \div 0.9)\sigma_{-1};$$

при кручении

$$\tau_{-1} = (0.5 \div 0.65)\sigma_{-1};$$

для стального литья: при изгибе

$$\sigma_{-1} = (0.35 \div 0.45)\sigma_{\rm B}$$

при растяжении или сжатии

$$\sigma_{-1p} = (0.65 \div 0.75)\sigma_{-1};$$

при кручении

$$\tau_{-1} = (0.55 \pm 0.65)\sigma_{-1}$$

Механические свойства и допускаемые напряжения антифрикционного чугуна:

предел прочности при изгибе 250 - 300 МПа; допускаемые напряжения при изгибе: 95 МПа для I; 70 МПа - II; 45 МПа - III, где I, II, III - обозначения видов нагрузки, см. табл.

Ориентировочные допускаемые напряжения для цветных металлов на растяжение и сжатие, МПа:

30 ... 110 - для меди;

60 ... 130 - латуни;

50 ... 110 - бронзы;

25 ... 70 - алюминия;

70 ... 140 - дюралюминия.

ОРИЕНТИРОВОЧНЫЕ КОЭФФИЦИЕНТЫ ТРЕНИЯ

20. Коэффициенты трения при покое и скольжении

	Коэффициент трения					
Трущиеся материалы	по	коя	скольжения			
	без смазки	со смазкой	без смазки	со смазкой		
Сталь - сталь	0,15	0,1 - 0,12	0,15	0,05 - 0,1		
Сталь мягкая сталь			0,2	0,1 - 0,2		
Сталь - чугун	0,3		0,18	0,05 - 0,15		
Сталь - бронза	0,12	0,08 - 0,12	0,10	0,07 - 0,10		
Сталь - текстолит	_			0,02 - 0,06		
Чугун - бронза	<u>-</u>	_	0,15 - 0,2	0,07 - 0,15		
Бронза - бронза	_	0,1	0,2	0,07 - 0,1		
Резина - чугун			0,8	0,5		
Металл - дерево	0,5 - 0,6	0,1 - 0,2	0,3 - 0,6	0,1 - 0,2		
Кожа - металл	0,3 - 0,5	0,15	0,6	0,15		
Дерево - дерево	0,4 - 0,6	0,1		_		
Пеньковый канат - дуб	0,8	_	0,5			

21. Коэффициенты трения при слабой смазке для стального вала по подшинникам

Материал подшипника	Коэффициент трения	Материал подшипника	Коэффициент трения
Серый чугун	0,15 - 0,20	Полиамиды, капрон	0,15 - 0,20
Антифрикционный чугун	0,12 - 0,15	Пластик древесный слоистый	0,15 - 0,25
Бронза	0,10 - 0,15	Нейлон	0,10 - 0,20
Баббитовая заливка	0,07 - 0,12	Фторопласт без смазки	0,04 - 0,06
Текстолит	0,15 - 0,25	Резина при смазке водой	0,02 - 0,06

22. Коэффициенты трения скольжения по стали бронзы БрС30 и подининиковых пластмасс

Бронза БрС30	Нейлон	Древесный* слоистый пластик ДСП-Б	Лигнофоль
0,004	0,03 - 0,055	0,04 - 0,08 0,01 - 0,05	0,004

^{*} В числителе - значения при смазке минеральным маслом, в знаменателе - при смазке водой.

Абсолютный Материал Коэффици-Абсолютный Коэффици-Материал ент трения износ, г ент трения износ, г 0,127 Латунь Л63 0.054 0,002 Капрон 0,055 Сталь 45 0,113 0,033 Бронза 0.022 БрОЦС6 - 6 - 3 0,158

23. Коэффициенты трения и износ капрона и металлов

24. Коэффициент трения качения или плечо трения качения К

Трущиеся тела	К, см
Мягкая сталь - мягкая сталь	0,005
Закаленная сталь - закаленная сталь	0,001
Дерево - сталь	0,04

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ И СПЛАВОВ

Метод Бринелля. Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012 - 59 (ИСО 6506 - 81, ИСО 410 - 82) (в редакции 1990 г.).

Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия силы

Твердость по Бринеллю обозначают символом HB или HBW:

НВ - при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);

HBW - при применении шарика из твердого сплава (для металлов и сплавов твердостью более 450 единиц).

Символу НВ (НВW) предшествует числовое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс), продолжительность выдержки, если она отличается от 10 по 15 с.

Примеры обозначений:

250 HB 5/750 - твердость по Бринеллю 250, определенная при применении стального шарика диаметром 5 мм при силе 750 кгс (7355 H) и продолжительности выдержки от 10 до 15 с;

575 HBW 2,5/187,5/30 - твердость по Бринеллю 575, определенная при применении шарика из твердого сплава диаметром 2,5 мм при силе 187,5 кгс (1839 Н) и продолжительности выдержки 30 с.

При определении твердости стальным шариком или шариком из твердого сплава диаметром 10 мм при силе 3000 кгс (29420 H) и продолжительности выдержки от 10 до 15 с твердость по Бринеллю обозначают только

числовым значением твердости и символом HB или HBW.

Пример обозначения: 185 HB, 600 HBW.

Метод Виккерса. Метод измерения твердости черных и цветных металлов и сплавов при нагрузках от 9,807 H (1 кгс) до 980,7 H (100 кгс) по Виккерсу регламентирует ГОСТ 2999 - 75* (в редакции 1987 г.).

Измерение твердости основано на вдавливании адмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

Твердость по Виккерсу при условиях испытания - силовое воздействие 294,2 Н (30 кгс) и время выдержки под нагрузкой 10 ... 15 с, обозначают цифрами, характеризующими величину твердости, и буквами НV.

Пример обозначения: 500 HV - твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 ... 15 с.

При других условиях испытания после букв HV указывают нагрузку и время выдержки.

Пример обозначения: 220 HV 10/40 - твердость по Виккерсу, полученная при силе 98,07 H (10 кгс) и времени выдержки 40 с.

Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

Метод Роквелла. Метод измерения твердости металлов и сплавов по Роквеллу регламентирует ГОСТ 9013 - 59* (в редакции 1989 г.).

Сущность метода заключается во внедрении в поверхность образца (или изделия) алмаз-

ного конусного (шкалы A, C, D) или стального сферического наконечника (шкалы B, E, F, G, H, K) под действием последовательно прилагаемых предварительной и основной сил и в определении глубины внедрения наконечника после снятия основной силы.

Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости, которому предшествует числовое значение твердости из трех значащих цифр.

Пример обозначения: **61,5 HRC** - твердость по Роквеллу 61,5 единиц по шкале C.

С целью обеспечения единства измерений введен государственный специальный эталон для воспроизведения шкал твердости Роквелла и Супер-Роквелла и передачи их при помощи образцовых средств измерений (рабочих эталонов) рабочим средствам измерений, применяемым в стране (ГОСТ 8.064 - 94).

Диапазоны шкал твердости по Роквеллу и Супер-Роквеллу, воспроизводимых эталоном, приведены в табл. 25.

25. Диапазоны шкал твердости по Роквеллу и Супер-Роквеллу, воспроизводимых эталоном по ГОСТ 8.064 - 94

Шкалы		Диапазоны измерений
Роквелла А		70 - 93 HRA
В		25 - 100 HRB
	C	20 - 67 HRC
Супер-		
Роквелла	N 15	70 - 94 HRN 15
	N 30	40 - 86 HRN 30
	N 45	20 - 78 HRN 45
	T 15	62 - 93 HRT 15
	T 30	15 - 82 HRT 30
	T 45	10 - 72 HRT 45

26. Сравнение чисел твердости металлов и сплавов по различным шкалам

Виккерс HV	Бринелль НВ	Роквелл HRB	σ _в , Μ∏а	Виккерс HV	Бринелль НВ	Роквелл HRC	σ _в , ΜΠα
100	100	52,4	333	245	245	21,2	815
105	105	57,5	350	250	250	22,1	835
110	110	60,9	362	255	255	23,0	855
115	115	64,1	382	260	260	23,9	865
120	120	67,0	402	265	265	24,8	880
125	125	69,8	410	270	270	25,6	9 00
130	130	72,4	430	275	275	26.4	910
135	135	74,7	450	280	280	27,2	930
140	140	76,6	470	285	285	28.0	950
145	145	78,3	480	290	290	28,8	970
150	150	79,9	500	295	295	29,5	980
155	155	81,4	520	300	300	30,2	1000
160	160	82,8	530	310	310	31,6	1030
165	165	84,2	550	320	319	33,0	1060
170	170	85,6	565	330	328	34,2	1090
175	175	87,0	580	340	336	35,3	1120
180	180	88,3	600	350	344	36,3	1150
185	185	89,5	620	360	352	37,2	1180
190	190	90,6	640	370	360	38,1	1200
195	195	91,7	650	380	368	38,9	1230
200	200	92,8	665	390	376	39,7	1260
205	205	93,8	685	400	384	40,5	1290
210	210	94,8	695	410	392	41,3	1305
215	215	95,7	715	420	400	42,1	1335
220	220	96,6	735	430	408	42,9	1365
225	225	97,5	745	440	416	43,7	1385
230	230	98,4	765	450	425	44,5	1410
235	235	99,2	785	460	434	45,3	1440
240	240	100,0	795	470	443	46,1	1480

Продолжение табл. 26

Виккерс HV	Роквелл HRC	Виккерс HV	Роквелл HRC	Виккерс HV	Роквелл HRC	Виккерс HV	Роквелл HRC
490	47,5	600	54,2	720	60,2	840	65,1
500	48,2	620	55,4	740	61,1	860	65,8
520	49,6	640	56,5	760	62,0	880	66,4
540	50,8	660	57,5	780	62,8	900	67,0
560	52	680	58,4	800	63,6	1114	69
580	53,1	700	59,3	820	64,3	1220	72

 Π р и м е ч а н и е. Погрешность перевода чисел твердости по Виккерсу в единицы Бринелля \pm 20 НВ; в единицы Роквелла - до \pm 3 HRC (HRB); значения σ_B до \pm 10 %.

В табл. 26 приводятся приближенные соотношения между числами твердости, определенные различными методами. С достаточной степенью точности для конструкционных углеродистых и легированных сталей перлитного класса, для которых 150 HB, можно принять $\sigma_{0,2}=0,367$ HB, для стали HB $<150\sigma_{0,2}\approx$ \approx 0,2 HB. Для конструкционных сталей низколегированных и углеродистых (HB \geq 150) $\sigma_{\rm B}\approx$ \approx 0,345 HB. Для более точного пересчета HB на HRC рекомендуется пользоваться ГОСТ 22761-77.

дополнительные источники

1. Справочник металлиста. В 5 т. Изд. 3-е. Т. 1 / Под ред. С. А. Чернавского и В. Ф. Решикова. М.: Машиностроение, 1976.

- 2. **Биргер И. А., Шорр Б. Ф., Иосилевич Г. Б.** Расчет на прочность деталей машин: Справочник. 3-е изд., перераб. и доп. М.: Машиностроение, 1988.
- 3. Феодосьев В. И. Сопротивление материалов. М.: Наука, 1986.
- 4. Выгодский М. Я. Справочник по элементарной математике. Изд. 23-е. М.: Наука, 1974.
- 5. Орлов П. И. Основы конструирования: Справочно-методическое пособие. В 3-х т. М.: Машиностроение, 1989.
- Справочник. Инженерный журнал. № 1, 1997.
- Стравочник. Инженерный журнал. № 3, 1997.
- Справочник. Инженерный журнал. № 1, 1999.

Глава II МАТЕРИАЛЫ

СТАЛИ

ОСНОВНЫЕ УКАЗАНИЯ ПО ВЫБОРУ МАРКИ СТАЛИ

При выборе сталей необходимо учитывать их свойства, условия работы деталей и конструкций, характер нагрузок и напряжений.

Назначая марку стали, следует руководствоваться следующим.

- 1. По возможности шире использовать стали: углеродистую обыкновенного качества Ст3, автоматную A12 и углеродистые конструкционные 15, 35 и 45. Автоматная сталь хорошо обрабатывается, но склонна к красноломкости, т.е. к хрупкости при горячей механической обработке. Из стали Ст3 и автоматной стали изготовляют детали, для которых не требуется большая прочность.
- 2. В сварных конструкциях применять утлеродистые стали марок Ст0, Ст3, Ст5, Ст6, 15, 35, 45, 50Г. Сварка легированных сталей несколько затруднена из-за склонности к закатке околошовной зоны и образованию в ней хрупких структур (требуется специальная технология сварки).
- 3. Марганцовистые стали в состоянии проката или после нормализации имеют повышенную прочность и упругость. Они относительно дешевы и пригодны для изготовления деталей, которые должны иметь повышенную прочность, вязкость и сопротивляемость изнашиванию.
- 4. Легированные термически обработанные стали обладают более высоким комплексом механических свойств, чем углеродистые. Они лучше прокаливаются. При закалке легированные стали охлаждают в масле, что значительно уменьшает опасность образования закалочных трещин. Стали, содержащие никель, молибден и вольфрам, следует применять, если их нельзя заменить сталями, содержащими кремний, марганец и хром.

СТАЛЬ УТЛЕРОДИСТАЯ ОБЫКНОВЕННОГО КАЧЕСТВА (по ГОСТ 380-94)

ГОСТ 380-94 распространяется на углеродистую сталь обыкновенного качества, предназначенную для изготовления горячекатаного проката: сортового, фасонного, толсто-, тон-

колистового, широкополосного и холоднокатаного тонколистового, а также слитков, блюмов, слябов, сутунки, катаных и литых заготовок, труб, поковок и штамповок, ленты, проволоки, метизов и др.

Марки стали. Углеродистую сталь обыкновенного качества изготовляют следующих марок: Ст0, Ст1кп, Ст1пс, Ст1сп, Ст2кп, Ст2пс, Ст2сп, Ст3кп,Ст3пс,Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст4пс, Ст4сп, Ст5пс, Ст5сп, Ст5Гпс, Ст6пс, Ст6пс, Ст6сп, Ст6пс, Ст6сп, Ст

Буквы Ст обозначают "Сталь", цифры - условный номер марки в зависимости от химического состава, буквы "кп", "пс", "сп" - степень раскисления ("кп" - кипящая, "пс" - полуспокойная, "сп" - спокойная).

ГОСТ 380-94 соответствует международным стандартам ИСО 630-80 и ИСО 1052-82 в части требований к химическому составу стали.

Сопоставление марок стали типа "Ст" и типа "Fe" по ИСО 630-80 и ИСО 1052-82 привелено в табл. I.

I. Сопоставление марок стали типа "Ст" (ГОСТ 380-94) и "Fe" (ИСО 630-80 и ИСО 1052-82)

Марки стали типов						
"Ст"	"Fe"	"Ст"	"Fe"			
Ст0	Fe310-0	Ст4кп	Fe430-A			
Стікп	-	Ст4пс	Fe430-B			
Ст1пс	-	Ст4сп	Fe430-C			
Стісп	-	-	Fe430-D			
Ст2кп	-	Ст5пс	Fe510-B, Fe490			
Ст2пс	-	Ст5Гпс	Fe510-B, Fe490			
Ст2сп	-	Ст5сп	Fe510-C, Fe490			
Ст3кп	Fe360-A					
Ст3пс	Fe360-B	Ст6пс	Fe590			
Ст3Гпс	Fe360-B	Стбсп	Fe590			
Ст3сп	Fe360-C	-	Fe690			
Ст3Гсп	Fe360-C					
	Fe360-D					

Марки зарубежных аналогов углеродистой стали обыкновенного качества, определенные по совпадению значений или интервалов содержания основных элементов (C, Si, Mn, P и S), приведены в табл. II, а определенные из сопоставления временного сопротивления разрыву $\sigma_{\rm B}$ и предела: текучести $\sigma_{\rm T}$ (при этом разброс значений $\sigma_{\rm B}$ и $\sigma_{\rm T}$ в пределах \pm 50 МПа) - в табл. III.

II. Марки зарубежных углеродистых сталей обыкновенного качества, близких по химическому составу отечественным сталям

Россия (ГОСТ)	CIIIA (ASTM)	Германия (DIN)	Япония (JIS)
Ст2сп	-	RSt34-2	-
Ст3Гпс, Ст5Гпс	A572/42	St52-3И	SM41B
C τ3Γπc	A131/B A573/58	-	SM41B

III. Марки зарубежных углеродистых сталей обыкновенного качества, соответствующих отечественным по механическим свойствам

Россия (ГОСТ)	США (ASTM)	Германия (DIN)	Япония (JIS)
Ст2кп, Ст2пс	-	Ust34-2	SS34
Ст3сп	A283/C	RSt37-2	-
Ст3кп, Ст3пс	A283/C	Ust37-2	-
Ст3Гпс Ст3Гсп Ст4сп Ст4сп Ст5сп	A572/42 A131/B A283/D A131/A	- Ust42-2 St44-2 St50-2	SM41B SM41B SS41 SM41A SS50
Стбсп	-	St60-2	

Химические составы сталей углеродистых обыкновенного качества по ГОСТ 380-94, стандартам ИСО и национальным зарубежным стандартам приведены в табл. IV - VI.

IV. Химический состав углеродистой стали обыкновенного качества по ГОСТ 380-94

· · · · · · · · · · · · · · · · · · ·	Ma	ассовая доля элементов,	, %
Марка стали	С	Mn	Si
Ст0	Не более 0,23	-	-
Стікп			Не более 0,05
Ст1пс	0,06 - 0,12		0,05 - 0,15
Ст1сп		0,25 - 0,50	0,15 - 0,30
Ст2кп			Не более 0,05
Ст2пс	0,09 - 0,15		0,05 - 0,15
Ст2сп			0,15 - 0,30
Ст3кп		0,30 - 0,60	Не более 0,05
Ст3пс			0,05 - 0,15
Ст3сп	0,14 - 0,22	0,40 - 0,65	0,15 - 0,30
Ст3Гпс			Не более 0,15
Ст3Гсп	0,14 - 0,20	0,80 - 1,10	0,15 - 0,30
Ст4кп			Не более 0,05
Ст4пс	0,18 - 0,27	0,40 - 0,70	0,05 - 0,15
Ст4сп			0,15 - 0,30
Ст5пс			0,05 - 0,15
Ст5сп	0,28 - 0,37	0,50 - 0,80	0,15 - 0,30
Cτ5Γπc	0,22 - 0,30	0,80 - 1,20	Не более 0,15
Ст6пс			0,05 - 0,15
Ст6сп	0,38 - 0,49	0,50 - 0,80	0,15 - 0,30

СТАЛИ

81

V. Химический состав стали марок "Fe" по международным стандартам ИСО 630-80 и ИСО 1052-82

Марка	Категория	Толщина	Ma	ссовая	доля э	лементог	з, %, не б	более	Степень
стали	качества	проката, мм	С	Mn	Si	P	S	N	раскисления
Fe310	0	-	-	1,6	0,55	-		-	-
Fe360	Α	-	0,20			0,060	0,050	-	-
	В	До 16 Св. 16	0,18 0,20	1,6	0,55	0,050 0,050	0,050 0,050	0,009 0,009	-
	С	-	0,17 0,17			0,045 0,040	0,045 0,040	0,009 -	E CF
Fe430	A	-	0,24			0,060	0,050	-	-
	В	До 40 Св. 40	0,21 0,22	1,6	0,55	0,050 0,050	0,050 0,050	0,009 0,009	E E
	С	-	0,20 0,20			0,045 0,040	0,045 0,040	0,009 	E CF
Fe510	В	-	0,22			0,050	0,050	` -	E
	С	До 16 Св. 16 До 35 Св. 35	0,20 0,22 0,20 0,22	1,6	0,55	0,045 0,045 0,040 0,040	0,045 0,045 0,040 0,040	- - -	E E CF CF
Fe490	-	-	-	-	-	0,050	0,050	-	-
Fe590	-	-	-	-	-	0,050	0,050 0,050	-	-
Fe690				<u> </u>		0,030	0,050		

Примечания: 1. Знак "-" означает, что показатель не нормируется; 2. Е - спокойная сталь; 3. СF - мелкозернистая спокойная сталь. Рекомендуемая массовая доля общего алюминия не менее 0,02 %.

VI. Химический состав зарубежных аналогов углеродистых сталей по национальным стандартам

Страна,	Марка		Mad	ссовая доля эле	ементов,	%	
стандарт	стали	С	Si	Mn	P	S	Прочие
Германия, DIN	RSt34-2	0,15	0,03 - 0,30	0,20 - 0,30	0,05	0,05 *	0,007N
17100	St52-3И	0,22	0,35	1,60	0,04	0,04	0,009N
США, ASTM A572	Grade 42	0,21	0,40	0,5 - 1,35	0,04	0,05	-
ASTM A131	Grade B	0,21	0,35	0,8 - 1,1	0,04	0,04	-
ASTM A573	Grade 58	0,23	0,10 - 0,35	0,6 - 0,9	0,04	0,05	-
Япония, JIS G3106	SM41B	0,22	0,35	0,6 - 1,2	0,04	0,04	-

ПРОКАТ СОРТОВОЙ И ФАСОННЫЙ ИЗ УГЛЕРОДИСТОЙ СТАЛИ ОБЫКНОВЕННОГО КАЧЕСТВА (по ГОСТ 535-88)

Стандарт распространяется на горячекатаный сортовой и фасонный прокат общего и специального назначения из углеродистой стали обыкновенного качества.

Сортамент стати должен соответствовать требованиям: горячекатаной круглой - ГОСТ 2590-88; горячекатаной квадратной - ГОСТ 2591-88; горячекатаной полосовой - ГОСТ 103-76; горячекатаной шестигранной - ГОСТ 2879-88, угловой равнополочной - ГОСТ 8509-93; угловой неравнополочной - ГОСТ 8510-86; балок двугавровых - ГОСТ 8239-89; швелиеров - ГОСТ 8240-89 (и др. сталей, см. ГОСТ 535-88).

Технические требования. Марки стали, химический состав должны соответствовать требованиям ГОСТ 380-94.

В зависимости от назначения сортовой прокат делится на группы:

I - для применения без обработки поверхности;

II - для холодной механической обработки резанием;

III - для горячей обработки давлением.

Фасонный прокат изготовляют только группы I.

В зависимости от нормируемых показателей прокат подразделяют на категории: 1, 2, 3, 4 и 5 (табл. 1). Для обозначения категории к обозначению марки стали добавляют номер категории, например Cт3пc1, Cт3пc5, Ст4сп3.

Прокат разделяется на сортовой и фасонный.

К сортовому относится прокат, у которого касательная к любой точке контура поперечного сечения данное сечение не пересекает (прокат круглый, квадратный, шестигранный, полосовой).

К фасонному относится прокат, у которого касательная хотя бы к одной точке контура поперечного сечения данное сечение пересекает (балка, швеллер, уголок и профили специального назначения).

Прокат изготовляют в горячекатаном состоянии. Для обеспечения требуемых свойств может применяться термическая обработка.

1. Нормируемые показатели проката по категориям (по ГОСТ 535-88)

		e.		پ	МО	Удар	ная вяз	кость	
Категория	Химический состав	Временное сопротивление	Предел гекучести	Этносительное удлинение	иб в холодном состоянии	при т ратур	емпе- ре, °С	После механического старения	Марка стали
_	×			TO.	Изгиб сос	+20	-20	мех	
1	-	+	+	+	+	-	-	_	Ст0; Ст3кп; Ст3пс; Ст3сп;
2	+	+	+	+	+	-	-	-	Ст4кп; Ст4пс; Ст4сп; Ст5пс; Ст5сп; Ст6пс; Ст6сп Ст3кп; Ст3пс; Ст3сп; Ст4кп;
	+	+	+	+	+	+	<u>-</u>	-	Ст4пс; Ст4сп; Ст5пс; Ст5сп
3 4 5	+	+ +	++	+	+	-	+	+	Ст3пс; Ст3сп; Ст4пс; Ст4сп Ст3пс; Ст3сп Ст3пс; Ст3сп

Примечания:

1. Знак "+" означает, что показатель нормируется.

 Для стали марки Сто предел текучести и изгиб, для стали марок Стопс и Стосп изгиб не нормируют.

3. Фасонный и полосовой прокат категории 2 из стали марок Ст3пс, Ст3сп, Ст4пс, Ст4сп изготовляют толщиной менее 3 мм и более 40 мм. Сортовой прокат категории 2 из тех же марок стали изготовляют диаметром менее 12 мм, стороной квадрата менее 11 мм и диаметром (стороной квадрата) более 40 мм.

Механические свойства проката при растяжении, а также условия испытаний на изгиб должны соответствовать нормам, приведенным в табл. 1а.

Ударная вязкость сортового и фасонного проката категорий 3, 4, 5 из стали марок Ст3пс, Ст3сп, а также категории 3 из стали марок Ст4пс, Ст4сп должна соответствовать приведенной в табл. 16.

1а. Механические свойства проката в условия непытания на изгиб (по ГОСТ 535-88)

	Временное сопротивление св. Н/мм², для толцин, мм	опротивление /мм², цин, мм		Предел т	Предел текучести о _т , Н/мм ² , для толщин, мм	г, Н/мм², мм		Om MULK KUK	Относительное удлинение бъ. %, для толщин, мм	10е ММ	Изгиб до параллельности сторон (а - толщина	, до Бности толщина
Марка стали	до 10	св. 10	до 10	св. 10 до 20	св. 20 до 40	св. 40 до 100	св. 100	до 20	св. 20 до 40	св. 40	образца, <i>d</i> - диаметр оправки) для толщин, мм	. диаметр г) для г, мм
						не менее	2				до 20	св. 20
C _T O	Не ме	Не менее 300	t	1	ı	1	ı	18	18	15	ı	S1
СтЗкп	360 - 4	- 460	235	235	225	215	185	27	26	24	d = a	d = 2a
СтЗис	370 - 4	- 480	245	245	235	225	205	26	25	23	q = a	d = 2a
СтЗсп	380 - 490	370 - 480	255	245	235	225	205	56	25	23	q = a	d = 2a
Cr4x11	400 -	- 510	255	255	245	235	225	25	24	22	d = 2a	d = 3a
Cr4nc Cr4cn	410 -	- 530	265	265	255	245	235	24	23	21	d = 2a	d = 3a
Ст5пс	- 490 -	- 630	285	285	275	265	255	20	19	17	d=3a	d = 4a
Ст5сп	490 -	- 630	295	285	275	265	255	20	19	17	d = 3a	d = 4a
Стбпс	Не ме	Не менее 590	315	315	305	295	295	15	41	12	1	,

Примечания:

1. По согласованию изготовителя с потребителем для фасонного проката толщиной свыше 20 мм значение предела текучести допускается на 10 Н/мм² ниже по сравнению с указанным.

2. По согласованию изготовителя с потребителем допускается снижение относительного удлинения для фасонного проката всех толщин

3. По согласованию изготовителя с потребителем допускается превышение верхнего предела временного сопротивления по сравнению с указанным на 50 Н/мм² при условии выполнения остальных норм. на 1 % (абс.).

		Ударн	ая вязкость К	CU, Дж/см ² , не менее
Марка стали	Толщина проката, мм	при темпе	ратуре, °С	после механического
Clain	npokara, sist	+20	-20	старения
Ст3пс,	3,0 - 4,9	108	49	49
Ст3сп	5,0 - 9,9	108	49	49
	10 - 25	98	29	29
	26 - 40	88	-	-
Ст4пс,	3,0 - 4,9	98	-	-
Ст4сп	5,0 - 9,9	98	-	-
	10 - 25	88	-	_
	26 - 40	69	-	-

16. Ударная вязкость проката

Примечания:

1. Знак "-" означает, что испытание не проводится.

2. Определение ударной вязкости проката круглого сечения проводят, начиная с диаметра 12 мм, квадратного, начиная со стороны квадрата 11 мм, фасонного - с толщин, из которых могут быть вырезаны образцы типов 1 и 3 по ГОСТ 9454-78.

3. При испытании проката на ударную вязкость допускается снижение величины ударной вязкости на одном образце на 30 %, при этом среднее значение должно быть не ниже норм, указанных в таблице.

Примеры условных обозначений проката.

Прокат горячекатаный круглый диаметром 30 мм обычной точности прокатки (В), II класса кривизны, по ГОСТ 2590-88 марки Ст5пс, категории 1, группы II:

Kpyz
$$\frac{30 - B - II \ \Gamma OCT 2590 - 88}{Cm5nc \ I - II \ \Gamma OCT 535 - 88}$$
.

Уголок горячекатаный равнополочный размером 50×3 мм, высокой точности прокатки (A) по ГОСТ 8509-93, марки Ст3сп, категории 2:

$$y$$
голок $\frac{5 \times 3 - A\ \Gamma O C T 8509 - 93}{C m 3 n c\ 2\ \Gamma O C T 535 - 88}$.

ПРОКАТ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ ВЫСОКОЙ ОБРАБАТЫВАЕМОСТИ РЕЗАНИЕМ (по ГОСТ 1414-75 в ред. 1990 г.)

По видам обработки прокат делят на: горячекатаный, калиброванный, круглый со специальной отделкой поверхности, круглый с обточенной поверхностью.

По состоянию материала прокат изготовляют: без термической обработ-

ки, термически обработанный - Т; нагартованный - Н (для калиброванного проката).

В зависимости от назначения (здесь приводится подгруппа б) - для холодной механической обработки (обточки, строжки, фрезерования и т.д.). Назначение проката (подгруппу) указывают в заказе.

В зависимости от химического состава приводится только углеродистая сернистая сталь марок All, Al2, A20, A30, A35.

По форме и размерам горячекатаный прокат (размером до 100 мм) изготовляют по ГОСТ 2590-88, ГОСТ 2591-88 и ГОСТ 2879-88, калиброванный (размером до 60 мм) - по ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78 и серебрянку - по ГОСТ 14955-77 и т.д.

Пример обозначения горячекатаного круглого проката диаметром 48 мм, обычной точности прокатки В по ГОСТ 2590-88 углеродистой сернистой марки АЗО, для холодной механической обработки (подгруппа б), поставляемой в термически обработанном состоянии Т:

85

2. Механические свойства и твердость горячекатаного и калиб	рованного
термически необработанного проката из углеродистой сернист	ой стали

Марка стали	Размеры, мм	Вид обработки	Временное сопротив- ление $\sigma_{\rm B}$, МПа	Относитель- ное удлине- ние δ ₅ , %	Относи- тельное сужение ψ, %	Твердость НВ, не более
				не менее		
A11			410	22	34	160
A12		Горячекатаный	410	22	34	160
A20	Bce		450	20	30	168
A30	размеры		510	15	25	185
A35			510	15	23	201
A11		$(\sigma_T = 390 \text{ M}\Pi a)$	490	10	-	207
A12	30 и менее		510	7		217
A12	Св. 30	Калиброван-	460	7		217
A20	Все раз- меры	ный нагарто- ванный	530	7	-	217
A30	То же		540	6		223
A35	»		570	6		229

 Π р и м е ч а н и е . Прокат из стали A12 с 1991 г. не допускается к применению во вновь создаваемой технике.

ПРОКАТ ИЗ УГЛЕРОДИСТОЙ КАЧЕСТВЕННОЙ КОНСТРУКЦИОННОЙ СТАЛИ (по ГОСТ 1050-88)

Классификация. По видам обработки прокат делят на: горячекатаный и кованый; калиброванный; со специальной отделкой поверхности.

По состоянию материала прокат изготовляют: без термической обработки, термически обработанный - ТО; нагартованный - НГ (для калиброванного проката и круглого проката со специальной отделкой поверхности).

Прокат сортовой изготовляют двух групп качества поверхности:

2ГП - преимущественно для горячей обработки давлением;

3ГП - преимущественно для холодной механической обработки.

Марки стали: 08, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 58 (55пп), 60.

В обозначении марки стали цифры означают среднее содержание углерода в сотых долях процента.

Качество поверхности и требования по обрезке концов калиброванного проката должны соответствовать ГОСТ 1051-73 групп Б и В, со специальной отделкой поверхности - ГОСТ 14955-77 групп В, Г и Д.

Твердость (ТВ1) сортового проката без термообработки не должна превышать 255 НВ; калиброванного и со специальной отделкой поверхности нагартованного - 269 НВ.

Технические требования. Механические свойства и ударная вязкость проката приведены в табл. 3. Нормы механических свойств, указанные в табл. 3, относятся к прокату диаметром или толщиной до 80 мм. Для проката диаметром или толщиной свыше 80 мм допускается снижение относительного удлинения на 2 % и относительного сужения на 5 %.

Нормированная в баллах макроструктура (КМС) приведена в табл. 4.

Нормированные механические свойства (M2) калиброванного проката в нагартованном или термообработанном состоянии приведены в табл. 5.

3. Механические свойства проката в нормализованном состоянии (М1)

Марка стали	Предел текучести от, МПа	Временное сопротивление $\sigma_{\rm B},~{ m M}\Pi{ m a}$	Относительное удлинение 85, %	Относительное сужение ψ, %	Ударная вязкость * КСU, Дж/см ²
			не менее		
08	196	320	33	60	_
10	205	330	31	55	-
15	225	370	27	55	-
20	245	410	25	55	-
25	275	450	23	50	88
30	295	490	21	50	78
35	315	530	20	45	69
40	335	570	19	45	59
45	355	600	16	40	49
50	375	630	14	40	38
55	380	650	13	35	_
58 (55ππ)	315	660	12	28	-
60	400	680	12	35	_

^{*} Ударная вязкость (КУВ) термически обработанных (закалка + отпуск) образцов.

Примечания:

Нормы механических свойств для заготовок, перекованных из прутков диаметром или толщиной свыше 120 до 250 мм на прокат диаметром или толщиной от 90 до 100 мм, должны соответствовать приведенным в табл. 3.

2. По согласованию изготовителя с потребителем для стали марок 25 - 60 допускается снижение временного сопротивления на 20 МПа по сравнению с нормами, указанными в табл. 3, при одновременном повыщении норм относительного удлинения на 2 % (абс.).

4. Нормированная макроструктура (КМС) стали в баллах, не более

Цент- ральная порис-	Точеч- ная неод	Ликва- 'цион- ный	Общая пятнис- тая	Краевая пятнис- тая	ликвал про	цочная ция для ката ером	Подкор- ковые	Межкрис- таллитные
тость	нород- ность	квадрат	ликва- ция	ликва- ция	до 70 мм	св. 70 мм	пузыри	трещины
3	3	3	2	1	1	2	Не дог	тускаются

 $[\]Pi$ р и м е ч а н и е . Для проката размером 70 мм и более с качеством поверхности группы 3ГП допускаются подкорковые пузыри балла 2 на глубину не более 1/2 допуска на диаметр или толщину.

^{1.} Нормы механических свойств, приведенные в табл. 3, относятся к прокату диаметром или толщиной до 80 мм. Для проката диаметром или толщиной свыше 80 мм допускается снижение относительного удлинения на 2 % (абс.) и относительного сужения на 5 % (абс.).

Марка	Временное сопротивление разрыву ов, МПа	Относи- тельное удлинение 85, %	Относи- тельное сужение ψ, %	Временное сопротивление разрыву ов, МПа	Относи- тельное удлинение δ ₅ , %	Относи- тельное сужение ψ, %
стали	Прок	ат нагартованн	йш		г отожженный окоотпущеннь	
			не м	енее		
10	410	8	50	290	26	55
15	440	8	45	340	23	55
20	490	7	40	390	21	50
25	540	7	40	410	19	50
30	560	7	35	440	17	45
35	590	6	35	470	15	45
40	610	6	35	510	14	40
45	640	6	30	540	13	40
50	660	6	30	560	12	40

5. Нормированные механические свойства (М2) калиброванного проката

Нормируемая твердость (ТВ2) проката приведена в табл. 6.

Сортамент проката: горячекатаного круглого марок 08-60 по

TOCT 2590-88;

горячекатаного квадратного - ГОСТ 2591-88:

горячекатаного шестигранного - ГОСТ 2879-88:

горячекатаного полосового - ГОСТ 103-76; горячекатаного полосового - ГОСТ 103-76; горячекатаного и квадратного - ГОСТ

калиброванного круглого - ГОСТ 7417-75; круглого со специальной отделкой поверхности - ГОСТ 14955-77.

Примеры условных обозначений

Прокат сортовой, круплый, обычной точности прокатки (В), II класса по кривизне, немерной длины (НД), диаметром 100 мм по ГОСТ 2590-88, из стали марки 30, с качеством поверхности группы 2ГП, с механическими свойствами по (М1), с твердостью по (ТВ1), с контролем ударной вязкости по (КУВ), с удалением заусенцев (УЗ), с испытанием на горячую осадку (65), без термической обработки:

Прокат полосовой, обычной точности прокатки (В), серповидности класса 2, отклонения от плоскостности класса 2, кратной мерной длины (КД), толщиной 36 мм, шириной 90 мм по ГОСТ 103-76, из стали марки 45, с качеством поверхности группы 3ГП, с механическими свойствами по (М1), с твердостью по (ТВ1), с нормированной прокаливаемостью (ПР), без термической обработки:

Полоса <u>B-2-2-КД-36 × 90 ГОСТ 103-76</u> 45-3ГП-М1-ТВ1-ПР ГОСТ 1050-88

Прокат калиброванный, квадратный, с полем допуска h11, кратной мерной длины (КД), со стороной квадрата 15 мм по ГОСТ 8559-75, из стали марки 20, с качеством поверхности группы Б по ГОСТ 1051-73, с механическими свойствами по (МЗ), с твердостью по (ТВ2), с обеспечением свариваемости (ГС), нагартованный (НГ):

Прокат калиброванный, шестигранный, с полем допуска h12, немерной длины (НД), диаметром вписанного круга 8 мм по ГОСТ 8560-78, из стали марки 45, с качеством поверхности группы В по ГОСТ 1051-73, с механическими свойствами по (М1), с твердостью по (ТВ4), термически обработанный (ТО):

Примеры условных обозначений, которые допускается приводить в конструкторской документации:

Прокат со специальной отделкой поверхности, круглый, с полем допуска h11, немерной длины (НД), диаметром 8 мм, качеством поверхности группы В по ГОСТ 14955-77, из стали марки 20, с механическими свойствами по табл. 5 (М2), с твердостью по (ТВ3), нагартованный (НГ):

Kpyr
$$\frac{h11-V^{-4}}{20-B-N}$$
 $\frac{FOCT\ 14955-77}{4FFF}$ $\frac{1050-88}{1050-88}$

5а. Нормированные механические свойства (МЗ) проката, определяемые на образцах, вырезанных из термообработанных заготовок (закалка + отпуск)

					Механич	Механические свойства проката размером	а проката раз	мером				
		до 16	16 мм			от 16 до 40 мм	40 мм			от 40 до 100 мм	00 мм	
стали	Предел текучести ^{Съ} МПа	Временное сопротив- ление разрыву св. МПа	Относи- тельное удлинение δ ₅ , %	Работа удара КС, Дж	Предел текучести ^о т. МПа	Временное сопротив- ление разрыву св. МПа	Относи- тельное удлинение δ ₅ , %	Работа удара КС, Дж	Предел текучести ^о т. МПа	Временное сопротив- ление разрыву съ, МПа	Относи- тельное удлинение δs, %	Работа удара КС, Дж
	не менес		H	не менее			H	не менее			не менее	lee
	375	950 - 700	19	35	315	990 - 009	21	35	ı	,	I	1
	400	600 - 750	18	30	355	550 - 700	20	30	295	900 - 650	21	30
	430	630 - 780	17	25	380	922 - 009	19	25	315	550 - 700	20	25
	460	650 - 800	16	20	400	630 - 780	18	20	355	927 - 009	19	20
	490	700 - 850	4	15	430	008 - 059	16	15	375	630 - 780	17	15
	520	750 - 900	13	1	460	700 - 850	15	1	400	909 - 900	16	ı
	550	056 - 008	12	ı	490	750 - 900	14	(420	700 - 850	15	1
	580	850 - 1000	11	1	520	800 -950	13	1	450	750 - 900	14	1

р и м е ч а и и я :
 Нормы механических свойств до 01.01.92 не являются браковочными, определение обязательно.
 Механические свойства стали 30 распространяются на прокат размером до 63 мм.
 Значения механических свойств приведены для проката круплого сечения.

6.	Нормируемая	твердость,	HB,	проката
----	-------------	------------	-----	---------

	Прокат горячека	таный и кованый	Прокат калиброванный и со специальной отделкой поверхности				
Марка стали	без термообработки	после отжига или высокого отпуска	нагартованный	отожженный или высокоотпущенный			
	не более						
08	131	-	179	131			
10	143	-	187	143			
15	149	-	197	149			
20	163	~	207	163			
25	170	-	217	170			
30	179	-	229	179			
35	207	· -	229	187			
40	217	187	241	197			
45	220	197	241	207			
50	241	207	255	217			
55	255	217	269	229			
60	255	229	269	229			

7. Допустимые центральная пористость, точечная неоднородность и ликвационный квадрат

		Максимально д	цопустимый балл д	ия стали	
Наименование дефекта	Диаметр или толшина	электродуговой с в кислой мар	электро- шлакового		
	прутка, мм	ШХ4, ШХ15, ШХ15СГ	шх20СГ	переплава	
Центральная пористость Точечная неоднородность Ликвационный квадрат	От 30 и более 30 - 95 100 и более От 30 и более	2 1,5 2 0,5	2 2,5 2,5 0,5	1 1 1 Не допус- ка е тся	

ПОДШИПНИКОВАЯ СТАЛЬ (по ГОСТ 801-78 в ред. 1990 г.)

Подшипниковую сталь изготовляют марок ШX15, ШX4, ШX15СГ и ШX20СГ диаметром или толщиной до 250 мм.

В обозначении марок стали буквы и цифры означают: III - подшипниковая; X - легированная хромом; 15 - содержание хрома (1,5%); СГ - легированная кремнием и марганцем (табл. 7).

Сталь изготовляют в пругках, полосах и мотках.

По форме, размерам и предельным отклонениям сталь соответствует:

ГОСТ 2590-88 - горячекатаная круглая; ГОСТ 2591-88 - горячекатаная квадратная; ОСТ 14-2-205-87 - для заготовки квадратной;

ГОСТ 103-76 - горячекатаная полосовая; ГОСТ 14955-77 - круглая холоднотянутая сталь со специальной отделкой поверхности, 4-го класса точности, группы В и Г;

ГОСТ 7417-75 - сталь калиброванная.

ПРОКАТ ИЗ ЛЕГИРОВАННОЙ КОНСТРУКЦИОННОЙ СТАЛИ (по ГОСТ 4543-71 в ред. 1990 г.)

В обозначении марок стали (табл. 8) двузначные цифры слева указывают среднее содержание углерода в сотых долях процента, цифры после букв (табл. 9) - процент примерного содержания соответствующего элемента в целых единицах. Отсутствие цифр означает содержание легирующего элемента до 1,5 %.

Из легированной стали выпускают прокат: горячекатаный и кованый диаметром или толщиной до 250 мм, калиброванный и со специальной отделкой поверхности.

В зависимости от химического состава и свойств сталь делят на категории: качественную, высококачественную - А, особо высококачественную - Ш (сталь электрошлакового переплава).

В зависимости от качества поверхности горячекатаный и кованый прокат изготовляют групп: 1, 2, 3.

В соответствии с заказом сталь поставляют как в термически обработанном состоянии (отожженную, высокоотпущенную или нормализованную с высоким отпуском), так и без термообработки.

8. Механические свойства проката из термически обработанной легированной стали некоторых марок (по ГОСТ 4543-71)

COURTER INVERSIGABLE TO TEMPORTED TO THE PROPERTY OF THE PROPERTY MANDER (110 1 OCT 4343-11)		Примерное	назначение		См. табл. 15	Оси, катки, валики, ба- лансиры, зубчатые копеса	То же, а также ответствен- ные болты, шпильки, гайки		См. табл. 15	Ответственные валы, зубча- тые колеса, упорные кольца	Ведущие валы, оси, от- ветственные болты	См. табл. 15	Валы, оси, шатуны, колен- чатые валы, требующие большой износостойкости
MA MADOR (III		Размер сечения	заготовок, мм		15		25			25	15	25	15
Advin neaviou	_	Твердость	НВ, не более		.179	187	197	217	229		229	241	187
Joannon C		KCU,	UX CM ²		65	69		59	49	39	88	78	ı
du la		→			40	45	45	45	45	40	50	45	40
annon		85	%	Hee Hee	11	12	11	10	6	6	12	12	10
copadoo		ρ	Па	не менее	780	880	910	086	1030	1080	930	930	880
au accura		ษ์	MIIa		635	685	735	785	835	885	735	835	735
major on mina		Отпуск	Среда охлажде-	ния	Воздух или масло	Вода или	масло	Вода	масло	Вода	Масло		Воздух или масло
ndin marono	Термообработка	OTT	Темпера- тура,	°C	180	200		200	520	520	540	995	200
	Термооб Закалка ра- Среда охлаждения вода или масло Масло			Масло		Масло		Масто					
		Зак	Темпера- тура,	ာင	* 088	098		098	840	830	880	850	880
		Марка	стали		20 X	30X	35X	40X	45X	20X	30XMA	ЗЅХМ	18XF

Продолжение табл. 8

* Температура 860 °C относится к первой закалке, для второй закалки температура 760 - 810 °C.

Примечания: 1. Нормы твердости (НВ) приведены для отожженного или высокоотщиенного проката. 2. В табл. 8 указаны размеры сечения заготовок (диаметр круга или толщина квадрата) для термической обработки.

9. Буквенные обозначения легирующих опешентов									
Название элемента	Марганец	Кремний	Хром	Никель	Молибден	Ванадий	Вольфрам	Титан	Алюминий
Стандартное обозначение	Γ	С	X	Н	M	Φ	В	Т	Ю

9. Буквенные обозначения легирующих элементов в марках сталей и сплавов

Примеры условных обозначений:

Прокат горячекатаный, квадратный, со стороной квадрата 46 мм, обычной точности прокатки В по ГОСТ 2591-88, марки 18ХГТ, группы качества поверхности 2, термически обработанный Т:

То же, круглый, диаметром 80 мм, обычной точности прокатки В по ГОСТ 2590-88, марки 18Х2Н4МА, группы качества поверхности 1, вариант механических свойств 2, термически обработанный Т:

То же, полосовой, толщиной 20 мм, шириной 75 мм по ГОСТ.103-76, марки 25ХГТ, группы качества поверхности 3, вариант механических свойств 1, без термической обработки:

Полоса
$$\frac{20 \times 75 \ \Gamma OCT \ 103-76}{25XIT-3-1 \ \Gamma OCT \ 4543-71}$$

По ГОСТ 4543-71 изготовляют прокат и из других марок стали.

Сортамент проката: горячекатаный круглый - ГОСТ 2590-88, горячекатаный квадратный - ГОСТ 2591-88, полосовой - ГОСТ 103-76, со специальной отделкой поверхности - ГОСТ 14955-77, круглый калиброванный ГОСТ 7417-75, ГОСТ 1133-71.

ИНСТРУМЕНТАЛЬНАЯ НЕЛЕГИРОВАННАЯ СТАЛЬ (по ГОСТ 1435-90)

ГОСТ 1435-90 распространяется на прутки и полосы кованые; прутки, полосы и мотки горячекатаные, калиброванные и со специальной отделкой поверхности (далее - металлопродукцию) из инструментальной нелегированной углеродистой стали, а также в части норм химического состава - на слитки, заготовку, лист, ленту, проволоку и другую продукцию.

Классификация. Инструментальную нелегированную сталь по химическому составу подразделяют на качественную и высококачественную - А.

По назначению в зависимости от содержания хрома, никеля и меди сталь подразделяют на три группы (табл. 10а):

- для продукции всех видов, в том числе для сердечников, кроме патентированной проволоки и ленты;
- 2 для патентированной проволоки и ленты:
- 3 для продукции всех видов (в том числе для горячекатаных и колоднокатаных листов и лент), технология изготовления которой предусматривает многократные нагревы, усиливающие возможность проявления графитизации стали, а также для продукции, от которой требуется повышенная прокаливаемость (кроме проката для сердечников, патентированной проволоки и ленты).

По способу дальнейшей обработки горячекатаные и кованые прутки и полосы подразделяют на подгруппы:

- а для горячей обработки давлением (в том числе для осадки, высадки), а также для холодной протяжки;
- б для холодной механической обработки (обточки, строжки, фрезерования и т. д.).

По состоянию материала металлопродукцию изготовляют: без термической обработки; термически обработанной - Т; нагартованной - Н (для калиброванных и со специальной отделкой поверхности прутков).

Группа металлопродукции, а также назначение - для металлопродукции первой группы, используемой для изготовления сердечников, способ дальнейшей обработки, состояние материала, группа отделки поверхности должны быть указаны в заказе.

Марки и химический состав инструментальной нелегированной стали по плавочному анализу должны соответствовать приведенным в табл. 10.

С ортамент. Металлопродукцию изготовляют в пругках, полосах и мотках.

По форме, размерам и предельным отклонениям металлопродукция должна соответствовать требованиям:

прокат стальной горячекатаный: круглый - ГОСТ 2590-88; квадратный - ГОСТ 2591-88; шестигранный - ГОСТ 2879-88; прутки кованые квадратные и круглые - ГОСТ 1133-79; полосы - ГОСТ 103-76; ГОСТ 4405-75; прутки (мотки) калиброванные - ГОСТ 7417-75; ГОСТ 8559-75; ГОСТ 8560-78 квалитетов h11 и h12; прутки со специальной отделкой поверхности - ГОСТ 14955-77 квалитетов h11 и h12.

10. Химический состав инструментальной нелегированной стали (по ГОСТ 1435-90)

	Содержание элемента, %							
Марка стали	утлерода	кремния	марганца	серы	фосфора			
				не	более			
У7 У8 У8Г У9 У10 У11 У12 У13	0,65 - 0,74 0,75 - 0,84 0,80 - 0,90 0,85 - 0,94 0,95 - 1,04 1,05 - 1,14 1,15 - 1,24 1,25 - 1,35	0,17 - 0,33	0,17 - 0,33 0,17 - 0,33 0,33 - 0,58 0,17 - 0,33 0,17 - 0,33 0,17 - 0,33 0,17 - 0,33 0,17 - 0,33	0,028	0,030			
У7А У8А У8ГА У9А У10А У11А У12А У13A	0,65 - 0,74 0,75 - 0,84 0,80 - 0,90 0,85 - 0,94 0,95 - 1,04 1,05 - 1,14 1,15 - 1,24 1,25 - 1,35	0,17 - 0,33	0,17 - 0,28 0,17 - 0,28 0,33 - 0,58 0,17 - 0,28 0,17 - 0,28 0,17 - 0,28 0,17 - 0,28 0,17 - 0,28	0,018	0,025			

Примечания:

1. Буквы и цифры в обозначении марки стали означают: У - углеродистая, следующая за ней цифра - среднее содержание углерода в десятых долях процента; Г - повышенное содержание марганца.

2. Содержание серы в стали, полученной методом электрошлакового переплава, не должно превышать 0,013 %.

10а. Группы металлопродукции из инструментальной нелегированной стали

		Содержание элемента, %			
Группа металло-	Марка стали	хрома	никеля	меди	
продукции			олее		
1	У7, У8, У8Г, У9, У10, У11, У12, У13, У7А, У8А, У8ГА, У9А, У10А, У11А, У12А, У13А	Не более 0,20	0,25	0,25	
2	У7А, У8А, У8ГА, У9А, У10А, У11А, У12А, У13А	Не более 0,12	0,12	0,20	
3	У7, У8, У8Г, У9, У10, У11, У12, У13, У7А, У8А, У8ГА, У9А, У10А, У11А, У12А, У13А	0,20 - 0,40	0,25	0,25	

Примечания:

1. В металлопродукции 2-й группы суммарное содержание хрома, никеля и меди не должно превышать 0,40 %.

2. В металлопродукции 1-й и 3-й групп, изготовленной из стали, полученной скраппроцессом, допускается повышенное по сравнению с указанным в таблице содержание никеля, меди и хрома на 0,05 % каждого элемента. Для металла, предназначенного для изготовления холоднокатаной ленты, увеличение содержания никеля, меди и хрома не допускается.

11. Твердость термообработанной	металлопродукции и твер	рдость образцов после закалки
II. IDOPAGOID IOPAGOIP	(по ГОСТ 1435-90)	

		ермообработанной юпродукции	Твердость образцов после закалки в воде		
Марка стали	НВ, не менее	Диаметр отпечатка, мм, не менее	Температура закалки, °С	HRC₃ (HRC), не менее	
У7, У7А У8, У8А, У8Г, У8ГА	187	4,4	800 - 820 780 - 800	63 (62)	
У9, У9А	192	4,35	760 - 780	63 (62)	
У10, У10А	207	4,2	770 - 800	63 (62)	
У11, У11А	212	4,15	770 - 800	63 (62)	
У12, У12A У13, У13A	212 217	4,15 4,1	760 - 790	64 (63)	

Твердость прутков для сердечников должна соответствовать приведенной ниже.

Вид термообработки	НВ, не более	Диаметр отпечатка, мм, не менее	HRC₃ (HRC), не менее	
Отжиг или отпуск	269	3,7	-	
Закалка	-	-	65 (64)	

Примечание. Термообработанную металлопродукцию диаметром или толщиной менее 5 мм на твердость не проверяют, а по требованию потребителя испытывают на растяжение. Временное сопротивление должно соответствовать нормам, приведенным ниже.

Марка стали	Временное сопротивление $\sigma_{\rm B},$ $H/{\rm mm}^2,$ не более
У7, У7А, У8, У8А, У8Г, У8ГА, У9, У9А	650
У10, У10А, У11, У11А, У12, У12А, У13, У13А	750

ПРОКАТ КАЛИБРОВАННЫЙ (по ГОСТ 1051-73 в ред. 1991 г.)

Стандарт распространяется на калиброванный прокат круглого, квадратного и шестигранного профиля из стали: углеродистой и легированной качественной конструкционной; рессорно-пружинной, повышенной и высокой обрабатываемости резанием; углеродистой; легированной и быстрорежущей инструментальной; теплоустойчивой; коррозионностойкой, жаростойкой и жаропрочной.

Сортамент проката должен соответствовать ГОСТ 7417-75, ГОСТ 8559-75 и ГОСТ 8560-78.

Прокат изготовляется в нагартованном - Н или в термически обработанном состоянии - Т (отожженный, высокоотпущенный, нормализованный с отпуском, закаленный с отпуском, закаленный).

Поверхность калиброванного проката должна быть чистой, гладкой, светлой или

матовой, без трещин, плен, закатов и окалины и, в зависимости от качества поверхности, подразделяется на группы, указанные в табл. 11а.

На поверхности проката допускаются винтообразные следы от правки и волочения, получающиеся в процессе производства и не нарушающие сплопиности метапла, если глубина их залегания не превышает норм табл. 11а, установленных для дефектов поверхности.

Жимический состав, макроструктура и твердость проката должны соответствовать ГОСТ 1050-88, ГОСТ 1414-75, ГОСТ 1435-90, ГОСТ 4543-71, ГОСТ 5949-75, ГОСТ 5950-73, ГОСТ 14959-79, ГОСТ 19265-73 и ГОСТ 20072-74.

Примечание Нормы твердости термически обработанного (нормализованного, нормализованного с отпуском, закаленного с отпуском, закаленного) калиброванного проката, если они не регламентированы стандартами, устанавливаются по согласованию изготовителя с потребителем.

Группа качества поверхности	Квалитет	Допускаемые дефекты поверхности	Наибольшая глубина залегания дефектов
A	h9	Отделъные мелкие риски ме- ханического происхождения	Устанавливается со- глащением изготовите- ля с потребителем
	h10		1/2 предельных от- клонений
Б	h10, h11, h12	Отдельные мелкие риски ме- ханического происхождения, остатки окалины, отпечатки, рябизна, пологие зачистки, сле- ды от зачистки абразивом	Предельные откло- нения
	h10, h11	Отдельные мелкие риски ме- ханического происхождения, остатки окалины, отпечатки, рябизна, пологие зачистки, сле- ды от зачистки абразивом, от- дельные мелкие раскатанные и раскованные пузыри и загрязне- ния (волосовины)	Предельные откло- нения
В	h12	Отдельные мелкие риски ме- ханического происхождения, остатки окалины, отпечатки, рябизна, пологие зачистки, сле- ды от зачистки абразивом.	Предельные откло- нения для квалитета h12
		Кроме того, отдельные мел- кие раскованные и раскатанные пузыри и загрязнения (волосовины)	Предельные откло- нения для квалитета hll

11а. Группы качества поверхности калиброванного проката

Примечания:

- 1. Глубину залегания дефектов считают от фактического размера.
- 2. На поверхности термически обрабатываемого проката допускается окисная пленка.
- 3. Допускается уточнение характеристики поверхности по согласованным эталонам с указанием вида и количества дефектов на единицу поверхности.
 - 4. По требованию заказчика прокат изготовляют:
- а) групп A и \overline{b} с нормированной шероховатостью поверхности по Rz не более 20 мкм при базовой длине 2,5 мм; по Ra не более 2,5 мкм при базовой длине 0,8 мм и Ra не более 1,25 мкм при базовой длине 0,8 мм до Γ OCT 2789-73;
- б) групп Б и В с наибольшей глубиной залегания дефектов не более половины предельных отклонений по h10 и h11.
 - 5. Допускается удалять дефекты путем шлифования.
- Калиброванный прокат квалитета h9 изготовляют по согласованию изготовителя с потребителем.

Примеры условных обозначений:

Прокат круглый, диаметром 8 мм, квалитета hl2 по ГОСТ 7417-75, из углеродистой качественной конструкционной стали марки 45, с качеством поверхности группы Б, нагартованный - H:

Kpy=
$$\frac{8-h12 \quad \Gamma OCT \ 7417 - 75}{45-E-H \quad \Gamma OCT \ 1051 - 73}$$

Прокат квадратный, со стороной квадрата 15 мм, квалитета h11 по ГОСТ 8559-75, из легированной конструкционной стали марки 20X, с качеством поверхности группы B, термически обработанный - Т:

Квадрат
$$\frac{15 - h11 \quad \Gamma OCT \ 8559 - 75}{20X - B - T \quad \Gamma OCT \ 1051 - 73}$$
.

СТАЛЬ КАЧЕСТВЕННАЯ КРУГЛАЯ СО СПЕЦИАЛЬНОЙ ОТДЕЛКОЙ ПОВЕРХНОСТИ (по ГОСТ 14955-77 в ред. 1990 г.)

На круглой качественной стали специальная отделка поверхности достигается удалением поверхностного слоя. Сталь подразделяют:

по качеству отделки поверхности на группы: $A, B, B, \Gamma, J, E;$

по точности изготовления на квалитеты: h5, h6, h7, h8, h9, h10, h11, h12;

по виду продукции: на прутки, мотки;

по состоянию материала: на термически обработанную - T, нагартованную - H.

Прутки изготовляют следующей длины: немерные: от 0,7 до 1,0 м - при диаметре от 0,2 до 0,6 мм включительно; от 1,0 до 1,5 м - при диаметре св. 0,6 до 2,0 мм включительно; от 1,5 до 2,0 м - при диаметре св. 2,0 до 3,0 мм включительно; от 1,9 до 3,5 м - при диаметре св. 3,0 до 9,0 мм включительно; от 1,9 до 4,0 м - при диаметре св. 9,0 мм;

мерные или кратные мерной (в пределах немерной) с предельными отклонениями по ллине + 50 мм.

Примеры обозначений

Сталь диаметром 5 мм, в прутках, группы B, квалитета h9, термически обработанная марки 20X:

Пруток 5-В-h9-Т-20Х ГОСТ 14955-77

То же, в мотках, нагартованная:

Momoκ 5-B-h9-H-20X ΓΟCT 14955-77

Сталь диаметром 10 мм, в прутках, группы Б, квалитета h8, термически обработанная марки У8:

Пруток 10-Б-h8-Т-У8 ГОСТ 14955-77

Химический состав стали, твердость, макроструктура или излом и отделка концов должны соответствовать требованиям ГОСТ 1050-88, ГОСТ 4543-71, ГОСТ 19265-73, ГОСТ 5950-73, ГОСТ 1414-75, ГОСТ 5949-75, ГОСТ 14082-78 и ГОСТ 1435-90.

12. Диаметры стали и предельные отклонения в зависимости от классов точности, мм

		Предел	ьные откл	онения по	диаметру	для квали	тетов **	
Диаметр *	h5	h6	h7	h8	h9	h10	hll	h12
0,2 - 0,3	_	-0,005	-0,010	-0,014	-0,025	_	_	_
0,35 - 0,60	_	-0,006	-0,010	-0,014	-0,025	-	_	_
0,65 - 0,95	_	-0,006	-0,010	-0,014	-0,025	-	-	-
1,0 - 3,0	_	-0,006	-0,010	-0,014	-0,025	-0,040	-0,060	-
3,1 - 6,0	-0,005	-0,008	-0,012	-0,018	-0,030	-0,048	-0,075	-0,120
6,1 - 10,0	-	-	-0,015	-0,022	-0,036	-0,058	-0,090	-0,150
10,25 - 18,0	~	-	-	-0,027	-0,043	-0,070	-0,110	-0,180
18,5 - 30,0	-		-	-0,033	-0,052	-0,084	-0,130	-0,210
31,0 - 50,0	~	_	_	-	-0,062	-0,100	-0,160	-0,250

^{*} В указанных пределах брать из ряда: 0.2 - 3.0 с интервалом 0.05; 3.1 - 10.0 с интервалом 0.1; 10.25 - 14.0 с интервалом 0.25; 14.5; 15.0; 15.5; 16.0; 16.5; 17.0; 18.0; 18.5; 19.0; 19.5; 20.0 - 50.0 с интервалом 1.0 мм.

^{**} Сталь квалитетов h5 ... h8 изготовляют по согласованию изготовителя с потребителем.

13. Рекомендуемые размеры и виды пролукции в зависимости от группы отделки поверхности

Группа отделки поверхности стали	Диаметр, мм	Вид пролукции
А, Б, В	От 0,6 до 5,0 вкл. Св. 5,0 до 20 вкл.	Пругки Пругки, мотки
r	От 2,0 до 5,0 вкл. От 20 до 50 вкл.	Прутки
	Св. 5,0 до 20 вкл.	Прутки, мотки
Д	От 5,0 до 20 вкл. Св. 20 до 50 вкл.	Прутки, мотки Прутки
Е	От 0,2 до 0,4 вкл. От 0,4 до 0,6 вкл. Св. 0,6 до 0,95 вкл.	Прутки Прутки, мотки, катушки Мотки, катушки

14. Шероховатость поверхности стали в зависимости от группы отделки и класса точности

Группа отделки	Квалитеты	Шероховатост по ГОСТ		Допустимые	Максимальная глубина
поверхности стали		Параметр Ra, мкм, не более	Базовая длина, мм	дефекты поверхности	залегания де- фектов
Α	h5, h6, h7, h8, h9, h10	0,32	0,25		
Б	h6, h7, h8, h9, h10, h11	0,63	0,8	Дефекты не допускаются	Дефекты не допускаются
В	h7, h8, h9, h10, h11	1,25	0,8		
Γ	h8, h9, h10, h11	2,5	0,8	Отдельные дефекты меха-	1/2 предель- ного отклоне- ния по диаметру
Д	h9, h10, h11, h12	-	-	нического про- исхождения	Предельное отклонение по диаметру
E	h8, h9	-	-	Продоль- ные риски	1/2 предель- ного отклоне- ния по диаметру

Группа Е - тянутая с предварительно удаленным поверхностным слоем.

НАЗНАЧЕНИЕ КОНСТРУКЦИОННЫХ СТАЛЕЙ ОСНОВНЫХ МАРОК

15. Области применения

			i
Марки стали	Термическая обработка	Механические свойства	Область применения
Cr3	Без гермической обработки	См. табл. 1	Сварные конструкции; детали, работающие с малой нарузкой без трения; кожухи, щитки, крышки, прокладки
A12	Жилкостная цементация или цианирование	Поверхность 56 62 НКС	Мелкие малонагруженные детали, к которым прецъявля- котся гребования шероховатости поверхности и сопротив- ления износу; винты, гайки, оси, кольца
15	Цементация, закатка в во- де, отпуск	При сечении * до 50 мм: $\sigma_{\rm B}=440~~540;~\sigma_{\rm T}=250~~290;$ $\delta \geq 20;~\psi \geq 50;~56~~62~{\rm HRC}$	Малонагруженные мелкие и средние детали простой кон- фитурации, работающие в условиях трения: валки, втулки, упоры, папъцы, оси
	Без термической обработки	См. табл. 3	Малонагруженные детали: оси, тяги, кольца, рычаги, фланцы
35	Закалка в воде, отпуск	При сечении до 20 мм: σ _в ≥ 980; σ _т ≥ 640; δ ≥ 8; ψ ≥ 30; 30 40 HRC	Мепкие средненагруженные детали, к которым предъяв- ляются требования повышенной прочности; втупки, вапи- ки, винты, штифты, упоры, кольца
	Жидкостная цементация или цианирование	ı	Малонагруженные детали, к которым предъявляются требования сопротивления износу: установочные винты, оси и детали крепежа

* Имеется в виду наибольший размер в сечении.

~
maốı.
Продалжение

1 *

Марки стали	Термическая обработка	Механические свойства	Область применения
A40F	Без термической обработки	См. табл. 2	Ходовые винты металлорежущих станков
	Улучшение (закапка с вы- соким отпуском)	При сечении до 100 мм: σ _в ≥ 740; σ _T ≥ 440; δ ≥ 13; ψ ≥ 35; 192 285 HB	Средненагруженные детали, работающие при небольших скоростях и средних давлениях: валы, работающие в пол-шилиниках качения, шлицевые валы, шпонки, втулки, вилки
		$\sigma_{b} = 880 \dots 1180;$ $\sigma_{7} = 690 \dots 880;$ $\delta \geq 7; \ \psi \geq 20; \ 38 \dots 46 \ HRC$	Детали средних размеров несложной конструкции, к которым предъявляются требования повышенной прочности и твердости: ролики, валики, цапфы, винты, собачки и др.
8	Закалка с нагревом ТВЧ с глубиной закаленного слоя 1,8 - 2,2 мм, отпуск	50 60 HRC	Детали средних и крупных размеров, к которым предъявляются требования высокой поверхностной твердости и повышенной износостойкости: зубчатые колеса, шпиндели и валы, работающие в подшилниках сколъжения при средних окружных скоростях. При требовании повышенной прочности сердневины изделия (средних размеров) материалы должны быть улучшены перед закалкой с наревом ТВЧ
	Закалка в масле, отпуск	$\sigma_{\rm B} \ge 880; \ \sigma_{\rm T} \ge 640; \ \delta \ge 15; \ \psi \approx 40; \ 30 \dots 40 \ {\rm HRC}$	Мелкие тонкостенные детали сложной конфигурации
	Закалка в воде или в ще- лочном растворе	При сечении до 20 мм: σ _в ≥ 1180; σ ₇ ≥ 930; δ ≥ 6; 40 50 HRC	Детали средних размеров несложной конфигурации: сто- поры, фиксаторы, храповые колеса, упоры, валики

Продолжение табл. 15	Область применения	Ходовые винты прецизионных станков	кам, втулки	Крупные малонагруженные детали тяжелых машин: зубча- тые колеса, шпиндели и валы, работающие в подшилни- ках качения	Средненагруженные крупногабаритные детали тяжелых машин, к которым предъявляются требования общей повышенной прочности; зубчатые колеса, шпиндели и валы, работающие в подшипниках качения	Детали, к которым предъявляются требования высокой износоустойчивости и высоких пружинящих свойств, например цанг, высокая твердость (58 62 НВС) относится к головке цанги, на хвостовой (пружинящей) части тверлость 42 48 НВС	Детали, работающие при знакопеременных нагрузках: крупные пружины, пружинящие кольца и шайбы, фрик-
		Ходовые винт	Центры к станкам, втулки	Крупные мало тые колеса, ш ках качения	Средненагруж машин, к кот вышенной прс работающие в	Детали, к которыя износоустойчивостт пример цанг, высон к головке цанги; н дость 42 48 HRC	Детали, работа кружи
	Механические свойства	1	58 62 HRC	187 230 HB	При сечении до 80 мм: $\sigma_B \ge 940; \ \sigma_T \ge 680; \ \delta \ge 9; \ \psi \approx 40;$ 250 300 HB	1	При сечении до 20 мм: $\sigma_B \ge 1470; \ \sigma_T \ge 1230; \ \delta \ge 5;$
	Термическая обработка	Без термической обработки	Закалка в воде или в ще- лочном растворе, отпуск	Норматизация	Закалка в масле, отпуск высокий		Закатка в масле, отпуск
	Марки стали		y10		5072		65T

•	4	
_	٦	
	٠	
Ξ	:	
ì	₹	
ź	Ħ	
Z	=	
Q	۵	
ř	2	
2	Ç	
č	5	
ð	\$	
Š	Š	
Ξ	5	
۲	3	
è	٤.	
-	₹	
•	٧.	

Область применения	Детали средних размеров с твердой износоустойчивой поверхностью при достаточно прочной и визкой сердцевине, работающие при больших скоростях и средних давлениях: зубчатые колеса, кулачковые муфты, втулки, направляющие планки, плунжеры, копиры, шлицевые валики, шпиндели и валы, работающие в подшипниках скольжения	Детали с общей повышенной прочностью; работающие при средних скоростях и средних давлениях: зубчатые передачи, червячные валы, шлицевые валы; промежуточные оси, шпиндели и валы, работающие в подшилниках качения	Сильно нагруженные шпиндели и ваты, работающие в подшипниках качения, клапаны, шаровые опоры, храповые колеса	Детали, работающие при средних окружных скоростях, высоких давлениях и небольших ударных нагрузках: зубчатые колеса, шпиндели, втулки, кольца, рейки, роторы гидронасосов
Механические свойства	При сечении до 40 мм: $\sigma_n \ge 820; \ \sigma_T \ge 620; \ \delta \ge 10;$ $\psi \ge 40; \ \mathit{KC} \ge 600; \ \sigma_{-1} \approx 580;$ сердцевина $\mathrm{HB} \ge 212;$ поверхность $56 \ldots 62 \ \mathrm{HRC}$	При сечении до 50 мм: $\sigma_{\rm B} = 780 \dots 930;$ $\sigma_{\rm T} = 590 \dots 690;$ 8 ≥ 10; $\psi = 40 \dots 50;$ $KC \ge 600;$ $\sigma_{\rm L} \approx 350;$ 230 280 HB При сечении до 100 мм: $\sigma_{\rm B} \ge 740;$ $\sigma_{\rm T} \ge 510;$ 8 ≥ 15; $\psi \ge 50;$ $KC \ge 600;$ 230 285 HB	34 42 HRC	$\sigma_{\rm B} = 1470 \dots 1570;$ $\sigma_{\rm T} = 1280 \dots 1370; \delta \approx 7;$ $\psi \approx 25; KC \approx 300;$ $45 \dots 50 {\rm HRC}$
Термическая обработка	Цементация, закалка в мас- ле, отпуск	Закалка в масле, высокий отпуск		Закалка в масле, отпуск
Марки стали	20X		40X	

3
_
табл.
ние
эжи
goa

Марки стали	Термическая обработка	Механические свойства	Область применения
40X	Закалка с нагревом ТВЧ с глубиной закаленного слоя 1,8 - 2,2 мм, отпуск	σ ₋₁ ≈ 560; 50 54 HRC	Детали, к которым предъявляются требования высокой поверхностной твердости и повышенной износоустойчивости: зубчатые колеса, валы, оси. При требовании повышенной прочности сердцевины изделия материалы должны быть улучшены перед закалкой с нагревом ТВЧ
		230 280 НВ	Крупногабаритные детали с общей повышенной прочностью, работающие при средних скоростях и средних давлениях; валы, вращающиеся в подшилниках качения, зубчатые колеса, червячные валы, шлицевые валы
45X	Закалка, высокий отпуск	При сечении до 100 мм: $\sigma_{\rm B} \geq 830; \ \sigma_{\rm T} \geq 590; \ \delta \geq 10;$ $\psi \geq 40; \ KC \approx 500;$ $\sigma_{\rm -1} \approx 350; \ 230 \dots 300 \ HB$	Детали, работающие при средних окружных скоростях, давлениях и ударных нагрузках: валы, вращающиеся в подшипниках качения, валики, зубчатые колеса
40XH	Закалка в масле, отпуск	При сечении до 40 мм: $\sigma_{\rm B} \ge 1570; \ \sigma_{\rm T} \ge 1370;$ $\delta \ge 7; \ \psi \ge 40; \ KC \approx 400;$ 48 54 HRC	Мелкие и средние детали, работающие при высоких давлениях и ударных нагрузках, при требовании высокой прочности и повышенной пластичности: зубчатые колеса, кулачковые муфты, червяки
18XIT	Цементация, закатка в мас- ле, отпуск	При сечении до 50 мм: $\sigma_B \ge 980; \sigma_T \ge 780; \delta \ge 9;$ $\psi \ge 50; KC \ge 800;$ сердцевина 240 300 НВ; поверхность 56 62 НRC	Детати, работающие при больших скоростях, средних и высоких давлениях, при наличии ударных нагрузок: валы, вращающиеся в подшилниках скольжения, зубчатые колеса, червяки, кулачковые муфты, втулки. Применяют при требовании высокой поверхностной твердости и износоустойчивости, если необходима более высокая прочность и вязкость, чем у стали 20Х

15
табл.
Продолжение

Марки стали	Термическая обработка	Механические свойства	Область применения
12XH3A	Цементация, закапка в мас- ле, отпуск	При сечении до 100 мм: $\sigma_B \ge 830; \ \sigma_T \ge 690; \ \delta \ge 10;$ $\psi \ge 50; \ KC \ge 800; \ \sigma_{-1} \approx 380;$ сердцевина 260 НВ; поверхность 58 62 НRC	Сильно нагруженные детали с высокой поверхностной твердостью, износоустойчивостью и вязкой сердцевиной, работающие при больших скоростях и ударных нагрузках: шпиндели и валы в подшипниках скольжения; зубчатые колеса сложной конфигурации, гильзы, кулачковые муфты, червяки
38X2IO	Азотирование	При сечении до 60 мм: $\sigma_{\rm B} \ge 930; \; \sigma_{\rm T} \ge 780; \; \delta \ge 12;$ $\psi \ge 50; \; KC \ge 800;$ сердцевина 260 HB; поверхность 870 1020 HV	Детали очень высокой твердости и износоустойчивости при незначительной деформации: копиры, эксцентрики, плунжеры
IIIX15	Закалка в масле, отпуск	$\sigma_{\rm B} \ge 2160$; $\sigma_{\rm T} \ge 1670$; $KC \approx 50$; $\sigma_{\rm -1} \approx 650$; $38 \dots 64 \ {\rm HRC}$	Детали с высокой твердостью и износоустойчивостью: статоры лопастных насосов, копиры, ролики, собачки храпового механизма, пальцы
	Закалка в масле, высокий отпуск	280 300 HB	Зубчатые колеса, обрабатываемые в улучшенном состоя- нии, для точных передач
35XM	Закалка в масле, отпуск	При сечении до 40 мм: σ _в ≥ 1570; σ ₁ ≥ 1370; δ ≥ 12; ψ ≥ 38; σ ₋₁ ≈ 640; 45 53 HRC	Зубчатые колеса, шпиндели, работающие в условнях больших нагрузок и скоростей, где большое значение имеет предел выносливости

Размерность: $\sigma_{\rm B}, \, \sigma_{\rm T}, \, \sigma_{-1}$ - в МПа; δ и ψ - в %; KC - в кДж/м².

СТАЛЬ ИЗНОСОУСТОЙЧИВАЯ В УСЛОВИЯХ АБРАЗИВНОГО ТРЕНИЯ

Высокомарганцовистая износоустойчивая сталь марки 110Г13Л, содержащая 0,9-1,3 % С и 11,5-14,5 % Мп, применяется для сильно изнашивающихся деталей (корпуса и щеки дробилок, плиты шаровых мельниц, траки гусеничных тракторов, железнодорожные крестовины и сердечники стрелочных переводов).

Изделия получают в виде отливок, выбиваемых из форм при температуре около 1100 °С и сразу же закаливаемых в воде; обработке обычным режущим инструментом не поддаются.

Если отливку полностью охладить в форме, то можно обработать ее обычным режущим инструментом, после чего ее нужно нагреть до 1100 °C и закалить в воде.

СТАЛЬ С ОСОБЫМИ ТЕПЛОВЫМИ СВОЙСТВАМИ

Сталь инвар марки H-36, содержащая 35 - 37 % Ni, при температуре от -50 до +100 °C

имеет коэффициент линейного расширения, близкий к нулю. При температуре выше 100 °С этот коэффициент быстро растет и при температуре, большей 275 °С, превосходит коэффициент линейного расширения обыкновенных сталей.

Из инвара изготовляют детали точных измерительных приборов и аппаратов.

Сталь платинит марки H-42, содержащая 42 % Ni, имеет коэффициент линейного расширения, равный коэффициенту линейного расширения стекла; применяют для электроламп, биметаллических термостатов и др.

Сталь элинвар, содержащая 36,5 - 38,5 % Ni, имеет постоянный модуль упругости, не зависящий от температуры; применяют для изготовления пружин часов и хронометров, а также деталей измерительных приборов.

ТВЕРДЫЕ СПЕЧЕННЫЕ СПЛАВЫ (по ГОСТ 3882-74 в ред. 1990 г.; ИСО 513-75)

Группы, марки, коды ОКП, состав и свойства твердых сплавов приведены в табл. 16.

16. Марки твердых сплавов и их свойства

10. Іугарки твердых спыявов и их своиства					
Группа	Марка	Код ОКП	Предел прочности при изгибе, Н/мм ² , не менее	Плотность, ×10 ³ кг/м ³	Твердость HRA, не менее
Вольфрамовая	BK3	19 6522	1176	15,0 - 15,3	89,5
розвфрамовая	BK6	19 6524	1519	14,6 - 15,0	88,5
	BK3-M	19 6511	1176	15,0 - 15,3	91,0
	BK6M	19 6512	1421	14,8 - 15,1	90,0
	BK6-OM	19 6516	1274	14,7 - 15,0	90,5
	BK6-B	19 6532	1666	14,6 - 15,0	87,5
	BK8	19 6525	1666	14,5 - 14,8	88,0
	BK8-B	19 6533	1813	14,4 - 14,8	86,5
	BK8-BK	19 6535	1764	14,5 - 14,8	87,5
	BK10	19 6526	1764	14,2 - 14,6	87,0
	BK10-XOM	19 6552	1470	14,3 - 14,7	89,0
	BK4-B	19 6531	1470	14,9 - 15,2	88,0
	BK11-B	19 6534	1960	14,1 - 14,4	86,0
	BK10-KC	19 6536	1862	14,2 - 14,6	85,0
	BK20	19 6528	2058	13,4 - 13,7	84,0
	BK11-BK	19 6537	1862	14,1 - 14,4	87,0
	BK15	19 6527	1862	13,9 - 14,4	86,0
	BK20-KC	19 6538	2107	13,4 - 13,7	82,0
Титано-воль-	T30K4	19 6614	980	9,5 - 9,8	92,0
фрамовая	T15K6	19 6613	1176	11,1 - 11,6	90,0
**	T14K8	19 6612	1274	11,2 - 11,6	89,5
	T5K10	19 6611	1421	12,5 - 13,1	88,5
Титано-танта-	TT7K12	19 6612	1666	13,0 - 13,3	87,0
ло-вольфра-	TT8K6	19 6623	1323	12,8 - 13,3	90,5
мовая	TT10K8B	19 6622	1617	13,5 - 13,8	89,0
	TT20K9	19 6624	1470	12,0 - 12,5	91,0
	T8K7	19 6616	1519	12,8 - 13,1	90,5

СТАЛИ

ГОСТ 3882-74 (ИСО 513-75) распространяется на твердые спеченные сплавы, предназначенные для изготовления режущего и горного инструмента, а также для износостойких деталей и других целей. Области применения твердых сплавов для бесстружковой обработки металлов приведены в табл. 17.

СМЕСИ ПОРОШКОВ ДЛЯ НАПЛАВКИ

Механические смеси порошков предназначены для дуговой наплавки неплавящимся жинтродом износостойкого слоя на детали машин и оборудования, работающие в условиях интенсивного абразивного изнащивания.

Основой смесей является железолегирующими компонентами - углерод, хром, кремний, марганен, бор. Насыпная плотность 2,7 - 3,6 г/см³.

Смеси порошков для наплавки упаковывают в металлические банки, на которых нанесены цветовые полосы: розовая - для марки С-2М, две белые - ФБХ6-2, одна голубая - БХ, две голубые - КБХ.

Твердые сплавы, применяемые для бесстружковой обработки металлов, быстроизнашивающихся деталей машин, приборов и приспособлений

Марка сплава	Область применения
BK3, BK4, BK6	Быстроизнашивающиеся детали машин, приборов, измерительный инструмент, работающие без ударных нагрузок
BK8	Быстроизнашивающиеся детали машин, приборов, измерительный инструмент, работающие при небольших ударных нагрузках
BK10	Быстроизнашивающиеся детали машин, приборов, измерительный инструмент, работающие при ударных нагрузках средней интенсивности
BK 15	При штамповке, высадке, обрезке углеродистых и качественных сталей при ударных нагрузках малой интенсивности
BK20	При штамповке, высадке, обрезке углеродистых и качественных сталей при ударных нагрузках средней и высокой интенсивности
BK10-KC	При штамповке, высадке, выгяжке легированных и специальных сталей при ударных нагрузках малой интенсивности
BK20-KC	При штамповке, высадке, обрезке легированных и специальных сталей и сплавов при ударных нагрузках средней интенсивности

18. Твердость наплавленного слоя и назначение смеси порошков

Марка	HRC, не менее	Назначение
C-2M	54	Наплавка дробильных аппаратов, ножей бульдозеров и грейдеров, ковшей экскаваторов и драг, шнеков кирпичных прессов, лопастей глиномешалок, катков, поддонов и отвалов бегунковых смесителей, коксовыталкивателей и тому подобных деталей

Продолжение табл. 18

Марка	HRC, не менее	Назначение
ФБХ6-2	53	Наплавка горнодобывающего и торфоперерабатывающего оборудования, работающего в условиях интенсивного абразивного изнашивания с умеренной ударной нагрузкой
Ха	63	Наплавка лопастей глиномешалок, деталей кирпичных прессов, пресс-форм для брикетирования угля и торфа, лопастей вентиляционных дымососов, деталей земснарядов, колец дезинтеграторов и тому подобных деталей
КБХ	60	Наплавка лопастей глиномешалок, деталей кирпичных прессов, пресс-форм для брикетирования угля, зубьев одноковшовых и роторных экскаваторов, ножей бульдозеров и грейдеров, лопастей вентиляционных дымососов, лопаток дробеметов и т.п.

ПОРОШКИ ИЗ СПЛАВОВ ДЛЯ НАПЛАВКИ (по ГОСТ 21448-75 в ред. 1990 г.)

Порошки из сплавов предназначены для наплавки и напыления износостойкого слоя на детали машин и оборудования, работающие в условиях воздействия абразивного изнашивания, коррозии, эрозии, при повышенных температурах или в агрессивных средах.

В зависимости от химического состава порошки из сплавов для наплавки изготовляют марок: ПГ-С27, ПГ-УС25, Пі -ФБХ6-2, ПГ-АН1, ПГ-СР4, ПГ-СР2 и ПГ-СР3.

Основой химического состава порошков трех последних марок является никель.

Основой порошков остальных марок является железо.

В зависимости от гранулометрического состава порошки из сплавов для наплавки изготовляют следующих классов: крупный (К), средний (С), мелкий (М) и очень мелкий (ОМ).

В условном обозначении порошков из сплавов для наплавки сначала указывают марку по химическому составу, затем класс по гранулометрическому составу.

Например, порошок из сплавов для наплавки марки ПГ-С27 крупный имеет обозначение:

ПГ-C27-К ГОСТ 21448-75

19. Твердость наплавленного слоя и назначение порошков

Марка (тип)	HRC, не менее	Назначение
ПГ-С27 (ПН-У40Х28Н2С2ВМ)	53	Наплавка дегалей металлургического и энергетического оборудования, сельскохозяйственных машин и других, работающих в условиях абразивного изнашивания при температуре до 500 °C с умеренными ударными нагрузками

Продолжение табл. 19

Марка (тип)	HRC, не менее	Назначение
ПГ-СР2 (ПН-ХН80С2Р2) ПГ-СР3 (ПН-ХН80С3Р3)	35 45	Для наплавки и напыления деталей уплотнительных поверхностей арматуры тепловых и атомных электростанций, подвергающихся изнашиванию при нагреве до 600 °С и воздействию агрессивных сред
ПГ-УС25 (ПН-У50Х38Н)	55	Наплавка деталей сельскохозяйственных машин и других, работающих в условиях интенсивного изнашивания без ударов
ПГ-ФБХ6-2 (ПН-У45Х35ГСР)	52	Наплавка деталей угледобывающего и торфоперерабатывающего оборудования, работающих в условиях абразивного изнашивания
ПГ-АН1 (ПН-У25Х30СР)	54	Наплавка деталей металлургического оборудования, сельскохозяйственных и строительных маншин и других, работающих в условиях абразивного изнашивания с умеренными ударами
ПГ-СР4 (ПН-ХН80С4Р4)	55	Наплавка и напыление деталей, подвергающихся интенсивному изнашиванию при температурах до 600 °C и воздействию агрессивных сред

ПРУТКИ ДЛЯ НАПЛАВКИ (по ГОСТ 21449-75 в ред. 1990 г.)

Прутки предназначены для наплавки износостойкого слоя на детали машин и оборудования, работающие в условиях воздействия абразивного изнашивания, ударных нагрузок, коррозии, эрозии при повышенных температурах или агрессивных средах.

В зависимости от химического состава прутки для наплавки изготовляют марок: Пр-С27; Пр-В3К; Пр-В3К-Р.

Прутки изготовляют литыми со шлифованной или необработанной поверхностью; прутки марок Пр-ВЗК и Пр-ВЗК-Р диаметром 4 и 5 мм изготовляют шлифованными, галтованными или обработанными корундом.

Размеры прутков:

диаметр 4 мм, длина 300 и 350 мм; диаметр 5 и 6 мм, длина 350 и 400 мм; диаметр 8 мм, длина 450 и 500 мм.

По требованию потребителя допускается изготовление прутков с диаметрами 14, 22, 33 и 45 мм, длиной от 300 мм и выше, прутки марки Пр-ВЗК-Р - длиной от 250 мм.

В заказе указывают марку прутка и ГОСТ.

20. Твердость наплавленного слоя и назначение прутков

Марка (тип)	HRC ₃ , He MeHee	Назначение
Пр-С27 (ПрН-У45Х28Н2СВМ)	53,5	Наплавка деталей, работающих в условиях интенсивного абразивного изнашивания с умеренными ударными нагрузками при температурах до 500 °C

Продолжение табл. 20

Марка (тип)	HRС _э , не менее	Назначение
Пр-В3К (ПрН-У10ХК63В5)	41,5	Наплавка деталей, работающих в условиях абразивного изнашивания, эрозии, нагрева до 750 °C, воздействия химически активных сред, ударных нагрузок и трения металла по металлу
Пр-В3К-Р (ПрН-У20ХК57В10)	47,5	Наплавка деталей, работающих в условиях абразивного изнашивания, эрозии, нагрева до 800 °C, воздействия химически активных сред, ударных нагрузок и трения металла по металлу

ТЕПЛОУСТОЙЧИВАЯ СТАЛЬ (по ГОСТ 20072-74 в ред. 1988 г.)

Сталь предназначена для изготовления деталей, работающих в нагруженном состоянии при температуре до 600 °C в течение длительного времени.

Классификация. По видам обработки сталь подразделяют на горячекатаную; кованую; калиброванную шлифованную.

По состоянию материала сталь подразделяют на термически необработанную; термически обработанную - Т; нагартованную - Н (для калиброванной стали).

В зависимости от назначения горячекатаную и кованую сталь подразделяют на подгруппы: а - для горячей обработки давлением; б - для холодной обработки (обточки, строжки, фрезерования и другой обработки по всей поверхности); в - для холодного волочения (подкат).

Назначение стали (подгруппу) указывают в заказе.

Примеры обозначений:

Горячекатаная квадратная сталь со стороной квадрата 30 мм, обычной точности проката В, марки 20ХЗМВФ, предназначенная для холодной механической обработки (подгруппа б), без термической обработки:

Keadpam
$$\frac{B \, 30 \, \Gamma OCT \, 2591 - 88}{20 \, X \, 3 \, MB \, \Phi - 6 \, \Gamma OCT \, 20072 - 74}$$

Горячекатаная полосовая сталь толщиной 36 мм, шириной 90 мм, марки 20Х1М1Ф1БР-Ш, предназначенная для холодной механической обработки (подгруппа 6), термически обработанная (Т):

Полоса
$$\frac{36 \times 90 \ \Gamma OCT \ 103 - 76}{20X \ I \ M \ I \Phi \ I \ EP - III - 6 - T}$$
 $\Gamma OCT \ 20072 - 74.$

Калиброванная круглая сталь диаметром 25 мм, квалитета h10, марки 12X1МФ, нагартованная (H), качества поверхности В:

Kpy2
$$\frac{25 - h10 \ \Gamma OCT 7417 - 75}{12X IMB \Phi - H - B \ \Gamma OCT 20072 - 74}$$
.

Технические требования. Горячекатаную и кованую сталь перлитного класса в соответствии с заказом поставляют термически обработанной (отожженной, отпущенной или нормализованной с высоким отпуском) или без термической обработки.

Горячекатаную сталь и кованую сталь мартенситного класса поставляют термически обработанной (отожженой, отпущенной или нормализованной с высоким отпуском).

Калиброванную сталь в соответствии с заказом поставляют термически обработанной или нагартованной (за исключением стали марки 20Х3МВФ).

Химические элементы в марках стали обозначены следующими буквами: Б - ниобий, B - вольфрам, M - молибден, H - никель, P - бор, T - титан, Φ - ванадий, X - хром.

Наименование марок сталей состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднее содержание легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднее или максимальное (при отсутствии нижнего предела) содержание углерода в стали в сотых долях процента.

Сталь, полученную методом электрошлакового переплава, дополнительно обозначают через тире в конце наименования марки буквой III.

109

Механические свойства стали приведены в табл. 21a. 21.

Сортамент стали:

ГОСТ 2590-88 - для горячекатаной круглой:

ГОСТ 2591-88 - для горячекатаной квадратной;

ГОСТ 1133-71 - для кованой круглой и квдаратной;

ГОСТ 103-76 и ГОСТ 4405-75 - для горячекатаной полосовой:

ГОСТ 7417-75 - для калиброванной и калиброванной шлифованной круглой;

ГОСТ 8559-75 - для калиброванной квадратной:

ГОСТ 8560-78 - для калиброванной шестигранной.

21а. Твердость горячекатаной и кованой отожженной, отпущенной или нормализованной с высоким отпуском стали

Марки теплоус	тойчивой стали	Диаметр	Твердость
Новое обозначение	Старое обозначение	отпечатка, мм, не менее	НВ, не более
12Х1МФ	12ХМФ	4,1	217
20Х1М1Ф1ТР	ЭП182	4,0	229
20Х1М1Ф1БР	20ХМФБР,	4,0	229
	ЭП44		
25Χ1ΜΦ	эи10	4,0	229
20Х3МВФ	ЭИ415,	3,7	269
	эи579		
15X5	X5	4,1	217
12Х8ВФ	1Х8ВФ	4,1	217
12MX	-	4,1	217
15X5M	X5M	4,1	217

21. Механические свойства стали

	Рекол терми	Рекомендуемые режимы термической обработки	имы тки		Me	Механические свойства	юйства	
Марка стали	Закалка, нормализация, отжиг	ализация, п	Отпуск или старение *	Предел текучести о _т , МПа	Временное сопротив- ление ов, МПа	Относи- тельное удлинение δ ₅ , %	Относитель- ное сужение поперечного сечения ψ, %	Ударная вязкость КСU, Дж/см ²
	Гемпература нагрева, °С	Среда ох- лаждения	Температура нагрева, °С			не менее		
12MX	Нормализация 910 - 930	Воздух	069 - 029	235	410	21	45	59
12Х1МФ (12ХМФ)	Нормализация 960 - 980	Воздух	700 - 750	255	470	21	55	86
20X1M1Ф1TP (ЭП182)	Закатка 970 - 990	Масло	680 - 720	999	780	15	50	59
20Х1М1Ф1БР (20ХМФБР, ЭП44)	Вариант I Закатка 970 - 990	Масло	680 - 720 Въщержка 6 ч	999	780	14	90	59
	Вариант II Нормализация 1030 - 1050	Воздух	Ступенчатый отпуск 600/3 ч	665	780	14	20	59
25Х1МФ (ЭИ10)	Закалка Вариант I 880 - 900	Масло	640 - 660	735	880	14	90	. 65
	Варнант II 930 - 950	Масло	620 - 660	665	780	16	50	59

\sim
~:
.>
Q
F-4
\approx
=
~
D.)
9
3
5
-
ġ,
C
*
2
0
σī.
~
9
Ω.
~

	Реком терми	Рекомендуемые режимы термической обработки	имы тки		Me	Механические свойства	юйства	
Марка стали	Закалка, нормализация, отжиг	ализация, п	Отпуск или старение *	Предел текучести ст, МПа	Временное сопротив- ление ов, МПа	Относи- тельное удлинение δs, %	Относитель- ное сужение поперечного сечения ψ, %	Ударная вязкость КСU, Дж/см ²
	Температура нагрева, °С	Среда ох- лаждения	Температура нагрева, °С			не менее		
18ХЗМВ (ЭИ578)	Закалка 950 - 970	Масло	089 - 099	440	640	18	1	118
20Х3МВФ (ЭИ415, ЭИ579)	Закалка 1030 - 1060	Масло	00/ - 099	735	880	. 12	40	59
15X5 (X5)	Отжиг 840 - 860	С печью	,	165	390	24	50	86
15X5M (X5M)	Тоже	То же	1	215	390	22	50	118
15Х5ВФ (Х5ВФ)	*	*	ı	215	390	22	50	118
12Х8ВФ (1Х8ВФ)	*	*	1	165	390	22	50	86

* Охлаждение на воздухе.

Нормы механических свойств относятся к образцам, отобранным из прутков диаметром или толщиной до 90 мм вкт. При испытании прутков диаметром или толщиной свыше: 90 до 150 мм допускается понижение относительного удлинения на 2 %, относительного сужения на 5 % и ударной вязкости на 10 % по сравнению с нормами, указанными в табл. 21. Для прутков диаметром или толщиной 151 мм и выше допускается понижение относительного уплинения на 3 %, относительного сужения на 10 % и ударной вязкости на 15 %.

Вариант термической обработки и механических свойств (I или II) стали марки 25X1МФ оговаривается в заказе.

22. Рекомендации по применению теплоустойчивой стали

	L. C.	MBOR CLAUIN		
Марка стали	Назначение	Рекомендуемая температура применения, °C	Срок работы	Температура начала интенсивного окалино- образования, °C
12MX	Трубы пароперегревателей, трубопроводов и коллекторных установок высокого давления, поковки для паровых котлов и паропроводов, детали цилиндров газовых турбин	510	Весьма длительный	570
20Х1М1Ф1БР (ЭП44)	Крепежные детали турбин и фланцевых соединений паро- проводов и аппаратуры	500 - 580	•	I
25Х1МФ (ЭИ10)	Болты, плоские пружины, шпильки и другие крепежные детали	510	Весьма длительный	009
25X2M1Ф (ЭИ723)	Плоские пружины, болты, шпильки и другие крепежные детали	520 - 550	То же	009
20ХЗМВФ (ЭИ415, ЭИ <i>57</i> 9)	Роторы, диски, поковки, болты. Трубы высокого давления для химической алпаратуры и гидрогенизационных установок	900 - 560	Длительный	009
15X5 (X5)	Трубы, детали насосов, лопатки турбомашин, подвески котлов	009	•	959
12Х8ВФ (1Х8ВФ)	Трубы печей, аппаратов и коммуникаций нефтезаводов	200	Длительный	059
20X1M1Ф1TP (ЭИ182)	Крепежные летати турбин и фланцевых соединений паро- проводов и аппаратуры	500 - 580	ı	ı
15X5M (X5M), 15X5BΦ (X5BΦ)	Корпусы и внутренние элементы аппаратуры нефтеперерабатывающих заволов и крегинговых труб, детали насосов, залвижки, крепеж	009	Весьма длительный	650

Примечание чание. Под длительным сроком работы условно понимают время службы детали от 1000 до 10 000 ч (в отдельных случаях до 20 000 ч), под весьма длительным сроком работы - время значительно более 10 000 ч (обычно от 50 000 до 100 000 ч).

СТАЛЬ СОРТОВАЯ И КАЛИБРОВАННАЯ КОРРОЗИОННО-СТОЙКАЯ, ЖАРОСТОЙКАЯ И ЖАРОПРОЧНАЯ (по ГОСТ 5949-75 в ред. 1991 г.)

Горячекатаная и кованая стать изготовляется диаметром, стороной квадрата или толщиной до 200 мм; калиброванная сталь - диаметром или стороной квадрата до 70 мм; а также сталь со специальной отделкой поверхности.

Химический состав стали - по ГОСТ 5632-72.

ратной - ГОСТ 2591-88; кованой круглой и квадратной - ГОСТ 1133-71; горячекатаной полосовой - ГОСТ 103-76; шестигранной - ГОСТ 2879-88; калиброванной: круглой - ГОСТ 7417-75; квадратной - ГОСТ 8559-75; шестигранной - ГОСТ 8560-78; со специальной отделкой поверхности - ГОСТ 14955-77. Сортамент стали: горячекатаной круглой - по ГОСТ 2590-88; горячекатаной и кованой полосовой - по ГОСТ 4405-75; горячекатаной квал-

, жаростойкой и жаропрочной
ikoй,
стойк
коррозионно-
занной в
DBAH
нбр
I Ka
30ĬI I
DTG
JH C
CT3
свойства
ские
Леханиче
23. N
` '

	Рекоментиемые пежимы термической обработки	Временное сопро-	Предел	Относи- тельное	Относи-	Ударная вязкость
Марка стали	заготовок образцов	тивление	чести	удлинение 05	сужение	KCU,
		МПа	æ	%		Дж/см²
13Х14Н3В2ФР	1. Закалка с 1040 - 1060 °C, охлаждение на возлухе или в масле, отпуск при 640 - 680 °C, охлаждение на воздухе	930	735	41	55	88
	2. То же, отпуск при 540 - 580 °С	1130	885	12	50	69
10X11H23T3MP	1. Закатка с 1100 - 1170 °C, выдержка 2 - 5 ч, охлаждение на воздухе или в масле, старение при 750 - 800 °C (16 - 25 ч), охлаждение на воздухе	088	290	∞	10	29
	2. Закалка с 950 - 1050 °C, выдержка 2 - 5 ч, охлажде- ние в масле, старение при 730 - 780 °C в течение 16 ч, дополнительное старение 10 - 16 ч, охлаждение на воз- духе	086	685	10	12	29
12X18H10T	Закатка с 1020 - 1100 °C, охлаждение на воздухе, в масле или воде	510	196	40	55	1
12X18H9T; 12X18H12T	То же	540	196	40	55	ı
12X25H16F7AP	Закалка с 1050 - 1150 °C, охлаждение на воздухе	069	325	40	45	ı

24. Рекомендации по применению стали некоторых марок

		2 * Chomologian no lipamenendo cialm negolopal mapor	PER MADOR		
Класс и по- рядковый номер марки по ГОСТ 5632-72	Марка стали	Примерное назначение	Рекомендуемая температура применения, °C	Срок работы	Температура начала интенсивного окалино- образования, °C
1 - 16	13X14Н3В2ФР (X14НВФР)	Высоконагруженные детали, в том числе диски, валы, стяжные болты и другие детали, работающие в условиях повышенной влажности	550	Весьма длительный	750
6 - 3	10X11H23T3MP (X12H22T3MP: 9H33)	Пружины и детали крепежа	700	Ограниченный	850
6 - 31	12X18H10T (X18H10T)	Дегали выхлопных систем, трубы, детали из листа и сорта	009	Весьма длительный	850
6 - 37	12X18H12T (X18H12T)	То же	009	То же	850
6 - 48	12X25H16Г7AP (X25H16Г7AP; ЭИ835)	Дегати из листа и сорта, работающие при уме- ренных напряжениях	950	Ограниченный	1050 - 1100

ГОСТ предусматривает также другие марки стали, технические требования к изготовлению стали, правила приемки и методы испытаний. В скобках приведены старые обозначения марок.

СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ КОРРОЗИОННО-СТОЙКИЕ, ЖАРОСТОЙКИЕ И ЖАРОПРОЧНЫЕ (по ГОСТ 5632-72 в ред. 1991 г.)

ГОСТ 5632-72 в ред. 1991 г. разработан с учетом требований международных стандартов ИСО 683/XIII-85, ИСО 4955-83.

В зависимости от основных свойств стали и сплавы подразделяют на группы:

І - коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.;

II - жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 °С, работающие в ненагруженном или слабонагруженном состоянии;

III - жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью.

25. Примерное назначение жаростойких сталей и сплавов II группы

Номер	Марки сталей и сплавов	Назначен ис	Рекомендуемыя максимальная температура применения в течение длительного времени (до 10 000 ч), °C	Температура начала интенсивного окалино- образования в возлушной среде, °С	Примечание
2 - 1	15X6CIO (X6CIO, 3M428)	Детали котельных установок, трубы	ı	008	Устойчива в серосопержащих средах
6 - 29 6 - 25	08X18H10 (0X18H10) 12X18H9 (X18H9)	Трубы, детали печной арматуры, теплообменники, муфели, патрубки и коллекторы выхлопных систем, электроды искровых зажинательных свечей	008	850	Неустойчивы в серосодержа- ших средах. Применяются в случаях, когда не могут быть применены безникелевые стали
6 - 48	12X25H16F7AP (X25H16F7AP, 9M835)	Детали газопроводных систем, изготовляемые из тонких листов, ленты, сортового проката	1050	1100	Рекоменлуется для замены жаростойких сплавов на никелевой основе
8 - 4	XH601O (ЭИ559A)	Детали газопроводных систем, аппаратура	1200	Более 1250	,
9 - 8	ХН78Т (ЭИ435)	Детали газопроводных систем, сортовые детали, трубы	1100	1150	Неустойчива в серосопержаних средах

26. Примерное назначение коррознонно-стойких сталей и сплавов І группы

Номер марки	Марки сталей и сплавов	Назначение	Примечание
1 - 12 3 - 2 2 - 4	20X13 (2X13) 08X13 (0X13) 12X13 (1X13)	Детали с повышенной пластичностью, подвергающие- ся ударным нагрузкам (клапаны гидравлических прес- сов), а также изделия, подвергающиеся действию сла- бовгрессивных сред (атмосферные осадки, водные растворы солей органических кислот при нормальной температуре и др.)	Наибольшая коррозионная стойкость достига- ется после термической обработки (закалка с отпуском) и полирования. Сталь марки 08X13 можно применять также после отжита
1 - 17	25X13H2 (2X14H2, 3M474)	То же	Обладает лучшей обрабатываемостью на стан- ках по сравнению с приведенными выше
1 - 13 1 - 14	30X13 (3X13) 40X13 (4X13)	Пружины, карбюраторные иглы, клапанные пластины компрессоров, режупий, мерительный и хирургический инструмент	Сталь применяют после закатки и низкого отпуска со шлифованной и полированной поверхностью; обладает повышенной твердостью
1 - 19	95X18 (9X18, 3M229)	Втулки и другие детали, подвергающиеся сильному изнашиванию, шарикоподшилники высокой твердости, ножи высшего качества	Сталь применяют после закалки с низким отпуском
8 4	08X17T (0X17T, 3H645)	Рекомендуется в качестве заменителя стали марки 12X18H10T для конструкций, не подвергающихся воздействию ударных нагрузок при температуре эксплуатации не ниже -20 °C. Применяют для сварных конструкций	Применяют в качестве заменителя стали марок 12X18H9T и 12X18H10T
3 - 6	15X25T (X25T, 3M439)	Рекомендуется в качестве заменителя стали марки 12X18H10T для сварных конструкций, не подвергающихся действию ударных нагрузок при температуре эксплуатации не ниже -20 °C для работы в агрессивных средах	Эксплуатировать в интервале температур 400 - 700 °C не рекомендуется

						······································		······
Продолжение табл. 26	Примечание	Сварные соединения склонны к межкристал- литной коррозии	Обладает высокой тверлостью (свыше 45 HRC)	Сталь обладает более высокой прочностью по сравнению со сталью 08X22H6T и лучшей способностью к пайке по сравнению со сталью 08X18H10T	•	Сварные соединения, выполненные другими методами, кроме точечной сварки, склонны к межкристаллитной коррозии		Содержит меньшее количество ферритной фазы, чем сталь марки 12X18H10T
	Назначение	То же, и для спаев со стеклом	Рекомендуется как высокопрочная сталь для тяжело- нагруженных деталей, работающих на истирание и на удар в слабоагрессивных средах	Сварные и паяные конструкции, работающие в агрес- сивных средах	Рекомендуется как заменитель стали 12X18Н9 для изделий, работающих в средах слабой агрессивности. Хорошо сопротивляется атмосферной коррозии	Применяют в виде колоднокатаного листа и ленты повышенной прочности для различных деталей и конструкций, свариваемых точечной сваркой, а также для изделий, подвергаемых термической обработке (закагке)	Сварная аппаратура в разных отраслях промышленно- сти. Сталь марки 12X18Н9Т рекомендуется применять в виде сортового металла и горячекатаного листа, не изготовляемого на станках непрерывной прокатки	Применяют для тех же целей, что и сталь марки 08X12H10, при жестком ограничении содержания ферритной фазы
	Марки сталей и стлавов	15X28 (X28, ЭИ349)	20X17H2 (2X17H2)	12X21H5T (1X21H5T, 9 18 11)	15X17AF14 (X17AF14, 3H213)	12X18H9 (X18H9) 08X18H10 (0X18H10)	12X18H10T (X18H10T) 12X18H9T (X18H9T)	12X18H12T (X18H12T)
	Номер марки	3 - 7	1 - 18	5 - 4	6 - 18	6 - 25 6 - 29	6 - 31 6 - 27	6 - 37

27. Примерное назначение жаропрочных сталей и сплавов III группы

				•		***
Номер марки	Марки сталей и сплавов	Назначение	Рекомендуемая температура применения, °C	Срок работы	Температура начала интенсивного окалино- образования, °C	Примечание
1 - 6	40X10C2M (4X10C2M, ЭИ107)	Клапаны моторов, крепежные детали	650	Длительный	850	,
2 - 4	12X13 (1X13)	Лопатки паровых турбин, кла- паны, болгы и трубы	200	Весьма длительный	750	,
1 - 16	13X14Н3В2ФР (X41НВФР, ЭИ736)	Высоконагруженные детали, в том числе диски, валы, стяжные болгы, лопатки и другие детали, работающие в условиях повышенной влажности	550	То же	700	1
3 - 2	08X13 (0X13, 3M496)	Лопатки паровых турбин, кла- паны, болты и трубы	200	*	750	1
6 - 3	10X11H23T3MP (X12H22T3MP, 9П33)	Пружины и крепежные детали	700	Ограниченный	850	1
2 - 5	14X17H2 (1X17H2, 3M268)	Рабочие лопатки, диски, валы, втупки	400	Длительный	800	•
6 - 31	12X18H10T (X18H10T)	Детали выхлопных систем, тру- бы, листовые и сортовые детали	009	*	850	,

Примечание	В интервале 600 - 800 °C склонна к охрупчиванию из-за образования с-фазы	Заменяет сплавы XH75MБТЮ (ЭМ602) и XH78T (ЭМ435)	Заменяет сплав ХН78Т	1	· · · · · · · · · · · · · · · · · · ·	,
Температура начала интенсивного окалино-образования,	1050	1050 -1100	1050	1200	1050	1080
Срок работы	Длительный	Ограниченный	То же	*	*	*
Рекомендуемая температура применения, °C	1000	950	950	1100	800	850
Назначение	Детали установок в химической и нефтяной промышленности: газопроводы, камеры сгорания (может применяться для нагревательных элементов сопротивления)	Листовые и сортовые детали, работающие при умеренных напряжениях	Листовые детали, работающие при умеренных напряжениях	Листовые детали, газопроводы, работающие при умеренных напряжениях (может применяться для нагревательных элементов сопротивления)	Высоконагруженные детали, штупера, фланцы, листовые детали	Лопатки турбин
Марки сталей и сплавов	20X23H18 (X23H18, 9H417)	12X25H16I7AP (X2SH16I7AP, 9M835)	XH38BT (9M703)	ХН70Ю (ЭИ652)	ХН56ВМТЮ (ЭП199)	ХН70ВМТЮФ (ЭИ826)
Номер	6 - 46	6 - 48	7 - 4	8 - 5	8 - 15	8 - 16

Под кратковременным сроком работы условно понимают службу детали до 100 ч, под ограниченным сроком работы - от 100 до 10 000 ч (в отдельных случаях до 20 000 ч), под весьма длительным сроком работы - время значительно Рекомендуемая температура применения, срок работы, температура начала интенсивного окалинообразования даны ориентировочно. большее 10 000 ч (обычно от 50 000 до 100 000 ч).

ГОСТ 5632-72 предусматривает также другие марки сталей I, II и III групп. В табл. 25 - 27 в скобках приведены старые обозначения марок сталей.

В зависимости от химического состава сплавы подразделяют на классы по основному составляющему элементу: сплавы на железоникелевой основе; сплавы на никелевой основе.

Химические элементы в марках стали обозначены следующими буквами: A - азот, B - ниобий, B - вольфрам, Γ - марганец, \mathcal{H} - медь, \mathcal{H} - селен, \mathcal{H} - молибден, \mathcal{H} - никель, \mathcal{H} - бор, \mathcal{H} - кремний, \mathcal{H} - титан, \mathcal{H} - ванадий, \mathcal{H} - алюминий, \mathcal{H} - кобальт, \mathcal{H} - хром, \mathcal{H} - цирконий.

Наименование марок сталей состоит из обозначения элементов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднее содержание легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднее или максимальное (при отсутствии нижнего предела) содержание углерода в стали в сотых долях процента. Букву А (азот) ставить в конце обозначения марки не допускается.

Наименование марок сплавов состоит только из буквенных обозначений элементов, за исключением никеля, после которого указываются цифры, обозначающие его среднее содержание в процентах.

Примерное назначение коррозионностойких сталей и сплавов приведено в табл. 26, жаростойких - в табл. 25, жаропрочных - в табл. 27.

В первой графе табл. 25 - 27 цифра, стоящая перед тире, обозначает порядковый номер класса стали (1 ... 6) или вида сплава (7; 8); цифры после тире - порядковые номера марок в каждом из классов стали или видов сплавов.

ЛИСТОВАЯ ЛЕГИРОВАННАЯ КОНСТРУКЦИОННАЯ СТАЛЬ ОБШЕО НАЗНАЧЕНИЯ

Горячекатаная и холоднокатаная листовая конструкционная качественная и высококачественная легированная сталь толщиной до 4,0 мм включительно поставляется в листах.

Листы изготовляют из стали марок 60Г, 65Г, 70Г, 20Х, 30Х, 35Х, 40Х, 10Г2, 12Г2, 16Г2, 38ХА, 30ХМ, 30ХМА, 20ХГСА, 25ХГСА, 30ХГС, 30ХГСА, 35ХГСА и 25ХГФ.

Листы поставляют в термически обработанном (отожженном или отпущенном) состоянии.

Размеры листов горячекатаной стали - по ГОСТ 19903-74, холоднокатаной стали - по ГОСТ 19904-90.

28. Механические свойства листов в отожженном или отпущенном состоянии

	Временное сопро-	Относи: удлине	
Марка ста- ли	тивление разрыву,	δ ₄	δ ₁₀
	МПа	не м	енее
60Г	540 - 780	12	14
65T	590 - 830	10	12
70Γ	640 - 880	8	10
10Γ2, 12Γ2	390 - 490	20	22
25XFCA	490 - 690	15	18
30XFC, 30XFCA	490 - 740	14	16
16Г2	490 - 640	16	18

ПРОКАТ ТОЛСТОЛИСТОВОЙ И ШИРОКОПОЛОСНЫЙ ИЗ КОНСТРУКЦИОННОЙ КАЧЕСТВЕННОЙ СТАЛИ (по ГОСТ 1577-93)

Прокат изготовляют из стали марок 08кп, 08пс, 10кп, 10пс, 10, 15кп, 15пс, 15, 20кп, 20пс, 20, 25, 30, 35, 40, 45, 50, 55, 60, 08Ю, 15Г, 20Г, 30Г, 40Г, 50Г, 10Г2, 35Г2, 20Х, 30Х, 38ХА, 40Х, 45Х,65, 70, 60Г, 70Г.

Примечание. Из стали марки 08Ю изготовляют листовой прокат.

Прокат изготовляют толщиной, мм: 4 - 160 - листовой; 4 - 12 - рулонный; 6 - 60 - широкополосный.

Требования к сортаменту проката должны соответствовать: ГОСТ 19903-74 - для листового и рулонного; ГОСТ 82-70 - для широкополосного.

Твердость проката толщиной до 80 мм включительно без термической обработки или после контролируемой прокатки, а также термообработанного проката, должна соответствовать нормам, указанным в табл. 28а.

Механические свойства проката в нормализованном состоянии и после закалки с отпуском приведены в табл. 29 и 29а. СТАЛИ

121

28а. Твердость проката из конструкционной качественной стали

	Без термообра	аботки		Пр	окат	
Марка стали	или после кон руемой прог	проли-	нормализова	инный	отожженны высокоотпуш	
	Диаметр отпечатка, мм, не менее	НВ, не более	Диаметр отпечатка, мм, не менее	НВ, не более	Диаметр отпечатка, мм, не менее	НВ, не более
08кп, 08пс, 08,08Ю	+	+	+	+	5,2	131
10кп, 10пс, 10	+	+	+	+	5,1	137
15кп, 15пс, 15	+	+	+	+	5,0	143.
20κπ, 20πc, 20	+	+	+	+	4,8	156
25	4,6	170	4,6	170	4,6	170
30	4,5	179	4,5	179	4,5	179
35	4,2	207	4,2	207	4,4	187
40	4,1	217	4,1	217	4,4	187
45	4,0	229	4,0	229	4,3	197
50	3,9	241	3,9	241	4,2	207
55	3,8	255	3,8	255	4,1	217
60	3,8	255	3,8	255	4,0	229
65	3,8	255	3,8	255	4,0	229
70	3,7	269	3,7	269	4,0	229
15Γ	4,7	163	4,7	163	4,7	163
20Γ	4,3	197	4,3	197	4,5	179
30Γ	4,1	217	4,1	217	4,4	187
40Γ	4,0	229	4,0	229	4,2	207
50Γ	3,8	255	3,8	255	4,1	217
60Γ	3,7	269	3,7	269	4,0	229
65Γ	3,6	285	3,6	285	4,0	229
70Γ	3,6	285	3,6	285	4,0	229
10Γ2	+	+	+	+	4,3	197
35Γ2	+	+	+	+	4,2	207
20X	+	+	+	+	4,5	179
30X	+	+	+	+	4,4	187
38XA	+	+	+	+	4,2	207
40X	+	+	+	+	4,1	217
45X	+	+	+	+	4,0	229

 Π р и м е ч а н и е . Знак "+" означает, что контроль твердости проводится для набора данных и результаты контроля заносятся в документ о качестве.

29. Механические свойства проката в нормализованном состоянии (по ГОСТ 1577-93)

		Предел текучести	Временное сопротивление	Относительное %, не г	
Марка стали	Толщина, мм	σ _т , не менее	$\sigma_{\mathtt{B}},$	вдоль	поперек
		N	ИПа	направления	н прокатки
20	До 100	230	400 - 550	27	25
	От 100 до 160	210	380 - 520	25	23
	До 16	260	420 - 570	25	23
25	От 16 до 100	240	420 - 570	25	23
	От 100 до 160	220	400 - 550	23	21
	До 16	280	450 - 630	23	21
30	От 16 до 100	250	450 - 630	23	21
	От 100 до 160	230	430 - 610	21	19
	До 16	300	480 - 670	21	19
35	От 16 до 100	270	480 - 670	21	19
	От 100 до 160	245	460 - 650	19	17
	До 16	320	530 - 720	19	17
40	От 16 до 100	290	530 - 720	19	17
•	От 100 до 160	260	510 - 700	17	15
	До 16	340	580 - 770	17	15
45	От 16 до 100	305	580 - 770	17	15
	От 100 до 160	275	560 - 750	15	13
	До 16	355	600 - 820	16	14
50	От 16 до 100	320	600 - 820	16	14
	От 100 до 160	290	580 - 800	14	12
	До 16	370	630 - 870	15	13
55	От 16 до 100	330	630 - 870	15	13
	От 100 до 160	300	610 - 850	13	11
	До 16	380	650 - 920	14	12
60	От 16 до 100	340	650 - 920	14	12
	От 100 до 160	310	630 - 880	12	10

СТАЛИ 123

29а. Механические свойства проката после закалки с отпуском (по ГОСТ 1577-93)

29	9а. Механи	еские свой	ства	прокат	я посл	ie 32	калки (отщ	уском (п	o FOCT 157	7-93)	
				Дл	я прон	ката '	толщи	ной,	мм			
			д	о 16 вк	люч.					св. 16	до 4	0
Марка стали	Предел текучести не менее	· 1 •	1B-	Отно тель удлин δ ₅ ,	ное ение	тел суж	носи- пьное кение	удај при	абота ра KV, 20°C, Дж	Предел текучести, не менее	con	менное ротив- ение
		МПа				не м	менее			M	Па	
20	350	550 - 7	00	20)		50		50	300	500	- 650
25	370	550 - 7	00	19)		45		45	320	500	- 650
30	400	600 - 7	50	18	3		40		40	350	550	- 700
35	430	630 - 7	80	17	7		40		35	370	600	- 750
40	460	650 - 8	00	16	5		35		30	400	630	- 780
45	500	700 - 8	50	14	1		35		25	430	650	- 800
50	520	750 - 9	00	13	3		30		+	460	700	- 850
55	550	800 - 9	50	12	2		30		+	500	750	- 900
60	580	850 - 1	000	1	1		25		+	520	800	- 950
30 X	650	850 - 1	000	1:	2		4 0		35	550	750	- 900
38XA	750	950 - 1	150	1	1		35	i	30	630	850	- 1000
40X	800	1000 - 1	200	1	0		30		30	660	900	- 1100
	<u>, L</u>			Для	я прок	ата 1	голщиот	юй,	мм			
	(ов. 16 до 40)					(ъ. 40 до	100		
Марка стали	Относи- тельное удлине- ние 85, %	Относи- тельное сужение ψ, %	уда <u>г</u>	бота ра KV, при С, Дж	Пред теку чест не ме	у- ти,	Врем но сопро лент	е тив-	Относи тельно удлине ние б ₅ ,	е тельное - сужение	уда	абота пра KV, при °C, Дж
		не менее				M	Па			не мене	e	
20	22	50		50	-		-		_	-		-
25	21	50		45	-		-		-	-		-
30	20	45		40	30	0	500 -	650	21	50		40

550 - 700

600 - 750

630 - 780

·

Продолжение табл. 29а

			Дл	я проката	голщиной,	мм		
		св. 16 до 40)			св. 40 до 10	0	
Марка стали	Относи- тельное удлине- ние δ ₅ , %	Относи- тельное сужение ψ, %	Работа удара KV, при 20°C, Дж	Предел теку- чести, не менее	Времен- ное сопротив- ление	Относи- тельное удлине- ние δ_5 , %	Относи- тельное сужение ψ, %	Работа удара KV, при 20°C, Дж
		не менее		M	Па		не менее	
50	15	35	+	400	650 - 800	16	40	+
55	14	35	+	430	700 - 850	15	40	+
60	13	30	+	450	750 - 900	14	35	+
30X	14	45	40	410	650 - 800	15	50	45
38XA	13	40	35	510	750 - 900	14	40	35
40X	12	35	35	560	800 - 950	14	40	35

Примечания:

1. Нормы механических свойств для проката из стали марки 30 приведены для толщин до 63 мм.

2. Знак "+" означает, что характеристика определяется для набора данных. Результаты заносят в документ о качестве.

ПРОКАТ ТОНКОЛИСТОВОЙ. ИЗ УГЛЕРОДИСТОЙ СТАЛИ КАЧЕСТВЕННОЙ И ОБЫКНОВЕННОГО КАЧЕСТВА ОБЩЕГО НАЗНАЧЕНИЯ (по ГОСТ 16523-89 в ред. 1991 г.)

Тонколистовой горячекатаный и холоднокатаный прокат из углеродистой стали качественной и обыкновенного качества общего назначения изготовляют шириной 500 мм и более толщиной до 3,9 мм включительно.

Прокат подразделяют:

по способу производства: горячекатаный, холоднокатаный;

по видам продукции: листы, рулоны;

по минимальному значению временного сопротивления (В) на группы прочности: К260В, К270В, ОК300В, К310В, К330В, К350В, ОК360В, ОК370В, К390В, ОК400В, К490В:

по нормируемым характеристикам на категории: 1,2,3,4,5,6 (табл. 30);

по качеству отделки поверхности на группы:

холоднокатаный: особо высокой отделки - I, высокой отделки - II, повышенной отделки - III (IIIa, IIIб); горячекатаный: повышенной отделки - III, обычной отделки - IV:

по способности к вытяжке (холоднокатаный прокат толщиной до 2 мм групп прочности K260B, K270B, K310B, K330B, K350B):

глубокой - Г, нормальной - Н.

В части сортамента прокат должен соответствовать требованиям ГОСТ 19903-74 горячекатаный, ГОСТ 19904-90 холоднокатаный.

Степени точности проката по размерам, плоскостности, серповидности и характеру кромки указывают в заказе. При отсутствии указания степень точности выбирает предприятие-изготовитель.

Прокат изготовляют:

из углеродистой стали обыкновенного качества групп прочности ОК300В, ОК360В, ОК370В, ОК400В;

из углеродистой качественной стали групп прочности K260B, K270B, K310B, K330B, K350B, K390B, K490B.

П р и м е ч а н и е : Группу прочности обозначают тремя цифрами, соответствующими нижнему пределу временного сопротивления. Прокат из стали обыкновенного качества обозначают буквами ОК, из стали качественной - К.

				Группы г	рочности	
Категория	Испытание	Способ производства	K260B, K270B, K310B, K330B, K350B	K390B	K490B, OK400B	OK300B, OK360B, OK370B
1	На изгиб	Горячекатаный Холоднокатаный	-	-	-	+
2	На вытяжку сферической лунки	Холоднокатаный	+	-	-	-
3	На изгиб и на вытяжку сферической лунки	Холоднокатаный	+	-	-	_
4	Механических свойств	Горячекатаный Холоднокатаный	+	+	+	+
5	Механических свойств и на изгиб	Горячекатаный Холоднокатаный	+	+	-	+
6	Механических свойств, на вытяжку сферической лунки и на изгиб	Горячекатаный * Холоднокатаный	*+	-	-	-

30. Категории проката в зависимости от нормируемых характеристик

Примеры условных обозначений:

Прокат горячекатаный листовой повышенной точности (A), нормальной плоскостности (ПН), с обрезной кромкой (0), размером $2\times1000\times2000$ мм по ГОСТ 19903-74, группы прочности К270В, категории 4, повышенной отделки поверхности (III) из стали марки 08пс с гарантией свариваемости:

$$\times \frac{A - IIH - 0 - 2 \times 1000 \times 2000 \quad IOCT \quad 19903 - 74}{K270B4 - III - 08nc - cs \quad IOCT \quad 16523 - 89}$$

Прокат горячекатаный рулонный нормальной точности (Б), с необрезной кромкой (Н0), размером 2 х 1000 мм по ГОСТ 19903-74, группы прочности ОК360В, категории 5, обычной отделки поверхности (IV):

Прокат холоднокатаный рулонный нормальной точности по толщине (БТ), повышенной точности по ширине (АШ), с обрезной кромкой (0), размером 1 × 1000 мм по ГОСТ 19904-90, группы прочности ОК360В, категории 1, повышенной отделки поверхности (ПІа):

Прокат холоднокатаный листовой высокой точности по толщине (ВТ), повышенной точности по ширине (АШ), нормальной точности по длине (БД), улучшенной плоскостности (ПУ), с обрезной кромкой (0), размером $1\times 1000\times 2000$ мм по ГОСТ 19904-90, группы прочности К270В, категории 6, высокой отделки поверхности (II), глубокой вытяжки (Γ):

^{*} По требованию потребителя.

K490B

	51. WEARING TERME	COUNCIDE OPOREIR	(10 7 0 0 1			
			Относ	ительное у не м	длинение δ енее	, %,
Группа проч- ности	Марка стали	Временное сопротивление разрыву,	Горячек про		Холоднок прок	
,		МПа	до 2 мм вкл.	св. 2 мм	до 2 мм вкл.	св. 2 мм
K260B	08кп	260 - 380	25	28	26	29
K270B	08пс, 08, 10кп, 10пс, 10	270 - 410	24	26	25	28
OK300B	Cr1, Cr2 *	300 - 480	21	23	24	26
K310B	15кп, 15пс	310 - 440	23	25	24	27
K330B	15, 20кп	330 - 460	23	24	24	25
K350B	20πc, 20	350 - 500	22	23	23	24
OK360B	Ст3 *	360 - 530	20	22	22	24
OK370B	Ст3пс, Ст3сп	370 - 530	20	22	22	24
K390B	25, 30	390 - 590	19	20	20	21
OK400B	CT4 *	400 - 680	17	19	19	21
		[1

490 - 720

31. Механические свойства проката (по ГОСТ 16523-89)

35, 40, 45, 50

ПРОКАТ ТОЛСТОЛИСТОВОЙ ИЗ УГЛЕРОДИСТОЙ СТАЛИ ОБЫКНОВЕННОГО КАЧЕСТВА (по ГОСТ 14637-89)

Толстолистовой горячекатаный прокат из углеродистой стали обыкновенного качества изготовляют шириной 500 мм и более, толщиной от 4 до 160 мм включительно.

Прокат изготовляют в виде листов и рулонов из стали марок Ст0, Ст2кп, Ст2пе, Ст2сп, Ст3кп, Ст3пе, Ст3сп, Ст3Гпе, Ст3Гсп, Ст4пе, Ст4сп, Ст5пе, Ст5сп, Ст5Гпе по ГОСТ 380-94.

Прокат изготовляют толщиной: 4 - 160 мм листы; 4 - 12 мм - рулоны.

Размеры и предельные отклонения должны соответствовать ГОСТ 19903-74.

В зависимости от нормируемых характеристик прокат подразделяют на категории: 1, 2, 3, 4, 5, 6. Для обозначения категории к обозначению марки добавляется номер категории, например, Ст3пс1, Ст4сп3.

СТАЛЬНАЯ ГОРЯЧЕКАТАНАЯ ПОЛОСА (по ГОСТ 103-76 в ред. 1991 г.)

Стальные полосы общего назначения и полосы для гаек изготовляют шириной 11 ... 200 мм и толщиной 4 ... 60 мм.

По точности прокатки полосы изготовляют:

13

13

14

12

Б - повышенной точности, В - нормальной точности.

По серповидности полосы изготовляют классов 1 и 2.

ГОСТ предусматривает предельные отклонения для полос общего назначения и полос для горячей и холодной штамповки гаек.

Полосы изготовляют длиной: от 3 до 10 м - из углеродистой стали обыкновенного качества, низколегированной и фосфористой; от 2 до 6 м - из углеродистой качественной и легированной стали. По требованию полосы изготовляют длиной по 12 м.

Масса 1 м полосы дана в табл. 32.

Пример обозначения:

Полоса общего назначения повышенной точности прокатки Б, с серповидностью по классу 1, толщиной 10 мм и шириной 22 мм, из стали 09Г2:

Полоса
$$\frac{10 \times 22 - B - 1}{09\Gamma 2} \frac{\Gamma OCT}{\Gamma OCT} \frac{103 - 76}{535 - 88}$$
.

^{*} Стали всех степеней раскисления.

32. Ширина, толщина в масса 1 м стальных горячекатаных полос (по ГОСТ 103-76)

	28		24.18 26.38 27.48 28.57
	25	6,28 	20.01 21,59 23,55 24,53 25,51
	22	4,84 4,84 5,18 5,53 6,91 7,77 8,64 10,36 10,88 11,23 12,09 12,09 12,95 12,09 12,95 12,09 12,95 12,09	19,00 20,72 21,59 22,45
	20		10,46 17,27 18,84 19,62 20,41
:	18	3,11 3,53 3,53 3,56 4,24 4,24 4,52 5,09 5,09 7,70 7,70 7,70 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,42 11,42	15,54 16,96 17,66 18,37
MM	16	2,51 2,51 2,76 3,14 3,52 4,02 4,02 5,65 6,28 6,28 6,28 6,21 1,91 10,05 11,30 11,30 11,30	13,82 13,82 15,07 15,70 16,33
опцине,	14	2,20 2,20 2,42 2,42 3,08 3,08 3,52 3,96 4,96 6,92 6,92 6,92 6,92 6,93 9,34 10,94 10,99	11,54 12,09 13,19 13,74 14,29
Масса 1 м полосы, кт, при толщине, мм	12	- 1,51 1,70 1,70 1,88 1,207 2,07 2,04 4,24 4,24 4,24 4,24 1,06 6,09 6,09 6,09 6,09 6,09 6,09 6,09 6	7,87 10,36 11,30 11,78 12,25
элосы, к	11		9,50 10,36 10,79 11,23
са 1 м пе	10	1,26 1,141 1,57 1,73 1,96 2,20 2,20 2,36 3,14 4,71 4,72 4,32 5,10 5,50 5,50 5,67 7,06 7,46 7,46 7,46 7,46 7,46 8,78	8,64 9,42 9,81 10,20
Mac	6	- 1,13 1,27 1,27 1,41 1,55 1,55 1,55 2,26 2,26 4,24 4,59 4,59 5,30 6,36 6,36 6,36 6,37 1,06 1,00 1,00 1,00 1,00 1,00 1,00 1,00	8,48 8,83 9,18
	8	0,75 0,88 1,00 1,13 1,26 1,38 1,57 1,57 1,57 1,57 1,57 1,57 1,57 1,57	6,91 7,54 7,85 8,16
	7	0,66 0,77 0,88 0,99 1,10 1,21 1,37 1,54 1,54 1,54 1,54 1,54 1,37 1,54 1,54 1,54 1,54 1,54 1,54 1,54 1,54	6,04 6,59 6,87 7,14
	9	0,56 0,66 0,75 0,94 1,04 1,13 1,13 1,13 1,14 1,14 1,17 1,18 1,18 2,36 2,39 2,39 2,83 3,30 3,30 4,40 4,24 4,24 4,41	5,18 5,65 5,89 6,12
	5	0,47 0,55 0,63 0,73 0,78 0,86 0,98 0,98 1,10 1,10 1,10 1,57 1,77 1,96 2,16 2,16 2,16 2,16 2,16 2,16 2,17 3,14 3,13 3,73 3,73	4,12 4,32 4,71 4,91 5,10
	4	0,38 0,44 0,56 0,56 0,63 0,63 0,63 0,78 0,94 1,13 1,26 1,41 1,57 1,57 1,57 1,57 1,58 1,98 2,04 2,20 2,36 2,36 2,36 2,38 3,14 3,14	3,45 3,77 3,92 4,08
Ширина	полосы, мм	114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 110 120 125 130

Ширина						Mac	са 1 м п	олосы, к	Масса 1 м полосы, кг, при толщине,	лшине,	ММ					
полосы, мм	4	5	9	7	&	6	10	11	12	14	16	18	20	22	25	28
140	4,40	5,50	65'9	69'L	8,79	68'6	10,99	12,09	13,19	15,39	17,58	19,78	21,98	24,18	27,48	30,77
150	4,71	5,89	7,06	8,24	9,42	10,60	11,78	12,95	14,13	16,48	18,84	21,20	23,55	25,90	29,44	32,97
160	5,02	6,28	7,54	8,79	10,05	11,30	12,56	13,82	15,07	17,58	20,10	22,61	25,12	27,63	31,40	35,17
170	5,34	19'9	8,01	9,34	10,68	12,01	13,34	14,68	16,01	18,68	21,35	24,02	26,69	29,36	33,36	37,37
180	5,65	7,06	8,48	68'6	11,30	12,72	14,13	15,54	16,96	19,78	22,61	25,43	28,26	31,09	35,32	39,56
190	5,97	7,46	8,95	10,44	11,93	13,42	14,92	16,41	17,90	20,88	23,86	26,85	29,83	32,81	37,29	41,76
200	6,28	7,85	9,42	10,99	12,56	14,13	15,70	17,27	18,84	21,98	25,12	28,26	31,40	34,54	39,25	43,96

Продолжение табл. 32

	09	1	í	1	ı	1	ı		ı	,	¢
	95	í	ı	1	ı	1	1	1	,	1	35,17
ММ	50	ı	ı	ı	1	ı	24,73	25,51	,	í	31,40
Масса 1 м полосы, кт, при толцине, мм	45	1	1	1	1	21,20	22,25	22,96	24,73	26,49	28,26
са 1 м полосы, к	40	-	١	15,70	17,27	18,84	19,78	20,41	21,98	23,55	25,12
Mac	36		12,72	14,13	15,54	16,96	17,80	18,37	19,78	21,20	22,61
	32	10,05	11,30	12,56	13,82	15,07	15,83	16,33	17,58	18,84	20,10
	30	9,42	10,60	11,78	12,95	14,13	14,84	15,31	16,48	17,66	18,84
Ширина	полосы, мм	40	45	50	55	09	63	65	70	75	80

Продолжение табл. 32

Ширина			Mac	Масса 1 м полосы, кт, при толцине, мм	т, при толщине,	ММ		
полосы, мм	30	32	36	40	45	50	56	09
85	20,02	21,35	24,02	26,69	30,03	33,36	37,36	40,04
06	21,20	22,61	25,43	28,26	31,79	35,32	39,56	42,39
95	22,37	23,86	26,85	29,83	33,56	37,29	41,76	44,74
100	23,55	25,12	28,26	31,40	35,32	39,25	43,96	47,10
105	24,73	26,38	29,67	32,97	37,09	41,21	46,16	49,46
110	25,90	27,63	31,09	34,54	38,86	43,18	48,35	51,81
120	28,26	30,14	33,91	37,68	42,39	47,10	52,75	56,52
125	29,44	31,40	35,32	39,25	44,16	49,06	54,95	58,88
130	30,62	32,66	36,74	40,82	45,95	51,02	57,14	61,23
140	32,97	35,17	39,56	43,96	49,46	54,95	61,54	65,94
150	35,32	37,68	42,39	47,10	52,99	58,88	65,94	70,65
160	37,68	40,19	45,22	50,24	56,52	62,80	70,33	75,36
170	40,04	42,70	48,04	53,38	60,05	66,72	74,73	80,07
180	42,39	45,22	50,87	56,52	68,58	70,65	79,12	84,78
190	44,74	47,73	53,69	99,65	67,12	74,58	83,52	89,49
200	47,10	50,24	56,52	62,80	70,65	78,50	87,92	94,20

КРУГЛАЯ И КВАДРАТНАЯ ГОРЯЧЕКАТАНАЯ И ШЕСТИГРАННАЯ КАЛИБРОВАННАЯ СТАЛЬ (по ГОСТ 2590-88, ГОСТ 2591-88, ГОСТ 8560-78)

Круглый горячекатаный прокат изготовляют: высокой точности - А, повышенной точности - Б, обычной точности - В; квадратный прокат - повышенной точности - Б и обычной точности В.

ГОСТ 8560-78 предусматривает размеры шестигранника $a=3\div 100$ мм; шестигранники изготовляют квалитетов h10, h11, h12. Шестигранные калиброванные прутки длиной 2-6,5 м поставляют из сталей марок по ГОСТ 1051-73.

Примеры обозначений: горячекатаной круглой стали марки Ст3 диаметром 50 мм обычной точности (В):

Kpys
$$\frac{50 - B}{Cm^3} \frac{FOCT}{FOCT} \frac{2590 - 88}{535 - 88}$$

горячекатаной квадратной стали Ст3 при стороне квадрата 60 мм обычной точности (В):

$$K$$
вадрат $\frac{60 - B \ \Gamma O C T 2591 - 88}{Cm3 \ \Gamma O C T 535 - 88}$

шестигранной калиброванной стали 45 размера 25 мм, 5-го класса точности, термообработанной Т, с качеством поверхности группы В по ГОСТ 1051-73:

Шестигранник
$$\frac{25-5}{45-T-B}$$
 $\frac{FOCT}{FOCT}$ $\frac{8560-78}{1000}$

Сортамент стали приведен в табл. 33.

33. Сортамент стали горячекатаной круглой, квадратной и калиброванной шестигранной

d, a]	Масса 1 м ста	ли, кг	d, a]	Масса 1 м ста	ии, кг
ММ	круглой	квадратной	шестигранной	ММ	круглой	квадратной	шестигранной
5	0,154	-	0,170	36	7,99	10,17	8,81
6	0,222	0,283	0,245	38	8,90	11,24	9,82
7	0,302	0,385	0,333	40	9,86	12,56	10,88
8	0,395	0,502	0,435	41	10,36	12,81	1,40
9	0,499	0,636	0,551	42	10,88	13,85	11,99
10	0,616	0,785	0,680	45	12,48	15,90	13,77
11	0,746	0,95	0,823	46	13,05	16,61	14,4
12	0,888	1,13	0,979	48	14,20	18,09	15,66
13	1,04	1,33	1,150	50	15,42	19,62	16,99
14	1,21	1,54	1,330	53	17,32	-	19,10
15	1,39	1,77	1,530	55	18,65	23,75	20,60
16	1,58	2,01	1,740	58	20,74	26,40	21,32
17	1,78	2,27	1,960	60	22,19	28,26	24,50
18	2,00	2,54	2,200	63	24,17	31,16	26,98
19	2,23	2,82	2,45	65	26,05	33,17	28,70
20	2,47	3,14	2,72	70	30,21	38,46	33,30
21	2,72	3,46	3,00	75	34,68	44,16	38,24
22	2,98	3,80	3,29	80	39,46	50,24	43,51
24	3,55	4,52	3,92	85	44,54	56,72	49,12
25	3,85	4,91	4,25	90	49,94	63,58	55,07
26	4,17	5,30	4,59	95	55,64	70,85	61,36
27	4,50	5,72	4,96	100	61,65	78,50	67,98
28	4,83	6,15	5,33	105	67,97	86,57	
30	5,55	7,06	6,12	110	74,60	94,98	
32	6,31	8,04	6,96	120	88,78	113,04	_
34	7,13	9,07	7,86	125	96,33	122,66	

	ma6.4	22
Продолжение	Tatul.	در

d, a	1	Масса 1 м ста	ли, кг	d, a		Масса 1 м ста	ли, кг
мм	круглой	квадратной	шестигранной	мм	круглой	квадратной	шестигранной
130	104,20	132,67		170	178,18	227,00	
140	120,84	153,86	-	180	199,76	254,00	-
150	138,72	176,63		190	222,57	283,00	
160	157,83	200,96		200	246,62	314,00	

Обозначения: d - диаметр круглой стали или вписанной окружности для шестигранной стали; a - сторона квадрата.

Для круклой и квадратной стали предусматриваются такие размеры: 52, 93, 115, 135, 145 мм.

По ГОСТ 2591-88 прутки со стороной квадрата до 100 мм включительно поставляют с острыми углами: свыше 100 мм - с закругленными ($R \le 0,15$ a).

КОВАНАЯ КРУГЛАЯ И КВАДРАТНАЯ СТАЛЬ (по ГОСТ 1133-71 в ред. 1991 г.)

Диаметр или сторона квадрата кованой стали, мм: 40; 42; 45; 48; 50; 52; 55; 58; 60; 63; 65; 68; 70; 73; 75; 78; 80; 83; 85; 90; 95; 100; 105; 110; 115; 120; 125; 135; 140; 145; 150; 155; 160; 165; 170; 175; 180; 185; 190; 195; 200.

Примеры обозначений: круглой стали марки У10 диаметром 40 мм:

Kpyz
$$\frac{40 \ FOCT \ 1133 - 71}{y_{10} \ FOCT \ 1435 - 90}$$

квадратной стали марки У12 со стороной квадрата 60 мм:

Keadpam
$$\frac{60 \ \Gamma OCT \ 1133-71}{y_{12} \ \Gamma OCT \ 1435-90}$$

КАЛИБРОВАННАЯ КРУГЛАЯ СТАЛЬ (по ГОСТ 7417-75 в ред. 1991 г.)

Калиброванную круглую сталь изготовляют холоднотянутой и холоднокатаной диаметром от 3 до 100 мм.

Пример обозначения калиброванной стали марки 45 диаметром 10 мм, квалитета h10, качества поверхности группы В по ГОСТ 1051-73:

Kpys
$$\frac{10-h10 \ \Gamma OCT \ 7417-75}{45-B \ \Gamma OCT \ 1051-73}$$

Прутки поставляют длиной:

от 2 до 6,5 мм из качественной углеродистой автоматной, низколегированной и легированной стали;

от 1,5 до 6,5 м - из высоколегированной стали. По согласованию допускается изготовлять прутки больших длин.

34. Размеры калиброванной круглой стали (по ГОСТ 7417-75)

Диаметр*,		Предельные от	клонения, мм	
мм	h9	h10	h11	h12
3,0	-0,025	-0,040	-0,060	-0,100
3,1 - 6,0	-0,030	-0,048	-0,075	-0,120
6,1 - 10	-0,360	-0,058	-0,090	-0,150
10,2 - 18	-0,043	-0,070	-0,110	-0,180
18,5 - 30	-0,052	-0,084	-0,130	-0,210

Диаметр*,		Предельные от	клонения, мм	
мм	h9	h10	h11	h12
31 - 51	-0,062	-0,100	-0,160	-0,250
52 - 65	-0,074	-0,120	-0,190	-0,300
67 - 80	-	-	-0,190	-0,300
82 - 100	-	-	-0,220	-0,350

^{*} Диаметры в указанных пределах брать из ряда: 3,1; 3,2; 3,3; 3,4; 3,5; 3,6; 3,7; 3,8; 3,9; 4,0; 4,1; 4,2; 4,4; 4,5; 4,6; 4,8; 4,9; 5,0; 5,2; 5,3; 5,5; 5,6; 5,8; 6,0; 6,1; 6,3; 6,5; 6,7; 6,9; 7,0; 7,1; 7,3; 7,5; 7,7; 7,8; 8,0; 8,2; 8,5; 8,8; 9,0; 9,2; 9,3; 9,5; 9,8; 10,0; 10,5; 10,8; 11; 11,2; 11,5; 11,8; 12,0; 12,5; 12,8; 13,0; 13,5; 14,0; 14,2; 14,5; 14,8; 15,0; 15,2; 15,5; 15,8; 16,0; 16,2; 16,5; 16,8; 17,0; 17,2; 17,5; 17,6; 17,8; 18,0; 18,5; 19,0; 19,5; 20,0; 20,5; 21,0; 21,5; 22 - 42 с интервалом 1 мм; 44; 45; 46; 48; 49; 50; 52; 53; 55; 56; 58; 60; 61; 62; 63; 65; 67; 69; 70; 71; 73; 75; 78; 80; 82; 85; 88; 90; 92; 95; 98; 100.

ГОРЯЧЕКАТАНАЯ СТАЛЬНАЯ ЛЕНТА (по ГОСТ 6009-74)

Ленту получают горячей прокаткой или продольной резкой горячекатаной листовой стали. Размеры ленты, мм:

Толщина	1,2	1,4; 1,5	1,6; 1,8	2; 2,2	2,5	3; 3,5	4; 4,5; 5
Ширина	20 - 28	20 - 50	20 - 50	20 - 85	20 - 200	20 - 220	200 - 220

Указанные пределы ширины брать из ряда: 20; 22; 25; 28, 30; 32; 36; 40; 45; 50; 60; 63; 65; 70; 75; 80; 85; 90; 100; 110; 120; 130; 150; 160; 170; 175; 190; 200; 215; 220.

Предельные отклонения по ширине должны соответствовать:

+ 0,8

мм - для ленты с катаной кромкой ши--1,0 риной до 60 мм;

+ 1,5

% ширины - для ленты с катаной - 2,0 кромкой шириной свыше 60 мм;

+ 2,0 мм - для разрезной ленты.

Предельные отклонения по толщине для денты с катаной кромкой:

+0.15

мм - для лент шириной от 20 до - 0,20 100 мм;

+0.20

мм - для лент шириной свыше 100 до - 0,25 150 мм;

+0,25

мм - для лент шириной свыше 160 до - 0,30 220 мм.

Ленту изготовляют из углеродистой стали обыкновенного качества марок БСт0 - БСт5 первой или второй категории всех степеней раскисления по ГОСТ 380-94.

Пример обозначения горячекатаной ленты толщиной 3,5 мм, шириной 50 мм из стали марки БСт2пс:

Лента 3.5 × 50БСт2пс ГОСТ 6009-74

ПОЛОСЫ ГОРЯЧЕКАТАНЫЕ И КОВАНЫЕ ИЗ ИНСТРУМЕНТАЛЬНОЙ СТАЛИ (по ГОСТ 4405-75 в ред. 1990 г.)

Стандарт распространяется на горячекатаные и кованые полосы прямоугольного сечения из инструментальной углеродистой, легированной и быстрорежущей стали. Марка стали и технические требования - по ГОСТ 1435-90, ГОСТ 5950-73, ГОСТ 19265-73 и другой нормативно-технической документации.

35. Размеры сечения полосы из инструментальной стали, мм (по ГОСТ 4405-75)

JJ. 1 a.	жеры селемия по	nocai no nacipyme	RIADISHON CIAUM,	MM (110 1 OC1 440	13-73)
3 × 12	6 × 45	10 × 50	16 × 30	22 × 30	35 × 55
3 × 20	6 × 50	10 × 60	16 × 32	22 × 35	35 × 60*
3×25	6 × 60	10 × 65	16 × 35	22 × 45**	35 × 65*
3×30	6 × 65	10 × 80	16 × 38	22 × 50**	35 × 70*
		10 × 90	16×40		35 × 75*
		10 × 100	16 × 45		35 × 80*
4 × 10	7 × 12	10 × 120	16 × 50	24 × 45**	35 × 120*
4 × 12	7 × 14	10 × 140	16 × 60	24 × 65*	35 × 145*
4 × 14	7 × 18	10 × 160	16 × 65		
4 × 15	7 × 30		16 × 80	25 × 30	40 × 60*
4 × 16	7 × 35		16 × 100	25 × 35	40 × 80*
4 × 18	7 × 40	12 × 16	16 × 130	25 × 38	40 × 100*
4 × 20		12 × 20	16 × 160	25 × 40	40 × 120*
4 × 25		12 × 22		25 × 50**	40 × 160*
4×30	8 × 12	12 × 25		25 × 55	40 × 200*
4 × 35	8 × 14	12 × 28		25 × 60**	40 × 210
4×40	8 × 16	12 × 30	18 × 22	25 × 75*	40 × 300
4 × 45	8 × 18	12 × 35	18 × 25	25 × 80*	
	8 × 20	12 × 40	18 × 27	25 × 85*	45 × 80*
	8 × 22	12 × 45	18 × 30	25 × 100*	45 × 90*
5 × 10	8 × 25	12 × 50	18 × 34	25 × 110*	
5 × 12	8 × 27	12 × 60	18 × 35	25 × 135	50 × 100*
5 × 14	8 × 30	12 × 65	18 × 42	25 × 150	50 × 150*
5 × 15	8 × 35	12 × 75	18 × 60	25 × 200	50 × 160*
5 × 16	8 × 40	12 × 90			50 × 175*
5 × 20	8 × 45	12 × 100			50 × 200*
5 × 25	8 × 50	12 × 120		30 × 35	50 × 250*
5 × 30	8 × 60	12 × 140	20 × 22	30 × 40**	
5 × 35	8 × 65	12 × 160	20 × 25	30 × 45**	55 × 80*
5 × 40	8 × 80		20 × 30	30 × 50**	
5 × 45	8 × 100		20 × 32	30 × 60*	60 × 80*
	8 × 120	14 × 16	20 × 35	30 × 90*	60 × 90*
		14 × 20	20 × 38	30 × 95*	60 × 120*
6 × 10	9 × 25	14 × 22	20 × 40**	30 × 100*	60 × 150*
6 × 12	9 × 30	14 × 25	20 × 45**	30 × 110*	60 × 180*
6 × 14		14 × 30	20 × 47**	30 × 120*	60 × 240*
6 × 16		14 × 35	20 × 50**	30 × 125*	.60 × 300*
6 × 18	10 × 14	14 × 40	20 × 60**	30 × 130*	75 100*
6 × 20	10 × 16	15 00	20 × 70**	30 × 150*	75 × 100*
6 × 22	10 × 18	15 × 22	20 × 80**	30 × 170	75 × 120*
6 × 25	10 × 20	15 × 40	20 × 90**	30 × 180	75 × 150*
6 × 28	10 × 25		20 × 100**	30 × 200	75 × 200*
6 × 30	10 × 30	16 20	20 x 120	32 × 160*	75 × 250* 75 × 300*
6 × 35	10 × 35	16 × 20	20 × 160	32 × 100°	/3 x 300
6 × 40	10 × 40	16 × 22	20 × 180	35 × 50	80 × 300*
	10 × 45	16 × 25		7 × 70	1 80 × 300

^{*} Размеры сечения только для кованой инструментальной стали.

^{**} Размеры сечения общие для горячекатаной и кованой инструментальной стали.

Длина полос: горячекатаных - от 1,5 до 6 м, кованых - 1,5 м при ширине до 50 мм и 1 м при ширине свыше 50 мм.

Пример обозначения полосовой стали марки У10 толщиной 14 мм, шириной 40 мм:

Полоса
$$\frac{14 \times 40 \ \Gamma OCT 4405 - 75}{V10 \ \Gamma OCT 1435 - 90}$$

ПРОКАТ СТАЛЬНОЙ ГОРЯЧЕКАТАНЫЙ ШИРОКОПОЛОСНЫЙ УНИВЕРСАЛЬНЫЙ (по ГОСТ 82-70 в ред. 1988 г.)

По ребровой кривизне полосы поставляют двух классов: повышенной точности изготовления - класс А и обычной точности изготовления - класс Б.

Материал для изготовления широкополосной стапи и технические требования - по ГОСТ 14637-89 и другим стандартам.

Горячекатаную широкополосную сталь изготовляют толщиной 6; 7; 8; 9; 10; 11; 12; 14; 16; 18; 20; 22; 25; 28; 30; 32; 36; 40; 45; 50; 55; 60 мм.

Для каждого размера толщины брать ширины из ряда: 200; 210; 220; 240; 250; 260; 280; 300; 320; 340; 360; 380; 400; 420; 450; 480; 500; 530; 560; 600; 630; 650; 670; 750; 800; 850; 900; 950; 1000; 1050 мм. Широкополосную сталь поставляют длиной от 5 до 12 м.

Пример обозначения широкополосной универсальной стали марки Ст3сп толщиной 20 мм, шириной 500 мм с ребровой кривизной по классу А:

Полоса
$$\frac{A20 \times 500}{Cm3cn} \frac{\Gamma OCT}{\Gamma OCT} \frac{82 - 70}{14637 - 89}$$

ПРОКАТ ЛИСТОВОЙ ГОРЯЧЕКАТАНЫЙ (по ГОСТ 19903-74 в ред. 1989 г.)

Листовую горячекатаную сталь шириной 500 мм и более изготовляют в листах толщиной от 0,5 до 160 мм и рулонах толщиной от 1.2 до 12 мм.

Листовую сталь подразделяют:

по точности прокатки: повышенной точности - А, нормальной точности - Б;

36. Размеры стальных горячекатаных листов, мм (по ГОСТ 19903-74)

Толщина		Минималь	ная и макси	мальная дли	на листов пр	и ширине	;
листов*	700	1000	1500	1800	2000	2500	3000 и 3600
0,4 - 0,9	1420	-	-	-			
1,0	1420	2000	-	-			
1,2 - 1,4	20	000	-	-			ает толщину ругие шири-
1,5 - 1,8	2000	2000	- 6000	-	0,5 - 160 мо	и, а также	н для толицин листы опре-
2,0 - 2,8		2000 - 6000		-	деленных толщиной		кх) размеров мм
3 - 5		2000	- 6000				
6 - 7	-		2000	- 6000		-	-
8 - 10		2000 - 6000		3000 -	12 000	-	-
11 - 12	-	2000	- 6000		4000 - 9000		-
13 - 25	-	3000	- 6500	3	200 - 10 000		-
26 - 40	-		3000 - 12 00	0	3200 - 1	2 000	3200 - 9500
42 - 100		-	<u> </u>	3500 - 9000	l	-	3500 - 8000

^{*} Толщины листов в указанных пределах брать из ряда: 0,4; 0,45; 0,5; 0,5; 0,6; 0,65; 0,7; 0,75; 0,8; 0,9; 1,0; 1,2; 1,3; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 2,8; 3,0; 3,2; 3,5; 3,8; 3,9; 4,0; 4,5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100.

по плоскостности: особо высокой плоскостности - ПО, высокой плоскостности - ПВ, улучшенной плоскостности - ПУ, нормальной плоскостности - ПН;

по характеру кромки: с необрезной кромкой - НО, с обрезной кромкой - О.

ГОСТ 19903-74 предусматривает толщину листов свыше 100 до 160 мм, другие ширины листов и их минимальную и максимальную длину, а также сталь в рулонах толщиной 1,2 - 12,0 мм, шириной 500 - 1800 мм.

ПРОКАТ ЛИСТОВОЙ ХОЛОДНОКАТАНЫЙ (по ГОСТ 19904-90)

Листовой холоднокатанный прокат шириной 500 мм и более изготовляют в листах толщиной от 0,35 до 5,0 мм и в рулонах толщиной от 0,35 до 3,5 мм.

Листовую сталь нодразделяют:

по точности прокатки:

по толщине: повышенной точности - AT, нормальной точности - BT, высокой точности - BT;

по ширине: повышенной точности - АШ, нормальной точности - БШ (листовой прокат), высокой точности - ВШ;

по длине: (листовой прокат, кроме прокатанного полистно) повышенной точности - АД, нормальной точности - БД, высокой точности - ВД;

по плоскостности: особо высокой плоскостности - ПО, высокой плоскостности - ПВ, улучшенной плоскостности - ПУ, нормальной плоскостности - ПН;

по характеру кромки: с необрезной кромкой - НО, с обрезной кромкой - О.

37. Размеры стальных холоднокатаных листов, мм (по ГОСТ 19904-90)

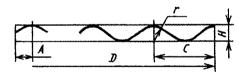
Толщина		Mı	нимальн	ая и мак	симальна	я длина	листов п	ри шири	не	
листов*	500	700	800	900	1000	1250	1400	1500	1800	2000 и 2350
0,5	1000 2500	1400 2500	1500 2500	1500 3000	1500 3000	-	-	-	-	-
0,55-0,65	1000 2500	1400 2500	1500 2500	1500 3000	1500 3000	1500 3500	-	-	-	-
0,70; 0,75	1000 2500	1400 2500	1500 2500	1500 3000	1500 3000	1500 3500	2000 4000	-	-	-
0,8-1,0	1000 3000	1400 3000	1500 3000	1500 3500	1500 3500	1500 4000	2000 4000	-	-	-
1,0-1,3	1000 3000	1400 3500	1500 3000	1500 3500	1500 3500	1500 4000	2000 4000	2000 4000	2000 4200	-
1,4-2,0	1000 3000	1400 3500	1500 3500	1500 3500	1500 4000	1500 6000	2000 6000	2000 6000	2500 6000	-
2,2; 2,5	1000 3000	1400 3500	1500 3500	1500 3500	1500 4000	2000 6000	2000 6000	2000 6000	2500 6000	2500 3500
2,8-3,2	1000 3000	1400 3500	1500 3500	1500 3500	1500 4000	2000 6000	2000 6000	2000 6000	2500 6000	2500 3500
3,5-3,9	TOCT 1	тредусма:	гоивает Д	ругие тол	щины,	2000 4500	2000 4500	2000 4750	2500 6000	2500 3500
4,0-4,5	ширин	ы листон эльную л с толщин	ви их м цлину, а	аксималі также	ьную и сталь в	2000 4500	2000 4500	2000 4500	2500 3500	2500 3500
4,8; 5,0	ной 500) - 1800 r	им	, ,	•	2000 4500	2000 4500	2000 4500	2500 3500	2500 3500

^{*} Толщины листов в указанных пределах дополнительно брать из ряда: 0,6; 0,9; 1,2; 1,5; 1,6; 1,7; 1,8; 3,0; 3,8; 4,2.

Предельные отклонения по длине листового проката, прокатанного полистно, не должны превышать: + 10 мм при длине листов до 1500 мм; + 15 мм при длине листов свыше 1500 мм.

Наименование размера	Ряд размеров
Толщина	0,35; 0,40; 0,45; 0,50; 0,55; 0,60; 0,65; 0,70; 0,75; 0,80; 0,90; 1,00; 1,10; 1,20; 1,30; 1,40; 1,50; 1,60; 1,70; 1,80; 2,00; 2,20; 2,50; 2,80; 3,00; 3,20; 3,50; 3,80; 3,90; 4,00; 4,20; 4,50; 4,80; 5,00
Ширина	500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1250, 1400, 1450, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2350
Длина*	1000, 1100, 1200, 1300, 1400, 1420, 1500, 2000, 2200, 2500, 2800, 3000, 3500, 4000, 4200, 4500, 4750, 5000, 5500, 6000

37а. Ряды размеров проката (по ГОСТ 19904-90)


ЛИСТОВАЯ ВОЛНИСТАЯ СТАЛЬ

Тонколистовую волнистую сталь, поставляемую в черном или оцинкованном виде, применяют в ограждающих конструкциях.

Волнистую сталь изготовляют из листовой стали размерами: 710 \times 1420; 750 \times 1500; 800 \times 1000 \times 2000 мм.

По толщине листы изготовляют от 1,0 до 1,8 мм включительно.

38. Расположение и размеры волн стали, мм

Шири	на листа <i>D</i>	Pas	меры і	волны	Шири	на листа <i>D</i>	Pas	меры в	олны
до вол- нования	после волно- вания	с	Ħ	r	до вол- нования	после волно- вания	с	H	r
1000	835	130	35	1,1 H	1000 835		100	30	0,9 H
800	670	130	35	1,1 H	750	625	100	30	0,9 H
710	590	130	35	1,1 <i>H</i>					

Ширина перекрытия A равна четверти длины волны с предельным отклонением +15.

Волнистую сталь изготовляют из стали марок БСт0 - БСт3 по ГОСТ 380-94.

Масса 1 м^2 проекции волнистой стали толщиной $1 \text{ мм} - 9{,}35 \text{ кг}.$

УГОЛКИ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ РАВНОПОЛОЧНЫЕ (по ГОСТ 8509-93)

По точности прокатки уголки изготовляют: A - высокой точности, B - обычной точности (табл. 39).

^{*} Только для листов; развернутая длина рулонов не регламентируется.

Масса 1 м уголка, кт

1,78

1,78

2,18

1,15

68,0

39. Размеры уголков и справочные величины для осей

			-	37							Обозн	начения	н и я :		
		<u> </u>		œ l	o _Z	*		b - u t - rc R - p r - pe W - 1	 b - ширина полки; t - толщина полки; R - радиус внутреннего закругления; r - радиус закругления полки; W - момент сопротивления; √ - момент инерции; 	олки; олки; утреннего ругления опротивля ерции;	, закругле полки; ения;	эния;			
		×	$\overline{}$	× 8	× +			i - pi Z ₀ - J _{xy} -	i - радиус инершии; Z_0 - расстояние от центра тяжести до наружной грани полки; J_{xy} - центробежный момент инерции	рции; те от цен: жный мо	гра тяжес мент ине	ти до на рции	ружной 1	рани по	лкк;
			MM					:	Справо	Справочные величины для осей	ичины д	я осей		į	
Номер уголка					Площадь по-		x - x		0x - 0x	. хо		30 - 30			
	p	+	æ		сечения, см ²	J_{x_2} cm ⁴	<i>W</i> _х см ³	ix CM	J _{x0 тах} , см ⁴	i _{x₀ max} , cM	J _{уо тіп} , см ⁴	W_{y_0} , cM^3	<i>і</i> _{уо тіп} , СМ	CK ⁴	% % %
2	70	~			1,13	0,40	0,28	65,0	69,0	0,75	0,17	0,20	66,0	0,23	09'0
		4			1,46	0,50	0,37	0,58	0,78	0,73	0,22	0,24	0,38	0,28	0,64
		Э	3,5	1,2	1,43	0,81	0,46	0,75	1,29	6,0	0,34	0,33	0,49	0,47	0,73
2,5	25	4			1,86	1,03	0,59	0,74	1,62	0,93	0,44	0,41	0,48	0,59	0,76
		5*			2,27	1,22	0,71	0,73	1,91	0,92	0,53	0,47	0,48	69'0	0,80
2,8	28	3	4,0	1,3	1,62	1,16	0,58	0,85	1,84	1,07	0,48	0,42	0,55	89'0	0,80
		9			1,74	1,45	29,0	0,91	2,30	1,15	09'0	0,53	65'0	0,85	0,85
ю	30	4	4,0	1,3	2,27	1,84	0,87	0,80	2,62	1,13	0,77	0,61	0,58	1,08	0,89
		5*			2,78	2,20	1,06	0,89	3,47	1,12	0,94	0,71	0,58	1,27	0,93

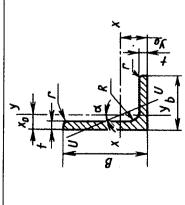
Продолжение табл. 39

	Масса 1 м	, уголка, г кт	9 1,46	1,91	1,60	2,10	2,58	1,85	13 2,42	17 2,98	3,52	21 2,08	26 2,73	30 3,37	34 3,99	33 2,32	38 3,05	42 3,77	46 4,47	50 5,15	53 5,82	52 3,44	57 4,25
		0, 2, S	0,89	0,94	0,97	1,01	1,05	1,09	1,13	1,17	1,21	1,21	1,26	1,30	1,34	1,33	1,38	1,42	1,46	1,50	1,53	1,52	1,57
		Sy, CM4	1,03	1,32	1,37	1,75	2,10	2,08	2,68	3,22	3,72	3,00	3,89	4,71	5,45	4,16	5,42	6,57	7,65	8,63	9,52	7,69	9,41
		$i_{\mathcal{Y}_0 ext{ min }}$, CM	0,63	0,62	69'0	89,0	0,68	62'0	0,78	0,78	0,78	68'0	68'0	0,88	0,88	1,00	66'0	86,0	86,0	0,97	0,97	1,11	1,10
я осей	Уо - Уо	W_{y_0} , cM^3	0,59	0,71	0,71	0,88	1,02	96,0	1,19	1,39	1,58	1,24	1,54	1,81	2,06	1,57	1,95	2,30	2,63	2,93	3,22	2,52	2,97
чины дл		$J_{\gamma_0 ext{ min }},$	0,74	0,94	76,0	1,25	1,52	1,47	1,90	2,30	2,70	2,12	2,74	3,33	3,90	2,95	3,80	4,63	5,43	6,21	6,98	5,41	6,59
Справочные величины для осей	0x	$i_{x_0 \text{ max}}$, CM	1,23	1,21	1,35	1,33	1,32	1,55	1,53	1,52	1,50	1,75	1,74	1,72	1,71	1,95	1,94	1,92	1,91	1,89	1,87	2,18	2,16
Справоч	·- 0x	J x ₀ max ? CM ⁴	2,80	3,58	3,72	4,76	5,71	5,63	7,26	8,75	10,13	8,13	10,52	12,74	14,80	11,27	14,63	17,77	20,72	23,47	26,03	20,79	25,36
		ι'ς CM	76,0	96,0	1,07	1,06	1,05	1,23	1,22	1,21	1,20	1,39	1,38	1,37	1,36	1,55	1,54	1,53	1,52	1,50	1,49	1,73	1,72
	x - x	W _{X3} ,	0,77	1,0	0,93	1,21	1,47	1,22	1,60	1,95	2,30	1,56	2,04	2,51	2,95	1,94	2,54	3,13	3,69	4,23	4,76	3,21	3,96
		J_{x_5} c_{M}^4	1,77	2,26	2,35	3,01	3,61	3,55	4,58	5,53	6,41	5,13	6,63	8,03	9,35	7,11	9,21	11,20	13,07	14,84	16,51	13,10	15,97
	Площадь по- перечного	сечения, см ²	1,86	2,43	2,04	2,17	3,28	2,35	3,08	3,79	4,48	2,65	3,48	4,29	5,08	2,96	3,89	4,80	5,69	95'9	7,41	4,38	5,41
		N.			1,5						1,7							1,8				2,0	
ММ		æ			4,5						5,0			-				5,5				0,9	
		~	3	4	3	4	S	3	4	5	*9	3	4	5	*9	3	4	5	9	7*	*8	4	5
		9	32			35			40				45					20	,	,	******	56	
	Номер уголка		3,2			3,5			4				4,5					5				5,6	

Продолжение табл. 39

	oca M	IKa, I	1.	88	3	0	0	<u>چ</u>	11	7	7	œ	6 ⁄	6	7	63	0	0	9	7	7(
	Macca 1 M	уголка,	3,71	4,58	5,43	7,10	8,70	3,90	4,81	5,72	4,87	5,38	6,39	7,39	8,37	10,29	5,80	6,89	7.96	9,02	10,07
		્યું કૂ	1,62	1,66	1,70	1,78	1,85	1,69	1,74	1,78	1,88	1,90	1,94	1,99	2,02	2,10	2,02	2,06	2,10	2,15	2,18
		J_{xy} , c_{M}^{4}	9,48	11,61	13,60	17,22	20,32	11,00	13,70	15,90	17,00	18,70	22,10	25,20	28,20	33,60	23,10	27,30	31,20	35,00	38,60
		$i_{y_0 \min}$, cm	1,19	1,18	1,18	1,17	1,16	1,25	1,25	1,24	1,39	1,39	1,38	1,37	1,37	1,36	1,49	1,48	1,47	1,47	1,46
и осей	У0 - У0	W_{y_0} , c_{M^3}	2,93	3,49	3,99	4,90	5,70	3,26	3,87	4,44	4,53	4,92	99'5	6,31	66'9	8,17	5,74	6,62	7,43	8,16	8,91
илины ду		$J_{y_0 \mathrm{min}}$, cm^4	6,72	8,18	09,6	12,34	15,00	7,81	9,52	11,18	12,04	13,22	15,52	17,77	19,97	24,27	16,41	19,28	22,07	24,80	27,48
Справочные величины для осей	χ0	<i>i</i> х ₀ max ' СМ	2,33	2,32	2,31	2,27	2,24	2,45	2,44	2,43	2,72	2,72	2,71	2,69	2,68	2,64	2,91	2,90	2,89	2,87	2,86
Справоч	W - W	J _{x0 max} , cm ⁴	25,69	31,40	36,81	46,77	55,64	29,90	36,80	42,91	46,03	20,67	59,64	68,19	76,35	91,52	62,65	73,87	84,61	94,89	104,72
		i _х см	1,85	1,84	1,83	1,81	1,79	1,95	1,94	1,93	2,16	2,16	2,15	2,14	2,12	2,10	2,31	2,30	2,29	2,28	2,27
	x - x	W _{xx} c _M ³	3,70	4,56	5,40	7,00	8,52	4,09	5,05	5,98	2,67	6,27	7,43	8,57	89,6	11,82	7,21	8,57	68'6	11,18	12,43
		J _x , cM ⁴	16,21	19,79	23,21	29,55	35,32	18,86	23,10	27,06	29,04	31,94	37,58	42,98	48,16	57,90	39,53	46,57	53,34	59,84	66,10
	Площадь поперечного	сечения, см²	4,72	5,83	6,92	9,04	11,08	4,96	6,13	7,28	6,20	98'9	8,15	9,42	10,67	13,11	7,39	8,78	10,15	11,50	12,83
						2,3							2,7						3,0		
MM		R				7,0							8,0						0,6		
		•	4	S	9	∞	2	4	2	9	4,5	S	9	7	∞	10	'n	9	7	∞	6
		q			99				63				70						7.5		
	Номер уголка				* 9				6,3				7						7,5		

			MM						Справоч	ные вел	Справочные величины для осей	я осей				
Номер уголка					Площадь поперечного		x - x		- 0x	- χ ₀		У0 - У0				Масса 1 м
	q	*	R		сечения, см ²	J_{x_s} $_{ m cm}^4$	W_{χ_3} c_{M}^3	l' _{xs} cM	J _{x0} max '	<i>i</i> х ₀ max ' СМ	$J_{y_0 \mathrm{min}}$, $_{\mathrm{CM}^4}$	W_{y_0} , cM^3	i _{yo} min ' CM	J_{xy} , CM^4	Zo,	уголка, кг
		5,5			8,63	52,68	9,03	2,47	83,56	3,11	21,80	7,10	1,59	30,90	2,17	6,78
		9			9,38	56,97	9,80	2,47	90,40	3,11	23,54	7,60	1,58	33,40	2,19	7,36
∞	08	7	0,6	3,0	10,85	65,31	11,32	2,45	103,60	3,09	26,97	8,55	1,58	38,30	2,23	8,51
		∞			12,30	73,36	12,80	2,44	116,39	3,08	30,32	9,44	1,57	43,00	2,27	9,65
		10*			15,14	83,58	15,67	2,42	140,31	3,04	36,85	11,09	1,56	56,70	2,35	11,88
		12*			17,90	102,74	18,42	2,40	162,27	3,01	43,21	12,62	1,55	59,50	2,42	14,05
		9			10,61	82,10	12,49	2,78	130,00	3,50	33,97	88,6	1,79	48,10	2,43	8,33
		7			12,28	94,30	14,45	2,77	149,67	3,49	38,94	11,15	1,78	55,40	2,47	9,64
6	8	∞	10,0	3,3	13,93	106,11	16,36	2,76	168,42	3,48	43,80	12,34	1,77	62,30	2,51	10,93
		6			15,60	118,00	18,29	2,75	186,00	3,46	48,60	13,48	1,77	00,89	2,55	12,20
		10*			17,17	128,60	20,07	2,74	203,93	3,45	53,27	14,54	1,76	75,30	2,59	13,48
		12*			20,33	149,67	23,85	2,71	235,88	3,41	62,40	16,53	1,75	86,20	2,67	15,96
		6,5			12,82	122,10	69'91	3,09	193,46	3,89	50,73	13,38	1,99	71,40	2,68	10,06
		7			13,75	130,59	17,90	3,08	207,01	3,88	54,16	14,13	1,98	76,40	2,71	10,79
		∞			15,60	147,19	20,30	3,07	233,46	3,87	60,92	15,66	1,98	86,30	2,75	12,25
01	18	10			19,24	178,95	24,97	3,05	283,83	3,84	74,08	18,51	1,96	110,00	2,83	15,10
		12	12,0	4,0	22,80	208,90	29,47	3,03	330,95	3,81	86,84	21,10	1,95	122,00	2,91	17,90
		14			26,28	237,15	33,83	3,00	374,98	3,78	99,32	23,49	1,94	138,00	2,99	20,63
		15*			27,99	250,68	35,95	2,99	395,87	3,76	105,48	24,62	1,94	145,00	3,03	21,97
		16			29,68	263,82	38,04	2,98	416,04	3,74	111,61	25,79	1,94	152,00	3,06	23,30
11	110	7			15,15	175,61	21,83	3,40	278,54	4,29	72,68	17,36	2,19	106,00	2,96	11,89
		∞			17,20	198,17	24,77	3,39	314,51	4,28	81,83	19,29	2,18	116,00	3,00	13,50


Продолжение табл. 39

	Масса 1 м	утолка, кт	14,76	18,24	21,67	26,68	15,46	17,30	19,10	22,68	26,20	29,65	19,41	21,45	25,50
		Z ₀ ,	3,25	3,33	3,41	3,53	3,36	3,40	3,45	3,53	3,61	3,68	3,76	3,82	3,90
		J _{xy} , CM ⁴	153,00	187.00	218,00	262,00	172,00	192,00	211,00	248,00	282,00	315,00	274,00	301,00	354,00
		¹ у ₀ min '	2,39	2,37	2,36	2,34	2,49	2,48	2,47	2,46	2,45	2,44	2,79	2,78	2,76
ия осей	уо - уо	W_{y_0} , c_{M^3}	23,29	27,72	31,79	37,35	25,67	28,26	30,45	34,94	39,10	43,10	35,92	39,05	44,97
ичины д		$J_{y_0 \min}$, cM 4	107,04	130,54	153,33	186,48	121,98	135,88	148,59	174,43	199,65	224,29	192,03	210,96	248,01
Справочные величины для осей	0x	<i>i</i> х ₀ max '	4,68	4,66	4,62	4,57	4,87	4,86	4,84	4,82	4,78	4,75	5,47	5,46	5,43
Справо	0x - 0x	Jx0 max '	412,45	503,79	590,28	711,32	466,76	520,00	571,04	670,02	763,90	852,84	739,42	813,62	956,98
		i _{xs} cm	3,72	3,69	3,67	3,63	3,87	3,86	3,85	3,82	3,80	3,78	4,34	4,33	4,31
	x - x	W_{x_5} c_{M}^3	29,68	36,59	43,30	52,96	32,20	36,00	39,74	47,06	54,17	61,09	45,55	50,32	99,65
		J_{x_b} c_{M}^4	25,75	317,16	371,80	448,90	294,36	327,48	359,82	422,23	481,76	538,56	465,72	512,29	602,49
	Площадь поперечного	сечения, см ²	18,80	23,24	27,60	33,99	19,69	22,0	24,33	28,89	33,37	37,77	24,72	27,33	32,49
		λ.		4,0					4,6					4,6	
MM		æ		12,0					14,0					14,0	
		•	8	10	12	15	∞	6	10	12	14	16	6	10	12
		p		120					125					140	
	Номер уголка			12*					12,5					14	

Уголки, отмеченные звездочкой, изготовляют по требованию потребителя. ГОСТ 8509-93 предусматривает номера профилей: 16, 18, 20, 22 и 25, а также профили, изготавливаемые по соглашению изготовителей Площаль поперечного сечения и справочные величины вычислены по номинальным размерам. Плотность стали 7,85 г/см³. с потребителем.

УГОЛКИ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ НЕРАВНОПОЛОЧНЫЕ (по ГОСТ 8510-86)

40. Размеры уголков, справочные величины для осей и масса 1 м уголка

В - ширина большей полки; b - ширина меньшей полки;

 R - радиус внутреннего закругления; г - радиус закругления полки; t - толщина полки;

 J_{xy} - центробежный момент инерции; W - момент сопротивления; J - MOMEHT NHEPHUN; Обозначения:

х₀, у₀ - расстояние от центра тяжести до наружных і - радиус инерпик; граней полок

			ММ			Площадь		Справ	вочные вели	Справочные величины для осей	сей	
Номер уголка	<i>B</i>	q	1	R		поперечного сечения,		x - x			y - y	
						cM ²	J_{∞} cm ⁴	W_{x_0} cm ³	i _x , cM	J_{y} , cM ⁴	W_{ν} , cm ³	i _y , cM
2,5 / 1,6	25	16	3			1,16	0,70	0,43	87,0	0,22	0,19	0,44
3 / 2*	30	20	3			1,43	1,27	0,62	0,94	0,45	0,30	0,56
			4	3,5	1,2	1,86	1,61	0,82	0,93	95,0	0,39	0,55
3,2 / 2	32	20	3			1,49	1,52	0,72	1,01	0,46	0;30	0,55
			4			1,94	1,93	0,93	1,00	0,57	0,39	0,54
			ж			1,89	3,06	1,14	1,27	6,03	6,49	0,70
4 / 2,5	40	25	4	4,0	1,3	2,47	3,93	1,49	1,26	1,18	0,63	69'0
			5			3,03	4,73	1,82	1,25	1,41	0,77	89,0

		iy, CM	0,87	98'0	0,79	0,78	16,0	0,90	1,02	1,01	1,13	1,12	1,11	1,09	1,47	1,46	1,45	1,44	1,27	1,43	1,42	1,41	1.40
ceřř	y - y	И, см³	0,91	1,11	0,61	0,80	0,81	1,05	1,34	1,65	1,67	2,05	2,42	3,12	3,23	3,82	4,38	4,93	2,62	3,25	3,85	4,43	4,88
чины для о		Jy, CM ⁴	2,01	2,41	1,32	1,69	1,99	2,56	3,70	4,48	5,16	6,26	7,29	9,15	12,08	14,12	16,05	18,88	9,05	12,47	14,60	16,61	18,52
Справочные величины для осей		i _s cm	1,25	1,24	1,48	1,42	1,60	1,59	1,78	1,77	2,01	2,00	1,99	1,96	2,05	2,04	2,03	2,02	2,23	2,39	2,38	2,36	2,35
Справ	x - x	W_{∞} cm ³	1,54	1,88	1,45	1,90	1,82	2,38	3,01	3,70	3,83	4,72	5,58	7,22	5,20	6,16	2,08	7,99	5,88	6,81	80'8	9,31	10,52
		J_{∞} cm ⁴	4,18	5,04	4,41	5,68	6,18	7,98	11,37	13,82	16,33	16,61	23,31	29,60	23,41	27,46	31,32	35,00	27,76	34,81	40,92	46,77	52,38
Плошань	поперечного сечения,	cM ²	2,67	3,28	2,14	2,80	2,42	3,17	3,58	4,41	4,04	4,98	5,90	7,68	5,56	09'9	7,62	8,62	5,59	6,11	7,25	8,37	9,47
			1,3		1,7		1,8		2,0			2,3				2,0			2,5		2,7		
	×		4,0		5,0		5,5		0,9			7,0			-	0,9			7,5		8,0		
MM	į		4	5	m	4	ю	4	4	5	4	è	9	∞	'n	9	7	∞	5	5	9	*/	8
	q		30		28		32		36			40				20			45		09		
	В		40		45		20		26			63				65			70		7.5		
	Номер уголжа		4 / 3*		4,5 / 2,8		5/3,2		5,6 / 3,6			6,3 / 4,0				6,5 / 5*		- 1	7 / 4,5		7,5 / 5		

data: 40			iy, cM	1,41	1,40	1,76	1,75	1,74	1,58	1,58	1,56	1,79	1,78	1,77	1,75	1,85	1,84	1,82	2,00	1,98	2,29	2,28	2,26	
TIPORWIANTE TAME	сей	y - y	W_{y} , cm ³	3,28	3,88	5,58	6,43	7,26	4,53	4,91	6,39	6,27	7,23	8,17	66'6	7,70	8,70	10,64	8,42	10,20	11,89	13,47	16,52	77.01
*	Справочные величины для осей		J_{y} , cm ⁴	12,68	14,85	25,18	28,74	32,15	19,61	21,22	27,08	30,58	34,99	39,21	47,18	38,32	42,96	51,68	45,61	54,64	73,73	80,95	100,47	11/07
	ючные вели		ix, cM	2,56	2,55	2,53	2,52	2,50	2,88	2,88	2,85	3,20	3,19	3,18	3,15	3,19	3,18	3,15	3,53	3,51	4,01	4,00	3,98	40.0
	Справ	x - x	W_{x} cm ³	7,71	9,15	9,42	10,87	12,38	10,74	11,66	15,24	14,52	16,78	19,01	23,32	16,87	19,11	23,45	19,11	23,22	26,67	30,26	37,27	20 77
			J_{∞} CM ⁴	41,64	48,98	52,06	59,61	88,99	65,28	70,58	90,87	98,29	112,86	126,96	153,95	114,05	128,31	155,52	142,42	171,54	226,53	225,62	311,61	264 70
	Площадь	поперечного сечения,	cm²	6,36	7,55	8,15	9,42	10,67	7,86	8,54	11,18	9,58	11,09	12,57	15,47	11,23	12,73	15,67	11,45	13,93	14,06	15,98	19,70	76.60
		L.				2,7				3,0						3,3						3,7		
		<i>x</i>				8,0				0,6						10,0						11,0		
	ММ			5	9	9	7	8	5,5	9	8	9	7	∞	10	8 8 10			6,5	8	7	∞	10	1,
		4		50			09		26			63				65			70			80		
		В		80			80			06		100					100		110			125	_	
		Номер уголка		8/5			8 / 6*			9,5/6			10 / 6,3				10 / 6,5*		11 / 7			12,5 / 8		

Продолжение табл. 40

			ММ			Плошапь		Спран	Справочные величины для осей	о від пины	сей	
Номер	В	q	-	~		поперечного сечения,		x - x			y - y	
						cm ²	J_{x} , cm ⁴	W_{x} cm ³	ix, cM	Jy, CM4	W_{y_1} cm ³	i, cM
14 / 9	140	06	8	12,0	4.0	18,00	363,68	38,25	4,49	119,79	17,19	2,58
			10	`		22,24	444,45	47,19	4,47	145,54	21,14	2,58
			6			22,87	605,97	56,04	5,15	186,03	23,96	2,85
16 / 10	160	100	10	13,0	4,3	25,28	69,599	61,91	5,13	204,09	26,42	2,84
			12			30,04	784,22	73,42	5,11	238,75	31,23	2,82
			14			34,72	897,19	84,65	5,08	271,60	35,89	2,80
18 / 11	180	110	10			28,33	952,28	78,59	2,80	276,37	32,27	3,12
			12			33,69	1122,56	93,33	5,77	324,09	38,20	3,10
			11	14.0	4.7	34,87	1449,02	107,31	6,45	446,36	45,98	3,58
20 / 12.5	200	125	12	`		37,89	1568,19	116,51	6,43	481,93	49,85	3,57
			41		<u></u>	43,87	1800,83	134,64	6,41	550,77	57,43	3,54
			16			49,77	2026,08	152,41	6,38	616,66	64,83	3,52
		Справоч	Справочные величины для осей	ины дл	і осей							
Номер уголка			n - n			% CM	уо, см	СМ	J_{xy} , cM ⁴	Угол наклона оси, tg α		Масса 1 м уголка, кг
•		Jumin, CM4	<i>W</i> _и , см³	¹³	iu min, CM							
2,5 / 1,6		0,13	0,16		0,34	0,42	0,86	98	0,22	0,392	~	0,91
3 / 2*		0,26	0,25		0,43	0,51	1,0	0	0,43	0,427		1,12
	_	0,34	0,32		0,43	0,54	1,04	4(0,54	0,421		1,46

Продолжение табл. 40

	Справо	Справочные величины для осей	ты осей				•	
Номер уголка		n - n		х0, см	У0, СМ	J_{xy} , cm ⁴	Угол наклона	Масса 1 м угопка кт
	$J_{u\min}, c_{M}^{4}$	W, cm ³	iu min, cM				5 qq (ii)	7. (m)
3,2 / 2	0,28	0,25	0,43	0,49	1,08	0,47	0,382	1,17
	0,35	0,33	0,43	0,53	1,12	0,59	0,374	1,52
	95,0	0,41	0,54	65'0	1,32	96'0	0,385	1,48
4 / 2,5	0,71	0,52	0,54	0,63	1,37	1,22	0,281	1,94
	0,86	0,64	0,53	99'0	1,41	1,44	0,374	2,37
4 / 3*	1,09	0,75	0,64	0,78	1,28	1,68	0,544	2,26
	1,33	0,91	0,64	0,82	1,32	2,00	0,539	2,46
4,5 / 2,8	0,79	0,52	0,61	0,64	1,47	1,38	0,382	1,68
	1,02	0,67	09'0	0,68	1,51	1,77	0,379	2,20
5/3,2	1,18	0,68	0,70	0,72	1,60	2,01	0,403	1,9
	1,52	0,88	69'0	0,76	1,65	2,59	0,401	2,4
5,6 / 3,6	2,19	1,13	0,78	0,84	1,82	3,74	0,406	2,81
	2,65	1,37	0,78	0,88	1,87	4,50	0,404	3,46
	3,07	1,41	0,87	0,91	2,03	5,25	0,397	3,17
6,3 / 4,0	3,73	1,72	98'0	96,0	2,08	6,41	0,396	3,91
	4,36	2,02	98,0	66'0	2,12	7,44	0,393	4,63
	5,58	2,60	0,85	1,07	2,20	9,27	0,386	6,03

Продолжение табл. 40

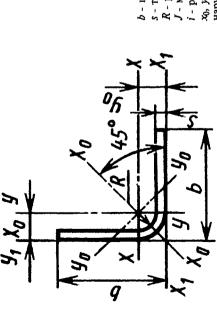
Houep House Hous		Справоч	Справочные величины для осей	ри осей					
Jumba, cold Wp, cold i, min, cM 1,26 2,00 9,77 0,576 6,41 2,68 1,07 1,26 2,00 9,77 0,576 7,52 3,15 1,07 1,30 2,04 11,46 0,576 8,60 3,59 1,06 1,34 2,08 12,94 0,571 9,65 4,02 1,06 1,37 2,12 13,61 0,570 1,54 2,20 0,98 1,05 1,17 2,38 0,436 1,54 2,20 0,98 1,05 1,17 2,39 12,00 0,436 8,48 3,21 1,08 1,17 2,44 14,10 0,436 9,69 3,69 1,08 1,22 2,48 16,18 0,436 10,87 4,14 1,07 1,29 2,48 16,18 0,436 10,87 1,26 1,29 1,49 2,44 14,10 0,436 8,88 3,24 1,08	Номер утолка		n - n		х0, см	уо, см	J_{xy} , cm ⁴	Угол наклона оси, tg α	Масса 1 м уголка, кг
6,41 2,68 1,07 1,26 2,00 9,77 0,576 8,60 3,15 1,07 1,30 2,04 11,46 0,575 8,60 3,15 1,07 1,34 2,04 11,46 0,570 9,65 4,02 1,06 1,34 2,08 1,294 0,570 5,34 2,20 0,98 1,05 2,12 13,61 0,570 8,48 2,20 0,98 1,05 2,28 9,12 0,406 8,48 3,21 1,09 1,17 2,39 12,00 0,436 9,69 3,69 1,08 1,21 2,44 14,10 0,436 10,87 1,10 1,29 2,52 17,80 0,436 8,88 3,24 1,00 1,13 2,65 15,30 0,387 11,58 3,24 1,29 1,49 2,47 2,0,98 0,544 11,49 5,99 1,28 1,57 2,0,98 0,541<		J _{umin} , cM ⁴	₩, см³	iu min, CM					
7,52 3,15 1,07 1,30 2,04 11,46 0,575 8,60 3,59 1,06 1,34 2,08 12,94 0,571 9,65 4,02 1,06 1,34 2,08 12,94 0,571 5,34 2,20 0,98 1,05 2,12 0,406 0,570 7,24 2,73 1,09 1,17 2,39 12,00 0,436 8,48 3,21 1,08 1,17 2,44 14,10 0,436 9,69 3,69 1,08 1,22 2,44 14,10 0,436 10,87 4,14 1,07 1,29 2,52 17,80 0,436 8,88 3,24 1,08 1,13 2,60 13,20 0,387 13,61 4,66 1,29 1,49 2,47 2,098 0,544 13,58 5,34 1,29 1,49 2,09 0,544 0,544 11,749 5,99 1,28 1,57 2,95<		6,41	2,68	1,07	1,26	2,00	6,77	0,576	4,36
8,60 3,59 1,06 1,34 2,08 12,94 0,571 9,65 4,02 1,06 1,37 2,12 13,61 0,570 5,34 2,20 0,98 1,05 1,17 2,28 9,12 0,406 7,24 2,73 1,09 1,17 2,39 12,00 0,436 8,48 3,21 1,08 1,21 2,44 14,10 0,436 10,87 4,14 1,07 1,29 2,48 16,18 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,436 8,88 3,24 1,08 1,17 2,65 15,30 0,387 13,61 4,66 1,29 1,49 2,47 20,98 0,547 13,61 4,66 1,29 1,53 2,56 24,01 0,546 15,58 5,34 1,29 1,53 2,56 24,01 0,546 11,74 3,81 1,22 1,26<	6.5 / 5*	7,52	3,15	1,07	1,30	2,04	11,46	0,575	5,18
9,65 4,02 1,06 1,37 2,12 1,36 0,570 7,24 2,20 0,98 1,05 2,28 9,12 0,406 8,48 3,21 1,09 1,17 2,39 12,00 0,436 9,69 3,69 1,08 1,21 2,44 14,10 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,436 7,57 2,75 1,00 1,13 2,60 13,20 0,386 8,88 3,24 1,08 1,17 2,65 13,20 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,55 2,40 0,546 0,546 15,58 5,39 1,28 1,57 2,52 24,01 0,546 11,77 3,81 1,22 1,26 2,52 24,01 0,546 11,749 5,99 1,28 1,26 2,92<		8,60	3,59	1,06	1,34	2,08	12,94	0,571	5,98
5,34 2,20 0,98 1,05 2,28 9,12 0,406 7,24 2,73 1,09 1,17 2,39 12,00 0,436 8,48 3,21 1,08 1,21 2,44 14,10 0,435 9,69 3,69 1,08 1,25 2,48 16,18 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,430 7,57 2,75 1,00 1,13 2,60 13,20 0,386 8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 26,83 0,544 12,70 4,12 1,26 2,92 26,83 0,54		59'6	4,02	1,06	1,37	2,12	13,61	0,570	6,77
7,24 2,73 1,09 1,17 2,39 12,00 0,436 8,48 3,21 1,08 1,21 2,44 14,10 0,435 9,69 3,69 1,08 1,25 2,48 16,18 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,430 8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,347 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,68 0,54 0,54 11,74 3,81 1,22 1,57 2,56 24,01 0,54 11,74 3,81 1,22 1,57 2,56 26,33 0,54 12,70 4,12 1,22 1,28 2,95 20,54 0,384 12,70 5,39 1,28 2,95 22,23<	7/4,5	5,34	2,20	86,0	1,05	2,28	9,12	0,406	4,39
8,48 3,21 1,08 1,21 2,44 14,10 0,435 9,69 3,69 1,08 1,25 2,48 16,18 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,430 8,88 3,24 1,00 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,344 15,58 5,34 1,29 1,53 2,52 24,01 0,546 11,749 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,56 26,83 0,344 12,70 4,12 1,22 2,52 20,54 0,384 12,70 4,12 1,28 1,26 20,54 0,384 12,70 7,12 1,28 2,95 0,384 0,384 12,70 7,00 2,95 20,54 0,384 0,384		7,24	2,73	1,09	1,17	2,39	12,00	0,436	4,79
9,69 3,69 1,08 1,25 2,48 16,18 0,435 10,87 4,14 1,07 1,29 2,52 17,80 0,430 7,57 2,75 1,00 1,13 2,60 13,20 0,387 8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 0,384 0,384 16,29 5,32 1,21 1,36 2,95 20,54 0,384 16,29 5,32 1,21 1,36 2,95 20,53 0,384	7.5 / 5	8,48	3,21	1,08	1,21	2,44	14,10	0,435	5,69
10,87 4,14 1,07 1,29 2,52 17,80 0,430 7,57 2,75 1,00 1,13 2,65 15,50 0,387 8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,56 20,54 0,384 12,70 4,12 1,22 1,28 2,95 0,384 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		69'6	3,69	1,08	1,25	2,48	16,18	0,435	6,57
7,57 2,75 1,00 1,13 2,60 13,20 0,387 8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 , 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,344 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 0,384 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		10,87	4,14	1,07	1,29	2,52	17,80	0,430	7,43
8,88 3,24 1,08 1,17 2,65 15,50 0,386 13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380	8 / 5	7,57	2,75	1,00	1,13	2,60	13,20	0,387	4,49
13,61 4,66 1,29 1,49 2,47 20,98 0,547 15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,21 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		8,88	3,24	1,08	1,17	2,65	15,50	0,386	5,92
15,58 5,34 1,29 1,53 2,52 24,01 0,546 17,49 5,99 1,28 1,57 2,56 26,83 0,344 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		13,61	4,66	1,29	1,49	2,47	20,98	0,547	6,39
17,49 5,99 1,28 1,57 2,56 26,83 0,544 11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380	8 / 6*	15,58	5,34	1,29	1,53	2,52	24,01	0,546	7,39
11,77 3,81 1,22 1,26 2,92 20,54 0,384 12,70 4,12 1,22 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		17,49	5,99	1,28	1,57	2,56	26,83	0,544	8,37
12,70 4,12 1,22 1,28 2,95 22,23 0,384 16,29 5,32 1,21 1,36 3,04 28,33 0,380		11,77	3,81	1,22	1,26	2,92	20,54	0,384	6,17
5,32 1,21 1,36 3,04 28,33 0,380	9/5/6	12,70	4,12	1,22	1,28	2,95	22,23	0,384	6.70
		16,29	5,32	1,21	1,36	3,04	28,33	0,380	8.77

							Продо	Продолжение табл. 40
;	Справс	Справочные величины для осей	цля осей					
Номер уголка		n - n		х ₀ , см	уо, см	J_{xy} , cM ⁴	Угол наклона	Масса 1 м
	Jumin, CM4	Wu, cm ³	i, min, cM				оси, ιg α	уголка, кг
	18,20	5,27	1,38	1,42	3,23	31,50	0,393	7,53
10 / 6,3	20,83	90'9	1,37	1,46	3,28	36,10	0,392	8,70
	23,38	6,82	1,36	1,50	3,32	40,50	0,391	9,87
	28,34	8,31	1,35	1,58	3,40	48,60	0,387	12,14
	22,77	6,43	1,41	1,52	3,24	38,00	0,415	8,81
10 / 6,5*	25,24	7,26	1,41	1,56	3,28	42,64	0,414	66'6
	30,60	8,83	1,40	1,64	3,37	51,18	0,410	12,30
11/7	26,94	7,05	1,53	1,58	3,55	46,80	0,402	8,98
	32,31	8,50	1,52	1,64	3,61	55,90	0,400	10.93
	43,40	96'6	1,76	1,80	4,01	74,70	0,407	11.04
12,5 / 8	48,82	11,25	1,75	1,84	4,05	84,10	0,406	12,58
	59,33	13,74	1,74	1,92	4,14	102,00	0,404	15,47
	69,47	16,11	1,72	2,00	4,22	118,00	0,400	18,34
14 / 9	70,27	14,39	1,58	2,03	4,49	121,00	0,411	14,13
	85,51	17,58	1,96	2,12	4,58	147,00	0,409	17,46

40
габл.
ние 1
эжс
lponc

	Справоч	Справочные величины для осей	ля осей					
Номер уголка		n - n		х ₀ , см	уо, см	Jxy, CM4	Угол наклона оси, tg а	Масса 1 м уголка, кг
	Jumin, CM ⁴	W_{u} , cm ³	iu min, CM					
	110,40	20,01	2,20	2,24	5,19	194,00	0,391	17,96
16 / 10	121,16	22,02	2,19	2,28	5,23	213,00	0,390	19,85
	142,14	25,93	2,18	2,36	5,32	249,00	0,388	23,58
	162,49	29,75	2,16	2,43	5,40	282,00	0,385	27,26
18 / 11	165,44	96,92	2,42	2,44	5,88	295,00	0,376	22,20
	194,28	31,83	2,40	2,52	5,97	348,00	0,374	26,40
	263,84	38,27	2,75	2,79	6,50	465,00	0,392	27,37
20 / 12,5	285,04	41,45	2,74	2,83	6,54	503,00	0,392	29,74
	326,54	47,57	2,73	2,91	6,62	575,00	0,390	34,43
	366,99	53,56	2,72	2,99	6,71	643,00	0,388	39,07

Уголки, отмеченные звездочкой, изготовляют по требованию потребителя.


ГНУТЫЕ CTAЛЬНЫЕ PABHOПОЛОЧНЫЕ (по ГОСТ 19771-93) И **НЕРАВНОПОЛОЧНЫЕ** (по ГОСТ 19772-93) УГОЛКИ

Гнутые уголки изготовляют из холоднокатаного и горячекатаного листового проката из стали обыкновенного качества, углеродистой качественной конструкционной и низколегированной.

Размеры, площадь поперечного сечения, справочные величины для осей и массы из стали с временным сопротивлением разрыву не более 460 МПа приведены в табл. 41 и 42. Для сталей с временным сопротивлением разрыву более 460 МПа справочные величины для осей примерно на 5 % меньше приведенных в таблицах или см. ГОСТ 19771-93 и ГОСТ 19772-93.

Техинческие требования. Сталь для холодногнутых уголков должна соответствовать сталям марок с временным сопротивлением разрыву не 60лее 590 МПа. Марки стали: по ГОСТ 380-94 до марки Ст4 включительно всех групп и степеней раскисления по ГОСТ 1050-88.

41. Размеры и справочные величины для осей равнополочных уголков (по ГОСТ 19771-93)

Обозначения:

b - ширина полки;c - толщина полки;

- отношение расчетного

b-s-R

свеса полки к толщине полки

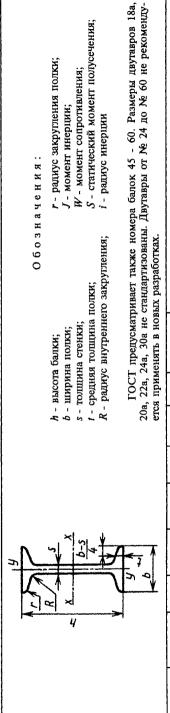
R - радиус кривизны; J - момент инерции;

и - момент инерцииі - радиус инерции;

х₀, y₀ - расстояние от центра тяжести до наружных поверхностей полок;

		В, не					Спран	Справочные величины для осей	ичины для	осей			
þ	જ	более		Площадь попереч-	x - x	(y-y)	- 0x	0x - 0x	. %	yo - yo) [x - 1x	$x_1 - x_1 (y_1 - y_1)$	Macca
	МЖ		ĸ	ного сечения, см²	$J_{x}\left(J_{y} ight),$	$i_{x}(i_{y}),$ j_{cM}	J_{x_0} , cM^4 i_{x_0} , cM J_{y_0} , cM^4 i_{y_0} , cM	<i>i</i> _{x0} , cM	J_{y_0} , c M^4	i_{y_0} , cM		х ₀ (у ₀), см	1 ж, кт
36	3,0	4	7,6	2,00	2,51	1,12	4,11	1,43	16,0	89'0	4,70	1,04	1,57
40	2,5	ю	13,1	1,89	2,98	1,25	4,84	1,60	1,19	0,77	5,34	1,12	1,48
	3,0	4	11,0	2,24	3,50	1,25	5,71	1,60	1,29	0,76	6,43	1,14	1,76

Продолжение табл. 41

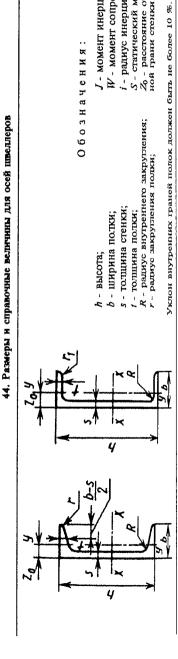

	Macca	1 м, кг	2,23	2,90	2,70	3,53	4,16	3,64	62	5,92	31)5	49	39	31	9	78
	Ž T		2,	2,5	2,	κ,	4,	3,(4,79	5.5	7,01	6,05	7,49	8.89	10,31	90.6	10,78
	(y ₁ - y ₁)	х ₀ (Уо), см	1,39	1,45	1,64	1,70	1,95	2,14	2,20	2,24	2,30	5,69	2,74	2,79	2,83	3,24	3,29
	x ₁ - x ₁ (y ₁	$J_{x_1} \\ (J_{y_1}), \\ c_{M^4}$	12,54	16,70	21,65	28,92	45,88	51,27	68,43	85,65	102,60	133,54	167,07	200,70	229,74	288,49	346,44
осей	У0	i_{γ_0} , cM	96'0	0,93	1,17	1,14	1,35	1,58	1,55	1,53	1,50	1,96	1,94	1,92	1,30	2,35	2,33
Справочные величины для осей	yo - yo	J_{y_0} , cm ⁴	2,63	3,20	4,69	5,88	9,62	11,52	14,70	17,76	20,00	29,63	36,06	41,72	42,62	63,91	74,44
ючные вел	0x -	<i>i</i> х ₀ , см	2,00	1,99	2,41	2,40	2,81	3,23	3,22	3,20	3,19	4,04	4,02	4,01	3,96	4,84	4,83
Спран	- OX	J_{x_0} , cM^4	11,42	14,70	20,03	26,06	41,95	48,39	63,31	77,64	91,06	125,54	154,50	182,66	205,69	270,48	320,48
	- x (y - y)	$i_x(i_y),$ cm	1,57	1,55	1,89	1,88	2,20	2,54	2,53	2,51	2,49	3,17	3,16	3,15	3,08	3,80	3,79
) x - x	$J_x(J_y),$ c_{M}^4	7,02	8,94	12,36	15,96	25,79	29,96	39,00	47,70	55,50	77,58	95,31	112,19	124,16	167,19	197,46
	Площадь попереч-	ного сечения, см ²	2,84	3,70	3,44	4,50	5,30	4,64	6,10	7,55	8,93	7,70	9,55	11,33	13,13	11,55	13,78
		u .	14,3	10,0	17,71	12,5	15,0	24,3	17,5	13,6	10,8	22,5	17,6	14,2	12,0	21,6	17,5
В не	более		4	9	4	9	9	4	9	7	6	9	7	6	6	7	6
	S	ММ	3,0	4,0	3,0	4,0	4,0	3,0	4,0	5,0	0,9	4,0	5,0	0,9	7,0	5,0	6,0
	q		80		09		70		80				100			120	

42. Размеры и справочные величины для осей неравнополочных уголков (по ГОСТ 19772-93)

		224	Xe y																	
		1001										0	Обозн	ачени	: в и з					
	8		\alpha \big		, X0			В - шир b - шир	 ширина большей полки; ширина меньшей полки; 	льшей ньшей	B - ширина большей полк μ ; b - ширина меньшей полки;		'n	1 = B -	. s - R	- OTH	ошени	отношение расчетного свеса	тного	свеса
		× sol			o _{fi}		· •	s - тол. R - рад J - мом	s - толщина полки;R - радиус кривизны;J - момент инерции;	ыки; пвизны ерции;			ŏ ×	Sometime $\frac{b}{a}$	полки s - R	большей полки к толщине уголка; $\frac{b-s-R}{R} - \frac{b-s-R}{R}$ отношение ра	ине уто ошени	отношение расчетного свеса	THOIO	свеса
		X ₁	B O	120	~	ۍ	-	<i>i</i> - радь х ₀ , у ₀ - до нару	 радиус инерции. у₀ у₀ - расстояния цо наружных повер 	рции; яния ол поверхи	 і - радиус инерции; х₀, у₀ - расстояния от центра тяжести до наружных поверхностей полок; 	а тяжес полок;		енышей	лолки	л В В В В В В В В В В В В В В В В В В В	ине уг	олжа	-	
			a							C.	Справочные значения величин для осей	ле знач	ения вс	личин	ээо кий	й	ļ			
В	q	83	He He	ź	£	Į.	×	*-	y -	٠.	0x - 0x	न्न		30 - 30		- ¹ x	- ۶۲	yı - yı		Mac- ca
	**	MM	3	:	7	cM ²	, a	.42	3,	'مُي.	J_{x_0}	ix ₀ ,	Jy0,	i_{γ_0} ,	tga	J_{x_1} ,	ê 5	J _{y1} ,	<i>ફ</i> રે	1 ΚΤ
			-				S	<u> </u>	S	<u>ع</u>	CM4	CM	CM	CM.		CM.		K		
32	25	2,0	3	13,5	10,0	1,06	1,12	1,02	0,61	0,76	1,44	1,16	0,28	0,52	0,62	2,19	1,00	1,05	0,64	0,84
		2,5	8	10,6	7,8	1,32	1,35	1,01	0,73	0,75	1,75	1,16	0,34	0,51	0,63	2,74	1,02	1,31	0,00	1,03
20	35	3,2	S	13,0	8,4	2,53	6,52	1,61	2,72	1,04	7,89	1,77	1,35	0,73	0,51	13,37	1,03	4,03	79,0	۱,۶۵ ۲۲ ر
09	40	3,0	4	17,7		2,84	10,73	1,94	3,97	1,18	12,61	2,11	2,09	0,86	0,47	24,03	2,70	16.81	1,73	3.53
20	20	4,0	• •	15,0		4,50	22,90	2,25	10,04	1,49	46,53	2,43	9 48	2, 7	0,53	68.40	2,45	33,51	1,57	4,26
8 %	63	4, 4 0, 0	۰ ۵	18,7	15,2	2,42	34.02	2,75	3,77	0,92	35,44	2,81	2,36	0,72	0,22	81,95	3,26	5,89	69,0	3,53
G 8	2 8	0, 4	9	20,0		6,10	51,53	2,90	27,92	2,14	66,03	3,29	13,42	1,48	0,62	97,34	2,74	45,92	1,72	4,79
100	9	4,0	9	22,5		6,30	16,99	3,26	23,36	1,93	77,72	3,51	12,56	1,41	0,44	133,47	3,25	36,83	1,46	c, 4
105	100	3,0	4	32,7	31,0	5,98	99'19		60,12	3,17	103,23		24,55	2,03		115,85	7,84	100,091	4,39	, t, c, t,
115	9	5,0	7	20,6	10,6	8,55	120,07		29,60		132,79		16,88	1,41		253,74	5,5	40,24	1,2%	0,71
120	100	8,0	12	12,5	10,0	16,41	239,47	3,82	153,18	3,05	205,56		30,59	1,72	0,41	300,73	06,4	50,00	2,72	14.55
180	140	6,0	6	27,5	20,8	18,53	18,53 632,17	5,84	343,25	4,30	808,01	6,60	16/,41	3,01	0,07	110/,38	7,5,5	230,071	1,71	11,55

ДВУТАВРЫ СТАЛЬНЫЕ ГОРЯЧЕКАТАНЫЕ (по ГОСТ 8239-89)

43. Размеры и справочные величины для осей двугавров


		_	- ,			ala ala	лиди к	ется применять в новых разрасотках.	ых разрас	OIKAK.		•			
										2	равочные	величин	Справочные величины для осей	**	
Номер двутавра	Масса 1 м, кг	h	p	s	*	R		Площадь сечения,		x - x	×			y - y	
•				ММ				см ²	J_{Σ} $_{ m CM}^4$	W_{x_5} cM^3	i _{zs} CM	S_{x_5} c_M^3	Jy, CM ⁴	FK)	i, cm
10	9,46	100	55	4,5	7,2	7,0	2,5	12,0	198	39,7	4,06	23,0	17,9	6,49	1,22
12	11,5	120	64	4,8	7,3	7,5	3,0	14,7	350	58,4	4,88	33,7	27,9	8,72	1,38
14	13,7	140	73	4,9	7,5	8,0	3,0	17,4	572	81,7	5,73	8,94	41,9	11,5	1,55
16	15,9	160	81	5,0	7,8	8,5	3,5	20,2	873	109	6,57	62,3	58,6	14,5	1,70
18	18,4	180	8	5,1	8,1	0,6	3,5	23,4	1290	143	7,42	81,4	82,6	18,4	1,88
18a	6,61	180	100	5,1	8,3	0,6	3,5	25,4	1430	159	7,51	8,68	114	22,8	2,12
20	21,0	200	100	5,2	8,4	9,5	4,0	26,8	1840	184	8,28	104	1115	23,1	2,07
20a	22,7	200	110	5,2	9,8	9,5	4,0	28,9	2030	203	8,37	114	155	28,2	2,32
22	24,0	220	110	5,4	8,7	10,0	4,0	30,6	2550	232	9,13	131	157	28,6	2,27
22a	25,8	220	120	5,4	8,9	10,0	4,0	32,8	2790	254	9,22	143	506	34,3	2,50
24	27,3	240	115	2,6	9,5	10,5	4,0	34,8	3460	289	16,6	163	198	34,5	2,37
24a	29,4	240	125	5,6	8,6	10,5	4,0	37,5	3800	317	10,1	178	760	41,6	2,63

•			
1	1	1	
	CHILD		
	FOR		
	-		

			c vy	2,54	2,80	2,69	2,95	2,79	2,89	3,03
ci impi aminamadadi		y - y	CM3	41,5	20,0	49,9	60,1	6,65	71,1	86,1
Today	и для осеі		c _M 2	260	337	337	436	419	516	299
	величинь		S _x s	210	525	798	292	389	423	545
	Справочные величины для осей	×	i _x CM	11,2	11,3	12,3	12,5	13,5	14,7	16,2
	Сп	x - x	CM3	371	407	472	518	597	743	953
			Jx, CM4	5010	5500	7080	7780	9840	13 380	19 062
		Площадь сечения,	cM ²	40,2	43,2	46,5	49,9	53,8	61,9	72,6
		r		4,5	4,5	5,0	5,0	5,0	6,0	0,9
		R		11,0	11,0	12,0	12,0	13,0	14,0	15,0
		,		8,6	10,2	10,2	10,7	11,2	12,3	13,0
		S MM	6,0	0,9	6,5	6,5	7,0	7,5	8,3	
		q		125	135	135	145	140	145	155
		h		270	270	300	300	330	360	400
		Масса 1 м, кт		31,5	33,9	36,5	39,2	42,2	48,6	57,0
-		Номер двутавра		27	27a	30	30a	33	36	40

IIIBEJIJEPBI CTAJIBHBIE FOPATEKATAHBIE (110 FOCT 8240-89)

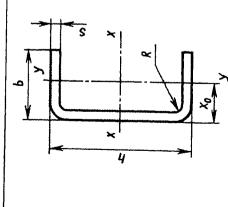
Шветлеры изготовляются с уклоном внутренних граней полок и с параллельными гранями полок.

Обозначения:

W - момент сопротивления; J - момент инерции; і - радиус инерции;

S - статический момент полусечения; Z_0 - расстояние от оси ν - ν до наружной грани стенки

Продолжение табл. 44


acol. 44		% §		1,16	1,24	1,31	1,44	1,54	1,67	1,87	1,80	2,06	1,94	2,13	2,07	2,28	2,21	2,46	2,42	2,67	2,47	2,52	2,59	2,68	2,75
лродолжение таол. 44			i _{js} CM	0.954	1,080	1,190	1,370	1,530	1,700	1,840	1,870	2,010	2,040	2,180	2,200	2,350	2,370	2,550	2,600	2,780	2,730	2,840	2,970	3,100	3,230
продп	ceŘ	y - y	FK,	2,75	3,68	4,75	6,46	8,52	11,00	13,30	13,80	16,40	17,00	20,00	20,50	24,20	25,10	30,00	31,60	37,20	37,30	43,60	51,80	61,70	73,40
!	भाभ ग्राप्त व		Jy, CM ⁴	5,61	8,70	12,80	20,40	31,20	45,40	57,50	63,30	78,80	86,00	105,00	113,00	139,00	151,00	187,00	208,00	254,00	262,00	327,00	410,00	513,00	642,00
	Справочные величины для осей		S _X 2 CM ³	5,59	9,00	13,30	20,40	29,60	40,80	45,10	54,10	59,40	08,69	76,10	87,80	95,90	110,00	121,00	139,00	151,00	178,00	224,00	281,00	350,00	444,00
	авочны	*x -	ix CM	1,92	2,54	3,16	3,99	4,78	2,60	99'5	6,42	6,49	7,24	7,32	8,07	8,15	8,89	8,99	9,73	9,84	10,90	12,00	13,10	14,20	15,70
	Crip	×	W _{xb}	9,1	15,0	22,4	34,8	9,05	70,2	77,8	93,4	103,0	121,0	132,0	152,0	167,0	192,0	212,0	242,0	265,0	308,0	387,0	484,0	601,0	761,0
			J _x CM ⁴	22,8	48,6	89,4	174,0	304,0	491,0	545,0	747,0	823,0	1090,0	1190,0	1520,0	1670,0	2110,0	2330,0	2900,0	3180,0	4160,0	5810,0	0,0867	10820,0	15220,0
		Macca 1 M,	£Z	4,84	5,90	7,05	8,59	10,4	12,3	13,3	14,2	15,3	16,3	17,4	18,4	19,8	21,0	22,6	24,0	25,8	27,7	31,8	36,5	41,9	48,3
		Площадь сечения,	cM ²	6,16	7,51	86,8	10,9	13,3	15,6	17,0	18,1	19,5	20,7	22,2	23,4	25,2	26,7	28,8	30,6	32,9	35,2	40,5	46,5	53,4	61,5
	۲			3,5	3,5	3,5	4,0	4,5	4,5	4,5	5,0	5,0	5,0	5,0	5,5	5,5	0,0	0,9	0,9	0,9	6,5	7,0	7,5	8,5	9,0
	,			2,5	2,5	2,5	3,0	3,0	3,0	3,0	3,5	3,5	3,5	3,5	4,0	4,0	4,0	4,0	4,0	4,0	4,5	5,0	5,0	0,0	0,0
	R			6,0	6,0	6,5	7,0	7,5	8,0	8,0	8,5	8,5	9,0	9,0	9,5	9,5	10,0	10,0	10,5	10,5	11,0	12,0	13,0	14,0	15,0
	,		MM	7,0	7,2	7,4	2,6	7,8	8,1	8,7	8, 4,	9,0	8,7	9,3	9,0	9,7	9,5	10,2	10,0	10,7	10,5	11,0	11,7	12,6	13,5
	82			4,4	4,4	4,5	4,5	4,8	4,9	4,9	5,0	5,0	5,1	5,1	5,2	5,2	5,4	5,4	2,6	2,6	0,0	6,5	7,0	7,5	8,0
	q			32	36	4	46	25	28	62	64	89	70	74	76	80	82	87	8	95	95	100	105	110	115
	ų	•		50	65	8	100	120	140	140	160	160	180	180	200	200	220	520	240	240	270	300	330	360	400
		Номер швеллера		SII	6,511	8П	10.1	12П	1411	14a	16П	16аП	1811	18аП	2011	20a	2211	22a	2411	24a	2711	3011	33П	3611	40П

* Для швеллеров с параглельными гранями полок справочные величины для осей и расстояния Z₀ увеличены до 10 %; точные данные см. ГОСТ 8240-89. Швеллеры 14a, 20a, 22a, 24a не стандартизованы.

IIIBELLIEPLI CTAJISHLIE FHYTLIE PABHOIIOJIOYHLIE (110 FOCT 8278-83)

Стальные гнутые равнополочные швеллеры изготовляют на профилегибочных станках из холоднокатаной и горячекатаной стали обыкновенного качества, углеродистой качественной конструкционной и низколегированной.

45. Размеры и справочные величины осей для стали с с, на более 460 МПа

Швеллеры из углеродистой кипящей и полуспокойной стали

Обозначения:

W - момент сопротивления; J - момент инерции; i - раднус инерции; $S_{\mathbf{x}}$ - статический момент полусечения; хо - расстояние от оси у - у до наружной поверхности стенки; h - высота стенки; b - ширина полки; s - толщина швеллера; R - радиус кривизны; - отношение расчетного свеса полки к толцине швеллера;

 $n_1 = \frac{h - 2(R + s)}{s}$ - отношение расчетной высоты к толщине швеллера.

				_		_		
		Macca	I M, KT		1,42		1,66	1,39
		,	ê X		0,04		0,94	1,29
			i, cM	,	0,85 0,04		0,78	1,03
	г осей	y - y	W, CM ³		0,80		0,82	0,93
	чины для		Jv, cM4	,	1,32		1,28	1,88
	Справочные величины для осей		$J_{22} \text{ cM}^4$ $W_{22} \text{ cM}^3$ $J_{23} \text{ cM}$ $S_{23} \text{ cM}^3$ $J_{13} \text{ cM}^4$ $W_{23} \text{ cM}^3$ $j_{44} \text{ cM}$		6,95		1,23	1,10
	Справоч	x - x	i _s cM		1,11		1,23	1,31
		×	W _{xb} cM ³		1,60		2,00	1,92
			$J_{22} \text{ cM}^4$		2,24		3,20	3,08
		Площадь сечения,		1,81		2,11	1,77	
		ı,			0,9		5,3	13,5 11,0
		Z.			8,2		5,7	13.5
	R	не более			খ		V3	3
	61		ЖЖ		2,5		м	2
	9		ب <i>د</i>		27		25	32
	¥				28		32	

Продолжение табл. 45

	4	, 5,	Α.						Справо	Справочные величины для осей	чины дл	я осей			
		•	не более	ĸ	, I _I	Площадь сечения,	 	×	×			y - y		х6,	Масса 1 м, кг
	_ ₹	MOM			, ,	см2	J_{x} cm ⁴	W_{x_0} cm ³	i _x cM	$S_{x_0} c M^3$	J_y , cM^4	W_y , cm ³	<i>i</i> у, см	СМ	
	02	2	3	7,5	15,0	1,45	3,40	1,70	1,53	1,02	0,35	0,40	0,62	09'0	1,14
		ж	2	4,0	8,0	2,05	4,45	2,23	1,47	1,38	0,75	9,56	09'0	0,66	1,61
<u></u>	32	2	3	13,5	15,0	1,93	5,13	2,57	1,63	1,15	2,06	86'0	1,03	1,10	1,52
40		2,5	ю	10,6	11,6	2,38	6,18	3,09	1,61	1,79	2,50	1,20	1,02	1,12	1,87
<u>L</u> _		2	3	17,5	15,0	2,25	6,29	3,15	1,67	1,78	3,79	1,49	1,30	1,45	1,77
	40	2,5	8	13,8	11,6	2,78	7,58	3,79	1,65	2,17	4,63	1,83	1,29	1,47	2,18
		3	2	10,7	8,0	3,25	8,57	4,28	1,62	2,51	5,31	2,14	1,28	1,52	2,55
42	42	4	9	8,0	5,5	4,45	12,34	5,88	1,67	3,49	7,80	3,05	1,32	1,65	3,49
43	45	2	3	20,0	16,5	2,51	8,25	3,84	1,81	2,15	5,38	1,88	1,46	1,64	1,97
45	25	3	S	5,7	7,6	2,50	7,29	3,24	1,71	1,99	1,49	68'0	0,77	0,82	1,96
<u> </u>	31	2	3	13,0	17,5	1,99	6,55	2,91	1,81	1,68	1,97	0,94	0,99	1,01	1,56
50	32	2	3	13,5	20,0	2,13	8,58	3,43	2,01	1,98	2,24	1,02	1,02	1,00	1,67
		2,5	3	10,6	15,6	2,63	10,38	4,15	1,98	2,42	2,72	1,25	1,02	1,02	2,07
65	40	4	9	7,5	11,2	5,20	33,18	10,21	2,52	90'9	8,20	3,05	1,25	1,31	4,09
	75	4	9	16,2	11,2	8,00	52,26	18,23	2,72	10,33	46,88	10,12	2,41	2,87	6,28
89	27	1	2	24,0	62,0	1,18	8,21	2,41	2,64	1,41	0,82	0,40	0,84	9,65	0,93
	30	2	3	12,5	30,0	2,45	17,84	5,10	2,70	3,01	2,10	36'0	0,93	0,79	1,92
<u>.</u>	04	3	5	10,7	18,0	4,15	31,49	00'6	2,75	5,31	6,64	2,39	1,26	1,22	3,26
70	20	4	9	10,0	12,5	6,21	48,30	13,80	2,79	8,05	15,77	4,76	1,59	1,69	4,87
	99	4	9	12,5	12,5	7,00	57,02	16,29	2,85	9,37	26,12	6,74	1,93	2,13	5,50
	65	4	9	13,8	12,5	7,41	61,38	17,54	2,88	10,03	32,57	7,84	2,10	2,35	5,81

Продолжение табл. 45

	,		a						Справо	Справочные величины для осей	чины дл	н осей			
		,	не более	ĸ	Ę,	Площадь сечения,		×	×-			y - y		ŷ,	Масса 1 м, кг
	MM					c _M ²	J_{x} cm ⁴	W_{x_0} cm ³	i _x , cM	S_{x_0} cm ³	J_y , cM ⁴	W_{y} , cm ³	iy, cm	СМ	
F	46	9	6	5,16	8,0	8,86	77,08	19,76	2,95	12,02	18,85	5,87	1,42	1,56	96'9
7	25	4	9	37,5	15,0	4,61	37,07	9,27	2,84	5,85	2,29	1,25	2,29	9,0	3,61
<u>س</u>	32	4	9	5,5	15,0	5,16	45,16	11,29	2,96	6,91	4,70	2,04	0,95	0,90	4,05
	35	4	9	6,25	15,0	5,41	48,63	12,16	3,00	7,37	80,9	2,44	1,06	1,01	4,24
		2,5	М	13,8	27,6	3,78	37,40	9,35	3,14	5,45	5,98	2,07	1,26	1,12	2,97
4	40	٣	4	11,0	22,0	4,48	43,51	10,88	3,12	6,39	7,00	2,45	1,25	1,44	3,51
Ľ.	50	4	9	10,0	15,0	09'9	86'59	16,50	3,16	59'6	16,60	4,48	1,58	1,60	5,18
		3	4	17,7	22,0	89'5	61,30	15,32	3,29	8,70	21,46	5,31	1,94	1,96	4,46
	.09	4	9	12,5	15,0	7,40	77,54	19,38	3,23	11,17	27,53	6,92	1,93	2,02	5,81
		9	6	7,5	8,33	10,66	105,03	26,26	3,14	15,56	38,27	9,91	1,89	2,14	8,37
	08	3	4	24,3	22,0	6,88	79,10	19,77	3,39	11,01	47,03	9,11	2,61	2,84	5,40
		4	9	17,5	15,0	9,00	100,66	25,17	3,34	14,21	69,09	11,91	2,60	2,90	7,07
Ľ	100	9	6	14,2	8,33	15,46	170,88	42,72	3,32	30,59	158,47	26,22	3,20	3,96	12,14
	50	4	9	10,0	22,5	7,80	139,63	25,39	4,23	15,05	18,61	5,15	1,54	1,38	6,13
		~	7	2,6	17,2	6,59	167,57	30,47	4,18	18,27	22,47	6,29	1,53	1,43	7,53
<u> </u>	100	4	9	22,5	22,5	11,81	252,05	45,83	4,62	25,66	125,87	19,23	3,27	3,46	9,27
2	25	4	9	3,75	25,0	6,20	104,42	17,40	4,10	11,25	2,57	1,31	6,44	0,54	4,87
4	40	4	9	7,5	25,0	7,41	144,80	24,13	4,42	14,73	10,15	3,37	1,17	86'0	5,81
120		e	5	14,0	34,7	6,25	133,77	22,29	4,63	13,15	14,85	3,99	1,54	1,28	4,91
~	20	4	9	10,0	5,0	8,20	171,72	28,62	4,57	11,71	19,15	5,21	1,53	1,33	6,44
		٠,	6 ,	5.8	15.0	11.86	236.44	39.41	4.46	24.02	26.75	7.48	1.50	1.42	9.31

Продолжение табл. 45

4	,	-	8						Справоч	Справочные величины для осей	чины для	т осей			
:	·	1	не более	ĸ	n I	Площадь сечения,		x - x	×			y - y		Ŕ	Масса 1 м, кт
	×	MOM				cm ²	J_{x} cm ⁴	W_{x_0} cm ³	i _x , cM	S_x , cm ³	J_{p} , cM ⁴	W_{y} , cm ³	i _y , cM	СМ	
		4	9	12,5	25,0	9,00	198,65	33,11	4,70	19,37	31,91	7,42	1,88	1,70	7,07
	09	5	7	9'6	19,2	11,09	239,63	39,94	4,67	23,60	38,73	9,10	1,87	1,74	8,71
120		9	δ	7,5	15,0	13,06	275,47	45,91	4,59	27,44	44,95	10,70	1,85	1,80	10,25
į		5	7	11,6	19,2	12,09	272,71	45,45	4,75	26,48	95,65	12,25	2,22	2,14	9,49
	5 %	4	9	17,5	25,0	10,60	252,49	42,08	4,88	24,01	70,65	12,84	2,58	2,50	8,32
	3	5	7	13,6	19,2	13,09	305,80	50,97	4,83	29,35	86,20	15,81	2,57	2,55	10,28
	04	3	5	7,01	41,3	6,25	164,66	23,52	5,13	14,37	8,26	2,63	1,15	98,0	4,91
		3	5	17,3	41,3	7,45	220,97	31,57	5,45	18,48	25,89	5,79	1,86	1,53	5,85
	09	4	9	12,5	30,0	08'6	285,42	40,77	5,39	24,08	33,57	7,59	1,85	1,57	7,70
140	}	S	7	9,6	23,2	12,09	345,47	49,35	5,34	29,40	40,80	9,32	1,84	1,62	9,49
		9	6	7,5	18,3	14,26	398,68	66,95	5,29	34,27	47,46	10,97	1,82	1,67	11,20
	2	4	9	17,5	30,0	11,40	359,42	51,35	5,61	29,52	74,59	13,17	2,56	2,34	8.95
		5	7	13,6	23,2	14,09	436,63	62,38	5,57	36,15	91,13	16,23	2,54	2,38	11,06

Приведенные в таблице площадь сечения и справочные всличины вычислены по номинальным размерам. Плотность стали принята равной

Предельные отклонения высоты швеллера, мм: ± 1 для h до 500 мм; ± 1,5 для h свыше 50 до 100 мм; ± 2 для h свыше 100 до 150 мм; ± 2.5

Швеллеры изготовляются длиной от 3 до 12 м: мерной длины; кратной мерной длины; немерной длины. цля и свыше 150 мм.

Марки стали и технические требования - по ГОСТ 11474-76.

ГОСТ предусматривает также и другие типоразмеры швеллеров.

PEJILCLI KPAHOBLIE (no FOCT 4121-76 в ред. 1991 г.)

Стальные крановые рельсы специальных профилей применяют для подкрановых путей и подъемных кранов.

46. Типы и размеры (мм) рельсов

01		19 P	- Iy				Пред	ельные от	Предсльные отклонения, мм	, MM			
:1 \\ Zh		\(\frac{\partial}{\partial} \)	٠,			Тип рельса	эльса	_	9	b2	h		
<i>></i>	7	二	4		KP7	КР70-Л (облегченный)	гченный)	+	+1,0	+5,0			
¥ 1/1	11.4		< 25		KP80	02			-2,0	-3,0	+1,0		
7 `	24	/	7		KP100	001						ļ	
		}	2	_ 1	KP120	120		+	+1,0	+1,0	±1,2		
I	7.7	2) -		KP140	140		-7	-2,5	-3,5			
Типы рельсов	q	p_1	b ₂	S	h	h_1	h ₂	R	$R_{\mathcal{A}}$	R_B	r	'n	7
КР70-Л	70	75.6	120	ι	120	28,0	24	400	25	25	9	9	1,5
KP80	80	87.0	130	32	130	35,0	26	400	26	44	∞	9	1,5
KP100	100	108,0	150	38	150	40,0	30	450	30	50	∞.	∞	7
KP120	120	129.0	170	44	170	45,0	35	200	34	95	∞	8	7
KP140	140	150,0	170	09	170	9,05	40	700	40	60	10	10	3
		4				•	0,						

Длина рельсов: мерная 9.0; 9.5; 10; 10.5; 11; 11.5; 12 м; немерная - от 4 до 12 м. Длина рельса оговаривается в заказе.

Рельс изготавливают из углеродистой мартеновской или кислородно-конвертерной стали, химический состав приведен в ГОСТе.

47. Справочные данные для осей x - x и y - y

M ³ Macs	W _p	166,03 47,47		218,71 64,24		· ·
ивления, см	$W_3 = \frac{J_y}{b_2/2}$	45,43	_	72,08	72,08	72,08
Момент сопротивления, см ³	$W_2 = \frac{J_X}{y_2}$	168,64	_	233,34	233,34	380,72
1	$W_1 = \frac{J_x}{y_1}$	183,91		233,37	233,37	233,37
Момент инерции, см ⁴	Jp	1328,26		1992,24	1992,24	1992,24 3725,40 6466,18
Момент инерции, см ⁴	$J_{\mathcal{Y}}$	272,59		468,55	468,55	468,55 919,52 1671,96
Моме	J_{χ}	1055,67		1523,69	1523,69	1523,69 2805,88
до центра и, см	22	6,26		6,53	6,53	6,53
Расстояние до центра тяжести, см	у1	5,74		6,47	6,47	6,47
Площадь попереч-	ного сечения рельса, см ²	60,47		81,84	81,84	81,84
Типы	рельсов	КР70-Л		KP80	KP80	KP100

При вычислении плотность стали принята равной 7,85 г / см³. Механические свойства металла рельсов: временное сопротивление 731 МПа, предел текучести 372,4 МПа, относительное удлинение 6 %, твердость 212 НВ.

обозначения репьса с номинальной шириной головки b=100 мм: Пример

Peaks KP100 FOCT 4121-76.

РЕЛЬСЫ ДЛЯ НАЗЕМНЫХ И ПОДВЕСНЫХ ПУТЕЙ (по ГОСТ 19240-73)

Рельсы двухголовые, тавровые и типа P5 предназначены для наземных и подвесных путей.

Двухголовые и тавровые рельсы поставляют: мерной длины, кратной мерной длины, немерной длины. Длину рельсов устанавливают по соглашению сторон.

Рельсы типа Р5 поставляют длиной 6 м. Допускается поставка рельсов немерной длины от 1,5 до 4,6 м. Рельсы поставляют без фрезеровки торцов.

Марки стали рельсов и технические требования - по ГОСТ 535-88 и другим действующим стандартам, оговоренным в заказе.

Примеры обозначений двухголового рельса из стали Cт3:

$$P$$
ельс двухголовый $\frac{ \Gamma OCT \quad 19240 - 73}{Cm3 \quad \Gamma OCT \quad 535 - 88}$

то же таврового рельса из стали Ст3:

то же рельса типа Р5 из стали Ст3:

$$Peльс P5 = \frac{\Gamma OCT 19240 - 73}{Cm3 \Gamma OCT 535 - 88}$$

48. Размеры, мм, и расчетные величины рельсов

Рельс	Рельс	Рельс
двухголовый	типа Р5	тавровый
40.03 40.03 8-03 8-03 7 X X R5 Y y	20-0,4 R4 y R3,5 R3,5 R3,5 R3,5 R3,5 R3,5 R3,5 R3,5 Y 38-0,5 X R3,5 R3	R2 ≥1:7 R13 R3 11 X 82-2:0 S S S S S S S S S S S S S S S S S S S

Параметры		Рельс	
	двухголовый	тавровый	типа Р5
Площадь поперечного сечения, см ²	29,10	11,92	5,91
Момент инерции, см ⁴ , относительно: горизонтальной оси вертикальной оси	913,86 23,03	50,38 44,95	22,16 2,87
Момент сопротивления, см ³ , относительно: горизонтальной оси (верх)горизонтальной оси (верх)горизонтальной оси (низ) вертикальной оси	114,23 - - 11,52	9,37 30,98 10,96	7,76 9,45 1,51
Расстояние центра тяжести до подошвы, см	-	1,63	2,34
Масса 1 м, кг	22,84	9,36	4,64

ОТЛИВКИ ИЗ КОНСТРУКЦИОННОЙ НЕЛЕГИРОВАННОЙ И ЛЕГИРОВАННОЙ СТАЛИ (по ГОСТ 977-88)

В зависимости от назначений и требований, предъявляемых к литым деталям, отливки разделяют на три группы:

- 1 общего назначения: для деталей, конфигурация и размеры которых определяются только конструктивными и технологическими соображениями;
- 2 ответственного назначения: для деталей, рассчитываемых на прочность и работающих при статических нагрузках; контролируется предел текучести или временное сопротивление и относительное удлинение;
- 3 особого ответственного назначения: для деталей, рассчитываемых на прочность и работающих при циклических и

динамических ударных нагрузках; контролируется предел текучести или временное сопротивление, относительное удлинение и ударная вязкость.

Все группы контролируют по химическому составу и внешнему виду отливок. Нормирование других контролируемых свойств устанавливается нормативно-технической документацией на конкретную продукцию.

Конфигурация и размеры отливок должны соответствовать чертежам, утвержденным в установленном порядке.

Литейные уклоны - по ГОСТ 3212-92.

Отливки должны подвергаться термической обработке.

Механические свойства некоторых марок стали для отливок с толщиной стенок до 100 мм после окончательной термической обработки приведены в табл. 49.

49. Марки сталей и их механические свойства после термообработки (по ГОСТ 977-88)

Марка стали	Категория прочности	Предел текучести _{от} , МПа	Временное сопротивле ние σ_B , МПа	Относи- тельное удлинение σ, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U; кДж/м ²
				Не менее		
		Нормали	зация или нор	мализация с о	тпуском	
		Стали констр	укционные нел	егированные		
15Л	K20	196	392	24	35	491
20Л	K20	216	412	22	35	491
25Л	K20	235	441	19	30	392
30Л	K25	255	471	17	30	343
35Л	K25	275	491	15	25	343
40Л	K30	294	520	14	25	294
45Л	K30	314	540	12	20	294
50Л	K30	334	569	11	20	245
		Стали конст	рукционные ле	гированные		
20ГЛ	K25	275	540	18	25	491
35ГЛ	K30	294	540	12	20	294
20ГСЛ	K3 0	294	540	18	30	294
30ГСЛ	K35	343	589	14	25	294
20Г1ФЛ	K 30	314	510	17	25	491
20ФЛ	K30	294	491	18	35	491

Продолжение табл. 49

Марка стали	Категория прочности	Предел текучести _{от} , МПа	Временное сопротив- ление σ_{B} , МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м ²
		Нопис	DOUBLE WELL WO	Не менее рмализация с	OTTEROVON	
203/ECA H	77.40					T
30ХГСФЛ	K40	392	589	15	25	343
45ФЛ	K40	392	589	12	20	294
32Х06Л	_	-	~	_	-	-
40ХЛ	-	-	-	-	-	-
20ХМЛ	K25	245	441	18	30	294
20ХМФЛ	K25	275	491	16	35	294
20ГНМФЛ	K50	491	589	15	33	491
35ХМЛ	K40	392	589	12	20	294
30ХНМЛ	K55	540	687	12	20	294
35ХГСЛ	K35	343	589	14	25	294
35НГМЛ	-	-	_	-	-	-
20ДХЛ	K40	392	491	12	30	294
08ГДНФЛ	K35	343	441	18	30	491
13ХНДФТЛ	K40	392	491	18	30	491
12ДН2ФЛ	K55	540	638	12	20	294
12ДХН1МФЛ	K65	638	785	12	20	294
Марка стали	Категория прочности	Предел текучести _{от} , МПа	Временное сопротив- ление $\sigma_{\rm B}$, МПа	Относи- тельное удлинение 8, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м ²
				Не менее		
			Закалка	и отпуск		
		Стали констру	кционные нело	сгированные		
15Л	-	-	-	-	_	-
20Л	-	-	-	-	***	-
25Л	KT30	294	491	22	33	343
30Л	KT30	294	491	17	30	343
35Л	KT35	343	540	16	20	294
40Л	KT35	343	540	14	20	294
45Л	KT40	392	589	10	20	245
50Л	KT40	392	736	14	20	294

СТАЛИ

Продолжение табл. 49

165

Марка стали	Категория прочности	Предел текучести σ _т , МПа	Временное сопротив- ление $\sigma_{\rm B}$, МПа	Относи- тельное удлинение 8, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м ²
				Не менее		
				и отпуск		
	1	Стали констру -	жционные лег	ированные 	ı	1
20ГЛ	KT30	334	530	14	25	383
35ГЛ	KT35	343	589	14	30	491
20ГСЛ	-	-	-	-	-	-
30ГСЛ	KT40	392	638	14	30	491
20Г1ФЛ	-	-	-	-	-	-
20ФЛ	-	-	-	-	-	-
30ХГСФЛ	KT60	589	785	14	25	441
45ФЛ	KT50	491	687	12	20	294
32Х06Л	KT45	441	638	10	20	491
40ХЛ	KT50	491	638	12	25	392
20ХМЛ	-	-	-	-	-	-
20ХМФЛ	-	-	-	-	-	_
20ГНМФЛ	KT60	589	687	14	30	589
35ХМЛ	KT55	540	687	12	25	392
30ХНМЛ	KT65	638	785	10	20	392
35ХГСЛ	KT60	589	785	10	20	392
35НГМЛ	KT60	589	736	12	25	392
20ДХЛ	KT55	540	638	12	30	392
08ГДНФЛ	-	-	-	-	-	-
13ХНДФТЛ	-	-	-	-	-	-
12ДН2ФЛ	KT65	638	785	12	25	392
12ДХН1МФЛ	KT75	735	981	10	20	294
23ХГС2МФЛ	KT110	1079	- 1275	6	24	392
12Х7Г3СЛ	KT110	1079	1324	9	40	589
25 X 2Г НМ ФЛ ¹	KT50	491	638	12	30	589
25 X 2Г НМ ФЛ ²	KT110	1079	1275	5	25	392

Продолжение табл. 49

Марка стали	Категория прочности	Предел текучести _{от} , МПа	Временное сопротив- ление $\sigma_{\rm B}$, МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость <i>КС</i> U, кДж/м ²				
		Не менее								
	Закалка и отпуск									
27Х5ГСМЛ	KT120	1177	1472	5	20	392				
30Х3С3ГМЛ	Кт150	1472	1766	4	15	196				
03Н12Х5М3ТЛ	KT130	1275	1324	8	45	491				
03Н12Х5М3ТЮЛ	KT145	1422	1472	8	35	294				

Примеры условного обозначения сталей:

25Л ГОСТ 977-88 23ХГС2МФЛ ГОСТ 977-88 20Х25Н19С2Л ГОСТ 977-88

Примеры условного обозначения сталей для отливок, предназначенных для изделий, подлежащих приемке представителем заказчика:

25Л K20 ГОСТ 977-88 23ХГС2МФЛ KT 110 ГОСТ 977-88

В обозначении марок стали первые цифры указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в сотых долях процента; буквы за цифрами означают: A - азот, B - ниобий, B - вольфрам, Γ - марганец, D - медь, D - молибден, D - нижель, D - бор, D - кремний, D - титан, D - ванадий, D - хром, D - алюминий, D - литейная. Цифры, стоящие после букв, указывают примерную массовую долю легирующего элемента в процентах.

Индексы "К" и "КТ" являются условными обозначениями категории прочности, следующее за ними число означает значение требуемого предела текучести. Индекс "К" присваивается материалу в отожженном, нормализованном или отпущенном состоянии; индекс "КТ" - после закалки и отпуска.

Примеры обозначений: отливка 1-й группы из стали марки 25 Л:

Отливка 1-й группы, сталь 25Л ГОСТ 977-88

отливка 2-й группы из стали марки 25 Л:

Отливка 2-й группы, сталь 25Л ГОСТ 977-88

то же 3-й группы из стали марки 35ХГСЛ:

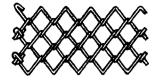
Отливка 3-й группы, сталь 35ХГСЛ ГОСТ 977-88

СТАЛЬНЫЕ ПЛЕТЕНЫЕ ОДИНАРНЫЕ СЕТКИ (по ГОСТ 5336-80 в ред. 1991 г.)

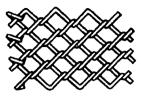
Сетки применяют для ограждений и просеивания материалов. Изготовляют их с ромбической ячейкой - Р (острый угол ромба 60°), с квадратной ячейкой. Сетки производят из низкоуглеродистой термически необработанной или оцинкованной проволоки. Допускается изготовление облегченных сеток (ОБ): № 20, 25, 35 из проволоки без покрытия диаметром 1,8 мм; № 45 - диаметром 2 мм; № 50 - диаметром 2,5 мм; № 80 - диаметром 3 мм; № 100 - диаметром 4 мм.

Примеры обозначений: сетки с ромбической ячейкой № 12 из термически необработанной проволоки диаметром 1,6 мм:

Сетка Р-12-1.6 ГОСТ 5336-80


сетки с квадратной ячейкой № 20 из оцинкованной проволоки диаметром 2,0 мм:

Сетка 20-2,0-0 ГОСТ 5336-80


Примечание. Сстки проволочные тканые с квадратными ячейками из цветных металлов - по ГОСТ 6613-86, сетки проволочные тканые с квадратными ячейками контрольные и высокой точности - по ГОСТ 6613-86.

50. Номера и размеры сеток

С ромбической ячейкой

С квадратной ячейкой

	С ромб	ической я	чейкой			Сквад	ратной яч	ейкой	
Номер сетки*	Диаметр проволо ки, мм	Живое сечение сетки, %	Ширина сетки, мм	Масса 1 м ² сетки, кг	Номер сетки*	Диаметр проволо ки, мм	Живое сечение сетки, %	Ширина сетки, мм	Масса 1 м ² сетки, кг
5	1,2	55,9		4,52	15	2,0	73,0	1000; 1500	3,60
6	1,2	61	1000	3,73	20		81,4		2,66
8	1,2	69,8		2,78	25	2,0	84,7		2,15
	1,4	65,5		3,80		2,5	81,8	1000; 1500;	3,36
10	1,2	75,3		2,20	35	2,0	91,0	2000	1,56
	1,4	71,5		3,00		2,5	87,0		2,44
12	1,4	76,3	1000;	2,48	45	2,5 3,0	84,4 87,0		1,87 2,70
	1,6	73,3	1500	3,24	50	3,0	88,8	1500; 2000	2,42
15	1,6	77,5		2,57	60		90,5		2,00
	1,8	76,0		3,25	80	4,0	90,3	2000; 2500;	2,76
20	2,0	81,4	1	3,00	100	5,0	90,5	3000	3,40

* Номер сетки соответствует номинальному размеру стороны ячейки в свету.

СТАЛЬНЫЕ КАНАТЫ Стальные канаты двойной свивки типа ТК (по ГОСТ 3067-88, ГОСТ 3068-88, ГОСТ 3070-88 и ГОСТ 3071-88)

Канаты двойной свивки с точечным касанием проволок в прядях: типа ТК с металиическим сердечником - по ГОСТ 3067-88 и ГОСТ 3068-88; типа ТК с одним органическим сердечником - по ГОСТ 3070-88 и ГОСТ 3071-88.

Приведенные стандарты не распространяют на канаты для ответственных и интенсивно работающих установок.

Канаты изготовляют:

по назначению каната грузовые - Г;

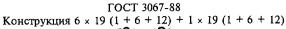
по механическим свойствам: марка ВК; марка В; марка 1;

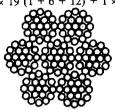
по виду покрытия по-

верхности проволоки: из проволоки без покрытия; из оцинкованной проволоки для условий работы: средних - С; жестких - Ж;

по направлению свивки каната: правой свивки; левой свивки - Л;

по сочетанию направлений свивки элементов каната: крестовой свивки;

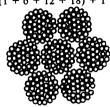

по степени уравновешенности: рихтованные - Р; нерихтованные;


по точности изготовления: нормальной; повышенной - Т;

по способу свивки: раскручивающиеся; нераскручивающиеся - ${\bf H}$.

Технические требования - по ГОСТ 3241-91. Основные размеры и параметры канатов приводятся в табл. 51, 52.

51. Размеры и параметры стальных канатов



	Диаметр, м	M					Марки	ровочная
	пров	олоки			15	70	16	70
каната	цент- ральной	в слоях	<i>F</i> , мм ²	<i>G</i> , kr]	Расчетное р	азрывное
	7 про- волок	126 проволок			суммар- ное всех проволок в канате	каната в целом	суммар- ное всех проволок в канате	каната в целом
							Параметрі	ы канатов
3,1	0,22	0,20	4,22	37,8	-	-	-	-
3,4	0,24	0,22	5,10	45,7	-	-	-	-
3,7	0,26	0,24	6,07	54,4		-	-	-
4,0	0,28	0,26	7,12	63,9	-	-	j -	-
4,3	0,30	0,28	8,26	74,1	-	-		-
4,6	0,32	0,30	9,47	85,0	14 800	11 800	15 750	12 600
5,2	0,36	0,34	12,15	109,0	19 050	15 200	20 200	16 150
5,8	0,40	0,38	15,17	136,5	23 750	19 000	25 250	20 200
6,2	0,45	0,40	16,95	152,0	26 550	21 200	28 200	22 550
7,6	0,55	0,50	26,41	237,0	41 400	33 100	43 950	35 150
8,4	0,60	0,55	31,92	286,5	50 050	40 000	53 150	42 500
9,2	0,65	0,60	37,94	340,5	59 450	47 550	63 200	50 550
9,9	0,70	0,65	44,50	399,5	69 750	55 800	74 100	59 250
10,5	0,75	0,70	51,80	465,0	81 200	64 950	86 250	69 000
12,0	0,85	0,80	67,31	604,0	105 500	84 400	112 000	89 600
13,5	0,95	0,90	85,12	763,5	133 000	106 500	141 500	113 000
15,0	1,05	1,00	105,02	942,0	164 500	131 500	174 500	139 500
16,5	1,15	1,10	127,01	1140,0	199 000	159 000	211 500	169 000
18,5	1,30	1,20	151,80	1365,0	238 000	190 000	252 500	202 000
	7 прово-	252 про-					Параметрі	ы канатов
	1 7	волоки						
4,7	лок 0,24	0,22	9,89	87,7	t I		1 1	
5,1	0,24	0,22	,		- 1	-	-	-
5,5	0,28		11,76	104,5	_	-	-	-
5,9	0,28	0,26 0,28	13,81 16,02	122,5	<u>-</u>	-	-	-
6,4	0,30	0,28	18,38	142,5 163,0	28 800	22 160	20.500	22 550
7,2	0,32	0,30	23,59	209,5	28 800 36 950	22 150 28 450	30 600	23 550
8,0	0,30	0,34	23,39	209,5 261,5	46 150	28 450 35 500	39 300	30 250 37 750
8,6	0,45	0,38	32,79	201,3	51 400	35 500 39 550	49 050 54 600	42 000
10,5	0,43	0,50	51,16	454,0	80 200	61 750	85 200	65 500
13,0	0,65	0,50	73,56	652,5	115 000	88 550		94 300
12,0			12,20	U-14,5	777 000	00.00	122 500	74 300

Примечания: 1. Канаты, разрывное усилие которых приведено справа от жирной до целых чисел или до 0,5 мм. 3. Допускается изготовление канатов с утолщенным сердечни Обозначения: F- расчетная площадь сечения всех проволок в канате; G- ориен

по ГОСТ 3067-88 и ГОСТ 3068-88

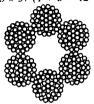
ГОСТ 3068-88 Конструкция 6 × 37 (1 + 6 + 12 + 18) + 1 × 37 (1 + 6 \div 12 + 18)

группа, Н	[/mm²								
177	0	1860)	19	60	20	60	21	60
усилие, Н	I, не мен	ee							
суммар-	каната в	суммарное	каната	суммар-	каната в	суммар-	каната в	суммар-	каната в
ное всех	целом	всех	в целом	ное всех	целом	ное всех	целом	ное всех	целом
проволок		проволок		прово-		прово- лок в		прово- лок в	
в канате	1	в канате		лок в канате		канате		канате	
	2067.00		<u> </u>						
no ΓΟCT 7440	3067-88 5950	7855	6280	8270	6615	8680	6940	9095	7275
8995	7195	9495	7595	9995	7995	10 450	8360	10 950	8760
10 700	8560	11 300	9040	11 850	9480	12 450	9960	13 050	10 400
12 550	10 000	13 250	10 600	13 950	11 150	14 650	11 700	15 350	12 250
14 550	11 600	15 350	12 250	16 150	12 900	16 950	13 550	17 800	14 200
16 700	13 350	17 600	14 050	18 550	14 800	19 450	15 550	20 400	16 300
21 400	17 100	22 600	18 050	23 800	19 000	25 000	20 000	26 150	20 900
26 750	21 400	28 200	22 550	29 700	23 750	31 200	24 950	32 700	26 150
29 850	23 850	31 550	25 200	33 200	26 550	34 850	27 850	36 500	29 000
46 550	37 200	49 150	39 300	51 750	41 400	54 350	43 450	-	-
56 300	45 000	59 400	47 500	62 550	50 000	65 650	52 500	-	-
66 900	53 500	70 600	56 450	74 350	59 450	78 050	62 400	-	-
78 450	62 750	82 850	66 250	87 200	69 750	-	-	-	-
91 350	73 050	96 450	77 150	101 500	81 200	-	-	-	-
118 500	94 800	125 000	100 000		105 000	-	-	-	-
150 000	120 000		126 500		133 000	-	-	<u> </u>	1 -
185 000	148 000		156 000	3	164 500	· -	-	_]
224 000	179 000		189 000		199 000	i -	-	_	1 _
267 500	214 000	282 500	226 000	297 500	238 000	l -	1 -		1
по ГОСТ	` 3068-88 	1	1	i	1	1	1		[
		10.400	14.150	10.250	14 950	20 350	15 650	21 300	16 400
17 400	13 350	18 400	14 150	19 350 23 000	14 850	24 200	18 600	25 350	19 500
20 700	15 900	21 850	16 800	27 050	20 800	28 400	21 850	29 750	22 900
24 350	18 700	25 700	19 750	31 350	24 100	32 950	25 350	34 500	26 550
28 250	21 750	29 800	22 900 26 300	36 000	27 800	37 800	29 100	39 600	30 450
32 400	24 900	34 200 43 900	33 800	46 200	35 550	48 500	37 300	50 850	39 150
41 600	32 000		42 200	57 700	44 400	60 600	46 650	63 500	48 850
51 950	40 000	54 850	42 200	64 250	49 450	67 450	51 900	70 650	54 400
57 800	44 500		73 300	100 000	77 000	105 000		-	-
90 200	69 450	95 250 136 500	105 000		110 500			-	
129 500	99 700	130 300				Meanri Kan		2 10 MM OT	соуглены

линии, изготовляют из проволоки без покрытия. 2. Диаметры канатов более 10 мм округлены ком, при этом диаметр каната не должен выходить за пределы, установленные ГОСТ 3241-91. тировочная масса 1000 м смазанного каната.

52. Размеры и параметры стальных канатов

ГОСТ 3070-88 Конструкция $6 \times 19 (1 + 6 + 12) + 1$ о. с.


Ι,	Циаметр, м	М					Марки	ровочная
	пров	олоки			15	70	16	70
каната	цент- ральной	в слоях	<i>F</i> , мм ²	<i>G</i> , кг]	Расчетное р	азрывное
	6 про- волок	108 проволок			суммар- ное всех проволок в канате	каната в целом	суммар- ное всех проволок в канате	каната в целом
							Параметрі	ы канатов
3,3	0,22	0,20	3,62	35,5	-	-	-	-
3,6	0,24	0,22	4,38	42,9	-	-	-	-
3,9	0,26	0,24	5,20	51,0	-	-	-	-
4,2	0,28	0,26	6,10	59,8	-	-	-	-
4,5	0,30	0,28	7,07	69,3	-	-	-	-
4,8	0,32	0,30	8,12	79,6	12 700	10 900	13 500	11 600
5,5	0,36	0,34	10,42	102,6	16 300	14 000	17 350	14 900
5,8	0,38	0,36	11,67	114,5	18 250	15 650	19 400	16 650
6,5	0,45	0,40	14,53	142,5	22 750	19 550	24 200	20 800
8,1	0,55	0,50	22,64	222,0	35 450	30 450	37 700	32 400
9,7	0,65	0,60	32,52	319,0	50 950	43 800	54 150	46 550
13,0	0,85	0,80	57,70	565,0	90 450	77 750	96 100	82 600
		1		1	1	1	Параметр	ы канатов
	6 про- волок	216 про- волок						
5,0	0,24	0,22	8,48	82,5	-	-	-	-
5,4	0,26	0,24	10,08	98,1	-	_	-	-
5,8	0,28	0,26	11,84	115,5	-	-	-	-
6,3	0,30	0,28	13,73	134,0	-	-	-	-
6,7	0,32	0,30	15,75	153,5	24 650	20 200	26 200	21 450
7,6	0,36	0,34	20,22	197,0	31 700	25 950	33 650	27 550
8,5	0,40	0,38	25,25	246,0	39 550	32 400	42 050	34 450
9,0	0,45	0,40	28,10	273,5	44 050	36 120	46 800	38 350
11,5	0,55	0,50	43,85	427,0	68 750	56 350	73 050	59 900
13,5	0,65	0,60	63,05	613,5	98 850	81 050	105 000	86 100
13,5	0,75	0,70	85,77	834,5	134 000	110 000	142 500	117 000

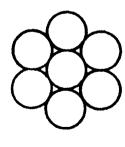
Примечания: 1. Канаты, разрывное усилие которых приведено справа от жирной до целых чисел или до $0.5\,$ мм. 3. Диаметр каната рассчитан с учетом обеспечения зазора меж Обозначения: F - расчетная площадь сечения всех проволок в канате; G - ориен

СТАЛИ 171

с органическим сердечником по ГОСТ 3070-88 и ГОСТ 3071-88

ГОСТ 3071-88 Конструкция $6 \times 37 (1 + 6 + 12 + 18) + 1$ о. с.

группа, H / мм ²				
1770	1860	1960	2060	2160


усилие, Н, не менее

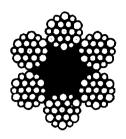
						217.010	каната в	суммар-	каната в
суммар-	каната в целом	суммарное всех	каната в целом	ное всех	каната в	суммар- ное всех	целом	ное всех	целом
ное всех проволок	цаюм	проволок	в цолом,	прово-	A	прово-	,	прово-	
в канате		в канате		лок в		лок в		лок в	
				канате		канате		канате	
по ГОСТ	3070-88								
6385	5490	6740	5795	7095	6100	7445	6400	7800	6705
7725	6640	8155	7010	8580	7375	9010	7745	9440	8115
9170	7885	9680	8320	10 150	8725	10 700	9200	11 200	9630
10 750	9245	11 350	9760	11 950	10 250	12 550	10 750	13 150	11 300
12 450	10 700	13 150	11 300	13 850	11 900	14 550	12 500	15 200	13 050
14 300	12 250	15 100	12 950	15 900	13 650	16 700	14 350	17 500	15 050
18 350	15 750	19 400	16 650	20 400	17 500	21 400	18 400	22 450	19 300
20 550	17 650	21 700	18 650	22 850	19 650	24 000	20 600	25 150	21 600
25 600	22 000	27 050	23 250	28 450	24 450	29 900	25 700	31 300	26 900
39 900	34 300	42 150	36 200	44 350	38 100	46 550	40 000	-	-
57 350	49 300	60 550	52 050	63 700	54 750	66 900	57 500	-	-
101 500	87 250	107 400	92 350	113 000	97 150	-	-	-	-
по ГОСТ	3071-88	•				ı	,	1	ı
14 950	12 250	15 750	12 900	16 600	13 600	17 460	14 300	18 250	14 950
17 750	14 550	18 750	15 350	19 750	16 150	20 700	16 950	21 700	17 750
20 850	17 050	22 000	18 000	23 200	19 000	24 350	19 950	25 500	20 900
24 200	19 800	25 550	20 950	26 900	22 050	28 250	23 150	29 600	24 250
24 200	22 750	29 300	24 000	30 850	25 250	32 400	26 550	33 950	27 800
35 650	29 200	37 600	30 800	39 600	32 450	41 600	34 100	43 550	35 700
	36 450	47 000	38 500	49 450	40 500	51 950	42 550	54 400	44 600
44 500	1		42 850	55 050	45 100	57 800	47 350	60 550	49 650
49 550	40 600	1	66 900	ŀ	70 400	90 200	73 950	-	-
77 350	63 400	1	95 900	1	101 000		106 000	-	-
111 000	91 000	1	130 500			I .	-	-	-
151 000	124 000	159 500	130 300	108 000	127 200			10	

линии, изготовляют из проволоки без покрытия. 2. Диаметры канатов более 10 мм округлены ду прядями.

тировочная масса 1000 м смазанного каната.

53. Размеры и параметры канатов одинарной свивки типа ЛК-О по ГОСТ 3062-80

ГОСТ предусматривает также диаметры каната 0,65 - 1,8 мм


7	Диаметр, мм	ιχ						Марки	Маркировочная группа, МПа	группа, М	ИПа			:
	пров	проволоки			13	1370	1470	02	1570	0,	0//1	0/	1960	0
каната	цент- ральной	в слоях	F , MM^2	G, Kr				Разрыв	Разрывное усилие, Н, не менее	е, Н, не м	енес			
	1 про- волока	6 про- волок			суммар- ное всех прово- лок в канате	каната в целом	суммар- ное всех прово- лок в канате	каната В целом						
2,00	0,70	6,65	2,38	20,7	•	-		1	3730	3420	4195	3800	4660	4190
2,20	0,75	0.70	2.75	23,9	3770	3465	4040	3710	4310	3955	4850	4400	5390	4850
2,40	0.85	0.80	3,58	31,1	4910	4505	5260	4830	5610	5150	6315	5720	7015	6310
2,80	0.95	06,0	4,53	39,4	6215	5710	9655	5609	7100	6465	7990	7250	8875	7985
3,10	1,10	1,00	5.66	49,2	7765	7130	8320	1660	8870	8150	0866	0206	11 050	9945
3,40	1,20	1,10	6.83	59,4	9370	8610	10 000	9210	10 700	0086	12 000	9850	13 350	12 000
3,70	1,30	1,20	8,11	70,5	11 100	10 150	11 900	10 900	12 700	11 650	14 300	12 900	15 850	14 250
4,00	1,40	1,30	9,50	82,5	13 000	11 950	13 950	12 800	14 850	13 650	16 750	15 150	18 600	16750

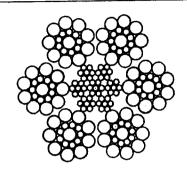
Продолжение табл. 53

каната цен				_				Mapri	маркировочная группа, мпв	ipyiila, n	1110			
	проволоки	юки		<u> </u>	1370	70	1470	0,	15'	1570	1770	0,	1960	0
	цент- ральной	в слоях	F, MM^2	S, KI				Разрыв	Разрывное усилие, Н, не менее	е, Н, не м	енее			
1 п	1 про- волока	6 про- волок			суммар- ное всех прово- лок в канате	каната в целом	суммар- ное всех прово- лок в канате	каната В целом						
4,30 1,	05,1	1,40	11,00	95,6	15 050	13 850	16 150	14 800	17 200	15 800	19 400	17 550	21 550	19 400
4,60 1,0	1,60	1,50	12,61	109,6	17 300	15 850	18 500	17 050	19 750	18 150	22 200	20 150	24 700	22 150
4,90 1,	1,70	1,60	14,33	124,6	19 650	18 150	21 050	19 400	22 450	20 600	25 250	22 900	28 050	25 200
5,20 1,	1,80	1,70	16,16	140,5	22 150	20 350	23 700	21 800	25 300	23 250	28 500	25 850	31 650	28 450
5,50 1,	1,90	1,80	18,10	157,5	24 800	22 800	26 600	24 450	28 350	26 050	31 900	28 950	35 450	31 850
6,20 2,	2,20	2,00	22,65	197,0	31 050	28 550	33 250	30 600	35 500	32 600	39 950	36 250	44 350	39 900
6,80 2,	2,40	2,20	27,33	238,0	37 450	34 400	40 150	36 900	42 850	39 350	48 200	43 800	53 550	48 150
7,40 2,	2,60	2,40	32,45	282,6	44 500	40 800	47 700	43 900	50 850	46 700	27 200	51 950	93 600	57 100
8,00 2,	2,80	2,60	38,01	330,5	52 100	47 950	55 850	51 400	59 550	54 750	000 29	058 09	74 450	000 29
8,60 3,	3,00	2,80	44,01	382,1	60 350	55 500	64 650	59 450	000 69	63 450	77 600	70 450	86 250	77 600
9,20 3,	3,20	3,00	50,45	438,5	69 200	63 650	74 150	68 200	79 100	72 250	88 950	80 800	98 850	88 950
9,80	3,40	3,20	57,33	498,5	78 650	72 300	84 250	77 500	89 850	82 650	101 100	91 750	ı	1
10,50 3,	3,60	3,40	64,65	562,0	88 650	81 550	95 000	87 400	101 000	93 200	114 000	102 000	ı	1
11,50 4,	4,00	3,80	80,61	780,5	110 500	101 000	118 000	108 500	126 000	116 000	142 000	127 500		1

О 6 о з н а ч е н и я: F - расчетная площадь сечения всех проволок; G - ориентировочная масса 1000 м смазанного канала.

54. Размеры и параметры канатов двойной свивки

·	···	Диаметр, м	M			}	Марк	ировочная
		пров	олоки				1.	370
каната	цент- ральной	1-го слоя (внутрен- него)	1	о слоя жного)	<i>F</i> , мм ²	<i>G</i> , кг		Разрывное
	6 прово- лок	36 про- волок	36 про- волок	36 про- волок			суммар- ное всех проволок в канате	каната в целом
3,8	0,28	0,26	0,20	0,28	5,63	55,1	_	
4,1	0,30	0,28	0,22	0,30	6,55	64,1	_	_
4,5	0,32	0,30	0,24	0,32	7,55	73,9	_	_
4,8	0,34	0,32	0,26	0,34	8,62	84,4	_	_
5,1	0,36	0,34	0,28	0,36	9,76	95,5	_	_
5,6	0,40	0,38	0,30	0,40	11,90	116,5	_	_
6,2	0,45	0,40	0,34	0,45	14,47	141,6	_	
6,9	0,50	0,45	0,38	0,50	18,05	176,6		_
8,3	0,60	0,55	0,45	0,60	26,15	256,0	_	
9,1	0,65	0,60	0,50	0,65	31,18	305,0	_	_
9,9	0,70	0,65	0,55	0,70	36,66	358,6		
11,0	0,80	0,75	0,60	0,80	47,19	461,6		
12,0	0,85	0,80	0,65	0,85	53,87	527,0		
13,0	0,90	0,85	0,70	0,90	61,00	596,6	83 650	71 050
14,0	1,00	0,95	0,75	1,00	74,40	728,0	102 000	86 700
15,0	1,10	1,00	0,80	1,10	86,28	844,0	118 000	100 000
16,5	1,20	1,10	0,90	1,20	104,61	1025,0	143 000	121 500
18,0	1,30	1,20	1,00	1,30	124,73	1220,0	171 000	145 000
19,5	1,40	1,30	1,05	1,40	143,61	1405,0	197 000	167 000
21,0	1,50	1,40	1,15	1,50	167,03	1635,0	229 600	194 500
22,5	1,60	1,50	1,20	1,60	188,78	1850,0	259 000	220 000


типа ЛК-Р по ГОСТ 2688-80

группа, МПа

ГОСТ предусматривает также диаметры каната 24,0 - 56,0 мм. О б о з н а ч е н и я : F - расчетная площадь сечения всех проволок; G - ориентировочная масса 1000 м смазанного каната, кг.

15	570	17	70	18	360	19	60
усилие, Н,	не менее		-				
суммарное всех про- волок в канате	каната в целом						
	_	9930	8400	10 450	8750	11 000	9350
_	<u> </u>	11 550	9750	12 150	10 150	12 800	10 850
	_	13 300	11 250	14 050	11 750	14 750	12 500
_		15 200	12 850	16 050	13 400	16 850	13 900
		17 200	14 600	18 150	15 150	19 100	15 800
18 650	15 800	20 950	17 800	22 150	18 550	23 300	19 350
22 650	19 250	25 500	21 100	26 900	22 250	28 350	23 450
28 300	24 000	31 800	26 300	33 600	27 450	35 350	28 700
41 000	34 800	46 100	38 150	48 650	39 850	51 250	41 600
48 850	41 550	55 000	45 450	58 050	47 500	61 000	49 600
57 450	48 850	64 650	53 450	68 250	55 950	71 850	58 350
73 950	62 850	83 200	68 800	87 850	72 000	92 450	75 150
84 450	71 750	95 000	78 550	100 000	81 900	105 500	85 750
95 600	81 250	107 500	89 000	113 500	92 800	119 500	97 000
116 500	98 950	131 000	108 000	138 500	112 500	145 500	118 000
135 000	114 500	152 000	125 500	160 500	131 000	169 000	137 000
164 000	139 000	184 500	152 000	194 500	159 000	205 000	166 000
195 500	106 000	220 000	181 500	232 000	189 500	244 000	198 000
225 000	191 000	253 000	209 000	267 000	218 500	281 000	228 000
261 500	222 000	294 500	243 500	311 000	254 000	327 000	265 500
296 000	251 000	333 000	275 000	351 500	287 500	370 000	303 500

55. Размеры и параметры канатов двойной свивки

		Диаме	тр, мм				
	проволоки	сердечника	про	волоки в г	тряди		
каната	7 проволок	42 прово-	централь- ной	1-го слоя	2-го слоя (наружного)	<i>F</i> , мм ²	<i>G</i> , kr
		локи	6 прово- лок	54 про- волоки	54 проволо- ки		
6,4	0,28	0,26	0,60	0,28	0,50	18,29	167,7
7,7	0,32	0,30	0,70	0,34	0,60	26,01	238,5
8,6	0,36	0,34	0,80	0,38	0,70	34,44	315,8
10,0	0,45	0,40	∙0,90	0,45	0,80	45,94	421,5
11,5	0,50	0,45	1,00	0,50	0,90	57,72	529,5
12,5	0,55	0,50	1,10	0,55	1,00	70,85	650,0
14,0	0,60	0,55	1,20	0,60	1,10	85,32	782,5
15,0	0,65	0,60	1,30	0.65	1,20	101,15	927,6
16,5	0,70	0,65	1,40	0,70	1,30	118,31	1085,0
17,5	0,75	0,70	1,50	0,75	1,40	136,84	1255,0
19,0	0,80	0,75	1,70	0,85	1,50	161,76	1485,0
20,5	0,85	0,80	1,80	0,90	1,60	183,28	1681,0
21,5	0,90	0,85	1,90	0,95	1,70	206,14	1890,0
22,5	0,95	0,90	2,00	1,00	1,80	230,35	2115,0
25,0	1,00	0,95	2,20	1,10	2,00	279,03	2560,0
27,5	1,10	1,00	2,40	1,20	2,20	333,13	3050,0
29,5	1,20	1,10	2,60	1,30	2,40	395,65	3630,0

177

типа ЛК-О по ГОСТ 3081-80

ГОСТ предусматривает также диаметры каната 31,5 - 45,5 мм. Обозначения $F,\ G$ см. табл. 54.

Маркировочная группа, МПа								
1370	1570	1770	1960					

Разрывное усилие, Н, не менее

суммарное всех про- волок в канате каната в целом		суммарное всех про- волок в канате	каната в целом	суммарное всех про- волок в канате	каната в целом	суммарное всех про- волок в канате	каната в целом
	_			32 250	26 650	35 800	29 050
_	_	40 750	34 550	45 850	37 900	50 950	41 400
_		54 000	45 800	60 750	50 150	67 500	54 750
	_	72 000	61 200	81 000	81 000 67 000		73 150
_		90 500	76 850	101 500	84 200	113 000	91 850
_	_	111 000	94 400	124 500	103 000	138 500	112 500
_		133 500	113 500	150 500	124 000	167 000	135 500
_	_	158 500	134 500	178 000	1 4 7 000	198 000	160 500
_		185 500	157 000	208 500	172 000	231 500	188 000
187 500	159 000	214 500	182 000	241 000	199 000	268 000	217 500
221 500	188 000	253 500	215 000	285 000	235 500	317 000	257 000
251 000	213 500	287 000	244 000	323 000	267 000	359 000	291 500
282 500	240 000	323 000	274 000	363 500	300 000	404 000	327 000
316 000	268 500	361 000	306 500	406 000	336 000	451 000	366 500
382 500	325 000	437 500	371 000	492 000	407 000	546 500	443 500
457 000	388 000	522 000	443 500	587 500	486 000	652 500	529 500
542 500	460 500	620 000	527 000	697 500	576 500	775 000	629 000

Стальные канаты типа ЛК (по ГОСТ 3062-80, ГОСТ 2688-80, ГОСТ 3081-80)

Канаты спиральные с линейным касанием проволок в прядях типа ЛК-О по ГОСТ 3062-80.

Канаты двойной свивки с линейным касанием проволок в прядях: типа ЛК-Р с одним органическим сердечником - по ГОСТ 2688-80; типа ЛК-О с металлическим сердечником - по ГОСТ 3081-80.

Канаты изготовляют:

по назначению каната: грузовые (служащие для транспортирования грузов и других целей) - Г (ГОСТ 3062-80); грузолюдские (служащие для транспортирования людей) - ГЛ и грузовые - Г (ГОСТ 3081-80; ГОСТ 2688-80);

по механическим свойствам марок: ВК, В, 1;

по виду покрытия поверхности проволок в канате: из проволоки без покрытия; из оцинкованной проволоки в зависимости от поверхностной плотности цинка: С, Ж, ОЖ;

по способу свивки: нераскручивающиеся - H, раскручивающиеся;

по степени уравновешенности: рихтованные - Р, нерихтованные;

по направлению свивки каната: правой свивки; левой свивки - Л;

по сочетанию направле ний свивки элементов ка ната (ГОСТ 2688-80 и ГОСТ 3081-80): крестовой свивки; односторонней свивки - О; комбинированной - К.

Основные размеры и параметры канатов приведены в табл. 53 - 55.

Технические требования - по ГОСТ 3241-91.

Канаты, разрывное усилие которых указано справа от жирной линии, изготовляют из проволоки без покрытия. По согласованию с потребителем допускается изготовление канатов из оцинкованной проволоки. Диаметры канатов более 10 мм округлены до целых чисел или до 0,5 мм.

Примеры обозначений канатов.

Пример обозначения спирального каната диаметром 10,5 мм, грузового назначения, марки В, из проволоки без покрытия, правой свивки, нераскручивающегося, нерихтованного, повышенной точности Т, маркировочной группы 1570 МПа:

Канат 10,5-Г-В-Н-Т-1570 ГОСТ 3062-80

то же, диаметром 2,2 мм, грузового назначения, марки1, оцинкованного по группе Ж,

левой свивки, раскручивающегося, рихтованного, нормальной точности, маркировочной группы 1570 МПа:

Канат 2,2-Г-1-Ж-Л-Р-1570 ГОСТ 3062-80

Пример обозначения каната диаметром 12,0 мм, грузолюдского назначения, из проволоки без покрытия, марки В, левой односторонней свивки, нераскручивающегося, нерихтованного, повышенной точности Т, маркировочной группы 1770 МПа:

Канат 12-ГЛ-В-Л-О-Н-Т-1770 ГОСТ 2688-80

то же, диаметром 32,0 мм, грузового назначения, марки 1, оцинкованного по группе ОЖ, правой крестовой свивки, нераскручивающегося, рихтованного, нормальной точности, маркировочной группы 1370 МПа:

Канат 32-Г-1-ОЖ-H-1370 ГОСТ 2688-80

Пример обозначения каната диаметром 10,0 мм, грузолюдского назначения, из проволоки без покрытия, марки В, правой крестовой свивки, нераскручивающегося, нерихтованного, повышенной точности Т, маркировочной группы 1960 МПа:

Канат 10-ГЛ-В-Н-Т-1960 ГОСТ 3081-80

то же, диаметром 38,0 мм, грузового назначения, марки 1, оцинкованного по группе С, левой односторонней свивки, нераскручивающегося, рихтованного, нормальной точности, маркировочной группы 1370 МПа:

Канат 32-Г-1-С-Л-О-Р- 1370 ГОСТ 3081-80

СТАЛЬНАЯ НИЗКОУГЛЕРОДИСТАЯ ПРОВОЛОКА ОБЩЕГО НАЗНАЧЕНИЯ (по ГОСТ 3282-74)

Проволоку изготовляют:

- а) по виду обработки: термически обработанную О, термически необработанную:
- б) по виду поверхности: без покрытия, с покрытием.

Проволока без покрытия термообработанная изготовляется светлой (С), а по согласованию допускается изготовление черной (Ч) проволоки.

Проволоку с покрытием подразделяют на оцинкованную: 1-го класса - 1Ц, 2-го класса - 2П

по точности изготовления: повышенной - П, нормальной;

 в) по временному сопротивлению разрыву (только для термически необработанной проволоки): І группы - І; ІІ группы - ІІ; проволоку высшей категории изготовляют ІІ группы - ІІ.

Проволоку изготовляют диаметром: от 0.16 до 10.0 мм - без покрытия; от 0.20 до 6.0 мм - с покрытием.

Диаметр проволоки, мм: 0,16; 0,18; 0,20; 0,22; 0,25; 0,28; 0,30; 0,32; 0,35; 0,36; 0,37; 0,40; 0,45; 0,50; 0,55; 0,56; 0,60; 0,63; 0,70; 0,80; 0,85; 0,90; 0,95; 1,1; 1,2; 1,3; 1,4; 1,6; 1,8; 2,0; 2,2; 2,5; 2,8; 3,0; 3,2; 3,6; 4,0; 4,5; 5,0; 5,5; 5,6; 6,0; 6,3; 7,0; 8,0; 10,0.

Для стопорения крепежных деталей применяют проволоку диаметром 0,5 - 4,0 мм. Наиболее употребительны диаметры 0,8; 1,2 и 1.6 мм.

Термическая обработка, вид поверхности класс цинкового покрытия, группа временного сопротивления должны оговариваться в заказе.

примеры обозначений:

проволоки диаметром 1,2 мм, термически обработанной, повышенной точности П, светлой:

Проволока 1,2-П-О-С ГОСТ 3282 -74

то же диаметром 1,0 мм, термически обработанной, нормальной точности, черной:

Проволока 1,0-О-Ч ГОСТ 3282 -74

то же диаметром 1,2 мм, термически необработанной, 2-го класса, повышенной точности П, II группы:

> Проволока 1,2-П-2Ц-II ГОСТ 3282 -74

Проволока должна быть изготовлена из стали по ОСТ 14-5-193-87. Допускается изготовление проволоки из низкоуглеродистой стали по ГОСТ 1050-88.

56. Механические свойства проволоки (по ГОСТ 3282-74)

	Временное с	опротивление ра для проволоки	Относительное удлинение на базе 100 мм 8, %,			
Диаметр про- волоки,	термически не	обработанной	термически	не менее, для термически обработанной проволоки		
ММ	I группы, не более	II группы	обработанной	без покрытия	с покрытием	
От 0,16 до 0,45	690 - 1370	690- 1370		15	12	
Св. 0,45 " 1,20	690 - 1270	690 - 1180	290 - 490 (без покрытия)	15	12	
" 1,20 " 2,50	590 - 1180	690 - 980		15	12	
" 2,50 " 3,20	540 - 1080	640 - 930	340 - 540 (с покрытием)	20	18	
" 3,20 " 3,60	440 - 930	640 - 930		20	18	
" 3,60 " 4,50	440 - 930	590 - 880		20	18	
" 4,50 " 6,00	390 - 830	490 - 780		20	18	
" 6,00 " 7,50	390 - 830	490 - 780		20	-	
8,00	390 - 780	490 - 780		20	-	
" 8,00 " 10,00	390 - 690	440 - 690		20		

ПРОВОЛОКА ИЗ УГЛЕРОДИСТОЙ КОНСТРУКЦИОННОЙ СТАЛИ (по ГОСТ 17305-91)

Проволоку холоднотянутую, термически необработанную изготовляют из стали марок 08кп; 10; 10пс; 15кп; 15пс; 20; 20пс; 20кп; 25; 30; 35; 40; 45; 50 по ГОСТ 1050-88.

Диаметр проволоки, мм: 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,7; 1,8; 1,9; 2,0; 2,2; 2,5; 2,8; 3,0; 4,0; 4,5; 6; 7.

В зависимости от механических свойств проволоку изготовляют групп: 1, 2.

Пример обозначения проволоки диаметром 5 мм из стали 40, группы 1:

Проволока 5-40 ГОСТ 17305-91

Проволоку диаметром 0,5 - 4 мм применяют и для стопорения крепежных деталей.

57.	Механические	свойства п	проволоки (по ГОСТ	17305-91),	не менее
-----	--------------	------------	-------------	---------	------------	----------

	Временное сопротивление разрыву, Н/мм ² из стали марок								Число перегибов из стали марок					
Диаметр проволоки, мм	08кп	10, 10пс, 10кп				25, 40, 30, 45,	08кп, 10, 10пс, 10кп		15, 15пс, 15кп, 20, 20пс, 20кп		25, 30,	40, 45,		
	груп- па 1	груп- па 2	груп- па І	груп- па 2	груп- па 1	35	50	груп- па 2	груп- па 1	груп- па 2	груп- па 1	35	50	
0,32 - 0,75	490	640	540	640	590	980	1080	_	-	-	-	~	-	
0,8 - 1,00			490		540	880	980	7	6	7	6	6	5	
1,1 - 1,2						780	880	9	7	8	6	7	6	
Св. 1,2 ~ 1,5	440							4	3	4	3	3	2	
Св. 1,5 - 2,0								7	6	7	6	5	4	
2,1 - 2,6								7	6	7	6	5	3	
Св. 2,6 до 3,0								7	6	6	5	3	3	
3,1 - 3,5	390	590	440	590	490			8	6	8	6	4	3	
3,6 - 4,0						690	780	7	6	6	5	3	2	
4,1 - 5,0								7	5	7	5	5	3	
5,3 - 6,0								6	5	5	4	2	1	
6,1 - 7,0	240		390		440	640	740	9	8	7	6	3	1	
7,5 - 10,0								6	5	5	4			

Временное сопротивление разрыву проволоки группы 2 из стали 08кп 590 Н/мм².

НИЗКОУГЛЕРОДИСТАЯ КАЧЕСТВЕННАЯ ПРОВОЛОКА

(по ГОСТ 792-67 в ред. 1990 г.)

Проволоку изготовляют: без покрытия - светлую КС, с покрытием - оцинкованную КО.

Диаметры проволоки, мм: 0,5; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,6; 3,0; 3,6; 4,0; 4,5; 5,0; 6,0.

Временное сопротивление разрыву для проволоки всех диаметров, не менее: 392 МПа - для светлой, 362 МПа - для оцинкованной.

Примеры обозначений: проволоки светной диаметром 1,2 мм:

Проволока КС 1,2 ГОСТ 792-67

то же оцинкованной диаметром 2 мм:

Проволока КО 2,0 ГОСТ 792-67

В обозначении для проволоки, подвергнутой испытанию на электрическое сопротивление, после слова "Проволока" добавляют букву

Э. Например, проволока светлая диаметром 1,0 мм для токопроводящей жилы:

Проволока ЭКС 1,0 ГОСТ 792-67

Проволоку применяют и для стопорения крепежных деталей.

Дополнительные источники

Марочник сталей и сплавов. Под ред. В. Г. Сорокина. М.: Машиностроение, 1989.

Журавлев В. Н., Николаева О. И. Машиностроительные стали: Справочник. М.: Машиностроение, 1992.

Сталь тонколистовая коррозионно-стойкая, жаростойкая и жаропрочная - ГОСТ 5582-90 (ИСО 6320-85).

Отливки из хладостойкой и износостойкой стали. Общие технические условия - ГОСТ 21357-87.

Сетки проволочные тканые фильтровые. Технические условия - ГОСТ 3187-76.

Сетки из стальной рифленой проволоки с квадратными ячейками - ГОСТ 3306-88.

чугуны

ОТЛИВКИ ИЗ СЕРОГО ЧУГУНА (по ГОСТ 1412-85, ИСО и некоторым национальным стандартам)

Серый чугун технологичный материал, обладает хорошей жидкотекучестью, малой склонностью к образованию усадочных дефектов по сравнению с чугуном других типов. Из него можно изготовлять отливки самой сложной конфигурации с толщиной стенок от 2 до 500 мм.

В основу стандартизации серого чугуна (СЧ) заложены принципы регламентирования минимально допустимого значения временного сопротивления разрыву при растяжении.

Марки, механические свойства серого чугуна по ГОСТ 1412-85, ИСО 185 и национальным стандартам некоторых стран приведены в табл. 58 - 60.

По ГОСТ 1412-85 марка серого чугуна определяется показателем временного сопротивления чугуна при растяжении. Условное обозначение марки включает буквы СЧ - серый чугун и цифровое обозначение величины минимального временного сопротивления при растяжении в МПа × 10-1:

СЧ 20 ГОСТ 1412-85.

Механические свойства серого чугуна обеспечиваются в литом состоянии или после термической обработки.

Поскольку значения прочности чугуна данной марки в отливке зависят от скорости охлаждения, определяемой толщиной стенки (диаметром) отливки, в стандартах приводятся

минимальные значения σ_B в отдельно отлитых пробных заготовках других диаметров или сечений из СЧ каждой марки (табл. 59).

Классификация серого литейного чугуна по международному стандарту ИСО 185 включает шесть классов, устанавливаемых на основании результатов механических испытаний на растяжение образцов, вырезанных из различных литейных проб.

Характерным показателем, определяющим марку чугуна, является временное сопротивление при растяжении $\sigma_{\rm B}$ образцов из отдельно отлитых цилиндрических проб диаметром 30 мм.

По стандарту Германии DIN 1691 в заказе на отливки должно быть однозначно указано: является ли характерным свойством временное сопротивление при растяжении или твердость по Бринеллю? В зависимости от этого маркировка чугунов обозначается по-разному. Например:

Чугун DIN 1691-GG-25 или Чугун DIN 1691-GG-210 HB

Данные о временном сопротивлении при растяжении, приведенные в табл. 59, являются гарантированными в отливках.

Связь между толщиной стенки (2,5 - 80 мм) и твердостью отливки из различных марок СЧ представлена в DIN 1691 в регламентированном виде (табл. 59в), что позволяет правильно и точно устанавливать твердость для заданного интервала толщин стенок отливок.

58. Отечественные марки серого чугуна и зарубежные аналоги

Россия, ГОСТ 1412-85	исо 185	Великобритания, BS 1452	Германия, DIN 1691	США, ASTM A 48	Япония, JIS G 5501
CY 10	100	100	GG-10	20 B	FC 100
C¶ 15	150	150	GG-15	25 B	FC 150
СЧ 18	-	180	-	-	_
СЧ 20	200	200	GG-20	30 B	FC 200
C¶ 21	-	220	-	-	-
C9 24	-	-	-	-	-
CY 25	250	250	GG-25	35 B	FC 250
_	-	-	-	40 B	
СЧ 30	300	300	GG-30	45 B	FC 300
СЧ 35	350	350	GG-35	50 B	FC 350

59. Механические свойства отечественных и зарубежных серых чугунов

Стаңдарт	Марка чугуна	Толпцина стенки, мм	Временное сопротивление при растяжении, МПа, не менее	Твердость НВ
ΓΟCT 1412-85	СЧ 10	4	140	205
		8	120	200
		15	100	190
		30	80	185
		50	75	156
		80	70	149
		150	65	120
ИСО 185	100	2,5 - 10	120	-
		10 - 20	90	-
BS 1452	100	30	100	-
DIN 1691	GG-10	5 - 40	100	-
ASTM A 48	20B	30,5	138	-
JIS G 5501	FC 100	4 - 50	98,1	201
ΓΟCΤ 1412-85	CY 15	4	220	241
		8	180	224
		15	150	210
		30	110	201
		50	105	163
	ļ	80	90	156
		150	80	130
ИСО 185	150	2,5 - 10	155	-
		10 - 20	130	*
		20 - 30	115	
		30 - 50	105	
ИСО 185	150	20 - 40	120 *	7
		40 - 80	110 *	
		80 - 150	100 •	
		150 - 300	90 **	194
BS 1452	150	30	-150	
DIN 1691	GG-15	2,5 - 5	180	
		5 - 10	155	_
		10 - 20	130	
		20 40	120	
		40 80	110	
		80 - 150	100	
		150 300	90 ***	
ASTM A 48	25B	30,5	17)	205
JIS G 5501	FC 150	4 8	namen was same a samisti i sur i ressus i i i a 186	241
		8 15	167	223
		15 30	147	212
		30 50	127	201
FOCT 1412-85	C4 18	30)	180	
BS 1452	180	30	180	gr. 1 mg t. jo. Spiral server styres. Promogrephyloperativeryage
FOCT 1412-85	C4 20	4		I L
TABLE A STABLE OF		8	270	255
			220	240
		15	200	230
		30	160	216
3		50 80	140	170
	1	80	130	163
		150	120	143

Продолжение табл. 59

Стандарт	Марка чутуна	Толщина стенки, мм	Временное сопротивление при растяжении, МПа, не менее	Твердость НВ
ИСО 185	200	2,5 - 10	205	-
		10 - 20	180	-
		20 - 30	160	-
		30 - 50	145	1
ИСО 185	200	20 - 40	170 *	-
		40 - 80	150 *	-
		80 - 150	140 **	-
		150 - 300	130 **	-
BS 1452	200	30	200	
DIN 1691	GG-20	2,5 - 5	200 - 300	-
		5 - 10	205	-
		10 - 20	180	-
		20 - 40	170	-
		40 - 80	150 140	-
		80 - 150 150 - 300	130 ***	· •
A CTD 4 A 40	30B	30,5	207	
ASTM A 48	FC 200	4 - 8	235	255
JIS G 5501	FC 200	8 - 15	216	235
		15 - 30	196	223
		30 - 50	167	217
TO CT 1410 05	CW 21	30	300	21/
ΓΟCT 1412-85	CY 21 220	30	220	
BS 1452	2000			
ΓΟCT 1412-85	CY 24	30	240	
ΓΟCT 1412-85	СЧ 25	4	310	260
		8	270	255
		15	250	245
		30	210	238 187
		50 80	180 165	170
		150	150	156
1100 105	250	4 - 10	250	130
ИСО 185	230	10 - 20	225	_
		20 - 30	205	-
		30 - 50	185	-
ИСО 185	250	20 - 40	210 *	
MCO 193	2.50	40 - 80	190 *	-
		80 - 150	170 **.	-
		150 - 300	130 **	-
BS 1452	250	30	250	-
DIN 1691	GG-25	5 - 10	250 - 350	-
17114 1071	, ,	10 - 20	225	-
		20 - 40	210	~
		40 - 80	190	-
		80 - 150	170	-
		150 - 300	I6() ***	
ASTM A 48	35B	30,5	241	-
ASTM A 48	40B	30,5	276	1
JIS G 5501	FC 250	4 - 8	275	269
310 (3 3501		8 - 15	255	248
		15 - 30	245	241
		30 - 50	216	224
		30 - 30	1 210	

Продолжение табл. 59

Стандарт	Марка чугуна	Толщина стенки, мм	Временное сопротивление при растяжении, МПа, не менее	Твердость НВ
ΓΟCT 1412-85	CY 30	4	-	-
		8	330	270
		15	300	260
		30	260	250
		50	220	197
		80	195	187
		150	180	163
ИСО 185	300	10 - 20	270	-
		20 - 30	245	-
		30 - 50	225	-
ИСО 185	300	20 - 40	250 *	-
		40 - 80	220 *	-
		80 - 150	210 **	-
		150 - 300	190 **	-
BS 1452	300	30	300	262
DIN 1691	GG-30	10 - 20	300 - 400	-
		20 - 40	250	-
		40 - 80	220	-
		80 - 150	210	
		150 - 300	190	
ASTM A 48	45B	30,5	310	
JIS G 5501	FC 300	8 - 15	304	269
		15 - 30	294	262
		30 - 50	265	248
ΓΟCT 1412-85	CY 35	4		
		8	380	290
		15	350	275
		30	310	270
		50	260	229
		80	225	201
		150	205	179
ИСО 185	350	10 - 20	315	
		20 30	290	
		30 - 50	270	
ИСО 185	350	20 40	7.4() *	The state of the s
		40 80	200 *	
		80 150	210 **	
		150 (00	210 **	
BS 1452	150	3 ()	1511	4
DIN 1691	GG 35	10 20	150 450	1 · · · · · · · · · · · · · · · · · · ·
		20 40	290	
		40 80	760	
		80 150	240	
		150 300	.1111 ***	
ASTM A 48	SOB	10,5	145	
JIS G 5501	FC 380	15 30	14.1	277
1931 F. C. P. ELLIN	1 1 1111	30 50	114	269
	rin ilandilikeiset sei i	To Francis Colonia and Company of the Colonia and Colo	🕹 Bertandories (al compressor establishment establishment (al compressor establishment)	e to e
ASIM A 48	55B	30.5	579	
ASTM A 48	6013	30,5	ने 1 ने	

^{*} Приливная проба диаметром 30 мм ** Приливная проба диаметром 50 мм

^{***} Ориситировочные данные

59а. Механические свойства серого чугуна, не предусмотренные ГОС	Том и
приведенные в приложениях к некоторым национальным стандарт	гам

Марка чугуна	о _{изг} , МПа	о _{сж} , МПа	τ _{cp} , ΜΠα	КС, қДж/м	Е · 10 ⁻³ , МПа	σ ₋₁ ^{изг} , МПа	К _{1с} , МПа⋅м ^{1/2}
TOCT 1412-85 CY 10 CY 15 CY 20 CY 25 CY 30 CY 35	280 350 420 490 560 630	530 650 800 950 1100 1250	110 150 200 250 300 350	10 20 40 60 80	70 - 110 70 - 110 85 - 110 90 - 110 125 - 145 130 - 160	70 90 110 140 160	10 15 20 25 25
DIN 1691 GG-15 GG-20 GG-25 GG-30 GG-35	250 290 340 390 490	600 720 840 960 1080	170 230 290 345 400	- - - -	78 - 103 88 - 113 103 - 118 108 - 137 123 - 143	70 90 120 140 145	10 13 15 18 20
BS 1452 150 180 220 260 300 350 400	- - - - - -	600 672 768 869 960 1080 1200	173 207 253 299 345 403 460	- - - - - -	100 109 120 128 135 140 145	68 81 99 117 136 145 152	

596. Классы твердости серого чугуна по ИСО 185

Класс твердости	Пределы изменения твердости НВ	Класс твердости	Пределы изменения твердости НВ
H 145	170 max	H 215	190 - 240
H 175	150 - 200	H 235	210 - 260
H 195	170 - 220	H 255	230 - 280

В стандарте Великобритании ВЅ 1452 представлено семь марок серого чугуна.

Стандарт США ASTM A 48 включает девять марок чугуна. Условное обозначение марки включает цифровое обозначение и букву "В". Число определяет временное сопротивление разрыву (фунтах/кв. дюйм), например:

20B ASTM A 48.

Стандарт Японии JIS G 5501 включает песть марок чугуна. Условное обозначение марки включает буквы FC и пифровое обозначение величины минимального временного сопротивления при растяжении в МПа × 10⁻¹, например:

FC 25 JIS G 5501.

Механические свойства чугуна, обеспечивающие долговечность и надежность изделия, не предусмотренные ГОСТом и приведенные в приложении национальных стандартов, даны в табл. 59а.

В большинстве национальных стандартов на серые чугуны, регламентирующих механические свойства, химический состав чугунов не оговаривается, кроме стандартов России и США.

59в. Твердость по Бринеллю отливок из серого чугуна по DIN 1691

	•		
Марка чугуна *	Толщина стенки,		дость тлю НВ **
	MM	минимум	максимум
GG-150HB	2,5 - 5	-	210
	5 - 10	-	185
	10 - 20	_	170
	20 - 40	-	160
	40 - 80	-	150
GG-170HB	2,5 - 5	170	260
	5 - 10	140	225
	10 - 20	125	205
	20 - 40	110	185
	40 - 80	100	170
GG-190HB	4 - 5	190	275
	5 - 10	170	260
	10 - 20	155	230
	20 - 40	135	210
	40 - 80	120	190
GG-220HB	5 - 10	200	275
	10 - 20	180	250
	20 - 40	160	235
	40 - 80	145	220
GG-240HB	10 - 20	200	275
	20 - 40	180	225
	40 - 80	165	240
GG-260HB	20 - 40	200	275
	40 - 80	185	260

* В марке чугуна указаны значения твердости, соответствующие стенке отливки толщиной 15 мм, кроме GG-260 НВ.

** Интервал твердости годен только для указанной области толщин стенок. Интервал твердости может быть уже, но разница должна быть не менее 40 НВ.

60. Область применения серого чугуна наиболее распространенных марок

Марка чугуна	Требования к деталям	Изготовляемые детали
	Условные напряжения изгиба при- мерно до 50 МПа	Станины ножниц и прессов, блоки и плиты многошпиндельных станков, патроны токарных станков, зубчатые колеса
СЧ 30	Условные давления между трущимися поверхностями ≥ 2 МПа	Направляющие плиты, станины с направляющими револьверных, автоматических, токарных и других интенсивно нагруженных станков; муфты, кулачки
	Высокая герметичность	Гидроцилиндры, корпуса гидронасо- сов, компрессоров и золотников высокого давления
СЧ 25	Жаростойкость и повышенная проч- ность	Кокильные формы, выпускные трубы, фитинги
	Условные напряжения изгиба при- мерно до 30 МНа	Станины долбежных станков, верти- кальные стойки фрезерных, стро- гальных и расточных станков
CY 20	Условные давления между трущимися поверхностями > 0,5 МПа (> 0,15 МПа в отливках массой более 10 т) или подверженность поверхностной закалке	Станины с направляющими боль- шинства мета порежущих станков, зубчатые колеса, маховики, тормоз- ные барабаны, диски сцепления
	Высокая герметичность	Гидроцилиндры, гильзы, корпуса гидронасосов, золотников и клапа- нов среднего давления (до 8 МПа)
СЧ 18	Средняя прочность и хорошая обра- батываемость	Корпусные дегали
CH 15	Услояные напряжения примерно до 10 MHa	Основания большинства станков, ступины, корпуса клананов и венти лей и другие делали сложной кои фигурации при педопустимости большого коробления и невозможности получения их старения Гонкостенные от пинки с большими габаритивами размерами небольшой массы
	Давление между трущимися поверх ностями 5 0,5 МНа	Салазки, столы, корпуса задних ба- бок, корпуса маточных гаек, зубча гые колеса, кронитейны, люнегы, вилки переключения, шкивы, план- цийбы

Марка чугуна	Требования к деталям	Изготовляемые детали
CY 10	Слабонагруженные детали: износ не имеет большого значения; деформации (коробления) должны быть минимальны	Корыта, крышки, кожухи Основания привертными направляющими, плиты, стойки, подшипники, втулки

Детали из чугуна, марок СЧ 30 и СЧ 20, которые должны обладать преимущественной износоустойчивостью в трущейся паре, рекомендуется ставить сопряженно с деталями из чугуна соответственно маркам СЧ 20 и СЧ 15 за исключением следующих случаев:

- а) когда обе детали в трущейся паре должны быть в равной мере износоустойчивы и основной деталью является верхняя;
 - б) когда условия эксплуатации создают возможность абразивного износа.
- В этих случаях обе составляющие трущейся пары следует изготовлять из чугуна одной марки.

ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ (по ГОСТ 7293-85)

Получение отливок из чугуна с шаровидным графитом обеспечивается добавкой в расплавленный чугун магния или других специальных присадок.

Механические свойства и структура чугуна обеспечиваются либо в литом состоянии, либо путем термообработки. Отливки сложной конфигурации поставляют после снятия литейных напряжений.

Высокопрочный чугун предназначен для отливок конструкционного назначения взамен стали и ковкого чугуна. Прочность его при нагреве до 450 - 500 °C снижается медленнее, чем углеродистой стали.

Он удовлетворительно обрабатывается резанием; легко сваривается с помощью газовой сварки с применением стержней из чугуна, содержащего магний, причем прочность шва не отличается от прочности основного металла. Высокопрочный чугун хорошо воспринимает термическую обработку, которая может в значительных пределах изменять структуру и свойства отливок.

61. Марки и механические	свойства	высокопрочного	чугуна
--------------------------	----------	----------------	--------

Марка чутуна	Временное сопротивление при растяжении, МПа	Условный предел текучести σ_{02} , МПа	Относительное удлинение, %, не менее	Твердость НВ
	не м	енее		
BY 35	350	220	22	140 - 170
ВЧ 40	400	250	15	140 - 202
ВЧ 45	450	310	10	140 - 225
B¶ 50	500	320	7	153 - 245
ВЧ 60	600	370	3	192 - 277
ВЧ 70	700	420	2	228 - 302
ВЧ 80	800	480	2	248 - 351
ВЧ 100	1000	700	2	270 - 360

Примечание. Чугун марки ВЧ 35 с шаровидным графитом должен иметь среднее значение ударной вязкости КСU не менее 21 Дж/см 2 при температуре плюс 20 °С и 15 Дж/см 2 при температуре минус 40 °С, минимальное значение ударной вязкости должно быть не менее 17 Дж/см 2 при температуре плюс 20 °С и 11 Дж/см 2 при температуре минус 40 °С.

Чугун марок ВЧ 35 и ВЧ 40 с вермикулярным графитом должен иметь относительное удлинение б не менее 1.0 %.

ОТЛИВКИ ИЗ ЖАРОСТОЙКОГО ЧУГУНА (по ГОСТ 7769-82)

62. Механические свойства чугуна при 20 °C

Марка	сопроти	енное имісние, Па, існее	Отно- си- тель- ное	Твердость НВ		рдость Марка		Временное сопротивление, МПа, не менее		Твердость	
чугуна	растя- жению _{σв}	изги- бу п _и	улли- нение 8, %			чугуна	растя жению п _в	ичи by a _н	удли- нение 8, 4	нв	
ЧХ 1	170	350		207		4X 28	170	160		215	270
ЧХ 2	150	310		207	286	ЧХ 28H	2 00	400		245	19 0
чх з	150	310		228	304	чх 28Д2	390	640		190	640
ЧХ 3Т	200	400		440	590	чх +2	290	490		245	340
ЧX 9H5	350	700		490	610	чc 5	150	290		140	300
4X 16	350	700		400	450	чезш	290			228	300
ЧХ 16M2	170	490		490	610	4C B	100	210		290	390
ЧХ 22	290	540		330	610	ЧС 18	60	170		290	390
ЧХ 22C	290	540	*	215	340	4C 17	40	140		390	450

Продолжение табл. 62

Марка	сопроти М	енное ивление, Па, ценее	Отно- си- тель- ное	Твердость Марка		Временное сопротивление, МПа, не менее		Отно- си- тель- ное	Твердость	
чугуна	растя- жению σ _в	изги- бу _{Фи}	удли- нение δ, %	НВ	чугуна	растя- жению _{ов}	изгибу _{Фи}	удли- нение δ, %	нв	
ЧС15M4	60	140	-	390 - 450	чнхмд	290	690	_	201 - 286	
PC17M3	60	100	-	390 - 450	чнхмдш	600	-	-	170 - 320	
ШХОІР	390	590	-	187 - 364	шмнр	490	-	2	183 - 286	
ЧЮ6С5	120	240	-	235 - 300	ЧН2Х	290	490	-	215 - 280	
чю7х2	120	170	-	240 - 286	чнзхмдш	550	-	-	350 - 550	
чю22Ш	290	390	-	241 - 364	ЧН4Х2	200	400	-	400 - 650	
чЮ30	200	350	-	364 - 550	чнигтш	390	-	4	120 - 255	
4Г6С3Ш	490	680	-	219 - 259	чн15Д7	150	350	-	120 - 297	
ЧГ7Х4	150	330	-	390 - 450	чн15Д3Ш	340	-	4	120 - 255	
чг8Д3	150	330	-	176 - 285	чн19х3ш	340	-	4	120 - 255	
ТХНР	280	430	-	201 - 286	чн20д2ш	500	-	25	120 - 220	

П р и м е ч а н и е . Прочность и твердость высокохромистых, марганцевых и никелевых чугунов после нормализации и низкотемпературного отпуска.

63. Примерные области применения и условия эксплуатации отливок из жаропрочного чугуна

Марка чугуна	Условия эксплуатации	Область применения
чх і	Новышенная коррозионная стой- кость в газовой, воздушной, ще- лочной средах в условиях трения и износа. Жаростойкий в воздушной среде до 773 К	Холодильные плиты доменных печей, ко- лосники агломерационных машин, детали коксохимического оборудования, сероугле- родные реторты, детали газотурбинных двигателей и компрессоров, горелки, коки- ли, стеклоформы, выпускные коллекторы дизелей
ЧХ 2 ЧХ 3	То же, но жаростойкий в воздуш- ной среде до 873 К То же, но жаростойкий в воздуш- ной среде до 973 К	Колосники и балки горна агломерационных машин, детали контактных аппаратов химического оборудования, решетки трубчатых печей нефтеперерабатывающих заводов, детали турбокомпрессоров, детали стекломашин, детали термических печей, электролизеров, колосники.

Марка чугуна	Условия эксплуатации	Область применения
ЧХ3Т	Повышенная стойкость против абразивного износа и истирания в пульпо- и пылепроводах, насосах	Износостойкие детали гидромашин, пере- качивающие абразивные смеси, футеровки пылепроводов и др.
ЧХ9Н5	Высокая стойкость против абра- зивного износа и истирания в мельницах, пескометах и дробеме- тах	Износостойкие детали гидромашин, перекачивающие абразивные смеси, футеровки пылепроводов и др., мелющие детали углеи рудоразмольных мельниц, ковши пескометов, склизы, течки и т. д.
ЧХ16М2	Наибольшая устойчивость против ударно-абразивного износа и истирания в мельницах, дробеметных и дробеструйных камерах	Износостойкие детали гидромашин, перекачивающие абразивные смеси, футеровки пыпепроводов и др., мелющие детали углеи рудоразмольных мельниц, ковши пескометов, склизы, течки, высокоустойчивые лопатки дробеметных импешлеров
ЧХ 16	Жаростойкий в воздушной среде до 1173 К, износостойкий при нормальной и повышенной температурах, устойчивый против воздействия неорганических кислот большой концентрации	Арматура химического машиностроения, печная арматура, детали цементных печей
ЧХ 22, ЧХ28Д2	Высокоустойчивый против абра- зивного изнашивания и истирания в условиях размольного оборудо- вания, грохотов и склизов, агломе- рационных песко и дробеструй- ных камер при повышенных тем- пературах	Износостойкие детали гидромашин, пере- качивающих абразивные смеси, футеровки пылепроводов и др., мелющие детали угло- и рудоразмольных мельниц, ковщи песко метов, склизы, гечки, высокоустойчивые лопатки дробеметных импеллеров, вставки для армирования брусьев вторичной зоны охлаждения установок непрерывной раз ливки стали, футеровки мельниц и г. д.
ЧХ22С	Повышенная коррозионная стой кость в запыленных газовых средах при температуре до 1273 К, высокая кислотостойкость и сопротивление межкристаллитной коррозии	Детали, не подвергающиеся действию по- стоянных и переменных нагрувок. Детали аппаратуры для концентрированной авот- ной и фосфорной кислот, печная арматура и т. д.

	T	прооолжение табл. 63
Марка чугуна	Условия эксплуатации	Область применения
ЧХ 28, ЧХ 32	Высокая коррозионная стойкость в растворах кислот (азотной, серной, фосфорной, соляной, уксусной, молочной и т. д.), щелочей и солей (азотнокислом аммонии, сульфате аммония, хлорной извести, хлорном железе, селитре), в газах, содержащих серу или SO ₂ , H ₂ O. Жаростойкость до температур 1373 - 1423 К. Высокое сопротивление абразивному износу	Детали, работающие при небольших механических нагрузках в среде SO ₂ и SO ₃ , в щелочах высокой концентрации, азотной кислоте, растворах и расплавах солей при температуре до 1273 К. Детали центробежных насосов, печная арматура, реторты для цементации, сопла горелок, цилиндры, корпуса золотников, гребки печей обжига колчедана и т. д. Сопла для пескоструйных аппаратов и другие детали, подверженные абразивному истиранию. Детали пищевой аппаратуры, проводковая арматура мелкосортных станов
чх28П	Высокая стойкость после окислительного отжига в цинковых расплавах при температуре до 823 К	Сопряженные детали пар трения, работающие в цинковом расплаве агрегатов горячего непрерывного цинкования
4C 5	Жаростойкие в топочных газах и воздушной среде до 973 К	Колосники, бронеплиты для печей обжига цементной промышленности, сероуглеродные реторты
чСѕш	Жаростойкие в топочных газах и воздушной среде до 1073 К	Топочная арматура котлов, дистанционирующие детали пароперегревателей котлов, газовые сопла, подовые плиты термических печей
ЧС13, ЧС15, ЧС17	Высокая коррозионная стойкость при температуре до 473 К к воздействию концентрированных и разбавленных кислот, растворов щелочей, солей, кроме фтористоводородных и фтористых соединений. Не допускают резкопеременных, а также ударных нагрузок и перепада температур	Детали простой конфигурации, детали центробежных и поршневых насосов, компрессоров н трубопроводной арматуры, трубы и фасонные детали для трубопроводной арматуры, теплообменников и другие детали химической аппаратуры
ЧС15М4, ЧС17М3	Особо высокая коррозионная стойкость в серной, азотной, соляной кислотах разной концентрации и температуры, водных растворах щелочей и солей при местном перепаде температур до 30 К в теле детали при отсутствии динамических, а также переменных и пульсирующих нагрузок	Детали простой конфигурации, детали центробежных и поршневых насосов, компрессоров и трубопроводной арматуры, трубы и фасонные детали для трубопроводной арматуры, теплообменников и другие детали химической аппаратуры

Марка чугуна	Условия эксплуатации	Область применения
ШХОІР	Жаростойкий в воздушной среде до 923 K, стойкий против истира- ния	Пресс-формы для стекольных изделий, детали печного оборудования, ролики чистовых клетей листопрокатных станов
ЧЮ7Х2	Жаростойкий в воздушной среде до 1023 К, стойкий против истирания	Детали печной арматуры
ЧЮ6С5	Жаростойкий в воздушной среде до 1073 K, коррозионностойкий в среде, содержащей соединения серы, стойкий к резким сменам температуры	Отливки, работающие при температурах до 1073 K
чю22Ш	Жаростойкий в среде, содержащей серу, сернистый газ и оксиды ванадия и пары воды. В воздушной среде жаростойкий до 1373 К. Высокая прочность при нормальной, и повышенной температурах	Детали арматуры котлов, дистанционирующие детали нароперегревателей котлов, детали обжиговых колчеданных печей, нагревательных колыцевых печей, колосники агломерационных машин
ЧЮ30	Жаростойкий в воздушной среде до 1373 К. Стойкий против износа	Детали печей обжита колчедана
ЧГ6С3Ш, ЧГ7Х4	Износостойкий в абразивной среде и против истирания в пыле- и пульпопроводах, мельницах и т. д.	Износостойкие детали мелющего оборудо- вания, детали насосов, футеровки мельниц, дробе- и пескоструйных камер
чг8Д3	Немагнитный износостойкий чугун для эксплуатации в условиях повышенных температур	Немагнитные детали, сопряженные гру- шиеся детали арматуры
чнхт	Высокие механические своиства, сопротивление износу и коррозии в сдабощелочных и газовых средах (продукты сгорания топлива, технический кислород) и водных растворах	Маслоты поршневых компрессионных и маслосъемных колец, седла и направляющие вгулки клапанов лизслей и тазомото компрессоров Детали стлаживающих прессов и размольных мельнип бумаголелательных машин
ЦМХНР	Высокие механические свойства, еопротивление износу и коррозии в слабошелочных и газовых средах (продукты сторания топлива, технический кислород) и водных растворах	Блоки и толовки пилиндров, выпускные натрубки двигателей внугрениего сторания, паровых машин и турбин Поршии и гиль на иминдров паровых машин, тепловох иых и сулостроительных дизелей, детали кислородных и тазовых мотокомпрессоров, детали бумагоделательных машин
чн2х	Высокие механические свойства, сопротивление износу и коррозии в слабощелочных и газовых средах (пролукты сгорания топлива, гехнический кислород), водных растворах и расплавах каустика	Различные гипы зубчатых колес, ни инплры двигателей, абразивные диски, дроссети, холодильные пилиндры и валы бумаголела тельных, картоноделательных и супильных машин, матрицы штамповочных прессов

Марка чугуна	Условия эксплуатации	Область применения
ШМНР	Повышенные механические свойства и термостойкость при температуре эксплуатации до 773 К	Крышки и днища цилиндров дизелей, головки поршней, маслоты поршневых колец, холодильные цилиндры и валы бумагоделательных и сушильных машин
ЧН4Х2	Высокая стойкость против абразивного износа и истирания	Износостойкие детали машин, перекачивающих абразивные смеси, футеровки мельниц, пылепроводов, размалывающие валки и шары, сопла, склизы, грохоты
ЧН15Д3Ш, ЧН15Д7	Высокая коррозионная к эрозионная стойкость в щелочах, слабых растворах кислот, серной кислоте любой концентрации при температуре более 323 К, в морской воде, в среде перегретого водяного пара. Имеет высокий коэффициент термического расширения, может быть парамагнитным при низком содержании хрома	Насосы, вентили и другие детали нефтедобывающей, химической и нефтеперерабатывающей промышленности и арматуростроения Немагнитные литые детали электротехнической промышленности. Вставки гильз цилиндров, головки поршней, седла и направляющие втулки клапанов и выпускные коллекторы двигателей внутреннего сгорания
ЧН19ХЗШ, ЧН11Г7Ш	Жаропрочность при температуре до 873 К, высокая коррозионная и эрозионная стойкость в щелочах, слабых растворах кислот, серной кислоте любой концентрации при температуре более 323 К, в морской воде, в среде перегретого водяного пара. Имеет высокий коэффициент термического расширения, может быть парамагнитным при низком содержании хрома	Выпускные коллекторы, клапанные на- правляющие, корпуса турбонагнетателей в газовых турбинах, головки поршней, кор- пуса насосов, вентили и немагнитные детали
чн20Д2Ш	Высокие механические свойства при температуре до 173 К. Имеет высокую ударную вязкость - не менее 3,0 Дж/см ² на образцах с острым надрезом (Шарпи) и может быть пластически деформирован в холодном состоянии	Насосы и другие детали нефтедобывающей и нефтеперерабатывающей промышленности, детали топливной арматуры

ОТЛИВКИ ИЗ АНТИФРИКЦИОННОГО ЧУГУНА

Отливки из антифрикционного серого чугуна предназначены для работы в подшинниковых учах трения.

- В случае применения антифрикционного чугуна в подшипниках требуется соблюдение следующих условий:
- а) тщательного монтажа (точное сопряжение трущихся поверхностей и отсутствие перекоса);
 - б) непрерывной смазки;

- в) увеличения зазоров на 15 30 % (а при наличии значительного нагрева подшилника в работе до 50%) по сравнению с установленными для броизы;
- г) приработки на холостом ходу и постепенного повышения нагрузки до расчетной.
- По ГОСТ 1585-85 изготовляют чугун марок АЧС-1, АЧС-2, АЧС-3, АЧС-4, АЧС-5, АЧС-6, АЧВ-1, АЧВ-2, а также ковкий антифрикционный чугун марок АЧК-1 и АЧК-2.

Приводимые для некоторых марок чугуна два предельных значения для *р* и соответственно для v (табл. 64) указывают допустимые сочетания значений каждого из этих показателей.

64. Некоторые марки антифрикционного чугуна (по ГОСТ 1585-85 в ред. 1991 г.) и режимы работы деталей в узлах трения

Марка чугуна	Твердость отливки НВ			Скорость · скольжения v, м/с	<i>p</i> v, МПа · м/с
-3-3				не более	
	<u> </u>	Серый чугун			
AYC-1	180 - 241	Легированный хромом и медью, предназначенный для работы в паре с закаленным или нормали- зованным валом	5,0 14,0	5,0 0,3	12,0 2,5
АЧС-2	180 - 229	Легированный хромом, никелем, титаном и медью, предназначенный для работы в паре с закаленным или нормализованным валом	10,0 0,1	0,3 3,0	2,5 0,3
AYC-3	160 - 190	Легированный титаном и медью, предназначенный для работы в паре с незакаленным валом	6,0	1,0	5,0
АЧС-4	180 - 229	Для работы в паре с закаленным или нормализованным валом	15,0	5,0	4()
AYC-5	180 - 290	Для работы в особо нагруженных узлах трения в паре с закаленным или нормализованным валом	20,0 30,0	1,0 0,4	20 12,5
АЧС-6	100 - 120	Для работы в узлах трения при температуре до 300 °С в паре с валом, не подвергающимся термообработке	9,0	4,0	9,0
		Высокопрочный чу	гун		
АЧВ -1	180 - 229	С шаровидным графитом (обра- ботан матнием), предназначен- ный для работы в паре с зака- ленным или нормализованным валом	1,2 20,0	10,0 0,1	12,0 20,0
АЧВ-2	180 - 290	То же, но для работы в паре с незакаленным валом	1,0 12,0	5,0 0,1	5,0 12,0
		Ковкий чугун	THE STREET HE AS SHIP OF A PARTY OF THE SECOND	nama kan ada na Marada d a Calabara na Arada Arada da Arada na Jaro	The set on a or productive Coloresta
I-XPA	187 - 229	Для работы в паре с закаленным или нормализованным валом	20,0	2,0	20,0
A4K-2	167 - 197	Для работы в паре с валом, не подвергающимся термообработке	0,5 12,0	5,0 1,0	2.5 12.0
	^		generative strategick in the street	والمالية والمعلود للتمالية والمجار بالوالية للإسط	to a company of the section

Примечание, В обозначении марки: АЧ - антифрикционный чугун С серый с пластинчатым графитом; В высокопрочный с пларовидным графитом; К ковкий с компактным графитом; цифра - порядковый номер марки.

Дополнительные источники

Отливки из ковкого чугуна. Общие технические условия - ГОСТ 1215-79.

Отливки из метшлов и сплавов. Допуски размеров, массы и припуски на механическую обработку - ГОСТ 26645-85.

Отлявки. Номенолатура показателей ГОСТ 4.439-86.

Отливки из чугуна. Общие технические условия - ГОСТ 26358-84.

ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

ОЛОВЯННЫЕ И СВИНЦОВЫЕ БАББИТЫ (по ГОСТ 1320-74 в ред. 1996 г.)

Оловянные и свинцовые баббиты в чушках применяют для заливки подшипников и других деталей.

65. Условия применения баббитов и примерное назначение

Марка баббита	Характе- ристика нагрузки	Давление <i>P</i> , МПа	Окружная скорость v, м/с	Напряжен- ность работы <i>p</i> v, МПа · м/с	Рабочая темпе- ратура, °С	Примерное назначение
Б88	Спокойная ударная	19,6 14,7	50	98,0 73,5	75	Подшипники, работающие при больших скоростях и высоких динамических нагрузках. Подшипники для быстроходных и среднеоборотных дизелей. Нижние половины крейцкопфных подшипников малооборотных дизелей
Б83 Б83С	Спокойная ударная	9,80 7,35	50	49,00 36,75	70	Подшипники, работающие при больших скоростях и средних нагрузках. Подшипники турбин, крейцкопфные, мотылевые и ромовые подшипники малооборотных дизелей, опорные подшипники гребных валов
БН		9,80 7,35	30	30,40 22,05	70	Подшипники, работающие при средних скоростях и средних нагрузках. Подшипники дизелей, компрессоров, судовых водопроводов
B16	Спокойная	9,80	30	30,4	70	Моторно-осевые под- шипники электровозов, путевых машин, детали паровозов и другое оборудование тяжелого машиностроения
БС6	Ударная	14,7	_	_	70	Подшипники автотрак- торных двигателей

66. Физико-механические свойства одовянных и свинцовых баббитов

Марка	Плотность,	Твердость отность, НВ		Предел прочности	Температура, °С			
баббита	r/cm ³	при 20°C	токучести при сжатии, МПа	ри при тии, сжатии,		плавле- ния	заливки	
Б88	7,35	27 - 30	_	_	-	320	380 - 420	
Б83	7,38	27 - 30	78 - 83	108 - 118	240	370	440 - 460	
Б83С	7,4	27 - 30	_	_	230	400	440 - 460	
БН	9,55	27 - 29	69 - 73	123 - 127	240	400	480 - 500	
Б16	9,29	30	84	144	240	410	480 - 500	
БС6	10,05	15 - 17		_	247	280		

ОЛОВЯННЫЕ ЛИТЕЙНЫЕ БРОНЗЫ (во ГОСТ 613-79)

67. Марки и химический состав *1 литейных броиз, %

Марка	Олово	Цинк	Свинец	Примеси, всего, не более
БрОЗЦ12С5	2,0 - 3,5	8,0 - 15,0	3,0 - 6,0	1,3
БрО3Ц7С5Н1 *2	2,5 - 4,0	6,0 - 9,5	3,0 - 6,0	1,3
БрО4Ц7С5	⁻ 3,0 - 5,0	6,0 - 9,0	4,0 - 7,0	1,3
БрО4Ц4С17	3,5 - 5,5	2,0 - 6,0	14,0 - 20,0	1,3
БрО5Ц5С5	4,0 - 6,0	4,0 - 6,0	4,0 - 6,0	1,3
БрО5С25	4,0 - 6,0	-	23,0 - 26,0	1,2
БрО6Ц6С3	5,0 - 7,0	5,0 - 7,0	2,0 - 4,0	1,3
БрО8Ц4	7,0 - 9,0	4,0 - 6,0	-	1,0
БрО10Ф1 *3	9,0 - 11,0	_	_	1,0
БрО10Ц2	9,0 - 11,0	1.0 - 3.0		1,0
БрО10С10	9,0 - 11,0		8,0 - 11,0	0,9

^{*1} Медь - остальное.

68. Механические свойства и применяемость оловянных броиз

Марка Сіпособ литья		Временное сопротивнение о _в , МПа	Относительное удлинение после разрыва 85, 9	Гвердость НВ	Область применения
		He Melice			
БрОЗЦ12С5 БрОЗЦ7С5Н1	К 11 К	206 176,2 206	5 8 5	ი() 6() 6 ()	Арматура общего на значения Детали, работающие
-	II	176,2	8	60	в масле, паре и в пресной воде

^{*2 0,5 = 2,0 %} Ni.

^{30,4 1,1 %} P.

Продолжение табл. 68

			T		IIpoodiscenae maoi. oo
Марка	Способ литья	Временное сопротивление ов, МПа	Относительное удлинение после разрыва δ_5 , %	Твердость НВ	Область применения
			не менее		
БрО4Ц7С5	к	176,2	4	60	Арматура, антифрик-
	π	147	6	60	ционные детали
БрО4Ц4С17	K	147	12	60	Антифрикционные
E. OSHECE	n	147	5	60	детали
БрО5Ц5С5	K	176,2	4	60	Арматура, антифрик-
	n	147	6	60	ционные детали, вкладыши подшипни- ков
EpO5C25	ĸ	137,2	6	60	Биметаллические
	п	147	5	45	подшипники сколь- жения
БрО6Ц6С3	к	176,2	4	60	Арматура, антифрик-
	π	147	6	60	ционные детали, вкладыши подшипни- ков
БрО8Ц4	к	196	10	75	Арматура, фасонные
•	π	196	10	75	части трубопровода, насосы, работающие в морской воде
БрО10Ф1	к	245	3	90	Узлы трения армату-
	π	215,5	3	80	ры, высоконагружен- ные детали шнековых приводов, нажимные и шпиндельные гай- ки, венцы червячных колес
БрО10Ц2	κ π	225,5 215,5	10 10	75 65	Арматура, антифрикционные детали, вкладыши подшипников, детали трения и облицовки гребных валов
БрО10С10	к п	196 176,2	6 7	78 65	Подшипники скольжения, работающие в условиях высоких давлений

II р и м е ч а н и е . Условное обозначение способа литья: к - литье в кокиль; п - литье в песчаную форму.

69. Соответствие марок оловянных броиз по ГОСТ 613-79 и замененного ГОСТ 613-65

Марки бронз по ГОСТ 613-79	Марки бронз по ГОСТ 613-65	Марки бронз по ГОСТ 613-79	Марки бронз по ГОСТ 613-65
БрО3Ц12С5	БрОЦС3-12-5	БрО6Ц6С3	-
БрОЗЦ7С5Н1	БрОЦСН3-7-5-1	БрО8Ц4	_
БрО4Ц7С5	БрОЦС3,5-7-5	БрО10Ф1	-
БрО4Ц4С17	БрОЦС4-4-17	БрО10Ц2	~
БрО5Ц5С5	БрОЦС5-5-6	БрО10С10	-
EpO5C25	-		

ОЛОВЯННО-ФОСФОРИСТАЯ ЛИТЕЙНАЯ БРОНЗА БРО10Ф1

70.	Химический состяв и	основные	механические	свойства	бронзы	БрО10Ф1
-----	---------------------	----------	--------------	----------	--------	---------

		й состав, %	o H ochobia	ле мехянически	Предел	Относи-	
Олово	Фосфор	Примеси	Медь	Способ литья	прочности при растя- жении, МПа	тельное удлинение δ, %	Твердость НВ
9 - 11	0,4 - 1,0	0,9	Осталь- ное	В песчаную литейную форму	216	3	80
				В кокиль	245	3	90
скими, ал и литейных втулок и при терми В кач если име сскольжени при споки ударной н	нтифрикцие конструкци вкладышей, гчески образестве антис вется хорого или у не боло ватружи сни кет быть до коть до к	ся хорошим риньыми, ко нами. Приме иях для по венцов чер ботанных чер рикционно шая омазка нее 5 м/с, м узке до 8 м ижается до 6 о 72 МПа нение, МПа;	ррозионно образования в от дишипнико овячных корвяках. От матери ожет рабо и при ожет рабо и	ыми твет- овых олес Предел нала, литн ость отать литн учае форму	текучести, М ье в кокиль ье в песча	ную дитейн	весный уголь 196
скольжен	ия, м/с).			лит		ную дитейн	
7		сие и технол бронзы БрО		форму .			60
Температу	ра плавлен:	ия, *С	934		прочности г ой в кокиль,	три срезе бро т _{ср.} МПа	эн- 333
Плотност	ь, r/см³		8,76	б Коэффі	ициент трени	я:	
		ного расии	ире-	co c	вм мынгосам	териалом	0,008
ния с. 10	⁶ при темпе	ературе, *С:		без	смазочного м	атернала	0,10
20	•••••		17	Темпера	атура литья, '	°C	1150
20 - 30	00 00		18,4	Линейн	ая усадка, %		1,44
Тепло пр о	водность, В	т/(м - К)	49			прутки	
		упругости		О ЛО		ОСФОРИСТО ОСТ 10025-71	
Относите	тьное сужен	ие ψ, %:		ные кру броизы	илые прутки применяют:	однокатаные из одовянно- в различных с	фосфористой
литье	в кокиль	********************	10		метры тянуп	ах и холоднов (5, 7,0; 7,5;	
литье	в песча	ную литей	ную			- 0,3; 7,0; 7,3; 1; 15: 16; 17; 1	

22; 23; 24; 25; 27; 28; 30; 32; 35; 36; 38; 40.

форму

Диаметры прессованных прутков, мм: 40; 42; 45; 48; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 108; 110.

Длины прутков:

- а) немерной длины от 1 до 4 м тянутые или холоднокатаные диаметром до 40 мм вкл.; от 0,5 до 4 м прессованные диаметром до 80 мм вкл.; от 0,5 до 2 м прессованные диаметром свыше 80 мм;
- б) мерной длины в пределах немерной: для тянутых прутков диаметром от 5 до 40 мм

вкл.; для прессованных прутков диаметром от 40 до 110 мм вкл.;

в) кратной мерной длины в пределах немерной длины.

Прутки мерной и кратной мерной длины изготовляют по соглашению изготовителя с потребителем.

Прутки изготовляют повышенной (Π) и нормальной (H) точности.

Плотность бронзы 8,8 г/см3.

Примеры обозначений. Обозначение проставляют по схеме:

Пруток Х	КР	x	XX	 xx		ГОСТ 10025-78
Способ изго- товления						
Форма сечения	_					
Точность изготов	пения					
Состояние						
Размеры сечения						
Длина						
Марка сплава				•	'	
Обозначение стан	дарта					

- Д

- T

- O

- НД

кия нокатаные) - П прессованные - KP форма сечения: круглые - H точность изготовнормальная ления: повышенная - II - B высокая - M состояние: мягкое - 11 полутвердое

твердое

тянутые (холод-

при следующих сокращениях:

способ изготовле-

особотвердое длина: немерная

> кратная мерной - КД мерная - МД в бухтах - БТ

Вместо отсутствующих данных ставят "Х".

Пруток тянутый, нормальной точности изготовления, твердый, диаметром 20 мм, кратной длины, из бронзы марки БрОФ6,5-0,15:

Пруток ДКРНТ 20 КД БрОФ6,5-0,15 ГОСТ 10025-78

То же прессованный, немерной длины, диаметром 80 мм, из бронзы марки БрОФ7-0,2:

Пруток ПКРХХ 80 НД БрОФ7-0,2 ГОСТ 10025-78

То же прессованный, длиной 3 м, диаметром 50 мм, из броизы марки БрОФ7-0,2:

Πρητοκ ΠΚΡΧΧ 50 × 3000 Μ.Д Бр Ο Φ7-0,2 ΓΟ CT 10025-78 **Технические требования.** Прутки изготовляют из оловянно-фосфористой бронзы марок 60006, 5-0, 15 в 60007-0, 2 по 60007-

Прутки изготовляют тянутыми или холоднокатаными и прессованными.

Тянутые или холоднокатаные прутки изготовляют мягкими, полутвердыми, твердыми и особотвердыми. Размеры прутков в зависимости от способа изготовления и марки бронзы должны соответствовать:

Марка	Способ изготовления	Диаметр пругка, мм
БрОФ6,5-0,15	Тянутые или холоднокатаные Прессованные	От 5 до 20 вкл. От 100 до 110 вкл.
БрОФ7-0,2	Тянутые или холоднокатаные Прессованные	От 16 до 40 вкл. От 40 до 95 вкл.

72. Мехянические свойства прутков броизы

Марка бронзы	Способ изготовления	Диаметр прутков, мм	Состояние материала	Временное сопротив- ление разрыву св. МПа	Относи тельное удлинение δ_{10} . %	Твердость НВ
					не менее	
БрОФ6,5-0,15	Тянутые или холод- нокатаные	5 - 20	Мягкий Полутвердый Твердый Особотвердый	352,8 392 470,4 548,8	40 18 12 6	70 120 140 150
	Прессован- ные	100 110		343,0	15	7()
БрОФ7-0,2	Тянутые или холод нокатаные	16 40	Мяткий Полутвердый Твердый Особотвердый	392 441 519,4 568,4	40 15 10	80 130 150 180
	Прессован ные	40 95		362,6	35	70

ОЛОВЯННЫЕ БРОНЗЫ, ОБРАБАТЫВАЕМЫЕ ДАВЛЕНИЕМ (по ГОСТ 5017—74)

Оловянные бронзы, обрабатываемые давлением, предназначены для изготовления полуфабрикатов.

Марки и примерное назначение сплавов указаны в табл. 73.

73. Марки и примерное назначение сплавов

Марка	Примерное назначение
БрОФ7-0,2	Прутки, применяемые в различных отраслях промышленности
БрОФ6,5-0,4	Проволока для пружин, деталей, лент и полос, применяемых в машиностроении
БрОФ6,5-0,15	Ленты, полосы, пругки, применяемые в машиностроении, под-шипниковые детали
БрОЦ4-3	Ленты, полосы, прутки, применяемые в электротехнике, машиностроении, проволока для пружин и аппаратуры химической промышленности
БрОЦС4-4-2,5; БрОЦС4-4-4	Ленты и полосы, применяете для прокладок во втулках и под-шипниках

Размеры прутков - по ГОСТ 6511-60.

БЕЗОЛОВЯННЫЕ ЛИТЕЙНЫЕ БРОНЗЫ (по ГОСТ 493-79)

74. Химический состав броиз, %

Марка сплава	Алюми- ний	Железо	Марганец	Никель	Свинец	Цинк	Приме- си, не более*
БрА9Мц2Л	8,0 - 9,5	-	1,5 - 2,5	-	_	_	2,8
БрА10Мц2Л	9,6 - 11	_	1,5 - 2,5	-	_	- [2,8
БрА9Ж3Л	8 - 10,5	2 - 4	-	-	_	-	2,7
БрА10Ж3Мц2	9 - 11	2 - 4	1 - 3	-	-	Ŧ	1,0
БрА10Ж4Н4Л	9,5 - 11	3,5 - 5,5	-	3,5 - 5,5	-	-	1,5
БрАПЖ6Н6	10,5 - 11,5	5 - 6,5	-	5 - 6,5	_	-	1,5
БрА9Ж4Н4Мп1	8,8 - 10	4 - 5	0,5 - 1,2	4 - 5	-	-	1,2
БрС30	~			-	27 - 31	-	0,9
БрА7Мц15Ж3Н2Ц2	6,6 - 7,5	2,5 - 3,5	14 - 15,5	1,5 - 2,5	_	1,5 - 2,5	0,5
БрСу3Н3Ц3С20Ф	-	-	-	3 - 4	18 - 22	3 - 4	0,9

^{*} Остальное медь.

Кроме указанных основных компонентов марка БрСу3Н3Ц3С20Ф содержит фосфора 0,15 - 0,30 %, сурьмы 3 - 4 %.

75. Механические свойства и применяемость безоловянных броиз

Марка	Способ литья	Временное сопротив- ление σ _в , МПа	Относи- тельное удлинение после разрыва δ_5 ,	Твердость НВ	Применяемость
			не менее		
БрА9Мц2Л	к п	392 392	20 20	80 80	Антифрикционные детали, детали армату-
БрА10Мц2Л	к п	490 4 90	12 12	110 110	ры, работающие в пре- сной воде, жидком топливе и в паре при температуре до 250 °C
БрА9Ж3Л	К П	490 392	12 10	100 100	Арматура, антифрик- ционные детали
БрА10Ж3Мц2	к п	490 392	12 10	120 100	
БрА10Ж4Н4Л	K n	587 587	5 5	170 160	Детали химической и пищевой промышлен- ности, а также детали, работающие при по- вышенных температу- рах
БрА11Ж6Н6	к п	587 587	2 2	250 250	Арматура, антифрик- ционные детали
БрА9Ж4Н4Мц1	к п	587 587	12 12	160 160	Арматура для морской воды
БрС30	ĸ	58,7	4	25	Антифрикционные детали
БрСу3Н3Ц3С20Ф	к	157	2	65	Антифрикционные детали
БрА7Мц15Ж3Н2Ц2	n	607	18	-	То же

Примечания:

Броизы предназначены для изготовления отливок. Химический состав литейных броиз приведен в таби. 74, механические свойства и

применяемость брои св. табет. 78, соответствие марок брои спо ГОСТ 493-79 и ГОСТ 493-54 в габе. 76

76. Соответствие марок броиз по ГОСТ 493-79 и ГОСТ 493-54

Марки бронз по ГОСТ 493-79	Марки броиз по ГОСТ 493-54	Марки орон з по ГОСТ 49 С79	Марки оронз по ГОСТ 493-54
БрА9Мц2Л	БрАМи9 2Л	bpA11%oHo	6 0 11 HXAqd
БрА10Мц2Л	БрАМи10-2	bpA9Ж4H4Mnt	
БрА9ЖЗЛ	БрАЖ 9-4Л	IspC'30	БрС30
БрА10Ж3Мц2	БрАЖМи 10 3-1,5	БрСу3Н3Ц3С20Ф	
БрА10Ж4Н4Л	БрАЖН 10-4-4Л	БрА7Мц15Ж3Н2Ц2	

^{1.} Условное обозначение способа литья: к - литье в кокиль; п - литье в песчаную форму.

^{2.} В марке БрА9Ж3Л при литье в кокиль допускается относительное удлинение не менее 6 %, если твердость превышает 160 НВ.

БЕЗОЛОВЯННЫЕ БРОНЗЫ, ОБРАБАТЫВАЕМЫЕ ДАВЛЕНИЕМ (по ГОСТ 18175-78 в ред. 1990 г.)

Безоловянные бронзы, обрабатываемые давленнем, предназначены для изготовления заготовок и полуфабрикатов.

	//. Характериы	17. Характерные свойства и примерное назначение безоловянных бронз, обрабатываемых давлением	овянных бронз, обрабатываемых давлен	ием
Тип бронзы	Марка	Характерное свойство	Назначение	Виды полуфабрикатов
	БрА5	Деформируется в колодном и горя- чем состояниях, коррозионно- стойхая, жаропрочная, стойхая к истиранию	Детали, работающие в морской воде, детали для химического ма- шиностроения	Листы, полосы, ленты, прутки, трубы, проволо- ка
	5pA7	Деформируется в холодном состоянии, жаропрочная и стойкая к истиранию, коррозионно-стойкая к серной и уксусной кислотам	Детали для химического машино- строения, скользящие контакты	Листы, полосы, ленты, пругки, трубы, проволо- ка, поковки
Алюминиевые бронзы	БрАМц9-2	Высокое сопротивление при знако- переменной нагрузке	Износостойкие детали, винты, валы, детали для гидравлических установок	Полосы, ленты, прутки, проволока, поковки
	БрАМи10-2	Высокое сопротивление при знако- переменной нагрузке	Заготовки, фасонное литье в судо- строении	Поковки
	БрАЖ9-4	Высокие механические свойства, хорошие антифрикционные свойст- ва, коррозионно-стойкая	Зубчатые колеса, втулки, сецла клапанов в авиапромышленности, в машиностроении для отливок массивных деталей, получаемых литьем в песчаную форму	Прутки, трубы, поковки

Продолжение табл. 77	Виды полуфабрикатов	Полосы, ленты, прутки, трубы, проволока	Листы, полосы, ленты, прутки, проволока	Прутки, профили, по- ковки	Поковки	Профили
	Назначение	Пружины, пружиняшие детали ответственного назначения, изно-состойкие детали всех видов, не-искрящие инструменты	Детали всех видов для химических аппаратов, пружины и пружины- щие детали, детали для судострое- ния, а также сварных конструкций	Ответственные детали в моторо- строении, направляющие втулки	Детали и изделия, работающие при повышенных температурах	Коллекторы двигателей, детали машин контактной сварки и дру- гие детали
	Характерное свойство	Высокая прочность и износостой- кость, высокие пружинные свойства, хорошие антифрикционные свойст- ва, средняя этектропроводимость и теплопроводность, очень хорошая деформируемость в закаленном со- стоянии	Коррозионно-стойкая, пригодна для сварки, жаропрочная, высокое со- противление сжатию	Высокие механические и технологи- ческие свойства, коррозионно- стойкая, хорошие антифрикционные свойства	Высокие механические свойства, корошая леформируемость в горячем и колодном состояниях, коррозион- но-стойкая, повышенная жаропроч- ность	Выселие электропроводимость н Адропречность
	Марка	БрБ2: БрБНТ1,9; БрБНТ1,9Мг	БрКМи3-1	bpKH±-3	bpM∷£	Bp.K.51. Bp.Mef.13
	Тип бронзы	Беристиевые бронзы	Кремниевые	броизы	Марганиовые бронзы	Калмиевые и матиневые срои- зы

ГОСТ 18175-75 предусматривает другие марки, а также химический состав марок бронзы.

ПРУТКИ ОЛОВЯННО-ЦИНКОВОЙ БРОНЗЫ (по ГОСТ 6511-69)

Тянутые, круглые, квадратные, щестигранные и прессованные круглые прутки приме-

няют в различных отраслях промышленно-

Прутки изготовляют из оловяниюцинковой бронзы по ГОСТ 5017-74.

78. Круглые тянутые прутки

Размеры, мм

	Класс то	очности		Класс точности		
Диаметр прутков*	4	5	Диаметр пругков*	4	5	
	Откло	нения		Откложения		
5 - 6	-0,08	-0,16	19 ~ 30	-0,14	-0,28	
6,5 - 10	-0,10	-0,20	32 - 40	-0,17	-0,34	
11 - 18	-Ö,12	-0,24				

^{*} В указанных пределах диаметры брать из ряда: 5; 5,5; 6,0; 6,5; 7,0; 7,5; **8**,0; 8,5; 9,0; 9,5; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 32; 35; 38; 40.

79. Квадратные и шестигранные прутки

Размеры, мм

	Класс т	очности		Класс т	очности
Диаметр* вписанной	4	5	Диаметр* вписанной	4	5
окружности	Откло	нения	окружности	Откло	нения
5 - 6	-0,08	-0,16	19 - 30	-0,14	-0,28
7 - 10	-0,10	-0,20	32 - 36	-0,17	-0,34
11 - 17	-0,12	-0,24			

^{*} В указанных пределах диаметры вписанной окружности брать из ряда: 5; 5,5; 6; 7; 8; 9; 10; 11; 12; 14; 17; 19; 22; 24; 27; 30; 32; 36.

80. Круглые прессованные прутки класса точности 9

Размеры, мм

Диаметр пругков	Отклонения	
42 - 50	-1,6	В указанных пределах диаметры брать из ряда: 42; 45; 48; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 110;
55 - 80	-1,9	120
85 - 120	-2,2	

Примеры обозначений: пруток из бронзы марки БрОЦ4-3 тянутый круглый, диаметром 20 мм:

> Пруток БрОЦ4-3-т-кр20 ГОСТ 6511-60

то же квадратный, диаметром 12 мм:

Пруток БрОЦ4-3-т-кв 12 ГОСТ 6511-60

то же шестигранный, диаметром 22 мм:

Пруток БрОЦ4-3-т-ш 22 ГОСТ 6511-60

то же прессованный, диаметром 80 мм:

Пруток БрОЦ4-3-пр 80 ГОСТ 6511-60

БРОНЗОВЫЕ ПРУТКИ (по ГОСТ 1628-78 в ред. 1990 г.)

Тянутые (круглые, квадратные и шестигранные), прессованные (круглые) и горячекатаные (круглые) прутки из безоловянных бронз применяют в различных отраслях промышленности.

Прутки тянутые и прессованные производят повышенной и нормальной точности изготовления.

Диаметры прутков (для квадратных и пестигранных пругков диаметр вписанной окружности), мм:

круглые тянутые: 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 9,5; 10,0; 11,0; 12,0; 13,0; 14,0; 15,0; 16,0; 17,0; 18,0; 19,0; 20,0; 21,0; 22,0; 24,0; 25,0; 27,0; 28,0; 30,0; 32,0; 35,0; 36,0; 38,0; 40,0;

квадратные и шести гранные тянутые: 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11,0; 12,0; 14,0; 16,0; 17,0; 18,0; 19,0; 20,0; 21,0; 22,0; 24,0; 25,0; 27,0; 28,0; 30,0; 32,0; 36,0; 38,0; 40,0; 41,0.

Примечание. Прутки квадратные и шестигранные из бронзы БрАМп9-2 изготовляют размерами 14 - 36 мм;

круглые прессованные: 16,0; 17,0; 18,0; 20,0; 21,0; 22,0; 23,0; 25,0;

28,0; 30,0; 32,0; 35,0; 38,0; 40,0; 42,0; 45,0; 48.0; 50,0.

Примечание. Прутки повышенной точности изготовляют: из бронзы БрАМц9-2 диаметром от 25 до 120 мм включительно; из бронзы БрАЖ9-4 диаметром от 16 до 50 мм включительно; из бронзы БрАЖН10-4-4 диаметром от 20 до 160 мм включительно; из бронзы БрАМц10-3-1,5 диаметром от 16 до 50 мм включительно;

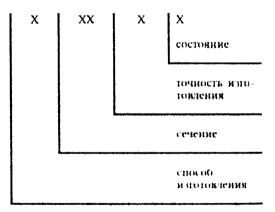
круглые катаные: 30,0; 38,0; 40,0; 42,0; 45,0; 50,0; 55,0; 60,0; 65,0; 70,0; 75,0; 80,0; 85,0; 90,0; 95,0; 100,0.

По длине прутки изготовляют:

немерной длины:

длиной от 2 до 5 м - для прутков диаметром от 5 до 40 мм,

длиной от 1 до 4 м - для прутков диаметром свыше 40 до 80 мм,


длиной от 1 до 3 м - для прутков диаметром свыше 80 до 120 мм,

длиной от 0,5 до 2 м - для прутков диаметром свыше 120 мм;

мерной длины в пределах немерной длины,

кратной мерной длины в пределах немерной длины.

Условные обозначения проставляют по следующей схеме:

при следующих сокращениях торячедеформи рованный (прессованный и горячекатаный) Г; холоднодеформированный (гянутый) Д; круглый КР; шестигранный ІПГ; нормальной точности - П; повышенной точности - П; полутвердый - Г; вместо отсутствующего показателя ставится знак "Х".

81. Вид прутков и способ изготовления прутков

Способ изготовления	Вид прутков	Марка бронзы
Тянутые	Круглые Квадрат- ные Шести- гранные	БрАМц9-2 БрКМц3-1
Прессован- ные	Круглые	БрАМи9-2 БрАЖ9-4 БрАЖН10-4-4 БрАЖМи10-3-1,5 БрКМи3-1 БрКН1-3
Катаные	Круглые	БрКМц3-1
		L

Примеры обозначений: пруток тянутый, круглый, повышенной точности изготовления, полутвердый, диаметром 12,0 мм, немерной длины, из сплава БрАМц9-2:

Пруток ДКР ПП 12,0 НД БрАМц 9-2 ГОСТ 1628-78

то же прессованный, квадратный, нормальной точности изготовления, со стороной квадрата 20,0 мм, длиной, кратной 3,0 м, из сплава БрАЖ9-4:

Пруток ГКВНХ20,0 КД 3,0 БрАЖ9-4 ГОСТ 1628-78

то же горячекатаный, круглый, диаметром $50,0\,$ мм, немерной длины из сплава $\mathrm{БрKM}$ и $\mathrm{3-}1$:

Пруток ГКРХ X50,0 БрКМц3-1 ГОСТ 1628-78

82. Механические свойства прутков

Марка бронзы	Способ изготовле- ния прут- ков	Диаметр прутков, мм	Временное сопротивление разрыву ов, МПа, не менее	Относитель- ное удлине- ние, %, не менее	Твердость НВ
БрАМи9-2	Тянутые (полутвер- дые)	5 - 12 13 - 40	540 540	12 15	Не менее 115 Не менее 115
	Прессован- ныс	25 - 45 48 - 120	491 471	20 20	Не менее 95 Не менее 90
БрАЖ9-4	Прессован- ные	16 - 160	540	15	110 - 180
БрАЖМц10 3-1,5	Прессован- ные	16 - 160	589	12	130 - 200
БрАЖН10-4-4	Прессован- ные	20 - 160	638	5	170 - 220
БрКМц3-1	Тянутые (твердые)	5 - 12 13 - 41	491 491	10 15	-
	Катаные	30 - 100	392	15	

Марка бронзы	Способ изготов- ления прутков, мм		Временное сопротивление разрыву	Относитель- ное удлине- ние, %, не менее	Твердость НВ
БрКМц3-1	Прессован- ные	30 - 120	343	20	-
БрКН1-3	Прессован- ные	20 - 80	491	10	-

ПРОВОЛОКА ИЗ КРЕМНЕМАРГАНЦОВОЙ БРОНЗЫ

(по ГОСТ 5222-72 в ред. 1992 г.)

Проволока круглого и квадратного сечения из кремнемарганцовой бронзы БрКМи3-1 (ГОСТ 18175-78) предназначена для изготовления упругих элементов.

Круглую проволоку из бронзы изготовляют повышенной (п) и нормальной точности.

Поставляют проволоку в твердом (неотожженном) состоянии.

Плотность сплава - 8,47 г/см3.

Размеры проволоки:

диаметр круглой: 0,1; 0,12; 0,15; 0,18; 0,2; 0,25; 0,3; 0,35; 0,4; 0,45; 0,5; 0,55; 0,6; 0,65; 0,7; 0,75; 0,8; 0,85; 0,9; 0,95; 1; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,7; 1,8; 2; 2,2; 2,3; 2,4; 2,5; 2,6; 2,8; 3; 3,2; 3,5; 3,8; 4,2; 4,5; 4,8; 5; 5,5; 6; 6,5; 7; 7,5; 8; 8,5; 9; 9,5; 10;

диаметр квадратной: 0,6; 0,8; 1; 1,2; 1,4; 1,6; 2; 2,5; 3; 3,5.

Примечание. За диаметр проволо ки квадратного сечения принимают диаметр вписанной окружности, т. е. расстояние между параглельными гранями проволоки.

Примеры обозначений проволока из брончы марки БрКМи3-1, крустая, диаметром 0,50 мм, нормальной точности изготовления:

Проволока БрКМи3-1-0,50 TOCT 5222-72

го же диаметром 3,0 мм, повышенной точно сти изготовления:

Проволока БрКМц3-1 3,0 ГОСТ 5222-72

то же квадратная, диаметром 2,0 мм:

Проволока БрКМц3-1 кв. 2,0 ГОСТ 5222--72

Проволока должна выдерживать навивание десяти витков на цилиндрический стержень: круглая - на стержень диаметром, равным двойному диаметру проволоки; квадратная - на стержень диаметром, равным гройному диаметру проволоки.

83. Механические свойства проволоки

Диаметр проволоки, мм	Временное сопро- гивление разрыву, МПа, не менее		
0,1 - 1,0	880		
1,1 - 2,6	880		
2,8 4,2	X 3C1		
4,5 8,0	810		
8,5 10,0	760		

МЕДНО-ЦИНКОВЫЕ СПЛАВЫ (ЛАТУНИ)

Специальные медно пинковые сп ывы со держат добавки свинца, жетеза, марганца, алюминия и одова Двойные и специальные латуни достаточно устойчивы против общей коррозии, но в напряженном состоянии очень чувствительны к коррозионному разрушению. Для снятия внутреннего напряжения изделия необходимо подвергать отпуску при 280 -

300 °C, что в значительной степени предохраняет сплавы от коррозионного разрушения. По технологическому признаку медноцинковые сплавы делят на литейные и обрабатываемые давлением.

МЕДНО-ЦИНКОВЫЕ СПЛАВЫ (ЛАТУНИ) ЛИТЕЙНЫЕ (по ГОСТ 17711-93)

84. Химический состав литейных латуней, %

Наименование и	Основные компоненты*							Bcero
марка сплава	Cu	Al	Fe	Mn	Si	Sn	Pb	примесей
Латунь свинцовая:			-					
лц40С	57,0-61,0		_		_		0,8-2,0	2,0
ЛЦ40Сд	58,0-61,0	_			_		0,8-2,0	1,5
Латунь марганцо- вая								
ЛЦ40Мц1,5	57,0-60,0	_	_	1,0-2,0	-			2,0
Латунь марганцо- во-железная			,					
ЛЦ40Мц3Ж	53,0-58,0		0,5-1,5	3,0-4,0	_	_		1,7
Латунь марганцо- во-алюминиевая								
ЛЦ40Мц3А	55,0-58,5	0,5-1,5	_	2,5-3,5	_	-		1,5
Латунь марганцо- во-свинцовая								
лцз8Мц2С2	57,0-60,0	_	_	1,5-2,5			1,5-2,5	2,2
Латунь марганцо- во-свинцово-крем- нистая								
ЛЦ37Мц2С2К	57-60			1,5-2,5	0,5-1,3	_	1,5-3,0	1,7
Латунь алюминис- вая								
Лц30А3	0,80-0,00	2,0-3,0			_	_	_	2,6
Латунь оловянно свинцовая								
ЛЦ25С2	70,0-75,0		. yakuri.	A-res		0,5-1,5	1,0-3,0	1,5
Латунь алюминие во-железомартан цовая								
лц23А6Ж3Ми2	64,0 68,0	4,0-7,0	2,0-4,0	1,5-3,0				1,8
Латунь кремнистая								
ЛЦ16К4	78,0-81,0	weeks -			3,0-4,5			2,5
Латунь кремнисто - евинцовая							3	
лці4К3С3	77-81				2,5-4,5	<u> </u>	2,0-4,0	2,3

^{*} Остальное цинк.

85. Механические свойства литейных латуней (по ГОСТ 17711-93)

Марка латуни	Способ литья	Временное сопротив- ление разрыву ов, Н/мм ²	Относи- тельное удлине- ние δ ₅ , %	Твердость НВ	Примерное назначение
			не менее		
лц40С	п к, ц	215 215	12 20	70 80	Для литья арматуры, втулок и сепараторов шариковых и роликовых подшипников
ЛЦ40Сд	д к	196 264	6 18	70 100	Для литья под давлением арматуры (втулки, тройники, переходники), сепараторов подшипников, рабогающих в среде воздуха или пресной воды
ЛЦ40Мц1,5	П К. Ц	372 392	20 20	100 110	Для изготовления деталей про- стой конфигурации, работаю- щих при ударных нагрузках, а также деталей узлов трения, работающих в условиях спо- койной нагрузки при темпера- турах не выше 60 °C:
ЛЦ40Мц3Ж	п к д	441 490 392	18	90 100	Для и потовления несложных по конфигурации деталей ответственного назначения и арматуры морского судостроения, работающих при температуре до 300 °C; массивных деталей, гребных винтов и их лопастей для гропиков
ЛЦ40Мц3А	к, ц	441	15	115	Для изготовления деталей не- сложной конфигурации
ЛЦ38Мц2С2	II K	245	10	80 85	Для и потовления конструкци онных деталей и антыратуры для судов, антифрикционных деталей несложной конфитура нии (втутки, вкладыщи, ползуны, арматура вагонных под шинников)
лц37Мн2С2К	К	143	A CONTRACTOR OF THE PROPERTY OF THE PARTY OF	LIO	Антифрикционные детази, арматура
ЛЦЗОА 3	II K	294 392	12 15	80 90	Для изготовления коррозион по стоиких деталей, приме- ияемых в судостроении и ма- шиностроении

Продолжение табл. 85

Марка латуни	Способ литья	Временное сопротив- ление разрыву $\sigma_{\rm B}$, $H/{\rm MM}^2$	Относи- тельное удлине- ние δ_5 , %	Твердость НВ	Примерное назначение
			не менее		
лц25С2	П	146	8	60	Для изготовления штуцеров гидросистем автомобилей
лц23А6Ж3Мц2	П К. П	686 705	7 7	160 165	Для изготовления ответственных деталей, работающих при высоких удельных и знакопеременных нагрузках, при изгибе, а также антифрикционных деталей (нажимные винты, гайки нажимных винтов прокатных станов, венцы червячных колес, втулки и др. детали)
ЛЦ16К4	II K	294 343	15 15	100 110	Для изготовления сложных по конфигурации деталей приборов и арматуры, работающих при температуре до 250 °С и подвергающихся гидровоздушным испытаниям; деталей, работающих в среде морской воды, при условии обеспечения протекторной защиты (шестерни, детали узлов трения и др.)
ЛЦ14 К 3С3	К П	294 245	15 7	100 90	Для изготовления подшипни- ков, втулок

Примечание. В графе "Способ литья" буквы означают: П - литье в песчаные формы; К - литье в кокиль; Д - литье под давлением; Ц - центробежное литье.

МЕДНО-ЦИНКОВЫЕ СПЛАВЫ (ЛАТУНИ), ОБРАБАТЫВАЕМЫЕ ДАВЛЕНИЕМ (по ГОСТ 15527-70)

Медно-цинковые сплавы, обрабатываемые давлением, предназначены для изготовления подуфабрикатов.

86. Марки сплавов и их назначение

Наименование и марка сплава*	Примерное назначение
Латунь Л68	Детали, получаемые глубокой выгляжкой
Латунь Л63	Листы, ленты, полосы, трубы, пругки, фольга, проволоки

Наименование и марка сплава*	Примерное назначение			
Латунь алюминиево-железная ЛАЖ60-1-1	Трубы, прутки для подшипников скольжения			
Латунь железомарганцовая ЛЖМц59-1-1	Полосы, трубы, прутки, проволоки			
Латунь марганцовая ЛМц58-2	Листы, ленты, полосы, прутки, проволоки			
Латунь марганцово-алюминиевая ЛМцА57-3-1	Механически высоконапряженные детали, поршневые штанги, поковки			
Латунь оловянная ЛО62-1	Листы, полосы, трубы, прутки			
Латунь свинцовая ЛС59-1	Листы, ленты, полосы, трубы, пругки, про- волоки			

^{*} Первые две цифры в марке означают среднее содержание в процентах меди.

ЛАТУННЫЕ ПРУТКИ (по ГОСТ 2060-90)

Тянутые и прессованные латунные прутки круглого, квадратного и шестигранного сечения применяют в различных отраслях промышленности.

Тянутые круглые прутки изготовляют высокой (В), повышенной (П) и нормальной (Н) точности; тянутые квадратные и шестигранные - повышенной (П) и нормальной (Н) точности.

Прессованные прутки круглые, квадратные и шестигранные изготовляют повышенной (11) и пормальной (Н) точности. Дополнительные условные обозначения: мягкое состояние повышенной пластично-

сти - H; полутвердое состояние повышенной пластичности - P;

твердое состояние повышенной пластичности - У:

прессованное состояние обычной пластичности - С;

прессованное состояние повышенной пла егичности - I,

в бухгах Б1

87. Способы изготовления и марки пругков

Способ изготовления прутков	Профиль пругков	Марки латуни			
Тянутые	Круглые, квадратные и шес тигранные	Л63, ЛС59-1, ЛО62-1, ЛЖС58-1-1, ЛМц58-2 н ЛЖМц59-1-1			
Прессованные	То же	Л63, ЛО62-1, ЛС59-1, ЛМц58-2, ЛЖМц59-1-1, ЛАЖ60-1-1			

88. Механические свойства латунных прутков (по ГОСТ 2060-90)

Марка ла-	Способ изготовления прутков и	Диаметр	Временное сопротивле- ние δ _в ,	Относит	ие, %	Твердость,
туни	состояние	прутков, мм	МПа	δ ₅	δ_{10}	HV_{20}
	материала		не	менее		
л63	Прессованные Тянутые мягкие Тянутые полутвер-	10 - 160 3 - 50 3 - 40	290 290 370	33 44 17	30 40 15	65 - 120 65 - 120 121 - 165
	дые Тянутые твердые	3 - 12	440	11	10	Не менее 161
лС59-1	Прессованные Тянутые мягкие Тянутые полутвердые Тянутые твердые	10 - 50 Св. 50 до 160 3 - 50 3 - 12 Св. 12 до 20 Св. 20 до 40 3 - 12	360 360 330 410 390 390 490	22 22 25 10 15 18 7	18 18 22 8 12 15 5	80 - 140 70 - 140 80 - 140 121 - 170 121 - 170 121 - 170 Не менее 171
ЛС63-3	Тянутые твердые Тянутые полутвер-	3 - 9,5 10 - 14 15 - 20 10 - 20	590 540 490 350		1 1 1 12	
ЛО62-1	Прессованные Тянутые полутвер- дые	10 - 160 3 - 50	360 390		20 15	
ЛЖС58-1-1	Прессованные Тянугые полутвер- дые	10 - 160 3 - 50	290 440	_	20 10	Не регла- ментирует- ся
ЛМц58-2	Прессованные Тянутые полутвер- дые	10 - 160 3 - 12 13 - 50	390 440 410		25 20 20	
ЛЖМц59-1-1	Прессованные Тянутые полутвер- дые	10 - 160 3 - 12 Св. 12 до 50	430 490 440		28 15	
JIAЖ60~1-1	Прессованные	10 - 160	440		18	

По состоянию материала тянутые прутки изготовляют: из сплавов марок Л63, ЛС59-1 - мягкими, полутвердыми; из сплавов марок ЛО62-1, ЛМц58-2, ЛЖМц59-1-1 - полутвердыми.

Диаметры прутков, мм:

тянутых: 3; 3,5; 4; 4,5; 5; 5,5; 6; 6,5; 7; 7,5; 8; 8,5; 9; 9,5; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 27; 28; 30; 32; 34; 35; 36; 38; 40; 41; 45; 46; 50; прутки круглые тянутые высокой точности изготовляют только диаметром 3 - 10 мм;

прессованных: 10; 11; 12; 14; 16; 18; 20; 22; 23; 24; 25; 27; 28; 30; 32; 35; 36; 38; 40; 41; 42; 45; 46; 48; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 110; 120; 130; 140; 150; 160; прутки круглые прессованные повышенной точности изготовляют диаметром только 10 - 50 мм, прутки квадратные и шестигранные прессованные повышенной точности - диаметром только 22 - 32 мм, нормальной точности - 22 - 100 мм.

Примечание. Для квадратных и шестигранных прутков под диаметром подразумевается диаметр вписанной окружности.

Примеры условного обозначения:

пруток тянутый, шестигранный, нормальной точности изготовления, полутвердый, диаметром 24 мм, длиной 3000 мм, из латуни марки ЛО62-1:

Пруток ДШГНП 24 × 3000 ЛО62-1 ГОСТ 2060-90

то же тянутый, круглый, нормальной точности изготовления, твердый, диаметром 12 мм, немерной длины, из латуни марки ЛС63-3, предназначенный для обработки на автоматах:

Пруток ДКРНТ 12 ИД ЛС63 З АВ ГОСТ 2060-90

то же прессованный, квипратный, нормальной гочности изготовления, диаметром: 24 мм, немерной длины, из датуни марки ЛЖС58 1 1:

Пруток ТКВНХ 24 НД ЛЖС58-1-1 TOCT 2060-90

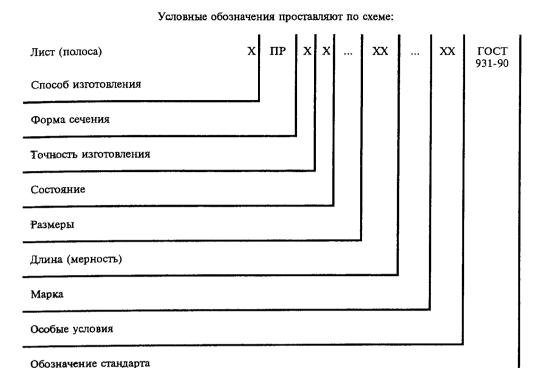
то же гянутый, квадратный, повышенной точности изготовления, твердый, диамегром 12 мм, длиной, кратной 5000 мм, из лагуни марки ЛС59-1, антимагнитный:

Пруток ДКВПТ 12 КД 5000 ЛС59-1 АМ ГОСТ 2060-90

то же тянутый, круглый, высокой точности изготовления, твердый, диаметром 10 мм, мерной длины 2000 мм, из латуни марки ЛС63-3

> Пруток ДКРВТ 10 × 2000 ЛС63-3 ГОСТ 2060-90

ЛИСТЫ И ПОЛОСЫ ЛАТУННЫЕ (по ГОСТ 931-90)


Горячекатаные листы выпускают толщиной 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 25 мм, шириной 500; 550; 600; 710; 1000; 1250; 1500; 2000; 2500 мм, длиной 1000; 1410; 1500; 2000; 2500; 3000; 4000 мм. Каждому размеру по ширине может соответствовать любая длина из приведенных при условии, что длина превышает ширину.

Холоднокатаные листы выпускают размером 710 × 1410; 600 × 1500; 800 × 2000; 1000 × 2000 мм, толщиной 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11,0; 12,0 мм, а также листы размером 1000×2000 мм, толщиной от 1 до 12 мм с рядом толщин, указанных выше.

Холоднокатаные листы из латуней ЛМи58-2, ЛО62-1 изготовляют толщиной от 1 до 12 мм. Листы из латуни ЛС59-1 изготовляют размером 500×1500 ; 550×1500 ; 600×1500 мм, толщиной от 3 до 12 мм.

При отсутствии указания в заказе листы горячекатаные и холоднокатаные могут быть короткомерные размером не менее 500 × 1000 мм; количество их не должно быть более 15 % массы партии. Холоднокатаные листы изготовляют нормильной и повышенной точности.

Хололнокаганые полосы изпутовивног: полнокаганые полосы изпутовивног: полциной 0,4, 0,5, 0,6, 0,7; 0,8; 0,9; 1,0; 1,1; 1,2, 1,3, 1,4, 1,5, 1,6, 1,8; 2,0; 2,20; 2,5; 3,0; 3,5; 4,0; 4,5, 5,0; 5,5; 5,0; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11,0, 12,0 мм; шириной от 40 до 100 мм. Полосы шириной от 40 до 100 мм изготовияют толциной от 0,4 до 4,0 мм. Ширину полос брать из ряда 40, 50; 60; 70; 80; 90; 100; 150; 200; 250; 300; 350; 400; 450; 500; 550; 600 мм. Длина полос от 500 до 2000 мм. Полосы изготовияют мерной, кратной мерной и немерной длины.

при следующих сокращениях:

Способ изготовления: горячекатаный - Г; холоднокатаный - Д.

Форма сечения: прямоугольный (ая) - ПР. Точность изготовления (для полос): нормальная по толщине и ширине - М; повышенная по толщине и ширине - П; нормальная по толщине и повышенная по ширине - К; повышенная по толщине и нормальная по ширине - И.

Точность изготовления по длине холоднокатаных листов: нормальная - H; повышенная - H; высокая - B.

Состояние: мягкое -- М; полутвердое - П; твердое - Т; особотвердое - О.

Длина (мерность): немерная - НД; мерная - МД; кратная мерной - КД.

Особые условия: антимагнитная - АМ.

Мерность указывается только для полос.

Вместо отсутствующих данных ставится знак X, кроме обозначения длины (мерности) и особых условий.

Примеры условных обозначений: Лист горячекатаный размером 5 \times 600 \times 1500 мм из латуни марки Л63:

Лист ГПРХХ 5 × 600 × 1500 Л63 ГОСТ 931-90

Лист холоднокатаный, мяткий, размером $4 \times 1000 \times 2000$ мм из латуни марки ЛМц 58-2:

Лист ДПРХМ 4× 1000× 2000 ЛМц 58—2 ГОСТ 931-90

Полоса холоднокатаная, нормальной точности изготовления по толщине и ширине, твердая, размером 2,5 × 400 × 1000 мм, мерной длины, из латуни марки ЛО62-1:

Полоса ДПРНТ 2,5 × 400 × 1000 МД ЛО62-1 ГОСТ 931-90

Технические требования. Горячекатаные листы изготовляют из латуни марок Л63, ЛО62-1, ЛС59-1 и ЛМц58-2.

89. Механические свойства листов и полос

Способ изготовления	Марка латуни	Состояние материала	Временное сопротивление разрыву $\sigma_{\rm B}$, МПа	Относитель- ное удлине- ние 8, %, не менее	Твердость НВ
Холодно- катаные	Л90	Мягкий Полутвердый Твердый	230 - 340 290 - 390 350	35 10 3	60 85 110
	Л85	Мягкий Полутвердый Твердый	250 - 360 320 - 430 390	38 12 3	65 95 110
	Л80	Мягкий Полутвердый Твердый	260 - 370 330 - 430 390	40 15 3	65 95 120
	Л68	Мягкий Полутвердый Твердый Особотвердый	290 - 370 340 - 470 430 - 540 520	42 20 10 -	70 105 125 155
	Л63	Мягкий Полутвердый Твердый Особотвердый Пружинно- твердый	290 - 400 340 - 470 410 - 570 510 - 640 Не менее 610	38 20 8 4	70 105 135 160 180
	ЛС59-1	Мягкий Твердый	340 - 470 460 - 610	25 5	100 200
	ЛМц58-2	Мягкий Полутвердый Твердый	380 - 470 420 - 590 590	30 15 3	85 100 120
	ЛО62-1	Твердый	390	5	145
Горяче- катаные	Л63 ЛО62-1 ЛС59-1 ЛМц58-2		290 - 390 340 - 440 360 - 490 Не менес 390	30 20 18 25	

Холоднокатаные листы и полосы и иотов ляют из латуни марок Л90, Л85, Л80, Л68, Л63, ЛМп58-2, ЛО62-1 и ЛС59-1.

По требованию потребителя листы и полосы должны быть антимагнитными в соответст вии с ГОСТ 15527-70.

Но состоянию материала листы и полосы должны изготовляться:

из латуни марок Л90, Л85, Л80, Л68, Л63, ЛС59-1, ЛМп58-2 — мягкими, полутвердыми и твердыми;

из латуни марок Л68, Л63 - особотвердыми;

из датуни марки Ло3 пружиннотвердыми; из латуни марки ЛО62 1 - гвердьями.

Особотвердые дисты и полосы и потовляют толивной до 2 мм включительно

Мягкие листы и полосы должны быть протравлены

Холодноказаные листы и полосы толци ной 1,0—10,0 мм должны выдерживать испытание на изио вдоль прокатки в холодном состоянии без появления следов надрывов и трещин: мяткие на 180°, полутвердые на 90° вокруг оправки с радиусом закругления, равным толщине диста или полосы

Плотность лагуни Л90, Л88 и Л80 равна 8,7 т/см³, а лагуни Л68, Л63, ЛС59-1 и ЛМц58-2 8,5 г/см³.

ЛЕНТЫ ЛАТУННЫЕ ОБЩЕГО НАЗНАЧЕНИЯ (по ГОСТ 2208-91)

Марка латуни	Состояние ленты	Толщина, мм	Ширина, мм
	Твердая	0,10 - 0,12	10 - 300
л90, л85, л80, л68, л63	Мягкая, полутвердая, твердая	0,14 - 0,20 0,22 - 0,45 0,50 - 2,00	10 - 300 10 - 600 20 - 600
	Твердая	0,05 - 0,09	10 - 180
Л68	Особотвердая	0,10 - 0,20 0,22 - 0,45 0,55 - 1,00	10 - 300 10 - 600 20 - 600
Л63	Особотвердая	0,05 - 0,09 0,10 - 0,20 0,22 - 0,45 0,50 - 2,00	10 - 180 10 - 300 10 - 600 20 - 600
	Пружиннотвердая	0,10 - 0,20 0,22 - 0,45 0,50 - 1,00	10 - 300 10 - 600 20 - 600
	Мягкая	0,14 - 0,40 0,45 - 1,40 1,50 - 2,00	10 - 180 20 - 280 20 - 180
ЛС59-1	Твердая	0,10 - 0,40 0,45 - 1,40 1,50 - 2,00	10 - 180 20 - 280 20 - 180
	Особотвердая	0,35 - 1,20	20 - 280
	Мягкая	0,14 - 0,40 0,45 - 1,40 1,50 - 2,00	10 - 180 20 - 280 20 - 280
ЛМц58-2	Полутвердая	0,14 - 0,40 0,45 - 1,40	10 - 180 20 - 280
	Твердая	0,10 - 0,40 0,45 - 1,40 1,50 - 2,00	10 - 180 20 - 280 20 - 180

Толщина и ширина лент

Толщина, мм: 0,05; 0,06; 0,07; 0,08; 0,09; 0,10; 0,12; 0,14; 0,15; 0,16; 0,17; 0,18; 0,20; 0,22; 0,25; 0,28; 0,30; 0,35; 0,40; 0,45; 0,50; 0,55; 0,60; 0,65; 0,70; 0,75; 0,80; 0,85; 0,90; 1,0; 1,1; 1,2; 1,3; 1,35; 1,4; 1,5; 1,6; 1,7; 1,8; 1,9; 2,0.

Ширина, мм: 10; 12; 15; 18; 20; 22; 25; 28; 30; 35; 40; 45; 50; 60; 80; 100; 120; 150; 180; 200; 220; 250; 280; 300; 350; 400; 450; 500; 600.

Длина лент, мм: для толщин 0,05 - 0,5 мм не менее 30; "0,55 - 1,0"20; "1,1 - 2,0"10.

Марка латуни	Состояние ленты	Временное сопротивление $\sigma_{B}, \ M\Pi a$	Относительное удли- нение δ, %, не менее
Л90	Мягкая	От 230 до 370	36
	Полутвердая	От 290 до 400	10
	Твердая	Не менее 350	3
Л85	Мягкая	От 250 до 360	38
	Полутвердая	От 320 до 430	12
	Твердая	Не менее 390	3
Л80	Мягкая	От 260 до 370	40
	Полутвердая	От 330 до 430	15
	Твердая	Не менее 390	3
Л68	Мягкая	От 280 до 390	42
	Полутвердая	От 340 до 470	20
	Твердая	От 430 до 540	10
	Особотвердая	Не менее 520	-
Л63	Мягкая Полутвердая Твердая Особотвердая Пружинно-твердая	От 290 до 410 От 340 до 470 От 410 до 570 От 510 до 640 Не менее 610	38 20 8 4
ЛС59-1	Мягкая	От 340 до 490	25
	Твердая	От 460 до 640	5
	Особотвердая	Не менее 590	3
ЛМц58-2	Мягкая	От 380 до 490	30
	Полутвердая	От 420 до 590	15
	Твердая	Не менее 570	4

Примечания:

 Верхний предел временного сопротивления может быть выше, но не более чем на 20 МПа при сохранении минимального относительного удлинения или глубины выдавливания.

Временное сопротивление определяют для лент толщиной 0,3 мм и более, относительное удлинение - для лент толщиной 0,5 мм и более. Механические свойства для лент толщиной менее 0,3 мм являются справочными.

Сокращения, принятые в условных обозначениях:

Способ изготовления: холоднодеформиро ванная (холоднокатаная) - Д.

Форма сечения: примоугольная - ПР.

Точность изготовления: нормальная точность по толщине и ширине - Н; нормальная гочность по толщине и повышенная точность по ширине - К; повышенная точность по толщине и нормальная точность по ширине - И; повышенная точность по ширине - И; повышенная точность по толщине и ширине - П.

Состояние: мягкая - М; полутвердая - П; твердая - Т; особотвердая - О; пружинно твердая - Ж.

Длина: немерная - НД.

Особые условия исполнения: для штамповки - ШТ; антимагнитная - АМ; повышенной толности по сорповидности. ПС; с нормированной глубиной выдавливания. ГВ; выдерживаниям испытания на изгиб. ИГ.

Примеры условных обозначений

лента нормальной гочности изготовления по голщине и повышенной гочности по ширине, полутвердая, толщиной 0,50 мм, шириной 450 мм, из лагуни марки Л85:

Лента ДПРКИ 0,50 × 450 НД Л85 TOCT 2208-91

то же повышенной точности изготовления по толщине и ширине, твердая, толщиной 0,30 мм, шириной 200 мм, из латуни марки Ло8, для штамповки:

Лента ДПРПТ 0,30 × 200 НД Л68 ШТ ГОСТ 2208-91

то же нормальной точности изготовления по толщине и ширине, полутвердая, толщиной 0,35 мм, шириной 100 мм, из латуни марки Л63, с нормированной глубиной выдавливания:

Лента ДПРНП 0,35 × 100 НД Л63 ГВ ГОСТ 2208-91

ЛАТУННАЯ ПРОВОЛОКА (по ГОСТ 1066—90)

Проволока предназначена для общего применения.

Размеры проволоки, мм: круглой - 0,10; 0,11; 0,12; 0,14; 0,15; 0,16; 0,17; 0,18; 0,20; 0,22; 0,24; 0,25; 0,28; 0,30; 0,32; 0,36; 0,40; 0,45; 0,50; 0,56; 0,60; 0,63; 0,70; 0,75; 0,80; 0,90; 1,00; 1,10; 1,2; 1,3; 1,4;

1,5; 1,6; 1,7; 1,8; 1,9; 2,0; 2,2; 2,4; 2,5; 2,6; 2,8; 3,0; 3,2; 3,4; 3,6; 3,8; 4,0; 4,2; 4,5; 4,8; 5,0; 5,3; 5,6; 6,0; 6,3; 7,0; 7,5; 8,0; 8,5; 9,0; 9,5; 10,0; 11,0; 12,0;

квадратной и шестигранной (диаметр вписанной окружности, т.е. расстояние между параглельными гранями проволоки) - 3,0; 3,2; 3,5; 4,0; 4,5; 5,0; 5,5; 6; 7; 8; 9; 10; 11; 12.

При обозначении проволоки применяют следующие сокращения: колоднодеформированная - Д; круглая - КР; квадратная - КВ; шестигранная - ШГ; нормальная - Н; повышенная - П; мягкая - М; полутвердая - П; твердая - Т; бухты - БТ; катушки - КТ; антимагнитная - АМ.

Пример обозначения проволоки круглой, нормальной точности, мягкой, диаметром 0,5 мм на катушках, из сплава марки Л80, антимагнитной:

Проволока ДКРНМ 0,5 КТ Л80 АМ ГОСТ 1066-90

92. Марки, состояние поставки и точность изготовления проволоки

Марка сплава	Форма сечения	Размеры проволоки, мм	Состояние проволоки	Точность изготовления	
Л80	Круглая	0,25 - 5,3	Мягкая, полутвер- дая		
	Круглая	0,10 - 0,18	Мягкая, твердая		
Л69, Л63		0,20 - 12,0	Мягкая, полутвер-		
	Квадратная, шестигранная	3,0 - 12,0	дая, твердая	Проволоку изго- товляют нор- мальной точности по диаметру	
	Круглая	0,6 - 1,9	Мягкая, твердая		
ЛС59-1		2,0 - 12,0	Мягкая, полутвер-		
	Квадратная, шестигранная	3,0 - 12,0	дая, твердая		

93. Механические свойства латунной проволоки

	Временное сопротивление проволоки σ _в , МНа		Относительное удлинение прово- локи, %, не менее				
Марка сплава	Размеры проволоки, мм	мяткой	полугвер- дой	твердой	мягкой	полутвер- дой	твердой
		не менее		•			• • •
Л80	От 0,25 до 5,3	290	340		25	15	
Л68	От 0,10 до 0,18 Св. 0,18 " 0,75 " 0,75 " 1,40 " 1,40 " 12,0	370 340 310 290	390 370 340	690 - 930 690 - 930 590 - 780 540 - 740	20 25 30 40	5 10	Не рег- ламен- тировано

Продолжение табл. 93

		Временное сопротивление прово- локи $\sigma_{\rm B}, {\rm M}\Pi a$		Относительное удлинение проволоки, %, не менее			
Марка сплава	Размеры проволоки, мм	мягкой	полутвер- дой	твердой	мягкой	полутвер- дой	твердой
		не	менее				1,,,,,
Л63	От 0,10 до 0,18	340	_	740 - 930	18		
	Св. 0,18 " 0,50	340	440	690 - 930	20	5	He per-
	" 0,50 " 1,00	340	440	690 - 880	26	5	ламен-
	" 1,00 " 4,8	340	390	590 - 780	30	10	тировано
	" 4,8 " 12,0	310	350	540 - 740	34	12	,
ЛС59-1	От 0,6 до 1,0	340	-	Не менее 490	25	-	1
	Св. 1,0 "1,9	340	-	Не менее 470	27	-	3
	" 1,9 " 5,0	340	390	490- 640	30	10	5
	" 5,0 " 12,0	340	390	440 - 640	30	12	8

АНТИФРИКЦИОННЫЕ ЦИНКОВЫЕ СПЛАВЫ (по ГОСТ 21437-95)

Цинковые антифрикционные сплавы предназначены для производства монометаллических и биметаллических изделий и полуфабрикатов методами литья и обработки давлением.

94. Химический состав*, %

Марка сплава	Алюми- ний	Медь	Магний
ЦАМ9-1,5Л ЦАМ9-1,5	9 ~ 11	1 - 2	0,03-0,06
ЦАМ10-5Л ЦАМ10-5	9 - 12	4 - 5,5	0,03-0,06

^{*} Примесей не более 0,35 %; остальное цинк.

95. Механические свойства сплавов

Марка стигавов	Времен- ное сопротив- ление σ _в , МПа	Относи- тельное удлине- ние д. %	Твер- дость НВ
		не менее	
	Литейные с	сплавы	-
UAM9-1,5JI	245	1,0	95
ЦАМ10-5Л	245	0,4	100
Спланы,	обрабатыва	емые давлен	ием
UAM9 1,5	294	10	85
IJAM10-5	141	4	90

Примерное назначение ципковых антифрикционных сплавов и условия работы изделий из них

		Условия работы изделий			
Марка стрпава	Примерное назначение сплава	Удельная нагрузка, МПа	Скорость сколь жения, м/с	Гемпература, "(
			He Gantee		
ЦАМ9-1,5Л	Для отливки монометалличе ских вкладышей, втулок, пол- зунов и т.л.	9,8	8	80	
	Для получения биметаллических изделий с металлическим карка сом методом литья	19,6	10	100	

Продолжение табл. 96

		Условия работы изделий			
Марка сплава	Примерное назначение сплава	Удельная нагрузка, МПа	Скорость сколь- жения, м/с	Температура, °С	
			<u>*</u>		
ЦАМ9-1,5	Для получения биметалличе- ской ленты из стали и дюра- люминия методом прокатки с последующей штамповкой вкладышей	24,5	15	100	
ЦАМ10-5Л	Для отливки подшипников и втулок различных агрегатов	9,8	8	80	
ЦАМ10-5	Для получения прокатных по- лос для направляющих сколь- жения металлорежущих стан- ков и других изделий	19,6	8	. 80	

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ. ЗАРУБЕЖНЫЕ АНАЛОГИ

По назначению конструкционные алюминиевые литейные сплавы можно условно разбить на следующие группы:

1) сплавы, отличающиеся высокой герметичностью:

АК12 (АЛ2)*, АК9ч (АЛ4), АК7ч (АЛ9), АК8М3ч (ВАЛ8), АК7пч (АЛ9-1), АК8л (АЛ34), АК8М (АЛ32);

 сплавы высокопрочные, жаропрочные: AM5 (АЛ19), AK5M (АЛ5), AK5Mч (АЛ5-1), AM4, 5 Кд (ВАЛ10);

3) сплавы коррозионно-стойкие: АМч11 (АЛ22), АЦ4Мг (АЛ24), АМг10 (АЛ27), АМг10ч (АЛ27-1).

По химическому составу в зависимости от основного легирующего компонента алюминиевые литейные сплавы подразделяют на пять групп:

I - на основе системы Al-Si-Ma:

II - на основе системы Al-Si-Cu;

III - на основе системы Al-Cu;

IV - на основе системы Al-Mg;

 $V_{\rm c}$ на основе системы $A1_{\rm c}$ - прочие компоненты.

Алюминиевые литейные сплавы по стандарту обозначаются буквой А в начале марки, затем приводятся обозначения основных элементов следующими буквами:

К кремний, Мг - магний, М - медь, Мц - марганец, Ц - цинк, Кд - кадмий, Н - никель.

Цифры после букв указывают среднее содержание элемента в процентах. Буквы в конне марки обозначают: ч - чистый; пч - повышенной чистоты; оч - особой чистоты; л литейные сплавы; с - селективный. Рафинированные сплавы в чушках обозначают буквой р, которую ставят после обозначения марки сплава. Сплавы, предназначенные для изготовления изделий пищевого назначения, обозначают буквой П, которую также ставят после обозначения марки сплава. Алюминиевые литейные сплавы в чушках (металлошихта) и в отливках изготовляют для нужд народного хозяйства и на экспорт по ГОСТ 1583-93.

Для изготовления изделий пищевого назначения применяют сплавы АК7, АК5М2, АК9, АК12. Применение других марок сплавов для изготовления изделий и оборудования, предназначенных для контакта с пищевыми продуктами и средами, в каждом отдельном случае должно быть разрешено органами здравоохранения.

В алюминиевых сплавах, предназначенных для изготовления изделий пищевого назначения, массовая доля свинца должна быть не более 0,15 %, мышьяка - не более 0,015 %, цинка - не более 0,3 %, бериппия - не более 0,0005 %.

В алюминиевых сплавах, предназначенных для изготовления изделий пищевого назначения, массовая доля свинца должна быть не более 0,15 %, мышьяка - не более 0,015 %, цинка - не более 0,3 %, бериллия - не более 0,005 %.

Аналоги алюминиевых литейных сплавов по ГОСТ 1583-93, стандартам США, Германии, Японии и Франции (табл. 97) подобраны путем сравнения массовой доли основных компонентов. При этом учтено следующее: наличие примесей, способы литья, режимы термической обработки, механические свойства и области применения.

Здесь и далее в скобках приведены старые обозначения мирок алюминиевых литейных сплавов.

97. Алюминиевые литейные сплавы-аналоги по стандартам разных стран

Россия	США	Германия	кинопК	Франция
ГОСТ 1583-93	ASTM B 85 B26 AA SAE	DIN 1725 T.2	ЛS Н 5202	NF A57-702
АК12 (АЛ12)	_	G-AlSi 12 (GK-AlSi12g)	_	A-S13
AK9		GD-AlSi12 (Cu)-		A-S12U
АК9ч (АЛ4)	_	GK-AlSi10Mgwa	AC 4 A	
АК9пч (АЛ4-1)	361.0	G-AlSi10Mg (Cu) (GK-AlSi10 Mg (Cu) wa)		A-S10G
АК&л (АЛЗ4)	358.0	_	_	A-S7G
AK7	357.0	-		-
АК7ч (АЛ9)	356.0 SG 70A 323		AC 4 C	
АК7пч (АЛ9-1)	A356.0 SG 70B 336	G-AlSi 7Mgwa (GK-AlSi7Mgwa)	AC 4 CH	
АК5М (АЛ5)	305.0	G-AISi5Mg (GK-AISi5Mgwa)		
АК5Мч (АЛ5-1)	A305.0	Audous	AC 4 D	ModelA
AK5M2	A319.0			A-85U3G
AK5M7	238,0	and the second s	Merenderia de la comita del comita de la comita del la comita de la comita del la	nen er er film i den ste fransk kanton en film
AK6M2	319.0 SG 64D 326		AC) 2 B	sone ya 100 kasan kana kasa kasa kasa kasa kasa kas
AK8M (AJI32)	328.0 SG 82A 327			wyg go (
AK5M4	308.0	G-AlSi6Cu4 (GK- AlSi6Cu4)	AC 2 A	A-S5UZ

Продолжение табл. 97

Россия	США	Германия	япония	Франция
ГОСТ 1583-93	ASTM B 85 B26 AA SAE	DIN 1725 T.2	ЛS Н 5202	NF A57-702
AK8M3	380.0 SG 84 B 308	G-AlSi9Cu3 (GK- AlSi9Cu3)	AC 4 B	A-S7U3G
АК8М3ч (ВАЛ8)	A 380.0 SG 84 A 306			
AK9M2	A 360.0 SG 100A 309	GD-AlSi9Cu3	AC 8 B	A-S10UG
АК12ММгН (АЛ30)	383.0 SG 102A 383	G-AlSi12 (Cu) (GK-AlSi12 (Cu))		A-S11UNG A-S9GU A-S12UNG
АК12М2МгН (АЛ25)	385.0			
АМ4,5Кд (ВАЛ10)	201.0 CO 51 A 382	_	AC 1 B	A-U5GT
AMr4K1,5M (AMr4K1,5M1)	512.0	G-AlMg5Si (GK-AlSiMg5Si)		
Амг5К (АЛ13)	512.0	G-AlMg5 (GK-AlMg5)		
АМг5Мц (АЛ28)				A-G6
АМібл (АЛ23)	518.0 G 8 A	_	_	
AMitori (AJI23-1)	535.0 GM 70 B			
AMr10 (AJI27)	520.0 G 10 A 324	GD-AlMg9	AC 7 B	-
AMr7 (AJI29)	A 535.0			
АЦ4Мг (АЛ24)	707.0 ZG 42A 312			-

Механические свойства алюминиевых литейных сплавов по ГОСТ 1583-93 должны соответствовать приведенным в табл. 98. Механические свойства сплавов-аналогов даны в табл. 98а.

98. Механические свойства некоторых алюминиевых литейных сплавов по ГОСТ 1583-93

по ГОСТ 1583-93						
Марка сплава	Спо соб ли-	Вид тер- мо- об- ра- бот- ки	сопро- тивле- ние раз- рыву, МПа	Отно- ситель ное удли- нение, %	Твер- дость НВ	
Parmas I	Care	1				
Группа I AK12 (АЛ2)	К Д К Д	- T2 T2	157 157 147 147	2,0 1,0 3,0 2,0	50 50 50 50	
AK9 (AJI9)	3, В, К, Д, ПД	-	157	1,0	60	
	К, Д, ПД	TI	196	0,5	70	
	3M, BM K, KM	Т6 Т6	235	1,0	80 90	
АК9ч (АЛ4)	3, В, К, Д, К, Ц,		147	2,0	50	
	КМ, 3М	TI	196	1,5	60	
	3M, BM	Io	225	3,0	70	
	K, KM	16	235	۱,۵	70	
АК9пч (АЛ4-1)	3, B, K, Д K, Д, ПД	11	157	3,0	70	

		т	T :		
			Bpe-		
	1	Вид	мен-	0	
		тер-	1	Отно-	
	Спо	мо-	сопро	1	P
	соб	об-	тив-	ное	дость
Марка	ли-	pa-	ление раз-	удли- нение,	HB
сплава	тья	бот-	рыву,	%	
	1	ки	МПа	~	
				<u> </u>	<u> </u>
	122.6	L	 	не мене	e
AK9mı	3M,	T6	245	3,5	70
(AJI4-1)	BM			ļ	}
	K,	T6	265	4,0	70
	KM			L	<u> </u>
АК&л (АЛ34)	1	T5	294	2,0	85
	K	T5	333	4,0	90
	Д	-	206	2,0	70
	Ц	Ti	225	1,0	80
AK7 (AJI7)	K	-	157	1,0	60
	K	T5	196	0,5	75
	Д		167	1,0	50
	ПД	u.	147	0,5	65
АК7ч (АЛ9)	Д		167		
711C/4 (7017)	3,	T2	137	1,0	50
	B,	12	1.57	2,0	45
	K,				
	П				
	KM	14	681	4,0	50
	К.	15	206	2,0	60
	KM		2	2,17	00
	3M,	15	196	2,0	60
	BM		• • • • • • • • • • • • • • • • • • • •	-,0	CO.
	3M.	17	196	2,0	60
	BM			,	
	3M.	18	157	3,0	55
	BM			.,.	
	K	16	235	1,4	70
	к	17	196	2.0	60
AK7rer	Michigan Line	15	2.15	4,0	0()
(AJP 1)	B				
	BM.	15	215	4,0	60
	BM	1	ł		
	K,	15	265	4,0	60
	KM	1	1	1	
	IM.	16	274	2,0	70
	BM				
	K,	10	294	4,0	70
į	BM		-		
ļ	.1	1	196	1,0	50
	耳	12	10.	2,0	45
	3M,	17	206	2,5	60
The same than the same through the same than	BM				
AK5M2	K	I	157	0,5	05
	3	15	196	İ	75
	L				

			Пролол	жение т	абл. 98				Bpe-	Ι	
				T				_	мен-		
			Вре- мен-	1	ł			Вид	ное	Отно-	
		Вид		Отно-	Ì		CTO		сопро-	ситель	Твер-
			сопро-	ситель	Твер-		Спо соб	MO-	тивле-	ное	дость НВ
	Спо	MO-	тивле-	ное	дость	Марка	ли-	об-	ние	удли- нение,	пь
	соб	об~	ние	удли-	НВ	сплава	тья	ра- бот-	раз-	нение, %	
Марка	ли-	pa-	раз-	нение,			1D/1	ки	рыву, МПа	,,,	
сплава	. тъя	бот-	рыву,	%	ľ			KA	IVIIIa	Li	<u></u>
		ΚИ	МПа	i	-				I	те менее	:
			ŀ	не менее		AK9M2	K	-	186	1,5	70.
AK5M2	K	T5	206	0,5	75		Д	-	196	1,5	75
	3	T8	147	1,0	65		K	T6	274	1,5	. 85
	K	T8	176	2,0	65	AK12MMrH	K	T1	196	0,5	90
	л	_	147	0,5	65	(АЛ30)	K	T 6	216	0,7	100
	ــــــــــــــــــــــــــــــــــــــ		L	·	L	AK12M2MrH	K	T1	186		90
Группа П		авы н: 41-Si-		е систем	ы	(АЛ25)	<u>_</u>				
АК5М (АЛ5)	[з. в	T6	225	0,5	70	Группа III. С	плавы	на о	снове сі	і стемы А	M-Cu
	3, B,	T 7	176	1,0	65	АМ5 (АЛ19)	3,	T4	294	8,0	70
	K	•				,	В,			ŕ	
	K	T6	235	1,0	70		K 3,	T 5	333	4,0	90
АК5Мч	3, B,	T1	176	1,0	65		э, В,	13	333	4,0	90
(АЛ5-1)	K				İ		K,				
,	3, B	T5	274	1,0	70		3	T 7	314	2,0	80
	K,	T5	294	1,5	70	АМ4,5Кд	3, B	T5	392	7,0	90
	KM	<u> </u>					з, в К	T5	431	8,0	100
	3, B,	T 7	206	1,5	65	(ВАЛ10)			1		
	K						3, B	T6	421	4,0	110
AK8M	3	T5	235	2,0	60		K	T6	490	4,0	120
(АЛ32)	K	T5	255	2,0	70		3	T7	323	5,0	90
(3	177	225	2,0	60	Группа IV. С	плавы	на ос	снове си	стемы А	l-Mg
	K	T7	245	2,0	60	AMr4K1,5	K	T2	211	2,0	81
	3	Ti	176	0,5	60	(AMr4K1,5M1)	1	Т6	265	2,3	104
	1	1	284	1	90	AMr5K	3,		147	1,0	55
	Д	TI	1	1,0	1	(AJI13)	В,	_	1 '''	1,0	
	Д	T2	235	2,0	60	(10115)	K,				
AK5M4	3	-	118	-	60		Д	-	167	0,5	55
	K	-	157	1,0	70	AMr5Mit	3, B	_	196	4,0	55
	K	16	196	0,5	90	(AJI28)	K		206	5,0	55
AK5M7	K	TI	167		90	(1 = 2 = 0)	Д	_	206	3,5	55
	3	TI	147	1	80			 	+	 	
	Ц		118		80	AMr6л	3, B	1	186	4,0 6,0	60 60
AK8M3	К		147	1,0	70	(AJI23)	К,	-	210	0,0	50
	K	16	216	0,5	90		3,	T4	225	6,0	60
AK8M34	Κ,	14	343	5,0	90		K,				
(BAJI8)	1171		392	4,0	110	A N d a d a a a a a a a a a a a a a a a a		 	106	5,0	60
	К, ПД	15	392	7,0	1	AMronu	3, B	1	196	1	60
	1		294	2,0	75	(AJI23-1)	K,	-	235	10,0	00
	Д	1.2	t	2,0	90		Д	T4	245	10,0	60
	Д	15	1		90		3, K,	14	243	10,0	00
	3	15	1	1,0	i		B				1
	В	15	345	2,0	90		1 2	ــــــــــــــــــــــــــــــــــــــ			ــــــــــــــــــــــــــــــــــــــ

	Продолжение табл. 9						
Марка сплава	Спо соб ли- тья	Вид тер- мо- об- ра- бот- ки	ное ситель сопро- тивле- ние удли- нение,		Твер- дость НВ		
			1	не менес	·		
АМr10 (АЛ27)	3, К, Д	T4	314	12,0	750		
АМг7 (АЛ29)	Д	_	206	3,0	60		

Группа V. Сплавы на основе системы Al - прочие компоненты

АК7Ц9 (АЛ11)	3, B	-	196	2,0	80
(/	К	-	206	1,0	80
	Д	-	176	1,0	60
	3, B, K	Т2	216	2,0	80

Марка сплава	Спо соб ли- тья	Вид тер- мо- об- ра- бот- ки	Вре- мен- ное сопро- тивле- ние раз- рыву, МПа	Отно- ситель ное удли- нение, %	Твер- дость НВ
			1	не менес	
АЦ4Мг	3, B	-	216	2,0	60
(АЛ24)	3, B	T5	265	2,0	70

Примечания:

1. Условные обозначения способов литья:

3 - литье в песчаные формы; В - литье по выпизавляемым моделям; К - литье в кокиль; Д - литье под давлением; ПД - литье с кристаллизацией под давлением (жидкая штамповка); О - литье в оболочковые формы; М - сплав подвергается модифицированию.

2. Условные обозначения видов термической обработки: Т1 - искусственное старение без предварительной закалки; Т2 - отжиг; Т4 - закалка; Т5 - закалка и кратковременное (неполное) искусственное старение; Т6 - закалка и полное искусственное старение; Т7 - закалка и стабилизирующий отпуск; Т8 - закалка и смятчающий отпуск.

3. Механические свойства, указанные для способа литья В, распространяются также на литье в оболочковые формы.

98а. Механические свойства алюминиевых литейных сплавов-аналогов

Страна	Марка сплава	Способ литъя	Термо- обра- ботка	времен- ное со- против- ление разрыву, МИа	Относи- тельное уши- нение, %	Твердость НВ
Германия	G-AlSi12 (GK-AlSi12g)	K	2	170 - 230	6,0 12,0	50 - 60
Франция	A-S13	К	8	170	5,0	55
Германия	GD-AlSi12 (Cu)	Д		220 KKO	1,0 1,0	60 100
Франция	A-S12V	K	×	160	2,0	65
Германия	GK AlSi10Mgwa	K	a si namanana con si pero	240 120	1,0 4,0	85 115
Япопия	AC4A	K	1	245	2,0	90
США	361.0	Д				
Германия	G-AlSi10 (Cu) (GK-AlSi10Mg(Cu)wa)	К	3	240 - 120	1,0 - 1,0	85 115
Франция	A-\$10G	К	1	250	1,5	80
США	358.0	3, K	-	-	-	
Франция	A-S7G	К	3	250	3,0	80
США	357.0	K	Б	193 - 359	5,0 - 6,0	100

Продолжение табл. 98а

						ine racii. 30a
Страна	Марка сплава	Способ литья	Термо- обра- ботка	Времен- ное со- против- ление разрыву, МПа	Относи- тельное удли- нение, %	Твердость НВ
США	356.0; SG 70A; 323	K	3	262	5,0	80
Япония	AC 4 C	K	3	226	3,0	85
США	A356.0; SG 708; 336	K	3	283	10,0	90
Германия	G-AlSi7Mgwa	K	3	250 - 340	5,0 - 9,0	80 - 115
	(GK-AlSi7Mgwa)					
Япония	AC 4 CH	K	3	245	5,0	85
США	305.0	-	-	-	-	-
Германия	G-AlSiMg (GK-AlSi5Mgwa)	K	3	260 - 320	1,0 - 3,0	90 - 110
США	A305.0	3, K	-	-	-	-
Япония	AC 4 D	K	3	275	1,0	90
США	A319.0	-	-	-	-	-
Франция	A-S5V3G	K	3	270	2,5	85
США	238.0	К	8	207	1,5	100
США	319.0; SG 64D; 326	ĸ	8	234	2,5	85
RинопR	AC 2 B	K	3	245	1,0	90
США	328.0; SG 82 A; 327	3	3	234	1,0	80
США	308.0	K	8	193	2,0	70
Германия	G-AlSi6Cu4 (GK-AlSi6Cu4)	K	-	180 - 240	1,0 - 3,0	75 - 110
Япония	A-S5VZ	K	3	275	1,0	90
Франция	AK8M3	К	8	170	-	70
США	380.0; SG 848; 308	Д	F	331	3,0	80
Германия	G-AlSi9Cu3 (GK-AlSi9Cu3)	K	-	180 - 240	1,0 - 3,0	70 - 110
РИНОПК	AC 4 B	K	3	245	-	100
Франция	A-S7V3G	K	8	180		80
США	A380.0; SG 84A; 306	Д	8	324	4,0	75
США	A360.0; SG 100A; 309	Д	8	317	5,0	75
Германия	6D-AlSi9Cu3	Д	-	240 - 310	0,5 - 3,0	80 - 120
Япония	AC 8 B	K	3	275	-	110
Франция	A-S10VG	K	6	190	-	80
США	383.0; SG 102A; 383	Д	-	310	3,5	*
Германия	G-AlSi12(Cu) (GK-AlSi12(Cu))	K	-	180 - 240	2,0 - 4,0	55 - 75
Франция	A-S11VNG	К	6	190	-	80
	A-S9GV	ĸ	8	180	1,0	60
	A-S12VNG	К	6	190	-	80
США	385.0	Д	-	-	-	

Продолжение табл. 98а

Страна	Марка сплава	Способ	Термо- обра- ботка	Времен- ное со- против- ление разрыву, МПа	Относи- тельное удли- нение, %	Твердость НВ
США	201.0; GQ 51A; 382	K	3	448	8,0	130
Япония	AC 1 B	K	3	304	3,0	95
Франция	A-V5GT	K	3	340 - 360	8,0 - 11,0	95
США	512.0	K	8	186	7,0	60
Германия	G-AlMg5Si (GK-AlMg5Si)	K	-	180 - 240	2,0 - 5,0	65 - 85
США	512.0	K	8	186	7,0	60
Германия	G-AlMg5 (GK-AlMg5)	K	-	180 - 240	4,0 - 10,0	60 - 75
Франция	A-G6	K	8	180	4,0	65
США	518.0; G8A	Д	8	310	8,0	80
США	535.0; GM 708	3	I.	241	9,0	70
США	520.0; G 10A; 324	3	2	331	16,0	75
Япония	AC 7 B	K	2	294	10,0	75
США	A535.0	3	I.	251	9,0	65
США	707.0; ZG 42A; 312	3	7	255	1,0	80

Примечания:

- 1. Обозначение способов литья см. примечание к табл. 98.
- 2. Обозначения режимов термической обработки приведены в табл. 99.

99. Обозначения и рекомендуемые режимы термической обработки адюминиевых литейных сплавов-аналогов

Условное обозначение режима	Обозначение состояния сплана	Режим термической обработки
1	Т2	Старение 300 °С, 2 ч
2	14	Закалка с 535 °C, 9 - 16 ч, вода'(20 - 100 °C)
3	10	Закалка с 845 °C, 10 14 ч. вода (20 100 °C)
	Y 33	Старение 170 °C, 6 10 ч
4	The second secon	Закачка с 838 °C, 10 - 16 ч, вода (20 - 100 °C) Старение 178 °C, 8 - 17 ч
5	11	Старение 175 °С, 5 17 ч
6	17 Y 31	Закалка с 545 °C, 10 - 14 ч, вода (80 - 100 °C) Старение 250 °C, 3 - 10 ч
7	17	Закалка — Двухступенчатый нагрев 805 °C; 4 — 6 ч; 515 °C; 4 — 8 ч; вода (200 — 100 °C) — Старение 230 °C; 3 — 8 ч
8	Y-30 F	beз гермической обраюнки

По стандартам США состояние без термообработки обозначается буквой F, в стандарте Франции - Y-30.

В стандарте Франции приняты следующие обозначения видов термообработки:

Y-33 - закалка и искусственное старение (соответствует Тб);

Y-35 - стабилизирующий отпуск (соответствует T7).

Особенности маркировки алюминиевых литейных сплавов в стандартах США, Японии, Германии и Франции приведены ниже.

США (ASTM В 85, В 26, В 108)

В общегосударственных и оборонных спецификациях для алюминиевых литейных сплавов наиболее широко используется система обозначений Алюминиевой Ассоциации (АА).

В этой системе сплавы имеют трехзначное обозначение. Сплавы сгруппированы в серии, которые относятся к определенным системам легирования. Первая цифра каждой серии указывает основную систему сплава.

Серия	Основная система сплавов
2XX	Al-Cu
3XX	Al-Si-Mg, Al-Si-Cu
4XX	Al-Si
5XX	Al-Mg
7XX	Al-Zn
8XX	Al-Sn

Промышленных литейных сплавов серий 6XX и 9XX не существует. В маркировке, принятой AA, обозначение XXX.0 используется для отливок, т.е. для всех литейных сплавов.

В некоторых обозначениях сплавов, принятых АА, цифрам предшествует буква. Буквы используют для того, чтобы различить сплавы с одинаковым химическим составом по основным легирующим элементам, но отличающимся друг от друга только содержанием примесей или малых добавок, например сплав 356.0 и А 356.0.

SAE-система Общества инженеров автомобильной промышленности. Марки сплавов имеют цифровое трехзначное обозначение.

Например, сплав марки АК7ч (АЛ9) (ГОСТ 1583) имеет аналог по стандартам США: 356.0 (по АА), SG70A (по ASTM B26) и 323 (по SAE).

ЯПОНИЯ (JIS H5202)

В обозначении марок всех литейных алюминиевых сплавов вначале стоит буквенное выражение АС (алюминиевый литейный сплав): последующие цифры 1, 2, ... обозначают группу сплавов, относящихся к определен-

ной системе легирования; буквы A, B, C, D, стоящие после цифр, - символ определенного сплава в данной группе.

Группа	Сплавы системы
1	Al-Cu
2	Al-Cu-Si
3	Al-Si
4A	Al-Si-Mg
4B	Al-Si-Cu
4C	Al-Si-Mg
4CH	Al-Si-Mg
4D	Al-Si-Cu
5A	Al-Cu-Ni-Mg
7B	Al-Mg
8B	Al-Si-Cu-Mg

ГЕРМАНИЯ (DIN 1725T.2)

Перед обозначением марок литейных алюминиевых сплавов указывают метод литья:

G - литье в землю или песчаные формы;

GK - литье в кокиль;

GD - литье под давлением.

Далее идут символы элементов и цифры, указывающие их среднее содержание. В конце обозначения марки сплава указывается его термическая обработка:

g - закалка, соответствует состоянию T4;

wa - обработка на твердый раствор, закалка и искусственное старение - соответствует состоянию T6.

Один и тот же сплав может маркироваться как с указанием метода литья и термообработки, так и без него. Обозначение марки сплава с указанием метода литья и термообработки ставится в скобках.

Для литейных сплавов с повышенным допустимым содержанием меди, которая не является легирующим элементом, краткое обозначение дополняется стоящим в скобках символом Сu, например GD-AlSi12(Cu).

ФРАНЦИЯ (А57-702)

Первой в обозначении всех литейных алюминиевых сплавов стоит буква А (алюминиевый сплав), далее через тире стоят символы легирующих элементов с цифрами, указывающими их среднее содержание, последним стоит символ основного легирующего элемента. Например, A-S5U3G: S5 - кремния 5 %; U3 - меди 3 %; G - магний - основной легирующий элемент.

ПРОФИЛИ ПРЕССОВАННЫЕ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ (по ГОСТ 8617-81 в ред. 1990 г.)

100. Механические свойства прессованных профилей

		і (М. Механическ	ци, механические своиства прессованим профилоп	npodurien	F	
	of the Company of State Company of	Состояние	Тотпина полки	Временное сопро- тивление св. МПа	Предел текуче- сти о _{0,2} , МПа	Относительное удлинение 8, %
NIADKA CILTABA	Cocionne maichneia	образцов	или стенки, мм		не менес	
A7. A6. A5. 5AE. A0. AJ100. AJ10. AJ11, AJ	Без теринческой обра- ботки	Без термической обработки	Все размеры	59	t	20,0
AJIC	Без термической обра- ботки	Без термической обработки	Все размеры	09	1	20,0
АМи. АМиС	Без термической обра- ботки	Без термической обработки	Все размеры	86	1	16,0
AMr2	Без термической обра-	Без термической	Все размеры	147	65	13,0
	Отоженные	обработки Отожженные		Не более 225	59	13,0
AMr3	Без термической обра-	Без термической	Все размеры	176	78	12,0
	бетки Отожжениве	обработки Отожженные		176	78	12,0
AM13C	Без термической обра- ботоя	Без термической обработки	Все размеры	175	80	14
AMrs	Без термической обра-	Без термической	Все размеры	255	127	15,0
	ботки Отожженные	обработки Отомженные		255	127	15,0
		A				

Продолжение табл. 100

Мапка	Состояние материала	Состояние	Толщина полки	Временное сопро- тивление ов, МПа	Предел текуче- сти о _{0,2} , МПа	Относительное удлинение 8, %
сплава	•	образцов	или стенки, мм		не менее	
AMr6	Без термической	Без термической обра-	Все размеры	314	157	15,0
	обработки Отожженные	ботки Отожженные		314	157	15,0
	Без термической	Закаленные и естест-	Все размеры	127	69	13,0
АЛ31	обработки Закаленные и естест- венно состаренные	венно состаренные То же	До 100 вкл.	127	69	13,0
АДЗІЕ	Закаленные и естест-	Закаленные и естест-	До 100 вкл.	196	147	10,0
	венно состаренные Не полностью зака-	венно состаренные Не полностью закален-	До 100 вкл.	157	118	8,0
	ленные и искусст- венно состаренные	ные и искусственно состаренные				
АД33	Без термической	Закаленные и естест-	Все размеры	176	108	15,0
	обработки Закаленные и естест-	венно состаренные То же	До 100 вкл.	176	108	15,
	венно состаренные Закаленные и искус- ственно состаренные	Закаленные и искусст- венно состаренные	До 10 вкл. Св. 10 до 100 вкл.	255 265	225 225	6,0 10,0
1915	Без термической обработки	Горячепрессованные с естественным старени- ем в течение 30 - 35	До 12 вкл.	314	196	10,0
	Отожженные	суток Отожженные	Все размеры	Не более 277	176	12,0

Примечание. ГОСТ предусматривает и другие марки сплавов.

Профили подразделяют:

по назначению:

общего назначения - из алюминия марок А6, А5, А0, АД0, АД1, АДС, АД и алюминие-вых сплавов марок АМц АМцС, АМг2, АМг3, АМг3С, АМг5, АМг6, АД31, АД33, АД35, АВ, Д1, Д16, АК4, АК6, В95, 1915, 1925, 1925С, ВД1, АВД1, АКМ;

электротехнического назначения - из алюминия марок АД0, АД00, А7, А6, А5, А5Е и алюминиевых сплавов марок АД31, АД31Е.

Примечание. В условном обозначении профилей электротехнического назначения дополнительно указываются буквы ЭН, которые ставят после номера или шифра профиля 440361ЭН (ПК 0018ЭН);

по состоянию материала: без термической обработки горячепрессованные - обозначаются маркой сплава без дополнительных знаков (АДО, АД1, АМц, АД31, АД33, АМг2, АМг3, АВ, Д1, Д16, 1915, 1925); отожженные - М (Д1М, Д16М, 1915М, 1925М);

закаленные и естественно состаренные - Г (АДЗ1Т, АДЗ3Т, АВТ, Д1Т, 1915Т, 1925Т);

закаленные и искусственно состаренные - T1 (АД31Т1, АД33Т1, ABT1);

не полностью закаленные и искусственно состаренные - Т5 (АД1Т5);

по методам испытаний:

с контролем механических свойств и макроструктуры;

без контроля механических свойств и макроструктуры.

Профили поставляют длиной от 1 до 6 м при площиди поперечного сечения до 0,8 см², от 1 до 8 м - при площиди поперечного сечения свыше 0,8 до 1,5 см²; от 1 до 10 м — при площади поперечного сечения свыше 1,5 до 200 см².

Профили немерной, мерной или кратной мерной длины поставляют в пределах размеров, приведенных выше.

Химический состав профилей по I ОСТ 4784-97.

Сортамент: полоса заготовочная ПЧ . ГОСТ 13616-97, зет нормальный П500 . ГОСТ 13620-90, двутавр - ГОСТ 13621-90, тавр П130 - ГОСТ 13622-91, швеллер равнотолщинный - ГОСТ 13623-90, уголок равнополочный - ГОСТ 13737-90, уголок неравнополочный - ГОСТ 13738-91.

Механические свойства профилей, определяемые на образцах, вырезанных в долевом направлении, приведены в табл. 100.

ПРУТКИ ПРЕССОВАННЫЕ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ (по ГОСТ 21488-97)

Прутки подразделяют:

- а) по форме сечения: круглые КР, квадратные КВ; шестигранные ШГ:
- б) по точности изготовления: нормальной точности Н, повышенной точности П; высокой гочности - В;
- в) по состоянию материала:

без термической обработки (горячепрессованные) - обозначаются маркой сплава без дополнительных знаков (АДО, АД1, АМп, АМпС, АД31, АД33, АМт3, АМт5, АМг6, Д1, Д16, В95, АК4, АК6, АК8); мягкие (отожженные) - М (АМт3М, АМт5М, АМт6М);

закаленные и естественно состаренные - Т (АДЗГ, АДЗТ, ДТГ, ДТ6Т):

закаленные и искусственно состаренные -II (АДЗ1Т1, АДЗ3Т1, В9511, АК4Т1, АК6Т1, АК8Т1).

т) по виду прочности

нормальной прочности обозначаются маркой сплава без дополнительных знаков (Д1, Д11, Д16, Д161, В95, В9511, АК6, АК611, АК8, АК811),

повышенной прочности — ПП (АВТИШ, ДППІ, ДППП, ДІБИП, ДІБІНН, ВУКШІ, ВУКППП, АКБИП, АКБІНПІ, АКВІШ, АКВІЛІПІ)

ТОСТ предусматривает также марки 1915, 1925, АМг2, АК4-1. Диаметры круглых, квадратных и шестигранных пругков нормальной точности изготовления, предельные отклонения и теоретическая масса 1 м пругка должны соответствовать значениям, приведенным в табл. 101 - 103, там же приведены радиусы скруглений кромок квадратных и шестигранных прутков.

Прутки изготовляют немерной длины: от 1,0 до 6,0 м - для диаметров до 80 мм; от 1,0 до 5,0 м - для диаметров св. 80 мм ло 110 мм:

от 0,5 до 4,0 м - для диаметров св. 110 мм. В партии прутков немерной длины допускаются укороченные прутки в количестве не более 10 % массы партии, длиной не менее 0,5 м - для прутков диаметром до 110 мм.

Прутки круглые диаметром до 15 мм включительно в состоянии без термической обработки или в мягком (отожженном) изготовляют в бухтах немерной длины.

Прутки должны быть выправлены. Кривизна прутков нормальной и повышенной точности изготовления на 1 м длины во всех состояниях материала, за исключением мягкого (отожженного), не должна превышать для прутков диаметром: до 100 мм - 3 мм; св. 100 мм до 120 мм - 6 мм; св. 120 мм до 150 мм - 9 мм; св. 150 мм до 200 мм - 12 мм; св. 200 мм до 300 мм - 15 мм; св. 300 мм до 400 мм - 20 мм.

Примечания:

- 1. Для прутков с номинальным диаметром не более 15 мм допускается кривизна, устраняемая до нормированной величины 3 мм приложением силы не более 50 Н на пруток, установленный на плоской плите.
- 2. Кривизна мягких (отожженных) прутков и прутков без термической обработки из алюминия всех марок, алюминиевых сплавов марок АМц, АМцС и АДЗ1, а также прутков в бухтах не нормируется.
- 3. Общая допустимая кривизна не должна превышать произведения местной кривизны на 1 м на длину прутка в метрах.

В условных обозначениях приняты следующие сокращения:

Состояние материала: без термической обработки - без обозначения; мягкое (отожженное) - М; закаленное и естественно состарен-

ное - Т; закаленное и искусственно состаренное - Т1.

Вид прочности: нормальной прочности без обозначения; повышенной прочности - ПП.

Форма сечения: круглый - KP; квадратный - KB; шестигранный - ШГ.

Точность изготовления: нормальная - без обозначения; повышенная - П; высокая - В.

Длина: немерная - без обозначения; мерная - указывают заданный размер.

Характеристика длины: мерная, кратной длины - КД (с указанием кратности); немерная, длиной не короче заданной - НК (с указанием заданного размера); немерная, длиной не более заданной - НБ (с указанием заданного размера); немерная в бухтах - БТ (без указания длины).

Примеры условных обозначений:

Пруток из сплава марки Д16, в закаленном естественно состаренном состоянии, нормальной прочности, круглого сечения, диаметром 50 мм, нормальной точности изготовления, длиной 3000 мм:

Пруток Д16. Т КР50 × 3000 ГОСТ 21488-97

То же, повышенной прочности, квадратного сечения, повышенной точности изготовления, немерной длины:

Пруток Д16.Т.ПП КВ50П ГОСТ 21488-97

То же, шестигранного сечения, повышенной точности изготовления, длиной, кратной 2000 мм:

Пруток Д16.Т.ПП ППГ50П × 2000КД ГОСТ 21488-97

Пруток из сплава марки Д16, без термической обработки, нормальной прочности, круглого сечения диаметром 50 мм, нормальной точности изготовления, длиной не короче 1500 мм:

Пруток Д16 КР50П × 1500НК ГОСТ 21488-97

101. Днаметр круглых прутков и масса 1 м прутка

Номи-		ельное отклоне о диаметру, мм		Tea	оретическая ма 1 м прутка, кт	cca
нальный диаметр,			Точность і	кинэпаотогы		
ММ	нормальная	повышенная	высокая	нормальная	повышенная	высокая
8	-0,58	±0,22	-0,36	0,126	0,136	0,130
10	-0,58	±0,22	-0,36	0,200	0,212	0,205
12	-0,70	±0,22	-0,43	0,288	0,305	0,295
14	-0,70	±0,22	-0,43	0,395	0,416	0,403
16	-0,70	±0,22	-0,43	0,519	0,543	0,528
18	-0,70	±0,22	-0,43	0,661	0,687	0,671
20	-0,84	±0,25	-0,52	0,813	0,848	0,826
25	-0,84	±0,25	-0,52	1,28	1,33	1,30
30	-0,84	±0,30	-0,52	1,86	1,91	1,88
35	-1,00	±0,30	-0,62	2,52	2,60	2,55
40	-1,00	±0,30	-0,62	3,31	3,39	3,34
45	-1,00	±0,35	-0,62	4,20	4,29	4,24
50	-1,00	±0,35	-0,62	5,20	5,30	5,24
55	-1,20	±0,40	-0,74	6,27	6,41	6,33
60	-1,20	±0,40	-0,74	7,48	7,63	7,54
65	-1,20	±0,40	-0,74	8,79	8,96	8,86
70	-1,20	±0,50	-0,74	10,2	10,4	10,3
75	-1,20	±0,50	-0,74	11,7	11,9	11,8
80	-1,20	±0,50	-0,74	13,3	13,6	13,4
90	-1,40	±0,60	-1,00	16,9	17,2	17,0
100	-1,40	±0,60	-1,00	20,9	21,2	21,0
110	-1,40	±0,70	-1,00	25,3	25,7	25,4
120	-1,40	±0,70	- 1,00	30,2	30,5	40,3
130	-1,60	±0,85	4.5	35,4	35,8	
140	-1,60	±0,85		41.1	41,6	
150	-1,60	30,85		47.2	47,7	
160	-1,60	£1,00		53,7	54,3	
180	-1,60	±1,00		1,80	68,7	
200	-2,00	±1,10	*	84,0	84,8	
250	-2,00	±1,30	*	131,5	132,5	
300	-2,50	±1,60		189, 3	190,9	
350	-4,00	±2,00		256,8	259,8	
400	-6,00	- ~		334,2		•

102. Размеры шестигранных прутков и масса 1 м прутка

				THOO IT MACCA 1		· · · · · · · · · · · · · · · · · · ·
Номи- нальный диаметр,	_	ельное отклоне о диаметру, мм		Те	оретическая ма 1 м прутка, кг	cca
вписан- ной			Точность і	кинэклототск	·	
окруж- ности, мм	нормальная	повышенная	высокая	нормальная	повышенная	высокая
8	-0,58	±0,22	-0,36	0,139	0,173	0,142
10	-0,58	±0,22	-0,36	0,220	0,234	0,142
11	-0,70	±0,22	-0,43	0,264	0,283	0,223
12	-0,70	±0,22	-0,43	0,317	0,337	0,329
13	-0,70	±0,22	-0,43	0,373	0,395	0,329
14	-0,70	±0,22	-0,43	0,435	0,458	0,443
15	-0,70	±0,22	-0,43	0,501	0,526	0,510
16	-0,70	±0,22	-0,43	0,572	0,598	0,582
17	-0,70	±0,22	-0,43	0,647	0,676	0,658
18	-0,70	±0,22	-0,43	0,728	0,757	0,739
19	-0,84	±0,25	-0,52	0,806	0,844	0,820
21	-0,84	±0,25	-0,52	0,984	1,03	1,005
22	-0,84	±0,25	-0,52	1,09	1,13	1,10
24	-0,84	±0,25	-0,52	1,30	1,35	1,32
27	-0,84	±0,30	-0,52	1,65	1,70	1,67
30	-0,84	±0,30	-0,52	2,05	2,10	2,07
32	-1,00	±0,30	-0,62	2,32	2,39	2,35
34	-1,00	±0,30	-0,62	2,62	2,70	2,65
36	-1,00	±0,30	-0,62	2,94	3,93	3,00
41	-1,00	±0,35	-0,62	3,83	3,93	3,87
46	-1,00	±0,35	-0,62	4,84	4,95	4,88
50	-1,00	±0,35	-0,62	5,73	5,85	5,77
55	-1,20	±0,40	-0,74	6,92	7,07	6,97
60	-1,20	±0,40	-0,74	8,25	8,42	8,31
65	-1,20	±0,40	-0,74	9,70	9,88	9,76
70	-1,20	±0,50	-0,74	11,3	11,5	11,3
75	-1,20	±0,50	-1,00	12,9	13,2	13,0
80	-1,20	±0,50	-1,00	14,7	15,0	14,8
85	-1,40	±0,60	-1,00	16,6	16,9	16,7
90	-1,40	±0,60	-1,00	18,6	18,9	18,7
100	-1,40	±0,60	- 1	23,1	23,4	_
110	-1,40	±0,70	-	27,9	28,3	-
120	-1,40	±0,70	-	33,3	36,7	-
140	-1,60	±0,85	-	45,3	52,9	_
160	-1,60	±1,00	-	59,3	69,1	-
180	-1,60	±1,00	-	75,1	87,5	-
200	-2,00	±1,10	-	92,6	108	-
				 		

Наибольшие радиусы скруглений кромок, мм, прутков нормальной, повышенной и высокой точности изготовления

Номинальный диаметр вписанной окружности, мм	Радиус скругления кромок прутков, не более	Номинальный диаметр вписанной окружности, мм	Радиус скрупления кромок прутков, не более
До 10	0,5	Св. 50 » 100	1,5
Св. 10 » 30	1,0	▶ 100 > 120	2,0
» 30 » 50	1,2	» 120 » 200	3,0

103. Размеры квадратных прутков и масса 1 м прутка

Номи- нальный диаметр,	1	ельное отклоне о диаметру, мм		Ted	оретическая мас 1 м прутка, кг	ca
вписан- ной			Точность і	изготовления		
окруж- ности, мм	нормальная	повышенная	высокая	нормальная	повышенная	высокая
8	-0,58	±0,22	-0,36	0,158	0,173	0,163
10	-0,58	±0,22	-0,36	0,252	0,270	0,258
12	-0,70	±0,22	-0,43	0,364	0,389	0,373
14	-0,70	±0,22	-0,43	0,501	0,529	0,511
16	-0,70	±0,22	-0,43	0,659	0,690	0,670
18	-0,70	±0,22	-0,43	0,839	0,875	0,852
20	-0,84	±0,25	-0,52	1,033	1,080	1,050
25	-0,84	±0,25	-0,52	1,630	1,685	1,650
30	-0,84	±0,30	-0,52	2,360	2,430	2,386
35	-1,00	±0,30	-0,62	3,21	3,31	3,24
40	-1,00	±0,30	-0,62	4,21	4,32	4,25
45	-1,00	±0,35	-0,62	5,34	5,47	5,39
50	-1,00	±0,35	-0,62	6,62	6,75	6,66
55	-1,20	±0,40	-0,74	7,98	8,17	8,05
60	-1,20	±0,40	-0,74	9,52	9,72	9,59
65	-1,20	±0,40	-0,74	11,1	11,4	11,3
70	-1,20	±0,50	-0,74	13,0	13,2	13,1
75	-1,20	±0,50	-0,74	14,9	15,2	15,0
80	-1,20	±0,50	-0,74	17,0	17,3	17,1
90	-1,40	±0,60	-1,00	21,5	21,9	21,6
100	-1,40	±0,60	-1,00	26,6	27,0	26,7
120	-1,40	±0,70	-1,00	38,4	38,9	38,5
130	-1,60	±0,85	_	45,0	45,6	wi.
140	-1,60	±0,85	-	52,3	52,9	
150	-1,60	±0,85	**	60,1	60,8	
160	-1,60	00,1±		68,4	69,1	
180	-1,60	£1,00		86,7	87,5	
200	2,00	±1,10		106,9	108,0	

Наибольшие радиусы скруглений кромок пругков, мм

Номинальный		гления кромок, tronec	Номинальный	Рациус скруг	існия кромок, олес
диаметр вписанной окружности	нормшьной и высокой точности изготовления	йонышенной итэочноги кинэциотокк	диаметр вписанной окружности	нормальной и высокой и высокой и точности и и и и и и и и и и и и и и и и и и	и потогония почности понышенной
До 10	1,0	1,0	CB, 50 * 100	1,0	2,0
Св. 10 » 30	2,0	1,0	» 100 » 120	3,5	2,5
» 30 » 50	2,5	1,5	» 120 » 200	3,5	3,0

104. Мехапяческие свойства прутков нормальной прочности при растяжении

			was all manage	the beautiful and		
Марки апоминия и апоминиевого	Состояние материала	Состояние испытуемых образцов	Диаметр прутка, мм	Временное сопротивление разрыву о _в , МПа	Предел текучести о _{0,2} , МПа	Относительное удлинение б ₃ , %
сглава					не менее	
АДО, АД1, АД	Без терынческой обработки	Без термической обработки	8 - 300	09	1	25
АМи, АМиС	Без термической обработки	Без термической обработки	8 - 350	100	1	20
	Без терынческой обработки	Закалениме и естественно состаренные	8 - 300	135	70	13
АДЗ1	Закаленные и естественно состаренные	Закаленные и естественно состаренные	8 - 100	135	70	13
	Закаленные и искусственно состаренные	Закаленные и искусственно состаренные	8 - 100	195	145	œ
	Без термической обработки	Закаленные и естественно состаренные	8 - 300	175	110	15
АД33	Закаленные и естественно состаренные	Закаленные и естественно состаренные	8 - 100	175	110	15
	Закаленные и искусственно состаренные	Закаленные и искусственно состаренные	8 - 100	265	225	10
AMr3	Без термической обработки	Без термической обработки	8 - 300	175	80	13
	Отожженные	Отожженные	8 - 300	175	80	13

Продолжение табл. 104

Марки аломиния и аломиниевого	Состояние материала	Состояние нспытуемых образцов	Диаметр прутка, мм	Временное сопротивление разрыву ов, МПа	Предел текучести о _{0,2} , МПа	Относительное удлинение δ5, %
сплава					не менее	
AMrS	Без терынческой обработки	Без термической обработки	8 - 300	265	120	15
	Отожженные	Отожженные	Св. 300 до 400 8 - 300	245 265	110	10 15
AMró	Без термической обработки	Без термической обработки	8 - 300	315	155	15
	Отокженные	Отожженные	CB. 300 A0 400 8 - 300	315	120 155	S 51
AB	Без термической обработки	Закаленные и естественно состаренные	8 - 300	175	100	14
	Закаленные и естественно состаренные	Закаленные и естественно состаренные	8 - 100	175	100	14
ות	Без теринческой обработки	Закаленные и естественно состаренные	8 - 130 CB. 130 Ao 300	375 355	215 195	12 10
	Закаленные и естественно состаренные	Закаленные и естественно состаренные	8 - 100	375	215	12
716	Без термической обработки	Закаленные и естественно	8 - 22	390	275	10
		состаренные	CB. 22 go 130	420	295	10 8
			* 300 * 400	390	245	o vo

Продолжение табл. 104

			the second secon		•	
Марки аломиния и аломиниевого	Состояние материала	Состояние испытуемых образцов	Днаметр прутка, мм	Временное сопротивление разрыву о _в , МПа	Предел текучести о _{0,2} , МПа	Относительное удлинение δ ₅ , %
сплава					не менее	
Д16	Закаленные и естественно состаренные	Закаленные и естественно состаренные	8 - 22 Св. 22 до 100	390 420	275 295	10 10
B95	Без термической обработки	Закаленные и искусственно состаренные	8 - 22 CB. 22 до 130 * 130 * 300 * 300 * 400	490 530 510 490	390 420 420 390	0004
	Закаленные и искусственно состаренные	Закаленные и искусственно состаренные	8 - 22 Св. 22 до 100	490 530	390 420	9
AK4	Без термической обработки	Закаленные и искусственно состаренные	8 - 300	355	1	∞
	Закаленные и искусственно состаренные	То же	8 - 100	355	ı	∞
AK4-1	Без термической обработки	Закаленные и искусственно состаренные	8 - 100 Св. 100 до 300	390 365	315 275	9
	Закаленные и искусственно состаренные	Го же	8 - 100	390	315	9
AK6	Без термической обработки	Закаленные и искусственно состаренные	8 - 300	355	į	12
	Закаленные и искусственно состаренные	То же	8 - 100	355	f	12

Продолжение табл. 104

					oodri	Apoonimenae maon: 101
Маркн атюминия и алюминиевого	Состояние материала	Состояние нспытуемых образцов	Диаметр прутка, мм	Временное сопротивление разрыву с _в , МПа	Предел текучести о _{0,2} , МПа	Относительное удлинение δ ₅ , %
CIUIABA					не менее	
AK8	Без термической обработки	Закаленные и искусственно состаренные	8 - 150 Св. 150 до 300	450 430	l i	10 8
	Закалениме и искусственно состарениме	То же	8 - 100	450	£	10
\$161	Без термической обработки	Горячепрессованные с естественным старением в течение 30 - 35 сут	8 - 150	345	195	10
		Закаленные и искусственно состаренные	8 - 130 Св. 130 до 200	375 355	245 245	∞ ∞
	Закатенные и естественно сестаренные	Закаленные и сстественно состаренные в течение 30 - 35 сут	8 - 100	345	215	10
		Закаленные и искусственно состаренные	8 - 100	380	245	∞

Пртки в закатенном и естественно или искусственно состаренном состоянии изготовляют диаметром не более II PRWedshke 100 MM

105. Механические свойства прутков повышенной прочности при растяжении

Марка атюминиевого	Состояние матернала	Состояние испъттуемых образцов	Диаметр прутка, мм	Временное сопротивление разрыву ов, МПа	Предел текучести 0 _{0,2} , МПа	Относительное удлинение 85, %
CILIABA					не менее	
AR	Без термической обработки	Захаленные и искусственно	8 - 300	315	225	8
Đ.	Закатенные и искусственно состаренные	состаренные	8 - 100	315	225	&
1 1	Без термической обработки	Закаленные и естественно	8 - 300	420	275	80
ť	Закатенные и естественно состаренные	состаренные	8 - 100	420	275	8
Л16	Без термической обработки	Закаленные и естественно	8 - 300	450	325	8
	Закаленные и естественно состаренные	состаренные	8 - 100	450	325	∞
B95	Без термической обработки	Закаленные и искусственно состаренные	8 - 22 CB. 22 μο 130 * 130 * 300	510 550 530	400 430 430	7 6 6
	Закалениме и искусственно состаренные		8 - 22 Св. 22 до 100	510 550	400	9
AK6	Без термической обработки	Закаленные и искусственно	8 - 300	37.5	265	10
	Закаленные и искусственно состаренные	состаренные	8 - 100	375	265	10
AK8	Без термической обработки	Закаленные и искусственно	8 - 300	460	335	8
	Закаленные и искусственно состаренные	состаренные	8 - 100	460	335	∞

ЛИСТЫ ИЗ АЛЮМИНИЯ И АЛЮМИНИЯ СПЛАВОВ (по ГОСТ 21631-76 в ред. 1990 г.)

Листы изготовляют из алюминия марок A7, A6, A5, A0, AД0, АД1 и алюминиевых сплавов марок Д12, АМи, АМиС, АМг2, АМг3, АМг5, АМг6, AB, Д1, Д16, В95.

Листы подразделяют:

а) по способу изготовления: неплакированные из сплавов марок Д12, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АВ и алюминия марок А7, А6, А5, А0, АД0, АД1 обозначают маркой сплава без дополнительных знаков;

плакированные из сплавов марок АМгб и Д16 с технологическим плакированием - Б (АМгбБ, Д16Б);

плакированные из сплавов марок Д1, Д6, В95 с нормальным плакированием - А (Д1А, Д16А, В95А);

плакированные из сплавов марок АМт6 и Д16 с утолщенным плакированием - У (АМт6У, Д16У);

б) по состоянию материала:

без термической обработки (дополнительное обозначение не присваивается) - А7, А6, А5, А0, АД0, АД1, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, Д16А и В95А.

Примечание. Листы, изготовляемые без термической обработки, могут быть подвергнуты отжигу;

отожженные (М) - А7М, А6М, А5М, А0М, АД1М, Д12М, АМшМ, АМпСМ, АМг2М, АМг3М, АМг5М, АМг6М, АМг6БМ, АМг6УМ, АВМ, Д1АМ, Д16БМ, Д16АМ, Л16УМ и В95АМ.

Примечание. Отожженные листы из алюминия и алюминиевых сплавов можно поставлять без термической обработки, если они удовлетворяют требованиям, предъявляемым к отожженным листам по механическим свойствам, качеству поверхности и выкатки:

нагартованные (Н) А7Н, А6Н, А5Н, А0Н, АД0Н, АД1Н, АМпН, АМпСН и АМп2Н:

закаленные и естественно состаренные (Т) - АВТ, Д1АТ, Д16Г, Д16АТ и Д16УГ;

закаленные и искусственно состаренные (11) АВТ1 и В95АГ1,

нагартованные после закачки и естественного старения (ТН) - Д16БГН, Д16АГН;

в) по качеству отделки поверхности на группы: высокой отделки - В (А7, А6, А5, А0, АД0, АД1, АМи, АМи2);

повышенной отделки - П (А7, А6, А5, А0, АД0, АД1, АМи, АМиС, Д12, АМг2, АМг3, АМг5, АМг6, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У, В95А);

обычной отделки (без дополнительного обозначения) - A7, A6, A5, A0, AД0, АД1, АМц, АМцС, Д12, АМг2, АМг3, АМг5, АМг6, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У и В95А.

Примечание. Листы высокой группы отделки (1) изготовляют толщиной до 4,0 мм;

r) по точности изготовления по толщине:

повышенной точности - П;

нормальной точности - без дополнительного обозначения.

Листы поставляют мерной или кратной мерной длины в пределах длин, установленных по табл. 106, с интервалом 500 мм.

В случае отсутствия в наряде-заказе указания о точности изготовления и группе отделки листы из алюминия и алюминиевых сплавов изготовляют нормальной точности и обычной отделки.

Примеры обозначений:

лист из сплава марки АД1, без термической обработки, обычной отделки поверхности, нормальной точности изготовления, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

Jlucm AJ[1-5 × 1000 × 2000 TOCT 21631-76

то же, отожженный, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

> Auem AJUM 5 × 1000 × 2000 TOCT 21631 - 76

 до же, полупавртованный, повышенной отделки поверхности, нормальной гочности и потовления;

> Лист АД1[†]/ЭН 11/8 + 1000 × 2000. TOCT 21631-76

то же, напартованный, повышенной отдел ки поверхности, повышенной точности изго токтения:

Лист АД1Н-11-5 × 1000 × 2000 ГОСТ 21631-76

106. Размеры листов, мм, в зависимости от марки сплава, плакирования и состояния материала

Марка алюминия, алюминиевого сплава и плакирование	Толщина листа	Ширина листа	Длина листа
Без те	рмической	обработки	
A7, A6, A5, A0		600, 800, 900, 1000	
АД0, АД1		600, 800, 900	2000
Ад0, Ад1, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, АД1, Д16А	От 5,0 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	2000 - 7000
B95A		1000, 1200, 1425, 1500, 2000	
	Отожженн	ые	
А7, А6, А5, А0, АД0, АД1	От 0,3 до 10,5	600, 800, 900, 1000	2000
АДО, АДІ, АМц, АМцС, АВ, АМг2	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	2000 - 4000
	Св. 0,7 до 10,5	1000, 1200, 1400, 1500,	2000 - 7000
AMr3, AMr5, AMr6, AMr6B	Св. 0,7 до 10,5	1600, 1800, 2000	
АМтбУ	Св. 0,7 до 5,5	1000, 1500, 1400, 1600, 1800, 2000	2000 - 7000
Д12	От 0,5 до 4,0	1200, 1500	3000 - 4000
Д1А, Д16Б, Д16А	Св. 0,7 до 4,0	1000, 1200, 1400, 1500,	
	Св. 4,0 до 10,5	1600, 1800, 2000	
ДібУ	Св. 0,7 до 4,0	1200, 1500	2000 - 7000
B95A	Св. 0,7 до 4,0	1000, 1200,	
	Св. 4,0 до 10,5	1425, 1500, 2000	
B95-2A	От 1,0 до 10,5	1200, 1400, 1500	
II o	лунагартов	анные	ı
АМц, АмцС, АМг2, АМг3	Св. 0,7 до 4,0	1000, 1200, 1400, 1500,	2000 - 7000
	Св. 4,0 до 10,0	1600, 1800, 2000	2000 - 4000
Д12	От 0,5 до 4,0	1200, 1500	3000 - 4000

Продолжение табл. 106

Марка алюминия, алюминиевого сплава и плакирование	Толшина листа	Ширина листа	Длина листа		
	Нагартован	ные			
А7, А6, А5, А0, АД0, АД1	От 0,3 до 10,5	600, 800, 900, 1000	2000		
АД0, АД1	От 0,5 до 4,5		2000 - 4000		
	Св. 4,5 до 10,5	1000, 1200, 1400, 1500,	2000 - 7000		
АМц, АМцС, АМг2	Св. 0,7 до 4,0	1600, 1800, 2000	2000 - 7000		
	Св. 4,0 до 10,5	,	2000 - 4000		
Закаленные	і и естествеі	но состаренные	•		
АВ, Д1А, Д16Б, Д16А	От 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	2000 - 7200		
Д16У	От 0,5 до 4,0	1200, 1500			
Закаленные и	, искусстве	енно состаренные			
AB	Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	2000 7000		
B95A	Св. 0,7 до 4,0	1000, 1200, 1425,	2000 - 7000		
	Св. 4,0 до 10,5	1500, 2000			
Нагартоі есте	і занные пос ственного	те закалки и старения			
Д16Б и Д16А	От 1,5 до 7,5	1000, 1200, 1400, 1500	2000 7200		

107. Толщина плакирующего слоя

	Голщина плакирующего едоя на каждой стороне листа, 🐍 от номинальной толщины листа, при плакировании				
Толщина листа, мм	технологическом	нормальном	уто пценном		
	не (кине	He Mellee			
От 0,5 до 1,9		4,0	8,0		
CB. 1,9 × 4,0	1,5	2,0	4,0		
* 4,0 * 10,5		2,0			

108. Механические свойства образнов, вырезанных из листов в состоянии поставки в направлении поперек прокатки

17	DO. MEXABBRCCARC COORC	100. HICAARM SCLARC LEGELIDA UUDASHUD, DRIPCSARIBBA NS SINCIUD B COCLUMERI HUCLBURG B HAMPAGACHER HUCKFUR REPARTER	AA HS SINCION B COCIONIE	n nociation p nampa	parenna nonche	a uponerium	
Марка атюминия, алюминиевого сплава и плакирование	Состояние матернала листов	Обозначение сплава и состояние материала	Состояние испытуемых образцов	Толцина листа, мм	Временное сопротив- ление σ _в , МПа	Предел текучести о _{0,2} , МПа	Относи- тельное удлинение при $l = 11,3\sqrt{F}$ $\delta, \%$
						не менее	
	Отожженные	A7M, A6M, ASM, A0M, AД0M, AД1M, AД00M, AДM	Отожженные	От 0,3 до 0,5 Св. 0,5 » 0,9 * 0,9 » 10,5	09 09	, 1 1	20,0 25,0 30,0
A7, A6, A5, A0, A10, A11, A100, A1	Полунагартованные	А7Н2, А6Н2, А5Н2, А0Н2, АД0Н2, АД1Н2, АД00Н2, АДН2	Полунагартованные	От 0,8 до 4,5	100	1	6,0
	Нагартованные	А7Н, А6Н, А5Н, А0Н, АД0Н, АД1Н, АД00Н, АДН	Нагартованные	Or 0,3 до 0,8 Св. 0,8 » 3,5 » 3,5 » 10,5	145 145 130	1 1 1	3,0 4,0 5,0
	Без термической обработки	А7, А6, А5, А0, АД0, АД1, АД00, АД	Без термической обработки	От 5,0 до 10,5	70	1 .	15,0
	Отожженные	АМиМ, АМиСМ	Отожженные	Or 0,5 до 0,7 Св. 0,7 » 3,0 » 3,0 » 10,5	06 06 06 06	1 1 1	18,0 22,0 20,0
АМи, АМиС	Полунагартованные	АМцН2, АМцСН2	Полунагартованные	От 0,5 до 3,5 Св. 3,5 » 4,0	145 145	1 1	5,0 6,0
	Нагартованные	АМиН, АМиСН	Нагартованные	0,5 Св. 0,5 до 0,8	185 185	1 [1,0 2,0

C	Y	٦
ė	٠,	•
٦	٠.	•
T	٠,	4
		•
	•	
	2	5
۹	ς	•
	c	*
	2	=
	÷	
	7	•
	_	
	ч	v
	2	3
	S	=
	2	۰
	9	υ
	S	۰
	7	¢
	ì	3
	2	5
	C	3
ŕ	٠	5
	2	
	٠	۹
	٤	۵
1	٠	₹
,	٠,	

Марка алюминия, алюминиевого сплава н плакирование	Состояние материата листов	Обозначение сплава и состояние материала	Состояние испытуемых образцов	Топцина листа, мм	Временное сопротив- ление ов. МПа	Предел текучести о _{0,2} , МПа	Относи- тельное удлинение при $l = 11,3\sqrt{F}$ $\delta, \%$
						не менее	
АМи, АМиС	Нагартованные	АМиН, АМиСН	Нагартованные	Св. 0,8 до 1,2 * 1,2 * 4,0	185 185	1 5	3,0
	Без теринческой обработки	АМи, АМиС	Без термической обработки	От 5,0 до 10,5	100	-	10,0
MM	Нагартованные	ммн	Нагартованные	От 1,0 до 4,5	He	Не испытываются	тся
712	Отожженные	JIZM	Отожженные	От 0,5 до 4,0	155	•	14,0
	Полунагартованиме	J12H2	Полунагартованные	От 0,5 до 4,0	220	,	3,0
	Отожженные	AMr2M	Отожженные	Or 0,5 go 1,0 CB. 1,0 * 10,5	165 165	l I	16,0 18,0
AMr2	Папилитривные	AMr2H2	Полунагартованные	Or 0,5 go 1,0 CB. 1,0 * 4,0	235 - 314 235 - 314	145 145	5,0 6,0
	Нагартованные	АМЕЗН	Нагартованные	Or 0,5 go 1,0 CB. 1,0 * 4,0	265 265	215 215	3,0 4,0
	Без термической обработки	AMr2	Без термической обработки	От 5,0 до 10,5	175	ı	7,0

Примечание ГОСТ предусматривает и другие марки алюминиевых сплавов.

Марка сплава	Состояние испытуемых образцов	Толщина листа, мм	Временное сопротив- ление σ _в , МПа	Предел текучести _{σ_{0,2}, МПа}	Относительное удлинение при $I = 11.3\sqrt{F}$ δ , %
				не менее	
Д1А		От 0,5 до 1,9 Св. 1,9 » 10,5	355 355	185 195	15,0 15,0
Д16Б	Закаленные и естественно состаренные	От 0,5 до 1,5 Св. 1,5 » 6,0 » 6,0 » 10,5	425 425 425	275 275 275	13,0 11,0 10,0
Д16А		От 0,5 до 1,9 Св. 1,9 » 10,5	390 410	255 265	15,0 12,0
Д16У		От 0,5 до 1,9 Св. 1,9 » 4,0	350 390	220 255	13,0 13,0
B95A	Закаленные и ис- кусственно соста- ренные	От 0,5 до 1,0 Св. 1,0 » 6,0 » 6,0 » 10,5	470 480 480	390 400 400	7,0 7,0 6,0
AB	Закаленные и естественно состаренные	От 0,5 до 0,6 Св. 0,6 » 3,0 » 3,0 » 5,0 » 5,0 » 10,5	175 175 175 175 155	- - -	18,0 20,0 18,0 16,0
	Закаленные и ис- кусственно соста- ренные	От 0,5 до 5,0 Св. 5,0 » 10,0	275 275	-	10,0 8,0

109. Механические свойства при растяжении

ЛЕНТЫ ИЗ АЛЮМИНИЯ И АЛЮМИНИВЫХ СПЛАВОВ (по ГОСТ 13726-97)

Технические требования. Ленты изготовляют из алюминия марок: А7, А6, А5, А0 с химическим составом по ГОСТ 11069-74; АДО, АД1, АД00, АД с химическим составом по ГОСТ 4784-97; из алюминиевых сплавов марок: ММ, Д12, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АВ, Д1, Д16, В95, 1915 с химическим составом по ГОСТ 4784-97; В95-1 с химическим составом по ГОСТ 1131-76.

Классификация. Ленты подразделяют:

По способу изготовления: неплакированные - без дополнительного обозначения;

плакированные: с технологической плакировкой - Б; с нормальной плакировкой - А.

По состоянию материала:

без термической обработки - без дополнительного обозначения;

отожженные - М;

четвертьнагартованные - Н1;

полунагартованные - Н2;

тричетвертинагартованные - Н3;

нагартованные - Н.

По точности изготовления по толщине:

с несимметричными отклонениями по толщине: нормальной точности - без дополнительного обозначения; новышенной точности - II:

с симметричными отклонениями по тол-шине.

Основные параметры и размеры Ленты в зависимости от марки сплава, плакировки и состояния материала изготовляют размеров, указанных в табл. 110. Ленты, изготовляемые прокаткой, шириной до 300 мм, должны быть с интервалом 5 мм, а ленты шириной св. 300 до 500 мм - с интервалом 50 мм.

Ленты толщиной от 0,25 до 4,0 мм, шириной менее 1000 мм могут изготовляться продольной разрезкой лент шириной свыше 1000 мм.

Ленты, получаемые продольной разрезкой, изготовляют шириной: 300, 321, 340, 350, 360, 366, 390, 400, 430, 496, 500, 560, 570, 600, 630 мм.

Ленты, изготовляемые прокаткой требуемой ширины, толщиной до 3,0 мм при ширине до 1000 мм изготовляют с обрезкой кромок и уголщенных концов.

Толщина концов лент после обрезки утолщенных концов не должна превышать номинальной.

Допускается изготовление лент шириной от 800 до 900 мм прокаткой требуемой ширины из алюминиевых сплавов без обрезки кромок и утолщенных концов.

Ленты, изготовляемые прокаткой требусмой ширины, всех толщин при ширине свыше 1000 мм изготовляют без обрезки кромок и утолщенных концов.

Предельные отклонения по ширине лент без обрезки кромок и утолщенных концов, изготовляемых прокаткой требуемой ширины, лолжны быть:

- не более +50 мм для алюминия всех марок и алюминиевых сплавов марок ММ, АМц, АМцС, АМг2;
- не более +80 мм для алюминиевых сплавов марок AMr3, AMr5, AMr6, AB, Д1, Д12, Д16, В95, В95-1, 1915.

Ленты в рудонах изготовляют длиной, полученной из прокатанной заготовки.

В рудоне при толщине ленты 1,0 мм и менее допускается не более двух обрывов, а при толщине ленты bonee 1,0 мм обрывы не допускаются.

Для лент без обрезки кромок и утолиен ных концов количество утолиенных концов в рудоне не должно превышать двух при отсутствии обрывов. При каждом обрыве допуска ется дополнительно по два утолиенных конца.

Допускается изготовление рудона сваркой нескольких рудонов. В рудоне допускается не более двух сварных швов. В месте сварного шва допускается уголщение не более 3 % но минальной толщины ленты.

Внутренний диаметр рудонов должен быть для обрезанных лент и лент без обрезки кромок (500 ± 10) мм или (750 ± 10) мм.

Ленты толщиной 0,5 мм и менее допускается наматывать на шпули. При этом внутренний диаметр рулона должен быть: (70 ± 5) , (100 ± 5) , (250 ± 2) , (280 ± 2) , (290 ± 10) , (300 ± 2) и (500 ± 2) мм.

Теоретическую массу $M_{\rm Teop}$ 1 м 2 ленты, кг, шириной от 40 до 500 мм вычисляют по формуле

$$M_{\text{Teop}} = \frac{H_{\text{MAKC}} + H_{\text{MUH}}}{2} \gamma \cdot 10^{-3},$$

теоретическую массу 1 м длины ленты, кг, шириной 600 мм и более вычисляют по формуле

$$\begin{split} M_{\text{Teop}} &= \frac{H_{\text{MAKC}} + H_{\text{MWH}}}{2} \times \\ &\times \frac{B_{\text{MAKC}} + B_{\text{MWH}}}{2} \gamma \cdot 10^{-3}, \end{split}$$

где $H_{\text{макс}}$, $H_{\text{мин}}$ - наибольшие и наименьшие размеры по толщине, мм; $B_{\text{макс}}$, $B_{\text{мин}}$ - наибольшие и наименьшие размеры по ширине, мм; γ - плотность алюминиевого сплава, г/см³.

Механические свойства алюминиевых лент приведены в табл. 111, теоретическая масса 1 м² ленты - в табл. 112.

Примеры условных обозначений:

Лента из алюминиевого сплава марки Д16 с нормальной плакировкой в отожженном состоянии, толщиной 2,0 мм, шириной 1200 мм, нормальной точности изготовления, в рудоне (РЛ):

То же, повышенной точности изготовае ния:

Лента и са воминия марки АДО, без и таки ровки, в отожженном состоянии, то шинной 0,8 мм, шириной 300 мм, пормальной точно сти и потовлении, в рузоне (РП)

То же, в напартованном состоянии

Лента АЛО II 0,8 × 300 × РЛ TOCT 13726-97

110. Размеры лент из алюминия и алюминиевых сплавов, мм

Состояние материала	Марка алюминия или алюминиевого сплава и плакировка	Толщина лент	Ширина лент
Без термической обработки	A7, A6, A5, A0, AД0, АД1, AД00, AД, AМи, AМиС, AMr2, AMr3, AMr5, AMr6, AMr6Б, AB, Д1, Д1А. Д16, Д16A, B95-1, B95-1A	От 5,0 до 10,5	1900, 1200, 1400, 1500, 1600, 1800, 2000
	1915		1200, 1500, 2000
	B95A		1000, 1200, 1400, 1500, 2000
Отожженное	А7, А6, А5, А0, АД0, АД1, АД00, АД, АМц, АМцС, АМr2, АМr3	От 0,25 до 2,0	От 40 до 500, 600, 700, 800, 900, 1000
		Св. 2,0 до 3,0	700, 800, 900, 1000
	А7, А6, А5, А0, АД0, АД1,	От 0,3 до 0,4	1000
	АД00, АД, АМц, АМцС, АМг2, АВ	Св. 0,4 до 0,7	1000, 1200, 1400, 1500, 1600
		Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000
	Д1, Д16, Д1А, Д16Б, Д16А	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600
		Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000
	AMr3, AMr5, AMr6B, AMr6	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600
		Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000
	B95-1, B95-1A	От 0,8 до 2,0	1000, 1200
		Св. 2,0 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000
	1915	0,8	1200
		От 1,0 до 4,5	1200, 1500
	Д12	От 0,5 до 4,0	1200, 1500
	B95A	От 0,5 до 0,7	1000, 1200, 1400, 1500
		Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 2000

Продолжение табл. 110

Состояние материала	Марка алюминия или алюминиевого сплава и плакировка	Толщина лент	Ширина лент
Четвертьнагарто- ванное	AMr2	От 0,3 до 0,4	1000
		Св. 0,4 до 4,0	1000, 1200, 1400, 1500
Полунагартован- ное	АМц, АМцС, АМг2	От 0,3 до 0,4	1000 ·
		Св. 0,4 до 0,7	1000, 1200, 1400, 1500, 1600
	АМц, АМцС, АМг2, АМг3	Св. 0,7 до 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000
	Д12	От 0,5 до 4,0	1200, 1500
	А7, А6, А5, А0, АД0, АД1, АД, АД00	От 0,8 до 4,5	1000, 1200, 1400, 1500
Тричетвертина- гартованное	АМц, АМг2	От 0,3 до 0,4	1000
		Св. 0,4 до 4,0	1000, 1200, 1400, 1500
Нагартованное	А7, А6, А5, А0, АД0, АД1, АД00, АД, АМи, АМиС, ММ	От 0,25 до 2,0	От 40 до 500, 600, 700, 800, 900, 1000
	A7, A6, A5, A0, AД0, АД1,	Ог 0,3 до 0,4	1000
	AJI00, AJI, AMII, AMIIC, AMr2	Cn 0,4 no 0,7	1000, 1200, 1400, 1500, 1600
		Св. 0,7 до 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000
	AMiob, AMio	От 1,0 до 1,5	1000, 1200
	AMitob, AMito	Св. 1,5 до 4,0	1000, 1200, 1400, 1800, 1600, 1800, 2000
	мм	От 2,0 до 4,5	1000, 1200, 1400, 1500

111. Механические свойства лент (по ГОСТ 13726-97)

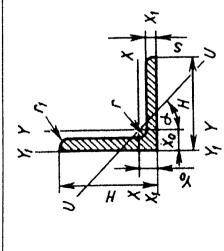
			. (40 1 0 0 1 1.		
Марка алюминия или алю- миниевого сплава	Состояние материала лент и испытуемых образцов	Толщина лент, мм	Временное сопротив- ление ов, МПа	Предел текучести о _{0,2} , МПа	Относительное удлинение при $l_0=11.3\sqrt{F_0}$ $\delta,\%$
				не менее	
A7, A6, A5, A0, AД0,	Отожженные	От 0,25 до 0,5 Св. 0,5 » 0,9 » 0,9 » 10,5	60	1 1	20,0 25,0 28,0
АД1, АД00, АД	Полунагартован- ные	От 0,8 до 4,5	100	-	6,0
	Нагартованные	От 0,25 до 0,8 Св. 0,8 » 3,5 » 3,5 » 4,0	145 145 130	-	3,0 4,0 5,0
	Без термической обработки	От 5,0 до 10,5	70	_	15,0
	Отожженные	От 0,25 до 0,7 Св. 0,7 » 3,0 » 3,0 » 10,5	90	- 1	18,0 22,0 20,0
АМц, АМцС	Полунагартован- ные	От 0,3 до 3,5 Св. 3,5 » 4,0	145	-	5,0 6,0
	Тричетвертина- гартованные	От 0,3 до 4,0	165 - 235	-	4,0
	Нагартованные	OT 0,25 до 0,5 CB. 0,5 » 0,8 » 0,8 » 1,2 » 1,2 » 4,0	185	- - -	1,0 2,0 3,0 4,0
	Без термической обработки	От 5,0 до 10,5	100	_	10,0
MM	Нагартованные	От 0,25 до 4,5	I.	le испытыван	отся
	Отожженные	От 0,25 до 1,0 Св. 1,0 » 10,5	165	-	16,0 18,0
	Четвертьнагарто- ванные	От 0,3 до 4,0	215 - 295	155	5,0
AMr2	Полунагартован- ные	Or 0,3 до 1,0 Св. 1,0 » 4,0	235 - 315	175	5,0 6,0
	Тричетвертина- гартованные	От 0,3 до 0,4	255 - 355	195	3,0
	Нагартованные	От 0,3 до 1,0 Св. 1,0 » 4,0	265	215	3,0 4,0
	Без термической обработки	От 5,0 до 10,5	175	-	7,0

Продолжение табл. 111

Марка алюминия или алю- миниевого сплава	Состояние материала лент и испытуемых образцов	Толщина лент, мм	Временное сопротив- ление σ _в , МПа	Предел текучести _{50,2} , МПа	Относительное удлинение при $l_0 = 11.3\sqrt{F_0}$ δ , %
				не менее	
	Отожженные	От 0,25 до 0,6 Св. 0,6 » 4,5 » 4,5 » 10,5	195 195 185	90 100 80	15,0
АМг3	Полунагартован- ные	От 0,7 до 4,0	245	195	7,0
	Без термической обработки	От 5,0 до 6,0 Св. 6,0 » 10,5	185	80	12,0 15,0
AMr5	Отожженные	От 0,5 до 0,6 » 0,6 » 4,5 Св. 4,5 » 10,5	275	135 145 130	15,0
	Без термической обработки	От 5,0 до 6,0 Св. 6,0 » 10,5	275	130	12,0 15,0
	Отожженные	От 0,5 до 0,6 Св. 0,6 » 10,5	305 315	145	15,0
AMr6B, AMr6	Нагартованные	От 1,0 до 4,0	375	275	0,0
	Без термической обработки	От 5,0 до 10,5	315	155	15,0
B95A	Отожженные	От 0,5 до 10,5	He Gonec 245		10,0
	Отожженные	От 1,0 до 5,5	He Godee 245	and the second s	10,0
1915	beз гермической обработки	Ог 5,0 до 10,5	115	195	10,0
		От 5,0 до 10,5	205	165	
B95×1A, B95×1	Отожженные	От 0,8 до 10,5	He Gonee 245		10,0
	Без гермической обработки		Не испыт	ыникися	

112. Теоретическая масса 1 м² ленты

Толщина ленты, мм	112. Георетическая Масса 1 м ² ленты, кг	Толщина ленты, мм	Масса 1 м ² ленты, кт
0,5	1,425	2,5	7,125
0,6	1,710	3,0	8,550
0,7	1,995	3,5	9,975
0,8	2,280	4,0	11,400
0,9	2,565	4,5	12,825
1,0	2,850	5,0	14,250
1,1	3,135	5,5	15,675
1,2	3,420	6,0	17,100
1,3	3,705	6,5	18,125
1,4	3,990	7,0	19,950
1,5	4,275	7,5	21,375
1,6	4,560	8,0	22,800
1,7	4,845	8,5	24,225
1,8	5,130	9,0	25,650
1,9	5,415	9,5	27,075
2,0	5,700	10,0	28,500
		10,5	29,525


II р и м е ч а н и я : 1. Масса 1 м² вычислена по номинальной толщине при плотности 2,85 г/см³, что соответствует плотности алюминиевого сплава марки B95-2.

^{2.} Для вычисления приближенной массы других алюминиевых сплавов и алюминия следует пользоваться следующими переводными коэффициентами: для алюминия всех марок - 0,950; для сплава марок: АМц - 0,958; АМг2 - 0,940; АМг5 - 0,930; АМг6 - 0,926; Д1 - 0,982; Д16 - 0,976; Д12 - 0,954; 1915 - 0,972.

УГОЛКИ ПРЕССОВАННЫЕ ИЗ АЛЮМИНИЕВЫХ И МАГНИЕВЫХ СПЛАВОВ РАВНОПОЛОЧНЫЕ (по ГОСТ 13737-90)

ГОСТ 13737-90 устанавливает сортамент прямоугольных профилей равнополочного уголкового сечения из апоминиевых и магниевых силавов, изготовляемых метолом горячего прессования.

113. Размеры, масса 1 м профиля и справочные величины для осей

Технические требования - по ГОСТ 8617-81. О б о з н а ч е н и я :

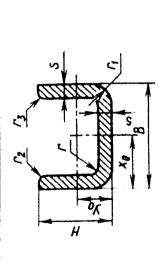
J - момент инерции; i - радиус инерции; X_0 , центра тяжести.

Y₀ - расстояние от

Номер профила Н з г г п. п. п. п. п. п. п. п. п. п. п. п. п.					Lichamicrani		Macc	Масса 1 м		Спј	Справочные величины для осей	чины для о	сей	
15 3 3 1.5 0.819 0,234 18 1.5 2 0.75 0.524 0,149 20 2 2 1 0.704 0,218	Номер профиля	*	~	k .	¢'	Плошаль сечения, см ²	профил спо		X - X;	X - X; Y - Y	$X_1-X_1;\ Y_1-Y_1$	Y ₁ - Y ₁	U.	<i>u</i> - <i>u</i>
18 3 3 1.5 0.819 18 1.5 2 0.75 0.524 20 2 2 1 0.764			X	**	and the same of a second		алюми- ниевого	магние- вого	$J_x = J_y,$ c_{M}^4	$J_X = J_y, \qquad i_X = i_y,$ $c_{M^4} \qquad c_{M}$	$ \begin{cases} J_{x_1} = J_{y_1}, & X_0 = Y_0, \\ c_{M^4} & c_M \end{cases} $	$X_0 = Y_0$, cm	J _u min, cM ⁴	i'u min) CM
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	416021	37	m			0,819	0,234	0,148	0,154	0,434	0,340	0,476	0,067	0,286
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	410025	≫6 ++1	1/1	r.s	() ()	785.0	0,149	0,094	0.160	0,553	0,290	0,498	0,064	0,351
	410040	93	N	~ 1	ester, elle-	3	0,218	0,138	0,284	0,610	0,530	0,567	0,115	0,388
410062 25 3.2 3.2 1.e 1.509 0.430	410062	25	3.2	3.2	Ų,	1.509	0,430	0,271	0,851	0,751	1,660	0,733	0,349	0,481

						Macca 1 M	1 1 M		CI	Справочные величины для осей	чины для ос	ей	
Номер профиля	Н	8	k	۲,	Плошаль сечения, см ²	профиля, кт, из сплава	I, КТ, ИЗ ава	X - X; Y - Y	Y - Y	$X_1-X_1;\ Y_1-Y_1$	rı - rı	U - U	U
		XX				алюми- ниевого	магние- вого	$J_x = J_y^*$ $_{CM}^*$	$i_x = i_y,$ c_M	$J_{x_1} = J_{y_1},$ c_{M^4}	$X_0 = Y_0$, cM	Ju min, CM ⁴	i _u min, CM
410078	æ	2	2	Ŀ	1,304	0,372	0,235	1,012	0,932	1,789	0,817	0,406	0,591
410081	8	3	٣	1.5	1,720	0,490	0,310	1,439	0,915	2,684	0,851	0,584	0,583
410096	35	m	٣	1,5	2,020	0,576	0,364	2,338	1,076	4,261	926,0	0,944	0,684
410113	\$	2.5	2.5	1.25	1,945	0,554	0,350	3,017	1,246	5,301	1,084	1,211	0,789
410119	\$	3,5	3.5	1.5	2,694	0,767	0,485	4,075	1,230	7,447	1,119	1,647	0,782
410121	40	*†	4	7	3,057	0,871	0,550	4,550	1,220	8,483	1,134	1,845	0,777
410133	45	5	'n	2,5	4,277	1,219	0,770	7,957	1,364	15,107	1,293	3,241	0,870
410144	50	ν.	5	2.5	4,777	1,361	0,860	11,107	1,525	20,710	1,418	4,505	0,971
410151	20	6,5	9	3,25	6,111	1,742	1,100	13,773	1,501	26,971	1,470	5,657	0,962
410160	99	S	Ŋ	2.5	5,777	1,646	1,040	19,704	1,847	35,773	1,668	7,950	1,173
410162	09	9	Ŋ	3	6,855	1,954	1,234	23,012	1,832	42,931	1,705	9,340	1,167
410175	70	7		,	9,443	2,691	1,700	43,337	2,142	80,754	1,991	17,609	1,366
410193	08	∞	∞	4,5	12,210	3,480	2,198	72,483	2,436	135,16	2,266	29,379	1,551
410201	8	6	10	4,5	15,518	4,422	2,793	116,67	2,742	217,47	2,549	47,294	1,746
		\dashv	4										

ГОСТ предусматривает также другие номера уголков.


Примечания: 1. Переводные коэффициенты для вычисления приближенной массы 1 м профиля из алюминия и алюминиевых сплавов приведены в примечании к табл. 112.

2. Переводные коэффициенты для вычисления приближенной массы 1 м профиля из магниевых сплавов: магний всех марок - 1,0; сплавы марок: МА1 - 0,978; МА2 - 0,989; МА2-1 и МА2-1 и - 0,990; МА8 и МА12 - 0,989.

ШВЕТЛЕРЫ РАВНОТОЛЩИННЫЕ, РАВНОПОЛОЧНЫЕ ИЗ АЛЮМИНИЕВЫХ И МАГНИЕВЫХ СПЛАВОВ (по ГОСТ 13623-90)

Швелтеры изготовляют метолом горячего прессования из алюминиевых и магниевых силавов.

114. Размеры, масса 1 м профиля и справочные величины для осей

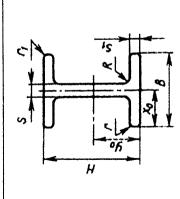
Обозначения:	6. y_0 - координаты центра тяжести, мм; I_1 - момент инердии, см ⁴ :	$V_{X_1} W_1$ - Moment conported in W_2	х, 1, - ралиус инершии:	. i = 0.5 у профилей 440291, 440335;	$r_1 = 3$ у профиля 440332.
Обозначени	х ₀ , у ₀ - координаты центра тяжести, мм; Г. Г момент инерики см ⁴ :	W_{x} W_{y} - жомент сопротивления, см ³ ;	l_{x} , l_{y} - painyc wheplum:	η = 0.5 у профитей 440291, 440335;	$r_1 = 3$ у профиля 440332.

		kom ar ordered	m reddin i	e companie de			Macc	Масса 1 м)	Справоч	Справочные величины для осей	ичины д	ия осей		
Номер профиля	=	RC	994 1000 - 1000 - 1000	k.	L'	Площаль сечения, см ²	гжфофи спэ	профиля, кг. из сплава	Ŷ:	3,0	х _I	I_{p}	IV _x	11/ _y	$i_{\rm x}$	i _y
			Z, Z,				алюми- ниевого	магние- вого	X	ЖЖ	Ċ	cM ⁴	см ³	f3	3	см
440079	*:	Ä		٠,	3.	76.0	0,227	0.143	12.5	4,60	0,170	0,770	0,163	0,617	0,463	586,0
440112	4 0	Ţ	,,	· •	2 - 1	1,457	0,415	0.262	20.0	4.93	0,421	3,418	0,322	1,709	0,538	1,534
446134	ř	4			<i>7</i> :	1.527	0,435	0.275	12.5	96.9	0.584	1,454	0,448	1,163	0,620	8/6,0
440178	₹;	ě,	•	, ,	*	1.337	0.381	0.241	15.0	6.38	0,522	1,886	0,383	1,257	0,625	1,189
446130		% :	7;		Y .	1,777	0.500	0.320	17.5	6.15	0,656	3,248	0,474	1,856	609'0	1,355
1000	71	4		. 1	ı	2.087	565.0	0.376	12.5	9,42	1,279	2,012	0,821	1,609	0,783	0,982
3104	71	;. <u>;</u>	 	 6 1	'	1,438	0,410	0.259	16.0	8,17	0.915	2,446	0,544	1,529	0,798	1,305
440184	<i>*</i> 1	Ŷ		ři	?;	1,737	0.495	0.313	20.0	7,57	1,062	4,421	609'0	2,210	0,783	1,599
10701	ä	Č	·]	•	ç;	4.149	1,182	0,747	30,0	7,04	2,145	2,145 20,706	1,194	6,902	0,721	0,239

Продолжение табл. 114

							Масса 1 м	1 1 ж			Справоч	ные вел	ичины	Справочные величины для осей		
Номер профизя	Н	8 9	5	ζ.	€,	Птощадь сечения, см ²	профиля, кт, из сплава	I, КГ, ИЗ ава	Ŷ.	3,0	I_{χ}	$I_{\mathcal{Y}}$	ΙV _x	Wy	ix	i_y
			N.N.				алюми- ниевого	жагние- вого	MM	×	ร์	cm ⁴	ซ์	см3	СМ	¥
440206	25	70	3.0	3.0	1,5	3,459	986'0	0,623	35,0	6,24	1,785	23,677	0,951	6,765	0,719	2,620
440245	30	4	3.0	0.4	ı	3,040	0,866	0,547	22,5	09'6	2,700	9,950	2,810	4,420	0,940	1,790
440253	30	55	3.0	3.0	1.5	3,309	0,943	965'0	27.5	8,81	2,804	15,283	1,323	5,557	0,922	2,152
440291	35	8	0,+	0.+	0.5	4,950	1,410	0,891	30,0	15,70	3,530	27,110	2,250	9,040	0,840	2,340
440327	9	45	3.0	4.0	ı	3,638	1,037	0,655	22,5	13,74	5,961	12,319	2,270	5,475	1,280	1,840
440332	40	70	5,0	5.0	3,0	7,069	2,015	1,272	35,0	12,30		10,493 51,978	3,788	14,851	1,217	2,709
440335	40	80	4,0	0,4	5,0	6,148	1,752	1,107	40,0	11,32	9,109	59,310	3,176	14,827	1,219	3,110
440359	45	75	5.0	5,0	ı	7,857	2,239	1,414	37,5	13,90	15,029	15,029 67,425	4,832	17,980	1,385	2,934
440383	50	100	5.0	5,0	l	9,610	2,738	1,729	50,0	14,10	23,810	23,810 103,700 16,890 20,740	16,890	20,740	1,570	3,280

ГОСТ предусматривает также и другие номера профилей. Технические требования - по ГОСТ 8617-81.


Примечания:

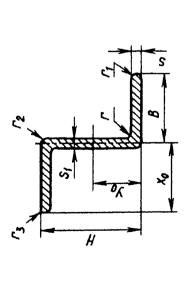
1. Значения радиусов скругтения г, гу должны соответствовать требованиям ГОСТ 8617-81.

^{2.} Масса 1 м профиля вычислена по номинальным размерам при плотности: алюминиевого сплава 2,85 г/см³, что соответствует плотности Переводные коэффициенты для вычисления массы 1 м профиля из сплавов других марок см. табл. 112, 113. сплава марки В95; магниевого сплава 1,90 г/см³, что соответствует плотности сплава марки МА14.

ДВУТАВРЫ РАВНОПОЛОЧНЫЕ ПРЕССОВАННЫЕ ИЗ АЛЮМИНИЕВЫХ И МАГНИЕВЫХ СПЛАВОВ (по ГОСТ 13621-90)

115. Размеры, масса 1 м профиля и расчетные величины

О 6 о 3 н а ч е н и я : x_0 , y_0 - координаты центра тяжести, мм; I_x , I_y - момент инершии, см⁴; I_X , I_Y , - момент сопротивления, см³; i_x , i_y - радиус инершии, см.


Номер	H	EQ.	V;	V)	~	١.	Птощаль сечения.	Масса 1 м профиля, кт. из сплава	а 1 м тя, кт. лава	ŷχ	У0	$I_{\rm x}$	$I_{\mathcal{Y}}$	74 x	W,	.2.	iy
] >	3			CM2	алюми- ниевого	магние- вого	X	жж	cM ⁴	44	СМ³	[₃	СМ	×
430622	R	્ર.		C.1	(,1		1,624	0,463	0,292	15	15	2,615	0,882	1,743	1,743 0,588 1,272 0,739	1,272	0,739
430625	٢,	Ą	· 1	· / ·	نام. و ا	2	2,154	0,614	0,388	15	17,5	4,499	1,099	2,571	0,732	1,450	0,717
430041	্	i ; ;	r	15° 1	10.		4,265	1,216	0.768	25	70	12,478	7,143	6,239	2,857	1,715	1,298
430053	Ş.	Ç,	71	**	**	٠, ٢	5.187	1,478	0.934	25	25	23,148	8,129	9,259	3,251	2,120	1,256
430058	٤,	8	•	1,40	\$ ** 1	<u>~:</u>	17.827	5.081	3,209	46.5	28,5	94,349	106,733	33,104 22,953 2,301	22,953	2,301	2,450
13(4)4	Ź	ŧ	**1	**1	1/1	55	8.715	2,484	1,569	35	30	57,068	27,952	19,022 7,986 2,567	7,986	2,567	1,797
43(9003	£	æ,	7	**	• 1	1	3,509	1.000	0,632	61	34	25,929	2,279	7,626	7,626 1,200	2,718	908'0
430081	Ş	33	٠,٠	(می	er.		21,577	6,150	3,884	47.5	43	258,392	113,482 60,092 23,890 3,462	60,092	23,890	3,462	2,294

II р и м е ч а н и в : 1 Значения ралиуса притупления острых кромок η должны соответствовать требованиям ГОСТ 8617-81. 2. Переводные кожфилменты для расчета массы 1 м профиля из атюминиевых и магиневых сплавов см. в примечаниях к табл. 112 - 114. ГОСТ предусматривает также и другие номера профилей. Технические требования - по 1 ОСТ 801/-81.

ПРОФИЛИ РАВНОПОЛОЧНЫЕ ЗЕТОВОГО СЕЧЕНИЯ ИЗ АЛЮМИНИЕВЫХ И МАГНИЕВЫХ СПЛАВОВ (по ГОСТ 13620-90)

методом горячего равнополочного зетового сечения, изготовляемых устанавливает сортамент прямоугольных профилей Стандарт прессования.

116. Размеры, масса 1 м профиля и справочные величным для осей

О б о з н а ч е н и я : χ_0 , y_0 - координаты центра тяжести; I_X , I_Y - момент инерции; I_X , I_Y , - момент сопротивления; i_X , i_Y , - раднус инерции.

Гехнические требования - по ГОСТ 8617-81.

_.		0,410	0,708	0,955	0,564	0,635
×,	CM	0,192	0,501	0,573	0,603	0,809
14,	f3	0,149	0,228	0,371	0,123	0,165
W _x	CM ³	0,085	0,272	0,367	0,233	0,384
$I_{\mathcal{Y}}$	см4	0,127	0,345	0,714	0,153	0,237
I_{x}	5	0,028	0,173	0,257	0,175	0,384
У0	ММ	3,30	6,35	7,00	7,50	10,00
0χ	Ж	8,50	15,10	19,25	12,40	14,40
Масса 1 м профиля, кг, из сплава	Mathne- Bolo	0,217 0,137	0,124	0,141	980,0	0,106
Масс проф к	алюми- ниевого		0,196	0,223	0,137	0,168
описанной ности, мм	Дизметр окружи	18	33	41	29	35
Пло- щадь сече-	ния, см ²	0,753	0,688	0,782	0,480	0,587
2		1,0	1,6	l .	1	0,5
L.		1,0	3,0	2,0	2,0	2,0
S ₁	жж	7.0	1,6	1,5	1,2	1.2
S	3 5	3,0	1,6	1.5	1.2	1.2
В		12,0	15,9	20,0	13.0	15,0
Н		9,9	12,7	14,0	15.0	20.0
Номер про-	филя	450001 6,6 12,0 3,0	450002 12,7 15,9	450003	450005 15.0 13.0	450006 20,0 15,0 1.2

Продолжение табл. 116

Номер про-	Н	82	Province Control of the Walk of Williams	in the second		٤.	Пло- щаль сече-	имсанной жм ,итэс	Масса 1 м профиля, кт, из сплава	а 1 м Иля,	λ	200	Ix	I_{y}	ΙV _x	Wγ	ıx	i_{γ}
\$1.14 \$1.14			ž	״			ния, см ²	Пизметр Окружне	элюми-	Mathne- Boto	ММ	J.	см ⁴	4	CM ³	13	СМ	_
4.Septem	0.67	15.0	λ.; 	ly , prost	୍ବର	0.5	0.721	35	0,206	0,130	14,25	10,00	0,458	0,288	0,458	0,202	0,797	0,632
4.Stunis	Š	Signal State	4 M 4 M 4 M	1/ 1	្	1	0.812	9	0,231	0.146	17,25	10,00	0,536	0,514	0,536	0,298	0,812	962'0
45(9.4.15	<i>"</i> :	14 j	ST.	• •	ŧ	r.	1.080	7	0.308	0.195	17.50	10,25	0.717	0,710	669.0	0,406	0,815	0,811
	् 7	er sagaren en	***	7.		<u></u>	1,037	7	0,290	0.187	17.25	12.00	0,985	0,673	0,821	0,390	926,0	0,807
1307	Ä	TOTAL TO THE SEC	, , , , , , , , , , , , , , , , , , ,	4 ;		5	0.887	~	0,253	0,160	17,25	12,50	968.0	0,508	0,717	0,295	1,006	0,758
£1005F	्. ?i	- 10 (46) (47) (47)	ri	¥:	e i	=	1,052	-	0.300	0.189	17,25	12.50	1,083	0,673	998'0	0,390	1,017	0,801
7	71	e ogodo MG Ere		17	;;	۲.	1,327	7	0.378	0.239	17,00	12.50	1,295	0,804	1,036	0,473	066'0	0,780
600	Ä	27 27 28 4 4			P# ;	¥;	1.618	4	0.461	0.291	19.00	12,50	1,595	1,337	1,276	0,704	966'0	0,912
45/8/11	\$	**************************************	w.	ir.	Y.	1	2,266	64	0.64h	0.408	21.25	12,50	2,065	2,244	1,652	1,056	0,955	0,995
#3 67 67 47	Ä	Zi Encorator	. G. ۥ.	e#)	••	y. Fi	7.134	Ç	0.001	0.380	23,50	12.50	2,001	2,461	1,601	1,047	0,980	1,087
0.50054	27.	51	v. ei	10.1 10.1	71	::	1.527	5	0.435	0.275	19.00	15.00	2,184	1,124	1,456	0,592	1,199	0,860
1100		F.L.	,		14.	덛		5.	0.500	6,326	34.00	15.00	2,658	2,272	1,772	0,947	1,225	1,133
1.50	1							office view	PHOTOS CALLES	071110								

1 ОСТ предулизту извет и пругие типоразмеры профилей зетового сечения.

旧римечание коффилиенты для раднусов притупления острых кромок か、ち должны соответствовать требованиям ГОСТ 8617-81. 2. Переводные коффилиенты для радчета массы 1 м профиля на алюмниневых и магниевых сплавов см. в примечаниях к табл. 112 - 114.

МЕЛЬ

Медь (по ГОСТ 859-78 в ред. 1992 г.) изготовляют в виде катодов, слитков и полуфабрикатов.

Марка	M1, M1p	M2, M2p	M3, M3p
Содержание меди и серебра, %, не менее	99,90	99,7	99,5

Температура плавления меди 1083 °C.

ГОСТ предусматривает и другие марки меди. В обозначение меди марок М1 и М1р, предназначенной для электротехнической промышленности, дополнительно включают букву "Е".

листы и полосы медные (по гост 495-92)

ГОСТ 495-92 распространяется на медные холоднокатаные и горячекатаные листы и медные холоднокатаные полосы.

Толщина холоднокатаных листов, мм: 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11,0; 12,0. Размеры холоднокатаных листов, мм: 600×2000 ; 600×1500 ; 800×2000 ; 710×1410 ; 1000×2000 .

Толщина горячекатаных листов, мм: 3,0; 3,5; 4,0; 4,5; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0; 11,0; 12,0; 13,0; 14,0; 15,0; 16,0; 17,0; 18,0; 19,0; 20,0; 22,0; 24,0; 25,0. Горячекатаные листы изготовияют шириной от 600 до 1800 мм с интервалом 50 мм; шириной свыше 1800 до 3000 мм с интервалом 100 мм; длиной от 1000 до 6000 мм с интервалом 100 мм.

Толицина холоднокатаных полос, мм: 0,4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,8; 2,0; 2,2; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0. Ширина полос 40 - 600 мм. Длина полос 500 - 2000 мм. Полосы изготовляют мерной, кратной мерной и немерной длины.

По толщине листы и полосы изготовляют повышенной и нормальной точности.

Состояние материала, размеры, точность изготовления, марки сплава и поставка в листах или рулонах должны быть указаны в заказе.

ПРУТКИ МЕДНЫЕ КРУГЛЫЕ (по ГОСТ 1535-91)

Диаметры прессованных (горячекатаных) круглых прутков, мм: 32; 35; 38; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100.

Диаметры тянутых прутков, мм: 3; 3,5; 4; 4,5; 5; 5,5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 20; 21; 22; 24; 25; 27; 28; 30; 32; 33; 35; 36; 38; 40; 41; 45; 46; 50. За диаметр квадратных и шестигранных прутков принимают диаметр вписанной окружности.

Прутки тянутые изготовляют мягкими (отожженными) - М, полутвердыми - ПТ, твердыми - Т; по точности: высокой - В, повышенной - П, нормальной - Н.

ГОСТ 1535-91 предусматривает размеры прутков прессованных круглых и тянутых круглых, квадратных и шестигранных.

Прутки изготовляют из меди марок M1, M1р, M2, M2р, M3 и M3р. Медь марки M1E применяют только для изготовления токопроводящих деталей.

Примеры обозначений:

Пруток тянутый (Д), круглый (КР), высокой точности изготовления (В), твердый (Т), диаметром 10 мм, немерной длины (НД) из мели М1 для обработки на автоматах (АВ):

Пруток ДКРВТ 10НД М1 АВ ГОСТ 1535-91

То же, шестигранный (ШГ), повышенной точности (П), мягкий (М), диаметром 19 мм, длиной 3000 мм, из меди M2:

Пруток ДШГПМ 19 × 3000 M2 ГОСТ 1535-91.

МЕДНАЯ РУЛОННАЯ ФОЛЬГА ДЛЯ ТЕХНИЧЕСКИХ ЦЕЛЕЙ (по ГОСТ 5638-75 в ред. 1990 г.)

Фольгу изготовляют из меди марок M1 и M2 по ГОСТ 859-78 и поставляют твердой.

Примеры обозначений:

Фольга холоднокатаная, прямоугольного сечения, нормальной точности изготовления, твердая, толщиной 0,020 мм, шириной 50 мм, из меди марки M2:

117.	Размеры	, MM,	И	масса	фольги
------	---------	-------	---	-------	--------

	Допускаемые отп	слонения по толщине		Масса 1 м ²
Толщина	нормальной точности	повышенной точ- ности	Ширина, мм	фольги, г
0,015	±0,002	-	20 - 210 с	133,5
0,020	+0,002 -0,004	+0,002 -0,003	градацией 5 мм	178,0
0,030 0,040 0,050	+0,003 -0,007	+0,002 -0,006	20 - 230 с градацией 5 мм	267,0 356,0 445,0

Плотность меди принята 8,9 г/см3.

Фольга ДПРНТ 0,020 × 50 M2 ГОСТ 5638-75

То же повышенной точности изготовления, толщиной 0,030 мм, шириной 75 мм, из меди М0:

Фольга ДПРПТ 0,030 × 75 М0 ГОСТ 5638-75

ТИТАН И ТИТАНОВЫЕ СПЛАВЫ ДЕФОРМИРУЕМЫЕ (по ГОСТ 19807-91)

Стандарт устанавливает марки титана и титановых сплавов деформируемых, предназначенных для изготовления полуфабрикатов, а также слитков.

В табл. 118 приведены свойства сплавов в отожженном состоянии при температуре 20 °С.

118. Свойства некоторых титановых сплавов

Свойства	BT1-0	BT1-00	BT3-1	BT5
Плотность, г/см3	4,52	4,52	4,50	4,40
Временное сопротивление σ _в . МНа	390 - 540	200 - 390	930 1180	690 - 930
Предел прочности при срезе, МПа			650	650
Предел, МПа:				
выносливости пропорциональности гекучести	140	240	470 690 - 830 830 - 1080	440 490 780 590 830
Гвердость НВ	130 180	130 190	260 140	269
Относительное удлинение, е	20	25	10 16	10 - 15
Относительное сужение, 🥳			25 40	40 45
Ударная вязкость, кДж/м3		:	300 600	tao 600
Модуль упругости, МПа		į	115 000	105 000
Молуль едвита, МПа			43 000	42,500
Кожренциент Пуассона			0, 1	0,3
Козффициент линейного расширения, 1790			8,6	10 h
Теплопроводность, Вг / (м · K)	ny vo nezona najpowany po kate nago go magaza po po	e.	7,98	7,56

119. Некоторые марки и химический состав титановых сплавов*, % (по ГОСТ 19807-91)

Марка титана или титанового сплава	Аломний	Марганец	Молибден	Ванадий	Цирконий	Хром	Кремний	Железо	Примеси, не более
BT1-00	Jo 0.30	,		,			80,0	0,15	0,298
BT1-0	Jo 0.70	ı	1	,	1	ı	0,10	0,25	0,640
OT4-0	0,4 - 1,4	0.5 - 1,3	,	ı	0,30	ı	0,12	0,30	0,567
OT4-1	1.5 - 2.5	0.7 - 2.0	ŧ	,	0,30	ı	0,12	0,30	0,567
OT4	3,5 - 5.0	0.8 - 2,0	1	ı	0,30	ı	0,12	0,30	0,567
BTS	4.5 - 6.2	ı	8,0	1,2	0,30	ı	0,12	0,30	0,665
BT5-1**	4,3 - 6,0	ı	l	1,0	0,30	ı	0,12	0,30	0,615
BT6	5.3 - 6.8	1	ı	3,5 - 5,3	0,30	,	0,10	09'0	0,665
BT3-1	5,5 - 7,0	ı	2,0 - 3,0	ı	0,50	0,8 - 2,0	0,15 - 0,40	0,2 - 0,7	0,570
BT9		'	2,8 - 3,8	,	1,0 - 2,0	1	0,20 - 0,35	0,25	0,570
BT14	3.5 - 6.3	1	2,5 - 3,8	0,9 - 1,9	0,30	ı	0,15	0,25	0,570
BT20	5,5 - 7,0	ı	0,5 - 2,0	0,8 - 2,5	1,5 - 2,5	ı	0,15	0,25	0,570
BT22	4,4 - 5,9	ı	4,0 - 5,5	4,0 - 5,5	0,30	0,5 - 2,0	0,15	0,5 - 1,5	0,600
IIT-7M	1,8 - 2,5	1	t	-	2,0 - 3,0	1	0,12	0,25	965'0
IIT-3B	3,5 - 5,0	1		1,2 - 2,5	0;30	ı	0,12	0,25	0,596
						6		0	0030
AT3	2,0 - 3,5	-	-		-	0,2 - 0,5	0,2 - 0,4	0,2 - 0,3	0,000
* Титан - основа	Ba.								

* Титан - основа.

Примечания:

^{**} Олово 2,0 - 3,0 %.

^{1.} В плоском прокате из сплава ВТ14 толщиной до 10 мм содержание алюминия должно быть 3,5 - 4,5 %, а в остальных видах полуфабрикатов - 4.5 - 6,3 е.

^{2.} В сплаве ВТЗ-1, применяемом для штамповок лопаток и лопаточной заготовки, содержание алюминия должно быть не более 6,8 %.

ПРУТКИ КАТАНЫЕ ИЗ ТИТАНОВЫХ СПЛАВОВ (по ГОСТ 26492-85 в ред. 1991 г.)

Прутки поставляют в горячекатаном состоянии без термической обработки. Допускается изготовление прутков волочением.

Механические свойства прутков при нормальной температуре обычного качества, определяемые на образцах, вырезанных в долевом направлении волокна, приведены в табл. 120.

Механические свойства прутков при повышенной температуре, определяемые на отожженных образцах, вырезанных в долевом направлении волокна, указаны в табл. 122.

Указанные в табл. 120 пределы диаметров брать из ряда: 10; 12; 14; 16; 18; 20; 22; 25; 28; 30; 32; 35; 40; 42; 45; 48; 50; 52; 55; 60; 65; 70; 75; 80; 85; 90; 100; 110; 120; 130; 140; 150 мм.

По длине прутки поставляют:

- а) немерной длины от 0.5 до 4 м для диаметров от 10 до 18 мм и длиной от 1 до 6 м для диаметров от 0.5 до 60 мм;
- б) мерной и кратной длины в пределах немерной.

Допускается поставка прутков диаметром от 10 до 30 мм связанными в прутки. В этом случае конец каждого прутка окращивают в цвет, приведенный в табл. 121.

120. Механические свойства прутков при нормальной температуре

Марка сплава	Состояние испытуемых образцов	Диаметр прутка, мм	Временное сопротив- ление ов, МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость, КСU, Дж/см ²
				не ме	iec	
BT1-00	Отожженные	От 10 до 12 вкл. Св. 12 " 100 вкл. " 100 " 150 вкл.	295 295 265	20	50 50 40	- 100 60
BT1-0	Отожженные	От 10 до 12 вкл. Св. 12 " 100 вкл. " 100 " 150 вкл.	345	15	40 40 36	70 50
BT1-2	Отожженные	От 65 до 150 вкл	590 - 930	8	17	25
OT4-0	Отожженные	От 10 до 12 вкл Св. 12 " 100 вкл " 100 " 150 вкл	440	15 15 13	35 35 30	40 40
OT4 1	Отожженные	От 10 до 12 вкл Св. 12 " 100 вкл. " 100 " 150 вкл	540	12 12 10	10 10 21	45 40
014	Отожженные	От 10 до 12 вкл. Св. 12 " 100 вкл. " 100 " 150 вкл.	685 685 635	8	25 25 20	40 35

Продолжение табл. 120

Марка сплава	Состояние испытуемых образцов	Диаметр прутка, мм	Временное сопротив- ление $\sigma_{\rm B}$, МПа	Относи- тельное удлинение δ, %	Относи- тельное сужение ψ, %	Ударная вязкость, КСU, Дж/см ²
				не меі	iee	
втѕ	Отожженные	От 10 до 12 вкл. Св. 12 " 100 вкл. " 100 " 150 вкл.	735 735 685	8 8 6	20 20 15	30 30
BT5-1	Отожженные	От 10 до 12 вкл. Св. 12 " 100 вкл. " 100 " 150 вкл.	785 785 745	8 8 6	20 20 15	40 40

121. Марки сплава и цвета маркировки прутков

Марка сплава	Цвет маркировки	Марка сплава	Цвет маркировки
BT1-00	Белый + черный	BT3-1	Красный
BT1-0	Белый	ВТ9	Голубой
OT4	Зеленый	BT5-1	Желтый
OT4-0	Зеленый + белый	BT6	Коричневый + синий
OT4-1	Зеленый + черный	BT5	Коричневый + белый
BT20	Черный + желтый	BT22	Коричневый + зеленый
BT14	Черный + красный		

122. Механические свойства прутков при повышенной температуре

Марка сплава	Темпера- тура ис- пытания, °С	Временное сопротив- ление $\sigma_{\rm B}$, MIIa	Длительная прочность (напряжение), МПа
BT3-1	400	690	690
*****	450	640	570
BT9	500	690	590
BT20	350	690	670
13120	500	570	470

ЛИСТЫ ИЗ ТИТАНА И ТИТАНОВЫХ СПЛАВОВ (по ГОСТ 22178-76 в ред. 1990 г.)

Листы изготовляют из титана марок BT1-00, BT1-0 и титановых сплавов марок ОТ4-0 OT4-1, OT4, BT5-1, BT6.

Листы подразделяют:

- а) по качеству отделки поверхности:
- высокой отделки В, повышенной отделки II, обычной отделки без дополнительног обозначения;
 - б) по отклонению от плоскостности:

улучшенной плоскостности - У, нормаль ной плоскостности - без дополнительног обозначения.

Листы из титана и титановых сплавов ма рок BT1-00, BT1-0, OT4-0, OT4-1 и OT4 тол

щиной до 1,8 мм поставляются мерной длины с интервалом 50 мм в пределах длин, предусмотренных табл. 123.

Листы из титана и титановых сплавов марок BT1-00, BT1-0, OT4-0, OT4-1 и OT4 толщиной от 2,0 до 10,5 мм поставляются мерной длины с интервалом 100 мм в пределах длин, предусмотренных табл. 123.

В табл. 124 теоретическая масса 1 м 2 листа из титана марок ВТ1-0 и ВТ1-00 вычислена по

номинальной толщине листа при плотности 4,5 г/см³. Для вычисления приближенной теоретической массы листов из титана и титановых сплавов других марок следует пользоваться следующими переводными коэффициентами: 1,011 - для сплавов марок ОТ4 и ОТ4-1; 1,004 - для сплава марки ВТ14; 1,002 - для ОТ4-0; 0,989 - для ВТ6 и ВТ20; 0,983 - для ВТ5-1.

123. Размеры листов в зависимости от марки титана или титанового сплава, мм

Марка	Толщина	Ширина	Длина
BT1-00, BT1-0,	От 0,3 до 0,4	400, 500 и 600	От 1250 до 2000
OT4-0, OT4-1	Св. 0,4 " 1,2	600	" 1250 " 2000
	От 0,8 " 1,8	600, 700 и 800	" 1500 " 2000
	" 1,8 " 5,0	600, 700, 800, 1000 и 1200	" 1500 " 2000
	" 5,0 " 7,0	600, 700, 800, 1000 и 1200	" 1500 " 4000
	" 7,0 " 10,5	600, 700, 800, 1000 и 1200	" 1500 " 3000
ОТ4	От 0,5 до 0,8	600	От 1500 " 2000
	Св. 0,8 " 1,8	600, 700, 800	" 1500 " 2000
	" 1,8 " 5,0	600, 700, 800, 1000 и 1200	" 1500 " 5000
	" 5,0 " 7,0	600, 700, 800, 1000 и 1200	" 1500 " 4000
	" 7,0 " 10,5	600, 700, 800, 1000 и 1200	" 1500 " 3000
BTS-1	От 0,8 до 1,5	6-(10)	1500 и 2000
B120	Св. 1,5 ″ 10,5	600, 700, 800	
ВТо	От 1,0 до 1,8	U()()	
	Св. 1,8 " 4,5	600, 700, 800	I SOO M JOHO
	" 4,5 " 10,5	600, 700, 800, 1000	
BIII	От 0,8 до 1,8	nOO	* · · · · · · · · · · · · · · · · · · ·
	CB. 3,8 " 4,5	600, 700, 800	1500 n 2000
	" 4,5 " 10,5	600, 700, 800, 1000	

Толщина листа, мм	Масса 1м ² листа, кг	Толщина листа, мм	Масса 1м ² листа, кг	Толщина листа, мм	Масса 1м ² листа, кг	Толщина листа, мм	Масса 1м² листа, кг
0,3	1,35	1,5	6,75	4,0	18,00	7,5	33,75
0,4	1,80	1,8	8,10	4,5	20,25	8,0	36,00
0,5	2,25	2,0	9,00	5,0	22,50	8,5	38,25
0,6	2,70	2,2	9,90	5,5	24,75	9,0	40,50
0,7	3,15	2,5	11,25	6,0	27,00	9,5	42,75
0,8	3,60	3,0	13,50	6,5	29,25	10,0	45,50
1,0	4,50	3,5	15,75	7,0	31,50	10,5	47,25
1,2	5,40						

124. Теоретическая масса 1 м² листа

Пример обозначения листа из титанового сплава марки ОТ4, толщиной 5,0 мм, шириной 1000 мм и длиной 1500 мм высокой отделки поверхности (В):

Лист OT4 5 × 1000 × 1500 ГОСТ 22178-76. В Химический состав листов - по ГОСТ 19807-91. Листы поставляют после отжига, проглаживания и правки.

Механические свойства листов при растяжении, определяемые на образцах, вырезанных из листов в направлении поперек прокатки, и состояние испытуемых образцов приведены в табл. 125.

125. Механические свойства листов повышенной и обычной отделки поверхности

Марка титана и титанового	Состояние испытуемых	Толщина листа,	Временное сопротивление, МПа	Относительное удлинение, %
сплава	образцов	ММ	не мен	ee
BT1-00		От 0,3 до 1,8		30
		Св. 1,8 " 6,0	295	25
		" 6,0 " 10,5		20
BT1-0		От 0,3 до 0,4		25
		Св. 0,4 " 1,8	375	30
		" 1,8 " 6,0		25
	В состоянии поставки	" 6,0 " 10,5		20
OT4 0		От 0,3 до 0,4		25
		Св. 0,4 " 1,8	470	30
		" 1,8 " 6,0		25
		" 6,0 " 10,5		20
014-1	•	От 0,3 до 0,7		25
		Св. 0,7 " 1,8	590	20
		" 1,8 " 6,0		15
		" 6,0 " 10,5		13

Продолжение табл. 125

Марка титана и титанового	Состояние испытуемых	Толщина листа,	Временное сопротивление, МПа	Относительное удлинение, %
сплава	образцов	мм	не мен	ee
OT4		От 0,5 до 1,0		20
		Св. 1,0 " 1,8	685	15
		" 1,8 " 6,0		12
	В состоянии	" 6,0 " 10,5	!	10
BT5-1	постановки	От 0,8 до 1,2		15
		Св. 1,2 " 1,8	735	12
		" 1,8 " 6,0		10
		" 6,0 " 10,5		8
BT6	Закаленные и искусственно состаренные	От 1,0 до 10,5	885	8
	Отожженные	От 0,8 до 5,0	885	8
		Св. 5,0 " 10,5	835	8
BT14	Закаленные и	От 0,8 до 1,5	1080	5
	искусственно состаренные	Св. 1,5 " 5,0	1180	6
	•	" 5,0 " 7,0	1080	4
		" 7,0 " 10,5	1100	4
BT20		От 0,8 до 1,8		12
	Отожженные	Св. 1,8 " 4,0	930	10
		" 4,0 " 10,5		8

ГОСТ предусматривает механические свойства листов высокой отделки поверхности.

плиты из титановых сплавов

Размеры плит из сплавов BT1-00, BT1-0, OT4-0, OT4-1 и OT4 приведены в табл. 126.

Размеры плит из титановых сплавов ВТ6с, ВТ5-1, ВТ14, ВТ6 приведены в табл. 127.

Плиты поставляют в горячекатаном состоянии с нетравленой поверхностью. По требованию потребителя плиты поставляют с травленой поверхностью.

Плиты из сплава ВТ5-1 толщиной до 20 мм и длиной до 2600 мм изготовляют с обработкой поверхности абразивом и последующим травлением, а толщиной более 20 мм и длиной более 2600 мм - нетравлеными и без абразивной обработки.

Механические свойства плит, определяемые на образцах, вырезанных поперек прокатки, приведены в табл. 128.

126.	Размеры	DEMOKE	из	титановых	сплавов.	мм	
------	---------	--------	----	-----------	----------	----	--

		N		длина плит п	ри ширине	
Марка сплава	Толщина плит	600, 700, 800, 900, 1000, 1200	1300	1400	1500	1600
BT1-0,	12 - 28	7000	7000	7000	6500	6000
BT1-00,	29 - 32	7000	6500	6000	5500	5500
OT4-0,	33 - 35	6500	6000	5500	5000	5000
OT4-1,	36 - 38	6000	5500	5000	4500	4500
OT4	39 - 40	5500	5000	4500	4500	4000
	41 - 42	5500	5000	4500	4000	4000
	43 - 45	5000	4500	4000	4000	3500
	46 - 48	4500	4000	4000	3500	3500
	49 - 50	4500	4000	3500	3500	3000
	51 - 52	4500	4000	3500	3000	3000
	53 - 55	4000	3500	3000	3000	2500
	56 - 58	3500	3500	3000	2500	2500
	59 - 60	3500	3000	3000	2500	2500

127. Размеры плит из некоторых титановых сплавов, мм

Марка	Толщина	1	Максимальная	длина плит пр	ои ширине	
сіпіава	דאועוז	600	700	800	900	1000
BT5-1,	12 - 18	5500	5500	5500	5500	5500
BT14,	19 - 20	5500	5500	5500	5500	4500
BT6	21 - 25	5500	5500	5000	4500	3800
BToc	26 - 30	5000	4500	4000	3500	3000
	31 35	4000	3500	3000	3000	2500
	36 - 40	4000	3000	3000	2500	2200
	41 45	3000	3000	2500	2000	1900
	46 - 50	3000	2500	2500	2000	1500
	51 - 55	2800	2500	2000	2000	1300
	\$6 - 60	2700	2200	2000	1500	1200

Примечания:

^{1.} Плиты из сплава ВТ5-1 поставляют шириной 600, 700 и 800 мм, максимальной длиной до 3000 мм и толщиной до 35 мм.

^{2.} Плиты поставляют немерной длины от 1000 мм до значений, установленных в таблице. Мерную длину плит устанавливают в пределах немерной с интервалом 300 мм.

128. Механические свойства плит, определяемые на образцах, вырезанных поперек прокатки

Марка сплава	Состояние испытуемых	Толщина, мм	Временное сопротивление	Относительное удлинение, %	Поперечное сужение, %
	образцов		разрыву, МПа	не ме	нее
BT1-00		12 - 60	290 - 440	14	30
BT10		12 - 35	390 - 540	13	27
		36 - 70			
OT4-0		12 - 20	· 490 - 640	12	24
	В состоянии	21 - 60		11	
OT4-1	поставки	12 - 20	590 - 740	10	21
		21 - 60		9	
OT4		12 - 20	670 - 880	8	20
		21 - 60		7	
BT5-1		12 - 20	740 - 930	6	16
		21 - 60		5	
	Отожженные		830 - 1300	7	25
BT14	Закаленные и состаренные	12 - 60	Не менее 1080	4	10
BT6*	Отожженные	12 - 60	880 - 1080	6	16

^{*} Ударная вязкость не менее 30 кДж / м².

СЕТКИ ПРОВОЛОЧНЫЕ ТКАНЫЕ С КВАДРАТНЫМИ ЯЧЕЙКАМИ НОРМАЛЬНОЙ ТОЧНОСТИ (по ГОСТ 6613-86)

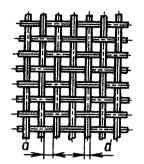
Сетки нормальной точности предназначены для фильтрации жидкостей и других целей.

Сетки изготовляют из мягкой отожженной проволоки. Для сеток № 004 - 016 применяют бронзу марки БрОФ6,5-0,4 по ГОСТ 5017-74 или никель марки ПП2 по ГОСТ 492-73; для

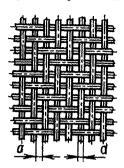
сеток № 0071 - 2,5 - полутомпак марки Л80 по ГОСТ 15527-70.

Ширина сеток:

1000 мм для сеток № 004 - 0063;


1000; 1300; 1500 мм для сеток № 0071 - 014;

1000; 1500 мм для сеток № 016 - 2,5.


Минимальная длина отрезка сетки не менее 1 м - для № 004 - 056 и не менее 1,5 м - для № 063 - 2,5.

129. Основные параметры и размеры сеток нормальной точности

Полотняное переплетение

Саржевое переплетение

Номер сетки	Размер сторо- ны ячейки в свету	метр прово-	Масса	ı 1 м ² се	гок, кг	Номер сетки	Размер сторо- ны ячейки в свету	Диа- метр прово- локи	Macca	1 м ² се	rok, kr
	М	м	полу- томпа- ковых	брон- зовых	нике- левых		M	íM	полу- томпа- ковых	брон- зовых	нике- левых
004	0,040	0,030	-	0,18	0,18	0315	0,315	0,160	0,75		
0045	0,045	0,036	-	0,23	0,23	0355	0,355	0,160	0,68	-	_
005	0,050	0,036	-	0,21	0,21	04	0,400	0,160	0,63	-	-
0056	0,056	0,040	-	0,23	0,24	045	0,450	0,200	0,85	-	-
0063	0,063	0,040	-	0,22	0,22	05	0,500	0,250	1,15	-	_
0071	0,071	0,050	0,28	0,29	0,29	056	0,560	0,250	1,06	-	-
008	0,080	0,055	0,26	0,27	0,27	063	0,630	0,300	1,33	-	-
009	0,090	0,060	0,33	0,34	0,34	07	0,700	0,300	1,24	-	-
01	0,100	0,060	0,31	0,32	0,32	08	0,800	0,300	1,13	-	-
0112	0,112	0,080	0,47	0,47	0,47	09	0,900	0,400	1,70	-	-
0125	0,125	0,080	0,43	0,44	0,44	1	1,000	0,400	1,58	-	-
014	0,140	0,090	0,49	0,49	0,50	1,25	1,250	0,400	1,35	-	-
016	0,160	0,100	0,53	0,54	0,55	1,6	1,600	0,500	1,64	-	-
018	0,180	0,120	0,66	-	-	2,0	2,000	0,500	1,38	-	-
02	0,200	0,120	0,62	-	-	2,5	2,500	0,500	1,15	-	-
0224	0,224	0,120	0,58	-	-					ļ	
025	0,250	0,120	0,54	-	-		Ì	ļ			
028	0,280	0,140	0,64	-	-						

СЕТКИ ПРОВОЛОЧНЫЕ ТКАНЫЕ С КВАДРАТНЫМИ ЯЧЕЙКАМИ КОНТРОЛЬНЫЕ И ВЫСОКОЙ ТОЧНОСТИ (по ГОСТ 6613-86)

Проволочные тканые сетки с квадратными ячейками изготовляют контрольные (K), высокой точности (B) и нормальной точности (H) с размером стороны ячейки в свету от 0,04 до 2,5 мм.

Контрольные сетки предназначены для контроля различных материалов по размеру

частиц при дроблении, измельчении и обогащении; сетки высокой точности - для разделения по размеру зерен дробленых материалов и других целей.

Сетки изготовляют из мягкой отожженной проволоки.

Для изготовления сеток № 004 - 016 применяют бронзу марки БрОФ6,5-0,4 по ГОСТ 5017-74, для сеток № 0071 - 2,5 - полутомпак марки Л80 по ГОСТ 15527-70.

130. Основные размеры и параметры сеток высокой точности и контрольных

		Полотия	Полотияное переплетение	летение		•			Саржев	Саржевое переплетение	тение		
Hovep	Pasuen	H	Karr	Живое	Macca 1	Масса 1 м² сеток, кі	Номер	Размер стороны	Диаметр	Коли-	Живое	Macca 1 m ² cerok,	4 ² cerok,
900.00	SECTION OF SECTION OF	S S S S S S S S S S S S S S S S S S S	CA:	Gettur.	полу- томпа- ковых	брон- зовых	сетки	ячейки в свету, мм	прово- локи, мм	ячеек на 1 см², шт.	сетки, %	полу- томпа- ковых	брон- зовых
964				2.7%	-	0.18	600	060`0	90.0	4435,0	36,0	0,33	0,34
3045	**	4	7 A 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7. 9.		0.23	01	0,100	90.0	3906,0	39,1	0,31	0,32
	Constraint of the constraint o			×		0.21	0112	0.112	80.0	2714,0	34,0	0,47	0,47
4.0		7		<u> </u>	ı	0.23	0125	0.125	0.08	2381,0	37,2	0,43	0,44
/ €.5°	##, #*,	9	4	**, t.		0.22	014	0.140	60.0	1829,0	37,0	0,49	0,49
C &	(3)	<i>(</i> *)	6	7.	0.28	0.29	910	0,160	0.10	1482,0	37,9	0,53	0,54
*	and the same	**		5.10	0.20	0.27	810	0.180	0,12	0,6011	36,0	99,0	1

0	
3	
Ţ	
табл.	
Продолжение	

Macca 1 m ² cerok,	брон- зовых	,	ı	ı	1	1	ı	,	,			
Macca 1	полу- томпа- ковых	1,33	1,24	1,13	1,70	1,58	1,35	1,64	1,38	1,15		
Живое	сетки, %	45,9	49,0	53,0	6,74	51,0	57,3	58,0	64,0	70,0		
Коли-	ячеек на 1 см ² , шт.	116,0	100,0	83,0	59,1	51,0	37,2	22,6	16,0	11,2		
Диаметр	прово- локи, мм	0,30	0;30	0;30	0,40	0,40	0,40	0,50	0,50	0,50		
Размер стороны	ячейки в свету, мм	0,630	0,700	0,800	0,900	1,000	1,250	1,600	2,000	2,500		
Номер	сетки	063	07	80	60		1,25	1,6	2,0	2,5		
м² сеток, кг	брон- зовых		1	1	,	ı	ı		t	ŧ	ı	
Масса 1 м ² сеток, кг	полу- томпа- ковых	0,62	0,58	0,54	0,64	0,75	89,0	0,63	0,85	1,15	1,06	
Живое	сетки, Э	39.1	42.4	45,6	+ + + + + + + + + + + + + + + + + + +	0,44	47.0	51.0	47,9	4,44	47,8	•
Кали-	ятеек на 1 см². шт.	980.0	847.0	729.0	566.0	445.0	376,0	320.0	237,0	177,0	151,0	,
Лнаметр	nposc. Joku. VM	0.12	0.12	0.12	0.14	0.16	0.16	0.16	0.20	0.25	0,25	1000 MM.
Размер стороны	ячейки в свету, чм	0.200	0.224	0.250	0.280	0,315	0,355	0.400	0,450	0,500	0,560	Ширина сеток 1000 мм.
Номер	сетки	02	0224	025	028	0315	0355	04	045	90	056	Шир

Длина сеток не менее: 1 м для номеров сеток 004 - 009; 1,5 м для номеров сеток 01 - 056; 3 м для номеров сеток 063 - 2,5.

Примеры обозначений: Сетка полутомпаковая контрольная № 05:

То же высокой точности № 05:

Сетка полутампаковая 05 К ГОСТ 6613-86

Сетка полутомпаковая 05 В ГОСТ 6613-86

Переплетение проволок в сетках должно быть простое. Для сеток № 004 - 04 допускается саржевое переплетение (см. рисунок табл. 130).

Основные размеры и параметры сеток приведены в табл. 130.

Дополнительные источники

Профили прессованные прямоугольные полосообразного сечения из алюминия, алюминиевых и магниевых сплавов - ГОСТ 13616-97. Профили прессованные из алюминия и алюминиевых сплавов. Угольник разностенный неравнобокий П52. Сортамент - ГОСТ 13738-91.

Профили прессованные из алюминия и алюминиевых сплавов - ГОСТ 13622-91.

Профили прессованные из магниевых сплавов - ГОСТ 19657-84.

Алюминий и сплавы алюминиевые деформируемые - ГОСТ 4784-97.

Прутки круглые из монель-металла - ГОСТ 1525-91.

Полосы и ленты из оловянно-фосфористой и оловянно-цинковой бронзы. Технические условия - ГОСТ 1761-92.

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

ДРЕВЕСНО-СЛОИСТЫЕ ПЛАСТИКИ (ДСП) (по ГОСТ 13913-78)

Древесно-слоистые пластики (ДСП) получают в процессе термической обработки под давлением из листов березового лущеного шпона, склеенных бакелитовым лаком.

Древесно-слоистые пластики изготовляют двух тилов:

цельные, склеенные из целых по длине листов шпона;

составные, склеенные из нескольких листов шпона по длине, уложенных внахлестку или встык.

Пластики изготовляют прямоугольной формы в виде листов толщиной менее 15 мм и плит толщиной от 15 до 60 мм. Размеры листов и плит приведены в табл. 131.

Различие марок заключается в расположении волокон древесины шпона в смежных слоях и назначении древесно-слоистых пластиков.

Буквы А, Б, В, Г указывают порядок укладки шпона в пластике:

А - волокна древесины шпона во всех слоях имеют параллельное направление или каждые четыре слоя с параллельным направлением волокон древесины шпона чередуются с одним слоем, имеющим направление волокон под углом 20 - 25° к смежным слоям;

- Б каждые 8 12 слоев шпона с параллельным направлением волокон древесины шпона чередуются с одним слоем, имеющим перпендикулярное направление волокон древесины к смежным слоям:
- В волокна древесины шпона в смежных слоях взаимно перпендикулярны;
- Γ волокна древесины шпона в смежных слоях последовательно смещены на угол 45°; буквы э, м, т, о определяют назначение материала.

Допускается изготовление листов и плит, уменьшенных по длине и ширине. Максимальное уменьшение длины и ширины относительно указанных в табл. 131 не должно превышать 150 мм с градацией 25 мм, но должно быть не менее 700 × 600 мм. Количество листов и плит уменьшенных размеров не должно превышать 10 % от партии.

Физико-механические свойства плит древесно-слоистых пластиков приведены в табл. 132, а листов - в табл. 133.

Маркировка партии листов или плит содержит: марку и тип, размеры, обозначение стандарта.

131.	Размеры	листов и	плит	превесно-	-споистых	пластиков,	мм
	1 admopus	THIC TOP IN	BENEFIT I	дровесно	CIUMCIBIA	IIJIACI NKUB,	MIM

Марка	Тип	Длина	Ширина	Толщина*
Листы	Цельные	700; 1150 1500	950 1200; 1500	1 - 12
ДСП-В; ДСП-В-э	Составные	2400 4800; 5600	950 1200	3 - 12
Плиты ДСП-А; ДСП-Б; ДСП-В; ДСП-Б-э; ДСП-В-э; ДСП-Б-м; ДСП-В-м; ДСП-Б-т	Цельные	750 700; 1150; 1500 1200; 1500	750 950 1200; 1500	15
ДСП-Б-о				
Плиты ДСП-Б; ДСП-В; ДСП-Б-э; ДСП-В-э; ДСП-Б-т;	Составные	2400 4800; 5000	950 1200	20 - 60
дсп-г		750	750	
ДСП-Г-м		1500 2400	1500 950	

^{*} Толщины брать из ряда: 1,0; 1,5; 2,0; 2,5; 3; 4; 5; 6; 7; 8; 10; 12; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60 мм.

132. Физико-механические свойства плит древесно-слоистых пластиков

	дсп-а	дс	П-Б	дсі	п-в	дсп-г	дсп	€-ã-1	дсп	-В-э
Показатели	цель- ные	цель- ные	состав- ные	цель- ные	состав- ные	состав- ные	цель- ные	состав- ные	цель- ные	состав- ные
Плотность, г/см ³ , не менее	1,33					1,30				
Влажность, %, не более	6		7	7				6		
Водопоглощение за 24 ч, %, не более, для пла- стика толщиной:										
15 - 20 мм	-					3				
25 - 50 мм	-					2				
55, 60 мм	-			V		1				

Продолжение табл. 132

	ДСП-А	лс	п-Б	лс	П-В	дсп-г	лс	ε- a -Γ	лст	I-B-9
Показатели	цель- ные	цель- ные	состав-	цель- ные	состав-	состав-	цель- ные	состав-	цель- ные	состав-
Предел прочно- сти, МПа, не менее: при растяже- нии вдоль во- локон	_	260	220	140	110	_	260	220	140	110
при сжатии вдоль волокон	180	160	155	125	120	125	160	155	125	120
при статиче- ском изгибе вдоль волокон при скалыва-	- 8	280 8	260 7	180 7	150	150 7	280	260 7	180 7	150
нии по клее- вому слою										
Ударная вязкость при изгибе вдоль волокон наружного слоя, кДж/м², не менее	•	80	70	30	30	30	80	70	30	60
Твердость торцовой поверхности НВ, не менее	20	20	20	20	20	-	20	20	20	20
Показатели	дсп-1	5-м Д	ІСП-В-м	и ДСІ	П-Г-м		дсп-і	6-т	ДС	П-Б-о
		цельн	ie	сост	авные	цельн	ые с	оставны	е цел	ъные
Плотность, г/см ³ , не менее			1,23				1,28		I	,30
Влажность, %, не более			7				10	···		7
Водопоглощение за 24 ч, %, не более, для пла- стика толщиной: 15 - 20-мм 25 - 50 мм 55, 60 мм					-					3 1
Предел прочно- сти, МПа, не менее: при растяже- нии вдоль во- локон	200		130			-		-	2	75
при сжатии вдоль волокон	130		100	1	.00	<u> -</u>		-	1	80
при статиче- ском изгибе вдоль волокон	220		140		84	-		-	3	00
при скалыва- нии по клее- вому слою	5		5		5	5		4		9

Продолжение табл. 132

Показатели	ДСП-Б-м	ДСП-В-м	ДСП-Г-м	дсі	1-Б-т	ДСП-Б-о
	цели	ные	составные	цельные	составные	цельные
Ударная вязкость при изгибе вдоль волокон наружного слоя, кДж/м ² , не менее	25	17	70	70	90	-
Твердость торцовой поверхности НВ, не менее	-	-	-	-	-	20

Для ДСП-Б-э и ДСП-В-э теплостойкость 24 ч при температуре воздуха 105 ± 2 °C; маслостойкость 6 ч при температуре трансформаторного масла 105 ± 2 °C

133. Физико-механические свойства листов древесно-слоистых пластиков

		дс	СП-В и ДС	П-В-э при	толщине,	мм	
Показатели	1 - 2,5	3 - 5	6 - 7	8 - 12	3 - 5	6 - 7	8 -12
		цели	ные			составные	<u> </u>
Плотность, г/см ³ , не менее		12	80			1250	
Водопоглощение за 24 ч, %, не более	15	10	7	5	10	7	5
Предел прочности при растяжении, МПа, не менее:							
вдоль волокон	160	150	150	150	140	140	140
поперек воло- кон	-	135	135	135	135	135	135
под углом 45°	-	80	80	80	70	70	70
Влажность, %			<u> </u>	3 - 8			

134. Назначение древесных слоистых пластиков

Марка	Назначение
ДСП А; ДСП-Б	Для изготовления дейдвудных подшипников в судостроении
ДСИ-В; ДСИ-Б-о	Как конструкционный и антифрикционный материал
ДСП-Г	Как конструкционный (зубчатые колеса) и антифрикционный (втулки и вкладыши подшипников и др.) материал
ДСИ-Б-э; ДСИ-В-о	Для изготовления конструкционных и электроизоляционных деталей аппаратуры высокого напряжения, электрических машин, трансформаторов, ртутных выпрямителей и т.п.

Продолжение табл. 134

Ma	рка	Назначение
ДСП-Б-м; ДСП-Г-м	ДСП-В-м;	Как самосмазывающийся антифрикционный материал в качестве ползунов лесопильных рам и других аналогичных деталей
ДСП-Б-т		Для изготовления деталей машин текстильной промышленности

КОНСТРУКЦИОННЫЕ ТЕКСТОЛИТ И АСБОТЕКСТОЛИТ (по ГОСТ 5-78 в ред. 1990 г.)

Конструкционные текстолит и асботекстолит представляют собой слоистые листовые прессованные материалы, состоящие из нескольких слоев хлопчатобумажной или асбестовой ткани, пропитанной смолой.

В зависимости от свойств применяемой ткани и назначения устанавливаются марки текстолита и асботекстолита, указанные в табл. 135.

Толщина листов текстолита, мм: 0,5; 0,7; 0,8; 1,0; 1,2; 1,5; 1,8; 2,0; 2,2; 2,5; 3,0; 3,5; 4,0; 4,5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 22; 25; 27; 30; 32; 36; 38; 40; 43; 45; 50; 55; 60; 65; 70; 80; 90; 100; 110 для марок ПТК и ПТ; 30; 35; 40; 45; 50 для марки ПТК-С; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70 для марки ПТМ-1; 20; 25; 30; 35; 40; 45; 50; 55; 65; 70 для марки ПТМ-2.

Толщина листов асботекстолита, мм: 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 22; 25; 27; 30; 35 для марок А, Б;

30; 32; 35; 38; 40; 43; 45; 50; 55; 60; 65; 70; 80: 90: 100: 110 для марки Г.

Текстолит изготовляют листами шириной от 450 до 950 мм и длиной от 600 до 1950 мм; асботекстолит марок А и Б - шириной от 400 до 800 мм и длиной от 600 до 1400 мм;

марки Γ - шириной от 1350 до 1450 мм и длиной от 2350 до 2450 мм.

Обозначение состоит из наименования материала, его марки, толщины, сорта и обозначения стандарта.

Пример обозначения текстолита марки ПТК высшего сорта, толщиной 20

Текстолит ПТК-20, сорт высший ГОСТ 5-78

То же, асботекстолита марки Б, толщиной 30 мм:

Асботекстолит Б-30 ГОСТ 5-78

Слоистый материал механически обрабатывают обтачиванием, фрезерованием (распиливанием) и сверлением без образования трещин, сколов и расслоений.

135. Марки и область применения текстолита и асботекстолита

Наименование, марка и сорт	Масса 1 м ² , г, не более	Применяется для изготовления
Поделочный конструкци- онный текстолит ПТК высшего сорта	180	Зубчатых колес, червячных колес, втулок, подшипников скольжения, роликов, колец и других изделий конструкционного назначения
ПТК первого сорта	200	Зубчатых колес, червячных колес, втулок, подшипников скольжения, роликов, колец и других изделий конструкционного назначения

Продолжение табл. 135

		TIPOMODIACINIC TAUN. 155
Наименование, марка и сорт	Масса 1 м ² , г, не более	Применяется для изготовления
Поделочный текстолит ПТ высшего сорта	275	Тех же деталей, для которых предна- значена марка ПТК, но работающих при более низких нагрузках, а также панелей, прокладок для амортизаци- онных и других изделий техниче- ского назначения
ПТ первого сорта	300	Тех же деталей, для которых предна- значена марка ПТК, но работающих при более низких нагрузках, а также панелей, прокладок для амортизаци- онных и других изделий техниче- ского назначения
Поделочный конструкци- онный текстолит ПТК-С	180	Вкладыщей судовых дейдвудных подшипников
Поделочный металлургиче- ский текстолит ПТМ-1	820	Вкладышей подшипников прокат- ных станов и других изделий техни- ческого назначения
ПТМ-2	200	Вкладышей подшипников прокатных станов и других изделий технического назначения
Асботекстолит марок А, Г	900 - 1100	Тормозных и иных фрикционных устройств, прокладок, деталей механического сцепления и других технических деталей, а также теплоизоляционного материала
Асьютекстолит марки Б	900 - 1100 (для ткани АТ-1) 1450 - 1600 (для ткани АТ-1 и АТ-7 сухого ткачества)	Тормозных и иных фрикционных устройств, прокладок, деталей механического сцепления и других технических деталей, а также теплоизоляционный материал

II р и м е ч а н и е . Для изготовления текстолита марки ПТ первого сорта допускается применять нетканое полотно.

136. Физико-механические показатели текстолита и асботекстолита

				Текстолит				Ac	Асботекстолит	F
Наименование показателя	ПТК	ПТК сорта	птк-с	TIT	ПТ сорта	IITM-1	IITM-2	A	Ъ	l L
	высшего	первого		высшего	первого					
			Поверх	сность ровн	Поверхность ровная, гладкая без посторонних включений	без постор	онних вкл	очений		
Внешний вид и цвет	0	т светло-ж	атгого до т	емно-кори	От светло-желтого до темно-коричневого, неоднотонный	однотонны	**	От се коричнев	От серого до темно- коричневого, неоднотонный	ино- отонный
Прогиб, мм/м, не более	4	8	4	4	8	10	8	20	20	20
Шлотность, г/см³	1,3	1,4	1,3 - 1,4	1,3	- 1,4	1,3 - 1,4	1,3 - 1,4		1,5 - 1,7	
Разрушающее напряжение при изгибе, МПа, не менее	152	137	149	142	108	ı	117	108	88	83
Прочность при разрыве, МПа, не менее	06	06	86	69	69	ı	ı	57	63	ı
Разрушающее напряжение при сжатии, МПа, не менее:						ï				
параллельно слоям	160	130	147	155	120	118	118	1	, 6	ı
Vienting intervention views) 26	067	250	72	007	007	, 8	. ;	700	, ;
Theorem MITO II 100100	2	.	90	99	4 7	ı (67	29	56	24
recpactib, ivilia, ne mence	r	1	ı	1	1	5/7	(295	275	186
Сопротивление раскалыванию вдоль нитей основы, кН/м, не менее:										
на образцах без надреза	200	200	1	220	,	210	1	333	333	230
на образцах с надрезом	19,6	ı	ŧ	19,0	•	i	ı	28,4	29,4	1
Теплостойкость по Мартенсу, °C, не менее	140	130	140	140	130	130	•	250	250	250
Водопоглощение, %, не более	0.7	6,0	0,75	0,7	1,0	1,0	1,0	2,0	2,0	2,0

Требования безопасности. Текстолит и асботекстолит нетоксичны. При механической обработке может выделяться пыль фенопласта, которая действует раздражающе на открытые участки кожи и дыхательные пути. Предельно допустимая концентрация пыли в воздухе помещения 6 мг/м³.

Механическая обработка слоистого материала должна проводиться в помещениях, оборудованных приточно-вытяжной вентилицией. Рабочие места должны быть оснащены местными отсасывающими устройствами, обеспечивающими минимальное содержание пыли в воздухе.

Текстолит - горючий материал, не склонный к тепловому самовозгоранию; тушить водой, пеной. Темепартура самовоспламенения более 460 °C.

Асботекстолит - трудносгораемый материал. Температура самовоспламенения более 500 °C.

КОНСТРУКЦИОННЫЙ СТЕКЛОТЕКСТОЛИТ (по ГОСТ 10292-74 в ред. 1993 г.)

Конструкционный листовой стеклотекстолит представляет собой слоистый прессовочный материал, изготовленный на основе модифицированных фенольных смол резольного типа и стеклянных конструкционных тканей (ГОСТ 19170-73).

В зависимости от связующего и назначения стеклотекстолит выпускают марок:

ВФТ-С - на основе связующего ВФТ со стабилизирующей добавкой; применяют как конструкционный материал с повышенной теплостойкостью и влагостойкостью;

КАСТ-В - на основе связующего ВФБ-1 со стабилизирующей добавкой; применяют как конструкционный и теплоизоляционный материал;

КАСТ-Р - на основе связующего БФ-3 и БФ-8; применяют как конструкционный материал.

КАСТ - на основе связующего БФ-3; применяют как конструкционный материал.

Толщина листов стеклотекстолита и предельные отклонения приведены в табл. 138.

Пример обозначения стеклотекстолита марки КАСТ-В толщиной 9,0 мм, шириной 0,80 м:

Стеклотекстолит KACT-B-9,0-0,80 ГОСТ 10292-74

Физико-механические показатели стеклотекстолита марок ВФТ-С и КАСТ-В приведены в табл. 139.

Дополнительные показатели стеклотекстолита марок ВФТ-С и КАСТ-В приведены в табл. 137.

137. Показатели стеклотекстолита марок ВФТ-С и КАСТ-В

Показатели	ВФТ-С	KACT-B
Модуль упругости при растяжении, МПа, не менее:		
по основе	2,1	· 10 ⁴
по угку	1,7	104
Модуль упругости (двига в плоскости листа под углом 45" к основе и угку, МПа, не менее:		
по основе	$0.34 \cdot 10^4$	0,40 · 10 ⁴
но угку	$0,26 \cdot 10^4$	10,29 · 10 ⁴
Кожфрициент Пуассона:		
по основе	0,15	0,11
по угку	0,09	0,08
Генлопроводность, Вт/(м · K) при 293 K, 373 K, 423 K	0,37; 0,38; 0,39	0,29; 0,31; 0,33
Ко:фифициент линейного расширения в интервале температур 20 - 100 °C, 1 / °C	(7,9 - 8,7) · 10 ⁻⁶	(8,1 - 9,1) · 10 ⁻⁶

138. Толщина и предельные отклонения листов стеклотекстолита Размеры, мм

Толщина	Отклонени	я для марок	Толщина	Отклонения	я для марок
листов*	вфт-с	KACT-B	листов*	ВФТ-С	KACT-B
0,5	-	± 0,15	11	± 1,5	± 1,1
0,8	± 0,2		11,5		-
1; 1,2	± 0,2	± 0,20	12		± 1,2
1,5	± 0,3	± 0,20	12,5		-
2,0		± 0,25	13	± 1,5	± 1,3
2,5		± 0,25	13,5		-
3,0	± 0,4	± 0,30	14		± 1,4
3,5		± 0,35	14,5		-
4; 4,5	± 0,5	± 0,45	15		± 1,5
5; 5,5	± 0,6	± 0,5	16	± 2,0	-
6	± 0,7	± 0,60	17		± 1,5
6,5		-	18; 19		-
7		± 0,70	20	± 2,5	± 2,5
7,5	± 0,8	-	21 - 24		-
8		± 0,80	25	± 2,5	± 2,5
8,5		-	26 - 29		-
9	± 0,9	± 0,9	30		± 3,0
9,5		-	35	± 3,0	± 3,5
10	± 1,0	± 1,0	40 - 50	-	± 4,0
10,5		_	60 - 90	-	± 5,0

^{*} Пределы толщин 21 - 24 брать из ряда 21; 22; 23; 24. Пределы толщин 26 - 29 брать из ряда 26; 27; 28; 29.

Стеклотекстолит марки KACT-P изготовляют толщиной 1,5 \pm 0,2 мм; марки KACT - толщиной 0,5 и 0,8 мм с отклонением \pm 0,15 и толщиной 1,2 \pm 0,2 мм.

Листы стеклотекстолита всех марок изготовляют шириной 800; 900; 1000; 1100; 1150 мм и длиной $2,40\pm0,05$ м. Допускается выпуск листов стеклотекстолита длиной менее 2,35 м.

Предельные отклонения по ширине листов всех марок стеклотекстолита: необрезных \pm 40 мм; обрезных по ширине 800 мм \pm 40 мм; свыше 800 мм \pm 50 мм.

139. Физико-механические показатели конструкционного листового стеклотекстолита

Показателн	В	ФТ-С п	ВФТ-С при тэлшине, мм	ине, му					₹	CT-B II	КАСТ-В при толщине, мм	цине, м	×			
	0.8-1	1.2-3	3,5-5	5,5-10	11-35	0,5	8,0	1,0	1,2	1,5	2,0	2,5	3,0	3,5	4,0	4,5
Изгибающее напряже- ние при максиматьной нагрузке по основе, MIIa			H	е опред	Не определяется				178	170	160	150) ; <u>r</u> ;	Не определяется	еляется	
Разрушающее напряже- ние, МПа, не менее:																
при изгибе по ос- нове		Не опре,	Не определяется		245					He o	Не определяется	ется				
при растяжении:																
по основе	392	392	392	314	Не оп-	289	289	284	274	299	299	294	284	284	284	284
по утку	157	157	157	157	реде- ляется	157	157	157	152	157	157	157	152	152	152	152
при сжатии парал- лельно слоям		Не опре,	Не определяется		90 (100)					He o	Не определяется	ется				
Ударная вязкость по Шарпи, кДж/м², не менее:							*,# , ** <u> </u>		<u> </u>			-				
по основе	(88	123	-	-		Нео	Не определяется	ется	-	•		88	113	113	Не оп-
по утку		64	86					То же					64	84	88	реде- ляется
Водопоглошение, %, не более	2,1	1,5	1,3	1,0	8,0	2,2	2,2	2,0	2,0	2,0	1,8	1,8	1,8	1,8	1,7	1,5

Продолжение табл. 138

Показатели							KACT-	КАСТ-В при топцине, мм	олцине	, мм						
	5,0	5,5	6,0	7,0	8,0	0,6	10	11	12	13	14	15	17	20	25	30
Разрушающее напряже- ние, МПа, не менее:																
при изгибе по ос- нове		-	-	-	Heo	і Не определяется	ется	-	-	-		132	132	132	127	127
при растяжении:																
по основе	.290	290	290	250	240	220	215	215	215	215	215		Не ог	Не определяется	HCH.	
110 yirky	CCI	DCT	OCI	145	140	130	521	125	120	120	120			То же		
при сжатии парал- лельно слоям					He o	Не определяется	ется					64	59	54	65	59
Водопоглощение, % не более	1,3	1,3	1,3	1,2	1,1	1,1	1,1	6,0	8,0	8,0	8,0	8,0	8,0	8,0	0,7	9,0
Показатели	*	КАСТ-В при толщине, мм	при то.	лщине,	MM	Я¥	КАСТ-Р при голщине, мм	при мм			KACI	КАСТ при толщине, мм	эпцине,	MM		
		35		40 - 90	90		1,5			0,5		ó	8,0		1,2	
Разрушающее напряжение, МПа, не менее:																
при изгибе по ос- нове		127		127	7			-		He o	, Не определяется	яется		-		
при растяжении:											_					
по основе		He	Не определяется	кэтек			294			294		52	294		304	
по утку			То же			-	167			162		16	167		162	
при сжатии парал- лельно слоям		54		54	-					He o	Не определяется	яется			! !	
Водопоглощение, % не более		9,0	<u> </u>	Не определяется	еляется		1,4			3,0		2,8	∞ _		2,4	

Плотность стеклотекстолита не более:

 $1,85\,$ г/см $^3\,$ для марок ВФТ-С, КАСТ-В, КАСТ-Р:

1,9 г/см³ - для КАСТ.

Для всех марок стеклотекстолита допускается механическая обработка (распиловка, сверление, обточка) без образования трещин и сколов при условии, соблюдения соответствующих режимов обработки.

Разрезку стеклотекстолита необходимо выполнять алмазными отрезными кругами диаметром 150 - 400 мм, толщиной 1 - 2,2 мм при скорости резания 50 - 60 м/мин и подаче 900 мм/мин.

ЛИСТЫ ИЗ НЕПЛАСТИФИЦИРОВАННОГО ПОЛИВИНИЛХЛОРИДА (ВИНИПЛАСТ ЛИСТОВОЙ) (по ГОСТ 9639-71 в ред. 1990 г.)

Листы из непластифицированного поливинилисторида применяют при изготовлении химической аппаратуры, в строительной промышленности, в автомобильной, фотоэлектропромышленности и других отраслях народного хозяйства.

Температурный диапазон эксплуатации листов от 0 до 60 °C.

Допускается нижний предел эксплуатации до -50 °C только в тех случаях, когда листы не подвергают механическим воздействиям (удар, вибрация и т.д.).

Листа не стойки к действию ароматических и хлорированных углеводородов, кетонов, сложных эфиров и концентрированной азот-

ной кислоты. При обработке листов возможно возникновение электрического заряда.

В зависимости от назначения и метода изготовления листы выпускают марок:

 ВН - непрозрачные, неокрашенные или окращенные, изготовленные методом прессования;

ВНЭ - непрозрачные, неокрашенные, изготовленные методом экструзии;

ВП - прозрачные, бесцветные или окрашенные, изготовленные методом прессования или экструзии;

ВД - декоративные, однотонные, изготовленные методом прессования или экструзии и применяемые в качестве облицовочного материала.

Цвет окрашенных листов устанавливают по соглашению сторон.

Толщина листов марок:

ВН - в пределах 1 - 20 мм; ВНЭ и ВП - 1,5 мм; ВД - 1,3 мм.

Указанные пределы составляют следующий ряд, мм: 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8; 9; 10; 12; 15; 18; 20.

Ширина листов более 500 мм, длина более 1300 мм.

Пример обозначения листов марки ВН, длиной 1300 мм, шириной 500 мм, толщиной 2,0 мм:

Листы винипласта ВН 1300 × 500 × 2,0 ГОСТ 9639-71

Физико-механические показатели листов винипласта приведены в табл. 140.

140. Физико-механические показатели листового винипласта

Показатели	вн	внэ	ВП	ВД
Плотность, г/см ³		1,:	38	
Предел текучести при растяжении, МПа, не менее	55	5	0	55
Температура размягчения по Вика, °С, не ниже	8	.5	70	75
Изменение размеров при прогреве, %, не более	5	8	5	5

ЛИСТЫ ИЗ УДАРОПРОЧНОГО ПОЛИСТИРОЛА И АКРИЛОНИТРИЛБУТАДИЕНСТИРОЛЬНОГО ПЛАСТИКА (по ОСТ 6-19-510-80)

Листы из ударопрочного полистирола или акрилонитрилбугадиенстирольного пластика общетехнического назначения изготовляют методом непрерывной шнековой экструзии.

Температура эксплуатации листов, не испытывающих механических нагрузок, от минус 40 до плюс 60 °C.

В зависимости от степени вытяжки при формовании листы подразделяют на два типа: I и II.

Тип I - предназначен для изготовления крупногабаритных пластмассовых изделий с глубокой вытяжкой, например, внутренних шкафов холодильников, ванн, емкостей и т. п.

Тип II - предназначен для изготовления изделий с небольшой вытяжкой и использования в качестве облицовочного и поделочного материала.

В зависимости от материала листы выпускают двух марок:

А - из ударопрочного полистирола;

Б - из акрилонитрилбутадиенстирольного пластика.

Листы марки A выпускают высшего и 1-го сортов.

В зависимости от отделки лицевой стороны листы изготовляют глянцевыми или матовыми.

Цвет листов должен соответствовать цвету экструзионного гранулята.

Листы марки A выпускают светло-голубого или белого цвета;

листы марки Б - белого с оттенком слоновой кости. Допускается изготовление листов других цветов по соглашению с потребителем.

Кроме букв, в обозначении листа указывают тип, размер и сорт для листов марки A.

Размеры листов, мм:

толщина 1,4 - 2 с интервалом 0,1 мм и свыше 2 до 6 мм с интервалом 0,25 мм; допускается изготовлять толщиной до 10 с интервалом 0,25 мм;

длина 700 - 1500 с интервалом через 10 мм; ширина 700 - 1000 и 1250 - 1450 с интервалом 50 мм.

Физико-механические показатели приведены в табл. 141.

141. Физико-механические показатели листов типа II

Показатели	Ma	рка
	A	Б
Ударная вязкость в направлении экструзии при плюс 20 °C, кДж/м ²	30	40
Разрушающее напряжение при растяжении вдоль экструзии, МПа	18	38
Относительное удлинение при разрыве, %, не менее	20	10
Усадка в направлении экструзии, %, не более		
для листов толщиной:		
от 1,4 до 3,0 мм	15	18
св. 3,0 " 5,0 мм	12	15
" 5,0 " 10,0 мм	10	12

Примечание. Для листов толщиной свыше 4 мм разрушающее напряжение при растяжении вдоль экструзии не должно быть менее 19 МПа.

Требования безопасности. Уэлы оборудования, в которых производится нагрев листов, должны быть снабжены дополнительной местной вытяжной вентиляцией.

Листы из ударопрочного полистирола и акрилонитрилбугадиенстирольного пластика загораются при поднесении открытого пламени.

При изготовлении и переработке листов возможно накопление на них статического электричества. Напряжение электрического поля при электризации может достигать 150 В/м. С целью защиты от статического электричества оборудование для изготовления и переработки листов должно иметь надежное заземление и должны быть приняты меры, предупреждающие накопление заряда на поверхности.

Листы из ударопрочного полистирола и акрилонитрилбутадиенстирольного пластика при непосредственном контакте не оказывают вредного действия на организм человека.

СТЕКЛО ОРГАНИЧЕСКОЕ ЛИСТОВОЕ (по ГОСТ 10667-90)

Листовое органическое стекло предназначено для остекления самолетов и вертолетов и в качестве конструкционного материала для машино-, судо-, приборостроения и других отраслей промышленности.

В зависимости от свойств и назначения установлены следующие типы и марки листового органического стекла:

Тип	Марка
Стекло органическое не-	CO-120-A;
пластифицированное	CO-120-K
Стекло органическое пла-	CO-95-A;
стифицированное	CO-95-K
Стекло органическое сополимерное	CO-133-K

Условное обозначение марки состоит из начальных букв названия "Стекло органическое" - СО, последующих цифр, указывающих значение температуры размягчения, и буквы, обозначающей область применения стекла:

A - авиационное - для остекления самолетов и вертолетов;

К - конструкционное - для машино-, судо-, приборостроения и других отраслей промыш-

ленности в качестве конструкционного материала.

Пример условного обозначения листового органического стекла для остекления самолетов непластифицированного толщиной 10 мм, шириной 1000 мм и ллиной 1100 мм:

Листовое органическое стекло CO-120-A 10 × 1000 × 1100 ГОСТ 10667

То же, конструкционного листового органического стекла пластифицированного толщиной 10 мм, шириной 1000 мм и длиной 1100 мм:

Листовое органическое стекло CO-95-K 10 × 1000 × 1100 ГОСТ 10667

Органическое стекло изготовляют в виде листов прямоугольной формы с обрезанными краями, мм: шириной и длиной 400 \times 500; 500 \times 650; 700 \times 800; 850 \times 950; 1000 \times 1100; 1100 \times 1100; 1100 \times 1200; 1150 \times 1250; 1400 \times 1600; толщиной 0,8; 1,0; 1,5; 2,0; 2,5; 3; 4; 5; 6; 7; 8; 10; 12; 14; 16; 18; 20; 22; 24; 26; 28; 30.

П р и м е ч а н и е . Органическое стекло марки СО-133-К номинальных толщин 0,8 - 2,5 мм и 24 мм и выше не изготовляют.

142. Физико-механические свойства листового органического стекла

Показатели	Норма для марок				
***************************************	CO-95-A	CO-95-K	CO-120-A	CO-120-K	CO-133-K
Плотность при 23 °C, кг/м ³	1180	1180	1180	1180	1190
Температура размягчения, °С, не менее, для толщин, мм: 0,8 - 4,0 5,0 - 8,0 10,0 (для ориентации) 10,0 и выше	92 95 95 95	92 92 - 92	118 118 118 120	113 113 - 113	133 133 - 133
Ударная вязкость, кДж/м², не менее, для толщин, мм: 2,0 - 2,5 3,0 - 4,0 5,0 и выше	11 11 16	- 10 16	11 11 17	- 10 17	- 9 16
Прочность при разрыве, МПа, не менее	66,0	66,0	77,5	77,5	83,4
Относительное удлинение при разрыве, %, не менее	3,0	2,8	3,5	3,3	2,5
Модуль упругости при растя- жении, МПа, не менее	2900	2900	3000	3000	3400

Продолжение табл. 142

Показатели	Норма для марок				
	CO-95-A	CO-95-K	CO-120-A	CO-120-K	CO-133-K
Коэффициент пропускания, %, не менее, для толщин, мм:					
до 18,0	92	92	92	92	90
" 24,0	91	91	92	91	90
" 24,0 и выше	90	90	90	90	-
Светостойкость, %, не более	1,5	2,2	1,5	2,2	2,5

Примечания:

- 1. Для органического стекла марки CO-120-К толщиной 0,8 2,5 мм норма по показателю температура размягчения допускается не менее 108 °C, для марки CO-120-А толщиной 0,8 1,5 мм по согласованию с потребителем не менее 115 °C.
- 2. Показатели прочность при разрыве, относительное удлинение при разрыве, модуль упругости, термостойкость для органического стекла марок СО-95-К, СО-120-К, СО-133-К толщиной до 6 мм включительно не определяют.

ЦЕЛЛУЛОИД (по ГОСТ 21228-85)

Целлулоид предназначен для применения в приборостроительной и других отраслях промышленности.

Целлулои: марки А прозрачный или белый однотонный рекомендуется для изготовления изделий технического назначения.

Целлулоид выпускают 1-го и 2-го сортов, отличающихся требованиями к внешнему виду.

Цвет окрашенного целлулоида устанавливают по соглашению изготовителя с потребителем в соответствии с образцом, угвержденным в установленном порядке.

Целлулоид выпускают в виде листов прямоугольной формы, неполированных и полированных с одной или двух сторон, линейных размеров, приведенных в табл. 143.

143. Размеры листов целлулоида, мм

Длина × × ширина	Толщина	Отклонения
От 1300 × 550 до 1500 × 650	От 0,30 до 0,80	± 0,05
	Св. 0,80 " 1,20	± 0,08
	" 1,20 " 1,80	± 0,12
	" 1,80 " 2,40	± 0,15
	" 2,40 " 3,00	± 0,20
	" 3,00 " 5,00	± 0,25

Условное обозначение состоит из названия материала "целлулоид", марки, указания прозрачности (п), полировки (1 - с одной стороны, 2 - с двух сторон), толщины листа в миллиметрах, цвета или номера образца по цвету, сорта.

В обозначении непрозрачного и неполированного целлулоида буквенное и цифровое обозначения не указывают.

Пример обозначения целлулоида марки А, полированного с одной стороны, толщиной 1,2 мм, белого цвета, 1-го сорта:

Целлулоид А 1; 1,2; белый; 1 сорт; ГОСТ **2**1228-85

Требования безопасности. Целлулоид не является токсичным материалом, но при его горении выделяется большое количество токсичных газов (оксид углерода, оксиды азота и цианистые соединения).

Целпулоид пожароопасен, легко загорается от открытого пламени, склонен к тепловому и химическому самовозгоранию, при нагревании до 80 °C загорается от искры.

Температура самовоспламенения 140 - 160 °C, самонагревания 50 °C.

Работы, связанные с целтулоидом, следует проводить в помещениях, снабженных приточно-вытяжной вентиляцией, с соблюдением требований пожарной безопасности и промышленной санитарии; необходимо применять меры защиты от статического электричества.

В помещениях, где проводится работа с целлулоидом, не допускается скопления пыли и целлулоидной крошки; должно быть исключено попадание прямых солнечных лучей.

144. Физико-механические свойства целлулоида

Показатели	Марка	a A	
	Прозрачный	Белый	
Разрушающее напряжение при растяжении, МПа, не менее, для листов толщиной, мм:			
от 0,30 до 0,50	45	50	
св. 0,50 " 1,00	42	_	
" 1,00 " 1,50	39	_	
Относительное удлинение при разрыве, %, не менее, для листов толщиной, мм:			
от 0,3 до 0,5	18	10	
св. 0,5 " 1,5	18	~	
Сопротивление изгибу	Не должен ломаться	и давать трещин	

ДОСКИ АСБЕСТОЦЕМЕНТНЫЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ ДУГОСТОЙКИЕ (по ГОСТ 4248-92)

145. Физико-механические и электрические показатели досок

Показатели	Толщина	F	Норма для марок			
	доски, мм	350	400	450	500	
Предел прочности при изгибе, МПа, не менее	Для всех толщин	35	40	45	50	
Ударная вязкость, кДж/м ² , не менее	6; 8; 10; 12	4		1		
	15 и более	6				
Водопоглощение, %	Для всех толщин	От 12 до 20 вкл.			ι.	
Электрическая прочность, кВ/мм, не менее	6; 8; 10	2,0				
	12 и выше	1,5			· · · · · · · · · · · · · · · · · · ·	
Дугостойкость при токе 20 мА, с	Для всех толщин	30				
Плотность, г/см ³ , при водопоглощении, %: 18 - 20 15 - 17	Для всех толщин	1,8				
12 - 15			2,	.0		

Асбестоцементные дугостойкие электротехпические доски применяют для изготовления леталей, щитов и оснований электрических машин и аппаратов.

Асбестонементные доски в зависимости от предела прочности при изгибе изготовляют следующих марок: 350; 400; 450; 500.

Размеры досок, мм:

длина 1100; 1200; ширина 700; 800; толшина 6; 8; 10; 12; 15; 20; 25; 30; 35; 40.

Обозначение досок должно состоять из буквенного обозначения АЦЭИД (асбестоцементное мектротехническое изделие дугостойкое), марки, размеров по длине, ширине и толщине в миллиметрах и обозначения стандарта.

Пример обозначения доски марки 400 длиной 1200 мм, шириной 800 мм, толщиной 15 мм:

АЦЭИД 400-1200 × 800 × 15 ГОСТ 4248-92

ЭЛАСТИЧНЫЕ ФРИКЦИОННЫЕ АСБЕСТОВЫЕ МАТЕРИАЛЫ (по ГОСТ 15960-96)

Эластичные фрикционные асбестовые материалы (табл. 146) выпускают в виде накладок по чертежам, согласованным между потребителем и поставщиком, в виде отрезков прямой ленты длиной до 1000 мм, а также в виде ленты длиной до 8000 мм и толщиной до 8 мм в рудонах.

По согласованию с потребителем допускается выпускать в рудонах ленты толщиной 10 мм.

Накладки выпускают шифованными без отверстий под заклепки; ленты не шифуют.

146. Марки и области применения асбестовых материалов

Марка	Области применения				
ЭМ-1	Тормозные и фрикционные узлы строительно-дорожных и подъемно- транспортных машин и механизмов; лебедок и тормозов механических прессов с поверхностной температурой трения до 200 °C при давлении до 1,5 МПа и при отсутствии масла на поверхности трения				
ЭМ-2	Тормозные узлы тракторов и других сельскохозяйственных машин; фрикционные узлы экскаваторов с поверхностной температурой трения до 200 °C при давлении до 2,5 МПа при отсутствии масла на поверхности трения				
ЭМ-3	Тормозные уэлы мотороллеров и мотоциклов с поверхностной температурой трения до 200 °C при давлении 0,8 МПа и при отсутствии масла на поверхности трения				

147. Физико-механические свойства асбестовых материалов

Показатели	ЭМ-1	ЭМ-2	ЭМ-3
Коэффициент трения, не менее:			
по чугуну СЧ 15	0,39	0,37	-
по стали 20	•	r-	0,40
по стали 45	0,44	0,40	
Линейный износ при постоянном моменте трения, мм, не более:			
по чугуну СЧ 15	0,10	0,20	-
по стали 20	-	-	0,25
но стали 45	0,12	0,50	-
Водопоглощаемость, %, не более	1.0	1,5	1,5
Маслоноглощаемость, ⁶ 6, не более	1,0	2,0	2,0

148. Размеры асбестовых фрикционных лент, мм

Шир	Ширина		Толщина			Ширяна		а Топцина			
Номин.	Пред. откл.	5 ± 0,4	6 ± 0,4	8 ± 0,6	10±0,6	Номин.	Пред отки	5 ± 0,4	6 ± 0,4	8 ± 0,6	10±0,6
5()		+	ł	+		90		ŧ	ŧ	ł	+
55		+	+	+		100			+	+	+
60	± 1,5	+	÷	+	+	110	£ 1,5			+	ŧ.
65	•	+	+	+	+	120			+	+	+
70		+	+	+	+	140				+	+
80		ŧ	+	+	+	160				+	+

Пример обозначения ленты марки ЭМ-1 толщиной 5 мм и шириной 90 мм:

Лента ЭМ-1 5 × 90 ГОСТ 15960-96

АСБЕСТОВЫЕ ТОРМОЗНЫЕ ЛЕНТЫ (по ГОСТ 1198-93)

Тормозные тканые асбестовые ленты (табл. 149) применяют в качестве накладок в тормозных и фрикционных узлах машин и механизмов с поверхностной температурой трения до 300 °C.

В зависимости от состава пропитки тормозные ленты выпускают трех марок, указанных в табл. 149.

Размеры и физико-механические показатели тормозных лент приведены в табл. 150, 151.

Длина ленты в рулоне не должна превышать 50 м. Примеры обозначения: Лента марки ЛАТ-2 толщиной 5 мм и шириной 40 мм:

Лента асбестовая тормозная ЛАТ-2 - 5 × 40 ГОСТ 1198-93

То же в тропическом исполнении:

Лента асбестовая тормозная ЛАТ-2 - $5 \times 40T$ $\Gamma OCT 1198-93$

Ленты изготовляют переплетением асбестовых нитей основы и утка.

Асбестовые нити утка лент всех марок и асбестовые нити основы лент марок ЛАТ-2 и ЛАТ-3 изготовляют армированными латунной проволокой диаметром не менее 0,16 мм.

Поверхность тормозных асбестовых лент должна быть без трещин, рваных нитей, разлохмаченных мест. Края лент должны быть затканы. Ленты не шлифуют.

149. Марки асбестовых тормозных лент и их назначение

Обозначение марки ленты	Вид пропитки	Назначение
ЛАТ-1	Масляно-смоляная	Тормозные ленточные узлы, работающие при давлении до 3 МПа в среде масла Тормозные и фрикционные узлы, работающие при давлении 1,15 МПа и сухом трении
ЛАТ-2	Масляная	Тормозные и фрикционные узлы, работающие при давлении до 5 МПа и сухом трении
ЛАТ-3	Каучуковая	Тормозные узлы якорно-швартовых механизмов судов, работающие при давлении до 12 МПа

II р и м е ч а н и е . Соответствие новых обозначений марок лент замененным: ЛАТ-1-В; ЛАТ-2-Б; ЛАТ-3-СКАТ.

150. Ширина и толщина тормозных лент, мм

Ширина		Толщина для марок			
	ЛАТ-1 ЛАТ-2		ЛАТ-3		
13	<u> </u>	4; 5	-		
20; 25	4;	5	~		
30; 35	4; 5	; 6			
40; 45	4; 5; 6	; 7; 8	<u> </u>		
50	4; 5; 6; 7; 8; 9; 10]		
55; 60; 65; 70; 75	5; 6; 7; 8	3; 9; 10			
80; 85; 90; 95	5; 6; 7; 8;	9; 10; 12	6; 8; 10		
100; 105; 110; 115; 120	6; 7; 8; 9	; 10; 12			
125; 130	7; 8; 9;	10; 12	<u> </u>		
140	4; 5; 6; 7; 8; 9; 10; 12 7; 8; 9; 10; 12				
150	7; 8; 9;	10; 12]		
160; 170; 180; 190	9; 10; 12		6; 8; 10; 12		
200	9; 10	; 12			

Физико-механические показатели тормозных лент

Показатели	ЛАТ-1	ЛАТ-2	ЛАТ-3
Коэффициент сухого трения: по чугуну марки СЧ15 по стали марки 35 по стали марки 45	0,40 - 0,50 - 0,30	0,45 - 0,60 - 0,50	- 0,46 - 0,60 -
Линейный износ, мм, не более: по чугуну марки СЧ15 по стали марки 35	0,11	0,11	0,16
Статический коэффициент трения по стали марки 35, не менее: для якорно-швартовых механизмов для брашпилей	-	-	0,18 0,22
Увеличение массы при воздействии воды, %, не более, при толщине: от 4 до 5 мм		8	-
св. 5 до 8 мм св. 8 мм	12	12 14	15 15
Увеличение массы при воздействии масла, %, не более, при толщине: от 4 до 5 мм св. 5 до 8 мм св. 8 мм	15,5	8 12 14	- - -
Плотность г/см ³	1,2 - 1,4	1,45 - 1,65	1,3 - 1,4
Средний срок сохраняемости, лет, не менее	10	10	10

ФРИКЦИОННЫЕ ИЗДЕЛИЯ ИЗ РЕТИНАКСА (по ГОСТ 10851-94)

Фрикционные изделия изготовляют из асбосмоляной композиции ретинакс.

Изделия из ретинакса работоспособны в районах с умеренным, тропическим и холодным климатом.

Фрикционные изделия применяют в узлах трения авиационных колес, буровых лебедок и других машин и механизмов.

Ретинакс изготовляют двух марок (табл. 152). Старые марки ретинакса приведены в скобках.

Изделия из ретинакса относят к горючим материалам. Температура самовоспламенения 575 °C.

Пример условного обозначения.

Изделие из ретинакса марки А

(наименование изделия, номер детали по чертежу)

ГОСТ 10851-94

152. Марки ретинакса и область применения

Обозначение марки	Поверхностная температура трения, °С	Скорость скольжения, м/с	Давление, МПа	Область применения
		не более		
А (ФК-16Л)	1100	50	2,5	Фрикционные узлы трения в паре с чугуном марки ЧНМХ
Б (ФК-24А)	700	10	1,5	Фрикционные уэлы трения в паре с серым чугуном и легированными сталями

153. Физико-механические показатели изделий из ретинакса

Наименование	Норма для марки			
показателя	A	Б		
Кожффициент теплостойкости, теплопроводности, Вт/(м · °C)	0,60	0,58		
Удельная теплоемкость, кДж/(кг · °С)	0,84	0,96		
Предел прочности при срезе, МПа, не менее	32,5	25,5		
Предел прочности при сжатии, МПа, не менее	72,0	73,0		
Плотность, кг/м ³	2400 - 2650	2130 - 2450		
Твердость по Бринеллю, НВ 10 / 500 / 30	37 - 52	30 - 49		

ГОСТ приводит фрикционную теплостойкость, а также коэффициенты трения для изделий из ретинакса при работе в паре с чугуном марок ЧНМХ и СЧ 15 и со сталью 40ХН в зависимости от температуры испытаний.

АСБЕСТОВЫЕ ТКАНИ (по ГОСТ 6102-94)

Асбестовые ткани применяют в качестве теплоизоляции, диафрагмы при электролизе воды, а также для изготовления теплоизоляционных материалов и изделий промышленной техники (прорезиненных набивок, рукавов, прокладочных колец и манжет).

Ткани выпускают в рулонах; длина рулона ткани 25 м - при массе 1 м 2 до 1600 г; 12м - при массе 1 м 2 более 1600 г. В рулоне допус-

кается один отрез длиной не менее 5 м. Масса рулона не более 80 кг.

Пример обозначения асбестовой ткани марки АТ-2 шириной 1040 мм:

Ткань асбестовая AT-2 1040 ГОСТ 6102-94

То же, для ткани в тропическом исполнении:

Ткань асбестовая AT-2T 1040 ГОСТ 6102-94

154. Марки тканей и область применения

Марка	Массовая доля асбеста, %,	Рекомендуемая	Рекоменду температу	
ткани	не менее (справочная)	область применения	изолируемых поверхностей	эксплуа- тации
AT-1C; AT-1M	84,5	Для изготовления прорезиненных тканей, асботекстолитов, изделий промышленной техники.* В качестве теплоизоляционного материала	130 - 400	-
AT-2; AT-3	84,5	То же	То же	-
AT-4; AT-5	81,5	Для изготовления изделий про- мыпленной техники. В качестве теплоизоляционного и прокладочного материала	130 - 400	-
AT-6	95,0	В качестве диафрагмы при электролизе воды	-	До 100
AT-7; AT-8; AT-9	90,0	В качестве теплоизоляционного и прокладочного материала	130 - 450	-
AT-12	84,5	Для изготовления асботекстолитов и специальных изделий	-	130 - 400
AT-13	81,5	В качестве теплоизоляционного и прокладочного материала	130 - 450	
AT-16	95,0	В качестве диафрагмы при элек тролизе воды, кроме электропизе ров специального назначения		До 100
AT 19	81,5	Для изготовления компенсирую щих прокладок при производстве древесно стружечных плит		130 220
ACT-1	78,5	В качестве геплои золиционного материала	130 150	
ACT 2 (ACT-1Ж)	79,6	Для пошива жарозащитной одеж ды		
AJII - I	80,0	Для изготовления высокопрочных асботекстолитов		200 500
AJIT 5	80,0	Для изготовления специальных изделий		
AJIT-6	70,0	Для изготовления асботекстолитов мектротехнического назначения		,

Продолжение табл. 154

			продолжени	o laon. ID
Марка а	Массовая доля асбеста, %,	Рекомендуемая	Рекомендуемая температура, °C	
ткани	не менее (справочная)	область применения	изолируемых поверхностей	эксплуа- тации
АЛТ-6М	70,0	Для изготовления изделий специ- ального назначения	-	-
ABT-1	89,0**	Для изготовления теплозащитных покрытий и высокопрочных пластиков. В качестве теплоизоляционного материала	-	До 500
АБТ-1Б	89,0**	Для изготовления теплозащитных материалов	-	До 500
OT-2	81,5	В качестве оболочки для обтюраторных подушек	-	-

^{*} Изделия промышленной техники - набивки, рукава, прокладочные кольца, манжеты.

** Массовая доля асбеста и базальта.

155. Физико-механические показатели асбестовых тканей

Марка		рхностная юсть, г/м ²		нагрузка, Н, иенее	Потеря вещества при прокаливании,		
ткани	Номин.	Пред. откл.	по основе	по утку	%, не более		
AT-1C	1000	±100	650	270	29,0		
AT-1M	1000	±100	700	300	29.0		
AT-2	1050	±100	500	170	32,0		
AT-3	1200	±150	500	200	32,0		
AT-4	1475	±225	450	170	32,0		
AT-5	1350	±150	680	250	32,0		
AT-6	3200	±200	2550	1500	19,0		
AT-7	1550	±100	850	600	23,5		
AT-8	2100	±100	800	1000	23,5		
AT-9	1125	±75	600	360	23,5		
AT-12	1000	±100	500	500	29,0		
AT-13	2600	±300	650	650	32,0		
AT-16	3200	±200	2150	1300	19,0		
AT-19	2650	±200	950	1100	32,0		
ACT I	1050	±150	1000	400	27,0		
ACT-2	500	±50	350	270	29,0		
AITH	850	±50	1000	400	32,0		
AJIT-5	450	±50	400	180	37,5		
AJIT-6	400	±50	500	250	46,0		
AJIT-6M	400	±50	500	250	46,0		
ABT-1	1000	±100	1200	800	20,0		
A6T-16	1050	±100	2500	270	20,0		
OT-2	1250	±150	700	700	32,0		

II р и м е ч а н и е . По согласованию с потребителем допускается устанавливать в технических условиях на конкретные марки тканей вместо показателя "потеря вещества при прокаливании" показатель "массовая доля асбеста".

155 а. Размеры асбестовых тканей, мм

Марка	Номинальная	Толі	цина	Марка	Номинальная	Толщина		
ткани	ширина (+ 20)	Номин.	Пред. откл.	ткани	ширина (+ 20)	Номин.	Пред. откл.	
AT-1C	1040, 1350,	1,6	+0,2 -0,1	AT-13	1500	4,4	±0,4	
AT-1M	1550, 1700	1,6	+0,1 -0,2	AT-16	1550, 1820	3,6	±0,2	
AT-2		1,7	±0,3	AT-19	1820	4,0	±0,2	
AT-3		2,5	+0,4 -0,5	ACT-1	1040, 1350, 1550	1,8	+0,3 -0,4	
AT-4	1040, 1350, 1550	3,1	+0,4 -0,5	ACT-2	1040, 1550	0,9	±0,1	
AT-5		2,2	+0,3 -0,4	АЛТ-1	1000, 1200, 1550	1,2	±0,1	
AT-6	1550, 1820	3,6	±0,2	АЛТ-5	1000, 1200	0,9	+0,1 -0,2	
AT-7	1820	2,4	+0,1 -0,2	АЛТ-6; АЛТ-6М	1040, 1350	0,9	±0,2	
AT-8	1,500	3,3	+0,2 -0,3	АБТ-1; АБТ-1Б	1550	1,6	±0,2	
AT-9	1500	2,0	+0,2 -0,1	OT-2	1100	1,6	+0,1	
AT-12	1040	1,6	+0,2 -0,3				-0,2	

АСБЕСТОВЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ ЛЕНТЫ (по ГОСТ 14256-78)

156. Размеры и физико-механические показатели

Марка	Толщина, мм	Ширина, мм	Разрывная нагрузка,* Н, не менее	Влажность, %, не более	Потери массы при прокаливании, %, не более	МАсса і м длины, г, не более
ЛАТ	0,5	20 25 30 175	80 130 140	3	34	12 14 16 84

^{*} По основе на ширину ленты.

Лента асбестовая теплоизоляционная (ЛАТ) предназначена для теплоизоляции трубопроводов и других элементов приборов и машин, работающих до 400 °C.

ГОСТ предусматривает другие марки электроизоляционных лент.

Ленту выпускают рулонами длиной 50 м. Пример обозначения ленты марки ЛАТ толщиной 0,5 мм и щириной 20 мм:

Лента ЛАТ 0,5 × 20 ГОСТ 14256-78

АСБЕСТОВАЯ БУМАГА (по ГОСТ 23779-95)

Бумагу марки БТ применяют для теплоизоляции; ее выпускают в рулонах шириной и толщиной $950 \times 0,65$; $950 \times 1,0$ мм. Допускается изготовлять бумагу листами 950×1000 , толщиной 1,5 мм.

Масса 1 м^2 в г, не более: 820 для толщины 0,65 мм; 1230 для толщины 1,0 мм; 1850 для толщины 1,5 мм.

Обозначение асбестовой теплоизоляционной бумаги толщиной 0,65 мм, шириной 950 мм:

> Бумага асбестовая БТ 0,65 × 950 ГОСТ 23779-95

АСБЕСТОВЫЙ КАРТОН (по ГОСТ 2850-95)

Асбестовый картон применяют в качестве огнезащитного, термоизоляционного материала, а также материала для уплотнения соединений приборов, аппаратуры и коммуникаций.

157. Марки и назначение асбестового картона

Марка и наименование	Рекомендуемые области применения
КАОН-1; КАОН-2 (картон асбестовый общего назначения)	Для теплоизоляции при температуре изолируемой поверхности до 500 °C; КАОН-2 - для уплотнения соединений приборов, аппаратуры и коммуникаций при предельном давлении среды 0,6 МПа
КАП (картон асбестовый прокладочный)	В качестве мягкого сердечника в комбинированном уплотнении для стыков; головка - блок цилиндров карбюраторных двигателей и дизелей с максимальным давлением сгорания в цилиндрах до 7,0 МПа; головка блока - выпускной коллектор карбюраторных двигателей

158. Размеры листов картона, мм

Марка	Толщина	Щирина	Длина
		900	900
		600	1000
KAOH-1	2; 2,5; 3; 4; 5; 6; 8; 10	800	1000
		900	1000
	i	1000	1000
		900	900
		740	980
KAOH-2	2; 2,5; 3; 4; 5; 6; 8; 10	800	1000
		900	1000
		1000	1000
		850	1040
КАП	1,3; 1,6; 1,9; 2,5	460	780

159. Физико-механические свойства асбестового картона

Показатели	KAOH-1	KAOH-2	КАП				
Плотность, г/см ³	1,0 - 1,4	1,0 - 1,4	1,0 - 1,3				
Предел прочности при разрыве, МПа, не менее: в продольном направлении в поперечном направлении	1,2 0,6	1,5 0,9	2,5 1,5				
Влажность, %, не более	5	10	3				
Огнестойкость	Не долже	Не должен гореть и обугливаться					

ПРОКЛАДКИ ПЛОСКИЕ ЭЛАСТИЧНЫЕ (по ГОСТ 15180-86)

Плоские прокладки из паронита предназначены для фланцевых соединений трубопроводов, соединительных частей и магистральных фланцев арматуры, машин, приборов, аппаратов и резервуаров на условное давление $p_{\rm y}$ от 0,1 до 20,0 МПа и условный проход $D_{\rm y}$ от 10 до 3000 мм.

Материал прокладок - паронит по ГОСТ 481-80 в зависимости от назначения.

ГОСТ предусматривает $D_{\rm y}$ до 3000 мм для прокладок типа A, до 800 мм для типа Б и B, Г и Д, а также нерекомендуемые условные проходы.

Пример условного обозначения прокладки А для фланца D_y 100 мм на p_y 0,25 МПа из паронита марки ПОН:

Прокладка А-100 - 0,25 ПОН ГОСТ 15180-86

160. Размеры плоских эластичных прокладок, мм

• Дтя $D_i = 14\%$ им и более толшина прокладки 3 мм.

\ \ \ \			i						1					
] H	I HII A			Тн	Тип Б		Тит	Тип В			Тип Г		
Проход услов- ный Д,	Лавте- ние услов- ное д.	Наруж- Вну ный н лиаметр диа проклад- про ки <i>D</i>	Наруж Виутрен- ный ний ниженд тиаметр проклат проклага-	Проход услов- ный О,	Давле- ние услов- нос ру, МПа		Наруж- ный Внутрен- ный Наруж- ный Внутрен- ный диаметр диаметр диаметр проклад- ки D ки d ки d	Наруж- ный диаметр проклад- ки D	Внутрен- ний днаметр проклад- ки d	Проход услов- ный <i>D</i> у	Давле- ние услов- ное <i>р</i> у, МПа	Наруж- Внутрен- ный ний диаметр диаметр проклад- проклад- ки <i>D</i> ки <i>d</i>	Давле- Наруж- Внутрен- ние ный ний услов- диаметр диаметр ное ру, проклад- проклад- мПТа ки D ки d	Тол- щина \$
	0.1-0.63			(3)	0,1-0,63	29	14	29	19	10	0,1-0,63	30	18	
2	10.40	45	F 75	0	1,0-10,0	34		34	24		1,0-10,0	35	23	
	0.10	5		3.	0,1-0,63	33	20	33	23	15	0,1-0,63	34	22	1,0
4	0	-		1	1.0-16.0	39	ì	39	29		1,0-20,0	40	28	
	6.1-0.63	S	¥.	2	0,1-0,63	+3	25	43	33	20	0,1-0,63	44	32	
67	10.40	8	1	2	1,0-16,0	50	·	20	36		1,0-20,0	51	35	
		_	_											

Продолжение табл. 160

аол. 160		Тол- щина s		0	٥,٠								2,0							
Продолжение табл. 160		Внутрен- ний диаметр проклад- ки d	40	42	48	50	54	09	65	72	85	94	100	105	116	128		1	145	154
Ilpoz	INII	Наруж- ный диаметр проклад- ки <i>D</i>	52	58	09	99	70	92	81	88	101	110	116	121	138	150	,	,	167	176
		Давле- ние услов- ное <i>р</i> у, МПа	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	0,1-0,63	1,0-20,0	,	'	0,1-0,63	1,0-20,0
		Проход услов- ный <i>D</i> у	25) 	32		40		50		65		80			100	-		125	
Tun B	ŭ 11	Внутрен- ний диаметр проклад- ки d	41	43	49	51	55	61	99	73	98	95	101	106	117	129	-	,	146	155
1,1	u i	Внутрен- Наруж- ний ный лиаметр диаметр проктал- ки <i>d</i> ки <i>D</i>	51	57	59	65	69	75	80	87	100	109	115	120	137	149	,	,	166	175
		Внутрен- ний диаметр проклад- ки d	29		38		45		57		7.5		87		106	L .	ı	1	132	
Tun B		Наруж- ный диаметр проклад- ки D	51	57	59	65	69	75	80	87	100	109	115	120	137	149	,	t	166	175
Ä		Давле- ние услов- ное <i>р</i> у. МПа	0,1-0,63	1,0-16,0	0.1-0,63	1,0-16,0	0,1-0,63	1,0-16,0	0,1-0,63	1,0-16,0	0,1-0,63	1,0-16,0	0,1-0,63	1,0-16,0	0,1-0,63	1,0-16,0	'	,	0,1-0,63	1,0-16,0
		Проход услов- ный <i>Д</i> у	25		32		40		50		65		08		·	100			125	
		Наруж- Внутрен- ный ний лиаметр лиаметр проклал- проклал- ки <i>D</i>	29		38		45		57		7.5		87			106			132	
Тип А		Наруж- ный лиаметр проктал- ки <i>D</i>	63	69	7.5	81	85	91	95	106	115	126	132	141	151	161	166	181	191	161
THI		Давле- ние услов- ное р., МПа	0,1-0,63	1,0-4,0	0,1-0,63	1,0-4,0	0,1-0,63	1,0-4.0	0,1-0,63	1,0-4,0	0,1-0,63	1,0-4,0	0,1-0,63	1,0-4,0	0,1-0,63	1,0; 1,6	2,5; 4,0	0,1-0,63	1,0; 1,6	2,5; 4,0
		Проход услов- ный Ду	25		32		9		50		99		80		•	100			125	

ТЕРМОИЗОЛЯЦИОННЫЙ ПРОКЛАДОЧНЫЙ КАРТОН (по ГОСТ 20376-74 в ред. 1990 г.)

161. Технические показатели картона (без тиснения)

Показатель	Норма
Толіцина, мм	2,00 ± 0,20 2,50 ± 0,20 3,00 ± 0,30
Плотность, r/cm^3 , не более	0,5
Предел прочности при растяжении в поперечном направлении, МПа, не менее	1,2
Впитываемость* воды при полном погружении, %, не более	10
Теплопроводность, $B_T/(M \cdot K)$, не более	0,06
Влажность, %	10 ± 2

^{*} Определяется при температуре (23 \pm \pm 1) °C в течение 30 мин.

Картон изготовляют в рулонах шириной (990 \pm 10) мм.

Пример условного обозначения термоизоляционного прокладочного картона толщиной 2,50 мм:

Картон-2,5 ГОСТ 20376-74

То же, толщиной 2,00 мм в тропическом исполнении:

Картон-2,0-грибоустойчивый ГОСТ 20376-74

Картон должен изготовляться тисненым. Образец тиснения должен согласовываться с потребителем.

По заказу картон допускается изготовлять без тиснения.

ПЛЕНКА И ЛЕНТА ИЗ ФТОРОПЛАСТА-4 (по ГОСТ 24222-80 в ред. 1991 г.)

Пленка и лента предназначаются для изготовления прокладочного и изоляционного материала, стойкого к сильным агрессивным средам, работающего в интервале температур от минус 269 до плюс 260 °C в различных атмосферных условиях.

Внешний вид пленки и ленты - матовая, гладкая, от белого до светло-серого цвета.

В зависимости от назначения пленки и ленту из фторопласта-4 выпускают марок:

КО - конденсаторная ориентированная пленка;

ЭО - электроизоляционная ориентированная пленка:

ЭН - электроизоляционная неориентированная пленка;

ИО - изоляционная ориентированная пленка:

 ИН - изоляционная неориентированная пленка;

ПН - лента прокладочная неориентированная для изготовления прокладок, уплотнений и изоляционного материала.

162. Размеры ленты из фторопласта-4 марки ПН

Показатель	Нормы
Толщина, мм	0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 1,0; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,4; 2,6; 2,8; 3,0
Ширина, мм	40 - 120
Длина ленты в рулоне, мм	Не менее 200

Разрушающее напряжение при растяжении не менее 18 МПа.

Ленту толщиной от 0.2 до 0.5 мм наматывают на втулки; толщиной от 0.5 до 3 мм сматывают в рулоны без втулок.

ФТОРОПЛАСТОВЫЙ УПЛОТНИТЕЛЬНЫЙ МАТЕРИАЛ

Фторопластовый уплотнительный материал (ФУМ) представляет собой профилированные изделия из неспеченного фторопласта-4Д (ГОСТ 14906-77).

ФУМ предназначен для использования в качестве химически стойкого самосмазывающегося набивочного и прокладочного материала, работающего при температурах от минус 60 до плюс 150 °C и давлении среды до 6,4 МПа.

Материал ФУМ выпускают следующих марок:

 Φ УМ-В - для различных агрессивных сред общепромышленного типа, содержит смазку "В";

 $\Phi YM-\Phi$ - для специальных условий работы, содержит смазку " Φ ";

ФУМ-О - для особо чистых сред и сильных окислителей, не содержит смазку.

ФУМ изготовляют трех грофилей: круглый диаметром от 1 до 8 мм;

квадратный от 3×3 до 8×8 мм;

прямоугольный от 2×4 до 2×8 мм.

Интервал размеров - через 1 мм.

Отклонения по размерам сечения материала ФУМ не более ± 10 %. Минимальная длина куска ФУМ - 1 м.

Показатели	ФУМ-В	ФУМ-Ф	ФУМ-О
Внешний вид	Цвет матер Допускается нал	иала от белого до ичие мелких темнь	кремового. их пятен и полос
Разрушающее напряжение при растяжении, МПа	2,4	2,0	2,0
Относительное удлинение при разрыве, %, не менее	94	50	30

163. Технические показатели ФУМ

Примеры обозначения. Материал фторопластовый уплотнительный марки В квадратного сечения 3×3 мм:

 $\Phi YM-B 3 \times 3$

то же марки О круглого сечения 5 мм:

ФУМ-0 5

Техника безопасности и промышленная санитария. ФУМ в условиях назначения является нетоксичным материалом, совершенно безопасным для здоровья.

Содержащаяся в материале ФУМ смазка "В" представляет собой смесь парафиновых нетоксичных углеводородов, входит в материал в количестве 13 - 14 %, имеет температуру вспышки 187 °С и температуру воспламенения 290 °С.

Запрещается применять ФУМ при температуре выше +150 °C, так как при температуре свыше +200 °C начинается разложение фтореншаста 4Д с выделением газообразных токсичных продуктов фторфостена, фтористого водорода и других фторорганических соединений; предельно допустимая концентрация фтористого водорода -0,5 мг/м³.

При работе с ФУМ запрещается курение, применение открытого пламени и проведение сварочных работ, которые могут явиться источником разложения фторопласта-4Д.

ПАРОНИТ И ПРОКЛАДКИ ИЗ НЕГО (по ГОСТ 481-80 в ред. 1992 г.)

Листовой паронит получают из смеси асбестовых волокон, растворителя, каучука и на-

полнителей; предназначен для изготовления прокладок различных конфигураций.

Паронит общего назначения применяют для уплотнения плоских разъемов неподвижных соединений с давлением рабочей среды не более 4.0 МПа.

Физико-механические показатели паронита марки ПОН. Плотность 1,6 - 2,0 г/см³. Условная прочность при разрыве в поперечном направлении не менее 6,6 МПа.

Увеличение массы в жидких средах в течение 12 ч, %, не более: 14 в воде при $100~^{\circ}$ С и $40~^{\circ}$ в керосине при $23~^{\circ}$ С.

Шероховатость уплотняемых мест соединения металлических поверхностей должна быть не грубее *Rz* 40.

Размеры листов, мм.

Длина \times ширина: 400 \times 300; 500 \times 500; 750 \times 500; 1000 \times 750; 1500 \times 1000; 1500 \times \times 1500; 3000 \times 1500.

Толщина: 0,4; 0,6; 0,8; 1,0; 1,5; 2; 3; 3,5; 4; 5; 6.

Пример обозначения листов паронита марки ПОН толщиной 0,8, шириной 750 и длиной 1000 мм;

Пост 481-80

ГОСТ 481-80 предусматривает также паронит марок:

IIMБ и IIMБ-1 - маслобензостойкий,

ПК - кислотостойкий,

ПА - армированный сеткой,

ПЭ - электролизерный и другие марки.

КАРТОН ПРОКЛАДОЧНЫЙ И УПЛОТНИТЕЛЬНЫЕ ПРОКЛАДКИ ИЗ НЕГО (по ГОСТ 9347-74 в ред. 1990 г.)

164. Технические показатели картона

	1	4	Б			
Показатели		Толщи	на, мм			
	от 0,3 до 0,8	от 1,0 до 1,5	от 0,3 до 0,5	от 0,8 до 2,5		
Объемная масса, г/см ³ , не менее	0,75	0,75	0,70	0,75		
Впитываемость за 6 ч при полном погружении, %, не более:						
воды	60	60	150	120		
бензина	35	30	-	-		
масла	35	30	-	-		
Предел прочности при растяжении в поперечном направлении, МПа, не менее	0,14	0,14	0,2	0,16		
Влажность, %	12 ± 2	12 ± 2	10 ± 2	10 ± 2		

Картон предназначен для изготовления уплотнительных прокладок во фланцевых и других соединениях.

Картон выпускают марок:

А - пропитанный,

Б - непропитанный.

Картон марки А толщиной до 0,8 мм включительно вырабатывают в листах и рулонах; картон толщиной 1,0 и 1,5 мм - в листах; картон марки Б толщиной до 0,5 мм включительно - в рулонах; картон от 0,8 мм и более - в листах.

Толщина, мм:

картона марка A - 0,3; 0,5; 0,8; 1,0; 1,5; картона марки B - 0,3; 0,5; 0,8; 1,0; 1,25; 1,5; 1,75.

В заказе указываются наименование картона, его марка, толщина и ГОСТ.

АСБЕСТОВЫЕ ШНУРЫ (по ГОСТ 1779- 83 в ред. 1990 г.)

Асбестовые шнуры применяются для теплоизоляции и уплотнения неподвижных деталей машин и аппаратов.

Пример обозначения асбестового шнура общего назначения диаметром 3 мм:

Шнур асбестовый ШАОН 3 ГОСТ 1779-83

165. Марки, размеры и применение асбестовых шнуров

Марка	Диаметр, мм	Способ изготовления	Область применения
ШАОН - шнур асбестовый общего назначения	0,7; 1,0; 1,5; 2,0; 2,5; 3; 4; 5; 6; 8; 10; 12; 15; 18; 20; 22; 25	Кручение асбестовой пряжи в несколько сложений или обвивание сердечника асбестовой пряжей	Теплоизоляция и уп- лотнение до 400°C
ШАМ - шнур асбестовый магнезиальный	12; 15; 18; 20; 22; 25; 28; 32	Оплетение асбестовыми нитями сердечника с наполнением углекислой магнезией	Уплотнение до 425°C

ГОСТ предусматривает также другие марки шнура.

ТЕХНИЧЕСКИЙ ПОЛУГРУБОШЕРСТНЫЙ ВОЙЛОК

(по ГОСТ 6308- 71 в ред. 1990 г.)

Технический войлок изготовляют следующих видов:

- а) для сальников, применяемых для задержки смазочных масел в местах трения и предохранения мест трения от попадания в них воды и пыли; условное обозначение С; плотность 0,38 г/см³;
- б) для прокладок, предохраняющих детали машин от истирания, загрязнения, ударов, сотрясений, и для звукопоглощаемости.

Войлок для прокладок в зависимости от степени уплотнения изготовляют двух марок:

A - с плотностью 0,34 г/см³,

Б - с плотностью $0,28\,$ г/см 3 (для мягких прокладок);

условное обозначение соответственно ПрА и ПрБ:

- в) для фильтров, применяемых для фильтрации масел; условное обозначение Φ ; плотность 0,24 г/см³.
- В условное обозначение войлока входят: наименование войлока по виду шерсти (полугрубошерстный; чистошерстяной П; с содержанием химических волокон Пх), назначение (сальник, прокладка, фильтр), толщина, а также номер стандарта.

Пример условного обозначения войлока чистошерстяного толщиной 10 мм:

для сальников

Войлок ПС 10 ГОСТ 6308-71

для прокладок марки А

Bounok IIIIpA10 FOCT 6308-71

для фильтров

Войлок ПФ10 ГОСТ 6308-71

Выпускают также войлок технический тонкошерстный (ГОСТ 288-72) и грубошерстный (ГОСТ 6418-81).

ПРЕССОВОЧНЫЙ МАТЕРИАЛ АГ-4 (по ГОСТ 20437-89)

Прессовочный материал АГ-4 изготовляют на основе модифицированной фенолоформальдегидной смолы в качестве связующего и

стеклянных нитей в качестве наполнителя.

Прессовочный материал АГ-4 предназначен для изготовления прямым или литьевым прессованием, а также намоткой с последующим отверждением изделий конструкционного и электротехнического назначения повышенной прочности, пригодных для работы при температуре от минус 196 до плюс 200 °С и в тропических условиях.

В зависимости от внешнего вида прессматериал АГ-4 изготовляют следующих марок:

АГ-4В - стекловолокнит из неориентированных отрезков стеклянных однонаправленных нитей марки БС6-200 по ГОСТ 10727-91, пропитанных связующим, в брикетах массой не более 20 кг;

АГ-4В-10 - на основе стеклянных нитей марки БС10-200 по ГОСТ 10727-91;

А Γ -4C - стеклолента на основе стеклянных крученых комплексных нитей марок БС6-6, $8 \times 1 \times 2$ или БС5 - $6 \times 1 \times 2$ по Γ OCT 8325-93, пропитанных связующим;

АГ-4НС - стеклолента на основе 200 и 400-филаментных стеклянных нитей, выработанных из стекла алюмоборосиликатного состава диаметром элементарной нити 9 - 11 мкм, пропитанных связующим.

Пресс-материал АГ-4С и АГ-4НС выпускают в рулонах, на катушках или в виде срезов с барабана.

Длина, ширина и толщина ленты прессматериала АГ-4С и АГ-4НС устанавливается по соглашению сторон. При этом ширина ленты марки АГ-4С должна быть 15 - 350 мм, а марки АГ-4НС - 60 - 250 мм.

II ример обозначения прессматериала АГ-4В:

> Пресс-материал AГ-4В ГОСТ 20437-89

(в случае окрашенного материала указывается цвет).

Цвет пресс-материала АГ-4 всех марок должен быть желтым различных оттенков. По соглашению сторон допускается выпускать пресс-материал АГ-4 окрашенным.

166. Физико-механические показатели прессовочного материала АГ-4

Показатели	АГ-4В	АГ-4С	АГ-4НС
Разрушающее напряжение, МПа, не менее:			
при растяжении	-	539	539
при изгибе	168	465	568
при сжатии	130	-	-
при сжатии:			
в направлении ориентации стеклонитей	-	255	196
в направлении, перпендикулярном к ориентации стеклонитей	-	80	49
Ударная вязкость, кДж/м ² , не менее	69	255	255
Содержание влаги и летучих веществ, %	2,5 - 5,5	2 - 5	2 - 5
Содержание связующего, %	36 - 40	28 - 32	28 - 32
Модуль упругости при растяжении в направлении ориентации стеклянных нитей, МПа, не менее	-	34 300	-
Предел прочности при скалывании в направлении ориентации стеклянных нитей, МПа, не менее	-	14,7	-
Коэффициент линейного расширения при 25 - 150 °C, 1 / °C:			
в направлении ориентации стеклянных нитей	-	5 · 10-6	-
при взаимно перпендикулярном расположении стеклянных нитей	-	8,5 · 10 ⁻⁶	-
Коэффициент линейного расширения при 25 - 200 °C, 1 / °C	12,4 · 10 ⁻⁶	-	-
Средняя удельная теплоемкость при 25 - 250 °C кДж/(кг·К)	1,17	1,17	-
Маслостойкость и бензостойкость, %	+0	,05	-
Кислотостойкость, %, не более	0,	.1	-
Водопоглощение, %, не более	0,	2	-
Плотность, г/см ³	1,7 -	1,9	-
Расчетная усадка при прессовании, %, не более	0,	15	-
Теплостойкость по Мартенсу, °С, не менее	28	80	-

КАПРОНОВАЯ ПЕРВИЧНАЯ СМОЛА

Капроновая смола представляет собой продукт полимеризации капролактама (ГОСТ 7850-86).

Смолу применяют для переработки в пластмассовые изделия. Выпускают ее неэкстра-

гированную и экстрагированную двух марок:

- А для пресс-материалов,
- Б для литья.

Смола капроновая первичная - вещество нетоксичное, негорючее. Температура плавления 180 - 200 °C.

При переработке не выделяет вредных веществ.

Показатели	Экстагиро	ванная	Неэкстрагированная
	A	Б	
Внешний вид	Блестящая или м	атовая жилка,	пластинка или лепесток
Цвет	От белого до све	тло-желтого	От белого до желтого
Относительная вязкость в серной кислоте	2,2 - 3	3,0	1,95 - 2,5
Содержание низкомолекулярных соединений, %	3	1,5	13
Содержание влаги, %, не более	3		5

167. Технические требования к капроновой смоле

ЛИТЬЕВЫЕ СОПОЛИМЕРЫ ПОЛИАМИДА (по ГОСТ 19459-87)

Литьевые сополимеры полиамида марок АК-93/7, АК-80/20 представляют собой продукты совместной поликонденсации соли АГ и капролактама в соотношениях 93:7;80:20.

Литьевые сополимеры полиамида предназначены для изготовления литьем под давлением различных изделий конструкционного назначения, применяемых в машиностроении, электротехнической промышленности, приборостроении и в других отраслях как заменители цветных металлов. Температурный диапазон эксплуатации изделий из литьевых сополимеров полиамидов от минус 50 до плюс 70 °С. Литьевые сополимеры полиамида стойки к действию углеводородов, органических растворителей, масел, разбавленных и концентрированных растворов щелочей. Они растворяются в концентрированных минеральных кислотах, муравьиной и уксусной кислотах, в фенолах.

Показатели литьевых сополимеров полиамида приведены в табл. 168.

Пример обозначения литьевых сополимеров полиамида:

Сополимер полиамида литьевой АК-80 / 20 ГОСТ 19459-87

168.	Показатели	литьевых	сополимеров	полиамила

Показатели	AK-93/7	AK-80/20
Илотность, т/см ³	1,14	1,13
Температура плавления, °С, не менее	238	212
Разрушающее напряжение при сжатии, МПа	100,0 - 120,0	70,0 - 90,0
Кожрфициент трения по стали	0,24 - 0,25	0,22 - 0,23
Теплостойкость, «C:		
по Мартенсу	55 - 60	50 - 60
по Вика	220 - 230	200 - 210
Температура размягчения, °С, при напряжении изгиба 1,80 МНа	50 - 55	45 - 50
Водопоглощение максимальное, %	9	10 - 11

Параметры	AK-93/7	AK-80/20	AK-93/7	AK -80/20
	Бру	ски	Дис	ски
Температура литьевой массы, °С	250 - 270	240 - 260	250 - 270	240 - 260
Время выдержки под давлением в пресс-форме, с		20 -	- 25	
Время охлаждения, с		20 -	- 25	
Давление при литье, МПа	80 - 120			
Температура пресс-формы, °С	40 - 55			

169. Режим литья образцов из сополимеров полнямида

Показатели общие для всех марок:

цвет гранул от белого до светло-желтого; число вязкости не менее 130 мл/г; разрушающее напряжение, МПа, не менее:

при растяжении 60 - 70;

при срезе 55 - 60; твердость 100 - 120 НВ;

усадка при литье под давлением 1,4 - 1,8 %.

Режим литья образцов из сополимеров полиамида приведен в табл. 169.

Во избежание деструкции продукт должен находиться в прессовом цилиндре литьевой машины не более 15 мин.

Требования безопасности. Литьевые сополимеры полиамида не оказывают вредного влияния на организм человека.

В процессе переработки литьевых сополимеров, осуществляемой при 240 - 270 °C, не происходит разложения и выделения вредных веществ.

При температуре выше 300 °C литьевые сополимеры полиамида разлагаются с выделением оксида углерода, углекислого газа и аммиака.

Для защиты работающих от действия вредных газов и пыли и уменьшения степени загрязнения воздуха помещения этими выделениями в цехе должна быть общеобменная вентиляция, состоящая из вытяжной и приточной систем, а ряд производственных агрегатов и рабочих мест (литьевые машины и др.) должны быть оборудованы местной вытяжной вентиляцией.

ФТОРОПЛАСТ-4 (по ГОСТ 10007-80 в ред. 1990 г.)

Фторопласт-4 предназначен для изготовления изделий и пленок, обладающих высокими

диэлектрическими свойствами, стойкостью к сильным агрессивным средам и работающих при температуре до плюс 260 °C.

В зависимости от свойств и назначения фторопласт-4 выпускают марок:

С - для специзделий;

П - для электроизоляционной и конденсаторной пленок;

ПН - для электротехнических изделий и других изделий с повышенной надежностью;

О - для изделий общего назначения и композиций:

T - для толстостенных изделий и трубопроводов.

Фторопласт-4 должен соответствовать нормам, указанным в табл. 170.

Пример обозначения фторопласта-4 марки П:

Фторопласт-4П ГОСТ 10007-80

Свойства фторопласта-4 приведены в табл. 171.

Химически стоек ко всем минеральным и органическим кислотам, щелочам, органическим растворителям, окислителям и другим агрессивным средам.

Не стоек к расплавленным щелочным металлам или растворам их в аммиаке, элементарному фтору и трехфтористому хлору при повышенных температурах.

Закаливать можно только изделия с толшиной стенки не более 6 мм.

Изделия после спекания и охлаждения, особенно те, которые подвергались закалке, нельзя немедленно подвергать механической обработке. 170. Показатели качества фторопласта-4

Показатели			на фторо Ној	ома для		
	С	П	пн	0	Т	
Внешний вид	Легк	о комкую		орошок включен	белого цвета без видимых ний	
Внешний вид пластины:						
цвет чистота	l .	Белый одн еделяют	ородный В соотв	етствии	Допускается серый оттенок с образцом, утвержденным в обланном порядке	
Массовая доля влаги, %, не более	0,02	0,02	0,02	0,02	0,02	
Плотность, г/см ³ , не более	2,18	2,18	2,19	2,20	2,21	
Прочность при разрыве неза- каленного образца, МПа, не менее	27	26	25	23	15	
Относительное удлинение при разрыве незакаленного образца, %, не менее	350	350	350	350	250	
Термостабильность, ч, не менее	100	100	100	100	15	
Удельное объемное электрическое сопротивление при постоянном напряжении, Ом · см, не менее	1 · 10 ¹⁷	1 · 10 ¹⁷	1 - 10 ¹⁷		Не определяют	
Тангенс угла диэлектрических потерь при частоте 106 Гц, не более	0,00025	0,00025	0,00025		То же	
Диэлектрическая проницаемость при частоте 10^6 Γ ц	2,0±0,1	2,0±0,1	2,0±0,1	"		
Электрическая прочность (толщина образца 0,100 ± ± 0,005 мм) при постоянном напряжении, кВ/мм, не менее	50	60	50	"		
Внешний вид строганой пленки	ских вкл отверсти трещин, и одно	чистота родность должны твовать утверия в ненном				
Относительное удлинение при разрыве строганой плен- ки в поперечном направлении, %, не менее	Не опр	еделяют	175		Не определяют	

171. Справочные показатели фторопласта-4

Показатели	Норма
Температура, °С:	
плавления кристаллитов	327
стеклования аморфных участков	-120
разложения	Св. 415
наибольшей скорости кристаллизации	300 - 315
Рабочая температура при эксплуатации, °С:	
максимальная	260
минимальная	-269
Коэффициент теплопроводности, Вт/(м · К)	0,25
Водопоглощение за 24 ч, %	0
Насыпная плотность, кг/м3	350 - 600
Усадка при выпечке (в зависимости от давления таблетирования, условий выпечки и молекулярной массы), %	3 - 7
туре, °C: от минус 60 до минус 10	8
св. минус 10 до плюс 20	8 - 25
" " 20 " " 50	25 - 11
" " 50 " " 110	11
" " 110 " " 120	11 - 15
" " 120 " " 200	15
" " 200 " " 210	15 - 21
" " 210 " " 280	,21
Гермостабильность, % (при 420 °C в течение 3 ч)	0,2
i	

Для стабилизации размеров все изделия после охлаждения оставляют при нормальной температуре на 2 - 4 суток, и только после этого измеряют те изделия, которые применяют без обработки, или передают заготовки на дальнейшую механическую обработку. Изготовленные по соответствующей технологии изделия можно эксплуатировать при температуре до 260 °C.

Прессованием получают заготовки простой формы - пластины, диски, цилиндры, втулки, кольца и т.п., которые в большинстве случаев подвергают дальнейшей механической обработке для придания изделиям более сложной формы и точных размеров. Однако существуют методы прессования из порошка фторопласта-4 изделий сложной конфигурации, таких, как, например сильфоны, втулки с фланцами, стаканы с днищами и т.п.

Если изделия эксплуатируют при низких температурах и к точности и стабильности их размеров не предъявляют очень строгих требований, можно применять штамповку изделий из фторопласта-4, разогретого до 380 °C, в виде заготовок, по форме более или менее близких к форме готового изделия.

Работу с фторопластом-4 следует проводить в соответствии с принятыми санитарными правилами в помещениях, оборудованных приточно-вытяжной вентиляцией.

Включение открытых нагревательных приборов (электроплиток) или приборов с поверхностями, нагретыми выше 260 °C, разрешается только в вытяжных шкафах при включенной вентиляции.

ЛИСТОВАЯ ФИБРА (по ГОСТ 14613—83 в ред. 1991 г.)

Листовую фибру в зависимости от назначения изготовляют следующих марок (табл. 172):

- ФТ фибра техническая; предназначена для изготовления конструкционных и изолирующих деталей машин и приборов;
- ФЭ фибра электротехническая; применяют в электромашиностроении в качестве изоляционного материала.
- ФП фибра поделочная для изготовления тары, тазов для машин прядильного производства и других изделий.

ГОСТ 14613-83 предусмотрена также фибра марок ФПК, ФСВ, КГФ, ФКДГ.

Фибру толщиной 0,4 - 8 мм вырабатывают монолитной;

8—12 мм - монолитной или склеенной;
 свыше 12 мм - склеенной.
 Размеры листов фибры марки ФП;

длина 2000 ± 50 мм;

ширина 1100 ± 50 мм;

длина 2000 ± 50 мм;

ширина 1350 ± 50 мм.

Толщина листов, мм:

ΦT - 0,4; 0,5; 0,6; 0,7; 0,8; 1,0; 1,2; 1,3; 1,5; 1,7; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0; 14,0; 15,0; 16,0; 18,0; 20,0; 22,0; 25,0;

Φ9 - 0,6; 0,7; 0,8; 1,0; 1,2; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0; 15,0; 20,0; 30,0.

ФИБРОВЫЕ ТРУБКИ (по ГОСТ 11945-78 в ред. 1990 г.)

Фибровые трубки марки К применяют в качестве конструкционного и теплоизоляционного материала в машиностроении и других отраслях промышленности.

Трубки изготовляют следующих диаметров, мм: 6×10 ; $8,5 \times 11,5$; $8,5 \times 13,5$; $9,5 \times 13,5$; 10×15 ; 10×20 ; $15 \times 19,5$; $15 \times 22,5$; $19 \times 26,5$; $19 \times 29,5$; 20×29 ; $21 \times 26,5$; 24×32 ; 24×34 ; $25 \times 30,5$; 25×33 ; 26×34 ; 27×37 ; 27×39 ; 28×36 ; 32×40 ; 32×45 ; 38×51 ; 52×66 ; 63×78 ; 78×101 .

Условное обозначение, должно состоять из марки трубки, размеров и обозначения стандарта.

Пример обозначения фибровой трубки марки К с внутренним диаметром 10 мм, наружным диаметром 20 мм и длиной 430 мм:

Трубка фибровая К 10 × 20 × 430 ГОСТ 11945-78

Показатели качества трубок марки К:

Плотность, г/см ³ , не менее	1,3
Предел прочности при растяжении вдоль оси, МПа, не менее	50
Влажность, %, не более	10
Цвет трубок - естественного волокна темно-серого	или

172. Физико-механические свойства листовой фибры (по ГОСТ 14613-83)

						Норма	Норма для марки					:
	Đ	ФТ	Ф	еф	ФСВ	ПФ	П	ФПК	IK	КГФ	ΦΚДΙΓ	дг
Показатели						O	Сорт					
	высший	первый	высший	первый		высший	первый	высший	первый		высший	первый
Плотность, г.см ³ , не менее, при но- минальной тол- щине фибры, ми:												
0,40 - 0.080	41	o i	1.15	1,10	ţ	1,10	1,05	1,10	1,10	1,10 - 1,45	ı	ı
1,00 - 3.00	31.18	(p') part part	1.22	1,15	1,24	1,10	1,10	1,15	1,15	1,10 - 1,45	ı	1
3.50 - 5.0	.70	(**)	1.20	1.20	ı	1	١	1,15	1,15	1	ì	l
6,00 - 30,0	1.20		1.20	1,10	1	í	1	ı	ı	l	1,23	1,20
Предел прочности при растяжении. МПа: в машинном направлении, не менее, при но-имнатьной голшине фибры.												
0.40 - 0.80	Ţ	to seriosino	8	75	1	65	09	99	09	1	1	ı
1,00 - 2,00	8	ent on man	8	7.5	95	99	09	99	09	l	1	i
2,50 - 3,06	္	(*)	75	75	8	ı	ŧ	99	09	ı	1	I .
					-							

Продолжение табл. 172

						Норма	Норма для марки					
	ΙΦ	_	ЕФ	6	ФСВ	ПФ	11	ФПК	¥	КГФ	ФК	ФКДГ
Показателн						O	Сорт				į	
	высший	первый	высший	первый		высший	йавай	высший	первый		высший	первый
Предел прочности при растяжении, МПа:												
в машинном направлении, не												
менее, при но- минальной тол- щине фибры,												
мм: 3,50 - 5,0	59	99	65	09	1	l	1	09	55	I	ı	ı
6,00 - 30,0	55	50	55	20	ı	ı	1	1	ı	1	55	20
в поперечном направлении, не менее, при но- минальной тол- шине фибры, мм:												
0,40 - 0,80	9+	42	46	44	I	40	40	36	34	30	ı	I
1,00 - 2,00	9+	#	46	4	52	40	40	42	40	30	1	ı
2,50 - 3,00	46	#	46	44	48	t	1	42	40	30	ı	ı
3,50 - 5,0	36	34	36	34	ı	1	ı	38	34	ı	ı	l
6,00 - 30,0	32	30	32	90	1	1	1	1	1	ı	32	30

КОНВЕЙЕРНЫЕ РЕЗИНОТКАНЕВЫЕ ЛЕНТЫ (по ГОСТ 20-85 в ред. 1995 г.)

174. Типы, характеристика и назначение конвейерных лент

Тип ленты	Основные характеристики ленты	Вид транспортируемого материала, груза	Вид ленты
1	Многопрокладочная, с двусторонней резиновой обкладкой и защитной или брекерной прокладкой под резиновой обкладкой рабочей	Руды черных и цветных металлов, крепкие горные породы кусками размером до 500 мм, бревна диаметром до 900 мм и другие материалы Известняк, доломит кусками размером до 500 мм, руды черных и цветных металлов кусками до 350 мм и другие	Общего назначения Морозостойкая Общего назначения Морозостойкая
	поверхности и резиновыми бортами	крупнокусковые материалы, бревна диаметром до 900 мм Уголь кусками размером до 700 мм и породы кусками размером до 500 мм, антрацит кусками размером до 700 мм или порода кусками размером до 500 мм	Трудновоспламе- няющаяся Трудновоспламе- няющаяся морозо- стойкая
2	Многопрокладочная, с двусторонней резиновой обкладкой и резиновыми бортами	Руды черных и цветных металлов, крепкие горные породы кусками до 100 мм, известняк, доломит, кокс, агломерат, шихта, концентрат рудный и другие высокоабразивные и абразивные материалы кусками размером до 150 мм	Общего назначения Морозостойкая
		Уголь рядовой, глина, цемент, мягкие породы и другие малоабразивные материалы кусками до 150 мм	Общего назначения Морозостойкая
		Уголь (куски размером до 500 мм) и породы (куски размером до 300 мм) Антрацит кусками размером до 500 мм или породы размером до 300 мм Материалы с температурой до 100 °C: высокоабразивные и абразивные, ма-	Трудновоспламе- няющаяся Трудновоспламе- няющаяся морозо- стойкая Теплостойкая
		лоабразивные и неабразивные Материалы с температурой до 150 °C: высокоабразивные и абразивные, ма- лоабразивные и неабразивные	»
		Материалы с температурой до 200 °C: высокоабразивные, абразивные, малоабразивные и неабразивные Малоабразивные материалы, в том числе продукты сельского хозяйства, неабразивные мелкие, сыпучие и пакетированные материалы	» Общего назначения Пищевая
3	Многопрокладочная, с односторонней резиновой обклад- кой и нарезными бортами	Малоабразивные и неабразивные материалы, в том числе продукты сельского хозяйства, мелкие, сыпучие и пакетированные материалы	Общего назначения Пищевая
4	Одно- и двухпрокла- дочные с двусторон- ней резиновой об- кладкой и нарезны- ми бортами	Малоабразивные и неабразивные мелкие и сыпучие материалы, в том числе продукты сельского хозяйства только на конвейерах со сплошным опорным настилом	Общего назначения Пищевая
		Пакетированные материалы Мелкие упакованные пищевые продукты	Общего назначения Пищевая Пищевая

175. Классы прочности обкладок и условия эксплуатации

Тип лен- ты	Обозна- чение ленты	Класс резины наружных обкладок	Температура окружающего воздуха, °C
1	1.1	А, Б	От -45 до +60
	1.1M	М	» -60 » +60
	1.2	А, Б	» -45 » +60
	1.2M	M	» -60 » +60
	1.2Ш	Γ-1	» -25 » +60
	1.2ШМ	Γ-2	» -45 » +60
2	2.1	А, И, Б	» -45 » +60
	2M	М	» -60 » +60
	2.2	И, Б	» -45 » +60
	2Ш	Г-1, Г-3	» -25 » +60
	2ШМ	Γ-2	» -45 » +60
	2T1	T-1	» -25 » +60
	2Т2	T-2	» -10 » +60
	2Т3	T-3	» -25 » +60
	2Л	И, Б	» -45 » +60
	21111	п	» -25 » +60
3	3	И, Б	» -45 » +60
	311	11	» -25 » +60
4	4	И, Б, С	» -45 » +60
	411	11	» -25 » +60

Резинотканевые ленты применяют на ленточных конвейсрах с плоскими или желобчатыми роликоопорами для транспортирования сыпучих, кусковых или штучных грузов.

Условное обозначение ленты должно содержать буквенные и цифровые индексы, обозначающие тип и вид ленты, ее щирину в мм, число тканевых прокладок каркаса, сокращенное наименование ткани, толщину (расчетную) резиновых обкладок на рабочей и нерабочей сторонах ленты в мм, класс обкладочной резины и обозначение стандарта.

Примеры обозначений.

Лента конвейерная типа 1, подтипа 1.1 общего назначения, шириной 1600 мм, с четырьмя прокладками из ткани МК-400/120-3, с рабочей обкладкой толщиной 8 мм и нерабочей 2 мм из резины класса А:

Лента 1.1-1600-4-MK-400/120-3-8-2-A ГОСТ 20-85

То же типа 1, подтипа 1.2Ш трудновоспламеняющаяся для угольных шахт, шириной 1000 мм, с пятью прокладками из ткани ТК-200-2, с рабочей обкладкой толщиной 6 мм и нерабочей 3,5 мм из резины класса Г-1:

Лента 1.2III-1000-5-ТК-200-2-6-3,5-Г-1 ГОСТ 20-85

То же типа 2, теплостойкая, шириной 800 мм с шестью прокладками из ткани ТК-100, с рабочей обкладкой толщиной 8 мм и нерабочей 2 мм из резины класса Т-1, с нарезным бортом:

Лента 2T1-800-6-TK-100-8-2-T-1-НБ ГОСТ 20-85

То же типа 2, морозостойкая, шириной 1200 мм с четырьмя прокладками из ткани ТК-200-2, с рабочей обкладкой толщиной 5 мм и нерабочей 2 мм из резины класса М, с резиновым бортом:

Лента 2M-1200-4-TK-200-2-5-2-M-РБ ГОСТ 20-85

То же типа 3, общего назначения, шириной 800 мм с тремя прокладками из ткани ТК-100, с рабочей обкладкой толщиной 3 мм из резины класса Б:

Лента 3-800-3-ТК-100-3-Б ГОСТ 20-85

То же типа 4, пищевая,, шириной 500 мм с двумя прокладками из ткани БКНЛ-65, с рабочей обкладкой толщиной 2 мм и нерабочей 1 мм из резины класса П:

Лента 411-500-2-БКИЛ65-2-1-II ГОСТ 20-85

Толщина наружных резиновых прокладок приведена в табл. 177, толщина тканевых прокладок - в табл. 178, номинальная прочность тяговой прокладки - в табл. 179, показатели допустимой рабочей нагрузки тяговой прокладки - в табл. 180.

176. Чясло тяговых проклядок лент в зависямостя от толщины

Ширина ленты.		1				2			3	,	4
NN.				Номинат	ъная проч	Номинатьная прочность тяговых прокладок, Н/мм	ых проклад	ок, Н/мм			
	\$	330	200	300	200	100	55	100	55	100	55
166, 200	•	li liber starns velklær	,	ı	1			2 - 4	2 - 4	1 - 2	1 - 2
300, 400	\$	No.	1	(ı	2 - 5	2 - 5	2 - 4	2 - 4	1 - 2	1 - 2
500 (600)	\$	E monato da con-	1	1	,	2 - 5	2 - 5	2 - 4	2 - 4	1 - 2	1 - 2
650 (700)	· · · · · · · · · · · · · · · · · · ·	I Transmission in the	,	,	3 - 5	2 - 5	2 - 6	2 - 4	3 - 5	1 - 2	1 - 2
(750), 800	g g	6	3-6	3 - 6	3 - 6	3 - 6	3-6	3-5	3 - 5	1-2	1 - 2
(900), 1000	er i	<i>c</i>	3-6	3 - 6	3 - 6	3 - 6	3-6	3 - 5	3 - 5	1 - 2	1 - 2
(1199), 1290	en consumer	ç - T	9-+	3 - 6	3 - 6	3-6	3 - 6	3 - 5	3 - 5	1 - 2	1 - 2
1400	C .	ç	9-+	4-6	9	4-6	3-6	3 - 5	3 - 5	1 - 2	1 - 2
1600	120) 120) 140)	97	0 - 5	3 - 8	5-6	9-4	3 - 6	ı	3 - 5		,
(1896), 2000.	SET I	₩, • *	0 - 5	3 - 8	9-5	4 - 6	3 - 6	,	3 - 5	,	
(2250), 2500	. b .	nn met til til det til som glenneng er fæ							•		
(2750), 3966	## ***********************************	e)	3.0	4-6	5-6	4 - 6	3-6	ı	ı	1	ı

2. Для лент вида 2Ш, 2ШМ не допусмается применять ткань прочностью 55 Н/мм.

177. Толивни (расчетния) наружных резиновых обкладок в зависимости от типа и вида ленты

	C			1	,		1	
				· · · · · · · · · · · · · · · · · · ·		•		
	ш	ı		,	ı	1		'
сти	T-3	-		1	1	1		'
эньоди воэс	T-2			ı	ı	1	1	,
кладок клас	T-1	ı		ı	ı	r	ı	1
аружных об	Г-3	ı		ı	1	1	i.	1
Номинальная толщина, мм, наружных обкладок классов прочности	И	1		1	ı		2 5 5 1 8 7 1 9 1 9	2; 3,5
ная толи	Γ-2			ı	ı	3,5	ı	1
миналь	F-1			,	3,5		ı	ı
Ho	M			$\frac{8}{2}$; $\frac{10}{3}$	1		1	2 8 2 5 2 5 2 5
	Б	10.	∞ <i>~</i>	,	t)	2, 2, 2, 2, 5, 4, 2, 3,	1 3,5
	A	8.	2 6	ŀ	ı	t	2	f
	Лента	Общего назначения		Морозо- стойкая	Трудновос- гламеня- ющаяся	Трудновос- пламеня- ющаяся морозо- стойкая	Общего	Морозо- стойкая
Twi	ленты	-					2	

	ပ		1	1	,	1	l	7 7	1
	Ш	ı	1	ı	412	1	$\frac{2}{0}$; $\frac{3}{0}$	ı	$\frac{1}{1}$; $\frac{3}{1}$; $\frac{2}{1}$
ти	T-3	ı	1	$\frac{10}{3}$; $\frac{8}{2}$; $\frac{6}{2}$		t	-	1	ı
Номинальная толцина, мм, наружных обкладок классов прочности	T-2	1	·	$\frac{8}{2}, \frac{6}{2}, \frac{5}{2}$	-	ı	ı	ſ	
жладок клас	T-1	ŧ	ı	8 2; 6 2; 5	-	ı	ı	1	í
аружных об	Γ-3	4,5 3,5		1	1	1	ı	t .	ı
цина, мм, н	И	ı	t	ı	•	$\frac{3}{0}$; $\frac{2}{0}$		$\frac{2}{1}$; $\frac{1}{1}$	ı
ная толі	I-2	t	3,5	,	•	•	1		ı
миналь	I-1	3.5	ı	ı	ı		١	ı	ı
Ho	M	T T T T T T T T T T T T T T T T T T T	ı	,	•	(,	ı	ı
	Р	,	ı	,	1	सम्बद्धाः सर्वे	ı	** ** ** **	•
	4:	1	\$	t	eromental enterental enterent		I.	,	,
	Лента	Трулновос- пламеня- юшаяся	Трудновос- пламеня- ющаяся морозо- стойкая	Тепло- стойкая	Пишевая	Облето назначения	Пишевая	Обшего назначения	Пишевая
H	ленты	C				er,		4	

Примечание В чилителе привелена номинальная толщина резиновой обкладки рабочей поверхности, в знаменателе - толщина нерабочен поверхности денты

178	Топпина	(пасчетная)	резинотканевого	Kankaca
X / U.	IOJIMNOA	(pactcinau)	hesing i kancida a	MAPMACA

Число		Толщина (р	асчетная), м	м, резинотка	невого карк	аса из ткане	й	
тяго- вых про- кладок кар-	комбини- рованных (полиэфир/ хлопок)		синтет	ических (пол	иамид)			ких эфир/
каса		Номинальн	ая прочност	ь тяговой пр	окладки по с	основе, Ң/мі	M	
	55	400/100 **	400/75 **	300	200	100	300	200
1	1,2	<u>-</u>		_	_	1,1	_	_
2	2,4	-						_
3	3,6	9,0	6,0; 6,9*	5,7; 6,6 *	4,8; 5,7*	3,3; 4,2*	6,3	5,1
4	4,8	12,0	8,0; 9,2*	7,6; 8,8 *	6,4; 7,6*	4,4; 5,6*	8,4	6,8
5	6,0	15,0	10,0; 11,5*	9,5; 11,0*	8,0; 9,5 *	5,5; 7,0*	10,5	8,5
6	7,2	18,0	12,0; 13,8*	11,4; 13,2*	9,6; 11,4*	6,6; 8,4*	12,6	10,2

^{*} Толщина (расчетная) каркаса для теплостойких и трудновоспламеняющихся лент для угольных и сланцевых шахт.

 Π р и м е ч а н и е . При расчете толщины каркаса для лент типа 1 дополнительно учитывают толщину защитной прокладки с резиновой прослойкой, составляющую 3.2 ± 0.4 мм.

179. Номинальная прочность тяговой прокладки по основе и утку в зависимости от типа ткани каркаса

Тип ткани	Номинальная празрыве прок	
	по основе	по угку
Гкань с основой и утком из полиамидных нитей	400	100
, , , , , , , , , , , , , , , , , , , ,	400	75
	300	50
	200	65
	100	60
Гкань с основой из полиэфирных нитей с утком из поли-	300	60
амидных нитей	200	55
Ткань с основой и утком из комбинированных нитей (полижфир/хлопок)	55	20

II римечание. Прочность по утку 100 Н/мм соответствует ткани МК-400/120, прочность по утку 75 Н/мм - для тканей ТК-400, ТА-400.

^{**} Прочность по основе (400) и утку (100 и 75).

адаглофи йовоткт адня	и в зависимости ленты и числа т				нвейера	ì,	
Вид ленты	Угол установки конвейера (по оси концевых	Число тяговых прокладок	раб	q) квио йовоткт	асчетна прокла	опустим я) нагру дки при ности, 1	/зка и
	барабанов), градусы		400	300	200	100	55
Общего назначения, моро-	0 - 10	До 5	50	36	25	12	7,0

CB. 5

До 5

Св. 5

От 3 до 6

0 - 18

0 - 18

45

45

40

180. Показатели максимально допустимой (расчетной) нагрузки

ОСНОВНЫЕ ПРАВИЛА ЭКСПЛУАТАЦИИ И ПРИМЕНЕНИЯ конвейерных лент

зостойкая, пищевая, труд-

угольных и сланцевых щахт

2T1

2T2

2T3

новоспламеняющаяся

Теплостойкая:

- 1. Для правильного выбора типа конвейерной ленты и ее технических характеристик для вновь разрабатываемых машин и оборудования применение ее должно согласовываться между изготовителем и потребителем.
- 2. Основные правила эксплуатации лент на предприятиях потребителя должны быть регламентированы технической документацией, согласованной с изготовителем.
- 3. Тип и вид ленты должны соответствовать условиям ее применения, указанным в табл. 1 ГОСТ 20-85. Ленты типа 4 применяют на конвейерах со сплошным опорным настилом.
- 4. Конвейеры, работающие в тяжелых и очень тяжелых условиях эксплуатации, должны быть оборудованы устройствами, снижающими ударные нагрузки на ленты и предотвращающими продольный порыв ленты.
- 5. Надзор за правильной эксплуатацией ленты должен осуществляться ответственным должностным лицом предприятия-потребителя.
- 6. Учет работы лент проводится в журнале учета работы конвейера, форма которого устанавливается отраслевой научно-технической документацией. При установке и замене ленты в журнале фиксируется техническая характеристика ленты в соответствии с ГОСТ 20-85. срок службы и причина снятия ленты.
- 7. Резинотканевые ленты стыкуют методом горячей или холодной вулканизации по инструкциям разработчиков и изготовителей лент.

Стыковку и монтаж лент 2Т2 производят при температуре окружающего воздуха не ниже 0 °C.

32

32

30

20

20

15

22

22

20

13

13

10

11

11

10

10

10

6,0

6,0

5,5

- 8. Ленты стыкуют, используя прослоечные, обкладочные резины и клеи, указанные в ярлыке.
- 9. Ленты из тканей прочностью не более 100 Н/мм шириной до 1200 мм допускается стыковать механическими способами по технической документации, согласованной с разработчиком лент.
- 10. Температуру поверхности рабочей обкладки теплостойких лент в местах разгрузки транспортируемых грузов измеряют фотоэлектронным пирометром типа ФЭП-8 или любым другим измерительным прибором, обеспечивающим точность измерения ±5 °C.

ДЕКОРАТИВНАЯ ФАНЕРА (по ГОСТ 14614-79 в ред. 1990 г.)

Фанера облицована пленочными покрытиями в сочетании с декоративной бумагой или без бумаги.

Декоративная фанера подразделяется:

по числу облицованных сторон - на одностороннюю и двустороннюю:

по внешнему виду облицовочного покрытия - на глянцевую и полуматовую.

Марки, вид облицовочного покрытия и смолы, применяемые для их изготовления, указаны в табл. 181.

Маркировка. На каждый лист фанеры в одном из углов оборотного слоя наносится маркировка, содержащая: марку, сорт, породу древесины лицевого слоя и толщину фанеры, обозначение стандарта.

181. Марки фанеры и вид облицовочного покрытия

Марка фанеры	Вид облицовочного покрытия	Наименование смол
ДФ-1	Прозрачное (бесцветное или окрашенное), не укрывающее текстуру натуральной древесины	Мочевиномеламинофор- мальдегидные
ДФ-2	Непрозрачное, с бумагой, имитирующей текстуру ценных пород древесины, или с другим рисунком	
ДФ-3	Прозрачное, повышенной водостойкости (бесцветное или окрашенное), не укрывающее текстуру натуральной древесины	Меламиноформальдегидные
ДФ-4	Непрозрачное, повышенной водостойкости, с бумагой, имитирующей текстуру ценных пород древесины, или с другим рисунком	

182. Размеры декоративной фанеры, мм

Длина (или ширина)	Ширина (или длина)	Толщина	Длина (или ширина)	Ширина (или длина)	Толщина
2440	1525		1525	1220; 725;	
2135	1220	3; 4; 5; 6		1525	8; 10; 12
1830	1525		1220	1220; 725	

По качеству твердости устанавливаются два сорта декоративной фанеры: 1 и 2.

183. Физико-механические свойства декоративной фанеры

	Для фа	неры из
Показатели	березы	ольхи, тополя, осины, ели, лиственницы
Предел прочности при скалывании по клеевому слою после вымачивания в воде в течение 24 ч, МПа, не менее	1,2	1,0
Водостойкость для фанеры марок ДФ-1 и ДФ-2 (после выдержки образца на воздухе при 20 - 25 °C в течение 24 ч)		набуханис скаются
Теплостойкость	Не допу трещины и	

ДРЕВЕСНОСТРУЖЕЧНЫЕ ПЛИТЫ (по ГОСТ 10632-89)

Древесностружечные плиты изготовляют методом горячего плоского прессования древесных частиц, смещанных со связующим (стандарт не распространяется на облицованные и окрашенные древесностружечные плиты).

Плиты используют для производства мебели, в строительстве (кроме жилищного строительства, строительства зданий для детских, школьных и лечебных учреждений), в машиностроении, радиоприборостроении и в производстве тары.

Плита подразделяют:

по физико-механическим показателям - на марки П-А и П-Б;

по качеству поверхности - на I и II сорта; по виду поверхности - с обычной и мелко-

структурной (М) поверхностью; по степени обработки поверхности - на

шлифованные (Ш) и нешлифованные; по гидрофобным свойствам - с обычной и

повышенной (В) водостойкостью; по содержанию формальдегида - на классы

эмиссии E1, E2, E3. Плиты должны изготовляться с применением синтетических смол, разрешенных органами здравоохранения.

В условном обозначении плит указывают:

марку;

сорт;

вид поверхности (для плит с мелкоструктурной поверхностью);

степень обработки поверхности (для шлифованных плит);

гидрофобные свойства (для плит повышенной водостойкости);

класс эмиссии формальдегида;

длину, ширину и толщину в миллиметрах; обозначение настоящего стандарта.

Примеры условных обозначений.

Плита марки П-А, первого сорта с мелкоструктурной поверхностью шлифованная, класса эмиссии E1, размерами $3500 \times 1750 \times 15$ мм:

$$\Pi$$
-A, I, M, III, E1, 3500 × 1750 × 15, Γ OCT 10632-89;

Плита марки П-Б, второго сорта с обычной поверхностью, нешлифованная, класса эмиссии E2, размерами $3500 \times 1750 \times 16$ мм:

На кромку плиты наносят в виде четкого штампа темным красителем маркировку, содержащую: наименование и (или) товарный знак предприятия-изготовителя; марку, сорт, вид поверхности и класс эмиссии; дату изготовления и номер смены.

184. Содержание формальдегида

Класс эмиссии	Содержание формальдегида, мг, на 100 г абсолютно сухой плиты
E1	До 10 вкл.
E2	Св. 10 до 30 вкл.
E3	» 30 » 60 »

Показатель "содержание формальдегида" контролируют не реже одного раза в 7 сут. на образцах, отобранных от одной плиты.

185. Размеры древесностружечных плит, мм

Параметры	Значения	Предельные отклонения
Толщина	От 8 до 28 с градацией 1 (для шлифованных)	±0,3
Длина	1830, 2040, 2440, 2500, 2600, 2700, 2750, 2840, 3220, 3500, 3600, 3660, 3690, 3750, 4100, 5200, 5500, 5680	±5
Ширина	1220, 1250, 1500, 1750, 1800, 1830, 2135, 2440, 2500	±5

 Π р и м е ч а н и я : 1. Толщина нешлифованных плит устанавливается как сумма номинального значения толщины шлифованной плиты и припуска на шлифование, который не должен быть более 1,5 мм.

- 2. Допускается выпускать плиты размерами меньше основных на 200 мм с градацией 25 мм, в количестве не более 5% от партии.
- 3. По согласованию с потребителем допускается выпускать плиты размеров, не установленных в табл. 185.

186. Физико-механические показатели древесностружечных плит плотностью от 550 кг/мм 3 до 820 кг/мм 3

Наименование показателя	Норма для плит марок		Наименование показателя	Норма для плит марок	
	П-А	П-Б		П-А	П-Б
Влажность, %: $T_{\rm H}$ *	5		Покоробленность плит, мм, $(T_{\mathtt{B}})$	1,2	1,6
T _B *	12		Шероховатость поверхности плит Rm , мкм, (T_B) , для образцов:		
Разбухание плит по толщине:					
за 24 ч (размер образцов 100×100 мм), %, $(T_{\rm B})$	22	33	а) с сухой поверхностью:		
за 2 ч (размер образцов 25 х 25 мм), %, $(T_{\rm B})$ **	12	15	для шлифованных плит с обычной поверхностью	50	63
Предел прочности при изгибе плит, МПа, для толщин, мм, $(T_{\rm B})$:			для шлифованных плит с мелкоструктурной по- верхностью	32	40
от 8 до 12	18	16			
» 13 » 19	16	14	для нешлифованных плит	320	500
» 20 » 30	14	12			
Предел прочности при растяжении перпендикулярно пласти плиты, МПа, лля толщин, мм, (T_B) :			б) после 2 ч вымачива- ния ***:		
от 8 до 12	0,35	0,30			
» [3 » 19	0,	30	для плифованнях плит с	150	180
» 20 » 30	0,25		обычной поверхностью		
Удельное сопротивление выдергиванию шурунов, $H/\text{мм}^2$, (T_{B}) ***:			для плифованных плит с мелкоструктурной по- верхностью	120	150
из пласти	60	55			
из кромки	из кромки 50 45		для непплифованнях плит	_	-

^{*} $T_{\rm H}$ и $T_{\rm B}$ - соответственно нижний и верхний пределы показателей.

^{**} Для плит повышенной водостойкости.

^{***} Определяется по согласованию изготовителя с потребителем.

ТЕХНИЧЕСКАЯ КОЖА (по ГОСТ 25874-83)

Кожи предназначены для изготовления кожаных деталей машин.

187. Вил и назначение кожи

Вид кожи	Назначение кожи	Метод дубления	Толщина в точке, определяемой .стандартом, мм	
Кожа для манжет и прокладок:				
тяжелая	Манжеты и про- кладки	РХС * Хромовый	Более 4,0 Более 2,0	
легкая	То же	РХС Хромовый	От 1,5 до 2,5 • 1,5 • 2,2	

^{*} РХС - растительный в комбинации с основными хромовыми солями и синтетическими дубителями.

ГОСТ предусматривает и другие виды кож.

РЕЗИНОВЫЕ И РЕЗИНОТКАНЕВЫЕ ПЛАСТИНЫ (по ГОСТ 7338-90)

Вулканизованные резиновые и резинотканевые пластины предназначены для изготовления деталей, служащих для уплотнения неподвижных соединений, предотвращения трения между металлическими поверхностями, а также для восприятия ударных нагрузок в машинах и агрегатах.

Пластины в зависимости от назначения, конструкции и способа изготовления выпускают:

следующих марок:

ТМКЩ - тенноморозокислотощелочестойкая;

АМС - атмосферомаслостойкая (ограни ченно озоностойкая);

МБС маслобензостойкая;

классов:

- 1 пластина толщиной от 1,0 до 20,0 мм, предназначенная для изготовления резинотехнических изделий, служащих для уплотнения узлов, работающих под давлением свыше 0,1 МПа;
- 2 пластина толщиной от 1,0 до 60,0 мм, предназначенная для изготовления резино технических изделий, служащих для уплотнения узлов, работающих под давлением до 0,1 МПа, для предотвращения трения между метшлическими поверхностями, а также для

восприятия одиночных ударных нагрузок или в качестве подкладок, настилов;

видов:

Ф - формовые пластины, изготовляемые методом вулканизации в пресс-формах на вулканизационных прессах;

 Н - неформовые пластины, изготовляемые методом вулканизации в котлах, а также на вулканизаторах непрерывного действия;

степеней твердости:

М - мягкая:

С - средняя;

Т - повышенная;

ROBET

 $1 \sim \text{резиновые}$ (рис. 1); 11 = резинотканевые (рис. 2).

Пластины выпускают в виде листов и рулонов. Толщина пластины типа I не менее 0,5 мм. Толщина пластины типа II не менее 1,0 мм. Число гканевых слоев в пластине типа II определяется общей толщиной пластины и

Рис. 1. Резиновая пластина

Рис. 2. Резинотканеван пластина: 1 - резина; 2 - ткань

толщиной применяемой ткани, но не более одного тканевого слоя на каждые 2 мм толщины пластины.

Число тканевых слоев и тип ткани определяют по соглашению между изготовителем и потребителем.

Толщина пластин, мм: 1,0; 1,5; 2; 3: 4; 5; 6; 7; 8; 9; 10; 12; 14; 16; 18; 20; св. 20 до 60 с интервалом 5 мм.

Условное обозначение пластин должно содержать слово "пластина", класс, вид, тип, марку, степень твердости, количество тканевых прокладок (для пластины типа II), толщину пластины и обозначение настоящего стандарта.

Примеры условного обозначения пластины:

пластина 1-го класса, вида Φ , типа I, марки ТМКІЦ, степени твердости C, толщиной 3 мм:

Пластина 1Ф-І-ТМКЩ-С-3 ГОСТ 7338-90

То же, 1-го класса, вида Н, типа I, марки ТМКЩ, степени твердости Т, толщиной 10 мм:

Пластина 1H-I-ТМКIII-T₂-10 ГОСТ 7338-90

То же, 2-го класса, вида Ф, типа I, марки АМС, степени твердости С, толщиной 25 мм:

Пластина 2Ф-I-AMC-C-25 ГОСТ 7338-90

То же, 2-го класса, вида Н, типа II, марки ТМКЩ, степени твердости С, с одной тканевой прокладкой, толщиной 2 мм:

Пластина 2H-II-ТМКЩ-C-1 × 2 ГОСТ 7338-90

188. Длина и ширина пластин в зависимости от толщин, мм

Вид плас- тины	Толщина	Ширина	Длина	Вид плас- тины	Толщина	Ширина	Длина
Пластины класса 1			Г	Іластин	ы класс	a 2	
	От 1,0	250	250	Ф	От 2,0	От 250	От 250
Φ	до 3,0				до 60,0	до 1000	до 1000
	От 3,0	От 250	От 250		От 1,0	777	От 500
	до 20,0	до 1000	до 1000		до 3,0		до 30 000
	От 1,0				Св. 3,0		От 500
	до 3,0				до 10,0		до 3000
	Св. 3,0			н		От 500	
н	до 5,0	OT 500	•		Св. 10,0	до 1350	Or 500
	Св. 5,0	до 1350			до 30,0		до 2000
	до 10,0		i				
	Св. 10,0				Св. 30,0		От 500
	до 20,0				до 50,0		до 1500

П р и м е ч а н и е . Допускается изготовлять неформовую пластину шириной до 500 мм, но не менее 250 мм, в количестве не более 10 % от партии.

189. Срок службы и ресурс пластины 1-го класса

Марка пластины	Рабочая среда	Установленный ресурс в пределах срока службы при воздействии рабочей среды и температуры
ТМКЩ	Воздух помещений, емкостей и сосудов; азот; инертные газы; вода пресная, морская, промышленная, сточная без органических растворителей и смазочных веществ; растворы солей с концентрацией до предела насыщения; кислоты и щелочи концентрацией не более 20%	43 800 ч, в том числе при температурах до: 40 °C - 16 000 ч; 50 °C - 6 000 ч; 60 °C - 3 000 ч; 70 °C - 1 000 ч; 80 °C - 500 ч
	Атмосферный воздух, воздух помещений, емкостей и сосудов; азот; инертные газы	
AMC	Масла (трансформаторные по ГОСТ 982, ГОСТ 10121, БМГЗ по ТУ 387-01-479, МГЕ-10A по ОСТ 38.01281)	43 800 ч, в том числе при температурах до: 40 °C = 8400 ч; 50 °C = 5000 ч; 60 °C = 2100 ч; 70 °C = 1100 ч; 80 °C = 420 ч
	Воздух помещений, емкостей и сосудов; азот; инертные газы	43 800 ч, в том числе при температурах до: 40 °C = 16 000 ч; 50 °C = 6 000 ч; 60 °C = 3 000 ч; 70 °C = 1 000 ч; 80 °C = 500 ч
МБС	Масла (транеформаторное по ГОСТ 982, по ГОСТ 10121, ВМГЗ по ГУ 387-01-479, МГЕ-10A по ОСТ 38-01281)	43 800 ч, в том числе при температурах до 40 °C 12 000 ч, 50 °C 8 000 ч, 60 °C 4 000 ч, 70 °C 1 800 ч, 80 °C 600 ч
	Гоплива (дизельное по ГОСТ 305, бензии по ГОСТ 2084, Т 1 по ГОСТ 10227)	43-800 a, it to maintent that tempe parvpax at the following at the follow

Y с л о в и я — x с п л у а т а п и и — верхний предел температурного интервала до плюс 80 °C, при установленном сроке службы не менее 5 лет.

190. Марки в зависимости от степени твердости пластин

The state of the s					
Марка пла- стины	Класс	Вид	Тип	Степень твердости	Температурный интервал, °С
тмкщ	1; 2	• Ф, Н	I	М	От -45 до +80
İ			I	C	От -30 до +80
			II	C	От -30 до +80
			I	C ₁	От -45 до +80
			II	Cl	От -45 до +80
			I	C ₂	От -60 до +80
]			I	T	От -30 до +80
			I	T_1	От -45 до +80
			I	T ₂	От -60 до +80
AMC	1; 2	Ф, Н	I	M	От -30 до +80
				M_1	От -40 до +80
ł				C	От -30 до +80
				C _I	От -40 до +80
				T	От -30 до +80
				T ₁	От -40 до +80
МБС	1; 2	Ф, Н	I	M	От -30 до +80
				M_1	От -40 до +80
				C	От -30 до +80
				\mathbf{C}_1	От -40 до +80
				T	От -30 до +80
				T_1	От -40 до +80

191. Физико-механические показатели резины и пластин

		тмкщ			AMC			МБС	
Показатели				Степе	нь твер	дости			
	M	С	Т	M	С	Т	М	С	T
Физико-механические показатели резины, применяемой для изготовления пластин 1-го класса					са				
Предел прочности при разрыве, МПа, не менее	4,0	5,0	6,5	4,5	5,0	7,0	6,0	8,0	8,5
Относительное удлинение при разрыве, %, не менее	300	250	200	300	250	200	250	200	200
Относительная остаточная деформация при сжатии на (20 + 5) % в воздухе при 70°C в течение 24 ч, не более	50	50	50	60	60	60	50	50	50
Физико - мех	анич	ески	1 e 11	оказ	ател	и пл	асти	н	-
Твердость, международные единицы JRHD	35 - 50	50 - 65	65 - 85	35 - 50	50 - 65	65 - 85	40 - 55	55 - 70	70 - 90

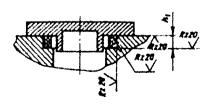
Прочность связи резиновых слоев с тканевыми прокладками, МПа, не менее 0,07

Общие рекомендации по применению деталей из пластин

При изготовлении деталей режущий инструмент следует смачивать водой или мыльной эмульсией.

При изготовлении деталей на станках смачивание должно осуществляться непрерывно. Для смачивания режущего инструмента керосин, бензин, масла и другие разрушающие резину вещества не применяют.

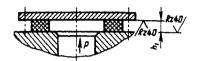
На деталях допускается скос боковых поверхностей до 0,5 мм.

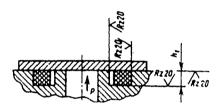

Рекомендуемые конструкции посадочных мест указаны на рис. 3 - 8.

Для уплотнения узлов, работающих под давлением свыше 0,1 МПа, детали рекомендуется устанавливать в закрытые посадочные места (рис. 3; 5 - 8). Закрытые посадочные места обеспечивают более высокую надежность и стабильность работы деталей. При этом необходимо, чтобы объем посадочного места превышал максимальный объем детали на 3 - 10%, а деталь прилегала к поверхности посадочного места со стороны, противоположной действию давления рабочей среды.

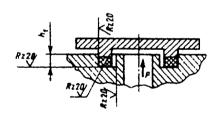
Для уплотнения узлов, работающих под давлением до 0,1 МПа, а также для защиты узлов от попадания пыли и влаги разрешается устанавливать деталь в открытые посадочные места (см. рис. 4).

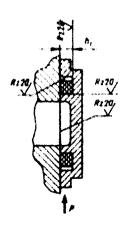
При изготовлении деталей рекомендуются следующие отношения ширины b детали к высоте h (рис. 9):


для открытых посадочных мест - от 2 до 5; для закрытых посадочных мест - от 1 до 3. При выборе конструкции посадочного места необходимо учитывать процент поджатая


детали при сборке є, который вычисляют по формуле

$$\varepsilon = \frac{(h-h_1)100}{h},$$


где h - высота детали, мм; h_1 - глубина посадочного места, мм.


PHc. 4

Pac. 5

Puc. 6

Pac. 7

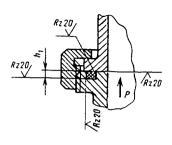


Рис. 8

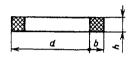


Рис. 9

Поджатие должно составлять 15 - 35% и распределяться равномерно по всему периметру детали.

Параметры шероховатости уплотняемых поверхностей посадочного места должны быть не ниже R7 20 мкм.

При монтаже следует исключить перекосы и смещение детали.

При монтаже деталей в закрытых посадочных местах следует применять смазку ЦИАТИМ-221 по ГОСТ 9433-80 в количестве 2 % от массы детали. Для деталей, устанавливаемых в открытых посадочных местах, смазка не допускается.

Растяжение деталей по внутреннему диаметру d должно быть не более 5 %.

Острые кромки, соприкасающиеся с деталью при монтаже, должны быть притуплены радиусом или фаской 0.5 мм.

При монтаже деталей в резьбовых соединениях вращение металических уплотняемых поверхностей относительно детали не допускается.

В открытых посадочных местах поверхности детали не должны выступать за боковую поверхность фланца и должны быть защищены от воздействия прямых солнечных лучей.

В закрытых посадочных местах зазор по сопрягаемым поверхностям не должен превышать 0,3 мм.

Дополнительные источники

Резина листовая для изделий, контактирующих с пищевыми продуктами - ГОСТ 17133-83.

Полиэтилен низкого давления. Технические условия - ГОСТ 15338-85.

Глава III

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ

ОСНОВНЫЕ ПАРАМЕТРЫ ШЕРОХОВАТОСТИ (ПО ГОСТ 2789 - 73) И ИХ ОБОЗНАЧЕНИЯ

Шероховатость поверхности - это совокулность неровностей поверхности с относительно малыми шагами, выделенная с помощью базовой длины (рис. 1).

ГОСТ 2789-73 полностью соответствует международной рекомендации по стандартизации ИСО Р 468. Он устанавливает перечень параметров и типов направлений неровностей, которые должны применяться при установлении требований и контроле шероховатостей поверхности, числовые значения параметров и общие указания.

- 1. Требования к шероховатости поверхности должны устанавливаться исходя из функционального назначения поверхности для обеспечения заданного качества изделий. Если в этом нет необходимости, то требования к шероховатости поверхности не устанавливаются и шероховатость этой поверхности контролироваться не должна.
- 2. Требования к шероховатости поверхности должны устанавливаться путем указания параметра шероховатости (одного или нескольких) из перечня, приведенного в п. 4, значений выбранных параметров (см. табл. 3 5) и базовых длин, на которых происходит определение параметров.

Если параметры *Ra*, *Rz*, *Rmax* определены на базовой длине в соответствии с табл. 6 и 7, то эти базовые длины не указываются в требованиях к щероховатости.

В технической документации, разработанной до 1975 г., использовали классы шероховатости по ГОСТ 2789-59; для их перевода можно пользоваться данными табл. 1.

При необходимости дополнительно к параметрам шероховатости поверхности устанавливаются требования к направлению неровностей поверхности (табл. 2), к способу или последовательности способов получения (обработки) поверхности.

Числа из табл. 3 - 5 используют для указания наибольших и наименьших допускаемых значений, границ допускаемого диапазона значений и номинальных значений параметров шероховатости.

Для номинальных числовых значений параметров шероховатости должны устанавливаться допустимые предельные отклонения.

Допустимые предельные отклонения средних значений параметров шероховатости в процентах от номинальных следует выбирать из ряда 10; 20; 40. Отклонения могут быть односторонними и симметричными.

3. Требования к шероховатости поверхности не включают требований к дефектам поверхности, поэтому при контроле шероховатости поверхности влияние дефектов поверхности должно быть исключено. При необходимости требования к дефектам поверхности должны быть установлены отдельно.

Допускается устанавливать требования к шероховатости отдельных участков поверхности (например, к участкам поверхности, заключенным между порами крупнопористого материала, к участкам поверхности срезов, имеющим существенно отличающиеся неровности).

Требования к шероховатости поверхности отдельных участков одной поверхности могут быть различными.

- 4. Параметры шероховатости (один или несколько) выбирают из приведенной номенклатуры:
- *Ra* среднее арифметическое отклонение профиля;
- Rz высота неровностей профиля по десяти точкам;

Rmax - наибольшая высота профиля;

Sm - средний шаг неровностей;

- S средний шаг местных выступов профиля;
- tp относительная опорная длина профиля, где p значение уровня сечений профиля.

Параметр Ка является предпочтительным.

- 5. Числовые значения параметров шероховатости (наибольшие, номинальные или диапазоны значений) выбирают из табл. 3 5.
- 6. Относительная опорная длина профиля *тр*: 10; 15; 20; 30; 40; 50; 60; 70; 80; 90 %.

1. Классы шероховатости	(FOCT 2789-59)	и соответствующие	им наибольшие знач	ения параметров
		атости (ГОСТ 2789-		•

Классы	Параметры шер	Базовая длина		
шероховатости	Ra	Rz	l, mm	
1	80	320		
2	40	160	8,0	
3	20	80		
4	10	40	2,5	
5	5	20	,	
6	2,5	10	0,8	
7	1,25	6,3		
8	0,63	3,2		
9	0,32	1,6		
10	0,16	0,8	0,25	
11	0,08	0,4		
12	0,04	0,2		
13	0,02	0,1	0,08	
14	0,01	0,05	•	

- 7. Числовые значения уровня сечения профиля *р* выбирают из ряда:
- 5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 80; 90 % or *Rmax*.
- 8. Числовые значения базовой длины l выбирают из ряда:

0,01; 0,03; 0,08; 0,25; 0,80; 2,5; 8; 25 mm.

Схема шероховатости поверхности и ее элементы показаны на рис. 1, где / - базовая длина; m - средняя линия профиля; Sm - средний шаг неровностей профиля; S - средний шаг местных выступов профиля; $H_{i \max}$ - отклоне-

ния пяти наибольших максимумов профиля; $H_{i \ min}$ - отклонения пяти наибольших минимумов профиля; $h_{i \ max}$ - расстояние от высших точек пяти наибольших максимумов до линии, параллельной средней и не пересекающей профиль; $h_{i \ min}$ - расстояние от низших точек пяти наибольших минимумов до этой же линии; Rmax - наибольшая высота профиля; y - отклонения профиля от линии m; tp - относительная опорная длина профиля; p - уровень сечения профиля; b_i - длина отрезков, отсекаемых на заданном уровне p.

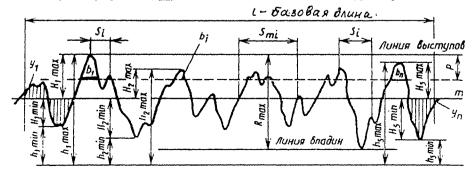


Рис. 1. Схема шероховатости поверхности и ее элементы

2. Типы направлений неровностей

Типы направлений неровностей	Схематическое изображение	Условное обозначение на чертеже	Пояснение
Параллельное			Параллельно линии, изображающей на чертеже поверхность, к шероховатости которой устанавливаются требования
Перпендику- лярное		<u> </u>	Перпендикулярно к линии, изображающей на чертеже поверхность, к шероховатости которой устанавливаются требования
Перекрещи- вающееся		\ \mathrm{\time{\text{minim.}}}	Перекрещивание в двух направлениях наклонно к линии, изображающей на чертеже поверхность, к шероховатости которой устанавливаются требования
Произвольное		VM TITITITI.	Различные направления по отношению к линии, изображающей на чертеже поверхность, к шероховатости которой устанавливаются требования
Кругообразное			Приблизительно кругообразно по отношению к центру поверхности, к шероховатости которой устанавливаются требования
Радиальное		√R mmm.	Приблизительно ради- ально по отношению к центру поверхности, к пероховатости которой устанавливаются тре- бования

Условные обозначения направления неровностей приводят на чертеже при необходимости.

3. Среднее	арифметическое	отклонение	профиля
	Ra, MKN	1	

		,		
<u>100</u>	10,0	1,00	0,100	0,010
80	8,0	0,80	0,080	0,008
63	<u>6,3</u>	0,63	0,063	_
<u>50</u>	5,0	0,50	0,050	
40	4,0	0,40	0,040	
32	<u>3,2</u>	0,32	0,032	—
<u>25</u>	2,5	0,25	0,025	_
20	2,0	0,20	0,020	
16,0	1,60	0,160	0,016	-
12,5	1,25	0,125	0,012	_

Примечание. Предпочтительные значения параметров подчеркнуты.

4. Высота неровностей профиля по 10 точкам Rz и наибольшая высота неровностей профиля Rmax, мкм

	1000	<u>100</u>	10,0	1,00	0,100
	800	80	8,0	0,80	0,080
	630	63	<u>6,3</u>	0,63	0,063
	500	<u>50</u>	5,0	0,50	0,050
an settler	<u>400</u>	40	4,0	0,40	0,040
22.1002/11	320	32	<u>3,2</u>	0,32	0,032
*86 WAY ****	250	<u>25.0</u>	2,5	0,25	0,025
	200	20,0	2,0	0,20	_
1600	160	16,0	1.60	0,160	
1250	125	12.5	1,25	0,125	_

II р и м е ч а н и е. Предпочтительные значения параметров подчеркнуты.

5. Средний шаг неровностей профиля *Sm и* средний шаг местных выступов *S*, мм

	10,0	1,00	0,100	0,010
_	8,0	0,80	0,080	800,0
	6,3	0,63	0,063	0,006
_	5,0	0,50	0,050	0,005
	4,0	0,40	0,040	0,004
	3,2	0,32	0,032	0,003
	2,5	0,25	0,025	0,002
_	2,0	0,20	0,020	_
	1,60	0,160	0,0160	
12,5	1,25	0,125	0,0125	

6. Соотношение значений параметра Ra и базовой длины I

<i>Ra</i> , мкм	l, mm
До 0,025	0,08
Св. 0,025 до 0,4	0,25
" 0,4 " 3,2	0,8
" 3,2 " 12,5	2,5
" 12,5 " 100	8,0

7. Соотношение значений параметров Rz, Rmax и базовой длины 1

Rz = Rmax, MKM	l, mm
До 0,10	80,0
Св. 0,10 до 1,6	0,25
" 1,6 " 12,5	0,8
" 12,5 " 50	2,5
" 50 " 400	8,0

Обозначения шероховатости новерхностей и правила нанесения их на чертежах изделий устанавливает ГОСТ 2.309-73, который полностью соответствует ИСО 1302-78. Обозначения шероховатости проставляют на всех поверхностях изделия, выполняемых по чертежу, независимо от методов их образования, кроме поверхностей, шероховатость которых не обусловлена требованиями конструкции.

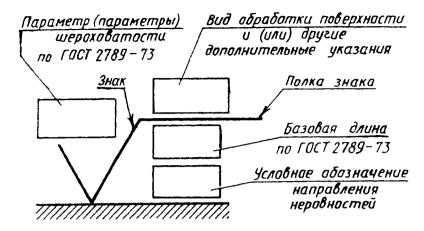


Рис. 2. Структура обозначения шероховатости поверхности

Рис. 3. Знаки шероховатости поверхности

Структура обозначения шероховатости поверхности приведена на рис 2. При наличии в обозначении шероховатости только значения параметра (параметров) применяют знак без полки.

В обозначении шероховатости поверхности, вид обработки которой конструктором не устанавливается, применяют знак по рис. 3, а.

В обозначении шероховатости поверхности, которая должна быть образована удалением слоя материала, например, точением, фрезерованием, травлением и т.п. применяют знак по рис. 3, δ .

В обозначении шероховатости поверхности, которая должна быть образована без удаления слоя материала, например, литьем, ковкой, штамповкой, прокатом, волочением и т.п., а также поверхности, не обрабатываемой по данному чертежу, применяют знак по рис.

Значение параметра шероховатости указывают в обозначении шероховатости:

для параметра Ra - без символа, например 0,4;

для остальных параметров - после соответствующего символа, например Rmax 6,3; Sm 0,63; t_{50} 70; S 0,032; Rz 32.

(В примере t_{50} 70 указана относительная опорная длина профиля tp=70 % при уровне сечения профиля p=50 %).

При указании диапазона значений параметра шероховатости поверхности в обозначении шероховатости приводят пределы значений параметра, размещая их в две строки, например:

В верхней строке приводят значение параметра, соответствующее более грубой шероховатости.

При указании номинального значения параметра шероховатости поверхности в обозначении приводят это значение с предельными отклонениями по ГОСТ 2789 - 73, например:

1 + 20 %; Rz $80._{10\%}$; Sm 0.63^{+} 20 %; t_{50} 70 \pm 40 % и т.н.

Базовую длину в обозначении шероховатости поверхности не указывают, если требования к шероховатости нормируют указанием параметров *Ra*, *Rz*, и определение параметров должно производиться в пределах базовой длины, соответствующей значению параметров в табл. 6, 7.

Вид обработки поверхности указывают в обозначении шероховатости только в случаях, когда он является единственным, применимым для получения требуемого качества поверхности (рис. 4).

Допускается применять упрощенное обозначение шероховатости поверхностей с разъяснением его в технических требованиях чертежа по примеру, указанному на рис. 5.

Рис. 4. Указание необходимого вида обработки

Рис. 5. Упрощенное обозначение шероховатости поверхности с разъяснением в технических требованиях

Рис. 6. Порядок записи значений параметров шероховатости при указании двух или более параметров

В упрощенном обозначении используют знак √ и строчные буквы русского алфавита в алфавитном порядке, без повторений и, как правило, без пропусков.

При указании номинального значения параметра шероховатости значения параметров записывают сверху вниз в следующем порядке (рис. 6):

нараметр высоты неровностей профиля; нараметр шага неровностей профиля; относительная опорная длина профиля.

Если шероховатость одной и той же поверхности различна на отдельных участках, то эти участки разграничивают сплошной тонкой линией с нанесением соответствующих размеров и обозначений шероховатости (рис. 7, а). Через заштрихованную зону линию границы между участками не проводят (рис. 7, 6).

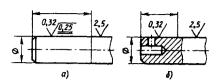


Рис. 7. Разграничение различных участков шероховатости на одной поверхности

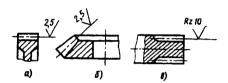


Рис. 8. Обозначение шероховатости поверхности зубьев детали без указания их профиля

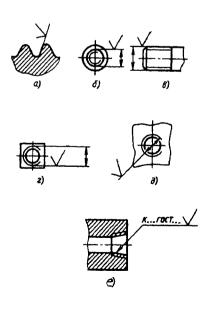


Рис. 9. Обозначение шероховатости поверхности профиля резыбы

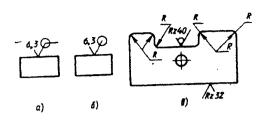


Рис. 10. Обозначение шероховатости поверхности контура детали

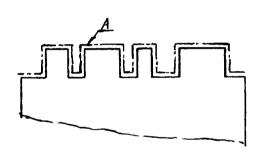


Рис. 11. Обозначение одинаковой шероховатости поверхности сложной конфигурации

Обозначение шероховатости рабочих поверхностей зубьев зубчатых колес, эвольвентных шлицев и т.п., если на чертеже не приведен их профиль, условно наносят на линии делительной поверхности (рис. 8, a, b, b); для глобоидных червяков и сопряженных с ним колес - на линии расчетной окружности.

Обозначение шероховатости поверхности профиля резьбы наносят по общим правилам при изображении профиля (рис. 9, a) или условно на выносной линии для указания размера резьбы (рис. 9, δ , δ), на размерной линии или на ее продолжении (рис. 9, δ).

Если шероховатость поверхностей, образующих контур, должна быть одинаковой, обозначение шероховатости наносят один раз в соответствии с рис. 10, a, δ .

В обозначении одинаковой шероховатости поверхностей, плавно переходящих одна в другую, знак \bigcirc не приводят (рис. 10, \mathfrak{s}).

Обозначение одинаковой шероховатости поверхности сложной конфигурации допускается приводить в технических требованиях чертежа со ссылкой на буквенное обозначение поверхности, например:

Шероховатость поверхности А - Rz10

При этом буквенное обозначение поверхности наносят на полке линии-выноски, проведенной от утолщенной штрихпунктирной линии (рис. 11), которой обводят поверхность на расстоянии 0,8 ... 1 мм от линии контура.

СОПРЯГАЕМЫЕ ПОВЕРХНОСТИ

Подвижные стыки (табл. 8 - 13) по рабочему движению разделяют на следующие:

- а) направляющие соединения, которые определяют направления и траекторию перемещения деталей и узлов станка и их взаимное расположение; различают направляющие скольжения и направляющие качения;
- б) торцовые опоры соединения торцовых поверхностей вращающихся деталей (подпятники), определяющие положение вращающихся частей в направлении оси вращения.

Неподвижные стыки - соединения прилегающих поверхностей деталей, определяющие точность взаимного расположения в собран-

ном виде. Поверхности, образующие неподвижные стыки, разделяют на следующие виды:

- а) привалочные плоскости корпусных деталей и прокладок (табл. 14);
- б) торцовые поверхности тел вращения, определяющие точность, расположения деталей относительно оси вращения и в направлении ее (табл. 15).

Разъемные стыки (табл. 16 - 20) - соединения, определяющие точность фиксируемых положений перемещающихся деталей и узлов машины в направлении движения.

8. Поверхности мест посадки шарико- и роликоподшилников

Посадочные	Класс точности подшипников по	Параметр шероховатости поверхности <i>Ra</i> мкм, при номинальном диаметре, мм		
места	FOCT 520 - 89	до 80	св.80 до 500	
Валов	0 и 6	1,25	2,5	
	5 и 4	0,63	1,25	
	2	0,32	0,63	
Отверстий корпусов	0 и б	1,25	2,5	
	5, 4, 2	0,63	1,25	
Торцов заплечиков валов и корпусов	0 и 6	2,5	2,5	
	5, 4, 2	1,25	2,5	

9. Рабочие поверхности зубчатых колес и червяков

		Параметры шерох	оватости <i>Ra</i> , мкм	
Степень точности		червяков		
колес	цилиндрических	конических		
3	-	-	0,63	0,16
4	0,63	-	0,63	0,16
5	0,63	0,63	1,25	0,32
6	1,25	1,25	1,25	0,63
7	1,25	1,25	1,25	1,25
8	2,5	2,5	2,5	2,5
9	2,5	Rz 20	-	-

10. Поверхности нарезки ходовых винтов и гаек

Класс	Параметры шероховатости Ra, мкм		Класс	Параметры шероховатости <i>Ra</i> , мкм	
точности ходовых винтов	Ходовые винты	Гайки ходовых винтов	точности ходовых винтов	Ходовые винты	Гайки ходовых винтов
0	0,32	0,63	3	2,5	2,5
1	0,63	0,63	4	2,5	Rz 20
2	1,25	1,25			

11. Поверхности направляющих станков

	Направляющие						
Класс точности	скольжения		качения				
станков	легкие	средние	тяжелые	легкие	средние	тяжелые	
	Параметр шероховатости <i>Ra</i> , мкм						
Особо точные	0,32	0,32	0,63	0,16	0,16	0,32	
Особо высокой точности		0,63			0,32		
Повышенной точности	0,32	0,63	1,25	0,16	0,32	0,63	
Высокой точности	0,52	0,05	1,23	0,10	0,32	0,03	
Нормальной точности	0,63	1,25	2,5	0,32	0,63	1,25	

12. Поверхности торцовых опор

Торцовое биение, мкм	Параметр шероховатости поверхности <i>Ra</i> , мкм	Торцовое биение, мкм	Параметр шероховатости поверхности <i>Ra</i> , мкм
До 6	0,16	До 25	1,25
" 10	0,32	· " 4 0	2,5
" 16	0,63		

13. Поверхность осей и валов под уплотнения

Уплотнение	Скорость, м/с				
	до 3	св. 3 до 5	св. 5		
Резиновое	Палировать 1,00	О,5	Палиравать 0,25		
Лабиринтное. Жиро- вые канавки	Параметры шероховатости Rz 20 и Ra 2,5 мкм				
Войлочное	При скорос 1,00				

14.	Привалочные	плоскости	корпусных	леталей
	vrburemio minic	I WILL CHOCK I	ROPHICHELA	ACIALICA

Наимень- ший размер,	Параметр шероховатости по верхности <i>Ra</i> , мкм, при точности расположения, мкм				
ММ	до 10	до 25	до 63		
100	0,63	1,25	2,5		
400	1,25	2,5	Rz 20		
1200	2,5	<i>R</i> z 20	Rz 40		

15. Торцы гильз, стаканов, регулировочных колец и др.

Точность расположе-	Параметр шерохо-
ния поверхности, мкм	ватости поверхно- сти <i>Ra</i> , мкм
До 6	0,63
" 10	1,25
Св. 10	2,5

16. Индексирующие поверхности делительных дисков, фиксаторов и упоров

Точ- ность индек- сации, мкм	Параметр шеро- ховатости поверх- ности <i>Ra</i> , мкм	Точ- ность индек- сации, мкм	Параметр шеро- ховатости поверх- ности <i>Ra</i> , мкм
До 4	0,080	До 25	0,63
" 6	0,160	" 63	1,25
" 10	0,32	Св. 63	2,5

Точность индексации относится к месту соединения фиксирующих поверхностей.

17. Поверхности столов станков

Размерная характеристика станка	Параметр шероховатости поверхности <i>Ra</i> , мкм			
Шлифовальные станки, прочие станки малых размеров и станочные принадлежности	0,63			
Станки средних размеров	1,25			
Тяжелые станки	2,5			

Поверхности при посадках с точным центрированием* валов в отверстиях (цилиндрических и конических)

Радиальное биение, мкм		ероховатости ги <i>Ra</i> , мкм Радиальное биение, мкм		Параметр шероховатости поверхности <i>Ra</i> , мкм	
	вала	отверстия		вала	отверстия
До 2,5	0,040	0,080	До 10	0,32	0,63
" 4	0,080	0,160	" 16	0,63	1,25
" 6	0,160	0,32	" 25	1,25	2,5

^{*} Назначают для точного взаимного расположения соединяемых деталей.

19. Поверхности кулачков и копиров

Точность профиля, мкм	Параметр шероховатости поверхности <i>Ra</i> , мкм, кулачков, копиров, работающих		
	с ножами с ролик		
До 6	0,32	0,63	
" 16	0,63	1,25	
" 40	1,25	2,5	
Св. 40	2,5	Rz 20	

20. Параметры шероховатости поверхности *Ra*, мкм, конических соединений в зависимости от степеней точности

Степень		иеньшей оп изующей ко	
по ГОСТ 8908 - 81	до 5	св. 5 до 50	св. 50 до 200
2		0,080	
3	0	,160 0,08	0
4	0,:	32	0,63
5 - 6	1,25	1,25	
7 - 8	1,3	2,5	
9	Rz	20	<i>R</i> z 40
10	Rz	40	Rz 80

Поверхности, образующие разъемные стыки, разделяют по виду и конструктивным признакам на следующие:

- а) индексирующие поверхности делительных и установочных устройств и механизмов (делительные диски, фиксаторы, упоры и т.д.);
- б) поверхности столов машин, станков, станочных принадлежностей и приспособлений.

Шероховатость посадочных поверхностей валов для шарико- и роликоподшипников на закрепительных или закрепительно-стяжных (буксовых) втулках должна быть не ниже *Ra* 2,5 мкм.

Параметры шероховатости, мкм, рабочих поверхностей во фрикционных передачах

Шкивы плоско- и клиноременных передач с диаметром, мм:

F,	
до 120	Ra 1,25
" 300	Ra 2,5
св. 300	Rz 20
Колеса (катки) в зависимости от условий работы, габарита, материала и др	Ra 0,630,160
Тормозные барабаны диаметром более 500 мм, муф-	
ты, диски, колодки	Ra 1,25

шабреные поверхности

Параметры шероховатости шабреных поверхностей, имеющих специфический рельеф, и обозначение на чертеже выбирают по табл. 21. В таблице указаны параметры шероховатости шабреных поверхностей и соответствующие им параметры шероховатости поверхностей, обработанных другими механическими способами.

Например, для направляющей, обработанной шлифованием, на чертеже указывают шероховатость поверхности. Если направляющую такой же точности обрабатывать шабрением, то по табл. 21 можно найти обозначение шероховатости, глубину шабрения не более 6 мкм, 16 пятен. Таким образом, обозначение на чертеже шабреной поверхности примерно на один параметр ниже, чем при каком-либо механическом виде обработки.

Параметр	Обработ	ка шабрением	
шероховатости <i>Ra</i> , мкм, механически обработанных поверхностей	Обозначение на чертежах шабреной поверхности	Глубина шабрения, мкм	Число пятен в квадрате со стороной 25 мм, не менее
0,160	<u> Шабрить</u>	До 2	32
0,32	0,50	До 3	25
0,63	<u> Шабрить</u>	До 6	16
1,25	<u>Шабрить</u> 2,0	До 10	10
2,5	<i>Шабрить</i> Rz 20/	До 20	8

пригоняемые поверхности

К посадкам пригоняемых поверхностей деталей относятся соединения выше 5-го квалитета - регулируемые (изменение размера

одной из сопрягаемых деталей), пригоняемые и селекционная сборка деталей. Их данные приведены в табл. 22.

22. Пригоняемые валы и отверстия (цилиндрические, конические, призматические)

Величина зазора, натяга (соединения	Допуск сортировки групп при сборке с	Параметр шероховатости	и поверхности <i>Ra</i> , мкм
регулируемые и пригоняемые), мкм	групповой взаимо- заменяемостью, мкм	вала	отверстия
До 2,5	_	0,040	0,080
Св. 2,5 до 4	2	0,080	0,160
" 4 " 6,5	3	0,080	0,32
" 6,5 " 10	5	0,160	0,63
" 10 " 16	8	0,32	0,63
" 16 " 25	12,5	0,32	0,63
" 25 " 40	20	0,63	1,25

поверхности отверстий и валов в системе отверстия и вала

23. Поверхности отверстий и валов в системе отверстия в зависимости от точности изготовления

	Св. 630 до 1000		Rz 40		40									Rz 40	Rz 80	Rz 80
	CB. 530 40			,	Rz 40	;	Rz 20		Rz 20		· 		Rz 40	RZ	Rz	Rz 40
	200 B								RZ	Rz 40						
	CB.		Rz 20									Rz 20		Rz 20	Rz 40	
	Св. Св. 120 до 180 до 180 260	й, мкм		Rz 20									Rz 20	8	¥	Rz 20
	Св. 120 до 180	рхносте			Rz 2,5		Ra 2,5			Ra 2,5			84			
ы, мм	Св. 80 до 120	сти пове			Rz					Re						
Размеры, мм	Св. 50 до 80	Параметры шероховатости поверхностей, мкм	Ra 2,5									Ra 2,5		Ra 2,5	Rz 20	
	Св. 30 до 50	ры шер	Ra	Ra 2,5									Ra 2,5		H	
	Св. 18 до 30	Парамел						Ra 1,25			Ra 1,25		R			Ra 2,5
	Св. 10		Í								Ra			Ra 1,25		R
	Св. 6 до 10			Ra 1,25					K			Ra1 ,25	10	Ra	Ra 2,5	
	Св. 3							Ra 0,63			Ra 0,63	Ra	Ra 1,25		-10	
	Or 1			Ra 0,63							Ra			Ra 0,63	Ra 1,25	-
	юлей		Н7	Ln.	r6, s6	9u	k 6	9sf	94	98	LJ	e7	Н8	s7, u8	H8, H9	8n
	Обозначение полей допусков	•	¥	dI	Пр	Γ	Н	П	Ü	П	X	И	Aza	ПР2а	43	Пр23
	Обозна		Отвер-				Вал						Отвер- стие	Вал	Отвер-	Вал
	Квалитет (класс точности)						6 - 7	(2)					7 - 8	(2a)	6 - 8	(3)

Продолжение табл. 23

										Размеры. мм	MM.						
Квалитет (класс	Обозна	Обозначение полей допусков	юлей	От 1 до 3	Св. 3	Св. 6	Св. 10 до 18	Св. 18	Св. 30 до 50		Св. 80 до 120	Св. 120 до 180	Св. 180 до 260	Св. 260 д	Св. 360 до 500	Св. Св. 500 до 630 до 630 1000	Св. 630 до 1000
								Парамет	ры шер	оховато	Параметры шероховатости поверхностей, мкм	рхностей	í, mkm				
		Пр13	x8, u8, s8	ı			Ra	Ra 2,5					Rz 20			Rz 40	Rz 80
6 - 8		ΰ	h8, н9	Ra 1,25		Ra 2,5								Ç			
(3)	Вал	Х3	f9, e9, e8		Ra	Ra 2,5			R	Rz 20			K	<i>K</i> z 40		Rz 80	80
		III3	6р		Ra 2,5			Rz	Rz 20				Rz 40				
	Отвер- стие	A4	H11		Rz 20				Rz 40					Rz 80	80		
11 (4)	Вал	\$ \fotag{\dagger}	h11 d11														
		Л4 Ш4	b11, c11 a11	Rz 20			Rz 40						Rz 80	80			
12 (5)	Отвер-	A5	H12		Rz 40				Rz 80					RZ	Rz 160		
	Вал	840	h12 b12		Rz 40					Rz 80					RZ	Rz 160	
14 (7)	Отвер-	. A	H14		Rz 80					Rz 160					Rz	Rz 320	
	-		-														

X
Te E
ZOB.
3roro
сти из
очнос
2
2
Ę
MA
MC
38
ала в зависимос
Ba
eMe
Ē
2
ž
Soci
7
BHO
JOB
88
E
DXX
Bep
6
24. II
. 4

			74. 110E	24. 110верхности валов и отверстии в системе валя в зависимости от точности изготовления	Ballob 1	1 orbepc	THE B CH	creme Ba	na b sabl	HCHMOCLE	H-01. 10 1	OCIM MSI	этоклени	<u> </u>			
	·									Размеры, мм	ы, мм						
Квалитет (класс точности)	06031	Обозначение полей допусков	полей В	От 1 до 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 30	Св. 30 до 50	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	Св. 180 до 260	Св. 260 до 360	Св. Св. <td>Св. 500 до 630</td> <td>Св. 530 до 1000</td>	Св. 500 до 630	Св. 530 до 1000
								Парамел	тры шер	оховато	Параметры шероховатости поверхностей, мкм	рхносте	í, MKM				
	Вал	В	ъ	Ra 0,63		Ra 0,63			Ra 1,25				Ra 2,5			Rz 20	00
		ďI	T7, U7, U8	Ra 0,63		Ra 1,25			Ra 2,5				Rz 20			1	
		ďIJ	R7, S7	·							Ra	Ra 2,5					
8 ~ 9		I	N7			Ra	Ra 1,25				Ra	Ra 2,5					
(2)	Отвер- стие	H	К7		Ra 0,63			Ra 1,25				Ra 2,5				Rz 20	
		Ш	JS7							r							
		\mathcal{C}	2Н	Ra 0,63	,63		Ra	Ra 1,25			Ra	Ra 2,5					
		Д	<i>L</i> 5												Rz 20	20	
		X	F8	Ra 0,63		Ra	Ra 1,25				Ra 2,5						
		Л	E8			Ra 1,25			,					RZ	Rz 20		
	Вал	Вза	ћ7	Ra 0,63		Ra	Ra 1,25				Ra 2,5				Rz 20	20	
7 - 8 (2a)	Отвер-	Пр22а	80		Ra	Ra 1,25			Ra	Ra 2,5			RZ	Rz 20		1	

Продолжение табл. 24

		Св. Св. 500 до 630 до 630 1000		Rz 40		Rz 80				Rz 80						
		Св. 500 до 630		R		× ×				24						
7		Св. 360 до 500														Rz 160
		Св. 260 д 360		Rz 20		Rz 40				Rz 40			Rz 80			Rz
		Св. 180 до 260	й, мкм	RZ		RZ				RZ				Rz 80		
		Св. 120 до 180	хностей													
	J, MM	Св. 80 до 120	Параметры шероховатости поверхностей, мкм		·											
	Размеры, мм	Св. 50 до 80	оховатос		=	Rz 20										
		Св. 30 до 50	ры шер			RZ	Rz 20	Rz 20					Rz 40			Rz 80
		Св. 18 до 30	Парамет	Ra 2,5					·		Rz 20		Rz			
	:	Св. 10 до 18									R			Rz 40		
		Св. 6 до 10				Ra 2,5								-		
		CB. 3				Ra	Ra 2,5	Ra 2,5					Rz 20			Rz 40
		Or 1		h8, h9 Ra 1,25												
		толей		ъв, ъ9	Н8, Н9	Е9, F9	D9, D10	h11	H11	D11	B11, C11	A11, B11	h12, h13	H12, H13	B12	h14
		Обозначение полей допусков		B3	dz	Х3	Шз	B_4	72	[†] X	JI_4	1114	Bs	హ	Xs	B ₁
		Обозн.		Вал		Отвер-		Вал			Отвер-		Вал	Отвер-		Вал
		Квалитет (класс точности)				8 - 10				11 (4)				12 - 13 (5)		14 (7)

типовые поверхности

25. Поверхности деталей и их параметры шероховатостей

Параметры шероховатости, мкм	Типовые поверхности и детали
Rz 320 и Rz 160	Нерабочие контуры деталей. Поверхности деталей, устанавливаемые на бетонных, кирпичных и деревянных основаниях
Rz 80	Отверстия на проход крепежных деталей. Выточки, проточки. Отверстия масляных каналов на силовых валах. Кромки деталей под сварные швы. Опорные поверхности пружин сжатия. Подошвы станин, корпусов, лап
Rz 40	Внутренний диаметр шлицевых соединений (нешлифованных). Свободные несопрягаемые торцовые поверхности валов, муфт, втулок
Rz 20	Торцовые поверхности под подшипники качения. Поверхности втулок, колец, ступиц, прилегающие к другим поверхностям, но не являющиеся посадочными. Нерабочие торцы валов, втулок, планок
Ra 2,5	Шаровые поверхности ниппельных соединений. Канавки под уплотнительные резиновые кольца для подвижных и неподвижных торцовых соединений. Радиусы скруглений на силовых валах. Поверхности осей для эксцентриков. Опорные плоскости реек
Ra 1,25	Поверхности разъема герметичных соединений без прокладок или со шлифованными металлическими прокладками. Наружные диаметры шлицевого соединения Отверстия пригоняемых и регулируемых соединений (вкладыши подшипников и др.) с допуском зазоранатяга 25 - 40 мкм. Цилиндры, работающие с резиновыми манжетами. Отверстия подшипников скольжения. Трущиеся поверхности малонагруженных деталей
Ra 0,63	Притираемые поверхности в герметичных соединениях. Поверхности зеркала цилиндров, работающих с резиновыми манжетами. Торцовые поверхности поршневых колец при диаметре менее 240 мм. Валы в пригоняемых и регулируемых соединениях с допуском зазора-натяга 7 - 25 мкм. Трущиеся поверхности нагруженных деталей. Посадочные поверхности 7-го квалитета с длительным сохранением заданной посадки: оси эксцентриков, точные червяки, зубчатые колеса. Сопряженные поверхности бронзовых зубчатых колес. Рабочие шейки распределительных валов. Штоки и шейки валов в уплотнениях

Продолжение табл. 25

Параметры шероховатости, мкм	Типовые поверхности и детали
Ra 0,32	Шейки валов: 5-го квалитета диаметром св. 1 до 30 мм; 6-го квалитета диаметром св. 1 до 10 мм. Валы в пригоняемых и регулируемых соединениях (шейки шпинделей, золотники) с допуском зазоранатята 16 - 25 мкм. Отверстия пригоняемых и регулируемых соединений (вкладыши подшипников) с допуском зазоранатяга 4 - 7 мкм. Трущиеся элементы сильно нагруженных деталей. Цилиндры, работающие с поршневыми кольцами
Ra 0,160	Поверхности, работающие на трение, от износа которых зависит точность работы механизмов
Ra 0,080	Шейки валов в пригоняемых и регулируемых соединениях с допуском зазора-натяга 2,5 - 6,5 мкм. Поверхности отверстий пригоняемых и регулируемых соединений с допуском зазора-натяга до 2,5 мкм. Рабочие шейки валов прецизионных быстроходных станков и механизмов
Ra 0,040	Зеркальные валики координатно-расточных станков и пр.

26. Параметры шероховатости рабочей поверхности резьбы, мкм

Резьба	Рабочая поверхность	Параметры шероховатости
Метрическая, дюймовая, ко- ническая	Наружная Внутренняя	Rz 20
Трапецеидальная, упорная,	Наружная	Ra 2,5
прямоугольная	Внутренняя	Rz 20

свободные поверхности

27. Открытые поверхности (видимые при наружном осмотре машины)

Поверхности деталей	Параметры шероховатости, мкм
Прецизионные шкалы с оптическим отсчетом	Ra 0,040
Шкалы нормальной точности, лимбы	Ra 0,63
Выступающие части быстровращающихся деталей: концы и фланцы шпинделей, валов	Ra 1,25
Рукоятки, ободья маховиков, штурвалы, ручки, стержни, кнопки	<i>Ra</i> 0,32 (полировать)
Головки винтов, торцы валов, фаски, канавки, закругления	Rz 40 Ra 2,5

Продолжение табл. 27

Поверхности деталей	Параметры-шероховатости, мкм
Поверхности указателей, таблиц	<i>Ra</i> 0,63 (полировать)
Поверхности механически обработанных корпусных деталей с наибольшим размером, мм:	
до 100	Ra 2,5
св. 100 до 400	Rz 20
" 400 " 1200	Rz 40
Поверхности фланцев и крышек негерметичных соединений	Rz 40
Разъем подшипников скольжения	Rz 40

28. Закрытые поверхности (невидимые при наружном осмотре машины)

Поверхности деталей	Параметры шероховатости Rz, мкм
Поверхности, механически обрабатываемые	80 20
Подошвы и основания станин, корпусов, лап; несопрягаемые поверхности, механически обработанные	80

поверхности в зависимости от методов обработки

29. Шероховатость поверхности отливок

Вид литья	Материал отливок	Параметры шероховатости поверхностей отливок, мкм		
В песчаные формы	Черные металлы	Rz 320 Rz 160		
	Цветные сплавы	Rz 320 Rz 80		
В кокиль	Черные металлы	Rz 320 Rz 40		
	Цветные сплавы	Rz 160 Rz 20		
По выплавляемым моделям	Черные металлы	Rz 80 Rz 20		
	Цветные сплавы	Rz 80 Ra 2,5		
В оболочковые формы	Черные металлы	Rz 160 Rz 40		
	Цветные сплавы	Rz 80 Rz 20		
Под давлением	Алюминиевые сплавы	Rz 40 Ra 2,5		
	Медные сплавы			

30. Шероховатость поверхности при механических методах обработки

Обрабаты-						Пар	амет	ры п	теро	коват		мкм			
ваемые	методы	л обработки	220	1.60	<u> </u>	1 40	Τ	100	1.0	10.7	Ra		la 000	10.040	Rz
поверхно- сти			320		80	40	20	2,5	1,25	0,63	0,32	0,160	0,080	0,040	0,100
		Предварительное								I					
	Обтачивание	Чистовое													
		Тонжое	L												
		Предварительное													
	Шлифование	Чистовое						I	Ι						
		Тонкое							Γ						
		Грубая													
	Притирка	Средняя													
		Тонкая													
Наружные	Отделка					Γ		[
цилиндри-	абразивным			}	Į	ŀ	1				V//				Í
ческие	полотном			Ш	L.			⊢ –	ļ		X				
	Обкатывание		1			1	}		1	1					
	роликом		 	 	 				├—	┼				annin	annn
	Шлифование - отделка (су-		1	1				ļ	l	1	ļ				
	перфинициро-			ļ]		,	ļ		1				
	вание)]				ļ	i	1	1				
		Предварительное						\Box			 				- Herrick
]	Растачивание	Чистовое										\vdash			
		Тонкое													
	Сверление	!													
	Зенкерование	Черновое (по	1							1					
	Controposation	корке)	<u> </u>	l				L						l	
		Чистовое									<u> </u>				
	Развертыва- ние	Нормальное													
Внутренние		Точное							Ī -						
цилиндри-			L	L									_		
ческие		Тонкое	<u> </u>	<u> </u>	<u> </u>			mm	,,,,,,,	, , , , , , , , , , , , , , , , , , ,				\rightarrow	
	Протягивание				<u> </u>	<u> </u>							 -↓		
	Внутреннее	Предварительное			<u> </u>							,,,,,,	-		
	шлифование	Чистовое	<u> </u>		<u> </u>	<u> </u>							mal		
	Калибрование		!						1					- 1	
	шариком	Taufa a						-	<u> </u>						
	П	Грубая	\vdash			-			-				- 1	+	
	Притирка	Средняя Тонкая	-		_								ann		
	Шлифование-				_	-									—
İ		Нормальное Зеркальное			\vdash	\vdash							min		
1	притирка (хонингование)	эеркальное							ĺ	1					
	(XOTATH OBLITAC)	Предварительное								 					
	Строгание	Чистовое											$\neg \uparrow$		
	Cipolinino	Тонкое									_		-1		
ŀ	Цилиндричес-	Предварительное													
ļ	кое фрезеро-	Чистовое	\Box								t				
	вание	Тонкое	\vdash			\vdash									
ŀ	Торцовое	Предварительное						a de la constante de la consta	and the same	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\vdash				
Плоскости	фрезерова-	Чистовое		and .		-112111						\Box			
221001100111	ние	Тонкое	\vdash								_				
ł	Торцовое	Предварительное								1	T				
!	точение	Чистовое									Γ				
j		Тонкое	\Box		anne.			····							
ļ	Плоское	Предварительное				$\overline{}$				T T	T	\vdash			
	шлифование	Чистовое	\sqcap						l'''''						_
			1				$\overline{}$			VIIIII	*******		_		
ŀ		Грубая										, ,	. [
İ	Притирка	Грубая Средняя	-						-						

КОНТРОЛЬ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ

Контроль шероховатости поверхности может проводиться:

- 1. Сравнением поверхности изделия с образцами шероховатости поверхности по ГОСТ 9378-93 для конкретных способов обработки. Вместо образцов шероховатости могут применяться аттестованные образцовые детали.
- 2. Измерением параметров шероховатости непосредственно по шкале приборов (профилометров), либо по увеличенному изображению профиля, или записанной профилограмме сечения, полученным на профилографах.

Если не задано направление измерения шероховатости, то измерения проводят в направлении наиболее грубой шероховатости. При механической обработке - это направление, перпендикулярное к главному движению резания (поперечная шероховатость).

Образцы шероховатости поверхностей (сравнения) по ГОСТ 9378 - 93 (ИСО 2632 - 1, ИСО 2632 - 2) предназначены для сравнения визуально и на ощупь с поверхностями изделий, полученными обработкой резанием, полированием, электроэрозионной, дробеструйной и пескоструйной обработкой.

Образец шероховатости поверхности (сравнения) - образец поверхности с известными параметрами шероховатости, полученной определенным способом обработки. Способы обработки, воспроизводимые образцами, форма образца и основное направление неровностей поверхности образца должны соответствовать указанным в табл. 31.

31. Расположение неровностей и форма образцов сравнения

Способ обработки	Форма образца	Условное обозначе- ние спо- соба обработки	Располо- жение неров- ностей	Способ обработки	Форма образца	Условное обозначе- ние спо- соба обработки	Располо- жение неров- ностей
Точение	Цилинд- рическая выпуклая	Т	Прямо- линей- ное	Фрезеро- вание торцовое	Плоская	ФТП	Перек- рещива- ющееся
Расточка	Цилинд- рическая вогнутая	P		Шлифо- вание торцовое	**	ШТ	дугооб- разное
Фрезерование цилинд-	Плоская	ФЦ		Шлифо- вание чашеоб- разным кругом	"	ШЧ	
Строгание	"	С		Электро-	н	Э	
Шлифо- вание перифе-	Плоская, цилинд- рическая	шп шц шцв		эрозион- ная об- работка			Не име- ющее опреде-
рией круга	выпуклая, цилинд- рическая вогнутая	,		Дробе- струйная, песко- струйная обработка		ДС ПС	ленного направ- ления штриха
Точение торцовое	Плоская	TT	Дугооб- разное	Полиро- вание	Плоская, цилинд-	nn nu	Пута- ный
Фрезеро- вание	71	ФΤ			рическая выпуклая		штрих
торцовое				Образцы зовать особ способа об	характери- изводимого		

32.	Значения	парам	етра	шерох	оватости	Ra в
	зависи	мости	от с	пособа	обработа	CHI

Способ	D	Базовая
обработки	<i>Ra</i> , мкм	длина І, мм
Шлифование	0,050	0,25
шифованис	0,100	0,25
	0,100	0,25
	0,400	0,80
	0,800	0,80
	1,600	0,80
	3,200	2,50
Точение и	0,4	0,8
расточка	0,8	0,8
F	1,6	0,8
	3,2	2,5
	6,3	2,5
	12,5	2,5
Фрезерование	0,4	0,8
•	0,8	0,8
	1,6	2,5
	3,2	2,5
	6,3	8,0
	12,5	8,0
Строгание	0,8	0,8
	1,6	0,8
	3,2	2,5
	6,3	2,5
	12,5	8,0
	25,0	8,0
Электроэро-	0,4	0,8
зионная об-	0,8	0,8
работка	1,6 3,2	0,8 2,5
	6,3	2,5
	12,5	2,5
Дробеструй-	0,2	0,8
ная и песко-	0,2	0,8
струйная	0,8	0,8
обработка	1,6	0,8
P	3,2	2,5
	6,3	2,5
	12,5	2,5
	25,0	2,5
Полирование	0,006	0,08
-	0,0125	0,08
	0,025	0,08
	0,050	0,25
	0,100	0,25
	0,200	0,80

Примечания: 1. Средний шаг неровностей поверхности образца не должен превыщать 1/3 базовой длины.

2. Малые значения *Ra* (до 0,1 мкм) приведены не для сравнения с поверхностями контролируемых деталей, а для того чтобы дать представление пользователю о различиях между этими значениями (например, 0,006; 0,0125; 0,025; 0,05 и 0,1 мкм), которые могут быть отмечены визуально.

Ряды номинальных значений параметра шероховатости *Ra* поверхности образца в зависимости от воспроизводимого способа обработки и базовые длины для оценки шероховатости должны соответствовать указанным в табл. 32.

По требованию заказчика поверхность образца может дополнительно оцениваться параметрами шероховатости Rz, Rmax, Sm, S, t_p , значения которых не нормируются и приводятся как справочные по результатам измерений

Ширина образцов сравнения должна быть не менее 20 мм, длина не менее: 20 мм при Ra от 0,025 до 12,5 мкм и базовой длине до 2,5 мм; 30 мм при Ra от 6,3 до 12,5 мкм и базовой длине 8 мм; 50 мм при Ra, равном 25 мкм.

Радиус кривизны цилиндрических образцов в пределах 20 - 40 мм.

Образцы можно изготовлять:

применением способа обработки, который должен воспроизвести образец; гальванопластическим методом получения позитивных отпечатков с матриц; с матриц позитивных отпечатков, выполненных из пластмассы или других материалов и воспроизводящих на вид и на ощупь обработанную поверхность.

В условном обозначении образца (или набора образцов) шероховатости указывают: номинальное значение (или интервал значений для набора) параметра шероховатости *Ra*; условное обозначение способа обработки (по табл. 31); стандарт.

В условном обозначении образца (или набора образцов) шероховатости указывают: номинальное значение (или интервал значений для набора) параметра шероховатости *Ra*; условное обозначение способа обработки (по табл. 31); стандарт.

Пример

Образец шероховатости 1,6 ШЧ ГОСТ 9378 - 93

Набор образцов шероховатости 0,2 - 0,8 IIIIB ГОСТ 9378 - 93,

где 1,6 и 0,2 - 0,8 - значения параметра шероховатости Ra;

ШЧ - шлифование чашеобразным кругом;
 ШЦВ - шлифование периферией круга,
 форма образца цилиндрическая вогнутая.

Образцы шероховатости должны иметь одинаковый цвет и блёск на всей рабочей поверхности.

Образцы должны быть размагничены.

Основное направление неровностей (см. табл. 31) должно быть параллельно более короткой стороне образца.

Дополнительные источники

Шероховатость поверхности. Термины и определения - ГОСТ 25142 - 82.

Измерение параметров шероховатости. Термины и определения - ГОСТ 27964 - 88 (ИСО 4287/2-84).

Глава IV

допуски и посадки

основные определения

Взаимозаменяемость - свойство независимо изготовленных деталей (или узлов) занимать свое место в узле (или машине) без дополнительной обработки их при сборке и выполнять свои функции в соответствии с техническими требованиями к работе данного узла (или машины).

Неполная или ограниченная взаимозаменяемость определяется подбором или дополнительной обработкой деталей при сборке.

Система отверстия - совокупность посадок, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием (отверстие, нижнее отклонение которого равно нулю).

Система вала - совокупность посадок, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом (вал, верхнее отклонение которого равно нулю).

В целях повышения уровня взаимозаменяемости изделий, развития кооперирования и специализации производства, сокращения номенклатуры нормального инструмента установлены поля допусков валов и отверстий предпочтительного применения.

Характер соединения (посадки) определяется разностью размеров отверстия и вала.

Термины и определения по ГОСТ 25346-89.

Размер - числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения.

Действительный размер - размер элемента, установленный измерением.

Предельные размеры - два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер.

Наибольший (наименьший) предельный размер наибольший (наименьший) допустимый размер элемента.

Номинальный размер - размер, относительно которого определяются отклонения (рис. 1).

Отклонение - алгебраическая разность между размером (действительным или предельным размером) и соответствующим номинальным размером.

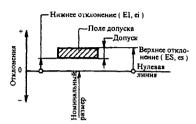


Рис. 1

Действительное отклонение - алгебраическая разность между действительным и соответствующим номинальным размерами.

Предельное отклонение - алгебраическая разность между предельным и соответствующим номинальным размерами. Различают верхнее и нижнее предельные отклонения.

Верхнее отклонение ES, еs - алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами (рис. 1).

Примечание. ES - верхнее отклонение отверстия; ез - верхнее отклонение вала.

Нижнее отклонение EI, еі - алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами (рис. 1).

Примечание. EI - нижнее отклонение отверстия; еі - нижнее отклонение вала.

Основное отклонение - одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. В данной системе допусков и посадок основным является отклонение, ближайщее к нулевой линии.

Нулевая линия - линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении полей допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные - вниз.

Допуск Т - разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями (рис. 1).

Примечание. Допуск - это абсолютная величина без знака.

Стандартный допуск IT - любой из допусков, устанавливаемых данной системой допусков и посадок. (В дальнейшем под термином "допуск" понимается "стандартный допуск").

Поле допуска - поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рис. 1).

Квалитет (степень точности) - совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров.

Единица допуска і, І - множитель в формулах допусков, являющийся функцией номинального размера и служащий для определения числового значения допуска.

Примечание. і - единица допуска для номинальных размеров до 500 мм, І - единица допуска для номинальных размеров св. 500 мм.

Вал - термин, условно применяемый для обозначения наружных элементов деталей, включая и нецилиндрические элементы.

Отверстие - термин, условно применяемый для обозначения внутренних элементов деталей, включая и нецилиндрические элементы.

Основной вал - вал, верхнее отклонение которого равно нулю.

Основное отверстие - отверстие, нижнее отклонение которого равно нулю.

Предел максимума (минимума) материала - термин, относящийся к тому из предельных размеров, которому соответствует наибольший (наименьший) объем материала, т.е. наибольшему (наименьшему) предельному размеру вала или наименьшему (наибольшему) предельному размеру отверстия. (Применявшийся ранее термин "проходной (непроходной) предел" использовать не рекомендуется).

Посадка - характер соединения двух деталей, определяемый разностью их размеров до сборки.

Номинальный размер посадки - номинальный размер, общий для отверстия и вала, составляющих соединение.

Допуск посадки - сумма допусков отверстия и вала, составляющих соединение.

Зазор - разность между размерами отверстия и вала до сборки, если размер отверстия больше размера вала.

Натя - разность между размерами вала и отверстия до сборки, если размер вала больше размера отверстия.

Примечание. Натяг можно определять как отрицательную разность между размерами отверстия и вала.

Посадка с зазором - посадка, при которой всегда образуется зазор в соединении, т.е. наименьший предельный размер отверстия больше наибольшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено над полем допуска вала.

Посадка с натягом - посадка, при которой всегда образуется натяг в соединении, т.е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала
или равен ему. При графическом изображении
поле допуска отверстия расположено под полем допуска вала.

Переходная посадка - посадка, при которой возможно получение как зазора, так и натяга в соединении, в зависимости от действительных размеров отверстия и вала. При графическом изображении поля допусков отверстия и вала перекрываются полностью или частично (рис. 2).

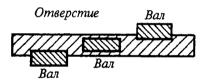


Рис. 2

Посадки в системе отверстия - посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков валов с полем допуска основного отверстия (рис. 3, a).

Посадки в системе вала - посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков отверстий с полем допуска основного вала (рис. 3, 6).

Нормальная температура. Допуски и предельные отклонения, установленные в настоящем стандарте, относятся к размерам деталей при температуре 20°C.

Условные обозначения

Квалитеты обозначаются порядковыми номерами, например 01, 7, 14.

Допуски по квалитетам обозначаются сочетанием прописных букв IT с порядковым номером квалитета, например IT01, IT7, IT14.

Основные отклонения обозначаются буквами латинского алфавита, прописными для отверстий (А ... ZC) и строчными для валов (а ... zc) (рис. 4).

Поле допуска обозначается сочетанием буквы (букв) основного отклонения и порядкового номера квалитета.

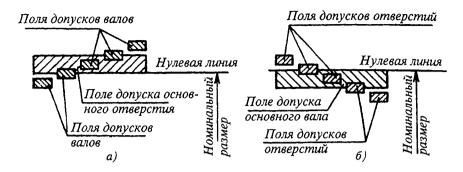


Рис. 3

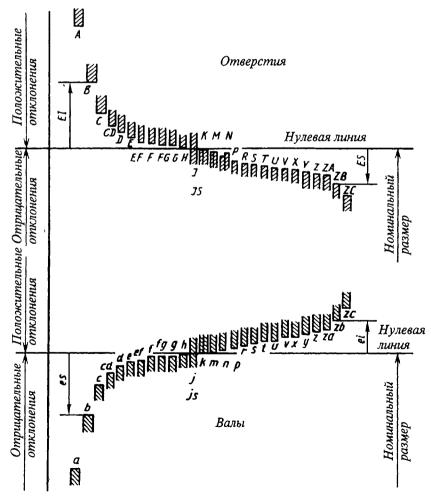


Рис. 4. Схема расположения и обозначения основных отклонений

Например: g6, js7, H7, H11.

Обозначение поля допуска указывается после номинального размера элемента.

Например: 40g6, 40H7, 40H11.

В обоснованных случаях допускается обозначать поле допуска с основным отклонением "Н" символом "+IT", с основным отклонением "h" - символом "-IT", с отклонениями "js" или "JS" - символом "±IT/2".

Hanpuмер: +IT14, -IT14, ±IT14/2.

Посадка обозначается дробью, в числителе которой указывается обозначение поля допуска отверстия, а в знаменателе - обозначение поля допуска вала.

$$\it Hanpumep: H7/g6$$
 или $rac{H7}{g6}$.

Обозначение посадки указывается после номинального размера посадки.

 $\it Hanpumep: 40H7/g6$ или $\it 40 \frac{H7}{g6}$.

ЕДИНАЯ СИСТЕМА ДОПУСКОВ И ПОСАДОК (ЕСДП)

Государственные стандарты (ГОСТ 25346 - 89, ГОСТ 25347 - 82 и ГОСТ 25348 - 82) заменили систему допусков и посадок ОСТ, которая действовала до января 1980 г.

Основу ЕСДП составляют допуски, квалитеты и основные отклонения, определяющие положение полей допусков относительно нулевой линии, показанные на рис. 4.

Поля допусков и соответствующие им предельные отклонения установлены различными в трех диапазонах номинальных размеров: от 1 до 500 мм и свыше 500 до 3150 мм - по ГОСТ 25347 - 82, свыше 3150 до 10 000 мм - по ГОСТ 25348 - 82. ГОСТ 25347 - 82 регламентирует поля допусков и предельные отклонения для номинальных размеров до 1 мм.

ГОСТ 25346-89 устанавливает 20 квалитетов: 01, 0, 1, 2 ... 18. (Квалитеты от 01 до 5 предназначены преимущественно для калибров).

Числовые значения допусков приведены в табл. 1.

Предельные отклонения валов и отверстий, образующих посадки, приведены в табл. 3-5; 7-9; 12-14; 17-19.

ЕСДП рекомендует применять преимущественно посадки в системе отверстия (основное отверстие обозначается буквой H) и в системе вала (основной вал обозначается буквой h) - см. табл. 2, 6, 10, 11, 15, 16.

Кроме посадок, указанных в таблицах, разрешается применять и другие обоснованные сочетания стандартных полей допусков валов и отверстий.

Система допусков и посадок ОСТ. Практически каждому полю допусков по ОСТ можно подобрать близкую замену из ЕСДП, что обеспечивает переход на новую систему без нарушения взаимозаменяемости. Во всех случаях, когда предельные отклонения по ЕСДП

не выходят за соответствующую границу поля по ОСТ более чем на 10 %, можно считать, что при замене характер посадки практически не изменится и обеспечиваются все исходные требования взаимозаменяемости. Взаимное расположение полей допусков по ОСТ и ЕСДП при этих предельных условиях показано на рис. 5.

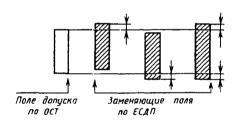


Рис. 5. Расположение полей допусков по ОСТ и ЕСДП

Предельные отклонения для наиболее употреблявшейся части системы ОСТ в диапазоне размеров от 1 до 500 мм и в классах точности от 1 до 9 приведены в табл. 21 - 23. В них указаны ближайшие замены полями допусков по ГОСТ 25347-82.

Назначение посадок. Посадки выбирают в зависимости от назначения и условий работы оборудования и механизмов, их точности, условий сборки. При этом необходимо учитывать и возможность достижения точности при различных методах обработки изделия.

В первую очередь должны применяться предпочтительные посадки. В основном применяют посадки в системе отверстия (сокращается номенклатура размерного режущего и калибровочного инструмента для отверстий). Посадки системы вала целесообразны при использовании некоторых стандартных

деталей (например, подшипников качения) и в случаях применения вала постоянного диаметра по всей длине для установки на него нескольких деталей с различиыми посадками.

Допуски отверстия и вала в посадке не должны отличаться более чем на 1 - 2 квалитета. Больший допуск, как правило, назначают для отверстия.

Зазоры и натяги следует рассчитывать для большинства типов соединений, в особенности для посадок с натягом, подшипников жидкостного трения и других посадок. Во многих случаях посадки могут назначаться по аналогии с ранее спроектированными изделиями, сходными по условиям работы.

Краткая характеристика и примеры применения посадок, относящиеся главным образом к предпочтительным посадкам в системе отверстия при размерах 1 - 500 мм. Посадки с зазором. Сочетание отверстия Н с валом h (скользящие посадки) применяют главным образом в неподвижных соединениях при необходимости частой разборки (сменные детали), если требуется легко передвигать или поворачивать детали одну относительно другой при настройке или регулировании, для центрирования неподвижно скрепляемых деталей.

Посадку Н7/h6 применяют:

- а) для сменных зубчатых колес в станках;
- б) в соединениях с короткими рабочими ходами, например для хвостовиков пружинных клапанов в направляющих втулках (применима также посадка H7/g6);
- в) для соединения деталей, которые должны легко передвигаться при затяжке;
- г) для точного направления при возвратнопоступательных перемещениях (поршневой шток в направляющих втулках насосов высокого давления);
- д) для центрирования корпусов под подшипники качения в оборудовании и различных машинах.

Посадку H8/h7 используют для центрирующих поверхностей при пониженных требованиях к соосности.

Посадки Н8/h8, Н9/h8, Н9/h9 применяют для неподвижно закрепляемых деталей при невысоких требованиях к точности механизмов, небольших нагрузках и необходимости обеспечить легкую сборку (зубчатые колеса,

муфты, шкивы и другие детали, соединяющиеся с валом шпонкой; корпуса подшипников качения, центрирование фланцевых соединений), а также в подвижных соединениях при медленных или редких поступательных и врашательных перемещениях.

Посадку H11/h11 используют для относительно грубо центрированных неподвижных соединений (центрирование фланцевых крышек, фиксация накладных кондукторов), для неотретственных шарниров.

Посадка H7/g6 характеризуется минимальной по сравнению с остальными величиной гарантированного зазора. Применяют в подвижных соединениях для обеспечения герметичности (например, золотник во втулке пневматической сверлильной машины), точного направления или при коротких ходах (клапаны в клапанной коробке) и др. В особо точных механизмах применяют посадки H6/g5 и даже H5/g4.

Посадку H7/f7 применяют в подшипниках скольжения при умеренных и постоянных скоростях и нагрузках, в том числе в коробках скоростей; центробежных насосах; для вращающихся свободно на валах зубчатых колес, а также колес, включаемых муфтами; для направления толкателей в двигателях внутреннего сгорания. Более точную посадку этого типа - H6/f6 - используют для точных подшипников, распределителей гидравлических передач легковых автомобилей.

Посадки H7/e7, H7/e8, H8/e8 и H8/e9 применяют в подшипниках при высокой частоте вращения (в электродвигателях, в механизме передач двигателя внутреннего сгорания), при разнесенных опорах или большой длине сопряжения, например, для блока зубчатых колес в станках.

Посадки Н8/d9, Н9/d9 применяют, например, для поршней в цилиндрах паровых машин и компрессоров, в соединениях клапанных коробок с корпусом компрессора (для их демонтажа необходим большой зазор из-за образования нагара и значительной температуры). Более точные посадки этого типа - H7/d8, H8/d8 - применяют для крупных подшипников при высокой частоте вращения.

Посадка H11/d11 применяется для подвижных соединений, работающих в условиях

пыти и грязи (узлы сельскохозяйственных машин, железнодорожных вагонов), в шарнирных соединениях тяг, рычагов и т. п., для центрирования крышек паровых цилиндров с уплотнением стыка кольцевыми прокладками.

Переходные посадки. Предназначены для неподвижных соединений деталей, подвергающихся при ремонтах или по условиям эксплуатации сборке и разборке. Взаимная неподвижность деталей обеспечивается шпонками, штифтами, нажимными винтами и т.п. Менее тутие посадки назначают при необходимости в частых разборках соединения, при неудобствах разборки и возможности повреждения соседних деталей; более тутие - если требуется высокая точность центрирования, при ударных нагрузках и вибрациях.

Посадка Н7/пб (типа глухой) дает наиболее прочные соединения. Примеры применения: а) для зубчатых колес, муфт, кривошипов и других деталей при больших нагрузках, ударах или вибрациях в соединениях, разбираемых обычно только при капитальном ремонте; б) посадка установочных колец на валах малых и средних электромашин; в) посадка кондукторных втулок, установочных пальцев, штифтов.

Посадка Н7/k6 (типа напряженной) в среднем дает незначительный зазор (1 - 5 мкм) и обеспечивает корошее центрирование, не требуя значительных усилий для сборки и разборки. Применяется чаще других переходных посадок: для посадки шкивов, зубчатых колес, муфт, маховиков (на шпонках), втулок подшипников.

Посадка H7/js6 (типа плотной) имеет большие средние зазоры, чем предыдущая, и применяется взамен ее при необходимости облегчить сборку.

Посадки с натягом. Выбор посадки производится из условия, чтобы при наименьшем натяге были обеспечены прочность соединения и передача нагрузки, а при наибольшем натяге - прочность деталей.

Посадку Н7/р6 применяют при сравнительно небольших нагрузках (например, посадка на вал уплотнительного кольца, фиксирующего положение внутреннего кольца подшипника у крановых и тяговых двигателей). Посадки Н7/гб, Н7/гб, Н8/г7 используют в соединениях без крепежных деталей при небольших нагрузках (например, втулка в головке шатуна пневматического двигателя) и с крепежными деталями при больших нагрузках (посадка на шпонке зубчатых колес и муфт в прокатных станах, нефтебуровом оборудовании и др.).

Посадки Н7/и7 и Н8/и8 применяют в соединениях без крепежных деталей при значительных нагрузках, в том числе знакопеременных (например, соединение пальца с эксцентриком в режущем аппарате уборочных сельскохозяйственных машин); с крепежными при очень больших деталями нагрузках (посадка крупных муфт в приводах прокатных станов), при небольших нагрузках, но малой длине сопряжения (седло клапана в головке блока цилиндров грузового автомобиля, втулка в рычаге очистки зерноуборочного комбайна).

Посадки с натягом высокой точности H6/p5, H6/r5, H6/s5 применяют относительно редко и в соединениях, особо чувствительных к колебаниям натягов, например посадка двухступенчатой втулки на вал якоря тягового электродвигателя.

Допуски несопрягаемых размеров. Для несопрягаемых размеров допуски назначают по табл. 1 в зависимости от функциональных требований. Поля допусков обычно располагают:

в "плюс" для отверстий (обозначают буквой Н и номером квалитета, например НЗ, Н9, Н14);

в "минус" для валов (обозначают буквой h и номером квалитета, например h3, h9, h14);

симметрично относительно нулевой линии ("плюс - минус половину допуска" обознача-

ют, например,
$$\pm \frac{IT3}{2}$$
: $\pm \frac{IT9}{2}$: $\pm \frac{IT14}{2}$).

Симметричные поля допусков для отверстий могут быть обозначены буквами JS (например, JS3, JS9, JS14), а для валов - буквами јs (например, js3, js9, js14).

Допуски по 12 - 18-му квалитетам характеризуют несопрягаемые или сопрягаемые размеры относительно низкой точности.

Многократно повторяющиеся предельные отклонения в этих квалитетах разрешается не указывать у размеров, а оговаривать общей записью.

1. Числовые значения допусков для размеров до

					Квал	итеты				
Номинальные размеры,	01	0	1	2	3	4	5	6	7	8
мм	Допуски									
	мкм									
До 3	0,3	0,5	0,8	1,2	2	3	4	6	10	14
Св. 3 до 6	0,4	0,6	1	1,5	2,5	4	5	8	12	18
" 6 " 10	0,4	0,6	1	1,5	2,5	4	6	9	15	22
" 10 " 18	0,5	0,8	1,2	2	3	5	8	11	18	27
" 18 " 30	0,6	1	1,5	2,5	4	6	9	13	21	33
" 30 " 50	0,6	1	1,5	2,5	4	7	11	16	25	39
" 50 " 80	0,8	1,2	2	3	5	8	13	19	30	46
" 80 " 120	1	1,5	2,5	4	6	10	15	22	35	54
" 120 " 180	1,2	2	3,5	5	8	12	18	25	40	63
" 180 " 250	2	3	4,5	7	10	14	20	29	46	72
" 250 " 315	2,5	4	6	8	12	16	23	32	52	81
" 315 " 400	3	5	7	9	13	18	25	36	57	89
" 400 " 500	4	6	8	10	15	20	27	40	63	97
" 500 " 630	4,5	6	9	11	16	22	30	44	70	110
" 630 " 800	5	7	10	13	18	25	35	50	80	125
" 800 " 1000	5,5	8	11	15	21	29	40	56	90	140
" 1000 " 1250	6,5	9	13	18	24	34	46	66	105	165
" 1250 " 1600	8	11	15	21	29	40	54	78	125	195
" 1600 " 2000	9	13	18	25	35	48	65	92	150	230
" 2000 " 2500	11	15	22	30	41	57	77	110	175	280
" 2500 " 3150	13	18	26	36	50	69	93	135	210	330
" 3150 " 4000	16	23	33	45	60	84	115	165	260	410
" 4000 " 5000	20	28	40	55	74	100	140	200	320	500
" 5000 " 6300	25	35	49	67	92	125	170	250	400	620
" 6300 " 8000	31	43	62	84	115	155	215	310	490	760
" 8000 " 10 000	38	53	76	J05	140	195	270	380	600	940

 Π р и м е ч а н и е. Для размеров менее 1 мм квалитеты 14 ... 18 не применяются.

10 000 мм (по ГОСТ 25346-89 и ГОСТ 25348-82)

				Квал	итеты		·			
9	10	11	12	13	14	15	16	17	18	
	Допуски									
	мкм					ММ				
25	40	60	0,12	0,14	0,25	0,40	0,6	1,0	1,4	
30	48	75	0,14	0,18	0,30	0,48	0,75	1,2	1,8	
36	58,	90	0,15	0,22	0,36	0,58	0,9	1,5	2,2	
43	70	110	0,18	0,27	0,43	0,70	1,1	1,8	2,7	
52	84	130	0,21	0,33	0,52	0,84	1,3	2,1	3,3	
62	100	160	0,25	0,39	0,62	1,00	1,6	2,5	3,9	
74	120	190	0,30	0,46	0,74	1,20	1,9	3,0	4,6	
87	140	220	0,35	0,54	0,87	1,40	2,2	3,5	5,4	
100	160	250	0,40	0,63	1,00	1,60	2,5	4,0	6,3	
115	185	290	0,46	0,72	1,15	1,85	2,9	4,6	7,2	
130	210	320	0,52	0,81	1,30	2,10	3,2	5,2	8,1	
140	230	360	0,57	0,89	1,40	2,30	3,6	5,7	8,9	
155	250	400	0,63	0,97	1,55	2,50	4,0	6,3	9,7	
175	280	440	0,70	1,10	1,75	2,80	4,4	7,0	11,0	
200	320	500	0,80	1,25	2,00	3,20	5,0	8,0	12,5	
230	360	560	0,90	1,40	2,30	3,60	5,6	9,0	14,0	
260	420	660	1,05	1,65	2,60	4,20	6,6	10,5	16,5	
310	500	780	1,25	1,95	3,10	5,00	7,8	12,5	19,5	
370	600	920	1,50	2,30	3,70	6,00	9,2	15,0	23,0	
440	700	1100	1,75	2,80	4,40	7,00	11,0	17,5	28,0	
540	860	1350	2,10	3,30	5,40	8,60	13,5	21,0	33,0	
660	1050	1650	2,60	4,10	6,00	10,5	16,5	26,0		
800	1300	2000	3,20	5,00	8,00	13,0	20,0	32,0		
980	1550	2500	4,00	6,20	9,80	15,5	25,0	40,0		
1200	1950	3100	4,09	7,60	12,0	19,5	31,0	49,0		
1500	2400	3800	6,10	9,40	15,0	24,0	38,0	61,0		

2. Система отверстия. Рекомендуемые

						·			
Основ-	Квали-			· · · · · · · · · · · · · · · · · · ·	,			0.	сновные
ное отверс-	тет вала	a	b	С	đ	e	f	g	h
тие					Посадки	зазором			
H5	4							<u>H5</u> g4	<u>H5</u> h4
Н6	5							<u>H6</u> g5	<u>H6</u> h5
Н6	6						<u>Н6</u> fб		
	6	-						H7 g6	H7 h6
Н7	7					<u>H7</u> e7	五口		
	8			<u>H7</u> c8	<u>H7</u> d8	<u>H7</u> e8			
	7						<u>H8</u> f7		H8 h7
H8	8			<u>H8</u> c8	<u>H8</u> d8	H8 e8	<u>H8</u> f8		<u>H8</u> h8
	9				<u>н</u> 8	<u>H8</u> e9	<u>H8</u> f9		<u>H8</u> h9
Н9	8					<u>H9</u> e8	<u>H9</u> f8		<u>H9</u> h8
	9				H9 d9	<u>H9</u> e9	<u>H9</u> f9		<u>H9</u> h9
H10	10				<u>H10</u> d10				<u>H10</u> h10
H11	11	H11 a11	<u>H11</u> b11	<u>H11</u> c11	H11 d11				H11 h11
H12	12		<u>H12</u> b12						<u>H12</u> h12

^{□ -} предпочтительные посадки.

посадки при размерах от 1 до 500 мм

отклонения валов										
js	k	m	n	р	r	S	t	u	. x	z
Переходные посадки				Посадки с натягом						
<u>H5</u> js4	<u>H5</u> k4	<u>H5</u> m4	<u>H5</u> n4							
<u>H6</u> js5	<u>H6</u> k5	<u>H6</u> m5	<u>H6</u> n5	<u>H6</u> p5	<u>H6</u> r5	<u>H6</u> s5				
<u>H7</u> js6	<u>H7</u> k6	<u>H7</u> m6	<u>H7</u> n6	H7 p6	H7 16	<u>H7</u> s6	<u>H7</u> t6			
						<u>H7</u> s7		<u>H7</u> u7		
<u>H8</u> js7	H8 k7	<u>H8</u> m7	<u>H8</u> n7			<u>H8</u> s7				
								<u>H8</u> u8	<u>H8</u> x8	<u>H8</u> z8

3. Предельные отклонения основных отверстий при размерах от 1 до 500 мм, мкм

Номинальные	Поля допусков									
размеры, мм	H4	Н5	Н6	H7	H8	Н9	H10	H11	H12	
От 1 до 3	+3 0	+4 0	+6 0	+10 0	+14	+25 0	+40 0	+60 0	+100	
Св. 3 до 6	+4	+5 0	+8	+12	+18	+30	+48	+75 0	+120 0	
Св. 6 до 10	+4 0	+6 0	+9 0	+15 0	+22	+36 0	+58 0	+90 0	+150 0	
Св. 10 до 18	+5 0	+8 0	+11	+18	+27	+43 0	+70 0	+110 0	+180	
Св. 18 до 30	+6 0	+9 0	+13 0	+21 0	+33	+52	+84 0	+130 0	+210	
Св. 30 до 50	+7 0	+11	+16 0	+25 0	+39	+62 0	+100	+160 0	+250 0	
Св. 50 до 80	+8	+13	+19	+30	+46 0	+74 0	+120 0	+190 0	+300	
Св. 80 до 120	+10 0	+15	+22	+35	+54	+87	+140 0	+220 0	+350 0	
Св. 120 до 180	+12 0	+18 0	+25 0	+40 0	+63	+100 0	+160 0	+250 0	+400 0	
Св. 180 до 250	+14 0	+20 0	+29 0	+46 0	+72	+115 0	+185 0	+290 0	+460 0	
Св. 250 до 315	+16 0	+23	+32	+52 0	+81 0	+130 0	+210 0	+320 0	+520	
Св. 315 до 400	+18 0	+25 0	+36 0	+57 0	+89	+140 0	+230 0	+360	+570 0	
Св. 400 до 500	+20 0	+27	+40	+63 0	+97 0	+155 0	+250 0	+400. 0	+630 0	

 $[\]square$ - предпочтительные поля допусков.

4. Предельные отклонения валов в посадках с зазором и переходных при размерах от 1 до 500 мм, мкм (система отверстий)

					Квал	титеты			 -	
Номинальные			4					5		
размеры, мм	ļ	,	т —	,	Поля д	опуско	3		·•	
	g4	h4	js4	k4	m4	g5	h5	js5	(j5)	k5
От 1 до 3	-2 -5	0 -3	+1,5 -1,5	+3	+5 +2	-2 -6	0 -4	+2,0 -2,0	+2 -2	+4
Св. 3 до 6	-4 -8	0 -4	+2,0 -2,0	+5 +1	+8 +4	-4 -9	0 -5	+2,5 -2,5	+3 -2	+6 +1
Св. 6 до 10	-5 -9	0 -4	+2,0 -2,0	+5 +1	+10 +6	-5 -11	0 -6	+3,0 -3,0	+4 -2	+7 +1
Св. 10 до 18	-6 -11	0 -5	+2,5	+6 +1	+12 +7	-6 -14	0 -8	+4,0 -4,0	+5 -3	+9 +1
Св. 18 до 30	-7 -13	0 -6	+3,0	+8 +2	+14 +8	-7 -16	0 -9	+4,5 -4,5	+5 -4	+11 +2
Св. 30 до 50	-9 -16	0 -7	+3,5 -3,5	+9 +2	+16 +9	-9 -20	0 -11	+5,5 -5,5	+6 -5	+13 +2
Св. 50 до 80	-10 -18	0 -8	+4,0 -4,0	+10 +2	+19 +11	-10 -23	0 -13	+6,5 -6,5	+6 -7	+15 +2
Св. 80 до 120	-12 -22	0 -10	+5,0 -5,0	+13 +3	+23 +13	-12 -27	0 -15	+7,5 -7,5	+6 -9	+18 +3
Св. 120 до 180	-14 -26	0 -12	+6,0 -6,0	+15 +3	+27 +15	-14 -32	0 -18	+9,0 -9,0	+7 -11	+21 +3
Св. 180 до 250	-15 -29	0 -14	+7,0 -7,0	+18 +4	+31 +17	-15 -35	0 -20	+10,0 -10,0	+7 -13	+24 +4
Св. 250 до 315	-17 -33	0 -16	+8,0 -8,0	+2 +4	+36 +20	-17 -40	0 -23	+36 -11,5	+7 -16	+27 +4
Св. 315 до 400	-18 -36	0 -18	+9,0 -9,0	+22 +4	+39 +21	-18 -43	0 -25	+12,5 -12,5	+7 -18	+29 +4
Св. 400 до 500	-20 -40	0 -20	+10,0 -10,0	+25 +5	+43 +23	-20 -47	0 -27	+13,5 -13,5	+7 -20	+32 +5

Продолжение табл. 4

					Квал	итеты				
Номинальные		5					6			
размеры, мм			,		Поля д	опусков				
	m5	n5	f6	g 6	h6	js6	(j6)	k6	m6	n6
От 1 до 3	+6	+8	-6	-2	0	+3,0	+4	+6	+8	+10
	+2	+4	-12	-8	-6	-3,0	-2	0	+2	+4
Св. 3 до 6	+9	+13	-10	-4	0	+4,0	+6	+9	+12	+16
	+4	+8	-18	-12	-8	-4,0	-2	+1	+4	+8
Св. 6 до 10	+12	+16	-13	-5	0	+4,5	+7	+10	+15	+19
	+6	+10	-22	-14	-9	-4,5	-2	+1	+6	+10
Св. 10 до 18	+15	+20	-16	-6	0	+5,5	+8	+12	+18	+23
	+7	+12	-27	-17	-11	-5,5	-3	+1	+7	+12
Св. 18 до 30	+17	+24	-20	-7	0	+6,5	+9	+15	+21	+28
	+8	+15	-33	-20	-13	-6,5	-4	+2	+8	+15
Св. 30 до 50	+20	+28	-25	-9	0	+8,0	+11	+18	+25	+33
	+9	+17	-41	-25	-16	-8,0	-5	+2	+9	+17
Св. 50 до 80	+24	+33	-30	-10	0	+9,5	+12	+21	+30	+39
	+11	+20	-49	-29	-19	-9,5	-7	+2	+11	+20
Св. 80 до 120	+28	+38	-36	-12	0	+11,0	+13	+25	+35	+45
	+13	+23	-58	-34	-22	-11,0	-9	+3	+13	+23
Св. 120 до 180	+33	+45	-43	-14	0	+12,5	+14	+28	+40	+52
	+15	+27	-68	-39	-25	-12,5	-11.	+3	+15	+27
Св. 180 до 250	+37	+51	-50	-15	0	+14,5	+16	+33	+46	+60
	+17	+31	-79	-44	-29	-14,5	-13	+4	+17	+31
Св. 250 до 315	+43	+57	-56	-17	0	+16,0	+16	+36	+52	+66
	+20	+34	-88	-49	-32	-16,0	-16	+4	+20	+34
Св. 315 до 400	+46	+62	-62	-18	0	+18,0	+18	+40	+57	+73
	+21	+37	-98	-54	-36	-18,0	-18	+4	+21	+37
Св. 400 до 500	+50	+67	-68	-20	0	+20,0	+20	+45	+63	+80
	+23	+40	-108	-60	-40	-20,0	-20	+5	+23	+40

Продолжение табл. 4

	1				-K par	итеты				
Номинальные					7	IFITCI DI			Γ	8
размеры, мм						опусков			1	
	e7	f 7	h7	js7	(j7)	k7	m7	n7	c8	d8
От 1 до 3	-14 -24	-6 -16	0 -10	+5 -5	+6 -4	+10 0	-	+14 +4		-20 -34
Св. 3 до 6	-20 -32	-10 -22	0 -12	+6 -6	+8 -4	+13 +1	+16 +4	+20 +8		-30 -48
Св. 6 до 10	-25 -40	-13 -28	0 -15	+7 -7	+10 -5	+16 +1	+21 +6	+25 +10		-40 -62
Св. 10 до 18	-32 -50	-16 -34	0 -18	+9 -9	+12 -6	+19 +1	+25 +7	+30 +12		-50 -77
Св. 18 до 30	-40 -61	-20 -41	0 -21	+10 -10	+13 -8	+23 +2	+29 +8	+36 +15		-65 -98
Св. 30 до 50	-50 -75	-25 -50	0. -25	+12 ⁻ -12	+15 -10	+27 +2	+34 +9	+42 +17	См. стр.	-80 -119
Св. 50 до 80	-60 -90	-30 -60	0 -30	+15 -15	+18 -12	+32 +2	+41 +11	+50 +20	361 и 362	-100 -146
Св. 80 до 120	-72 -107	-36 -71	0 -35	+17 -17	+20 -15	+38 +3	+48 +13	+58 +23		-120 -174
Св. 120 до 180	-85 -125	-43 -83	0 -40	+20 -20	+22 -18	+43 +3	+55 +15	+67 +27		-145 -208
Св. 180 до 250	-100 -146	-50 -96	0 -46	+23 -23	+25 -21	+50 +4	+63 +17	+77 +31		-170 -242
Св. 250 до 315	-110 -162	-56 -108	0 -52	+26 -26	+26 -26	+56 +4	+72 +20	+86 +34		-190 -271
Св. 315 до 400	-125 -182	-62 -119	0 -57	+28 -28	+29 -28	+61 +4	+78 +21	+94 +37		-210 -299
Св. 400 до 500	-135 -198	-68 -131	0 -63	+31 -31	+31 -32	+68 +5	+86 +23	+103 +40		-230 -327

Продолжение табл. 4

				I	Свалитеть	ы			
Номинальные		8			9	9		I	0
размеры, мм				По	ля допус	ков			
	e8	f8	h8	d9	e9	f9	h9	d10	h10
От 1 до 3	-14	-6	0	-20	-14	-6	0	-20	0
	-28	-20	-14	-45	-39	-31	-25	-60	-40
Св. 3 до 6	-30	-10	0	-30	-20	-10	0	-30	0
	-38	-28	-18	-60	-50	-40	-30	-78	-48
Св. 6 до 10	-25	-13	0	-40	-25	-13	0	-40	0
	-47	-35	-22	-76	-61	-49	-36	-98	-58
Св. 10 до 18	-32	-16	0	-50	-32	-16	0	-50	0
	-59	-43	-27	-93	-75	-59	-43	-120	-70
Св. 18 до 30	-40	-20	0	-65	-40	-20	0	-65	0
	-73	-53	-33	-117	-92	-72	-52	-149	-84
Св. 30 до 50	-50 -89	-25 -64	0 -39	-80 -142	-50 -112	-25 -87	0 -62	-80 -180	0 -100
Св. 50 до 80	-60	-30	0	-100	-60	-30	0	-100	0
	-106	-76	-46	-174	-134	-104	-74	-220	-120
Св. 80 до 120	-72	-36	0	-120	-72	-36	0	-120	0
	-126	-90	-54	-207	-159	-123	-87	-260	-140
Св. 120 до 180	-85	-43	0	-145	-85	-43	0	-145	0
	-148	-106	-63	-245	-185	-143	-100	-305	-160
Св. 180 до 250	-100	-50	0	-170	-100	-50	0	-170	0
	-172	-122	-72	-285	-215	-165	-115	-255	-185
Св. 250 до 315	-110	-56	0	-190	-110	-56	0	-190	0
	-191	-137	-81	-320	-240	-186	-130	-400	-210
Св. 315 до 400	-125	-62	0	-210	-125	-62	0	-210	0
	-214	-151	-89	-350	-265	-202	-140	-440	-230
Св. 400 до 500	-135	-68	0	-230	-135	-68	0	-230	0
	-232	-165	-97	-385	-290	-223	-155	-480	-250

Продолжение табл. 4

				Квал	гитеты				
Номинальные	8			11				12	
размеры, мм		T	· • · · · · · · · · · · · · · · · · · ·	п вкоП	опусков				
	c8	all	b11	cll	d11	h11	b12	h12	
От 1 до 3	-60 -74	-270 -330	-140 -200	-60 -120	-20 -80	0 -60	-140 -240	0 -100	
Св. 3 до 6	-70 -88	-270 -345	-140 -215	-70 -145	-30 -105	0 -75	-140 -260	0 -120	
Св. 6 до 10	-80 -102	-280 -370	-150 -240	-80 -170	-40 -130	0 -90	-150 -300	0 -150	
Св. 10 до 18	-95 -122	-290 -400	-150 -260	-95 -205	-50 -160	0 -110	-150 -330	0 -180	
Св. 18 до 30	-110 -143	-300 -430	-160 -290	-110 -240	-65 -195	0 -130	-160 -370	0 -210	
Св. 30 до 40	-120 -159	-310 -470	-170 -330	-120 -280	-80	0	-170 -420	0	
Св. 40 до 50	-130 -169	-320 -480	-180 -340	-130 -290	-240	-160	-180 -430	-250	
Св. 50 до 65	-140 -186	-340 -350	-190 -380	-140 -330	-100	0	-190 -490	0 -300	
Св. 65 до 80	-150 -196	-360 -550	-200 -390	-150 -340	-290	-190	-200 -500		
Св. 80 до 100	-170 -224	-380 -600	-220 -440	-170 -390	-120	0	-220 -570	0	
Св. 100 до 120	-180 -234	-410 -630	-240 -460	-180 -400	-340	-220	-240 -590	-350	
Св. 120 до 140	-200 -263	-460 -710	-260 -510	-200 -450	-145 -395	0 -250	-260 -660	0 -400	

Продолжение табл. 4

				Квал	итеты			-	
Номинальные	8			11			12	2	
размеры, мм				Поля де	опусков				
	с8	al1	b11	¢11	d11	h11	b12	h12	
Св. 140 до 160	-210 -273	-520 -770	-280 -530	-210 -460	-145	0	-280 -680	0	
Св. 160 до 180	-230 -293	-580 -830	-310 -560	-230 -480	-395	-250	-310 -710	-400	
Св. 180 до 200	-240 -312	-660 -950	-340 -630	-240 -530			-340 -800		
Св. 200 до 225	-260 -332	-740 -1030	-380 -670	-260 -550	-170 -460	0 -290	-380 -840	0 -460	
Св. 225 до 250	-280 -352	-820 -1110	-420 -710	-280 -570			-420 -880		
Св. 250 до 280	-300 -381	-920 -1240	-480 -800	-300 -620	-190	0	-480 -1000	0	
Св. 280 до 315	-330 -411	-1050 -1370	-540 -860	-330 -650	-510	-320	-540 -1060	-520	
Св. 315 до 355	-360 -449	-1200 -1500	-600 -960	-360 -720	-210	0	-600 -1170	0	
Св. 355 до 400	-400 -489	-1350 -1710	-680 -1040	-400 -760	-570	-360	-680 -1250	-570	
Св. 400 до 450	-440 -537	-1500 -1900	-760 -1160	-440 -840	-230	0	-760 -1390	0	
Св. 450 до 500	-480 -577	-1650 -2050	-840 -1240	-480 -880	-630	-400	-840 -1470	-630	

^{□ -} предпочтительные поля допусков.

^{() -} дополнительные (ограниченного применения) поля допусков. Предельные отклонения основных отверстий приведены в табл. 3.

5. Предельные отклонения валов в посадках с натягом при размерах от 1 до 500 мм, мкм (система отверстия)

	•												
						×	Квалитеты						
Номинальные	4		5			9	,,		7			∞	
размеры, мм						Пол	Поля допусков	38					
	n4	b5	15	\$5	9d	9	98	te	LS.	Ln	8n	x8	8z
От 1 до 3	+7 +4	+10 +6	+14	+18	+12 +6	+16 +10	+20 +14	,	+24 +14	+28 +18	+32 +18	+34 +20	+40 +26
Св. 3 до 6	+12	+17	+20 +15	+24 +19	+20 +12	+23 +15	+27 +19	-	+31 +19	+35 +23	+41 +23	+46 +28	+53
Св. 6 до 10	+14	+21 +15	+25 +19	+29 +23	+24 +15	+28 +19	+32 +23	t	+38	+43 +28	+50 +28	+56 +34	+64
Св. 10 до 14	+17	+26	+31	+36	+29	+34	+39	-	+46 +28	+51 +33	+60 +33	+67 +40	+77 +50
Св. 14 до 18	+12	+18	+23	+28	+18	+34	+39		+46 +28	+51 +33	+60	+72 +45	+87 +60
Св. 18 до 24	+21	+31	+37	+44	+35	+41 +28	+48 +35	ŕ	+56 +36	+62 +41	+74 +41	+87 +54	+106 +73
Св. 24 до 30	+15	+22	+28	+35	+22	+41 +28	+48 +35	+54 +41	+56 +35	+69 +48	+81	+97 +64	+121
Св. 30 до 40	+24	+37	+45	+54	+42	+50 +34	+59 +43	+64 +48	+68 +43	+85	09+ 66+	+119 +80	+151 +112
Св. 40 до 50	+17	+26	+34	+43	+26	+50	+59	+70 +54	+68	+95 +70	+109	+136	+175

Ś
табл.
Продолжение

											П	Продолжение табл.	e maõı. 5
							Квалитеты						
Номинальные	4		5				9			7		∞	
размеры, мм				 		oli I	Поля допусков	g ₀					
	n4	p5	75	ss	8	1/2	38	t6	27	n7	×1	7.8	82
Св. 50 до 65	+28	+45	+54 +41	+66	+51	+60	+72 +53	99+	+83	+117	+133	+168	+218 +172
Св. 65 до 80	+20	+32	+56 +43	+72 +59	+32	+62	+78 +59	+94 +75	+89	+132	+48	+192	+256
Св. 80 до 100	+33	+52	+66 +51	+86 +71	65+	+73	+93	+113	+106	+159	+173	+232	+312
Св. 100 до 120	+23	+37	+69 +54	+94 +79	+37	+76 +54	+101	+126	+114	+179	+198	+264	+364
Св. 120 до 140			+81	+110		+88	+117	+147	+132	+210	+233	+311	+428
Св. 140 до 160	+39	+61	+83	+118	+68	+90 +65	+125	+159	+140	+230	+253 +190	+343	+478
Св. 160 до 180			89+ 98+	+126		+93	+133	+171	+148	+250 +210	+273	+373	+528
Св. 189 до 200	**	0./+	+97 +77	+142	+79	+106	+151	+195	+168	+282	+308	+422	+592 +520
Св. 200 до 225	13	+50	+100 +80	+150+130	+50	+109	+159	+209	+176	+304	+330	+457	+647
							•						

Продолжение табл. 5

5 6 7 7 7 7 7 7 7 7 7
S5 D6 D6 D7 S6 T6 S7
s5 p6 r5 s6 t6 s7 +160 +79 +113 +169 +225 +186 +140 +50 +84 +140 +196 +126 +140 +181 +188 +94 +118 +136 +136 +118 +118 +193 +56 +130 +202 +272 +222 +130 +170 +240 +170 +240 +170 +190 +98 +170 +240 +170 +215 +198 +170 +244 +247 +190 +98 +170 +244 +30 +265 +218 +160 +244 +330 +265 +208 +114 +208 +294 +208 +218 +114 +208 +294 +208 +228 +114 +208 +294 +208 +232 +108 +126 +232 +304 +232
+160 +79 +113 +169 +225 +186 +140 +50 +84 +140 +196 +196 +140 +181 +188 +94 +158 +250 +210 +193 +56 +130 +202 +272 +158 +170 +240 +170 +240 +170 +215 +184 +226 +304 +247 +190 +98 +170 +240 +170 +233 +62 +150 +244 +30 +268 +208 +190 +244 +30 +268 +208 +114 +208 +208 +190 +218 +114 +208 +208 +208 +233 +114 +208 +208 +208 +232 +108 +126 +208 +208 +232 +108 +126 +232 +300 +315 +252 +252 +360 +252 </td
+181 +126 +190 +250 +210 +158 +88 +94 +158 +158 +158 +193 +56 +130 +202 +272 +222 +170 +240 +170 +240 +170 +215 +144 +226 +304 +247 +190 +98 +170 +268 +190 +233 +62 +168 +244 +330 +265 +208 +208 +208 +208 +208 +232 +108 +208 +208 +208 +232 +108 +126 +232 +300 +313 +279 +68 +172 +232 +400 +315 +279 +252 +360 +252 +252
+193 +56 +130 +202 +272 +222 +170 +240 +170 +226 +170 +170 +215 +144 +226 +304 +247 +190 +190 +98 +108 +190 +268 +190 +233 +62 +150 +244 +330 +265 +208 +108 +208 +208 +208 +232 +108 +126 +232 +330 +295 +232 +408 +132 +232 +400 +315 +252 +252 +360 +352
+215 +144 +226 +304 +247 +190 +98 +108 +190 +268 +190 +233 +62 +150 +244 +330 +265 +208 +208 +294 +208 +208 +259 +166 +272 +370 +295 +232 +108 +126 +232 +330 +232 +279 +68 +172 +292 +400 +315 +252 +360 +352
+233 +62 +150 +244 +330 +265 +208 +208 +294 +208 +259 +166 +272 +370 +295 +232 +108 +126 +272 +370 +295 +272 +330 +232 +232 +279 +68 +172 +292 +400 +315 +252 +360 +252
+259 +166 +272 +370 +295 +232 +108 +126 +232 +330 +232 +279 +68 +172 +292 +400 +315 +252 +360 +252 +360 +252
+279 +68 +172 +292 +400 +315 +252 +252 +360 +252

🗆 - предпочтительные поля допусков.

Предельные отклонения основных отверстий приведены в табл. 3

6. Система вала. Рекомендуемые посадки при размерах от 1 до 500 мм

	·								
				Осног	зные откл	онения от	тверстий	·	
Основной вал	Квалитет отверстия	A	В	С	D	Е	F	G	Н
					Посадки	с зазоров	м		
h4	5							<u>G5</u> h4	<u>H5</u> h4
h5	6							<u>G6</u> h5	<u>H6</u> h5
h6	7						<u>F7</u> h6	<u>G7</u> h6	H7 h6
	8				<u>D8</u> h6	<u>E8</u> h6	Få h6		
h7	7						<u>F7</u> h7		
	8				<u>D8</u> h7	<u>E8</u> h7	<u>F8</u> h7		H8 h7
h8	8				<u>D8</u> h8	<u>E8</u> h8	<u>F8</u> h8		<u>H8</u> h8
	9	•••			<u>D9</u> h8	<u>E9</u> h8	<u>F9</u> h8		<u>H9</u> h8
h9	9				<u>D9</u> h9	<u>E9</u> h9	<u>F9</u> h9		<u>H9</u> h9
	10		•		<u>D10</u> h9				<u>H10</u> h9
h10	10				<u>D10</u> h10				H10 h10
h11	11	<u>All</u> hll	<u>B11</u> h11	<u>C11</u> h11	<u>D11</u> h11				H11 h11
h12	12		<u>B12</u> h12						H12 h12
🗆 - предпо	утительные	посалки							

предпочтительные посадки.

Продолжение табл. 6

				Осн	овные от	гклонен	ія отвер	стий		
Основной вал	Квалитет отверстия	JS	К	M	N	Р	R	S	Т	U
					Посад	цки с заз	вором			
h4	5	<u>JS5</u> h4	<u>K5</u> h4	<u>M5</u> h4	<u>N5</u> h4					
h5	6	<u>JS6</u> h5	<u>K6</u> h5	<u>M6</u> h5	<u>N6</u> h5	<u>P6</u> h5				
h6	7	JS7 h6	<u>K7</u> h6	<u>M7</u> h6	<u>N7</u> h6	<u>P7</u> h6	<u>R7</u> h6	<u>\$7</u> h6	<u>T7</u> h6	
	8									
h7	7									
	8	<u>JS8</u> h7	<u>K8</u> h7	<u>M8</u> h7	<u>N8</u> h7					<u>U8</u> h7
h8	8									
	9									
h9	9	·								
	10									
h10	10									
h11	11									
h12	12	·								

7. Предельные отклонения основных валов при размерах от 1 до 500 мм, мкм

Номинальные				Пол	и допусь	ков			
размеры, мм	h4	h5	h6	h7	h8	h9	h10	hl1	h12
От 1 до 3	0	0	0	0	0	0	0	0	0
	-3	-4	-6	-10	-14	-25	-40	-60	-100
Св. 3 до 6	0	0	0	0	0	0	0	0	0
	-4	-5	-8	-12	-18	-30	-48	-75	-120
Св. 6 до 10	0	0	0	0	0	0	0	0	0
	-4	-6	-9	-15	-22	-36	-58	-90	-150
Св. 10 до 18	0	0	0	0	0	0	0	0	0
	-5	-8	-11	-18	-27	-43	-70	-110	-180
Св. 18 до 30	0	0	0	0	0	0	0	0	0
	-6	-9	-13	-21	-33	-52	-84	-130	-210
Св. 30 до 50	0 -7	0 -11	0 -16	0 -25	0 -39	0 -62	0 -100	0 -160	-250
Св. 50 до 80	0 -8	0 -13	0 -19	0 -30	0 -46	0 -74	0 -120	0 -190	-300
Св. 80 до 120	0	0	0	0	0	0	0	0	0
	-10	-15	-22	-35	-54	-87	-140	-220	-350
Св. 120 до 180	0	0	0	0	0	0	0	0	0
	-12	-18	-25	-40	-63	-100	-160	-250	-400
Св. 180 до 250	0	0	0	0	0	0	0	0	0
	-14	-20	-29	-46	-72	-115	-185	-290	-460
Св. 250 до 315	0	0	0	0	0	0	()	()	()
	-16	-23	-32	-52	-81	-130	-210	-320	-520
Св. 315 до 400	0	0	0	0	0	0	0	0	0
	-18	-25	-36	-57	-89	-140	-230	-360	-570
Св. 400 до 500	0	0	0	0	0	0	0	0	0
	-20	-27	-40	-63	-97	-155	-250	-400	-630

 $[\]square$ - предпочтительные поля допусков.

8. Предельные отклонения отверстий в посадках с зазором и переходных при размерах от 1 до 500 мм, мкм (система вала)

				ŀ	Свалитет	ы		·	
Номинальные			5				(5	
размеры, мм			 	По	ля допус	ков			
	G5	H 5	JS5	K5	M5	G6	H 6	(J6)	JS6
От 1 до 3	+6 +2	+4	-2,0 -2,0	0 -4	-2 -6	+8 +2	+6 0	+2 -4	+3,0 -3,0
Св. 3 до 6	+9 +4	+5 0	+2,5 -2,5	0 -5	-3 -8	+12 +4	+8	+5 -3	+4,0 -4,0
Св. 6 до 10	+11 +5	+6 0	+3,0 -3,0	+1 -5	-4 -10	+14 +5	+9 0	+5 -4	+4,5 -4,5
Св. 10 до 18	+14 +6	+8	+4,0 -4,0	+2 -6	-4 -12	+17 +6	+11 0	+6 -5	+5,5 -5,5
Св. 18 до 30	+16 +7	+9 0	+4,5 -4,5	+1 -8	-5 -14	+20 +7	+13 0	+8 -5	+6,5 -6,5
Св. 30 до 50	+20 +9	+11 0	+5,5 -5,5	+2 -9	-5 -16	+25 +9	+16 0	+10 -6	+8,0 -8,0
Св. 50 до 80	+23 +10	+13 0	.+6,5 -6,5	+3 -10	-6 -19	+29 +10	+19 0	+13 -6	+9,5 -9,5
Св. 80 до 120	+27 +12	+15 0	+7,5 -7,5	+2 -13	-8 -23	+34 +12	+22 0	+16 -6	+11,0 -11,0
Св. 120 до 180	+32 +14	+18	+9,0 -9,0	+3 -15	-9 -27	+39 +14	+25 0	+18 -7	+12,5 -12,5
Св. 180 до 250	+35 +15	+20 0	+10,0 -10,0	+2 -18	-11 -31	+44 +15	+29 0	+22 -7	+14,5 -14,5
Св. 250 до 315	+40 +17	+23 0	+11,5 -11,5	+3 -20	-13 -36	+49 +17	+32 0	+25 -7	+16,0 -16,0
Св. 315 до 400	+43 +18	+25 0	+12,5 -12,5	+3 -22	-14 -39	+54 +18	+36	+29 -7	+18,0 -18,0
Св. 400 до 500	+47 +20	+27 0	+13,5 -13,5	+2 -25	-16 -43	+60 +20	+40 0	+33 -7	+20,0 -20,0

Продолжение табл. 8

				K	валитеты	[
Номинальные		6				7			
размеры, мм				Пол	я допуск	ОВ			
	К6	M6	N6	F7	G7	H7	(J7)	JS7	K7
От 1 до 3	0 -6	-2 -8	-4 -10	+16 +6	+12 +2	+10	+4 ~6	+5 -5	0 -10
Св. 3 до 6	+2	-1	-5	+22	+16	+12	+6	+6	+3
	-6	-9	-13	+10	+4	0	-6	-6	-9
Св. 6 до 10	+2 -7	-3 -12	-7 -16	+28 +13	+20 +5	+15	+8 -7	+7 -7	+5 -10
Св. 10 до 18	+2	-4	-9	+34	+14	+18.	+10	+9	+6
	-9	-15	-20	+16	+6	0	-8	-9	-12
Св. 18 до 30	+2	-4	-11	+41	+28	+21	+12	+10	+6
	-11	-17	-24	+20	+7	0	-9	-10	-15
Св. 30 до 50	+3	-4	-12	+50	+34	+25	+14	+12	+7
	-13	-20	-28	+25	+9	0	-11	-12	-18
Св. 50 до 80	+4	-5	-14	+60	+40	+30	+18	+15	+9
	-15	-24	-33	+30	+10	0	-12	-15	-21
Св. 80 до 120	+4 -18	-6 -28	-16 -38	+71 +36	+47 +12	+35	+22 -13	+17 -17	+10 -25
Св. 120 до 180	+4	-8	-20	+83	+54	+40	+26	+20	+12
	-21	-33	-45	+43	+14	0	-14	-20	-28
Св. 180 до 250	+5	-8	-22	+96	+61	+46	+30	+23	+13
	-24	-37	-51	+50	+15	0	-16	-23	-33
Св. 250 до 315	+5	-9	-25	+108	+69	+52	+36	+26	+16
	-27	-41	-57	+56	+17	0	-16	-26	-36
Св. 315 до 400	+7	-10	-26	+119	+75	+57	+39	+28	+17
	-29	-46	-62	+62	+18	0	-18	-28	-40
Св. 400 до 500	+8	-10	-27	+131	+83	+63	+43	+31	+18
	-32	-50	-67	+68	+20	0	-20	-31	-45

Продолжение табл. 8

	T				Квалитет	ты			
11		7				8			··· <u>·</u>
Номинальные размеры, мм		*		П	оля допус	сков			
	M7	N7	D8	E8	F8	H8	(J8)	JS8	K8
От 1 до 3	-2 ₋ -12	-4 -14	+34 +20	+28 +14	+20 +6	+14	+6 -8	+7 -7	0 -14
Св. 3 до 6	0 -12	-4 -16	+48 +30	+38 +20	+28 +10	+18 0	+10	+9 -9	+5 -13
Св. 6 до 10	0 -15	-4 -19	+62 +40	+47 +25	+35 +13	+22	+12	+11	+6 -16
Св. 10 до 18	0 -18	-5 -23	+77 +50	+59 +32	+43 +16	+27	+15 -12	+13	+8 -19
Св. 18 до 30	0 -21	-7 -28	+98 +65	+73 +40	+53 +20	+33	+20 -13	+16 -16	+10 -23
Св. 30 до 50	0 -25	-8 -33	+119 +80	+89 +50	+64 +25	+39	+24 -15	+19 -19	+12 -27
Св. 50 до 80	0 -30	-9 -39	+146 +100	+106 +60	+76 +30	+46 0	+28 -18	+23 -23	+14
Св. 80 до 120	0 -35	-10 -45	+174 +120	+126 +72	+90 +36	+54	+34 -20	+27 -27	+16 -38
Св. 120 до 180	0 -40	-12 -52	+208 +145	+148 +85	+106 +43	+63 0	+41 -22	+31 -31	+20 -43
Св. 180 до 250	0 -46	-14 -60	+242 +170	+172 +100	+122 +50	+72 0	+47 -25	+36 -36	+22 -50
Св. 250 до 315	0 52	-14 -66	+271 +190	+191 +110	+137 +56	+81 0	+55 -26	+40 -40	+25 -56
Св. 315 до 400	0 -57	-16 -73	+299 +210	+214 +125	+151 +62	+89 0	+60 -29	+44 -44	+28 -61
Св. 400 до 500	0 -63	-17 -80	+327 +230	+232 +135	+165 +68	+97 0	+66 -31	+48 -48	+29 -68

Продолжение табл. 8

				Квал	итеты			
Номинальные		8		9	9		1	0
размеры, мм				Поля д	опусков			
	M8	N8	D9	E9	F9	H9	D10	H10
От 1 до 3	-	-4 -18	+45 +20	+39 +14	+31 +6	+25 0	+60 +20	+40 0
Св. 3 до 6	+2 -16	-2 -20	+60 +30	+50 +20	+40 +10	+30 0	+78 +30	+48 0
Св. 6 до 10	+1 -21	-3 -25	+76 +40	+61 +25	+49 +13	+36 0	+98 +40	+58 0
Св. 10 до 18	+2 -25	-3 -30	+93 +50	+75 +32	+59 +16	+43 0	+120 +50	+70 0
Св. 18 до 30	+4 -29	-3 -36	+117 +65	+92 +40	+72 +20	+52 0	+149 +65	+84 0
Св. 30 до 50	+5 -34	-3 -42	+142 +80	+112 +50	+87 +25	+62 0	+180 +80	+100 0
Св. 50 до 80	+5 -41	-4 -50	+174 +100	+134 +60	+104 +30	+74 0	+220 +100	+120 0
Св. 80 до 120	+6 -48	-4 -58	+207 +120	+159 +72	+123 +36	+87 0	+260 +120	+140 0
Св. 120 до 180	+8 -55	-4 -67	+245 +145	+185 +85	+143 +43	+100 0	+305 +145	+160
Св. 180 до 250	+9 -63	-5 -77	+285 +170	+215 +100	+165 +50	+115	+355 +170	+185
Св. 250 до 315	+9 -72	-5 -86	+320 +190	+240 +110	+186 +56	+130	+400 +190	+210
Св. 315 до 400	+11 -78	-5 -94	+350 +210	+265 +125	+202 +62	+140 ()	+440 +210	+230
Св. 400 до 500	+11 -86	-6 -103	+385 +230	+290 +135	+223 +68	+155 0	+480 +230	+250

Продолжение табл. 8

				Квалитеть	I		·
Номинальные			11				12
размеры, мм			I	Толя допусь	ЮВ		
	A11	B11	C11	D11	H11	B12	H12
От 1 до 3	+330 +270	+200 +140	+120 +60	+80 +20	+60	+240 +140	+100
Св. 3 до 6	+345 +270	+215 +140	+145 +70	+105 +30	+75 0	+260 +140	+120
Св. 6 до 10	+370 +280	+240 +150	+170 +80	+130 +40	+90 0	+300 +150	+150
Св. 10 до 18	+400 +290	+260 +150	+205 +95	+160 +50	+110	+330 +150	+180
Св. 18 до 30	+430 +300	+290 +160	+240 +110	+195 +65	+130 0	+370 +160	+210 0
Св. 30 до 40	+470 +310	+330 +170	+280 +120	+240	+160	+420 +170	+250
Св. 40 до 50	+480 +320	+340 +180	+290 +130	+80	0	+430 +180	0
Св. 50 до 65	+530 +340	+380 +190	+330 +140	+290	+190	+490 +190	+300
Св. 65 до 80	+550 +360	+390 +200	+340 +150	+100	0	+500 +200	0
Св. 80 до 100	+600 +380	+440 +220	+390 +170	+340	+220	+570 +220	+350
Св. 100 до 120	+630 +410	+460 +240	+400 +180	+120	0	+590 +240	0
Св. 120 до 140	+710 +460	+510 +260	+450 +200	+395 +145	+250 0	+660 +260	+400

Продолжение табл. 8

				Квалитеты			
Номинальные			11			1	2
размеры, мм			п	оля допуск	ов		
	All	B11	C11	D11	H11	B12	H12
Св. 140 до 160	+770 +520	+530 +280	+460 +210	+395	+250	+680 +280	+400
Св. 160 до 180	+830 +580	+560 +310	+480 +230	+145	0	+710 +310	0
Св. 180 до 200	+950 +660	+630 +340	+530 +240			+800 +340	
Св. 200 до 225	+1030 +740	+670 +380	+550 +260	+460 +170	+290 0	+840 +380	+460 0
Св. 225 до 250	+1110 +820	+710 +420	+570 +280			+880 +420	<u></u>
Св. 250 до 280	+1240 +920	+800 +480	+620 +300	+510	+320	+1000 +480	+520
Св. 280 до 315	+1370 +1050	+860 +540	+650 +330	+190	0	+1060 +540	0
Св. 315 до 355	+1560 +1200	+960 +600	+720 +360	+570	+360	+1170 +600	+570
Св. 355 до 400	+1710 +1350	+1040 +680	+760 +400	+210	0	+1250 +680	0
Св. 400 до 450	+1900 +1500	+1160 +760	+840 +440	+630	+400	+1390 +760	+630
Св. 450 до 500	+2050 +1650	+1240 +840	+880 +480	+230	0	+1470 +840	0

 $[\]square$ - предпочтительные поля допусков.

Предельные отклонения основных валов приведены в табл. 7

^{() -} дополнительные (ограниченного применения) поля допусков.

9. Предельные отклонения отверстий в посадках с натягом в системе вала при размерах от 1 до 500 мм, мкм (система вала)

				Квалитеты			
Номинальные	5	6			7		8
размеры, мм			П	оля допуск	ов	-42 -55	,
	N5	P6	P7	R7	S7	T7	U8
От 1 до 3	-4 -8	-6 -12	-6 -16	-10 -20		-	-18 -32
Св. 3 до 6	-7 -12	-9 -17	-8 -20	-11 -23	1	-	-23 -41
Св. 6 до 10	-8 -14	-12 -21	-9 -24	-13 -28		-	-28 -50
Св. 10 до 18	-9 -17	-15 -26	-11 -29	-16 -34		-	-33 -60
Св. 18 до 24	-12	-18	-14	-20	-27	-	-41 -74
Св. 24 до 30	-21	-31	-35	-41	-48		-48 -81
Св. 30 до 40	-13	-21	-17	-25	ı		-60 -99
Св. 40 до 50	-24	-37	-42	-50		1	-70 -109
Св. 50 до 65	-15	-26	-21	-30 -60			-87 -133
Св. 65 до 80	-28	-45	-51	-32 -62	-48 -78	-64 -94	-102 -148
Св. 80 до 100	-18	-30	-24	-38 -73	-58 -93	-78 -113	-124 -178
Св. 100 до 120	-33	-52	-59	-41 -76	-66 -101	-91 -126	-144 -198

Продолжение табл. 9

				Квалитеты			
Номинальные	5	6		7	·		8
размеры, мм			По	ля допуско	эв		
	N5	P6	P7	R7	S7	T7	U8
Св. 120 до 140				-48 -88	-77 -117	-107 -147	-170 -233
Св. 140 до 160	-21 -39	-36 -61	-28 -68	-50 -90	-85 -125	-119 -159	-190 -253
Св. 160 до 180				-53 -93	-93 -133	-131 -171	-210 -273
Св. 180 до 200				-60 -106	-105 -151	-149 -195	-236 -308
Св. 200 до 225	-25 -45	-41 -70	-33 -79	-63 -109	-113 -159	-163 -209	-258 -330
Св. 225 до 250				-67 -113	-123 -169	-179 -225	-284 -356
Св. 250 до 280	-27	-47	-36	-74 -126	-138 -190	-198 -250	-315 -396
Св. 280 до 315	-50	-79	-88	-78 -130	-150 -202	-220 -272	-350 -431
Св. 315 до 355	-30	-51	-41	-87 -144	-169 -226	-247 -304	-390 -479
Св. 355 до 400	-55	-81	-98	-93 -150	-187 -244	-273 -330	-435 -524
Св. 400 до 450	-33	-55	-45	-103 -166	-209 -272	-307 -370	-490 -587
Св. 450 до 500	-60	-95	-108	-109 -172	-229 -292	-337 -400	-540 -637

 $[\]square$ - предпочтительное поле допуска.

Предельные отклонения основных валов приведены в табл. 7.

10. Посадки в системе отверстия при размерах свыше 500 до 3150 мм

					Основн	ые откл	юнения	валов			
Основное отверстие	Квалитет вала	С		cđ	d	e	•	f	g		h
•					По	садки с	зазоро	М			
Н6	6								<u>H6</u>		<u>H6</u> h6
Н7	6							<u>H7</u> f6	<u>H7</u> g6		<u>H7</u> h6
	7					<u>Н</u>	1 <u>7</u> 7	<u>H7</u> f7	<u>H7</u>		<u>H7</u> h7
H8	7					<u>H</u>	<u>18</u> 7	<u>H8</u> f7	<u>H8</u> g7		<u>H8</u> h7
	8				<u>H8</u> d8	<u>H</u>	<u>18</u> 8	<u>H8</u> f8			<u>H8</u> h8
Н9	8				<u>H9</u> d8	<u>H</u> e	<u>19</u> 8	<u>H9</u> f8			<u>H9</u> h8
	9				<u>H9</u> d9	<u>H</u>	1 <u>9</u>	<u>H9</u> f9			<u>H9</u> h9
H10	10				<u>H10</u> d10						<u>H10</u> h10
H11	11	<u>H11</u> c11		<u>H11</u> cd11	<u>H11</u> d11						<u>H11</u> h11
H12	12										<u>H12</u> h12
					Основн	ње отк	лонени	я валов			
Основное отверстие	Квалитет вала	js	k	m	n	р	r	s	t	u	v
		flo	садки	переход	цные		п	осадки	с натяго	М	
Н6	6	<u>H6</u> js6	<u>H6</u> k6	<u>H6</u> m6	<u>H6</u> n6						
H 7	6	<u>H7</u> js6	<u>H7</u> k6	<u>H7</u> m6	<u>H7</u> n6	<u>H7</u> p6	<u>H7</u> 16	<u>H7</u> s6	<u>H7</u> t6	<u>H7</u> u6	
	7	<u>H7</u> js7	<u>H7</u> k7		<u>H7</u> n7	<u>H7</u> p7	<u>H7</u> r7	<u>H7</u> s7	<u>H7</u> t7	<u>H7</u> u7	<u>H7</u> v7

Продолжение табл. 10

					Основн	ые откл	тонения	валов			
Основное	Квалитет вала	js	k	m	n	р	r	s	t	u	v
отверстие	pola	По	садки п	ереході	ные		П	осадки (натяго	М	
Н8	7	<u>H8</u> js7	<u>H8</u> k7		<u>H8</u> n7	<u>H8</u> p7	<u>H8</u> 17	<u>H8</u> s7	<u>H8</u> t7	<u>H8</u> u7	<u>H8</u> v7
	8								<u>H8</u> t8	<u>H8</u> u8	<u>H8</u> v8
Н9	8								<u>H9</u> t8	<u>H9</u> u8	<u>H9</u> v8
	9										
H10	10										
H11	11										
H12	12										

11. Посадки в системе отверстия при размерах свыше 3150 до 10 000 мм

					Осно	вные о	тклоне	ва кин	лов					
Основное отверстие	Квалитет вала	С	cd	d	е	f	h	p	r	S.	t	u		
Olbopolito	2.2		По	садки	с зазор	ом			Посад	кисна	атягом			
Н6	6						<u>H6</u> h6	<u>H6</u> p6	<u>Н6</u> rб	<u>H6</u> s6	<u>H6</u> t6	<u>H6</u> u6		
H 7	7				<u>H7</u> e7	<u>H7</u> f7	<u>H7</u> h7	<u>H7</u> p7	<u>H7</u> r7	<u>H7</u> s7	<u>H7</u> t7	<u>H7</u> u7		
Н8	8			<u>H8</u> d8	<u>H8</u> e8	<u>H8</u> f8	<u>H8</u> h8							
Н9	9			<u>H9</u> d9	<u>H9</u> e9		<u>H9</u> h9							
H10	10	H10 c10	<u>H10</u> cd10	<u>H10</u> d10			<u>H10</u> h10							
H11	11	<u>H11</u> c11	<u>H11</u> cd11				<u>H11</u> h11							

Примечание. Переходные посадки не предусмотрены.

12. Предельные отклонения основных отверстий при размерах свыше 500 до 10 000 мм, мкм

			Пол	ія допускої	В		
Номинальные размеры, мм	Н6	Н7	Н8	Н9	H1 0	H11	H12
Св. 500 до 630	+44	+70	+110	+175 0	+280	+440	+700 0
Св. 630 до 800	+50	+80	+125	+200	+320 0	+500	+800
Св. 800 до 1000	+56 0	+90 0	+140	+230	+360 0	+500 0	+900 0
Св. 1000 до 1250	+66 0	+105	+165 0	+260	+420 0	+660	+1050
Св. 1250 до 1600	+78	+125	+195	+310	+500 0	+780 0	+1250 0
Св. 1600 до 2000	+92 0	+150	+230	+370 0	+600 0	+920 0	+1500 0
Св. 2000 до 2500	+110	+175	+280	+440 0	+700 0	+1100	+1750 0
Св. 2500 до 3150	+135	+210 0	+330	+540 0	+860 0	+1350 0	+2100
Св. 3150 до 4000	+165 0	+260	+410 0	+660	+1050 0	+2650 0	+2600 0
Св. 4000 до 5000	+200	+320	+500	+800	+1300 0	+2000 0	+3200
Св. 5000 до 6300	+250	+400	+620 0	+980 0	+1550 0	+2500 0	+4000 0
Св. 6300 до 8000	+310	+490 0	+760 0	+1200	+1950 0	+3100	+49 00 0
Св. 8000 до 10 000	+380	+600	+940	+1500 0	+2400 0	+3800	+6100 0

13. Предельные отклонения валов в посадках с зазором и переходных

Номинальные				6			·			
размеры, мм			По	ля допус	сков					Поля
	fб	g6	h6	js7	k6	m6	n6	e7	f7	g7
Св. 500 до 630	-76 -120	-22 -66	0 -44	+22,0 -22,0	+44	+70 +26	+88 +44	-145 -215	-76 -146	-22 -92
Св. 630 до 800	-80 -130	-24 -74	0 -50	+25,0 -25,0	+50 0	+80 +30	+100 +50	-160 -240	-80 -160	-24 -104
Св. 800 до 1000	-86 -142	-26 -82	0 -56	+28,0 -28,0	+56 0	+90 +34	+112 +56	-170 -260	-86 -176	-26 -116
Св. 1000 до 1250	-98 -164	-28 -94	0 -66	+33,0 -33,0	+66 0	+106 +40	+132 +66	-195 -300	-98 -203	-28 -133
Св. 1250 до 1600	-110 -188	-30 -108	0 -78	+39,0 -39,0	+78 0	+126 +48	+156 +78	-220 -345	-110 -235	-30 -155
Св. 1600 до 2000	-120 -212	-32 -124	0 -92	+46,0 -46,0	+92 0	+150 +58	+184 +92	-240 -390	-120 -270	-32 -182
Св. 2000 до 2500	-130 -240	-34 -144	0 -110	+55,0 -55,0	+110 0	+178 +68	+220 +110	-260 -435	-130 -305	-34 -209
Св. 2500 до 3150	-145 -280	-38 -173	0 -135	+67,5 -67,5	+135 0	+211 +76	+270 +135	-290 -500	-145 -355	-38 -248
Св. 3150 до 4000	-	-	0 -165	•	-	-	-	-320 -580	-160 -420	-
Св. 4000 до 5000	-	-	0 -200	-	-	-	•	-350 -670	-175 -495	-
Св. 5000 до 6300	-	-	0 -250	-	•	-	-	-380 -780	-190 -590	-
Св. 6300 до 8000	~	•	0 -310	-	. -	~	-	-420 -910	-210 -700	-
Св. 8000 до 10 000	-	-	0 -380	-	-	-	-	-460 -1060	-230 -830	-

при размерах свыше 500 до 10 000 мм, мкм (система отверстия)

Квали	теты						· · · · · · · · · · · · · · · · · · ·				·-····································
7						8		1		9	
допус	ков	,					Поля д	опусков			
h7	js7	k7	n7	d8	e8	f8	h8	d9	e9	f9	h9
0 -70	+35 -35	+70 0	+144 +44	-260 -370	-145 -255	-76 -186	0 -110	-260 -435	-145 -320	-76 -251	0 -175
0 -80	+40 -40	+80	+130 +50	-290 -415	-160 -285	-80 -205	0 -125	-290 -490	-160 -360	-80 -280	0 -200
-90	+45 -45	+90 0	+146 +56	-320 -460	-170 -310	-86 -226	0 -140	-320 -550	-170 -400	-86 -316	0 -230
0 -105	+52 -52	+105 0	+171 +66	-350 -515	-195 -360	-98 -263	0 -165	-350 -610	-195 -455	-98 -358	0 -260
0 -125	+62 -62	+125	+203 +78	-390 -585	-220 -415	-110 -305	0 -195	-390 -700	-220 -530	-110 -420	0 -310
0 -150	+75 -75	+150 0	+242 +92	-430 -660	-240 -470	-120 -350	-230	-430 -800	-240 -610	-120 -490	0 -370
0 -175	+87 -87	+175 0	+285 +110	-480 -760	-260 -540	-130 -410	0 -280	-480 -920	-260 -700	-130 -570	0 -440
0 -210	+105 -105	+210 0	+345 +135	-520 -850	-290 -620	-145 -475	0 -330	-520 -1060	-290 -830	-145 -685	0 -540
0 -260	-	-	~	-580 -990	-320 -730	-160 -570	0 -410	-580 -1240	-320 -980	-	0 -660
0 -320	Fig.	я	-	-640 -1140	-350 -850	-175 -675	0 -500	-640 -1440	-350 -1150	-	0 -800
0 -400	Ţ	~	~	-720 -1340	-380 -1000	-190 -810	0 -620	-720 -1700	-380 -1360	-	0 -980
0 -490	-	-	-	-800 -1560	-420 -1180	-210 -970	0 -760	-800 -2000	- 4 20 -1650	-	0 -1200
0 -600	~	-	-	-880 -1820	-460 -1400	-230 -1170	0 -940	-880 -2380	-460 -1960	-	0 -1500

Продолжение табл. 13

				ŀ	Свалитеть	л				
Номинальные		1	10			1	1		12	
размеры, мм				По.	ля допус	ков				
	c10	cd10	d10	h10	cl1	¢d11	d 11	h11	h12	
Св. 500 до 560	_	_	-260	0	-520 -960	-370 -810	-260	0	0	
Св. 560 до 630			-540	-280	-580 -1020	-390 -830	-700	-440	-700	
Св. 630 до 710	-	_	-290	0	-640 -1140	-430 -930	-290	0	0	
Св. 710 до 800			-610	-320	-700 -1200	-450 -950	-790	-500	-800	
Св. 800 до 900	_	-	-320	0	-780 -1340	-500 -1060	-320	0	0	
Св. 900 до 1000			-680	-360	-860 -1420	-520 -1080	-880	-560	-900	
Св. 1000 до 1120	-	_	-350	0	-940 -1600	-580 -1240	-350	0	0	
Св. 1120 до 1250	-		-770	-420	-1050 -1710	-600 -1260	-1010	-660	-1050	
Св. 1250 до 1400				-390	0	-1150 -1930	-660 -1440	-390	0	0
Св. 1400 до 1600			-390 -890	-500	-1300 -2080	-720 -1500	-1170	-780	-1250	
Св. 1600 до 1800	_	-	-430	0	-1450 -2370	-780 -1700	-430	0	0	
Св. 1800 до 2000			-1030	-600	-1600 -2520	-820 -1740	-1350	-920	-1500	
Св. 2000 до 2240	-	_	-480	0	-1800 -2900	-920 -2020	-480	0	0	
Св. 2240 до 2500			-1180	-700	-2000 -3100	-980 -2080	-1580	-1100	-1750	

Продолжение табл. 13

					Квалитет	ъ				
Номинальные			10				11		12	
размеры, мм				П	оля допус	ков			·	
	c10	cd10	d10	h10	c11	cd11	dll	h11	h12	
Св. 2500 до 2800	-	-	-520	0	-2200 -3550	-1050 -2400	-520	0	0	
Св. 2800 до 3150			-1380	-860	-2500 -3850	-1150 -2500	-1870	-1350	-2100	
Св. 3150 до 3550	-2800 -3850	-1250 -2300	-580	0	-2800 -4450	-1250 -2900	-	0	-	
Св. 3550 до 4000	-3100 -4150	-1350 -2400	-1630	-1050	-3100 -4750	-1350 -3000		-1650		
Св. 4000 до 4500	-3500 -4800	-1500 -2800	-640	0	-3500 -5500	-1500 -3500	<u>-</u>	0	_	
Св. 4500 до 5000	-3900 -5200	-1600 -2900	-1940	-1300	-3900 -5900	-1600 -3600		-2000		
Св. 5000 до 5600	-4300 -5850	-1750 -3300	-720	0	-4300 -6800	-1750 -4250	_	0		
Св. 5600 до 6300	-4800 -6350	-1850 -3400	-720 -2270		-1550	-4800 -7300	-1830 -4350		-2500	-
Св. 6300 до 7100	-5400 -7350	-2100 -4050	-800	0	-5400 -8500	-2100 -5200	-	0	-	
Св. 7100 до 8000	-6200 -8150	-2200 -4150	-2750	-1950	-6200 -9300	-2200 -5300		-3100		
Св. 8000 до 9000	-5800 -9200	-2400 -4800	-880	0	-6800 -10 600	-2400 -6200	_	0	_	
Св. 9000 до 10 000	-7600 -10 000	-2600 -5000	-3280	-2400	-7600 -11 400	-2600 -6400		-3800		

Предельные отклонения основных отверстий приведены в табл. 12

14. Предельные отклонения валов в посадках с натягом при размерах свыше 500 дб 10 000 мм, мкм (система отверстия)

							Квалитеты	effai						
			9			į		7					8	
размеры, мм					1		Поля допусков	тусков						
	94	72	98	te	9n	Ld.	1,1	87	77	L'n	٧7	£8	8n	v8
Св. 500 до 560	+122	+194	+324	+444	+644	+148	+220 +150	+350 +280	+470 +400	+670 +600	+810 +740	+510	+710	+850 +740
Св. 560 до 630	+78	+199	+354	+494 +450	+704	+78	+225 +155	+380	+520 +450	+730	+890	+560	+770 +660	+930
Св. 630 до 710	+138	+225 -175	+390	+550	+790	+168	+255 +175	+420 +340	+580	+820 +740	+1000	+625	+865	+1045
Св. 710 до 800	+88	+235 -185	+430 +380	+610 +560	+890 +840	88+	+265 +185	+460	+640	+920	+1080	+685	+965 +840	+1125
Св. 800 до 900	1,56	+266 +210	+486 +430	+676 +620	+996 +940	+190	+300 +210	+520 +430	+710 +620	+1030 +940	+1240 +1150	+760	+1080 +940	+1290
Св. 900 до 1000	+100	+276 +220	+526 +470	+736	+1106	+100	+310	+560	+770 +680	+1140	+1390 1300	+820	+1190 +1050	+1440
Св. 1000 до 1120	+186	+316	+586	+846	+1216 +1150	+225	+355 +250	+625 +520	+885	+1255 +1150	+1555 +1450	+945 +780	+1315 +1150	+1615
Св. 1120 до 1250	+120	+326	+646 +580	+906 +840	+1366 +1300	+120	+365	+685	+945	+1405 +1300	+1705 +1600	+1005	+1465 +1300	+1765

Продолжение табл. 14

							1	, 1						
							NBAIMICIP	CIPI						
			9					7				3	∞	
номинальные размеры, мм					1		Поля допусков	гусков						
	90	12	98	\$	9n	L'd	U	LS	n	7n	77	t8	8n	84
Св. 1250 до 1400	210	+378 +300	+718	+1038	+1528	+265	+425	+765 +640	+1085	+1575	+1925	+1155	+1645	+1995
Св. 1400 до 1600	+140	+408 +330	+798 +720	+1128	+1678 +1600	+140	+455	+845 +720	+1175	+1725	+2125 +2000	+1245 +1050	+1795	+2195
Св. 1600 до 1800	0,00	+462 +370	+912 +820	+1292 +1200	+1942 +1850	+320	+520	+970 +820	+1350 +1200	+2000 +1850	+2450 +2300	+1430	+2080	+2530
Св. 1800 до 2000	+170 +170	+492	+1012	+1442	+2092 +2000	+170	+550	+1070	+1500	+2150 +2000	+2650	+1580 +1350	+2230	+2730
Св. 2000 до 2240	3	+550	+1110	+1610	+2 4 10 +2300	+370	+615	+1175	+1675 +1500	+2475	+2975	+1780	+2580 +2300	+3080
Св. 2240 до 2500	+305	+570	+1210	+1760	+2610 +2500	+195	+635 +460	+1275	+1825 +1650	+2675 +2500	+3275	+1930 +1650	+2780 +2500	+3380 +3100
Св. 2500 до 2800	7225	+685	+1385 +1250	+2035 +1900	+3035	+450	+760 +550	+1460	+2110 +1900	+3110 +2900	+3710 +3500	+2230	+3230 +2900	+3830
Св. 2800 до 3150	+240	+715 +580	+1535	+2230 +2100	+3335	+240	+790 +580	+1610 +1400	+2310 +2100	+3410	+4110	+2430 +2100	+3530	+4230 +3900
									1					

Продолжение табл. 14

							Квалитеты							
Номинальные			9					7		i.			50	
размеры, мм							Поля допусков	пусков						
	9d	92	98	t6	9n	p7	17	87	Ω	Ln	77	t8	8n	v8
Св. 3150 до 3550	+455	+845	+1765 +1600	+2565 +2400	+3765	+590	+940 +680	+1860 +1600	+2660 +2400	+3860	1	,	,	1
Св. 3550 до 4000	+290	+885	+1915 +1750	+2765 +2600	+4165 +4000	+290	+980 +720	+2010 +1750	+2860	+4260				
Св. 4000 до 4500	+560	+1040	+2200 +2000	+3200	+4800 +4600	089+	+1160	+2320 +2000	+3320	+4920 +4600				
Св. 4500 до 5000	+360	+1100	+2400 +2200	+3500	+5200	+360	+1220 +900	+2520 +2200	+3620	+5320				
Св. 5000 до 5600	069+	+1300	+2750 +2500	+3950	0095+ 0585+	+840	+1450	+2900 +2500	+4100 +3700	+6000				
Св. 5600 до 6300	+440	+1350 +1100	+3050	+4350 +4100	+6650 +6400	+440	+1500	+3200	+4500 +4100	+6800	Предельные новных отвер в табл. 12	ьные от г отверст 12	Предельные отклонения ос- новных отверстий приведены в табл. 12	ос-
Св. 6300 до 7100	+850	+1610 +1300	+3510 +3200	+5010	+7510 +7200	+1030	+1790 +1300	+3690 +3200	+5190 +4700	+7690 +7200				
Св. 7100 до 8000	+540	+1710 +1400	+3810	+5510 +5200	+8310	+540	+1890 +1400	+3990	+5690 +5200	+8490				
Св. 8000 до 9000	+1060	+2030 +1650	+4380	+6380	+9380	+1280	+2250 +1650	+4600 +4000	0009+ 0099+	0006+ 0096+				
Св. 9000 до 10 000	+680	+2130 +1750	+4780	0099+	+10 380 +10 000	+680	+2350 +1750	+5000 +4400	+7200 +6600	+10 600 +10 000				

15. Посадки в системе вала при размерах свыше 500 до 3150 мм

	ם					U8 h7	U8 h8					
	T	THTOM		7.7 h6	7.Z h.7							
	s	Посадки с натягом		<u>SZ</u> h6	7. 7.2	-						
	æ	Поса		RZ h6	R.Z h.7							
	P			P.7 h6	<u>P7</u> h7	,						
**	z	rbie	358	된	NZ h7							
Основные отклонения отверстий	M	Посадки переходные	M 6 h6	M7 h6	MZ h7							
нения о	×	садки п	1K6	K7 h6	<u>K7</u> h7							
le ottkijo	Sſ	ΣII	1 <u>56</u> h	1 <u>SZ</u> h6	<u>7S7</u> h7							
Сновны	н		H6 h6	H7 h6	HZ h7	H8 h7	H8 h8	H2 h8	H2 h9	H10 h10	H11 h11	H12 h12
	ß		95 16	G7 P4	7. 7.4							
	F	зором		EE 192	EZ h7	E8 h7	<u>R8</u> h8	F9 h8	F9 h9			
	Ε	Посадки с зазором		PEZ 196	EZ h7	E8 h7	84 h8	E9	E9 64			
	D	Посад				D8 h7	D8 18	D9 h8	D3	D10 h10	D11 h11	
	СD										CD11	
	၁										CH PIII	
	Квалитет отверстия		9	7	7	∞	∞	6	6	10	Π	12
	Основ-		h6		h7		h8		h9	h10	h11	h12

16. Посадки в системе вала при размерах свыше 3150 до 10 000 мм

			Осн	овные откло	нения отвер	стий	
Основной вал	Квалитет отверстия	С	CD	D	E	F	Н
<i>2.</i> 2.				Посадки	с зазором		
h6	6						<u>H6</u> h6
h7	7				<u>E7</u> h7	<u>F7</u> h7	<u>H7</u> h7
h8	8			<u>D8</u> h8	<u>E8</u> h8	<u>F8</u> h8	<u>H8</u> h8
h9	9			<u>D9</u> h9	<u>E9</u> h9		<u>H9</u> h9
h10	10	<u>C10</u> h10	CD10 h10	<u>D10</u> h10			<u>H10</u> h10
hl1	11	<u>C11</u> h11	<u>CD11</u> h11				<u>H11</u> h11

Примечание. Посадки переходные и с натягом не предусмотрены.

17. Предельные отклонения основных валов при размерах свыше 500 до 10 000 мм, мкм

Номинальные			П	оля допуск	ов		
размеры, мм	h6	h7	h8	h9	h10	hl1	h12
Св. 500 до 630	0	0	0	0	0	0	0
	-44	-70	-110	-175	-280	-440	-700
Св. 630 до 800	0	0	0	0	0	0	0
	-50	-80	-125	-200	-320	-500	-800

Продолжение табл. 17

Номинальные		···	П	Іоля допуск	ОВ		
размеры, мм	h6	h7	h8	h9	h10	h11	h12
Св. 800 до 1000	0 -56	0 -90	0 -140	0 -230	0 -360	-560	-900
Св. 1000 до 1250	0	0	0	0	0	0	0
	-66	-105	-165	-260	-420	-660	-1050
Св. 1250 до 1600	0	0	0	0	0	0	0
	-78	-125	-195	-310	-500	-780	-1250
Св. 1600 до 2000	0	0	0	0	0	0	0
	-92	-150	-230	-370	-600	-920	-1500
Св. 2000 до 2500	0	0	0	0	0	0	0
	-110	-175	-280	-440	-700	-1100	-1750
Св. 2500 до 3150	0 -135	0 -210	-330	0 -540	0 -860	0 -1350	0 -2100
Св. 3150 до 4000	0	0	0	0	0	0	0
	-165	-260	-410	-660	-1050	-1650	-2600
Св. 4000 до 5000	0	0	0	0	0	0	0
	-200	-320	-500	-800	-1300	-2000	-3200
Св. 5000 до 6300	0	0	0	0	0	0	0
	-250	-400	-620	-980	-1550	-2500	- 4 000
Св. 6300 до 8000	0	0	0	0	0	0	0
	-310	-490	-760	-1200	-1950	-3100	-4900
Св. 8000 до 10 000	0	0	0	0	0	0	0
	-380	-600	-940	-1500	-2400	-3800	-6100

18. Предельные отклонения отверстий в посадках с зазором

			- No							Квали
Номинальные размеры, мм	6							7	,	
	Поля допусков									Поля
	G6	Н6	JS6	K 6	M6	N6	E7	F7	G7	H 7
Св. 500 до 630	+66 +22	+44 0	+22,0 -22,0	0 -44	-26 -70	-44 -88	+215 +145	+146 +76	+92 +22	+70 0
Св. 630 до 800	+74 +24	+50 0	+25,0 -25,0	0 -50	-30 -80	-50 -100	+240 +160	+160 +80	+104 +24	+80 0
Св. 800 до 1000	+82 +26	+56 0	+28,0 -28,0	0 -56	-34 -90	-56 -112	+260 +170	+176 +86	+116 +26	+90 0
Св. 1000 до 1250	+94 +28	+66 0	+33,0 -33,0	0 -66	-40 -106	-66 -132	+300 +195	+203 +98	+133 +28	+105 0
Св. 1250 до 1600	+108 +30	+78 0	+39,0 -39,0	0 -78	-48 -126 ₋	-78 -156	+345 +220	+235 +110	+155 +30	+125 0
Св. 1600 до 2000	+124 +32	+92 0	+46,0 -46,0	0 -92	-58 -150	-92 -184	+390 +240	+270 +120	+182 +32	+150 0
Св. 2000 до 2500	+144 +34	+110 0	+55,0 -55,0	0 -110	-68 -178	-110 -220	+435 +260	+305 +130	+209 +34	+175 0
Св. 2500 до 3150	+173 +38	+135 0	+67,5 -67,5	0 -135	-76 -211	-135 -270	+500 +290	+355 +145	+248 +38	+210 0
Св. 3150 до 4000	_	+165 0	_			_	+580 +320	+420 +160		+260 0
Св. 4000 до 5000		+200 0	_	_			+670 +350	+495 +175		+320 0
Св. 5000 до 6300		+250 0	_				+780 +380	+590 +190		+400 0
Св. 6300 до 8000		+310 0				_	+910 +420	+700 +210		+490 0
Св. 8000 до 10 000		+380 0				_	+1060 +460	+830 +230		+600 0

и переходных при размерях свыше 500 до 10 000 мм, мкм (система вала)

теты												
				8				9				
допусков			Поля допусков									
JS7	K 7	M7	N7	D8	E8	F8	Н8	D9	E9	F9	Н9	
+35 -35	0 -70	-26 -96	-44 -114	+370 +260	+255 +145	+186 +76	+110 0	+435 +260	+320 +145	+251 +76	+175 0	
+40 -40	0 -80	-30 -110	-50 -130	+415 +290	+285 +160	+205 +80	+125 0	+490 +290	+360 +160	+280 +80	+200 0	
+45 -45	0 -90	-34 -124	-56 -146	+460 +320	+310 +170	+226 +86	+140 0	+550 +320	+400 +170	+316 +86	+230 0	
+52 -52	0 -105	-40 -145	-66 -171	+515 +350	+360 +195	+263 +98	+165 0	+610 +350	+455 +195	+358 +98	+260 0	
+62 -62	0 -125	-48 -173	-78 -203	+585 +390	+415 +220	+305 +110	+195 0	+700 +390	+530 +220	+420 +110	+310	
+75 -75	0 -150	-58 -208	-92 -242	+660 +430	+470 +240	+350 +120	+230 0	+800 +430	+610 +240	+490 +120	+370 0	
+87 -87	0 -175	-68 -243	-110 -285	+760 +840	+540 +260	+410 +130	+280 0	+920 +480	+700 +260	+570 +130	+440 0	
+105 -105	0 -210	-76 -286	-135 -345	+850 +520	+620 +290	+475 +45	+330 0	+1060 +520	+830 +290	+685 +145	+540	
				+990 +580	+730 +320	+570 +160	+410 0	+1240 +580	+980 +320		+660 0	
	_			+1140 +640	+850 +350	+675 +175	+500 0	+1440 +640	+1150 +350	-	+800 0	
_				+1340 +720	+1000 +380	+810 +190	+620 0	+1700 +720	+1360 +380	_	+980 0	
				+1560 +800	+1180 +420	+970 +210	+760 0	+2000 +800	+1620 +420		+1200 0	
_	_	_		+1820 +880	+1400 +460	+1170 +230	+940 0	+2380 +880	+1960 +460	_	+1500	

Продолжение табл. 18

	Квалитеты										
Номинальные размеры, мм		1	0			12					
	Поля допусков										
	C10	CD10	D10	H10	C11	CD11	D11	HII	H12		
Св. 500 до 560	_		+540	+280	+960 +520	+810 +370	+700	+440	+700		
Св. 560 до 630		<u>.</u>	+260	0	+1020 +580	+830 +390	+260	0	0		
Св. 630 до 710			+610 +290	+320 0	+1140 +640	+930 +430	+790 +290	+500	+800		
Св. 710 до 800					+1200 +700	+950 +450					
Св. 800 до 900		_	+680 +320	+360	+1340 +780	+1060 +500	+880 +320	+560 0	+900 0		
Св. 900 до 1000					+1420 +860	+1080 +520					
Св. 1000 до 1120			+770 +350	+420 0	+1660 +940	+1240 +580	+1010 +350	+660 0	+1050 0		
Св. 1120 до 1250					+1710 +1050	+1260 +600					
Св. 1250 до 1400		_	+890 +390	+500 0	+1930 +1150	+1440 +660	+1170 +390	+780 0	+1250		
Св. 1400 до 1600					+2080 +1300	+1500 +720					
Св. 1600 до 1800	_		+1030 +430	+600	+2370 +1450	+1700 +780	+1350 +430	+920 0	+1500		
Св. 1800 до 2000					+2520 +1600	+1740 +820					
Св. 2000 до 2240			+1180	+700	+2900 +1800	+2020 +920	+1580 +480	+1100	+1750 0		
Св. 2240 до 2500			+480	0	+3100 +2000	+2080 +980					

Предельные отклонения основных валов приведены в табл. 17.

			······································		Квалитет	ъ			
Номинальны е			6			1	1		12
размеры, мм				no	эля допус	жов			
	C10	CD10	D10	H10	C11	CD11	Dit	HII	H12
Св. 2500 до 2800	_		+1380	+860	+3550 +2200	+2400 +1050	+1870	+1350	+2100
Св. 2800 до 3150			+520	0	+3850 +2500	+2500 +1150	+520	0	0
Св. 3150 до 3550	+3850 +2800	+2300 +1250	+1630	+1050	+4450 +2800	+2900 +1250	-	+1650	
Св. 3550 до 4000	+4150 +3100	+2400 +1350	+580	0	+4750 +3100	+3000 +1350		0	
Св. 4000 до 4500	+4800 +3500	+2800 +1500	+1940	+1300	+5500 +3500	+3500 +1500		+2000	
Св. 4500 до 5000	+5200 +3900	+2900 +1600	+640	0	+5900 +3900	+3600 +1600		0	
Св. 5000 до 5600	+5850 +4300	+3300 +1750	+2270	+1550	+6800 +4300	+4250 +1750	_	+2500	_
Св. 5600 до 6300	+6350 +4800	+3400 +1850	+720	0	+7300 +4800	+4350 +1850		0	
Св. 6300 до 7100	+7350 +5400	+4050 +2100	+2750	+1950	+8500 +5400	+5200 +2100		+3100	
Св. 7100 до 8000	+8150 +6200	+4150 +2200	+800	0	+9300 +6200	+5300 +2200		0	
Св. 8000 до 9000	+9200 +6800	+4800 +2400	+3280	+2400	+10 600 +6800	+6200 +2400		+3800	_
Св. 9000 до 10 000	+10 000 +7600	+5000 +2600	+880	0	+11 400 +7600	+6400 +2600		0	

19. Предельные отклонения отверстий для посадок с натягом при размерах свыше 500 до 10 000 мм, мкм (системя валя)

			Квалитеты					-	Квалитеты		
Номинальные			7		∞	Номинальные			7		∞
размеры, мм		П	Поля допусков	COB		размеры, мм		170	Поля допусков	B	
	P7	R7	S7	17	80		P7	R7	S7	17	U8
Св. 500 до 560	-78	-150 -220	-280 -350	-400 -470	-600 -710	Св. 1250 до 1400	-140	-300 -425	-640 -765	-960 -1085	-1450 -1645
Св. 560 до 630	-148	-155 -225	-310 -380	-450 -520	099-	Св. 1400 до 1600	-265	-330 -455	-720 -845	-1050	-1600
Св. 630 до 710	88-	-175	-340 -420	-500	-710 -865	Св. 1600 до 1800	-170	-370 -520	-820 -970	-1200 -1350	-1850 -2080
Св. 710 до 800	-168	-185	-380	-560	-840	Св. 1800 до 2000	-320	-400 -550	-920 -1070	-1350 -1500	-2000 -2230
Св. 800 до 900		-210	-430	-620	-940	Св. 2000 до 2240	-195	-440 -615	-1000	-1500	-2300
Св. 900 до 1000	-100	-300	-520	-710	-1080	Св. 2240 до 2500	-370	-460	-1100	-1650	-2500
	:	-310	-560	-770	-1190	Св. 2500 ло 2800		-550	1250	1000	9000
Св. 1000 до 1120		-250	-520	-780	-1150		-240	-760	-1460	-2110	-230
	-120	-355	-625	-885	-1315	Св. 2800 до 3150	-450	-580	-1400	-2100	-3200
Св. 1120 до 1250	-225	-260	-580	-840	-1300			-790	-1610	-2310	-3530
		-365	-685	-945	-1465	Св. 3150 до 10 000	,	-	1	ı	1

Предельные отклонения основных валов приведены в табл. 17.

20. Допуски размеров свыше 10 000 до 40 000 мм (по ГОСТ 26179-84)

Номо	Номинальные						Допуски	Допуски, мм, квалитетов	итетов					1
разм	размеры, мм	_ S	9	7	∞	6	.10	11	12	13	14	15	16	17
Cs. 100	Св. 10 000 до 12 500	0,3	0,5	8,0	1,2	2,0	3	S	∞	12	20	30	20	80
" 12 5(12 500 " 16 000	00 0,4	9,0	1,0	1,6	2,4	4	9	10	16	24	40	09	100
" 16 000 "	00 2 20 000	5,0 0,5	8,0	1,2	2,0	3,0	S	∞	12	70	30	20	08	120
. 20 O	20 000 " 25 000	9,0 0,6	1,0	1,6	2,4	4,0	9	01	16	24	94	99	100	160
. 25 0	25 000 " 31 500	8,0 0,8	1,2	2,0	3,0	5,0	∞	12	20	99	20	08	120	200
315	31 500 " 40 000	00 1,0	1,6	2,4	4,0	6,0	10	16	24	40	60	100	160	240

СИСТЕМА ДОПУСКОВ И ПОСАДОК ОСТ (табл. 21 - 23)

21. Предельные отклонения основных валов и валов в посадках переходных и с зазором в системе отверстия для диаметров от 1 до 500 мм, мкм

Ближайшее	поле допуска по ГОСТ 25347-82	\$u	m5	k5
	Св. 360 до 500	+65 +40	+45 +20	+32 +5
	Св. 260 до 360	+58	+40 +18	+28 +4
	Св. 180 до 260	+52 +30	+36 +16	+25 +4
	Св. 120 до 180	+45 +26	+32 +14	+22 +4
, MM	Св. 80 до 120	+38	+28 +12	+19 +3
размеры	Св. 50 до 80	+33 +19	+2 4 +10	+16 +3
Номинальные размеры,	Св. 30 до 50	+28 +16	+20 +9	+14 +2
Ном	Св. 18 до 30	+24 +13	+17	+12 +2
	Св. 10 до 18	+20 +11	+15 +7	+10 +2
	Св. 6 до 10	+16 +9	+12 +6	+8
	C _{B. 3} до 6	+13	+10 +5	+6 +1
	Or 1 40 3	+10	+8 +4	+5 +1
Обозначения	поля допуска вала	Γ_1	Tı	H ₁

Продолжение табл. 21

	- I	 	-							
Ближайшее	поле допуска по ГОСТ 25347-82	Ssį.	h5	85	£6	9u	эш	кé	9sí	h6
	Св. 360 до 500	+15	0 -25	-20 -45	-68 -108	+80 +40	+60 +20	+45 +5	+20	0 -40
	Св. 260 до 360	+13	0 -22	-18 -40	-56 -88	+70	+50 +15	+40 +4	+18	0-35
	Св. 180 до 260	+11	0-20	-16 -36	-50 -79	+60	+45 +15	+35 +4	+16 -6	0-30
	Св. 120 до 180	+10	0 -18	-14	-43 -68	+52 +25	+40 +13	+30 +4	+14	0
, MM	Св. 80 до 120	9- 6+	0 -15	-12	-36 -58	+45 +23	+35 +12	+26 +3	+12	0 -23
Номинальные размеры, мм	Св. 50 до 80	\$ +	0 -13	-10	-30	+40	+30	+23 +3	+10	020
инальные	Св. 30 до 50	+7 -4	0 -11	-9 -20	-25 -41	+35 +18	+27 +9	+20 +3	8+	0 -17
HOM	Св. 18 до 30	+6 -3	6- 0	-7 -16	-20	+30 +15	+23 +8	+17	+7	0 -14
	Св. 10 до 18	+5	0-8	-6 -14	-16 -27	+24 +12	+19 +7	+14	9- 9-	0 -12
	Св. 6 до 10	+4	9- 0	-5 -11	-13 -22	+20 +10	+16 +6	+12 +2	+5 -5	0-10
	Св. 3 до 6	+3	0 &-	4- 6-	-10 -18	+16 +8	+13 +5	+9 +1	+ + +	0
	Or 1 до 3	+2	0 4	ი, ფ	-6 -12	+13 +6	+10	+7	+3 -3	9- 0
Обозначения	поля допуска вала	Π_1	$C_1 = B_1$	Д1	×	Ţ	Τ	Ĥ	П	C = B

Продолжение табл. 21

								·-··		
Бпижайшее	поле допуска по ГОСТ 25347 - 82	go	17	e8	d8	82	7u	m7	k7	7sį
	Св. 360 до 500	-30 -70	-80 -140	-170	-250 -340		+102 +40	+85 +23	+67 +5	+31
	Св. 260 до 360	-26 -60	-70 -125	-140 -210	-210 -290		+90 +36	+74 +20	+58 +4	+27
	Св. 180 до 260	-22 -52	-60 -105	-120 -180	-180 -250		+78 +31	+64 +17	+51 +4	+24
	Св. 120 до 180	-18 -45	06- 05-	-100 -155	-150 -210		+67	+55 +15	+43 +3	+22
MM,	Св. 80 до 120	-15 -38	-40 -75	-80 -125	-120 -175	табл. 23	+58 +23	+48 +13	+38	+20
Номинальные размеры, мм	Св. 50 до 80	-12 -32	-30	-65 -105	-95 -145	Отклонения приведены в табл. 23	+50 +20	+41	+32	+18
инальные	Св. 30 до 50	-10	-25	-50 -85	-75 -115	ения при	+42 +17	+34 +9	+27	+15
How	Св. 18 до 30	-8 -22	-20 -40	-40 -70	-60 -95	Отклон	+36 +15	+29 +8	+23 +2	+13
	Св. 10 до 18	-6 -18	-16 -33	-30	-45 -75		+30 +12	+25 +7	+19 +1	+12
	Св. 6 до 10	-5 -15	-13 -27	-23 -45	-35		+25 +10	+21 +6	+16 +1	+10
	Св. 3 до 6	-4 -12	-10 -22	-17	-25 -45		+20 +8	+16 +4	+13 +1	+9
	От 1 до 3	-3	-8 -18	-12 -25	-18 -35		+15 +6	1	+10 +1	+7
Officialisation	соозначения поля допуска вала	Д	×	Л	П	ΧŢ	Γ_{2a}	T2a	H _{2a}	Π_{2a}

402											
Продолжение табл. 21	Ближайшее	поле допуска по ГОСТ 25347 - 82	h7	8 2	h8, h 9	f9, e9	d9	h10	h11	d11	b11, c11
Продол		Св. 360 до 500	0 -62	-68	-120	-105	-250 -440	-250	-380	-190	-380
		Св. 260 до 360	0 -54	-56 -137	-100	-90 -225	-210 -280	0 -215	-340	-170 -500	-340
		Св. 180 до 260	0	-50 -122	06-	-75 -195	-180 -330	0-185	-300	-150 -450	-300
		Св. 120 до 180	0 -40	-43 -106	08-	-60 -165	-150 -285	0-160	0-260	-130	-260
	, MM	Св. 80 до 120	0 -35	-36 -90	0/-	-50 -140	-120	0 -140	-230	-120 -350	-230
	Номинальные размеры, мм	Св. 50 до 80	08-	-30 -76	09- 0	-40 -120	-95 -195	-120	-200	-100	-200
	инальные	Св. 30 до 50	0 -25	-25 -64	05- 0	-32	-75 -160	-100	0 -70	-80	-170
	Ном	Св. 18 до 30	0	-20 -53	0 -45	-25 -85	-60 -130	0 -84	0-140	-70 -210	-140
		Св. 10 до 18	0 -18	-16 -43	-35	-20 -70	-45 -105	04-	-120	-60	-120
		Св. 6 до 10	0 -15	-13 -35	-30	-15 -55	-35 -85	0 -58	-100	-50 -150	-100
		Св. 3 до 6	0 -12	-10	0 -25	-11	-25 -65	0 -48	08-	-40	-80
		От 1 до 3	6- 0	-6 -20	-20	.7 -32	-17	0-40	09-	-30	-60 -120
	Обозначения	поля допуска вала	$C_{2a} = \underline{B_{2a}}$	X_{2a}	$C_3 = \underline{B_3}$	Х3	Ш3	$C_{3a} = \frac{B_{3a}}{-}$	$C_4 = \underline{B_4}$	χ4	Л4

Продолжение табл. 21

) L				Ном	Номинальные размеры, мм	размеры	, MM					Ближайшее
Or 1 Cв. 3 Cв. 6 Cв. 10 до 3 до 6 до 10 до 18	3 Св. 6 б до 10		CB. 1 Ao 18	0 ~	Св. 18 до 30	Св. 30 до 50	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	Св. 180 до 260	Св. 260 до 360	Св. 360 до 500	поле допуска по ГОСТ 25347 - 82
-120 -160 -200 -240 -180 -240 -300 -360	-200 -300		-24C -36C		-280 -420	-340	-400 -600	-460 -700	-530	006-	-680	-760 -1100	a11, b11
0 0 0 0 -120 -160 -200 -240	2.000	-2	0 -240		0 -280	0 -340	0 -400	0-460	-530	009-	089-	092-	h12
-60 -80 -100 -120 -180 -240 -300 -360	-100		-120 -360		-140 -420	-170	-200	-230	-260	-300	-340	-380	b12
0 0 0 0 -250 -300 -360 -430	-360				0 -520	0-620	0 -740	0 -870	-1000	0-1150	-1350	0 -1550	h14
+120 +150 +200 +200 -120 -150 -200 -200	50 +200 50 -200		+200		+300	+300	+400	+400	+500	009- 009-	+700	+800	$js14\left(\pm\frac{1T14}{2}\right)$
0 0 0 0 -400 -480 -580 -700	0 -480 -580		002-		0 -840	-1000	-1200	0 -1400	0-1600	0 -1900	-2200	0 -2500	h15
+200 +200 +300 +300 -200 -200 -300 -300	+300		+300		+400	+500	+600 -600	+700	+800 +800	+1000	+1100	+1200	$js15\left(\pm\frac{1715}{2}\right)$
0 0 0 0 0 -600 -750 -900 -1100	0 0 0-750		0 -1100		0-1300	0 -1600	0061-	-2200	-2500	0062-	0-3300	0 -3800	h16
+300 +400 +500 +500 -300 -400 -500 -500	+500		+500		009- 009+	+800	+1000	+1100	+1200	+1500	+1700	+2000	$js16\left(\pm\frac{\Pi16}{2}\right)$

Примечания. 1. Подчеркнуты поля допусков основных валов.
2. Отклонения основных отверстий приведены в табл. 22.

Предельные отклонения основных отверстий и отверстий в посадках переходиых
и с зазором в системе вала при размерах от 1 до 500 мм, мкм

	Ближайшее	поле допуска по ГОСТ 25347 - 82	N6	M6	K6	386	9Н	95	F7	N7	M7
		Св. 360 до 500	-30	-10	+5	+20 -15	+35	+55 +20	+131	-20	09-
		Св. 260 до 360	-27	-9 -40	+4	+18	0 +30	+48	+108	-18 -70	0-50
		Св. 180 до 260	-23 -52	-36	+3	+16	+27 0	+43	05+ 96+	-15	0 -45
		Св. 120 до 180	-20 -45	-7	+3	+14	+24 0	+39 +14	+83 +43	-12 -52	0-40
7	MM	Св. 80 до 120	-17	-6 -28	+3	+12	+21 0	+34 +12	+71 +36	-10	-35
vidamend.	Номинальные размеры, мм	Св. 50 до 80	-14	-5 -24	+2 -16	+10	+18 0	+29 +10	+60 +30	-8 -40	-30
n e sasopom a eneromo agua upa pasmopas ou 1 до 500 mm, mas	инальные	Св. 30 до 50	-12	-5	+2	6+ -7	+15	+25 +9	+50 +25	-7 -35	0-27
and a succession	Ном	Св. 18 до 30	-10	-4	+2 -12	+8 -6	+13	+20 +7	+41 +20	-6 -30	-23
		Св. 10 до 18	-8 -20	-4	+1	+7	+11	+17	+34	-5	-19
		Св. 6 до 10	-6 -16	-3 -12	+1	+6	6+	+14	+28 +13	-4 -20	-16
		Св. 3 до 6	-5 -13	-2 -10	+1	+5	+8 0	+12 +4	+22 +10	-3 -16	-13
		От 1 до 3	-4 -10	-2 -8	+1	+4	0 9+	+10	+16 +6	-2	-10
	Обозначения	поля допуска отверстия	Γ_1	T_1	H_1	П1	$C_1 = A_1$	A_1	X ₁	Ţ	T

Продолжение табл. 22

		1		ŀ			1			
Ближайшее	поле допуска по ГОСТ 25347 - 82	K7	JS7	Н7	G7	F7, F8	D8	E8	8X	M8
	Св. 360 до 500	+15	+40	09+	+90+30	+160 +80	+270 +170	+365 +250	-105	+10
	Св. 260 до 360	+12	+35	+50	+80	+140	+230 +140	+310 +210	06- 9-	+10
	Св. 180 до 260	+11	+30	+45	+70 +22	+120	+200 +120	+270 +180	-5 -78	+9 -64
	Св. 120 до 180	+10	+27	+40 0	+60 +18	+105	+170 +100	+230 +150	-4 -67	+8
MM	Св. 80 до 120	+6 -26	+23	+35	+50 +15	+90 +40	+140	+190 +120	-4 -58	+6
размеры,	Св. 50 до 80	+8	+20	0+30	+42	+70	+115	+155	-4 -50	+5
Номинальные размеры, мм	Св. 30 до 50	+7	+18	+27	+35	+60	+95 +50	+125 +75	-3 -42	+5
Ном	Св. 18	+6	+16	+23 0	+30	+50 +20	+80	+105	-3	+4
	Св. 10 до 18	+5	+13	+19	+25 +6	+40 +16	+ 09+	+80 +45	-3	+2
	Св. 6 до 10	+4	+111	+16	+21 +5	+33	+50	+65	-3 -25	+1
	Св. 3	40,	4-	+13	+17	+27 +10	+40 +17	+50	-2	
	Or 1	+3	+7	+10	+13 +3	+22 +8	+30 +12	+38 +18	-12	1
Обознанания	опозначения поля допуска отверстия	н	ш	C=A	Д	×	Л	Ħ	Г.2а	T2a

Продолжение табл. 22

Обозначения					Номі	Номинальные размеры, мм	размеры,	ММ					Ближайшее
2 8	13	CB. 3	Св. 6 до 10	Св. 10	Св. 18	Св. 30	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	Св. 180 до 260	Св. 260 до 360	Св. 360 до 500	поле допуска по ГОСТ 25347 - 82
l l	,	1	+6 -16	+8 -19	+10	+12	+14	+16 -38	+20 -43	+22 -51	+26 -58	+28 -67	К8
1	1+7	6-	+12	+15	+20 -13	+24 -15	+28 -18	+34	+41	+49 -24	+57	+64	158
1	+14	+18	+22	+27	+33	+39	+46	+54	+63	+73	+84	96+	Н8
	+20 0	+25	+30	+35	+45 0	0+50	09+	0 0	08+	+90 0	+100	+120 0	н8, н9
	+32	+44	+55 +15	+70 +20	+85	+100	+120	+140 +50	+165 +60	+195 +75	+225	+255 +105	F9, E9
	+50	+65	+85	+105	+130	+160	+195 +95	+235 +120	+285 +150	+330	+380 +210	+440 +250	D9, D10
	+40	+48 0	+58	+70 0	+84	+100	+120	+140 0	+160 0	+185	+215	+250	H10
	09+	08+	+100	+120	+140	+170 0	+200	+230 0	+260 0	+300	+340	+380	H11
	+90	+120	+150	+180	+210 +70	+250 +80	+300	+350 +120	+400 +130	+450 +150	+500 +170	+570 +190	D11
4													

Продолжение табл. 22

Обозначения					Ном	Номинальные размеры, мм	размеры,	ММ					Ближайшее
поля допуска отверстия	Or 1 до 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 30	Св. 30	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	Св. 180 до 260	Св. 260 до 360	Св. 360 до 500	поле допуска по ГОСТ 25347-82
Л4	+120 +60	+160	+200 +100	+240 +120	+280 +140	+340	+400 +200	+460 +230	+530	+300	+680 +340	+760 +380	B11, C11
III4	+180	+240 +160	+300	+360 +240	+420 +280	+500 +340	+600	+700 +460	+800	009+ 006+	+1000	+1100	A11, B11
C ₅ = <u>A</u> 5	+120 0	+160	+200	+240	+280	+340	+400	+460 0	+530	009+	0 089+	092+	H12
X5	+180	+240 +80	+300	+360 +120	+420 +140	+500 +170	+600 +200	+700 +230	+800	+300	+1000	+1100	B12
<u>A7</u>	+250 0	+300	+360	+430	+520	+620 0	+740	+870 0	+1000	+1150	+1350	+1550	H14
A <u>8</u>	+400	+480 0	+580	0 0 0	+840	+1000	+1200	+1400	+1600	+1900	+2200	+2500 0	H15
<u>A9</u>	0 009+	+750	0 006+	+1100	+1300	+1600	+1900	+2200	+2500	+2900	+3300	+3800	H16

Примечания: 1. Подчеркнуты поля допусков основных отверстий.

Отклонения для полей допусков СМ₂, СМ₈, СМ₉ приведены в табл. 21.

^{2.} Отклонения основных валов приведены в табл. 20.

23. Предельные отклонения валов и отверстий в посадках с натягом

										J	Номина	льные
По допу		От 1 до 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 24	Св. 24 до 30	Св. 30 до 40	Св. 40 до 50	Св. 50 до 65	Св. 65 до 80	Св. 80 до 100
	Пр21	+20 +15	+24 +19	+29 +23	+36 +28	+44 +35	+44 +35	+54 +43	+54 +43	+66 +53	+72 +59	+86 +71
	Прl _l	+17 +12	+20 +15	+25 +19	+31 +23	+37 +28	+37 +28	+45 +34	+45 +34	+54 +41	+56 +43	+66 +51
	Гр	+27 +17	+33 +20	+39 +23	+48 +29	+62 +39	+62 +39	+77 +50	+87 +60	+105 +75	+120 +90	+140 +105
	Пр	+18 +12	+23 +15	+28 +18	+34 +22	+42 +28	+42 +28	+52 +35	+52 +35	+65 +45	+65 +45	+85 +60
Валов	Пл	+16 +10	+21 +13	+26 +16	+32 +20	+39 +25	+39 +25	+47 +30	+47 +30	+55 +35	+55 +35	+70 +45
	Tx	-60 -74	-70 -88	-80 -102	-95 -122	-110 -143	-110 -143	-120 -159	-130 -169	-140 -186	-150 -196	-170 -224
	Пр2 _{2а}	+32 +18	+41 +23	+50 +28	+60 +33	+74 +41	+81 +48	+99 +60	+109 +70	+133 +87	+148 +102	+178 +124
	Пр12а	+24 +15	+31 +19	+38 +23	+46 +28	+56 +35	+56 +35	+68 +43	+68 +43	+83 +53	+89 +59	+106 +71
	Пр3 ₃	-	-	+100 +70	+115 +80	+145 +100	+145 +100	+165 +115	+175 +125	+210 +150	+225 +165	+260 +180
	Пр23	-	-	+70 +40	+80 +45	+100 +55	+100 +55	+115 +65	+125 +75	+150 +90	+165 +105	+195 +125
	Пр13	-	+55 +30	+65 +35	+75 +40	+95 +50	+95 +50	+110 +60	+110 +60	+135 +75	+135 +75	+160 +90
	Гр	-13 -27	-15 -33	-17 -39	-22 -48	-30 -62	-30 -62	-40 -77	-50 -87	-65 -105	-80 -120	-93 -140
Отвер- стий	Пр	-8 -18	-10 -23	-12 -28	-15 -34	-19 -42	-19 -42	-25 -52	-25 -52	-35 -65	-35 -65	-50 -85
	Пр2 _{2а}	-18 -32	-23 -41	-28 -50	-33 -60	-41 -74	-48 -81	-60 -99	-70 -109	-87 -133	-102 -148	-124 -178

Отклонения основных отверстий приведены в табл. 22, основных валов - в табл. 21.

и тепловой при размерах от 1 до 500 мм, мкм

размер	ы, мм										Ближай- шее
Св. 100 до 120	Св. 120 до 140	Св. 140 до 150	Св. 150 до 160	Св. 160 до 180	Св. 180 до 220	Св. 220 до 260	Св. 260 до 310	Св. 310 до 360	Св. 360 до 440	Св. 440 до 500	поле допуска по ГОСТ 25347-82
+94 +79	+110 +92	+118 +100	+118 +100	+126 +108	-	-	-	-	-	-	s5
+69 +54	+81 +63	+83 +65	+83 +65	+86 +68	-	-	-	-	-	-	г5
+160	+190	+190	+220	+220	+260	+300	+350	+400	+475	+545	u 7
+125	+150	+150	+180	+180	+215	+255	+300	+350	+415	+485	
+90	+110	+110	+125	+125	+145	+165	+195	+220	+260	+300	r6, s6
+70	+80	+80	+95	+95	+115	+135	+160	+185	+220	+260	
+70	+85	+85	+85	+85	+105	+105	+135	+135	+170	+170	p6, r6
+45	+58	+58	+58	+58	+75	+75	+100	+100	+130	+130	
-180	-200	-210	-210	-230	-260	-290	-330	-360	-410	-480	c8
-234	-263	-273	-273	-293	-332	-362	-411	-441	-507	-577	
+198	+233	+253	+253	+273	+308	+356	+431	+471	+557	+637	u8
+144	+170	+190	+190	+210	+236	+284	+350	+390	+460	+540	
+114	+132	+140	+140	+148	+168	+186	+222	+242	+283	+315	s7
+79	+92	+100	+100	+108	+122	+140	+170	+190	+220	+252	
+280	+325	+325	+355	+355	+410	+450	+515	+565	+670	+740	z8, x8
+210	+245	+245	+275	+275	+320	+360	+415	+465	+550	+620	
+210	+245	+245	+275	+275	+325	+365	+420	+470	+550	+620	x8, u8
+140	+165	+165	+195	+195	+235	+275	+320	+370	+430	+500	
+160	+185	+185	+200	+200	+230	+250	+285	+305	+360	+395	u8, s7
+90	+105	+105	+120	+120	+140	+160	+185	+205	+240	+245	
-113	-137	-137	-167	-167	-200	-240	-285	-335	-395	-465	T7, U8
-160	-190	-190	-220	-220	-260	-300	-350	-400	-475	-545	
-60	-70	-70	-85	-85	-100	-120	-145	-170	-200	-240	R7, S7
- 95	-110	-110	-125	-125	-145	-165	-195	-220	-260	-300	
-144	-170	-190	-190	-210	-236	-284	-350	-370	-460	-540	U8
-198	-233	-253	-253	-273	-308	-356	-431	-471	-557	-637	

ДОПУСКИ УГЛОВ (по ГОСТ 8908-81)

Государственный стандарт распространяется на допуски углов конусов и призматических элементов деталей с длиной меньшей стороны угла до 2500 мм.

- 1. Приняты следующие обозначения допусков:
- AT допуск угла (разность между наибольшим и наименьшим предельными углами);
 - AT_{α} допуск угла в угловых единицах;
- AT'_{α} округленное значение допуска угла в градусах, минутах, секундах;
- AT_h допуск угла, выраженный отрезком на перпендикуляре к стороне угла, противолежащем углу AT_{α} на расстоянии L_1 от вершины этого угла (практически этог отрезок равен длине дуги радиуса L_1 , стягивающей угол AT_{α});
- AT_D допуск угла конуса, выраженный допуском на разность диаметров в двух нормальных к оси сечениях конуса на заданном расстоянии L между ними; определяется по перпендикуль ру к оси конуса.

При обозначении допуска угла заданной степени точности указанные выше обозначения дополняются номером соответствующей степени точности, например AT5, AT8.

Устанавливаются 17 степеней точности:
 1, 2,, 17.

Числовые значения допусков углов приведены в табл. 24. 3. Допуски углов конусов с конусностью не более 1:3 должны назначаться в зависимости от номинальной длины конуса L (рис. 6, a).

Допуски углов конусов с конусностью более 1:3 должны назначаться в зависимости от длины образующей конуса L_1 (рис. 6, δ).

Примечание. При конусности не более 1:3 длина конуса L приближенно принимается равной длине образующей L_1 (разность значений не более 2%).

- 4. Допуски углов призматических элементов деталей должны назначаться в зависимости от номинальной длины L_1 меньшей стороны угла (рис. 6, s).
- 5. Значения AT_{α} в микрорадианах, приведенные в табл. 24, являются исходными для определения допусков AT_{α} в градусах, минутах, секундах и допусков AT_h или AT_D на заданной длине L или L_1 .
- 6. Значения AT'_{α} в градусах, минутах, секундах, приведенные в табл. 24, получены округлением точных значений AT'_{α} . Они рекомендуются при указании допусков на чертежах.
- 7. Значения AT_h или AT_D , приведенные в табл. 24, указаны для крайних значений интервалов длин L и L_1 .

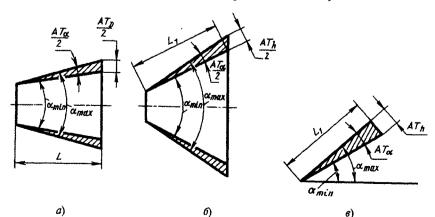


Рис. 6. Допуски углов конусов (a, δ) и допуски углов призматических элементов (s)

24. Значения допусков углов в зависимости от степени точности

				Степень точности	очности			
Интервал длин $L; L_1$, мм		5		9		7		8
	AT'a	AT_h ; AT_D , wxw	AT'a	AT_h ; AT_D , мкм	AT'_{α}	AT_h ; AT_D , мкм	AT'a	AT_h ; AT_D , мкм
До 10	1,	3,2	1 ' 40 "	5	2 ' 30 "	8	4 '	12,5
Св. 10 до 16	. 09	2,5 4	1 ' 20 "	4 6,3	2,	6,3 10	3,	10 16
" 16" 25	04	3,2 5	1,	5 8	1 ' 40 "	8 12,5	2 · 30 "	12,5 20
25 40	32 "	4 6,3	20 "	6,3 10	1 ' 20 "	10 16	2 '	16 25
" 40 " 63	26 "	5 8	40 "	8 12,5	1,	12,5 20	1 ' 40 "	20 32
" 63 " 100	20 "	6,3 10	32 "	10 16	20 "	16 25	1 ' 20 "	25 40
" 100 " 160	16 "	8 12,5	76 "	12,5 20	04	20 32	-	32 50
" 160 " 250	12 "	10 16	70 "	16 25	32 "	25 40	20 "	40 63
" 250 " 400	10 "	12,5 20	16 "	20 32	797	32 50	40 "	50 80
" 400 " 630	**	16 25	12 "	25 40	. 07	40 63	32 "	63 100
" 630 " 1000	9	20 32	10 "	32 50	16 "	50 80	79 7	80 125
" 1000 " 1600	\$	25 40	* 8	40 63	12 "	63 100	70 "	100 160
" 1600 " 2500	4 "	32 50	9	50 80	10 "	80 125	16 "	125 200
				Степень точности	очности			
Интервал длин $L; L_1, MM$		6		10		11		12
	AT'_{α}	AT_h ; AT_D , MKM	AT'_{α}	AT_h ; AT_D , MKM	AT'_{α}	AT_h ; AT_D , мкм	AT'a	AT_h ; AT_D , MKM
До 10	, 9	20	10 '	32	16 '	50	26 '	08
Св. 10 до 16	5,	16 25	· ∞	25 40	12 ′	40 63	20 ′	63 100
" 16 " 25	. 4	20 32	, 9	32 45	10 ,	50 80	16 '	80 120
25 " 40	3,	25 40	5 '	40 63	`&	63 100	12 ′	100 165
" 40 " 63	2 · 30 "	32 50		50 80	, 9	80 125	10 ′	125 200
" 63 " 100	2,	40 63	3,	63 100	5,	100 160		160 250

Продолжение табл. 24

Интервал длин				Степень точности	очности			
mw (Tr 'r		6		10		11		12
	AT'_{α}	AT_h ; AT_D , MKM	AT'a	AT_h ; AT_D , MKM	$AT'_{\mathfrak{a}}$	AT_h ; AT_D , MKM	AT'_{α}	AT_h ; AT_D , MKM
Св. 100 до 160 17	1 ′ 40 ″	50 80	2 ′ 30 ″	80 125	4 ,	125 200	, 9	200 320
" 160 " 250 1'	, 50 "	63 100	2,	100 160	3,	160 250	5,	250 400
. 250 " 400 1'		80 125	1 ′ 40 ″	125 200	2 ' 30 "	200 320	4	320 500
" 400 " 630	20 "	100 160	1 ′ 20 ″	160 250	2 '	250 400	3,	400 630
. 630 " 1000	04	125 200	1,	200 320	1 ' 40 "	320 500	2 ' 30 "	200 800
" 1000 " 1600	32 "	160 250	20 "	250 400	1 ' 20 "	400 630	2,	630 1000
" 1600 " 2500	76 "	200 320	40 "	320 500	1,	500 800	1 ' 40 "	800 1260
				Степень точности	очности			
Интервал длин L; L ₁ , мм		13		14		15		16
	AT'_{α}	AT_h ; AT_D , мкм	AT'_{a}	AT_h ; AT_D , мкм	AT'_{α}	AT_h ; AT_D , мкм	AT'a	AT_h ; AT_D , мкм
До 10 40 ′		125	1 °	200	1 ° 40 ′	320	2°	2,0
Св. 10 до 16 32 ′		100 160	, 05	160 250	1 ° 20 ′	250 400		0,4 0,63
" 16 " 25 26 '		125 200	40 ′	200 320	1.	320 500	• 1	8,0 5,0
. 25 . 40 20		160 250	32 ′	250 400	, 05	400 630		0,63 1
" 40 " 63 16 ′		200 320	26 ′	320 500	, 04	200 800		0,8 1,25
. 63 " 100 12 '		250 400	20 ′	400 630	32 '	630 1000	, 04	1 1,6
. 100 " 160 10 ′		320 500	16 ′	200 800	79	800 1250		1,25 2
" 160 " 250 8		400 630	12 ′	630 1000	70 ,	1000 1600		1,6 2,5
. 250 " 400 6		200 800	10 ′	800 1250	16 ′	1250 2000	20 '	2 3,2
7 400 " 630 5		630 1000	` &	1000 1600	12 ′	1600 2500		2,5 4
" 630 " 1000 4		800 1250	, 9	1250 2000	10 ′	2000 3200	10 '	3,2 5

Продолжение табл. 24

				5	епень т	Степень точности			
Интервал длин $L; L_1$, мм	•	13		14			15		16
	ΑΤ'α	AT_h ; AT_D , мкм	AT'a	AT_h ; AT_D , мкм	MKM	AT'a	AT_h ; AT_D , мкм	ΑΤ'α	AT_h ; AT_D , MKM
Св. 1000 до 1600	3 ,	1000 1600	۶،	1600 2500	200	, 8	2500 4000	10 ′	4 6,3
" 1600 " 2500 2	2 ° 30 "	1250 2000	4	2000 3200	3000	, 9	3200 5000		2 8
	Степе	Степень точности 17			Степен	Степень точности 17		Cre	Степень точности 17
Интервал длин $L_{\rm l},$ мм	; AT'a	$AT_h; AT_D,$ MKM	Интервал μ ин $L;$ $L_1,$ мм		AT'a	AT_h ; AT_D , MKM	Интервал длин L ; L_1 , мм	L; AT'a	$AT_h; AT_D,$ MKM
До 10	۰ 4	0,8	Св. 63 до 100		1 ° 20 ′	1,6 2,5	Св. 630 до 1000		5 8
Св. 10 до 16		0,63 1	" 100 " 160	, <u>, , , , , , , , , , , , , , , , , , ,</u>		2 3,2	" 1000 " 1600	20 ′	6,3 10
" 16" 25	5	0,8 1,25	" 160 " 250			2,5 4	" 1600 " 2500		8 12,5
. 25 " 40	- - - -	1 1,6	. 250 " 400		, 0 4	3,2 5			
. 40 " 63	1 ° 20 ′	1,25 2	. 400 " 630			4 6,3			

ГОСТ 8908-81 предусматривает степени точности 1 - 4 и числовые значения AT_{a} .

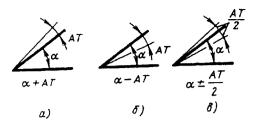
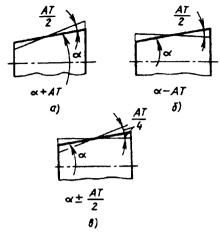


Рис. 7. Допуски углов относительно номинального угла располагаются: a - в "плюс"; δ - в "минус"; ε - симметрично (α - номинальный угол)

Значения AT_h определяют по формуле

$$AT_h = AT_{\alpha}L_1 \cdot 10^{-3},$$


где AT_h - в мкм; AT_{α} - в мкрад; L_1 - в мм.

Значения AT_D , приведенные в табл. 24, относятся только к конусам с конусностью не более 1:3, для которых $AT_D \approx AT_h$ (разность не поевышает 2%).

Для конусов с конусностью более 1:3 значения AT_D определяют по формуле

$$AT_D = \frac{AT_h}{\cos\frac{\alpha}{2}},$$

гле с. - номинальный угол конуса.

Рвс. 8. Допуски углов относительно номинального угла конуса располагаются: a - b "плюс"; b - b "минус"; b - c симметрично (a - c номинальный угол)

8. Допуски углов могут быть расположены в "плюс" (+AT), в "минус" (-AT) или симметрично $\left(\pm\frac{AT}{2}\right)$ относительно номинального угла (рис. 7 и 8).

В обоснованных случаях допускается применять другое расположение допуска угла.

ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

ОСНОВНЫЕ ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ (ПО ГОСТ 24642-81)

ГОСТ 24642-81 устанавливает термины и определения, относящиеся к основным видам отклонений и допусков формы и расположения поверхностей деталей машин и приборов. Стандарт в части терминологии соответствует международным стандартам ИСО 1101-83 и ИСО 5459-81 (табл. 25).

Табл. 25 состоит из четырех частей:

- 1 общие термины и определения;
- 2 отклонения и допуски форм;
- 3 отклонения и допуски расположения;
- 4 суммарные отклонения и допуски формы и расположения.

25. Термины, определения отклонений и допусков формы и расположения поверхностей (по ГОСТ 24642-81)

Термины, определения и обозначения

1. ОБЩИЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

1.1. Элемент - обобщенный термин, под которым в зависимости от условий может пониматься поверхность (часть поверхности, плоскость симметрии нескольких поверхностей), линия (профиль поверхности, линия пересечения двух поверхностей, ось поверхности или сечения), точка (точка пересечения поверхности или линий, центр окружности или сферы).

Кроме того, могут применяться обобщенные термины: номинальный элемент, реальный элемент, базовый элемент, прилегающий элемент, средний элемент и т.п.

Термины, определения и обозначения

1.2. **Профиль** - линия пересечения поверхности с плоскостью или заданной поверхностью.

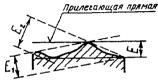
Примечание. Если в технической документации не указано иное, то направление секущей плоскости определяется по нормали к поверхности.

- 1.3. **Номинальная форма** идеальная форма элемента, которая задана чертежом или другими техническими документами
- 1.4. Номинальная поверхность идеальная поверхность, размеры и форма которой соответствуют заданным номинальным размерам и номинальной форме
- 1.5. Номинальный профиль по ГОСТ 25142-82 профиль номинальной поверхности
- 1.6. Реальная поверхность по ГОСТ 25142-
- 82 поверхность, ограничивающая тело и отделяющая его от окружающей среды
- 1.7. Реальный профиль по ГОСТ 25142-82.

Примечание к пп. 1.6 и 1.7. Реальная поверхность и реальный профиль в определениях отклонений формы и расположения по настоящему стандарту понимаются без учета шероховатости поверхности.

1.8. Нормируемый участок - участок поверхности или линии, к которому относятся допуск формы, допуск расположения, суммарный допуск формы и расположения или соответствующие отклонения.

Нормируемый участок должен быть задан: размерами, определяющими его площадь, длину или угол сектора, а в необходимых случаях и расположение участка на элементе; для криволинейных поверхностей или профилей - размерами проекции поверхности или профиля.

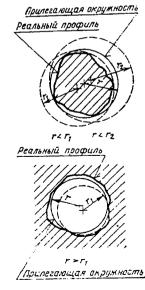

Примечание Если нормируемый участок не задан, то допуск формы, допуск расположения, суммарный допуск формы и расположения или соответствующие отклонения должны относиться ко всей рассматриваемой поверхности или длине рассматриваемого элемента.

Термины, определения и обозначения

- 1.9. Базовый элемент для оценки отклонений формы элемент номинальной формы, служащий основой для оценки отклонений формы реальной поверхности или реального профиля.
- В качестве базового элемента для оценки отклонений формы следует принимать прилегающую поверхность или прилегающий профиль.
- Примечание. Базовый элемент для оценки отклонений формы используется также для исключения влияния отклонений формы при определении отклонений расположения.
- 1.10. Прилегающая поверхность поверхность, имеющая форму номинальной поверхности, соприкасающаяся с реальной поверхностью и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки реальной поверхности в пределах нормируемого участка имело минимальное значение.
- Примечание. Условие минимального значения отклонения не распространяется на прилегающий цилиндр (см. п. 1.12).
- 1.11. Прилегающая плоскость плоскость, соприкасающаяся с реальной поверхностью и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки реальной поверхности в пределах нормируемого участка имело минимальное значение
- 1.12. Прилегающий цилиндр цилиндр минимального диаметра, описанный вокруг реальной наружной поверхности, или цилиндр максимального диаметра, вписанный в реальную внутреннюю поверхность.
- Примечание. В тех случаях, когда расположение прилегающего цилиндра относительно реальной поверхности неоднозначно, он принимается по условию минимального значения отклонения.
- 1.13. Прилегающий профиль профиль, имеющий форму номинального профиля, соприкасающийся с реальным профилем и расположенный вне материала детали так, чтобы отклонение от него наиболее удаленной точки реального профиля в пределах нормируемого участка имело минимальное значение.
- Примечание. Условие минимального значения отклонения не распространяется на прилегающую окружность (см. п. 1.15).

Термины, определения и обозначения

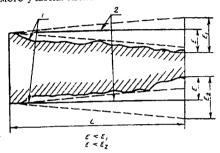
1.14. Прилегающая прямая - прямая, соприкасающаяся с реальным профилем и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки реального профиля в пределах нормируемого участка имело минимальное значение



 $E < E_1 E < E_2$

 $E,\ E_1,\ E_2$ - отклонения наиболее удаленной точки реального профиля от касательной прямой

1.15. Прилегающая окружность - окружность минимального диаметра, описанная вокруг реального профиля наружной поверхности вращения, или окружность максимального диаметра, вписанная в реальный профиль внутренней поверхности вращения.

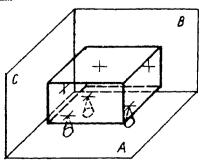

Примечание. В тех случаях, когда расположение прильгающей окружности относительно реального профиля неоднозначно, оно принимается по условию минимального значения отклонения.

r, r_1 , r_2 - радиусы окружностей, описанных вокруг реального профиля или вписанных в него

Термины, определения и обозначения

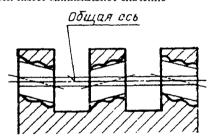
1.16. Прилегающий профаль продольного сечения - две параллельные прямые, соприкасающиеся с реальным профилем осевого (продольного) сечения цилиндрической поверхности и расположенные вне материала детали так, чтобы наибольшее отклонение точек реального профиля от соответствующей стороны прилегающего профиля продольного сечения в пределах нормируемого участка имело минимальное значение

1 - реальный профиль; 2 - прилегающий профиль продольного сечения

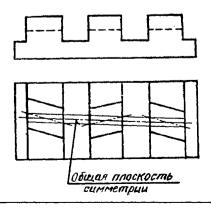

1.17. Реальная ось - геометрическое место центров сечений поверхности вращения, перпендикулярных оси прилегающей поверхности.

Примечание. За центр сечения принимается центр прилегающей окружности. Ось прилегающей поверхности вращения.

- 1.18. Геометрическая ось реальной поверхности вращения в качестве геометрической оси реальной поверхности вращения допускается принимать ось цилиндра наименьшего возможного диаметра, внутри которого располагается реальная ось в пределах нормируемого участка
- 1.19. Отклонение формы отклонение формы реального элемента от номинальной формы, оцениваемое наибольшим расстоянием от точек реального элемента по нормали к прилегающему элементу. (Вместо прилегающего элемента допускается использовать в качестве базового элемента средний элемент).
- Примечания:
- 1. Шероховатость поверхности не включается в отклонение формы. В обоснованных случаях допускается нормировать отклонение формы, включая шероховатость поверхности.
- 2. Волнистость включается в отклонение формы. В обоснованных случаях допускается нормировать отдельно волнистость поверхности или часть отклонения формы без учета волнистости.
- 3. Особым случаем оценки отклонения формы является отклонение от прямолинейности оси (см. пп. 2.1.4 и 2.1.5).


Термины, определения и обозначения

- 1.20. Допуск формы наибольшее допускаемое значение отклонения формы
- 1.21. Поле допуска формы область в пространстве или на плоскости, внутри которой должны находиться все точки реального рассматриваемого элемента в пределах нормируемого участка, ширина или диаметр которой определяется значением допуска, а расположение относительно реального элемента прилегающим элементом
- 1.22. База элемент детали (или выполняющее ту же функцию сочетание элементов), по отношению к которому задается допуск расположения или суммарный допуск формы и расположения рассматриваемого элемента, а также определяется соответствующее отклонение
- 1.23. Комплект баз совокупность двух или трех баз, образующих систему координат, по отношению к которой задается допуск расположения или суммарный допуск формы и расположения рассматриваемого элемента, а также определяется соответствующее отклонение.
- 1. Базы, образующие комплект баз, различают в порядке убывания числа степеней свободы, лишаемых ими (например, база A лишает деталь трех степеней свободы, база B - двух, а база C - одной степени своболы).
- 2. Если базы не заданы или задан комплект баз, лишающий деталь менее чем шести степеней свободы, то расположение системы координат, в которой задан допуск расположения или суммарный допуск формы и расположения рассматриваемого элемента относительно других элементов детали, ограничивается по оставшимся степеням свободы лишь условием соблюдения заданного допуска, а при измерении условием получения минимального значения соответствующего отклонения



Термины, определения и обозначения

- 1.24. Участок базирования точка, линия или ограниченная площадь на базовой поверхности детали, в которых должен быть обеспечен контакт детали с базирующими элементами обрабатывающего или контрольного оборудования с целью установления баз, необходимых для удовлетворения функциональных требований.
- 1. Участки базирования должны быть заданы размерами, определяющими их протяженность и расположение на базе.
- 2. В случаях, когда участки базирования необходимо задать для комплекта баз из трех взаимно перпендикулярных плоскостей (см. выше) первая база (база А) должна задаваться тремя участками базирования, вторая база (база В) двумя и третья база (база С) одним участком базирования
- 1.25. Общая ось прямая, относительно которой наибольшее отклонение осей нескольких рассматриваемых поверхностей вращения в пределах длины этих поверхностей имеет минимальное значение

1.26. Общая плоскость симметрии - плоскость, относительно которой наибольшее отклонение плоскостей симметрии нескольких рассматриваемых элементов в пределах длины этих элементов имеет минимальное значение

Термины, определения и обозначения

1.27. Номинальное расположение - расположение рассматриваемого элемента (поверхности или профиля), определяемое номинальными линейными и угловыми размерами между ним и базами или между рассматриваемыми элементами, если базы не заланы.

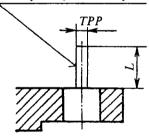
Номинальное расположение определяется непосредственно изображением детали на чертеже без числового значения номинального размера между элементами, когда:

- номинальный линейный размер равен нулю (требования соосности, симметричности, совмещения элементов в одной плоскости);
- номинальный угловой размер равен 0° или 180° (требование параллельности);
- номинальный угловой размер равен 90° (требование перпендикулярности)
- 1.28. Реальное расположение расположение рассматриваемого элемента (поверхности или профиля), определяемое действительными линейными и угловыми размерами между ним и базами или между рассматриваемыми элементами, если базы не заданы
- 1.29. Отклонение расположения отклонение реального расположения рассматриваемого элемента от его номинального расположения.

Примечания:

1. Отклонения расположения дополнительно могут подразделяться на отклонения месторасположения и отклонения ориентации.

Отклонение месторасположения - отклонение от номинального расположения, определяемого номинальными линейными или линейными и упловыми размерами (отклонения от соосности, симметричности, пересечения осей, позиционные отклонения).


Отклонение ориентации - отклонение от номинального расположения, определяемого номинальным угловым размером (отклонения от параллельности и перпендикулярности, отклонение наклона).

- 2. Количественно отклонения расположения оцениваются в соответствии с определениями, приведенными в пп. 3.1 3.7.
- 3. При оценке отклонений расположения отклонения формы рассматриваемых элементов и баз должны исключаться из рассмотрения. При этом реальные поверхности (профили) заменяются прилегающими, а за оси, плоскости симметрии и центры реальных поверхностей или профилей принимаются оси, плоскости симметрии и центры принигающих элементов

Термины, определения и обозначения

- 1.30. Допуск расположения предел, ограничивающий допускаемое значение отклонения расположения. (Дополнительно может подразделяться на допуски месторасположения и допуски ориентации.)
- 1.31. Поле допуска расположения область в пространстве или заданной плоскости, внутри которой должен находиться прилегающий элемент или ось, центр, плоскость симметрии в пределах нормируемого участка, ширина или диаметр которой определяется значением допуска, а расположение относительно баз номинальным расположением рассматриваемого элемента
- 1.32. Выступающее поле допуска расположения поле допуска или часть его, ограничивающее отклонение расположения рассматриваемого элемента за пределами протяженности этого элемента (нормируемый участок выступает за пределы длины элемента)

Выступающее поле допуска

- L длина нормируемого участка; TPP позиционный допуск
- 1.33. Зависимый допуск расположения (зависимый допуск формы) допуск расположения или формы, указываемый на чертеже или в других технических документах в виде значения, которое допускается превышать на величину, зависящую от отклонения действительного размера рассматриваемого элемента и/или базы от предела максимума материала (наибольшего предельного размера вала или наименьшего предельного размера отверстия)
- 1.34. Независимый допуск расположения (независимый допуск формы) допуск расположения или формы, числовое значение которого постоянно для всей совокупности деталей и не зависит от действительного размера рассматриваемого элемента и/или базы

Термины, определения и обозначения

1.35. Суммарное отклонение формы и расположения - отклонение, являющееся результатом совместного проявления отклонения формы и отклонения расположения рассматриваемой поверхности или рассматриваемого профиля относительно баз.

Примечание. Количественно суммарные отклонения формы и расположения оцениваются в соответствии с определениями, приведенными в пп. 4.1 - 4.7, по точкам реального рассматриваемого элемента относительно прилегающих базовых элементов или их осей.

Термины, определения и обозначения

1.36. Суммарный допуск формы и расположения - предел, ограничивающий допускаемое значение суммарного отклонения формы и расположения

1.37. Поле суммарного допуска формы и расположения - область в пространстве или на заданной поверхности, внутри которой должны находиться все точки реальной поверхности (профиля) в пределах нормируемого участка, ширина которой определяются значением допуска, а расположение относительно баз - номинальным расположением рассматриваемого элемента

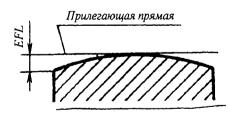
Термины, определения, обозначения

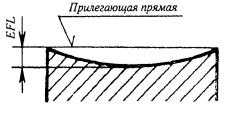
Эскизы

2. ОТКЛОНЕНИЯ И ЛОПУСКИ ФОРМЫ

2.1. Отклонение от прямолинейности *EFL* и допуск прямолинейности *TFL*

2.1.1. Отклонение от прямолинейности в плоскости - наибольшее расстояние *EFL* от точек реального профиля до прилегающей прямой в пределах нормируемого участка. Прилегающая прямая


Реальный профиль


L - длина нормируемого участка

Частными видами отклонения от прямолинейности являются выпуклость и вогнутость.

Выпуклость - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой уменьшается от краев к середине.

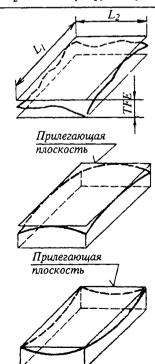
Вогнутость - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой увеличивается от краев к середине.

	просолжение таки. 23
Термины, определения, обозначения	Эскизы
2.1.2. Допуск прямолинейности - наибольшее допускаемое значение отклонения от прямолинейности	_
2.1.3. Пене допуска нрямоливейности в влоскости - область на плоскости, ограниченная двумя параллельными прямыми, отстоящими друг от друга на расстоянии, равном допуску прямолинейности <i>TFL</i>	
2.1.4. Отклонение от прямолниейности оси (или линии) в пространстве - наименьшее значение диаметра <i>EFL</i> цилиндра, внутри которого располагается реальная ось поверхности вращения (линия) в пределах нормируемого участка	Реальная ось
2.1.5. Отклонение от прямолинейности оси (или линии) в заданном направлении - наименьшее расстояние <i>EFL</i> между двумя параллельными плоскостями, перпендикулярными к плоскости заданного направления, в пространстве между которыми располагается реальная ось поверхности вращения (линия) в пределах нормируемого участка	Реальная ось Плоскость заданного направления
2.1.6. Поле допуска прямолинейности оси (или линии) в прострянстве: 1 - область в пространстве, ограниченная цилиндром, диаметр которого равен допуску прямолинейности TFL ; 2 - область в пространстве, ограниченная прямоугольным параллелепипедом, стороны сечения которого равны допускам прямолинейности оси (линии) в двух взаимно перпендикулярных направлениях TFL_1 и TFL_2 , а боковые грани соответственно перпендикулярны плоскостям заданных направлений;	TFL ₂

Продолжение табл. 25

Термины, определения, обозначения	Эскизы
3 - область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску прямолинейности оси (или линии) TFL и перпендикулярными плоскости заданного направления	Реальная ось Плоскость заданного направления

- 2.2. Отклонение от плоскости ЕГЕ и допуск плоскостности ТГЕ
- 2.2.1. Отклонение от плоскостности наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка.
- 2.2.2. Допуск плоскостности наибольшее допускаемое значение отклонения от плоскостности


 L_1 , L_2 - длина нормируемых участков

2.2.3. Поле допуска плоскостности -область в пространстве, ограниченная двумя параглельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску плоскостности *TFE*

Частными видами отклонений от плоскостности являются выпуклость и вогнутость.

Выпуклость - отклонение от плоскостности, при котором удаление точек реальной поверхности от прилегающей плоскости уменьшается от краев к середине.

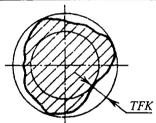
Вогнутость - отклонение от плоскостности, при котором удаление точек реальной поверхности от прилегающей плоскости увеличивается от краев к середине.

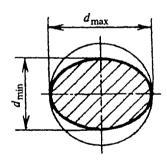
Термины, определения, обозначения

Эскизы

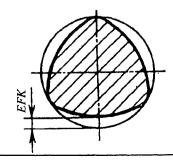
2.3. Отклонение от круглости ЕГК и допуск круглости ТГК

- 2.3.1. **Отклонение от круглости** наибольшее расстояние *EFK* от точек реального профиля до принегающей окружности
- 2.3.2. Допуск круглости наибольшее допускаемое значение отклонения от круглости


2.3.3. Поле допуска круглости - область на поверхности, перпендикулярной оси поверхности вращения или проходящей через центр сферы, ограниченная двумя концентричными окружностями, отстоящими друг от друга на расстоянии, равном допуску круглости *TFK*

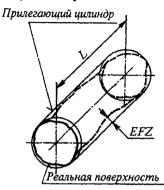

Частными видами отклонений от круглости являются овальность и огранка.

Овальность - отклонение от круглости, при котором реальный профиль представляет собой овалообразную фигуру, наибольший и наименьший диаметры которой находятся во взаимноперпендикулярных направлениях.

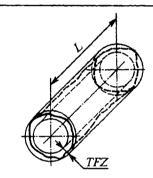

Огранка - отклюнение от круглости, при котором реальный профиль представляет собой многогранную фигуру. Огранка подразделяется по числу граней. В частности, огранка с нечетным числом граней характеризуется тем, что диаметры профиля поперечного сечения во всех направлениях одинаковые.

Количественно овальность и огранка оцениваются так же, как и отклонение от круглости

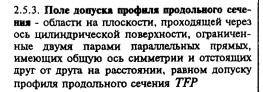
$$EFK = \frac{d_{\max} - d_{\min}}{2}$$

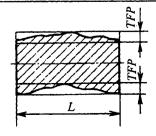


Термины, определения, обозначения


Эскизы

2.4. Отклонение от цилиндричности *EFZ* и допуск цилиндричности *TFZ*


- 2.4.1. Отклонение от дилиндричности наибольшее расстояние *EFZ* от точек реальной поверхности до прилегающего цилиндра в пределах нормируемого участка
- 2.4.2. Допуск цилнадричноств наибольшее допускаемое значение отклонения от цилиндричности


2.4.3. Поле допуска цилиндричности - область в пространстве, ограниченная двумя соосными цилиндрами, отстоящими друг от друга на расстоянии, равном допуску цилиндричности *TFZ*

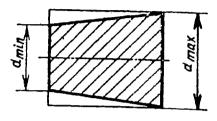
- 2.5. Отклонение ЕГР и допуск профиля продольного сечения ТГР цилиндрической поверхности
- 2.5.1. Отклонение профиля продольного сечения наибольшее расстояние *EFP* от точек образующих реальной поверхности, лежащих в плоскости, проходящей через ее ось, до соответствующей стороны прилегающего профиля в пределах нормируемого участка
- 2.5.2. Допуск профиля продольного сечения наибольшее допускаемое значение отклонения профиля продольного сечения

Термины, определения, обозначения

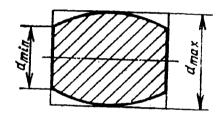
Отклонение профиля продольного сечения характеризует отклонения от прямолинейности и параплельности образующих. Частными видами отклонения профиля продольного сечения являются конусообразность, бочкооб-

Конусообразность - отклонение профиля продольного сечения, при котором образующие прямолинейны, но не параллельны

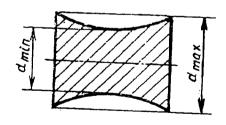
разность и седлообразность


Бочкообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения

Седлообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сечения


Коли тественно конусообразность, бочкообразность и седлообразность оцениваются так же, как и отклонение профиля продольного сечения.

Для нормирования отклонения формы цилиндрической поверхности в осевом направлении могут применяться допуск прямолинейности образующей, допуск прямолинейности оси и допуск параллельности образующих, согласно пп. 2.1.3, 2.1.6 и 3.1.6.


Эскизы

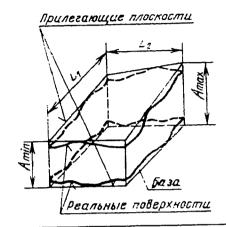
$$EFP = \frac{d_{\max} - d_{\min}}{2}$$

$$EFP = \frac{d_{\text{max}} - d_{\text{min}}}{2}$$

$$EFP = \frac{d_{\max} - d_{\min}}{2}$$

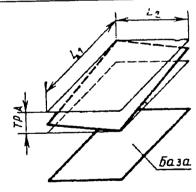
Термины, определения, обозначения

Эскизы

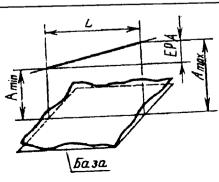

3. ОТКЛОНЕНИЯ И ДОПУСКИ РАСПОЛОЖЕНИЯ

3.1. Отклонение от параллельности ЕРА и допуск параллельности ТРА

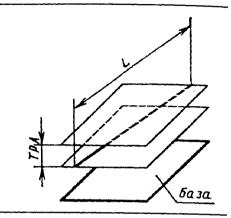
3.1.1. Отклонение от нараллельности плоскостей - разность *EPA* наибольшего и наименьшего расстояний между плоскостями в пределах нормируемого участка:


$$EPA = A_{\max} - A_{\min},$$

где A_{\max} , A_{\min} - наибольшее и наименьшее расстояния между элементами

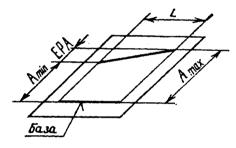

3.1.2. Допуск параллельности - наибольшее допускаемое значение отклонения от параллельности

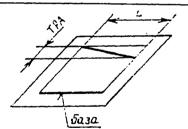
3.1.3. Поле допуска параллельности плоскостей - область в пространстве, ограниченная параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску параллельности *TPA*, и параллельными базовой плоскости


3.1.4. Отклонение от параллельности оси (или прямой) и плоскости - разность EPA наи-большего и наименьшего расстояний между осью (прямой) и плоскостью на длине нормируемого участка:

$$EPA = A_{\max} - A_{\min}$$

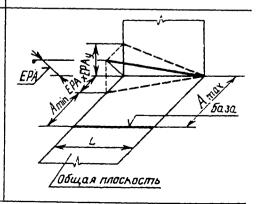
Термины, определения, обозначения


3.1.5. Поле допуска параллельности оси (или прямой) в плоскости - область в пространстве, ограниченная двумя параплельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску параллельности *TPA*, и параглельными базовой плоскости (см. чертеж) или базовой оси (прямой)


Эскизы

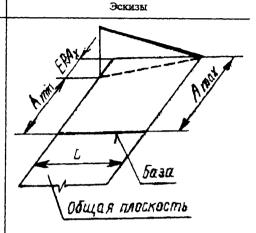
3.1.6. Отклонение от параллельности прямых в плоскости - разность *EPA* наибольшего и наименьшего расстояний между прямыми на длине нормируемого участка:

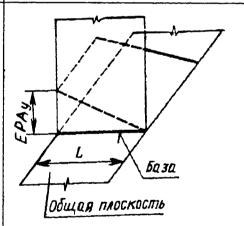
$$EPA = A_{\max} - A_{\min}$$


3.1.7. Ноле допуска параллельности прямых в плоскости - область на плоскости, ограниченная двумя параллельными прямыми, отстоящими друг от друга на расстоянии, равном допуску параллельности *TPA*, и параллельными базовой прямой

3.1.8. Отклонение от параллельности осей (или прямых) в пространстве - геометрическая сумма *EPA* отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей является общей плоскостью осей:

$$EPA_x = A_{max} - A_{min}$$

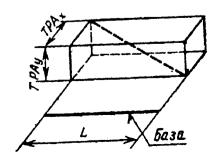

$$EPA = \sqrt{EPA_x^2 + EPA_y^2}$$


Термины, определения, обозначения

3.1.8.1. Отклонение от параллельности осей (или прямых) в общей плоскости - отклонение от параллельности EPA_{χ} проекций осей (прямых) на их общую плоскость:

$$EPA_x = A_{max} - A_{min}$$

3.1.8.2. Перекос осей (или прямых) EPA_y отклонение от парашлельности проекций осей (прямых) на плоскость, перпендикулярную к общей плоскости осей и проходящую через одну из осей (базовую)

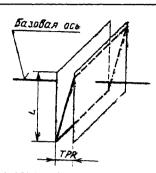

3.1.8.3. Допуск параллельности осей (прямых) в общей плоскости $TPA_{\rm x}$

3.1.8.4. Допуск перекоса осей (прямых) TPA_{ν}

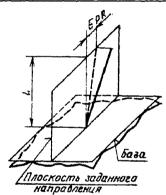
3.1.9. Поле допуска параллельности осей (или прямых) в пространстве:

- область в пространстве, ограниченная прямоутольным параллелепипедом, стороны сечения которого равны соответственно допуску параллельности осей (прямых) в общей плоскости $TPA_{\mathbf{x}}$ и допуску перекоса осей (прямых) $TPA_{\mathbf{y}}$, а боковые грани параллельны базовой оси и соответственно параллельны и перпендикулярны общей плоскости осей;

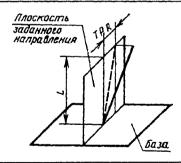
(Общая плоскость осей (прямых) в пространстве - плоскость, проходящая через одну (базовую) ось и точку другой оси)

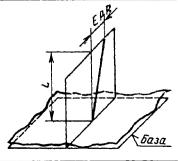


Эскизы Термины, определения, обозначения - область в пространстве, ограниченная цилиндром, диаметр которого равен допуску параллельности ТРА, а ось параллельна базо-ØTPA вой оси Базовая ось 3.2. Отклонение от перпендикулярности *EPR* и допуск перпендикулярности *TPR* **EPR** 3.2.1. Отклонение от перпендикулярности плоскостей - отклонение угла между плоскостями от прямого угла (90°), выраженное в линейных единицах ЕРК на длине нормируемого **участка** 3.2.2. Допуск перпендикулярности - наибольшее допускаемое значение отклонения от перпендикулярности База TPR3.2.3. Поле допуска перпендикулярности плоскостей - область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску перпендикулярности ТРК, и перпенпикулярными базовой плоскости База EPR 3.2.4. Отклонение от перпендикулярности плоскости или оси (или прямой) относительно оси 90° (прямой) - отклонение угла между плоскостью или осью (прямой) и базовой осью от прямого угла (90°), выраженное в линейных единицах *EPR* на длине нормируемого участка Базовая ось


Термины, определения, обозначения

3.2.5. Поле допуска перпендикулярности влоскости или оси (или прямой) относительно оси (прямой) - область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску перпендикулярности ТРР, и перпендикулярными базовой оси (прямой)


Эскизы


3.2.6. Отклонение от перпендикулярности оси (или прямой) относительно плоскости в заданном направлении - отклонение угла между проекцией оси поверхности вращения (прямой) на плоскость заданного направления (перпендикулярную базовой плоскости) и базовой плоскостью от прямого угла (90°), выраженное в линейных единицах *EPR* на длине нормируемого участка

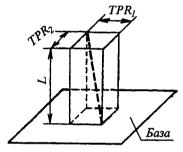
3.2.7. Поле допуска перпендикулярности оси (или прямой) относительно плоскости в заданном направлении - область на плоскости заданного направления, ограниченная двумя параглельными прямыми, отстоящими друг от друга на расстоянии, равном допуску перпендикулярности TPR и перпендикулярности к базовой плоскости

3.2.8. Отклонение от перпендикулярности оси (или прямой) относительно плоскости - отклонение угла между осью поверхности вращения (прямой) и базовой плоскостью от прямого угла (90°), выраженное в линейных единицах *EPR* на длине нормируемого участка

Термины, определения, обозначения

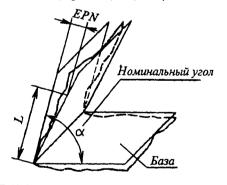

3.2.9. Поле допуска перпендикулярности оси

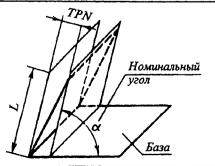
3.2.9. Поле допуска перпендикулярности оси (или прямой) относительно плоскости:


1 - область в пространстве, ограниченная цилиндром, диаметр которого равен допуску

перпендикулярности ТРК, а ось перпендикулярна базовой плоскости:

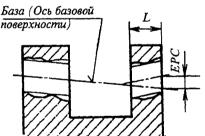
2 - область в пространстве, ограниченная прямоугольным параглелепипедом, стороны сечения которого равны допускам перпендикулярности оси (прямой) в двух заданных взаимно перпендикулярных направлениях TPR_1 и TPR_2 , боковые грани перпендикулярны базовой плоскости и плоскостям заданных направлений


Эскизы


3.3. Отклонение EPN в допуск наклона TPN (термины, приведенные в п. 3.3, применяют при любых номинальных углах наклона, кроме 0°, 90°, 180°)

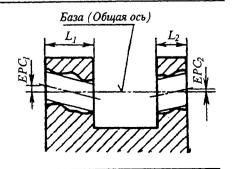
3.3.1. Отклоненне наклона плоскости относительно плоскости или оси (или прямой) - отклонение угла между плоскостью и базовой плоскостью или базовой осью (прямой) от номинального угла, выраженное в линейных единицах *EPN* на длине нормируемого участка

3.3.2. Допуск наклона - наибольшее допускаемое значение отклонения наклона

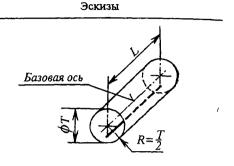


3.3.3. Поле допуска наклона плоскости относительно плоскости или оси (вли прямой) - область в пространстве, ограниченная двумя параплельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску наклона *TPN*, и расположенными под номинальным углом к базовой плоскости или базовой оси (прямой)

Продолжение табл. 25 Термины, определения, обозначения Эскизы 3.3.4. Отклонение наклона оси (или прямой) относительно оси (прямой) или плоскости отклонение угла между осью поверхности врашения (прямой) и базовой осью или базовой плоскостью от номинального угла, выраженное в линейных единицах ЕРN на плине нормируемого участка Номинальный **угол** База TPN 3.3.5. Поле допуска наклона оси (или прямой) относительно оси (прямой) или плоскости область на плоскости, ограниченная двумя параллельными прямыми, отстоящими друг Номинальный от друга на расстоянии, равном допуску наклона ТРИ, и расположенными под номиигол нальным углом к базовой оси (прямой) или базовой плоскости База 3.4. Отклонение от соосности EPC и допуск соосности TPC


3.4.1. Отклонение от соосности - наибольшее расстояние между осью рассматриваемой поверхности вращения и базой (осью базовой поверхности или общей осью двух или нескольких поверхностей) на длине нормируемого участка

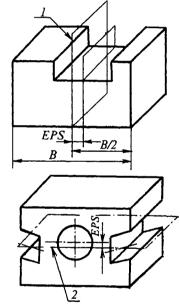
3.4.2. (Исключен).


3.4.3. Допуск соосности:

- 1 допуск в диаметральном выражении удвоенное наибольшее допускаемое значение отклонения от соосности;
- 2 допуск в радиусном выражении наибольшее допускаемое значение отклонения от соосности

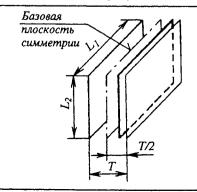
Термины, определения, обозначения

3.4.4. Поле допуска соосности - область в пространстве, ограниченная цилиндром, диаметр которого равен допуску соосности в диаметральном выражении T или удвоенному допуску соосности в радиусном выражении и, а ось совпалает с базовой осью


3.5. Отклонение от симметричности EPS и допуск симметричности TPS

3.5.1. Отклонение от симметричности - наибольщее расстояние между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и базой (плоскостью симметрии базового элемента или общей плоскостью симметрии двух или нескольких элементов) в пределах нормируемого участка

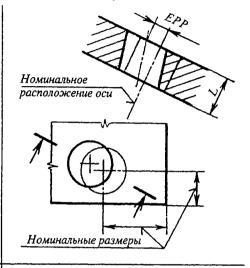
3.5.2. (Исключен, Изм. №1)


3.5.3. Допуск симметричности:

- допуск в диаметральном выражении удвоенное наибольшее допускаемое значение отклонения от симметричности;
- 2 допуск в радиусном выражении наибольшее допускаемое значение отклонения от симметричности

I - база (плоскость симметрии базового элемента);
 2 - база (общая площадь симметрии)

3.5.4. Поле допуска симметричности - область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску симметричности в диаметральном выражении T или удвоенному допуску симметричности в радиусном выражении T/2, и симметричная относительно базовой плоскости симметрии или базовой оси

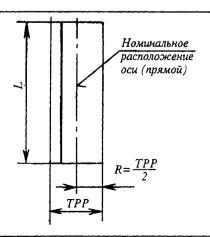


Термины, определения, обозначения

Эскизы

3.6. Позиционное отклонение ЕРР и позиционный допуск ТРР

3.6.1. Позиционное отклонение - наибольшее расстояние *EPP* между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка

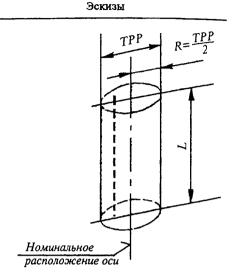

3.6.2. Познционный допуск:

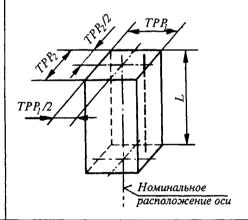
- допуск в диаметральном выражении удвоенное наибольшее допускаемое значение позиционного отклонения элемента;
- 2 допуск в радиусном выражении наибольшее допускаемое значение позиционного отклонения элемента.

(Позиционный допуск рекомендуется указывать в диаметральном выражении.

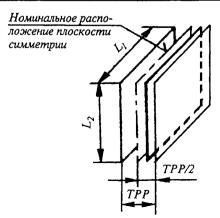
Для нормирования расположения элементов, их осей и плоскостей симметрии, кроме позиционных допусков, могут быть применены способы, основанные на указании предельных отклонений размеров, координирующих элементы)

3.6.3. Поле позиционного допуска оси (или прямой) в плоскости - область на плоскости, ограниченная двумя параглельными прямыми, отстоящими друг от друга на расстоянии, равном позиционному допуску в диаметральном выражении *TPP* или удвоенному позиционному допуску в радиусном выражении *TPP*/2, и симметричная относительно номинального расположения рассматриваемой оси (прямой)



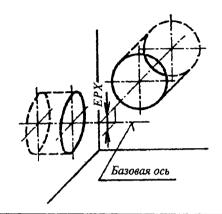

Термины, определения, обозначения

3.6.4. Поле позиционного допуска оси (или прямой) в пространстве:


1 - область в пространстве, ограниченная цилиндром, диаметр которого равен позиционному допуску в диаметральном выражении TPP или удвоенному позиционному допуску в радиусном выражении R, а ось совпадает с номинальным расположением рассматриваемой оси (прямой);

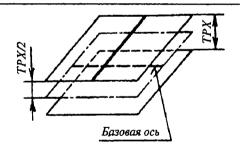
2 - область в пространстве, ограниченная прямоугольным параплелепипедом, стороны сечения которого равны позиционным допускам TPP_1 и TPP_2 в диаметральном выражении или удвоенным позиционным допускам в радиусном выражении $TPP_1/2$ и $TPP_2/2$ в двух взаимно перпендикулярных направлениях, а боковые грани соответственно перпендикулярны плоскостям заданных направлений

3.6.5. Поле позиционного допуска плоскости симметрии или оси в заданном направлении область в пространстве, ограниченная двумя параглельными плоскостями, отстоящими друг от друга на расстоянии, равном позиционному допуску в диаметральном выражении TPP или удвоенному позиционному допуску в радиусном выражении TPP/2, и симметричыми относительно номинального расположения рассматриваемой плоскости симметрии (см. чертеж) или оси; для позиционных допусков оси в заданном направлении плоскости, ограничивающие поле допуска, перпендикулярны заданному направлению



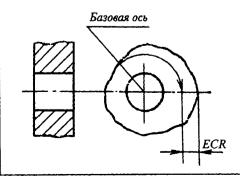
Термины, определения, обозначения

Эскизы


3.7. Отклонение от пересечения ЕРХ и допуск пересечения осей ТРХ

3.7.1. Отклонение от пересечения осей - наименьшее расстояние *EPX* между осями, номинально пересекающимися

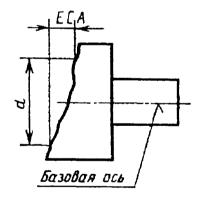
3.7.2. Попуск пересечения осей:


- допуск в диаметральном выражении удвоенное наибольшее допускаемое значение отклонения от пересечения осей;
- 2 допуск в радиусном выражении наибольшее допускаемое значение отклонения от пересечения осей
- 3.7.3. Поле допуска пересечения осей область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску пересечения в диаметральном выражении *TPX* или удвоенному допуску пересечения в радиусном выражении *TPX*/2, и расположенными симметрично относительно базовой оси

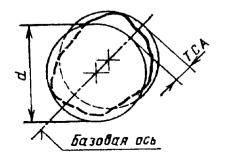
4. СУММАРНЫЕ ОТКЛОНЕНИЯ И ДОПУСКИ ФОРМЫ И РАСПОЛОЖЕНИЯ

4.1. Радиальное биение ECR и допуск радиального биения TCR

4.1.1. Радиальное биение - разность ECR наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярной базовой оси


Продолжение таба, 25

	проосыжение таол. 25
Термины, определения, обозначения	Эскизы
4.1.2. Допуск радвального биення - наиболь- шее допускаемое значение радиального бие- ния	
4.1.3. Поле допуска радиального биения - область на плоскости, перпендикулярной базовой оси, ограниченная двумя концентричными окружностями с центром, лежащим на базовой оси, и отстоящими друг от друга на расстоянии, равном допуску радиального биения <i>TCR</i>	δα 308α η ος δ

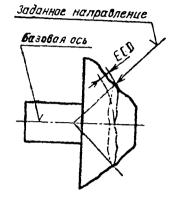

4.2. Тордовое биение ЕСА и допуск тордового биения ТСА

4.2.1. **Торцовое биение** - разность *ECA* наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной базовой оси.

Примечание определяется в сечении торцовой поверхности цилиндром заданного диаметра, соосным с базовой осью, а если диаметр не задан, то в сечении любого (в том числе и наибольшего) диаметра торцовой поверхности

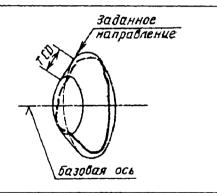
- 4.2.2. Допуск торцового биения наибольшее допускаемое значение торцового биения
- 4.2.3. Поле допуска торпового биения область на боковой поверхности цилиндра, диаметр которого равен заданному или любому (в том числе и наибольшему) диаметру торцовой поверхности, а ось совпадает с базовой осью, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску торцового биения TCA, и перпендикулярными базовой оси

Термины, определения, обозначения


Эскизы

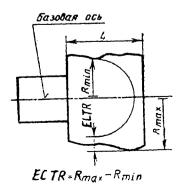
4.3. Биение *ECD* и допуск биения в заданном направлении *TCD*

4.3.1. Биение в заданном направлении - разность *ECD* наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения в сечении рассматриваемой поверхности конусом, ось которого совпадает с базовой осью, а образующая имеет заданное направление, до вершины этого конуса.


(Направление рекомендуется задавать по нормали к рассматриваемой поверхности.

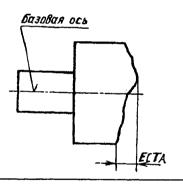
Биение является результатом совместного проявления в заданном направлении отклонений формы профиля рассматриваемого сечения и отклонений расположения оси рассматриваемой поверхности относительно базы)

4.3.2. **Допуск биения в заданном направлении** - наибольшее допускаемое значение биения в заданном направдении

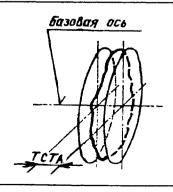

4.3.3. Поле допуска биения в заданном направлении - область на боковой поверхности конуса, ось которого совпадает с базовой осью, а образующая имеет заданное направление, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии вдоль образующей конуса, равном допуску биения TCD, и перпендикулярными базовой оси

4.4. Полное радиальное биение *ECTR* и допуск полного радиального биения *TCTR* (Термины в п. 4.4 относятся к поверхностям с номинальной цилиндрической формой)

4.4.1. Полное радиальное биение - разность *ECTR* наибольшего и наименьшего расстояний от всех точек реальной поверхности в пределах нормируемого участка до базовой оси.


(Полное радиальное биение является результатом совместного проявления отклонения от цилиндричности рассматриваемой поверхности и отклонения от ее соосности относительно базы)

	прооолжение табл. 23
Термины, определения, обозначения	Эскизы
4.4.2. Допуск полного радиального биения - наибольшее допускаемое значение полного радиального биения	
4.4.3. Поле допуска полного радиального биения - область в пространстве, ограниченная двумя цилиндрами, ось которых совпадает с базовой осью, а боковые поверхности отстоят друг от друга на расстоянии, равном допуску полного радиального биения <i>TCTR</i>	To make the second seco


4.5. Полное торцовое биение *ECTA* и допуск полного торцового биения *TCTA* (Термины в п. 4.5 относятся к торцовым поверхностям с номинальной плоской формой)

4.5.1. Полное торцовое биение - разность ECTA наибольшего и наименьшего расстояний от точек всей торцовой поверхности до плоскости, перпендикулярной базовой оси. (Полное торцовое биение является результатом совместного проявления отклонения от плоскостности рассматриваемой поверхности и отклонения от ее перпендикулярности относительно базы)

4.5.2. Допуск полного торцового бнения - наибольшее допускаемое значение полного торцового биения

4.5.3. Поме допуска полного торцового бнения - область в пространстве, ограниченная двумя параллельными плоскостями, отстоящими друг от друга на расстоянии, равном допуску полного торцового биения TCTA, и перпендикулярными базовой оси

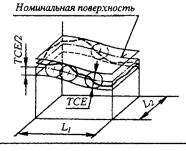
Термины, определения, обозначения

Эскизы

4.6. Отклонение ECL и допуск формы заданного профиля TCL

- 4.6.1. Отклонение формы заданного профиля наибольшее отклонение *ECL* точек реального профиля от номинального профиля, определяемое по нормали к номинальному профилю в пределах нормируемого участка
- 4.6.2. Допуск формы заданного профиля:
- допуск в диаметральном выражении удвоенное наибольшее допускаемое значение отклонения формы заданного профиля;
- 2 допуск в радиусном выражении наибольшее допускаемое значение отклонения формы заданного профиля
- 4.6.3. Поле допуска формы заданного профиля область на заданной плоскости сечения поверхности, ограниченная двумя линиями, эквидистантными номинальному профилю, и отстоящими друг от друга на расстоянии, равном допуску формы заданного профиля в диаметральном выражении TCL или удвоенному допуску формы заданного профиля в радиусном выражении TCL/2.


Линии, ограничивающие поле допуска, являются огибающими семейства окружностей, диаметр которых равен допуску формы заданного профиля в диаметральном выражении TCL, а центры находятся на номинальном профиле



4.7. Отклонение ЕСЕ и допуск формы заданной поверхности ТСЕ

- 4.7.1. Отклонение формы заданной поверхности наибольшее отклонение *ECE* точек реальной поверхности от номинальной поверхности, определяемое по нормали к номинальной поверхности в пределах нормируемого участка
- 4.7.2. Допуск формы заданной поверхности:
- допуск в диаметральном выражении удвоенное наибольшее допускаемое значение отклонения формы заданной поверхности;
- 2 допуск в радиусном выражении наибольшее допускаемое значение отклонения формы заданной поверхности
- 4.7.3. Поле допуска формы заданной поверхности область в пространстве, ограниченная двумя поверхностями, эквидистантными номинальной поверхности и отстоящими друг от друга на расстоянии, равном допуску формы заданной поверхности в диаметральном выражении *TCE* или удвоенному допуску формы заданной поверхности в радиусном выражении *TCE*/2.

Термины, определения, обозначения

Поверхности, ограничивающие поле допуска, являются огибающими семейства сфер, диаметр которых равен допуску формы заданной поверхности в диаметральном выражении TCE, а центры находятся на номинальной поверхности.

Примечания:

1. Термины в пп. 4.6 и 4.7 применяются в тех случаях, когда профиль (поверхность) задан номинальными размерами - координатами отдельных точек профиля (поверхности) или размерами его элементов без предельных отклонений этих размеров (размерами в рамках).

2. В тех случаях, когда базы не заданы, расположение номинального профиля (поверхности) относительно реального определяется условием получения минимального отклонения формы профиля (поверх-

ности).

3. Отклонение формы заданного профиля (поверхности) является результатом совместного проявления отклонений размеров и формы профиля (поверхности), а также отклонений расположения его относительно запанных баз.

4. Кроме тех видов суммарных отклонений и допусков, которые приведены в пп. 4.1 - 4.7, в обоснованных случаях могут нормироваться и другие суммарные отклонения формы и расположения поверхностей или профилей (см. ГОСТ 24642-81)

Эскизы

ЧИСЛОВЫЕ ЗНАЧЕНИЯ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

ГОСТ 24643-81 распространяется на допуски формы и расположения поверхностей деталей машин и приборов и устанавливает числовые значения допусков, которые должны применяться для сборочных единиц в машиностроении и в других отраслях промышленности.

Числовые значения допусков формы, допусков расположения и суммарных допусков формы и расположения поверхностей должны соответствовать указанным в табл. 26.

Для отдельных видов допусков формы и расположения и суммарных допусков формы и расположения поверхностей числовые значения предпочтительней устанавливать в соответствии со степенями точности, приведенными в табл. 27 - 31.

Допускается: 1) продолжение рядов допусков по табл. 27 - 31 в сторону более точных (0; 01; 02 и т.д.) или более грубых (17, 18 и т.д.) степеней, а также для больших номинальных размеров при соблюдении закономерностей построения рядов, принятых в стандарте; 2) назначение тех числовых значений по табл. 26, которые не предусмотрены степенями точности для данного интервала номинальных размеров.

Для позиционных допусков, допусков формы заданного профиля или заданной поверхности числовые значения должны назначаться по табл. 26.

26. Числовые значения допусков, мкм

0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8
1	1,2	1,6	2	2,5	3	4	5	6	8
10	12	16	20	25	30	40	50	60	80
100	120	160	200	250	300	400	500	600	800
1000	1200	1600	2000	2500	3000	4000	5000	6000	8000
10000	12000	16000	-	-	-	-	-	-	-

Примечания: 1. Ряд числовых значений допускается продолжать в сторону меньших или больших значений при соблюдении закономерности построения ряда (см. ГОСТ 24643-81, приложение 1).

2. Числовые значения допусков формы и расположения, не предусмотренные стандартом, являются специальными. Допускается применять их, если они предусмотрены в других стандартах для соответствующих видов продукции.

27. Допуски плоскостности и прямолинейности

								ځ	Crement wound	очности							
Интервалы	UIDI							- 1	T G	٦	9	:	5	13	-	15	14
номинальных	SHBIX	-	2	3	4	5	9	7	8	6	2		71	<u>- 1</u>	7		0
размеров, мм	, MM						Допуски, мкм	1, MKM							Допуски, мм	и, мм	
До	10	0,25	4,0	9,0	1	1,6	2,5	4	9	10	16	25	40	90,0	0,1	91,0	0,25
CB. 10 *	16	6,0	6,0	8,0	1,2	2	8	5	∞	12	70	30	20	80,0	0,12	0,2	0,3
* 16 *	25	6,4	9,0		1,6	2,5	4	9	10	16	25	40	09	0,1	0,16	0,25	0,4
* 25 *	40	6,0	8,0	1,2	2	3	S	∞	12	20	30	20	80	0,12	0,2	0,3	0,5
* 40 *	63	9,0		1,6	2,5	4	9	10	16	25	40	09	100	0,16	0,25	0,4	9,0
* 63 *	100	0,8	1,2	7	8	5	∞	12	20	30.	50	80	120	0,2	6,3	0,5	8,0
_			1,6	2,5	4	9	10	16	25	40	09	100	160	0,25	0,4	9,0	1
» 160 »		1,2	7	3	2	∞	12	70	30	20	08	120	200	0,3	6,0	8,0	1,2
» 250 »		1,6	2,5	4	9	10	16	25	40	09	100	160	250	0,4	9,0	-	1,6
* 400 *	630	2		S	∞	12	70	30	90	80	120	200	300	5,0	8,0	1,2	7
» 630 »	1000	2,5	4	9	10	16	25	40	09	100	160	250	400	9,0	-	1,6	2,5
* 1000 *	1600	m 	5	∞	12	70	30	20	08	120	700	300	200	8,0	1,2	7	3
» 1600 »	2500	4	9	10	16	25	40	09	100	160	250	400	009	-	1,6	2,5	4
» 2500 »	4000	\$	∞	12	20	30	20	80	120	700	300	200	800	1,2	7	m	5
» 4000 »	6300	9	10	16	25	 6	99	100	160	250	400	009	1000	1,6	2,5	4	9
» 6300 » 10000	10000	∞	12	70	39	20	80	120	200	300	200	800	1200	2	3	5	∞
,			- Si	THE PERSON NAMED IN	reought out	TOTAL TEON	почимается		номинальная дапна новмивуемого участка	ино ноп	ONDAUIN	20 VYACE	ика Еспи		нормируемый участок не	й участ	ок не

Примечание стание. Под *номинальным размером* понимается *номинальная длина нормируємого участика.* Если нормируемый участок не задан, то под номинальным размером понимается номинальная длина большей стороны поверхности или номинальный больший диаметр торцевой поверхности.

28. Допуски цилиндричности, круглости, профиля продольного сечения

					machin a	ad your com	do gonform demagni mooth, approorm, apognia apogon	white contracts	a, apoyr	Worden were							
Интервалы	UIBI							ర్	Степени точности	очности							
номинальных	PH-BIX	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
размеров, мм	, мм						Допуски, мкъ	и, мкл						-	Допуски, мм	ч, мм	
До	0 3	0,3	5,0	8,0	1,2	2	3	5	8	12	20	30	20	80,0	0,12	0,2	0,3
CB. 3 »	10	6,4	9,0	-	1,6	2,5	4	9	01	16	25	40	09	0,1	0,16	0,25	0,4
* 10 *	18	6,5	8,0	1,2	2	ю	5	∞	12	70	30	20	98	0,12	0,2	6,0	6,5
» 18 »	30	9,0		1,6	2,5	4	9	10	16	25	04	09	100	0,16	0,25	6,0	9,0
* 30 *	50	8,0	1,2	2	3	5	∞	12	70	30	20	80	120	0,2	0,3	6,0	8,0
* 20 *	120		1,6	2,5	4	9	10	16	25	40	09	100	160	0,25	4,0	9,0	
* 120 *	250	1,2	7	٣	5	∞	12	70	90	20	08	120	200	0,3	5,0	8,0	1,2
* 250 *	400	1,6	2,5	4	9	10	16	25	40	09	100	160	250	6,0	9,0		1,6
* 400 *	630	7	М	5	∞	12	20	30	20	08	120	200	300	5,0	8,0	1,2	7
* 630 *	1000	2,5	4	9	10	16	25	40	09	001	160	250	400	9,0	-	1,6	2,5
* 1000	1600	m	5	~	12	20	30	20	08	120	200	300	200	8,0	1,2	2	m
* 1600 *	2500	4	9	10	16	25	40	09	100	160	250	400	009	-	1,6	2,5	4
ţ																	

Примечания поверхности.

29. Допуски параллельности, перпендикулярности, наклона, торпевого биения и полного торцевого биения

11							Степени точности	ن ا	Степени точности	очности							
инлервалы номинальных	BALIM	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
размеров, мм)В, ММ						Допуски, мкм	и, мкм							Допуски, мм	и, мм	
	Jo 10	0,4	9'0	1	1,6	2,5	4	9	10	16	25	40	09	0,1	0,16	0,25	0,4
CB. 10 *	» 16	6,0	8,0	1,2	2	6	>	8	12	20	30	20	80	0,12	0,2	6,0	0,5
» 16 »	* 25	9,0	-	1,6	2,5	4	9	10	16	25	40	99	100	0,16	0,25	4,0	9,0
* 25 *	* 40	8,0	1,2	2	٣	S	∞	12	70	30	20	80	120	0,2	0,3	0,5	8,0
* 40 *	* 63	-	1,6	2,5	4	9	10	16	25	9	99	100	160	0,25	6,0	9,0	_
* 63 *	* 100	1,2	7	3	2	∞	12	20	8	20	08	120	700	0,3	5,0	8,0	1,2
* 100 *	» 160	1,6	2,5	4	9	10	16	25	6	09	100	160	250	6,0	9,0	-	1,6
* 160 *	* 250	7	٣	S	∞	12	70	30	95	08	120	200	300	5,0	8,0	1,2	7
* 250 *	* 400	2,5	4	9	2	16	25	40	09	100	160	250	400	9,0		1,6	2,5
* 400 *	» 630	۳	<u>د</u>	∞	12	20	98	20	08	120	700	300	200	8,0	1,2	7	3
* 630 *	* 1000	4	9	10	16	25	40	09	100	160	250	400	009	-	1,6	2,5	4
* 1000 *	* 1600	2	~	12	20	30	20	08	120	200	300	200	800	1,2	2	ю	5
* 1600 *	* 2500	9	10	16	25	4	9	100	160	250	400	009	1000	1,6	2,5	4	9
* 2500 *	* 4000	∞	12	20	30	20	08	120	700	300	200	800	1200	2	м	5	œ
* 4000 *	» 6300	10	16	25	40	99	100	160	250	400	009	1000	1600	2,5	4	9	10
» 6300	» 6300 * 10000	12	20	30	50	80	120	200	300	200	800	1200	2000	3	5	8	12
1 11	Примечания	Вин	1. При	При назначении лопусков параллельности, перпенликулярности, наклона пол <i>номинальным размером</i> понимается	нии лоп	усков па	зралиель	ности. 1	терпенли	4KVJISIDHO	эсти. на	клона по	нижон пс	идирия	размеро	и пони	Авется

II р и м е ч а н и я : 1. При назначении допусков паралисльности, перпендикулярности, наклона под *номинальным размером* понимается номинальная длина нормируемого участка или номинальная длина всей рассматриваемой поверхности (для допуска паралпельности номинальная длина большей стороны), если нормируемый участок не задан.

2. При назначении допусков торцевого биения под *номинальным размером* понимается заданный коминальный диаметр или номинальный *больший диаметр* торцевой поверхности. При назначении допусков полного торцевого биения под номинальным размером понимается номинальный больший диаметр рассматриваемой торцевой поверхности.

30. Допуски радиального биения и полного радиального биения. Допуски соосности, симметричности, пересечения осей в диаметральном выражения

	16		8,0	-	1,2	1,6	2	2,5	ю	4	5	9	∞	10	
•	15	и, мм	5,0	9,0	8,0		1,2	1,6	2	2,5	ж	4	٧.	9	
	41	Допуски, мм	6,3	0,4	0,5	9,0	8,0	1	1,2	1,6	7	2,5	3	4	
	13		0,2	0,25	0,3	6,4	5,0	9'0	8,0	-	1,2	1,6	7	2,5	
	12		120	160	200	250	300	400	200	009	800	1000	1200	1600	
	11		08	100	120	160	200	250	300	400	200	009	800	1000	
	10		90	09	80	100	120	160	200	250	300	400	200	009	
Степени точности	6		30	40	20	09	08	100	120	160	200	250	300	400	
гепени т	8		20	25	30	40	20	09	80	100	120	160	200	250	
රි	7	и, мкм	12	16	70	25	30	40	90	09	80	100	120	160	
	9	Допуски, мкм	8	10	12	16	20	25	30	40	20	09	98	100	
	5		5	9	∞	10	12	16	70	25	30	40	20	09	
	4		3	4	\$	9	∞	10	12	16	20	25	30	40	
	3		2	2,5	m	4	5	9	∞	10	12	16	70	25	
	2		1,2	1,6	7	2,5	۳	4	2	9	∞	10	12	16	
	-		8,0	1	1,2	1,6	5	2,5	3	4	8	9	∞	10	
JBi	ных	MM	3	10	18	30	50	120	250	400	630	1000	1600	2500	
Интервалы	номинальных	размеров, мм	Д	3, 3,	* 10 *	* 18 *	30 *	* 20 *	* 120 *	* 250 *	* 400 *	* 630 *	* 1000 *	* 1600 *	
	-	_		Ĉ				-	-	-	-	^		~	

Примечание. При назначении допусков радиального биения и полного радиального биения под номинальным размером понимается номинальный диаметр рассматриваемой поверхности. При назначении допусков соосности, симметричности, пересечения осей под номинальным размером понимается номинальный диаметр рассматриваемой поверхности вращения или номинальный размер между поверхностями, образующими рассматриваемый симметричный элемент. Если база не указывается, то допуск определяется по элементу с большим размером.

31. Допуски соосности, симметричности и пересечения осей в радиусном выражении

II. moon to									Степени точности	очности							
интервалы номинальных	, XI	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16
размеров, мм	W						Допуски, мкм	ч, мкм							Допуски, мм	и, мм	
До	3	4,0	9,0	1	1,6	2,5	4	9	10	16	25	40	09	0,1	0,16	0,25	0,4
CB. 3 *	10	0,5	8,0	1,2	2	8	8	∞	12	70	30	20	08	0,12	0,2	0,3	5,0
* 10 *	18	9,0	Н	1,6	2,5	4	9	10	16	25	04	09	100	0,16	0,25	0,4	9,0
* 18 *	30	8,0	1,2	2	ю	\$	8	12	20	30	20	08	120	0,2	6,3	0,5	8,0
* 30 *	20	-	1,6	2,5	4	9	10	16	25	40	09	100	160	0,25	9,4	9,0	
» 20 »	120	1,2	7	т	S	∞	12	70	30	50	80	120	200	0,3	5'0	8,0	1,2
* 120 *	250	1,6	2,5	4	9	10	16	25	6	09	100	160	250	0,4	9,0	-	1,6
» 250 »	400	7	ж	5	∞	12	20	30	20	08	120	200	300	5,0	8,0	1,2	7
» 400 »	630	2,5	4	9	10	16	25	40	09	001	160	250	400	9,0		1,6	2,5
» 630 »	1000	3	5	∞	12	70	30	20	80	120	200	300	200	8,0	1,2	7	3
» 1000 »	1600	4	9	10	16	25	40	09	100	160	250	400	009		9,1	2,5	4
» 1600 »	2500	5	∞	12	70	30	20	80	120	200	300	200	800	1,2	2	3	S
-] ,],] ;				

Примечание. Под номинальным размером понимается номинальный диаметр рассматриваемой поверхности вращения или номинальный размер между поверхностями, образующими рассматриваемый симметричный элемент. Если база не указывается, то допуск определяется по элементу с большим размером.

РЕКОМЕНДУЕМЫЕ СООТНОШЕНИЯ МЕЖДУ ДОПУСКАМИ ФОРМЫ И РАСПОЛОЖЕНИЯ И ДОПУСКОМ РАЗМЕРА (по ГОСТ 24643-81)

1. Рекомендуются следующие уровни относительной геометрической точности (характеризуются соотношением между допуском формы или расположения и допуском размера):

А - нормальная (для допуска формы или расположения используется примерно 60 %

допуска размера);

В - повышенная (для допуска формы или расположения используется примерно 40 % лопуска размера);

С - высокая (для допуска формы или расположения используется примерно 25 % до-

пуска размера).

Указанные уровни относительной геометрической точности не исключают возможности в обоснованных случаях назначать допуск формы или расположения, для которого используется менее 25 % допуска размера.

2. Допуски цилиндричности, круглости и профиля продольного сечения, соответствующие уровням А, В и С относительной геометрической точности в зависимости от квалитета допуска размера, приведены в табл. 32.

Примечание. Допуски формы цилиндрических поверхностей, соответствующие уровням А, В и С относительной геометрической точности, составляют примерно 30, 20 и 12 % допуска размера, так как допуск формы ограничивает отклонение радиуса, а допуск размера - отклонение диаметра поверхности.

3. Числовые значения допусков формы цилиндрических поверхностей, указанные в табл. 32 для уровней А, В и С, соответствуют степеням точности по табл. 28.

Уровни относительной геометрической точности и соответствующие им степени точности формы цилиндрических поверхностей приведены в табл. 33.

4. Допуски прямолинейности, плоскостности и параглельности, соответствующие уровням А, В и С относительной геометрической точности в зависимости от квалитета допуска размера, приведены в табл. 34.

33. Соответствие степеней точности формы цилиндрических поверхностей уровням геометрической точности

Квалитеты допуска размера	Уровни гео- метрической точности	Степени точности по табл. 28	Квалитеты допуска размера	Уровни гео- метрической точности	Степени точности по табл. 28
	А	3		A	8
4	В	2	9	В	7
	С	1		С	6
	A	4		A	9
5	В	3	10	В	8
	С	2		С	7
	A	5		A	10
6	В	4	11	В	9
	С	3		С	8
	A	6		A	11
7	В	5	12	В	10
	С	4		С	9
	A	7			
8	В	6			
	С	5			

32. Допуски формы цилиндрических поверхностей в зависимости от квалитета допуска размера Допуск, мкм

Интервалы				ŀ	Свалите	ты дог	пуска г	азмера	1			
номинальных		4			5			6			7	
размеров,			(Этноси	тельна	я геом	етриче	ская то	чность			
мм	Α	В	С	Α	В	С	A	В	С	A	В	С
До 3	0,8	0,5	0,3	1,2	0,8	0,5	2	1,2	0,8	3	2	1,2
Св. 3» 6	1	0,6	0,4	1,6	1	0,6	2,5	1,6	1	4	2,5	1,6
» 6» 10	1	0,6	0,4	1,6	1	0,6	2,5	1,6	i	4	2,5	1,6
» 10 » 18	1,2	0,8	0,5	2	1,2	0,8	3	2	1,2	5	3	2
» 18 » 30	1,6	1	0,6	2,5	1,6	1	4	2,5	1,6	6	4	2,5
» 30 » 50	2	1,2	0,8	3	2	1,2	5	3	2	8	5	3
» 50 » 80	2,5	1,6	1	4	2,5	1,6	6	4	2,5	10	6	4
» 80 » 120	2,5	1,6	1	4	2,5	1,6	6	4	2,5	10	6	4
» 120 » 180	3	2	1,2	5	3	2	8	5	3	12	8	5
» 180 » 250	3	2	1,2	5	3	2	8	5	3	12	8	5
» 250 » 315	4	2,5	1,6	6	4	2,5	10	6	4	16	10	6
» 315 » 400	4	2,5	1,6	6	4	2,5	10	6	4	16	10	6
» 400 » 500	5	3	2	8	5	3	12	8	5	20	12	8
» 500 » 630	j	3	2	8	5	3	12	8	5	20	12	8
» 630 » 800	6	4	2,5	10	6	4	16	10	6	25	16	10
» 800 » 1000	6	4	2,5	10	6	4	16	10	6	25	16	10
» 1000 » 1250	8	5	3	12	8	5	20	12	8	30	20	12
» 1250 » 1600	8	5	3	12	8	5	20	12	8	30	20	12
» 1600 » 2000	10	6	4	16	10	6	25	16	10	40	25	16
» 2000 » 2500	10	6	4	16	10	6	25	16	10	40	25	16

Продолжение табл. 32

Интервалы					K	Свали	геты /	цопус	ка ра	змера					
номинальных		8			9			10			11			12	
размеров,				O	гноси	тельн	ая гес	метр	ическ	от ва	чност	ъ			
мм	A	В	С	Α	В	С	Α	В	С	A	В	С	Α	В	С
До 3	5	3	2	8	5	3	12	8	5	20	12	8	30	20	12
Св. 3» 6	6	4	2,5	10	6	4	16	10	6	25	16	10	40	25	16
» 6» 10	6	4	2,5	10	6	4	16	10	6	25	16	10	40	25	16
» 10 » 18	8	5	3	12	8	5	20	12	8	30	20	12	50	30	20
» 18 » 30	10	6	4	16	10	6	25	16	10	40	25	16	60	40	25
» 30 » 50	12	8	5	20	12	8	30	20	12	50	30	20	80	50	30
» 50 » 80	16	10	6	25	16	10	40	25	16	60	40	25	100	60	40
» 80 » 120	16	10	6	25	16	10	40	25	16	60	40	25	100	60	40
» 120 » 180	20	12	8	30	20	12	50	30	20	80	50	30	120	80	50
» 180 » 250	20	12	8	30	20	12	50	30	20	80	50	30	120	80	50
» 250 » 315	25	16	10	40	25	16	60	40	25	100	60	40	160	100	60
» 315 » 400	25	16	10	40	25	16	60	40	25	100	60	40	160	100	60
» 400 » 500	30	20	12	50	30	20	80	50	30	120	80	50	200	120	80
» 500 » 630	30	20	12	50	30	20	80	50	30	120	80	50	200	120	80
» 630 » 800	40	25	16	60	40	25	100	60	40	160	100	60	250	160	100
» 800 » 1000	40	25	16	60	40	25	100	60	40	160	100	60	250	160	100
» 1000 » 1250	50	30	20	80	50	30	120	80	50	200	120	80	300	200	120
» 1250 » 1600	50	30	20	80	50	30	120	80	50	200	120	80	300	200	120
» 1600 » 2000	60	40	30	100	60	40	160	100	60	250	160	100	400	250	160
» 2000 » 2500	60	40	30	100	60	40	160	100	60	250	160	100	400	250	160

34. Допуски плоскостности, прямолинейности и параллельности в зависимости от квалитета допуска размера Допуск, мкм

Интервалы				K	валите	гы дол	уска р	азмера				
номинальных		4			5			6			7	
размеров,			C	тноси	гельная	геоме	тричес	кая то	чность			
ММ	Α	В	С	A	В	С	A	В	С	A	В	С
До 3	2	1,2	0,8	2,5	1,6	1	4	2,5	1,6	6	4	2,5
Св. 3 » 6	2,5	1,6	1	3	2	1,2	5	3	2	8	5	3
» 6 » 10	2,5	1,6	1	4	2,5	1,6	5	3	2	8	5	3
» 10 » 18	3	2	1,2	5	3	2	6	4	2,5	10	6	4
» 18 » 30	4	2,5	1,6	5	3	2	8	5	3	12	8	5
» 30 » 50	4	2,5	1,6	6	4	2,5	10	6	4	16	10	6
» 50 » 80	5	3	2	8	5	3	12	8	5	20	12	8
» 80 » 120	6	4	2,5	10	6	4	12	8	5	20	12	8
» 120 » 180	8	5	3	10	6	4	16	10	6	25	16	10
» 180 » 250	8	5	3	12	8	5	16	10	6	25	16	10
» 250 » 315	10	6	4	12	8	5	20	12	8	30	20	12
» 315 » 400	10	6	4	16	10	6	20	12	8	30	20	12
» 400 » 500	12	8	5	16	10	6	25	16	10	40	25	16
» 500 » 630	12	8	5	20	12	8	25	16	10	40	25	16
» 630 » 800	16	10	6	20	12	8	30	20	12	50	30	20
» 800 » 1000	20	12	8	25	16	10	30	20	12	50	30	20
» 1000 » 1250	20	12	8	25	16	10	40	25	16	60	40	25
» 1250 » 1600	25	16	10	30	20	12	50	30	20	80	50	30
» 1600 » 2000	30	20	12	40	25	16	60	40	25	100	60	40
» 2000 » 2500	30	20	12	50	30	20	60	40	25	120	80	50

Продолжение табл. 34

Интервалы	Квалитеты допуска размера																
номинальных		8			9			10		11 12				11			
размеров,	Относительная геометрическая точность																
мм	Α	В	С	A	В	С	Α	В	С	A	В	С	A	В	С		
До 3	10	6	4	16	10	6	25	16	10	40	25	16	60	40	25		
Св. 3 » 6	12	8	5	20	12	8	30	20	12	50	30	20	80	50	30		
» 6 » 10	12	8	5	20	12	8	30	20	12	50	30	20	80	50	30		
» 10 » 18	16	10	6	25	16	10	40	25	16	60	40	25	100	60	40		
» 18 » 30	20	12	8	30	20	12	50	30	20	80	50	30	120	80	50		
» 30 » 50	25	16	10	40	25	16	60	40	25	100	60	40	160	100	60		
» 50 » 80	30	20	12	50	30	20	80	50	30	120	80	50	200	120	80		
» 80 » 120	30	20	12	50	30	20	80	50	30	120	80	50	200	120	80		
» 120 » 180	40	25	16	60	40	25	100	60	40	160	100	60	250	160	100		
» 180 » 250	40	25	16	60	40	25	100	60	40	160	100	60	250	160	100		
» 250 » 315	50	30	20	80	50	30	120	80	50	200	120	80	300	200	120		
» 315 » 400	50	30	20	80	50	30	120	80	50	200	120	80	300	200	120		
» 400 » 500	60	40	25	100	60	40	160	100	60	250	160	100	400	250	160		
» 500 » 630	60	40	25	100	60	40	160	100	60	250	160	100	400	250	160		
» 630 » 800	80	50	30	120	80	50	200	120	80	300	200	120	500	300	200		
» 800 » 1000	80	50	30	120	80	50	200	120	80	300	200	120	500	300	200		
» 1000 » 1250	100	60	40	160	100	60	250	160	100	400	250	160	600	400	250		
» 1250 » 1600	120	80	50	200	120	80	300	200	120	500	300	200	800	500	300		
» 1600 » 2000	160	100	60	250	160	100	400	250	160	600	400	250	1000	600	400		
» 2000 » 2500	200	120	80	300	200	120	500	300	200	800	500	300	1200	800	500		

УКАЗАНИЯ НА ЧЕРТЕЖАХ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ (по ГОСТ 2.308-79)

- 1. Допуски формы и расположения обозначают на чертеже знаком (графическим символом) согласно табл. 35. Для допусков формы и расположения поверхностей, не предусмотренных табл. 35, вид допуска может быть указан текстом в технических требованиях.
- 2. Если допуск формы или расположения указывают текстом, то соответствующий текст полжен сопержать:

вид допуска;

указание поверхности или другого элемента, для которого задается допуск (для этого используют буквенное обозначение поверхности или конструктивное наименование, определяющее поверхность);

числовое значение допуска в миллиметрах;

для допусков расположения и суммарных допусков формы и расположения дополнительно указывают базы, относительно которых задается допуск, и оговаривают зависимые допуски расположения или формы.

3. Суммарные допуски формы и расположения, для которых не установлены отдельные графические знаки, обозначают знаками составных допусков в такой последовательности:

знак допуска расположения;

знак допуска формы.

Например, суммарные допуски параллельности и плоскостности обозначают согласно рис. 9, a; перпендикулярности и плоскостности - согласно рис. 9, b; наклона и плоскостности - согласно рис. 9, b.

35. Знаки (графические символы) видов допусков формы и расположения поверхностей

Группа допусков	Вид допуска	Знак	Группа допусков	Вид допуска	Знак
	Допуск прямо- линейности			Т	
	Допуск пло- скостности			Допуск радиального биения	
Допуски формы	Допуск круг- лости	0		Допуск тор- цового бие-	1
	Допуск цилин- дричности	\square		ния Допуск бие- ния в задан-	
	Допуск про- филя продоль- ного сечения			ния в задан- ном направ- лении	
	Допуск парал- лельности	//	Суммарные допуски формы и	Допуск пол- ного радиаль-	
	Допуск пер- пендикуляр- ности		расположе- ния	ного биения Допуск пол- ного торцо-	11
	Допуск накло- на	_		вого биения	
Допуски расположения	Допуск соос- ности			Допуск фор-	
	Допуск сим- метричности			мы заданного профиля	
	Позиционный допуск	+		Допуск фор- мы заданной поверхности	
	Допуск пере- сечения осей	X		Поворжности	

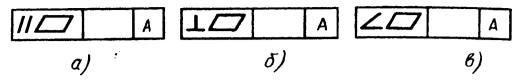


Рис. 9

4. При необходимости нормирования допусков формы и расположения, не указанных на чертеже числовыми значениями и не ограничиваемых другими указанными в чертеже допусками формы и расположения, в технических требованиях чертежа должна быть приведена общая запись о неуказанных допусках формы и расположения со ссылкой на ГОСТ 25069 - 81 или другие документы, устанавливающие неуказанные допуски формы и расположения.

Например: 1. Неуказанные допуски формы и расположения - по ГОСТ 25069-81.

2. Неуказанные допуски соосности и симметричности - по ГОСТ 25069-81.

нанесение обозначений допусков

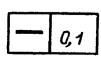
- 1. Знак и числовое значение допуска или збозначение базы вписывают в рамку допуска, зазделенную на две или более частей, в слеующем порядке (слева направо):
- в первой части знак допуска согласно абл. 35;
- во второй числовое значение допуска в миллиметрах (рис. 10);
- в третьей и последующих буквенное обозначение базы (баз) согласно пп. 5 и 7 раздела "Обозначение баз" (рис. 11).
- Рамки допуска вычерчивают сплошными тонкими линиями. Высота цифр, букв и знаков, вписываемых в рамки, должна быть равна размеру шрифта размерных чисел.

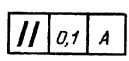
Рамку допуска выполняют предпочтительно в горизонтальном положении, в необходимых случаях допускается выполнять рамку вертикально так, чтобы данные читались с правой стороны чертежа.

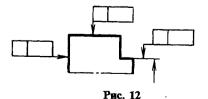
Пересекать рамку допуска какими-либо линиями не допускается. 3. Рамку допуска соединяют при помощи линии, оканчивающейся стрелкой, с контурной линией или выносной линией, продолжающей контурную линию элемента, ограниченного допуском (рис. 12).

Соединительная линия может быть прямой (рис. 13, $a - \infty$) или ломаной (рис. 13, $\partial - n$), однако конец линии, оканчивающейся стрелкой, должен быть обращен к контурной (выносной) линии элемента, ограниченного допуском в направлении измерения отклонения.

В случаях, когда это оправдано удобствами выполнения чертежа, допускается:


начинать соединительную линию от второй (задней) части рамки допуска (рис. 14, a);


заканчивать соединительную линию стрелкой на выносной линии, продолжающей контурную линию элемента, и со стороны материала детали (рис. 14, δ).

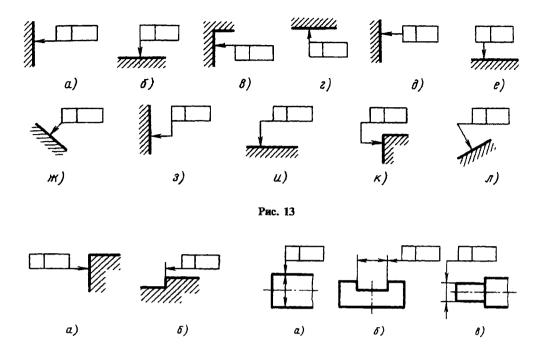

Если допуск относится к поверхности или к ее профилю (линии), а не к оси элемента, то стрелку располагают на достаточном расстоянии от конца размерной линии (размерной стрелки).

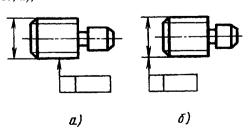
- 4. Если допуск относится к оси или к плоскости симметрии определенного элемента, то конец соединительной линии должен совпадать с продолжением размерной линии соответствующего размера (например, диаметра, ширины, рис. 15, a, δ).
- В случае недостатка места на чертеже стрелку размерной линии можно заменить стрелкой выносной линии (рис. 15, в).

Если размер элемента уже указан один раз на других размерных линиях данного элемента, используемых для условного обозначения допуска формы или расположения, то он не указывается. Размерную линию без размера следует рассматривать как составную часть этого условного обозначения.

Pac. 10

Pnc. 11




Рис. 14

Если допуск относится к боковой поверхности резьбы, то рамку допуска соединяют в соответствии с рис. 16, а.

Если допуск относится к оси резьбы, то рамку допуска соединяют в соответствии с рис. 16, δ .

- 5. Если допуск относится к общей оси или к плоскости симметрии и если из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то соединительную линию проводят к общей оси (рис. 17).
- Перед числовым значением допуска необходимо вписывать:

символ \emptyset , если круговое или цилиндрическое поле допуска указывают диаметром (рис. 18, a);

Pac. 16

Puc. 15

символ R, если круговое или цилиндрическое поле допуска указывают радиусом (рис. 18. δ):

символ T, если поле допуска симметричности, пересечения осей, позиционный допуск ограничены двумя параллельными прямыми или плоскостями в диаметральном выражении (рис. 18, θ);

символ T/2 (те же поля допусков, что и для символа T) в радиусном выражении (рис. 18, ε);

слово "Сфера", если поле допуска шаровое (рис. 18, ∂).

 Числовое значение допуска действительно для всей поверхности или длины элемента, если не задан нормируемый участок.

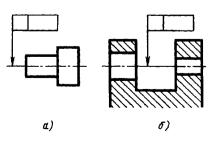
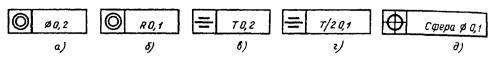
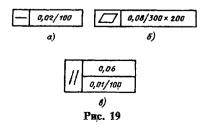



Рис. 17

PHc. 18

Если допуск относится к любому участку поверхности заданной длины (или площади), то заданную длину (или площадь) указывают рядом с допуском и отделяют от него наклонной линией (рис. 19, a, δ), которая не должна касаться рамки.

Если необходимо назначить допуск на всей длине поверхности и на заданной длине, то допуск на заданной длине указывают под допуском на всей длине (рис. 19, θ).


- 8. Если допуск должен относиться к участку, расположенному в определенном месте элемента, то этот участок обозначают штрихпунктирной линией, ограничив ее размерами согласно рис. 20.
- 9. Если необходимо задать выступающее поле допуска расположения, то после числового значения допуска указывают символ (p).

Контур выступающей части нормируемого элемента ограничивают тонкой сплошной линией, а длину и расположение выступающего поля допуска - размерами (рис. 21, *a*, *б*).

- Надписи, дополняющие данные, вписываются над рамкой, под ней или как показано на рис. 22.
- 11. Если необходимо задать для одного элемента два разных вида допуска, то допускается рамки допуска объединять и располагать их согласно рис. 23 (верхнее изображение).

Если для поверхности требуется указать одновременно условное обозначение допуска формы или расположения и ее буквенное обозначение, используемое для нормирования другого допуска, то рамки с обоими условными обозначениями допускается располагать рядом на одной соединительной линии (рис. 23, нижнее изображение).

12. Повторяющиеся одинаковые или разные виды допусков, обозначаемые одним и тем же знаком, имеющие то же числовое значение и относящиеся к одним и тем же базам, указывают один раз в рамке, от которой откодит одна соединительная линия, разветвияемая затем ко всем нормируемым элементам (рис. 24).

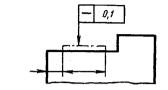
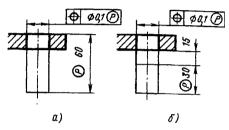



Рис. 20

Pnc. 21



Рис. 22

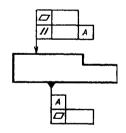
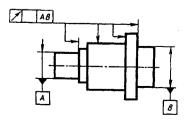
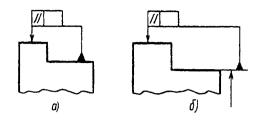



Рис. 23

Puc. 24

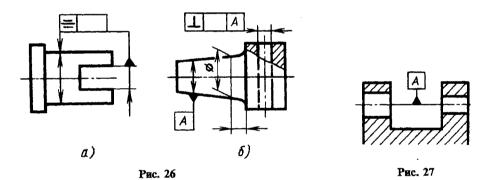
ОБОЗНАЧЕНИЕ БАЗ


1. Базы обозначают зачерненным треугольником, который соединяют при помощи соединительной линии с рамкой (рис. 25, a).

При выполнении чертежей с помощью выводных устройств ЭВМ допускается треугольник, обозначающий базу, не зачернять.

Треугольник, обозначающий базу, должен быть равносторонним с высотой, приблизительно равной размеру шрифта размерных чисел.

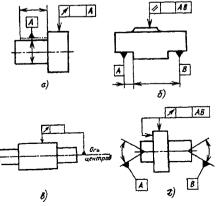
2. Если базой является поверхность или ее профиль, то основание треугольника располагают на контурной линии поверхности (рис. 25, а) или на ее продолжении. При этом соединительная линия не должна быть продолжением размерной линии (рис. 25, б).


Если базой является ось или плоскость симметрии, то соединительная линия должна быть продолжением размерной линии (рис. 24). В случае недостатка места стрелку размерной линии допускается заменять треутольником, обозначающим базу (рис. 26, а).

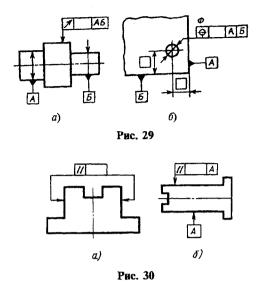
Puc. 25

Если размер элемента уже указан один раз, то на других размерных линиях данного элемента, используемых для условного обозначения базы, его не указывают. Размерную линию без размера следует рассматривать как составную часть условного обозначения базы (рис. 26, δ).

3. Если базой является общая ось или плоскость симметрии и если из чертежа ясно, для каких поверхностей ось (плоскость симметрии) является общей, то треугольник располагают на оси (рис. 27).

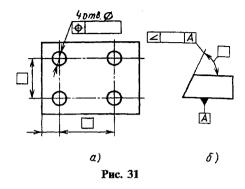


4. Если базой является только часть или определенное место элемента, то ее расположение обозначают штрихпунктирной линией и ограничивают размерами согласно рис. 28, a, δ .


Если базой является ось центровых отверстий, то рядом с обозначением базовой оси делают надпись "Ось центров" (рис. 28, θ).

Допускается обозначать базовую ось центровых отверстий в соответствии с рис. 28, г.

5. Если два или несколько элементов образуют объединенную базу и их последовательность не имеет значения (например, они имеют общую ось или плоскость симметрии), то каждый элемент обозначают самостоятельно и все буквы вписывают подряд в третью часть рамки (рис. 28, б и 29, а).


Pic. 28

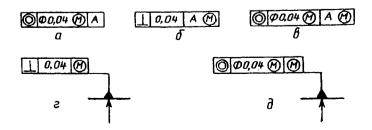
- 6. Если необходимо задать допуск расположения относительно комплекта баз, то буквенные обозначения баз вписывают в самостоятельных частях (третье и далее) рамки. В этом случае базы записывают в порядке убывания числа степеней свободы, лишаемых ими (рис. 29, 6).
- 7. Если назначают допуск расположения для двух одинаковых элементов и если нет необходимости или возможности (у симметричной детали) различать элементы и выбирать один из них за базу, то вместо зачерненного треугольника применяют стрелку (рис. 30, a, δ).

УКАЗАНИЕ НОМИНАЛЬНОГО РАСПОЛОЖЕНИЯ

Линейные и угловые размеры, определяющие номинальное расположение или номинальную форму элементов, ограничиваемых допуском, при назначении позиционного допуска, допуска наклона, допуска формы

заданной поверхности или заданного профиля указывают на чертежах без предельных отклонений и заключают в прямоугольные рамки (рис. 31, a, δ).

ОБОЗНАЧЕНИЕ ЗАВИСИМЫХ ДОПУСКОВ


- 1. Если допуск расположения или формы не указан как зависимый, то его считают независимым.
- 2. Зависимые допуски расположения и формы обозначают условным знаком (м), который помещают:

после числового значения допуска, если зависимый допуск связан с действительными размерами рассматриваемого элемента (рис. 32, *a*);

после буквенного обозначения базы (рис. 32, 6) или без буквенного обозначения в третьем поле рамки (рис. 32, г), если зависимый допуск связан с действительными размерами базового элемента;

после числового значения допуска и буквенного обозначения базы (рис. 32, в) или без буквенного обозначения (рис. 32, г), если зависимый допуск связан с действительными размерами рассматриваемого и базового элементов.

В ранее выпущенной документации независимый допуск обозначали условным знаком (S).

ДОПУСКИ РАСПОЛОЖЕНИЯ ОСЕЙ ОТВЕРСТИЙ ДЛЯ КРЕПЕЖНЫХ ДЕТАЛЕЙ (по ГОСТ 14140-81)

1. Стандарт распространяется на детали машин и приборов, которые соединяются болтами, винтами, шпильками и другими крепежными деталями и у которых оси отверстий для крепежных деталей расположены параллельно, и устанавливает допуски расположения осей сквозных гладких и резьбовых отверстий для крепежных деталей.

Стандарт не распространяется на детали, к которым не предъявляются требования взаимозаменяемости и собираемость которых обеспечивается путем совместной обработки отверстий в парных соединяемых деталях.

- Допуски расположения осей отверстий для крепежных деталей должны устанавливаться одним из способов:
- а) позиционными допусками осей отверстий:
- б) предельными отклонениями размеров, координирующих оси отверстий.

Для отверстий, образующих одну сборочную группу при числе элементов в группе более двух, предпочтительно назначать позиционные допуски их осей.

3. Допуски расположения следует устанавливать и для других элементов (например, центрирующих отверстий, выступов и т. п.), входящих в одну сборочную группу с отверстиями для крепежных деталей. В тех случаях, когда эти элементы являются сборочными базами, их принимают в качестве баз, к которым относятся допуски расположения осей отверстий для крепежных деталей.

Числовые значения позиционных допусков приведены в табл. 36.

4. Числовые значения предельных отклонений размеров, координирующих оси отверстий одной сборочной группы, должны обеспечивать расположение каждой оси в поле соответствующего позиционного допуска.

Пересчет позиционных допусков на предельные отклонения размеров, координирующих оси отверстий, в зависимости от характеристики расположения отверстий, приведен в табл. 37 для размеров в системе прямоугольных координат и в табл. 38 для размеров в системе полярных координат.

Предельные отклонения, приведенные в табл. 37 и 38, допускается увеличивать в одном координатном направлении при условии, что предельные отклонения в другом координатном направлении будут уменьшены настолько, чтобы обеспечить расположение оси в поле соответствующего позиционного допуска.

выбор допусков расположения осей отверстий для крепежных деталей

Общие положения

Допуски расположения осей отверстий для крепежных деталей назначают в зависимости

36. Числовые значения позиционных допусков в диаметральном выражения T и в радвусном выражении T/2, мм

0,01	0,012	0,016	0,02	0,025	0,03	0,04	0,05	0,06	0,08
0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8
1	1,2	1,6	2	2,5	3	4	5	6	8
10	12	16	-	-	-	-	~	-	-

37. Пересчет позиционных допусков на предельные Система прямоугольных

		Uangranasa		Позиционали	
		Нормируемые	0,04	Позиционны 0,05	
	v	отклонения		<u> </u>	0,06
Характеристика распо.	пожения отверстии	размеров,	0.02	Поэиционны 0,025	0.03
		координирующих оси отверстий		е значения п	
		oca oracporan	THUTOBE	е значения п	редельных
1. Одно отверстие, координированное относительно плоскости **		$\pm \delta L$ размера между осью отверстия и плоскостью	0,02	0,025	0,03
2. Два отверстия, координированных относительно друг друга		$\pm \delta L$ размера между осями двух отверстий	0,04	0,05	0,06
3. Три и более отверстий, располо- женных в один ряд	плоскость	$\pm \delta L_{\Sigma}$ размера между осями двух любых отверстий *	0,028	0,035	0,04
	L ₂	±бу осей от- верстий от об- щей плоскости	0,014	0,018	0,02
4. Три или четы- ре отверстия, распо- ложенных в два ряда	7	$\pm \delta L$ размеров L_1 и L_2	0,028	0,035	0,04
	<u></u>	$\pm \delta L_d$ размеров по диагонали между осями двух любых отверстий	0,04	0,05	0,06
5. Одно или не- сколько отверстий, координированных относительно двух взаимно перпенди- кулярных плоско- стей **	23	$\pm \delta L$ размеров L_1 , L_2 , L_3 , L_4	0,014	0,018	0,02
6. Отверстия, расположенные в несколько рядов		$\pm \delta L$ размеров L_1 , L_2 , L_3 , L_4	0,014	0,018	0,02
	24	$\pm \delta L_d$ размеров по диагонали между осями двух любых отверстий	0,04	0,05	0,06

^{*} Допускается вместо предельных отклонений размера между осями двух любых отверстий базовой плоскостью и осями каждого из остальных отверстий (L_1 , L_2 и т.д.); при этом ** При сборке базовые плоскости соединяемых деталей совмещаются. ГОСТ 14140-81 предусматривает также пересчет позиционных допусков в диаметральном

отклонения размеров, координирующих оси отверстий. координат

коорд	инат																
диам	етраль	ном в	ыраже	ноии T ,	мм												
0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2	2,5	3	4
ради	усном	выраж	сении :	T/2, м	M			-									
0,04	0,05	0,06	0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2
откл	онени	δL pa	змеро	в, коој	рдиниј	ующи	х оси,	мм									
0,04	0,05	0,06	0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2
0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2	2,5	3	4
0,055	0,07	0,08	0,11	0,14	0,16	0,22	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4	1,6	2,2	2,8
0,028	0,035	0,04	0,055	0,07	0,08	0,11	0,14	0,18	0,2	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4
0,055	0,07	0,08	0,11	0,14	0,16	0,22	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4	1,6	2,2	2,8
0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2	2,5	3	4
0,028	0,035	0,04	0,055	0,07	0,08	0,11	0,14	0,18	0,2	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4
0,028	0,035	0,04	0,055	0,07	0,08	0,11	0,14	0,18	0,2	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4
0,08	0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2	2,5	3	4
	L	L	<u> </u>	L	<u></u>		<u> </u>	<u> </u>		<u> </u>	L	L		Ļ_		<u> </u>	<u> </u>

нормировать предельные отклонения размеров между осью одного (базового) отверстия или предельное отклонение, указанное в таблице, должно быть уменьшено вдвое.

выражении: 0,02; 0,025; 0,03; 5; 6; 8; 10; 12 и 16 мм.

38. Пересчет позиционных допусков на предельные отклонения Система полярных координат

			Система поляри		PACINET.		
	Нормируемые	Позиционный до карам вырах		0,06	0,08		
Характеристика	отклонения	±δ <i>D</i> , :	MIM	0,04	0,055		
расположения отверстий	размеров,	±δ R , 1	мм	0,02	0,028		
	координирующих оси отверстий	Интервалы номина мм					
		диаметра <i>D</i>	радиуса <i>R</i>				
1. Два отверстия, коорди-	Предельные	От 6 до 10	От 3 до 5	35'	50'		
нированных относительно	отклонения	Св. 10 до 14	Св. 5 до 7	25'	30'		
друг друга и центрального з базового	$\pm \delta R$ радиуса окружности	Св. 14 до 18	Св. 7 до 9	18'	25'		
\	центров	Св. 18 до 24	Св. 9 до 12	14'	18'		
(A)	Предельные	Св. 24 до 30	Св. 12 до 15	11'	14'		
	отклонения $\pm \delta d$ угла между	Св. 30 до 40	Св. 15 до 20	8'	11'		
Pala	осями двух отверстий						
База - поверхность А							
2. Три и более отверстий,	Предельные отклонения	Св. 40 до 50	Св. 20 до 25	6'	8'		
расположенных по окруж-	$\pm \delta D$ диаметра	Св. 50 до 65	Св. 25 до 32,5	5'	6'		
, α 1	окружности	Св. 65 до 80	Св. 32,5 до 40	4'	5'		
	центров	Св. 80 до 100	Св. 40 до 50	3'	4'		
	Предельные отклонения	Св. 100 до 120	Св. 50 до 60	2'40"	3'		
160	±δα _Σ централь-	Св. 120 до 150	Св. 60 до 75	2'	2'30"		
0 0 02	ного угла меж-	Св. 150 до 180	Св. 75 до 90	-	2'		
<i>a</i> ,	ду осями двух любых отвер- стий *						
31 2 m = =================================		G- 100 - 250	G- 00 - 105				
3. Три и более отверстий, расположенных по окруж-	Предельные отклонения	Св. 180 до 250	Св. 90 до 125	-	-		
ности, координированных	$\pm \delta R$ радиуса	Св. 250 до 310	Св. 125 до 155	_	-		
относительно центрального базового элемента A	окружности	Св. 310 до 400	Св. 155 до 200	-	-		
OZZOBOTO SIEMENTA A	центров	Св. 400 до 500	Св. 200 до 250	-	-		
R	Предельные отклонения	Св. 500 до 630	Св. 250 до 315	-	-		
	±δα _Σ централь-	Св. 630 до 800	Св. 315 до 400	-	-		
	ного угла меж- ду осями двух	Св. 800 до 1000	Св. 400 до 500	-	-		
0 14 41 102	любых отвер-	Св. 1000 до 1250	Св. 500 до 625	-	-		
(文章)	стий *	Св. 1250 до 1600	Св. 625 до 800	-	-		
A α_3		Св. 1600 до 2000	Св. 800 до 1000	-	-		
База - поверхность А							
* Потписуается вместо пре							

^{*} Допускается вместо предельных отклонений центрального угла между осями двух любых (базового) отверстия и осями каждого из остальных отверстий (α_1 , α_2 и т.д.); при этом ГОСТ 14140-81 предусматривает также пересчет позиционных допусков в диаметральном

размеров, координирующих оси отверстий

0,1	0,12	0,16	0,2	0,25	0,3	0,4	0,5	0,6	0,8	1	1,2	1,6	2	2,5	3
0,07	0,08	0,11	0,14	0,16	0,22	0,28	0,35	0,4	0,55	0,7	0,8	1,1	1,4	1,6	2,2
0,035	0,04	0,055	0,07	0,08	0,11	0,14		0,2	0,28	0,35	0,4	0,55	0,7	0,8	1,1

±δα; ±δα_Σ

l°	1°10′	1°40'	2°	2°20'	3°	4°	-	-	-	-	-	-	-	-	-
40'	50'	1°	1°20'	1°40'	2°	2°40'	3°20'	4°	-	- 1	-	-	~	-	-
30'	35'	45'	1°	1°10'	1°30'	2°	2°20'	3°	4°	-	-	-	-	-	-
22'	28'	35'	45'	55'	1°10'	1°30'	1°50'	2°20'	3°	3°40'	4°30'	-	-	-	-
18'	22'	28'	35'	45'	55'	1°10'	1°30'	1°50'	1°20'	3°	3°40'	4°30'	-	-	-
14'	16'	22'	28'	35'	45'	55'	1°10'	1°20′	1°50'	2°20'	2°40'	3°40′	4°30'	-	-
										•					
				ļ											
10'	12'	16'	20'	25'	30'	40'	50'	1°	1°20′	1°40'	2°	2°40'	3°20'	4°30'	-
8,	10'	12'	16'	20'	25'	30'	40'	50'	1°	1°20'	1°40'	2°	2°40'	3°20'	4°
6'	8'	10'	12'	16'	20'	25'	30'	40'	50'	1°	1°20'	1°40'	2°	2°40'	3°20'
5'	6'	8'	10'	12'	16'	20'	25'	30'	40'	50'	1°	1°20'	1°40'	2°	2°40'
4'	5'	7'	9'	11'	14'	18'	22'	28'	35'	45'	55'	1°10'	1°30'	1°50'	2°20'
3'30"	4'30"	6'	7'	9'	12'	14'	18'	22'	28'	35'	45'	55'	1°10'	1°30'	1°50'
3'	4'	5'	6'	7'	9'	12'	14'	18'	22'	30'	35'	45'	55'	1°10'	1°30'
										}	-				Ì
2'	2'30"	2'30"	4'30"	6'	7'	9'	11'	14'	18'	22'	28'	35'	45'	55'	1°10'
	2'	2'30"	3'	4'	6'	7'	9'	10'	14'	16'	20'	25'	35'	40'	55'
_	_	2'	2'30"	3'	4'	5'	6'	8'	10'	12'	16'	20'	25'	30'	40'
_	_	_	2'	2'30"	3'	4'	5'	6'	8.	10'	12'	16'	20'	25'	35'
_	_	_	-	2'	2'30"	3'	4'	5'	6'	8'	10'	12'	16'	20'	25'
-	_		-	-	2'	2'30"	3'30"	4'	5'	7'	8'	11'	14'	16'	20'
-	-	_	-	_	-	2'	3'	3'30"	4'30"	6'	7'	9,	12'	14'	18'
-	-	-	-	_	_	_	2'	2'30"	3'	4'	5'	6'	8'	10'	14'
-	-	-	-	-	-	-	-	2'	2'30"	3'	4'	5'	7'	8.	10'
_	-	-	-	-	-	_	-	-	2'	2'30"	3'	4'	5'	6'	8'
			1												
		1]
.		1	1	}	1	1	1	1	f	I	L				

отверстий нормировать предельные отклонения центральных углов между осью одного значение предельного отклонения, указанное в таблице, должно быть уменьшено вдвое. выражении: 0,02; 0,025; 0,03; 0,04; 0,05; 4; 5; 6; 8; 10; 12 и 16 мм.

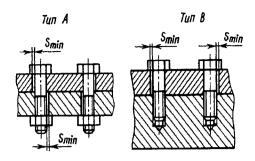


Рис. 33. Типы соединений крепежными деталями:

 $S_{
m min}$ - наименьший зазор между отверстием и крепежной деталью

от типа соединения крепежными деталями, зазора для прохода крепежных деталей и коэффициента использования этого зазора для компенсации отклонений расположения осей.

Соединения крепежными деталями подразделяют на типы A и B (рис. 33):

 А - зазоры для прохода крепежных деталей предусмотрены в обеих соединяемых деталях, например соединениях болгами, заклепками;

В - зазоры для прохода крепежных деталей предусмотрены лишь в одной из соединяемых деталей. К типу В относятся, например, соединения винтами, шпильками.

Допуски расположения осей сквозных гладких отверстий в соединениях типов А и В рекомендуется назначать зависимыми, если применение зависимых допусков не приводит к нарушению прочности детали или нарушению требований к внешнему виду детали.

Допуски расположения осей резьбовых отверстий в соединениях типа В рекомендуется назначать зависимыми для малонагруженных винтов и независимыми для шпилек и тяжелонагруженных винтов. При зависимых допусках расположения осей резьбовых отверстий минимальное значение допуска расположения может быть превышено на величину, соответствующую отклонению действительного приведенного среднего диаметра внутренней резьбы от наименьшего предельного среднего диаметра.

ВЫБОР ПОЗИЦИОННЫХ ДОПУСКОВ ОСЕЙ ОТВЕРСТИЙ

Числовые значения позиционных допусков осей отверстий в диаметральном выражении T для соединений типов A и B приведены B табл. 39.

Для получения позиционных допусков в радиусном выражении T/2 числовые значения в табл. 39 должны быть уменьшены вдвое с последующим округлением результата до ближайшего числа из табл. 36.

Позиционные допуски предпочтительнее назначать в диаметральном выражении.

Позиционные допуски осей отверстий, приведенные в табл. 39, установлены одинаковыми для обеих соединяемых деталей и определены по формулам:

$$T = KS_{\min}$$
 - для соединений типа A; (1)

$$T = 0.5 KS_{\min}$$
 - для соединений типа В, (2)

где S_{\min} - наименьший зазор между сквозным гладким отверстием и крепежной деталью; $S_{\min} = D_{\min}$ - d_{\max} ; D_{\min} - наименьший предельный диаметр сквозного отверстия; d_{\max} - наибольший предельный диаметр стержня крепежной детали; K — коэффициент использования зазора S_{\min} , зависящий от условий сборки.

Рекомендуется принимать:

K=1 или K=0.8 - для соединений, не требующих регулировки взаимного расположения деталей;

K=0.8 или K=0.6 - для соединений, в которых необходима регулировка взаимного расположения деталей.

В обоснованных случаях значения K принимают меньше 0.6.

Значения, определенные по формулам (1), (2), округляются до ближайшего числа из табл. 36.

Позиционные допуски осей отверстий для обеих соединяемых деталей допускается назначать неодинаковыми: $T_1 \neq T_2$. При этом они должны соответствовать следующим условиям:

39.	Позипионные	допуски	1	осей	отве	рстий,	MM	
-----	-------------	---------	---	------	------	--------	----	--

Зазор S _{min} для прохода	К испол		
крепежной детали	K = 1	K = 0.8	K = 0.6
0,1	0,1/0,05	0,08/0,04	0,06/0,03
0,2	0,2/0,1	0,16/0,08	0,12/0,06
0,3	0,3/0,16	0,25/0,12	0,16/0,1
0,4	0,4/0,2	0,3/0,16	0,25/0,12
0,5	0,5/0,25	0,4/0,2	0,3/0,16
0,6	0,6/0,3	0,5/0,25	0,4/0,2
0,8	0,8/0,4	0,6/0,3	0,5/0,25
1	1/0,5	0,8/0,4	0,6/0,3
2	2/1	1,6/0,8	1,2/0,6
3	3/1,6	2,5/1,2	1,6/1
4	4/2	3/1,6	2,5/1,2
5	5/2,5	4/2	3/1,6
6	6/3	5/2,5	4/2
7	6/3	6/3	4/2
8	8/4	6/3	5/2,5
10	10/5	8/4	6/3
11	10/5	8/4	6/3
12	12/6	10/5	8/4
14	12/6	10/5	8/4
15	16/8	12/6	10/5

Примечание. В числителе приведены числовые значения позиционных допусков для соединений типа A, в знаменателе - для соединений типа B.

 $T_1 + T_2 = 2KS_{\min}$ - для соединений типа A; $T_1 + T_2 = KS_{\min}$ - для соединений типа B.

Если в сборочную группу с отверстиями для крепежных деталей входят центрирующие элементы (отверстия, выступы и т.п., рис. 34), то позиционный допуск T_0 центрирующей поверхности определяется по формуле

$$T_0 = 0.5 K_0 S_{0 \text{ min}}$$

где $S_{0 \,\,\mathrm{min}}$ - наименьший зазор между центрирующими поверхностями соединяемых деталей; $S_{0 \,\,\mathrm{min}} = D_{0 \,\,\mathrm{min}}$ - $d_{0 \,\,\mathrm{max}}$; $D_{0 \,\,\mathrm{min}}$ - наименьший предельный диаметр центрирующего отверстия; $d_{0 \,\,\mathrm{max}}$ - наибольший предельный

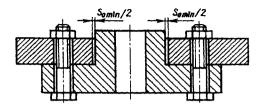


Рис. 34. Сборочная группа с центрирующими элементами:

 $S_{0 \; \mathrm{min}}$ - наименьший зазор между центрирующими поверхностями соединяемых деталей

диаметр центрирующего выступа; K_0 - коэффициент использования зазора между центрирующими поверхностями для компенсации позиционного отклонения их осей.

При $K_0=0$ или $S_{0\,\,\mathrm{min}}=0$ центрирующие поверхности принимают в качестве баз, к которым относятся позиционные допуски осей отверстий для крепежных деталей.

На центрирующие и базовые элементы рекомендуется распространять условие зависимого допуска, если не требуется совмещение осей этих элементов в соединяемых деталях (см. рис. 34).

В ГОСТ 14140—81 приведены также числовые значения предельных отклонений размеров, координирующих оси отверстий, для соединений типов А и В для размеров в системах прямоугольных и полярных координат.

ОСНОВНЫЕ ЗАВИСИМОСТИ ДЛЯ ПЕРЕСЧЕТА ПОЗИЦИОННЫХ ДОПУСКОВ НА ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ, КООРДИНИРУЮЩИХ ОСИ ОТВЕРСТИЙ

Предельные отклонения размеров, координирующих оси отверстий, определяют исходя из соответствующего позиционного допуска осей отверстий T путем разложения его на составляющие, ограничивающие позиционное отклонение оси в каждом координатном направлении (рис. 35). Координатные составляющие позиционного допуска каждого отверстия в отдельности (для прямоугольных координат T_x и T_y для полярных координат T_R и T_a) определяют из условий:

40. Формулы для пересчета позиционных допусков на предельные отклонения размеров, координирующих оси

Характеристика расположения отверстий по табл. 37 и 38	Нормируемые отклонения	Формула отклонения
Табл. 37, п. 1	Предельные отклонения размера между осью отверстия и плоскостью	$\delta L = \pm T / 2$
Табл. 37, п. 2	Предельные отклонения размера между осями двух отверстий	$\delta L = \pm T$
	Предельные отклонения размера между осями двух любых отверстий (накопленная погрешность)	$\delta L_x = \pm 0.7T$
Табл. 37, п. 3	Предельные отклонения размера между осью базового отверстия и осью каждого отверстия (см. сноску к табл. 37)	$\delta L = \pm 0.35T$
	Предельные отклонения осей отверстий от общей плоскости ряда	$\delta y = \pm 0.35T$
Табл. 37, п. 4	Предельные отклонения размеров L_1 и L_2	$\delta L = \pm 0.7T$
	Предельные отклонения размеров по диагонали между осями двух любых отверстий	$\delta L_d = \pm T$
Табл. 37, п. 5	Предельные отклонения размеров L_1 и L_2	$\delta L = \pm 0.35T$
	Предельные отклонения размеров $L_1,\ L_2,\ L_3,\ L_4$	$\delta L = \pm 0.35T$
Табл. 37, п. 6	Предельные отклонения размеров по диагонали между осями двух любых отверстий	$\delta L_d = \pm T$
	Предельные отклонения радиуса окружности центров	$\delta R = \pm 0.35T$
Табл. 38, п. 1	Предельные отклонения угла между осями двух отверстий	$\delta\alpha_{\Sigma} = \pm \frac{0.7T}{R} 3440$

Продолжение табл. 40

Характеристика расположения отверстий по табл. 37 и 38	Нормируемые отклонения	Формула отклонения
	Предельные отклонения диаметра окружности центров	$\delta D = \pm 0.7T$
Табл. 38, п. 2	Предельные отклонения центрального угла между осями двух любых отверстий (накопленная погрешность)	$\delta\alpha_{\Sigma} = \pm \frac{0.7T}{R} 3440$
	Предельные отклонения угла между осью базового отверстия и осью каждого отверстия (см. сноску к табл. 38)	$\delta\alpha = \pm \frac{0.35T}{R} 3440$
	Предельные отклонения радиуса окружности центров	$\delta R = \pm 0.35T$
Табл. 38, п. 3	Предельные отклонения центрального угла между осями двух любых отверстий (накопленная погрешность)	$\delta\alpha_{\Sigma} = \pm \frac{0.7T}{R} 3440$
,	Предельные отклонения угла между осью базового отверстия и осью каждого отверстия (см. сноску к табл. 38)	$\delta\alpha = \pm \frac{0,35T}{R} 3440$

$$\sqrt{T_x^2 + T_y^2} = T,$$

$$\sqrt{T_x^2 + T_y^2} = T,$$

$$\sqrt{T_R^2 + \left(\frac{RT_\alpha}{3440}\right)^2} = T,$$

где R - радиус окружности центров; T_{x} , T_{y} , T_{R} , T и R - в мм; T_{α} - в мин; 3440 - число минут в радиане.

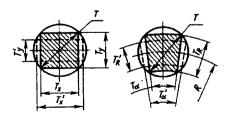


Рис. 35. Разложение позиционного допуска осей отверстий на координатные составляющие:

a)

6)

а - в системе прямоугольных координат; б - в системе полярных координат

Если составляющие позиционного допуска оси по обоим координатным направлениям принимаются одинаковыми (на рис. 35 - заштрихованные поля допусков), то их определяют по формулам:

$$T_x = T_y \approx 0.7T$$
,
 $T_R = T_\alpha \frac{R}{3440} \approx 0.7T$.

Примеры разложения позиционного допуска на неодинаковые координатные составляющие (увеличение допуска в одном координатном направлении за счет уменьшения допуска в другом координатном направлении) показаны на рис. 35 штриховыми линиями.

Приведенные в табл. 37 и 38 значения предельных отклонений размеров, координирующих оси отверстий, получены путем перехода от координатных составляющих позиционного допуска оси каждого отверстия к предельным отклонениям размеров, координирующих оси с учетом характеристики расположения осей, по формулам, указанным в табл. 40. Формулы, приведенные в таблице, соответствуют условиям, когда координатные составляющие позиционного допуска оси одинаковы и все отверстия рассматриваемой группы имеют одинаковые позиционные допуски осей.

допуски и посадки деталей из пластмасс

ТОЧНОСТЬ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ ПЛАСТМАСС

Технологический допуск - это допуск, определяемый пределами рассеяния размеров деталей при их изготовлении с учетом экономически достижимой точности для данного материала и данного метода формования или обработки деталей из пластмасс. Экономичное изготовление пластмассовых деталей возможно в тех случаях, когда назначаемый по ГОСТ 25349-88 конструкторский допуск не больше технологического.

На точность размеров деталей из пластмасс, получаемых в формах, влияют: свойства материала, технология переработки (способ и режимы), особенности конструкции детали и формы, условия хранения и применения. Основные факторы, вызывающие неточность размеров деталей из пластмасс, а также формующих элементов, приведены в табл. 41.

Квалитеты для размеров деталей из пластмасс простой геометрической формы, получаемых формованием (прессованием, литьем и т.д.), приведены в табл. 42. Они могут назначаться либо по колебанию усадки ΔS материала, определяемой на стандартных образцах по ГОСТ 18616-80, либо по усадке, определенной измерением конкретных деталей.

Примечание. К деталям простой геометрической формы относят, например, плоские монолитные детали с габаритными размерами до 50 мм, с соотношением высоты к длине не более 1:10 и размеренностью не более 2:1, а также детали - тела вращения с отношением диаметра к высоте не более 1:2 и толщиной стенок 3 - 5 мм.

Квалитеты в табл. 42 установлены для размеров, оформляемых одним формующим элементом формы (A_1) , и размеров детали, оформляемых двумя и более подвижными относительно друг друга элементами формы или составными частями формы (A_2, A_3) (рис.

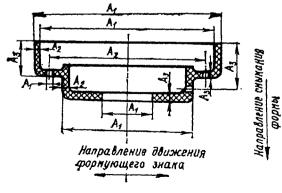
36). Размеры категории A_2 и A_3 могут быть получены меньшей точности, чем A_1 , в результате влияния дополнительных погрешностей, например, зазоров между перемещающимися частями формы.

Усложнение конфигурации детали при прочих равных условиях приводит к понижению точности (условно на один квалитет по сравнению с простым изделием).

Для оценки суммарной общей погрешности изготовления $\delta_{\text{общ}}$ изделий из пластмасс важен вопрос о технологических уклонах, которые назначают в необходимых случаях на наружные и внутренние поверхности. Уклоны дополнительно увеличивают погрешность $\delta_{\text{укл}}$ размеров. Рекомендуются следующие значения углов технологических уклонов α :

наружные поверхности 30', 45', 1°, 1,5° внутренние поверхности,

в том числе отверстия глубиной l > 1,5d


..... 45′, 1°, 2° отверстия глубиной $l \le 1,5d$

..... 30', 45'

поверхности выступов, ребер жесткости и подобных конструктивных элементов

..... 1°, 2°, 5°

Угол технологического уклона, равный 15', котя и применяют, но следует помнить, что метрологическая погрешность, возникающая при контроле такого небольшого угла на поверхностях пластмассовых изделий универсальными измерительными средствами, почти соизмерима с абсолютными значениями измеряемого параметра. Меньшие из перечисленных значений углов технологического уклона рекомендуются для материалов с более низкими колебаниями усадки (условно до 0,4 %), а более высокие значения - с большими колебаниями усадки (условно свыше 0,4 %).

Pnc. 36

41. Факторы, вызывающие неточность размеров деталей из пластмасс и формующих элементов технологической оснастки

Объект	Факторы, вызывающие неточность размеров			
	при изготовлении	при хранении и эксплуатации		
Детали из пластмасс	Рассеяние технологических свойств, например усадки	Дополнительная усадка		
	Условия предварительной подготовки пластмасс	Условия окружающей среды (температура, влажность, хи- мический состав)		
	Неточность формы (неточность изготовления, износ формующих элементов, неточность сборки)	Напряженное состояние материала детали		
	Условия механической обработки (при ее применении)	Старение материала		
	Условия размерного контроля	Условия размерного контроля		
Формующие элементы техно-	Неточность изготовления	Износ		
логической оснастки	Неточность сборки	Условия эксплуатации (изменение температуры, деформация)		
	Условия размерного контроля	Условия работы оборудования		

42. Квалитеты для размеров деталей из пластмасс

Интервалы размеров, мм		Квалитеты при колебаниях усадки ΔS, %								
		до 0,06	св. 0,06 до 0,10	св. 0,10 до 0,16	св. 0,16 до 0,25	св. 0,25 до 0,40	св. 0,40 до 0,60	св. 0,60 до 1,00	св. 1,00	
Размеры категории <i>А</i> 1										
	До	3	8	9	10	11	12	13	14	15
CB.	3 до	30	8	9	10	11	12	13	14	15
**	30 "	120	9	10	11	12	13	14	15	16
**	120 "	250	10	11	12	13	14	15	16	17
"	250 "	500	11	12	13	14	15	16	17	18
Размеры категории A ₂ и A ₃										
	До	3	10	11	12	13	14	15	16	17
Св.	3 до	30	9	10	11	12	13	14	15	16
**	30 "	120	10	11	12	13	14	15	16	17
"	120 "	250	11	12	13	14	15	16	17	18
**	250 "	500	12	13	14	15	16	17	18	-

Для сопрягаемых размеров изделий, точность которых оценивают квалитетами 8 - 13 (включительно), в зависимости от угла технологического уклона используют два варианта учета погрешности уклона (букл):

- при α ≤ 1° погрешность уклона должна располагаться в заданном поле допуска размера (как и другие погрешности формы, если они не оговариваются особо);
- 2) при $\alpha > 1^\circ$ погрешность уклона не располагается в поле допуска размера, а сопряжение рассматривается как коническое (рассчитывают по специальной методике).

Точность несопрягаемых размеров изделий из пластмасс оценивают квалитетами 14-18; для этих размеров погрешность δ_{ykn} определяют отдельно:

 $\delta_{VKR} = 2H \operatorname{tg}\alpha,$

где H - высота того элемента детали, на который назначают уклон.

Общую погрешность $\delta_{\text{общ}}$ несопрягаемых размеров находят суммированием данных, полученных из табл. 42, и данных, полученных расчетом:

$$\delta_{\text{OOIII}} = \delta_{\text{T}} + \delta_{\text{VICII}}$$

Точность изготовления деталей из пластмасс резанием. Обработка деталей из пластмасс резанием применяется: когда сложную конфигурацию детали трудно выполнить в металимческой форме без значительного усложнения формы; для повышения точности размеров деталей после формования; при изготовлении деталей из пластмассовых полуфабрикатов.

В табл. 43 приведены данные о точности деталей из пластмасс при изготовлении их различными видами обработки резанием.

43. Достижимая точность обработки резанием деталей из пластмасс размерами 1 - 500 мм

		Квалитеты			
Вид обработки	Обрабатываемые поверхности	для	для термопластов		
		реактопла- стов	аморфных	кристаллизу- ющихся	
Чистовое шлифование	Наружные цилинд- рические поверхно- сти	6; 7	7; 8	8; 9	
	Плоские поверхно- сти, отверстия	7; 8	8; 9	9; 10	
Развертывание двух- кратное точное	Отверстия	7; 8	8; 9	9; 10	
Чистовое обтачивание	Наружные цилинд- рические поверхно- сти	7; 8	8; 9	9; 10	
Чистовое растачивание	Отверстия	8; 9	9; 10	10; 11	
Предварительное шли- фование	Наружные цилинд- рические и плоские поверхности	8; 9	9; 10	10; 11	
Зенкерование	Отверстия	8; 9	9; 10	10; 11	
Чистовое фрезерование	Плоские поверхно-	9; 10	10; 11	11; 12	
Сверление	Отверстия	10; 11	11; 12	12; 13	
Черновое обтачивание	Наружные цилинд- рические поверхно- сти	11; 12	12; 13	13; 14	
Черновое фрезерование	Плоские поверхности	11; 12	12; 13	13; 14	

Примечание. К наиболее распространенным реактопластам относятся порошкообразные фенопласты и аминопласты, волокнистые пресс-материалы типа АГ-4, ДСВ, слоистые материалы типа текстолита, гетинакса и др.; к аморфным термопластам - полистирол, акрилопласты и др.; к кристаллизующимся термопластам - полиамиды, полиэтилены, полиформальдегиды и др.

ПОЛЯ ДОПУСКОВ ДЕТАЛЕЙ ИЗ ПЛАСТМАСС (по ГОСТ 25349-88)

Стандарт устанавливает поля допусков и предельные отклонения для гладких сопрягаемых и несопрягаемых элементов деталей из пластмасс с номинальными размерами до 3150 мм.

Допуски и предельные отклонения, установленные в стандарте, относятся к размерам деталей при температуре 20 °C и относительной влажности окружающего воздуха 50 %.

1. Поля допусков деталей из пластмасс должны соответствовать указанным в табл. 44 и 45 для номинальных размеров до 500 мм. Стандарт предусматривает также поля допусков для номинальных размеров св. 500 до 3150 мм.

Примечание. Поля допусков, приведенные в табл. 44, 45, являются ограничительным отбором из совокупности полей допусков по ГОСТ 25347-82, а гакже включают поля допусков, не предусмотренные ГОСТ 25347-82, но образованные по ГОСТ 25346-89.

- 2. В обоснованных случаях для обеспечения требований к изделиям из пластмасс допускается применять другие поля допусков по ГОСТ 25347-82, не приведенные в табл. 44, 45, а также дополнительные поля допусков.
- 3. Предельные отклонения, не предусмотренные ГОСТ 25347 82, приведены в табл. 46 и 47.

Дополнительные поля допусков. Для деталей из пластмасс устанавливают следующие дополнительные поля допусков (на базе основных отклонений, не предусмотренных ГОСТ 25346-89) для размеров:

до 500 мм: валы - ayll, azll, zell, отверстия - AYll, AZll, ZEll;

св. 500 до 3150 мм: вал - b12, отверстие - B12. Формулы для расчета и числовые значения основных отклонений валов и отверстий для дополнительных полей допусков приведены в приложении ГОСТ 25349-88.

Контроль деталей из пластмасс, изготовленных литьем под давлением или прессованием, должен производиться после выдержки, необходимой для релаксации внутренних напряжений материала и стабилизации размеров. Время выдержки деталей после изготовления до контроля, если оно не оговорено особо, должно быть не менее 16 ч.

РЕКОМЕНДАЦИИ ПО ОБРАЗОВАНИЮ ПОСАДОК

- 1. Посадки в соединениях пластмассовых деталей с пластмассовыми или с металлическими рекомендуется выбирать в соответствии с табл. 48 (система отверстия) и табл. 49 (система вала).
- 2. Для металических деталей в соединениях с деталями из пластмасс рекомендуется назначать следующие поля допусков по ГОСТ 25347-82:

для валов - h7, h8, h9, h10, h11, h12;

для отверстий - H7, H8, H9, H10, H11, H12.

3. Кроме посадок, указанных в табл. 48 и 49, возможно образование других посадок; в частности, в соединениях пластмассовых деталей друг с другом, требующих, как правило, больших зазоров или натягов, чем соединения пластмассовых деталей с металлическими, могут быть целесообразны посадки, образованные полями допусков отверстий по системе вала с полями допусков валов по системе отверстия.

44. Поля допусков валов для номинальных размеров до 500 мм (по ГОСТ 25349-88)

)Z		1	zc10**	zc11**	,	t	ι	1 ·	i	1	1	
	qz	ı		zb10** z	Z 1	ı	ı	I	1		l	1	
	za	ı	l	za10** z	1	ı	ı	,	ı	ţ	ı	ı	
	z	8z		z10** z	1	1	1	ì	1	I	ı	I	
	y	1	ı	y10**	ı	i	ı	ı	,		l	1	
	×	8x	1	x10**	,	ı	1	'	ı	ı	1	-	
ЖЖ	p p	8n	1	,		1	,	t	ı	I	1	1	
отклонен	×	k8**	**63	k10**	K11**	ı	ı	l	1	1	ı	1	
Основные отклонения	·st	*88ť	*6si)s10*	js11*	js12*	\$13 *	js14*	js15*	js16*	js17*	js18*	
O	g.	h8	64	h10	h11	h12	h13	h14*	h15*	h16*	h17*	h18*	
	J.	22	63	1	t	1	i		1	1	1	1	
	ø	83	69	1	ı	'	ı	1	1	ı	1	1	
	P	gp	6 p	d10	d11	,	1	1		l	,	,	
	· 3	83	1	1	c11	1	ı	ı		ı	1	'	
	٩		1	ı	b11	b12	1	,	ı	1			
	В	1	-	ι	a11	,	,	,	1	1		ı	
	Ква-	∞	6	10	11	12	13	41	15	16	17	18	

Поля допусков, не рекоменцуемые для посадок.
 11 поля допусков, не предусмотренные ГОСТ 25347-82.

45. Поля допусков отверстий для номвивльных размеров до 500 мм (по ГОСТ 25349-88)

	ZC		ı	ZC10**	ZC11**		1	ι	ı	١	1	ı	
	ZB	-	1	ZB10**	I	ı	I	l	l	-	l	ı	
	ZA	ı	ı	ZA10**	ţ	!	ı	-	ı	-	1	t	
	Z	ı	1	Z10**	ı	ı	l	t	i	ı	l	i	
	¥	1	ι	Y10**	ı	ı	l	1	1	1	1	ſ	
	×	Į.	_	X10**	ı	1	l	1	1	1	1	l	
онения	Þ	80	ł	-	ı		1	I	,		1	l	
Основные отклонения	z	»ž	6X	N10**	*111Z		i	ı	ı	,	1	1	
Основ	JS	JS8*	1S9*	JS10*	JS11*	JS12*	JS13*	JS14*	JS15*	JS16*	JS17*	JS18*	
	H	H8	НЭ	H10	H111	H12	H13	H14*	H15*	H16*	H17*	H18*	
	田	F8	F. 6F.	1	1	1	1	1			ı	i	
	Щ	83	E9	1	1	I	l	1	,	1		'	
	Ω	D8	60	D10	D11	1		1	1		ı		
	C	1	1	1	C111			1	1			ŀ	
	B		,	1	B11	B12	1	1	,	'	1		
	4	1		1	A11	1	1	1	ı	,			
	Ква-	∞	6	10	11	12	13	14	15	16	17	18	

Поля допусков, не рекоменцуемые для посадок.
 Поля допусков, не предусмотренные ГОСТ 25347-82.

-1	
2	
5	
₹	
2	
X pass	
ă I	
5	
a	
율	
онения валов для номинальных раз	
8	
ă	
田東	
Ħ	
клонени	
5	
8	
Ž	
15	
Преде	
H	
46	

Į			i	١	l	1	١		1			NO 10	~~		vo vo
	zc11		+120	09+	+155	+187	+240 +130	+260 +150	+318 +188	+348 +218	+434 +274	+485 +325	+595 +405	+670 +480	+805
	k11		0.91	20	+75	0 0 0	+110	0	+130	0	+160	0	+190	0	+220
	zc10		- 69	09+	+128 +80	+155	+200 +130	+220 +150	+272 +188	+302 +218	+374 +274	+425 +325	+525 +405	+600 +480	+725 +585
	zb10			+ 40 + 40	05+ 86+	+125	+160	+178 +108	+220 +136	+244 +160	+300	+342	+420 +300	+480 +360	+585
	7a10	MA MKM		1	,	,	1	-	+182 +98	+202	+248 +148	+280 +180	+346 +226	+394 +274	+475
Попе попуска	310	OTT TO BE	11 pencilbranc oraciones:	97 +26	+83	+100	+120	+130	+157	+172	+212	+236 +136	+292 +172	+330	+398
1101	Į	yıu	Предельны	ı	ı		1		+147	+159	+194	+214	+264	+294	+354
ICHRA BANDA	,	x10		i	1	1	1	ı	ı	ı	+180	+197	+242	+266 +146	+318 +178
46 Предельные отклоненыя вело		k10		+40 0	+48	+58		0 0	100	0	100	0	130	0	+140
46 Предел		63		+25	+30	+36	,	+43	3	0		7 9 +	7.5	4/ + 0	+87
		k8		+14	1 -	+22	,	+27		+33		+39		+ 0	+54
-		, 		3	9	9	14	18	24	30	04	50	65	80	100
	BAJIFI	poB,	,	До	М	OF	OH OH	og.	ДО	Of Of	OK OK	OF OF	OH.	og	ДО
	Интервалы	размеров,	MM		3	9	10	77	18	24	8	04	80	65	80
]				CB.	Ğ.	Ĉ.	Ċ.	ő	ڴ	CB.	ű	Ö	Ğ	Ċ Ĉ

	zc11		+910 +690	+1050 +800	+1150 +900	+1250 +1000	+1440	+1540 +1250	+1640 +1350	+1870	+2020 +1700	+22 6 0 +1900	+2460 +2100	+2800 +2400	+3000 +2600
*	k11		+220 0		+250	L <u>.'. '</u>		+290		+320 +	0	+360	0	+400 +	0
	zc10		+830 +690	008+ 096+	+1060 +900	+1160 +1000	+1335	+1435	+1535 +1350	+1760	+1910	+2130 +1900	+2330 +2100	+2650 +2400	+2850 +2600
	zb10		+665 +525	+780 +620	00L+ 098+	+940 +780	+1065	+1145 +960	+1235 +1050	+1410 +1200	+1510 +1300	+1730 +1500	+1880 +1650	+2100 +1850	+2350 +2100
- e	za10	ния, мкм	+540 +400	+630	+695	+760 +600	+855 +670	+925 +740	+1005	+1130	+1210 +1000	+1380 +1150	+1530 +1300	+1700 +1450	+1850 +1600
Поле допуска	z10	Предельные отклонения, мкм	+450 +310	+525 +365	+575 +415	+625 +465	+705 +520	+760 +575	+825 +640	+920 +710	+1000 +790	+1130 +900	+1230 +1000	+1350 +1100	+1500 +1250
П	y10	Предельн	+394 +254	+460	+500	+540 +380	+610 +425	+655 +470	+705 +520	+790	059+ 098+	+960 +730	+1050 +820	+1170 +920	+1250 +1000
	x10		+350 +210	+408 +248	+440 +280	+470 +310	+535	+570	+610 +425	+685 +475	+735 +525	+820 +590	099+ 068+	+990 +740	+1070 +820
	k10		+140		+160 0			+185		+210	0	+230	0	+250	0
	139		+87 0		+100			+115		+130	0	+140	0	+155	0
	к8		+54 0		+63 0			+72 0		+81	0	68+	0	+97	0
	*		120	140	160	180	200	225	250	280	315	355	400	450	200
Интервалы	размеров,	ММ	Off	OH.	до	до	до	ДО	οğ	Off M	OH	OF OF	OT/	얁	од
Инте	разм	24	100	120	140	160	180	200	225	250	280	315	355	400	450
			Ü	ű	ű	Ü	ඊ	ට්	రో	ű	రో	ű	වී	ű	ő

0 MM
JO 5
DOB
разме
HOMFHAJISHETX
ALIN I
отверстий
отклонения
редельные
7 II
*

	ZC11		-60 -120	-80 -155	-97 -187	-130 -240	-150 -260	-188 -318	-218	-274	-325 -485	-405 -595	-480	-585 -805
	N11		-4 -64	0 -75	06-	0	-110	0	-130	0	-160	0	-190	-220
WW	ZC10		-60 -100	-80	-97 -155	-130 -200	-150 -220	-188 -272	-218 -302	-274 -374	-325 -425	-405 -525	-480 -600	-585 -725
опс от водамен	ZB10	іня, мкм	-40 -80	-50 -98	-67 -125	-90 -160	-108 -178	-136 -220	-160 -244	-200	-242 -342	-300 -420	-360 -480	-445 -585
4/ 11редельные отклонения отверстви для номинальных размеров до эму мм	ZA10	Предельные отклонения, мкм	,	1	1	ı	ı	-98 -182	-118	-148 -248	-180 -280	-226 -346	-274 -394	-335
тверстий для	Z10	Предел	-26 -66	-35 -83	-42 -100	-50 -120	-60	-73 -157	-88 -172	-112 -212	-136 -236	-172 -292	-210 -330	-258
отклонения о	Y10			ļ	ı	ı	ŀ	-63 -147	-75 -159	-94 -194	-114	-144 -264	-174 -294	-214 -354
предельные	X10		ı	1	1	1	}	I	I	-80 -180	-97 -197	-122 -242	-146 -266	-178 -318
4	N10		-4 -44	0 -48	0 -58	0	-70	0	-84	0	-100	0	-120	0 -140
			3	9	10	14	18	24	30	40	20	99	80	100
Иптепраци	размеров,	MM	До	до	ДО	ДО	OH.	до						
Kum	разм			3	9	10	14	18	24	30	40	50	65	80
				CB.	CB.	Ċ.	ڭ	Ċ,	Ċ.	CB.	Ĉ.	ĊB.	CB.	Ċ.

	ZC11		-690 -910	-800 -1050	-900	-1000	-1150	-1250	-1350 -1640	-1550 -1870	-1700 -2020	-1900 -2260	-2100 -2460	-2400	-2600
	N11		0-220		0 -250			-290		0	-320	0	-360	0	-400
	ZC10		-690	096-	-900 -1060	-1000 -1160	-1150 -1335	-1250 -1435	-1350 -1535	-1550 -1760	-1700	-1900 -2130	-2100 -2330	-2400 -2650	-2600
	ZB10	ия, мкм	-525	-620	-700 -860	-780 -940	-880	-960 -1145	-1050 -1235	-1200	-1300 -1510	-1500 -1730	-1650 -1880	-1850 -2100	-2100 -2350
Поле допуска	ZA10	Предельные отклонения, мкм	-400	-470	-535	092-	-670 -855	-740 -925	-820	-920	-1000	-1150	-1300	-1450 -1700	-1600 -1850
	Z10	Предел	-310	-365	-415 -575	-465 -625	-520 -705	-575	-640	-710 -920	-790	-900	-1000	-1100 -1350	-1250 -1500
	Y10		-254	300	-340	-380	-425 -610	-470 -655	-520	-580	-650	-730	-820 -1050	-920 -1170	-1000 -1250
	X10		-210	-248	-280	-310	-350	-385	-425	-475	-525 -735	-590	099-	-740 -990	-820 -1070
	N10		0	0+11-	160			0 -185			-210		-230	C	-250
	<u> </u>	1.	120	140	160	180	200	225	250	280	315	355	400	450	200
	Balthi	bos,	율	J.O	유	М	J. J. J. J. J. J. J. J. J. J. J. J. J. J	얍	Мо	ДО	Д	Off.	од	до	ДО
	интервалы	passace MM	81	120	140	160	180	200	225	250	280	315	355	400	450
			ő	Ö	రో	Ü	Ċ	ő	C.	ථ්	ű	ő	Ö	రో	Ö

48. Рекомендуемые посадки в системе отверстия для номинальных размеров до 500 мм

	Ze	j	ı	H10 ze11	H11 ze11	ı	J
	22	ı	ı	H10; H10 zc10 zc11	H11 zc11	t	Į.
	qz	1	H2 zb10	H10 zb10	1	1	t
	Za	l	H2 za10	H10 za10	ı	1	ı
	Z	H8 28	H2 z10	H10 z10	ı	i	I
	×	l	H2 y10	H10 y10	ľ	ı	ı
, g	×	H8 x8	H2 x10	ı	l	1	ı
OCHOBHNE OTKTOHEHUR BRITCH	ä	H8 n8	!	1	1		ı
OTKIOH	*	H8 k8	段め	H10 k10	H11 k11	l l	ı
CHOBHINE OT	ч	H8 h8	H9 64	H10 h10	H111 h111	H12 h12	H13 h13
	4	H8 138	H9	l	i	ı	ı
	o	H8 e8	H6	I	i (I	t
	g	H8 q8	H 69	<u>H10</u> d10	H11 d11	1	i
	3	8H 88	1	l	H111 c11	1	i
	q	1	I	1	H11 b11	H12 b12	ı
	64	1	ı	ł	H111 a11	1	}
	az	ı	ı	-	H111 az11	l	i
	ay	ı	ı	l	H11 ay11	ı	ı
Поле	допуска основного отверстия	H8	Н9	H10	H11	H12	H13

49. Рекомендуемые посадки в системе вала для номниальных размеров до 500 мм

ZE11 h11 ZE11 h10 ZE ı 1 ſ ı ZC10; ZC11 h10 h10 ZC11 h11 ZC1 ZB10 h10 ZB10 h9 ZB ī ı ì ZA10 h10 ZA10 h9 Z ı į ı ţ Z10 h10 35 ı ł Į 7 1 되었 ı ŧ ţ \succ X10 ſ ı ı i 1 × Основные отклонения отверстий ι I ł \supset N10 h10 NET E ι % % % ı Z H13 H10 h10 H12 HII HII 2000年 取る Ξ 路路 없으 ١ 1 ŀ ł μ 2 KB 원원 i ı ţ Ħ D10 h10 <u>D11</u> 25 ı ì 2 P 11 11 11 ĺ ı 1 ι ı Ö B12 h12 B11 h11 ı ı ı M <u>A11</u> 1 1 ١ 1 ⋖ į AZ11 h11 ţ ΑZ i ſ 1 <u>AY11</u> h11 1 ΑX 1 ļ t ı основного отверстия допуска h12 h13 h10 h11 P8 2

ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ С НЕУКАЗАННЫМИ ДОПУСКАМИ (по ГОСТ 25670-83)

Стандарт распространяется на гладкие элементы металлических деталей машин и приборов, обработанные резанием, и устанавливает предельные отклонения размеров, если эти отклонения не указываются непосредственно у размеров, а отовариваются общей записью (неуказанные предельные отклонения размеров).

Предельные отклонения по настоящему стандарту могут быть использованы также для металических деталей, обрабатываемых способами, не относящимися к обработке резанием, и для неметалических деталей.

НЕУКАЗАННЫЕ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ ЛИНЕЙНЫХ РАЗМЕРОВ

- 1. Неуказанные предельные отклонения линейных размеров, кроме радиусов закругления и фасок, назначают:
- а) по квалитетам, приведенным в ГОСТ 25346-89 и ГОСТ 25348-82:
- для номинальных размеров менее 1 мм квалитеты от 11 до 13;
- для номинальных размеров от 1 до 10 000 мм квалитеты от 12 до 18;
- б) по классам точности, приведенным в ГОСТ 25670-83, которые условно называются "точный", "средний", "грубый" и "очень грубый".

Допуски по классам точности обозначают буквой t с индексами 1, 2, 3 и 4 для классов точности соответственно "точный", "средний", "грубый" и "очень грубый" $(t_1, t_2, t_3 \text{ и } t_4)$.

- 2. Сочетания в одной общей записи неуказанных предельных отклонений для размеров различных элементов должны соответствовать приведенным в табл. 50.
- 3. Числовые значения предельных отклонений по квалитетам должны соответствовать приведенным в ГОСТ 25347-82 и ГОСТ 25348-82; по классам точности - табл. 51, 52.
- 4. Предельные отклонения размеров различных элементов, оговариваемые одной общей записью, должны быть одного уровня точности (одного квалитета или одного класса точности, или одного квалитета и соответствующего ему класса точности). Квалитетам 11 (при размерах менее 1 мм) и 12 соответствует класс точности "точный", квалитетам 13 и 14 "средний", квалитетам 15 и 16 "грубый", квалитетам 17, 18 "очень грубый".
- 5. Неуказанные предельные отклонения размеров металлических деталей, обработанных резанием, предпочтительнее назначать по 14-му квалитету или классу точности "средний".

50. Сочетания в общей записи неуказанных предельных отклонений размеров различных элементов

	Размер	ы валов	Размеры	отверстий	Размеры элементов,		
Вариант	круглых (диаметры)	остальных	круглых (диаметры)	остальных	не относящихся к отверстиям и валам		
		Предельные	отклонения для	и одной общей	записи		
1	-1	T	+	IT	± t / 2		
2*		·t	-	+t	± t / 2		
3			± t / 2				
4	-IT	± t / 2	+IT	± t / 2	± t / 2		

- Применение варианта 2 не рекомендуется.
- О бозначения односторонних предельных отклонений от номинального размера:
 - -IT в минус по квалитету (соответствует валу h);
 - +ІТ в плюс по квалитету (соответствует отверстию Н);
 - -t в минус по классу точности;
 - +1 в плюс по классу точности;
 - ±t симметричные предельные отклонения по классу точности.
 - Примечание. Допускается общей записью оговаривать неуказанные симмет-

ричные предельные отклонения по квалитетам $\left(\pm \frac{\mathrm{IT}}{2}\right)$

51. Cus	метричные	предельные	отклонения,	MM.	, no	классам	точности
---------	-----------	------------	-------------	-----	------	---------	----------

				<u>. </u>										
	Интервалы номинальных размеров													
Класс точности	Св. 0,5 до 3	Св. 3 до 6	Св. 6 до 30	Св. 30 до 120	Св. 120 до 315	Св. 315 до 1000	Св. 1000 до 2000	Св. 2000 до 3150	Св. 3150 до 5000	Св. 5000 до 8000	Св. 8000 до 10 000			
				Пре	дельные	отклон	ения ± <i>t</i>	/ 2						
Точный	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	±0,8	±1,2	±2	±3			
Средний	±0,10	±0,10	±0,2	±0,30	±0,5	±0,8	±1,2	±2,0	±3,0	±5	±8			
Грубый	±0,15	±0,20	±0,5	±0,80	±1,2	±2,0	±3,0	±5,0	±8,0	±12	±20			
Очень грубый	±0,15	±0,50	±1,0	±1,50	±2,0	±3,0	±5,0	±8,0	±12,0	±20	±30			

Примечание. В таблице приведены предельные отклонения для размеров элементов, не относящихся к отверстиям и валам по вариантам 1 и 2, для всех размеров по варианту 3 и для всех размеров, кроме диаметров валов и отверстий, по варианту 4 табл. 50.

52. Односторонние предельные отклонения, мм, по классам точности

CTM	発送				Интер	валы но	минальн	ых разм	еров			
Сласс точности	Обозначение отклонский	Св. 0,5 до 3	Св. 3 до 6	Св. 6 до 30	Св. 30 до 120	Св. 120 до 315	Св. 315 до 1000	Св. 1000 до 2000	Св. 2000 до 3150	Св. 3150 до 5000	Св. 5000 до 8000	Св. 8000 до 10 000
Т о ч	+t1	+0,1 0	+0,1	+0,2 0	+0,3	+0,4 0	+0,6 0	+1,0 0	+1,6 0	+2,4 0	+4 0	+6 0
н ы й	- <i>t</i> ₁	0 -0,1	0 -0,1	0 -0,2	0 -0,3	0 -0,4	0 -0,6	0 -1,0	0 -1,6	0 -2,4	0 -4	0 -6
C p e	+t2	+0,2	+0,2	+0,4	+0,6	+1,0 0	+1,6 0	+2,4 0	+4,0 0	+6,0 0	+10 0	+16 0
Д Н И	-t ₂	0 -0,2	0 -0,2	0 -0,4	0 -0,6	0 -1,0	0 -1,6	0 -2,4	0 -4,0	0 -6,0	0 -10	0 -16
Γ p	+t3	+0,3	+0,4	+1,0 0	+1,6 0	+2,4 0	+4,0 0	+6,0 0	+10,0 0	+16,0 0	+24 0	+40
у б ы й	-t ₃	0 -0,3	0 -0,4	0 -1,0	0 -1,6	0 -2,4	0 -4,0	0 -6,0	0 -10,0	0 -16,0	0 -24	0 -40
Ог ч р	+t4	+0,3	+1,0	+2,0 0	+3,0	+4,0 0	+6,0 0	+10,0 0	+16,0 0	+24,0 0	+40 0	+60 0
еу нб ьы й	-•4	0 -0,3	0 -1,0	0 -2,0	0 -3,0	0 -4,0	0 -6,0	0 -10,0	0 -16,0	0 -24,0	0 -40	0 -60

Примечание. В таблице приведены предельные отклонения для размеров валов и отверстий по варианту 2 табл. 50.

НЕУКАЗАННЫЕ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ УГЛОВ

- 1. Неуказанные предельные отклонения углов (кроме 90°) устанавливают в зависимости от квалитета или класса точности неуказанных предельных отклонений линейных размеров.
- Числовые значения неуказанных предельных отклонений углов должны соответствовать приведенным в табл. 53.

На углы 90° с неуказанными допусками распространяются допуски перпендикулярности по ГОСТ 25069-81.

53. Неуказанные предельные отклонения углов (в угловых единицах и в мм на 100 мм длины)

Неуказанные : клонения лине		Интервалы длин меньшей стороны угла, мм									
по квалитетам по классам точности		До 10		Св. 10 до 40		Св. 40 до 160		Св. 160 до 630		Св. 630 до 2500	
От 12 до 16	Точный, средний, гру- бый	±1°	±1,8	±30'	±0,9	±20'	±0,6	±10'	±0,3	±5'	±0,15
17, 18	Очень грубый	±2°	±3,6	±1°	±1,8	±40'	±1,2	±20'	±0,6	Ŧ10'	±0,30

Примечание. Числовые значения предельных отклонений углов соответствуют $\pm \frac{AT16}{2}$

и $\pm \frac{AT17}{2}$ по ГОСТ 8908-81.

НЕУКАЗАННЫЕ ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ РАДИУСОВ ЗАКРУГЛЕНИЯ И ФАСОК

Неуказанные предельные отклонения радиусов закругления и фасок устанавливают в зависимости от квалитета или класса точности неуказанных предельных отклонений линейных размеров. Числовые значения неуказанных предельных отклонений радиусов закругления и фасок должны соответствовать приведенным в табл. 54.

В ГОСТ 25670-83 приведены также сводные таблицы неуказанных предельных отклонений размеров и пояснения к образованию числовых значений предельных отклонений по классам точности.

54. Неуказанные предельные отклонения, мм, радиусов закругления и фасок

Неуказанны отклонения ли	Интервалы номинальных размеров, мм								
по квалитетам			св. 1 до 3	св. 3 до 6	св. 6 до 30	св. 30 до 120	св. 120 до 315	св. 315 до 1000	
От 12 до 16	Точный, сред- ний, грубый	±0,1	±0,2	±0,3	±0,5	±l	±2	±4	
17, 18	17, 18 Очень грубый		±0,3	±0,5	±1,0	±2	±4	±8	

Дополнительные источники

Основные нормы взаимозаменяемости. Неуказанные допуски формы и расположения поверхностей - ГОСТ 25069-81. Поковки из углеродистой и легированной стали, изготовляемые ковкой на прессах. Припуски и допуски - ГОСТ 7062-90.

Мягков В. Д., Палей М. А., Романов А. Б., Брагинский В. А. Допуски и посадки: Справочник. Изд. 6-е. В 2-х ч. Л.: Машиностроение, 1983.

Глава V

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ

ЛИНЕЙНЫЕ РАЗМЕРЫ, УГЛЫ, КОНУСЫ

1. Нормальные лишейные размеры (по ГОСТ 6636-69 в ред. 1990 г.)

Стандарт устанавливает ряды нормальных линейных размеров в интервале 0,001 - 100 000 мм, предназначенные для применения в машиностроении и рекомендуемые в других отраслях промышленности.

Размеры в диапазоне от 0,001 до 0,009 мм должны соответствовать следующим: 0,001; 0,002; 0,003; 0,004; 0,005; 0,006; 0,007; 0,008; 0,009 мм.

Размеры, мм

	Ряд	íп		Допол- нитель- ные		Ряд	íЮ		Допол- нитель- ные		
Ra 5	Ra 10	Ra 20	Ra 40	разме- ры *	Ra 5	Ra 10	Ra 20	Ra 40	разме- ры *		
		1,0	1,0				4,0	4,0	4,1		
	1,0		1,05			4,0		4,2	4,4		
	-	1,1	1,1				4,5	4,5	4,6		
1,0			1,15		4,0			4,8	4,9		
		1,2	1,2	1,25			5,0	5,0	5,2		
	1,2	İ	1,3	1,35		5,0		5,3	5,5		
		1,4	1,4	1,45			5,6	5,6	5,8		
			1,5	1,55				6,0	6,2		
		1,6	1,6	1,65			6,3	6,3	6,5		
	1,6		1,7	1,75	ŀ	6,3		6,7	7,0		
	1,0			1,8	1,8	1,85			7,1	7,1	7,3
1,6			1,9	1,95	6,3			7,5	7,8		
		2,0	2,0	2,05			8,0	8,0	8,2		
	2,0		2,1			8,0		8,5	8,8		
		2,2	2,2	2,15			9,0	9,0	9,2		
			2,4	2,30				9,5	9,8		
		2,5	2,5			!	10	10	10,2		
	2,5		2,6	2,7		10		10,5	10,8		
		2,8	2,8	2,9			11	11	11,2		
2,5		<u> </u>	3,0	3,1	10			11,5	11,8		
		3,2	3,2	3,3			12	12	12,5		
	3,2	l '	3,4	3,5		12		13	13,5		
		3,6	3,6	3,7		}	14	14	14,5		
			3,8	3,9	<u>L</u>	<u> </u>	<u> </u>	15	15,5		

							Пр	одолжен	ие табл. 1
	Ряд	ы		Допол- нитель- ные		Рядь	I		Допол- нитель- ные
<i>Ra</i> 5	Ra 10	Ra 20	Ra 40	разме- ры *	Ra 5	Ra 10	Ra 20	Ra 40	разме- ры *
		16	16	16,5			125	125	118
	16		17	17,5	100	125		130	135
		18	18	18,5	İ		140	140	145
16			19					150	155
		20	20	19,5			160	160	165
	20	1	21	20,5	İ	160		170	175
		22	22	21,5			180	180	185
		ļ	24	23,0	160			190	195
		25	25	27			200	200	205
	25		26			200		210	215
		28	28	29]	220	220	230
25	ļ		30	31				240	
		32	32	33			250	250	270
	32		34	35		250		260	
		36	36	37			280	280	290
	1		38	39	250			300	310
		40	40	41			320	320	330
	40		42	44		320		340	350
		45	45	46			360	360	370
40			48	49				380	390
		50	50	52			400	400	410
	50		53	55		400		420	440
		56	56	58	1		450	450	460
	<u> </u>		60	62	400		,	480	490
		63	63	65			500	500	515
	63		67	70	<u> </u>	500		530	545
		71	71	73		ļ '	560	560	580
63			75	78		<u></u>		600	615
		80	80	. 82	1		630	630	650
	80		85	88		630		670	690
		90	90	92			710	710	730
		1	95	98	630			750	775
		100	100	102			800	800	825
100	100		105	108		800		850	875
		110	110	112			900	900	925
			120	115	<u> </u>	<u> </u>		950	975
* 7	Іля пазмен	DOR CREITIE	1000 M	м лопускае	тся также	применят	ъ числа 1	из ряла	<i>Ra</i> 160 no

^{*} Для размеров свыше 1000 мм допускается также применять числа из ряда *Ra* 160 по ГОСТ 8032-84.

При выборе размеров предпочтение должно отдаваться рядам с более крупной градацией (ряд *Ra* 5 следует предпочитать ряду *Ra* 10 и т.д.).

Дополнительные размеры, приведенные в таблице, допускается применять лишь в отдельных, технически обоснованных случаях.

2. Нормальные углы (по ГОСТ 8908-81)

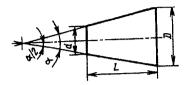

1-й ряд	2-й ряд	3-й ряд	1-й ряд	2-й ряд	3-й ряд	1-й ряд	2-й ряд	3-й ряд
0°				10°				70°
		0°15'			12°		75°	
	0°30'		15°					80
		0°45'			18			85
	1°		20			90°		
		1°30'			22			100
	2				25			110
		2°30'	30			120		
	3				35			135
	4			40			ļ	150
5	5		45					165
	6				50			180
	7				55			270
	8		60					360
		9			65			

Таблица не распространяется на угловые размеры конусов.

При выборе углов 1-й ряд следует предпочитать 2-му, а 2-й - 3-му.

3. Нормальные конусности и углы конусов (по ГОСТ 8593-81)

Стандарт распространяется на конусности и углы конусов гладких конических элементов деталей.

$$C = \frac{D - d}{L} = 2\lg\frac{\alpha}{2}$$

Обозна кону	1	Конус	ность	Угол ко	нуса а	Угол укло	на α / 2
ряд 1	ряд 2	C		угл. ед.	рад	угл. ед.	рад
1:500		1:500	0,0020000	6'52,5"	0,0020000	3'26,25"	0,0010000
1:200		1:200	0,0050000	17'11,3"	0,0050000	8'35,55"	0,0025000
1:100		1:100	0,0100000	34'22,6"	0,0100000	17'11,3"	0,0050000
1:50		1:50	0,0200000	1°8'45,2"	0,0199996	34'22,6"	0,0099998
	1:30	1:30	0,0333333	1°54'31,9"	0,0333304	57'17,45"	0,0166652
1:20		1:20	0,0500000	2°51'51,1"	0,0499896	1°25'55,55"	0,0249948
	1:15	1:15	0,0666667	3°49'5,9"	0,0666420	1°54'32,95"	0,0333210
	1:12	1:12	0,0833333	4°46'18,8"	0,0832852	2°23'19,4"	0,0416426
1:10		1:10	0,1000000	5°43'29,3"	0,0999168	2°51'44,65"	0,0499584
	1:8	1:8	0,1250000	7°9'9,6"	0,1248376	3°34'34,8"	0,0624188
	1:7	1:7	0,1428571	8°10'16,4"	0,1426148	4°5'8,2"	0,0713074
	1:6	1:6	0,1666667	9°31'38,2"	0,1662824	4°45'49,1"	0,0831412
1:5		1:5	0,2000000	11°25'16,3"	0,1993374	5°42'38,15"	0,0996687
	1:4	1:4	0,2500000	14°15'0,1"	0,2487100	7°7'30,05"	0,1243550
1:3		1:3	0,3333333	18°55'28,7"	0,3302972	9°27'44,35"	0,1651486
30°		1:1,866025	0,5358985	30°	0,5235988	15°	0,2617994
45°		1:1,207107	0,8284269	45°	0,7853982	22°30'	0,3926991
60°		1:0,866025	1,1547010	60°	1,0471976	30°	0,5235988
	75°	1:0,651613	1,5346532	75°	1,3089970	37°30'	0,6544985
90°		1:0,500000	2,0000000	90°	1,5707964	45°	0,7853982
120°		1:0,288675	3,4641032	120°	2,0943952	60°	1,0471976

Примечание. Значения конусности или угла конуса, указанные в графе "Обозначение конуса", приняты за исходные при расчете других значений, приведенных в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

4. Укороченные конусы инструментов (по ГОСТ 9953-82). Стандарт распространяется на укороченные инструментальные конусы Морзе

Размеры, мм

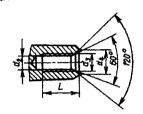
^{*}z - наибольшее допускаемое отклонение положения основной плоскости, в которой находится диаметр D, от ее теоретического положения.

^{**} Размеры для справок.

Обозначение конуса	Конус Морзе	D	D_1	đ	d_1	l_1	<i>l</i> ₂	<i>а</i> , не более	b	с
В7	0	7,067	7,2	6,5	6,8	11	14	3	3	0,5
B10	1	10,094	10,3	9,4	9,8	14,5	18	3,5	3,5	1,0
B12		12,065	12,2	11,1	11,5	18,5	22	3,5	3,5	
B 16	2	15,733	16	14,5	15	24	29	5	4	1,5
B18		17,780	18	16,2	16,8	32	37	5	4	
B22	3	21,793	22	19,8	20,5	40,5	45,5	5	4,5	2,0
B24		23,825	24,1	21,3	22	50,5	55,5	5	4,5	
B32	4	31,267	31,6	28,6	-	51,0	57,5	6,5	-	2,0
B45	5	44,399	44,7	41,0	-	64,5	71,0	6,5	-	2,0

Размеры D_1 и d являются теоретическими, вытекающими соответственно из диаметра D и номинальных размеров a и l_1 .

5. Конусность наружных и внутренних конусов и конусов с резьбовым отверстнем


Обозначение величины конуса	Конусность	Угол конуса 2α
В7	1 : 19,212 = = 0,05205	2°58'54"
B10; B12	1 : 20,047 = = 0,4988	2°51'26"
B16; B18	1 : 20,020 = = 0,04995	2°51'41"
B22; B24	1 : 19,922 = = 0,05020	2°52'32"
B32	1 : 19,954 = = 0,05194	2°58'31"
B45	1 : 19,002 = = 0,05263	3°00'53"

Угол конуса 2α подсчитан по величине конусности с округлением до 1".

б. Рекомендуемые размеры центрового отверстия укороченного конуса

Размеры, мм

Центровые отверстия для конусов Морзе В12, В18, В24 и В45 - формы P по ГОСТ 14034-74. Допускается изготовление центрового отверстия с размерами, указанными в таблице.

Обозначение конуса Морзе	<i>d</i> ₂	<i>d</i> ₃	d ₄	L	
B12	M6	8,0	8,5	16	
B18	M10	12,5	13,2	24	
B24	M12	15,0	17,0	28	
B32	M16	20,0	22,0	32	
B45	M20	26,0	30,0	40	

7. Конусы инструментов. Предельные отклонения угля конуса и допуски формы конусов (по ГОСТ 2848-75)

Степень точности инструментальных конусов обозначается допуском угла конуса заданной степени точности по ГОСТ 8908-81 и определяется предельными отклонениями угла конуса и допусками формы поверхности конуса, числовые значения которых указаны ниже.

		Длина	П	редельні	ые		Допус	ки форм	ы конус	а, мкм		
Обозначе	ение	изме- рения угла	кон	онения уса, мкм ине кон	і, на		Прямолинейность образующей			Круглость		
конусс	ЭB	конуса L, мм		Степень точности								
			AT6	AT7	AT8	AT6	AT7	AT8	AT6	AT7	AT8	
Метри-	4	25	8	12	20	1,6	2,5	4	4	6	10	
ческих	6	35	10	16	25	2,0	3,0	5				
	0	49				2,5	4,0	6				
Морзе	1	52	10	16	25	, '			5	8	12	
•	2	64				3,0	5,0	8				
	3	79	12	20	30	1			6	10	16	

Продолжение табл. 7

	1	Длина	п	редельн	ые		Допус	ки форм	ы конус	а, мкм	
Обознач		изме- рения угла	откі кон	отклонения угла конуса, мкм, на длине конуса			иолиней бразующ		Круглость		
конус	OB	конуса <i>L</i> , мм				Степ	ень точн	юсти			
			AT6	AT 7	AT8	AT6	AT7	AT8	AT6	AT7	AT8
	4	100				3,0	5,0	8	6	10	16
Морзе	5	126	16	25	40	4,0	6,0	10			
	6	174									
	80	180				5,0	8,0	12	. 8	12	20
Метри- ческих	100	212	20	30	50						
	120	244	25	40	60						
	160	308				6,0	10,0	16	10	16	25
	200	372	30	50	80	-,-	, , ,			10	
	В7	14				1,2	2,0	3		-	
	B 10	18	6	10	16	1,6	2,5	4			
	B12	22							3	5	8
Укоро- ченных	B16	29	8	12	20	2,0	3,0	5			
	B18	37	10	16	25	·					
	B22	45,5									
	B24	55,5		20		2,5	4,0	6			
	B32	57,5	12		30				4	6	10
<u> </u>	B45	71				3,0	5,0	8			

Примечания: 1. Отклонения угла конуса от номинального размера располагать: в "плюс" - для наружных конусов, в "минус" - для внутренних.

2. ГОСТ 2848-75 для наружных конусов предусматривает также степени точности АТ4 и АТ5. Допуски по ГОСТ 2848-75 распространяются на конусы инструментов по ГОСТ 25557-82 и ГОСТ 9953-82.

Пример обозначения конуса Морзе 3, степени точности АТ8:

Mopse 3 AT8 IOCT 25557-82

То же метрического конуса 160, степени точности АТ7:

Memp. 160 AT7 FOCT 25557-82

То же укороченного конуса В18, степени точности АТ6:

Морзе В18 АТ6 ГОСТ 9953-82

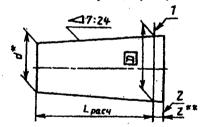
8. Конусы инструментальные Морзе и метрические внутренние (по ГОСТ 25557-82)

Размеры, мм

145,5 | 182,5 110 200 424 388 62 200 22 350 Для конусов с резьбовым отверстием 160 321 20 160 8 Метрический 1:20=0,05108,5 276 254 120 38 2 120 33 240 220 8 9 8 32 9 71,5 202 186 26 33 8 52 8 =0,052141:19,180 =63,348 54,6 188 177 9 47 27 9 1:19,002 ==0,0526344,399 38,2 15,9 135 125 38 23 S 1:19,254 ==0.0519431,267 26,5 107 32 86 18 Внутренине конусы 4 1:19,922 ==0,05020 Морзе 23,825 20,2 14 84 78 27 3 1:20,020 ==0,04995 17,780 14,9 22 67 62 7 Для конусов с лапкой 1:20,047= =0.0498812,065 7,6 19 99 52 1:19,212= =0,05205 9,045 15 6,7 49 22 0 3,5 Метричес-кий 4,6 17 ¥ 53 O 9 1:20 == 0.052,2 25 m 21 ∞ 4 Обозначение Конусность ls min Конус конуса å ¥ 90

. ГОСТ предусматривает размеры и для конусов инструментальных наружных. . Предельные отклонения размеров конусов и допуски формы по ГОСТ 2848-75.

9. Конусы внутрениие и наружные конусностью 7: 24 (по ГОСТ 15945-82)


Размеры, мм

	Обозначение конуса	D	L* (справочный)
	10	15,87	21,8
<u>16°35′40″</u>	15	19,05	26,9
7×24	25	25,40	39,8
2001500	30	31,75	49,2
877730" 57	35	38,10	57,2
L"	40	44,45	65,6
	45	57,15	84,8
	50	69,85	103,7
	55	88,90	131,6
	60	107,95	163,7
Пример обозначения конуса 25:	65	133,35	200,0
Конус 25 ГОСТ 15945-82	70	165,10	247,5
·	75	203,20	305,8
	80	254,00	390,8

10. Допуски конусов внутренних и наружных конусностью 7:24 (по ГОСТ 19860-93)

Настоящий стандарт распространяется на конусы по ГОСТ 15945 с конусностью 7 : 24 обозначением от 30 до 80 и устанавливает допуски углов и формы конусов от 3 до 7-й степени точности.

Размеры и допуски углов наружных и внутренних конусов

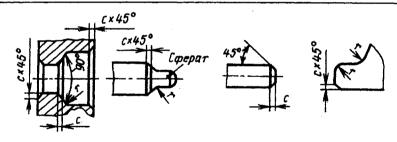
- * Размер для справок.
- ** Z базорасстояние конуса задается в стандартах на конкретную продукцию
- 1 основная плоскость; 2 базовая плоскость

Обозна- чения	D	d	$L_{ m pacq}$	Допус	к утла, мкм	, конуса А	Γ _D πο ΓΟCΊ	8908
конусов		-	—pac4	3	4	5	6	7
30	31,75	17,750	48	2,5	4	6	10	15
35	38,10	21,767	56	2,5	4	6	10	15
40	44,45	25,492	65	3,0	5	8	12	20
45	57,15	32,942	83	3,0	5	8	12	20
50	69,85	40,100	102	4,0	6	10	16	25
55	88,90	54,858	127	4,0	6	10	16	25
60	107,95	60,700	162	5,0	8	12	20	30
65	133,35	74,433	202	5,0	8	12	20	30
70	165,10	92,183	250	6,0	10	16	25	40
75	203,20	113,658	307	6,0	10	16	25	40
80	254,00	138,208	394	8,0	12	20	30	50

Условное обозначение конусов по ГОСТ 15945 с добавлением степени точности конуса:

Konyc 50 AT5 FOCT 15945-82

Предельные отклонения базорасстояния конуса Z следует выбирать из ряда: \pm 0,4; \pm 0,2; \pm 0,1; \pm 0,05 мм.


Продолжение табл. 10

	Допуски формы конусов							
Обозначение	Наименование	Допуск формы, мкм, для степеней точности						
конуса	допуска	3	4	5	6	7		
30; 35	Допуск прямоли-	0,6	1,0	1,6	2,5	4		
40; 45	нейности	0,8	1,2	2,0	3,0	5		
50; 55		1,0	1,6	2,5	4,0	6		
60; 65		1,2	2,0	3,0	5,0	8		
70; 75		1,6	2,5	4,0	6,0	10		
80		2,0	3,0	5,0	8,0	12		
30; 35; 40;	Допуск круглости	0,6	1,0	1,6	2,5	4		
45; 50			•					
55; 60		0,8	1,2	2,0	3,0	5		
65; 70;		1,0	1,6	2,5	4,0	6		
75; 80								

ФАСКИ, ГАЛТЕЛИ И РАДИУСЫ ЗАКРУГЛЕНИЙ

11. Радиусы закруглений и фаски (по ГОСТ 10948-64)

Размеры, мм

1-й ряд	2-й ряд	1-й ряд	2-й ряд	1-й ряд	2-й ряд
0,10	0,10	1,6	1,6	25	25
-	0,12	-	2,0	-	32
0,16	0,16	2,5	2,5	40	40
-	0,20	_	3,0	-	50
0,25	0,25	4,0	4,0	63	63
-	0,30	-	5,0	-	80
0,40	0,40	6,0	6,0	100	100
-	0,50	-	8,0	-	125
0,60	0,60	10	10	160	160
• •	0,80		12	_	200
1,0	1,0	16	16	250	250
-	1,2	-	20		ł

Размеры радиусов и фасок распространяются на детали, изготовляемые из металиа и пластмасс, но не распространяются на размеры радиусов, закруглений (сгиба) гнутых деталей, фасок на резьбах, радиусов проточек для выхода резьбообрабатывающего инструмента, фасок и радиусов закруглений шарико- и роликоподшипников и на их сопряжения с ва-

лами и корпусами, на технологические межоперационные радиусы.

При выборе размеров радиусов и фасок 1-й ряд следует предпочитать второму.

Допускается вместо размера 63 применять размер 60.

В обоснованных случаях допускается применять фаски с углами, отличными от 45°.

12. Входные фаски деталей с неподвижными посадками

Размеры, мм

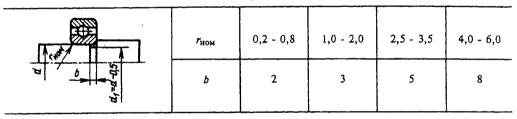
			Размеры (фаски пр	и посадк	ах
ů,	D	Фаска	$\frac{\text{H7}}{\text{u7}}$; $\frac{\text{H7}}{\text{s6}}$; $\frac{\text{H7}}{\text{p6}}$; $\frac{\text{H7}}{\text{r6}}$; $\frac{\text{H7}}{\text{m6}}$	H8 s7	H8 u8	H8 ; H8 z8
A A A	До 50	a	0,5	1	1,5	2
		A	1	1,5	2	2,5
H	50 - 100	a	1	2	2	3
		A	1,5	2,5	2,5	3,5
	100 - 200	a	2	3	4	5
Фаски делать только с одной		A	2,5	3,5	4,5	6
стороны деталей. При H≥D до- пускается увеличение фасок до	250 - 500	a	3,5	4,5	7	8,5
ближайшего (большего) раз- мера.		A	4	5,5	8	10

13. Раднусы закруглений сопряженных валов и втулок

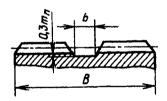
Размеры, мм

	D	r	71
	10 - 18	0,6	1
Вал 😜	20 - 28	1,6	2
	30 - 46	2,0	2,5
Втулка Вал	48 - 68	2,5	3
We was a second of the second	70 - 100	3	4
	105 - 150	4	5
	155 - 200	5	6
	210 - 250	6	8

Галтели вала и корпуса под шарико- и роликоподшинники Размеры, мм


Подшипник \ Корпус или вал	r _{HOM}	0,2	0,3	0,4	0,5	1	1,5
	'n	0,1	0,2	0,2	0,3	0,6	1
	r _{HOM}	2	2,5	3	3,5	4	5
FHOM	r ₁	1	1,5	2	2	2,5	3

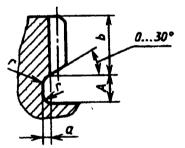
В таблице приведен наибольший размер галтели.


КАНАВКИ

15. Канавки для посадки подшишников качения

Размеры, мм

16. Канавки для выхода червячных фрез при нарезании шевронных колес



Нормальный модуль	Ширина канавки <i>b</i> , мм, при угле наклона зубъев по делительному цилиндру			Нормальный модуль	Ширина канавки <i>b</i> , мм, при угле наклона зубьев по делительному цилиндру		
m_n , MM	св. 15 до 25°	св. 25 до 35°	св. 35 до 4 5°	<i>т</i> _п , мм	св. 15 до 25°	св. 25 до 35°	св. 35 до 45°
1	20	22	24	3	38	40	45
1,5	24	26	28	3,5	45	50	55
2	28	30	34	4	50	55	60
2,5	34	36	40	4,5	55	60	65

Продолжение табл. 16

Нормальн ый модуль	угле нак			Нормальный модуль	при угле	а канавкі наклона вному ці	зубьев по
<i>m</i> _n , мм	св. 15 до 25°	св. 25 до 35°	св. 35 до 45°	m_n , MM	св. 15 до 25°	св. 25 до 35°	св. 35 до 45°
5	60	65	70	9	95	105	110
6	70	75	80	10	100	110	115
7	75	80	85	12	115	125	135
8	85	90	95			}	

17. Канавки для выхода долбяков (по ГОСТ 14775-81)

Канавки для выхода зуборезных долбяков устанавливаются для цилиндрических зубчатых колее наружного и внутреннего эвольвентного зацепления, а также для шлицевых эвольвентных венцов.

Формулы для определения ширины канавки A см. на с. 494.

Размеры, мм

Ширина		а, не	менее	енее	
зубчатого шлицевого венца <i>b</i>	A_1 , не менее	для зубчатых колес	для шлице- вых венцов	для зубчатых колес	для шлице- вых венцов
До 10	1,0				
Св. 10 до 15	1,5	0,5	0,25	·	0,2
Св. 15 до 20	2,0			0,4	
Св. 20 до 25				·	
Св. 25 до 30	2,5				
Св. 30 до 35					
Св. 35 до 40	3,0				
Св. 40 до 45	3,5	1,0	1,00	1,0	1,0
Св. 45 до 50	4,0				

Продолжение табл. 17

Ширина		а, не	менее	<i>r</i> , не менее		
зубчатого шлицевого венца <i>b</i>	A_1 , не менее	для зубчатых колес	для шлице- вых венцов	для зубчатых колес	для шлице- вых венцов	
Св. 50 до 55	4,5				1,0	
Св. 55 до 60	5,0		!			
Св. 60 до 65		2,0	1,00	1,0		
Св. 65 до 70	Св. 65 до 70 5,5					
Св. 70 до 75						
Св. 75 до 80	6,0					
Св. 80 до 90	7,0					
Св. 90 до 100	8,0	3,0	1,60	1,6	1,6	
Св. 100 до 120	9,0					

Приведенные в табл. 17 значения A_1 не распространяются на выбор ширины канавки для косозубых колес:

$$A=A_1+A_2,$$

где A_1 - составляющая, которая учитывает перебег долбяка; A_2 - составляющая, которая зависит от свойств обрабатываемого материала и условий резания.

Величина A_2 выбирается по зависимости

$$A_2=(1\div 3)\ A_1,$$

где рекомендуется принимать:

наименьшее значение - при обработке хрупких материалов с характерной стружкой скалывания, малых толщинах срезаемого материала и интенсивном смыве образующейся стружки смазочно-охлаждающей жидкостью;

наибольшее значение - при обработке вязких материалов с характерной сливной стружкой и больших толщинах срезаемого материала.

Для изделий крупносерийного и массового производства в технически обоснованных случаях допускается уменьшение ширины A и применение канавок другого профиля.

Для шлицевых венцов допускается уменьшение ширины канавка на $\frac{1}{3}A$ сравнительно с величиной, подсчитанной по приведенным формулам.

Рекомендуемые допуски линейных размеров канавок $\pm \frac{1\Gamma 15}{2}$.

18. Канавки для выхода шлифовального круга (по ГОСТ 8820-69)

Канавки для выхода шлифовального круга при плоском шлифовании

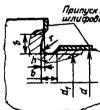
Размеры, мм

Исполнание 1	Исполнение 2 Припуск	<i>b</i> 1	<i>h</i> ₁	<i>r</i> ₂
Припуск на шлифобание '//\br\'\\	на шлифование	2	1,6	0,5
		3	2	1,0
	A. e	5	3	1,6

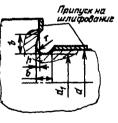
Канавки пля выхода шлифовального круга при шлифовании круглом

Шлифование по наружному цилиндру

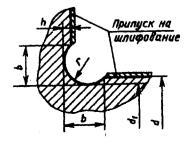
Шлифование по наружному цилиндру и торцу


Исполнение 1

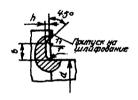
Припуск на шли**фов**ание


Исполнение 2

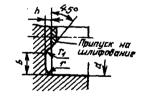
Исполнение 1



Исполнение 2

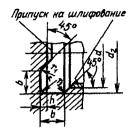


Исполнение 3


Припуск на шлифование


Шлифование по наружному торцу

Шлифование по внутреннему торцу



Исполнение 4

Шлифование по внутреннему цилиндру и торцу

Шлифование по внутреннему цилиндру

Размеры, мм

<i>b</i> для исг	іолнения	Наружное	Внутреннее	h	r	r <u>ı</u>	d≈
1; 2	3	шлифова- ние d_1	шлифова- ние <i>d</i> ₂				
1	-	d - 0,3	d + 0,3	0,2	0,3	0,2	До 10
1,6		·			0,5	0,3	
2	_	d - 0,5	d + 0.5	0,3	0,5	0,3	До 10
3	1,5	,			1,0	0,5	Св. 10 до 50
5	2,25				1,6	0,5	Св. 50 до 100
8	2,8	d - 1	d+1	0,5	2,0	1	" 100
10	5,0				3,0	1	" 100

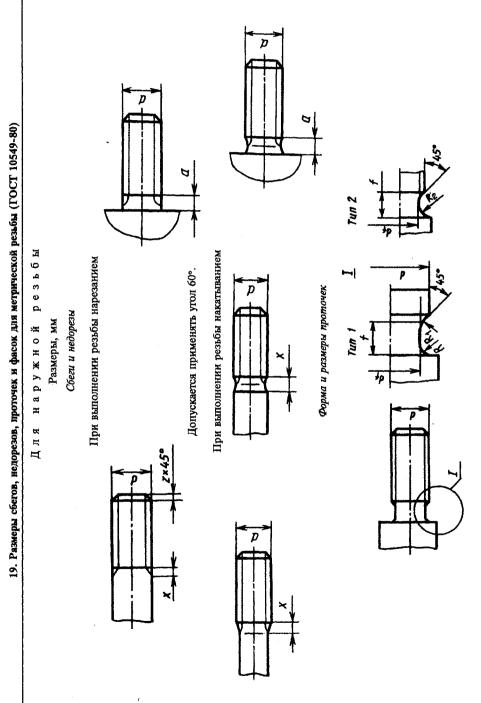
Примечания:

1. При шлифовании на одной детали нескольких поверхностей различных диаметров рекомендуется применять канавки одного размера.

- 2. При ширине канавки $b \le 2$ мм допускается применять закругления с обеих сторон, равные r.
- Допускается применять и другие размеры канавок, исходя из прочностных или конструктивных особенностей изделия.

Размеры исполнения 4, мм

b	d_1	h	b_1	с	72
1,1	d - 0,2	0,1	0,5	0,8	0,2
2,2	d - 0,4	0,2	1,0	1,5	0,4
4,3	d - 0,6	0,3	1,5	3,3	0,6
6,4	d - 0,8	0,4	2,3	5,0	1,0


выходы резьбы. Сбеги, недорезы, проточки и фаски

ГОСТ 10549-80 (в ред. 1992 г.) устанавливаются размеры сбега резьбы при выходе инструмента или при наличии на инструменте заборной части, размеры недореза при выполнении резьбы в упор, формы и размеры проточек для выхода резьбообразующего инструмента, размеры фасок - для резьбы метрической, трубной цилиндрической, трубной конической, конической дюймовой с углом профиля 60°и трапецеидальной.

Проточки типа 2 (табл. 19) для наружной и внутренней резьбы снижают концентрацию напряжений под головкой, но уменьшают площадь опорной поверхности.

Размеры проточек для заданного шага резьбы допускается устанавливать по ближай-шему табличному шагу резьбы.

Для деталей из высокопрочных материалов с $\sigma_B > 1400$ МПа и в случаях, если проточка, кроме технологических, несет и конструктивные функции, допускается применять проточки, не установленные настоящим стандартом.

Предельные отклонения размеров проточек d_f и f назначакотся исходя из конструктивных требований к изготовляемым деталям.

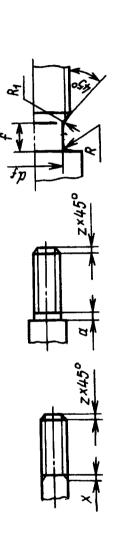
L	Нелорез а,	, a				Π	Проточка	et				og	Фаска 2
не более	رو آ	L			типа 1				типа 2	7 7		при сопря-	хөла оны
			НО	нормальная	83		узкая				đ _ç	с внут- ренней	Appyrack
нор- умень- маль- шен- ный ный	ень- ген-		٠,	æ	R	f	æ	Fr	f	R ₂		с про- гочкой тяпа 2	Î
9,0 8,0	9,0	لسلا	,	,	-						9'0 - p		ć
1,0 0,8	8,0		1,0	6,3	0,2	ı	1	1			1		c fo
											d - 0,7		
1,6 1,0	1,0		1,6			1,0	0,3	0,2			d - 0,8		<i>y</i>
				5,0	0,3				1	,	a - 0,9	1	2
2,0			2,0						_		d - 1,0		
1,6	1,6					1,6	5,0	6,0			d - 1,2		-
3,0			3,0						1	(· · ·
2,0	2,0			1,0	5,0	2,0			3,0	0,2	a - 1,3	0,2	
									4,4	2,5	d - 1,8	2,3	
4,0 2,5	2,5		4,0			2,5	1,0	0,5	4,6		d - 2,2	0,5),
									5,4	3,0	d - 2,5	3,5	
5,0 3,0	3,0		5,0		6,0	6,0			5,6	3,0	d - 3,0	3,5	2,0
6,0 4,0	4,0		6,0	1,6	1,0	4,0	1,0	0,5	7,3	4,0	d - 3,5	5,0	2,5
									7,6		d - 4,5	6,5	

	CSe	Сбег х, не более	viee	Heno	Непопез д		i		Ħ	Проточка	_				Фас	Фаска г
	при у	при угле заборной части инструмента	рной	не б	не более			типа 1				типа 2	B 2		при сопря- жении	
IIIar						Ħ	нормальная	33		узкая		-		đ _¢	с внут- ренней	для всех других
P	20°	30°	45°	нор- маль- нъй	умень- шен- ный	f	R	R ₁	٠	×	Ŗ	f	R2		резьбой с про- точкой типа 2	случаев
3.5	6.3	0,4	2,2	8.0	5.0	8.0	2.0		5,0		0,5	10,2	5,5	d - 5,0	7,5	2,5
4	7.1	4,5	2,5	· ·	<u>}</u>	\ 				1,6		10,3		d - 6,0	8,0	3,0
4.5	8,0	5,0	3,0	10.0	6.0	10,0		1,0	6,0			12,9	7,0	d - 6,5	9,5	
S	0,6	5,5	3,2				3,0				1,0	13,1		d - 7,0		
5.5	10,0	6.0	3,5	12.0	8,0	12,0			8,0	2,0		15,0	8,0	d - 8,0	10,5	4 ,0
9	11,0	;	4,0	·								16,0	8,5	0,6 - b		
					щ	Дляв	внутре	енне	¥ pe	зьбы	58					
							Pa3	Размеры, мм	75							
	Cle	Сбеги и недорезы	жэн					٠		ğ	Форма и размеры	размерь		проточек		
	×	× 1	Zx45°		c	72	Tun 1	~ ;		Tun2				~\/		;
"	1		7	ı	ĸ											77
				 	-	X	T.	-	1		3	 -		*		
				⇒	**		*	ζ _{3,} ρ	10			*2*				~
	#	ļ						_	-							
JI,	пускаетс	Допускается применять	нять угол	утол 60°.												

Продолжение табл. 19

Фаска г		для всех других	случаев		6,0			5,0			1,0		1,6	
Фас	при сопря- жении	с на- ружной	резьбой с про- точкой типа 2				í					2,0	2,5	
		ď			1		d + 0,3			d + 0,4	1	d + 0,5		d + 0,7
	тина 2		R2	•			ı					2,0	2,5	3,0
	THI		Ĵ				1					3,6	4,5	5,4
8			R_1		1		0,2	•		6,0	ı	6,0	6,0	
Проточка		узкая	R		ı		6,0			6,0	ı	0,5	1,0	
			f				1,0*	ı		1,6*	ı	2,0	3,0	
	типа 1	181	R ₁		ı		0,3	1		0,5	-	0,5		1,0
		нормальная	R	1			5,0	,		1,0	ı	1,0	1,6	
		Ĕ	<i>f</i>	t			2,0*	1		3,0*	ı	4,0	5,0	6,0
	Недорез а, не более		умень шен- ный		1,8			3,0		3,2		3,8		4,5
	Недо		нор- маль- нъй		2,0			3,5		4,0		5,0		0,9
	Сбег х, не более		умень- шен- ный	6,5	9,0	7,0	8,0	1,0	1,2	1,3	1,4	1,8	2,2	2,7
	Сбег х,		нор- маль- ный	8,0	6'0	1,1	1,2	1,5	1,8	1,9	2,1	2,7	3,3	4,0
		IIIar neakfiu	P	0,35	0,4	0,45	5,0	9,0	0,7	0,75	8,0	1	1,25	1,5

Продолжение табл. 19


									Проточка	83				Фас	Фаска 2
	C6er x,	Сбег х, не более	Недо не б	Недорез а, не более			типа	1			типа 2	a 2		при сопря- жении	
III ar					=	нормальная	3.8		узкая				d.	с на- ружной	других
pessoon <i>P</i>	нор- маль- ный	умень- шен- ный	нор- маль- нъй	умень- шен- ный	f	R	R_1	J	R	Rı	f	R2		резьоои с про- точкой типа 2	Ciyyacu
1.75	4,7	3,2	7,0	5,2	7,0	1,6		4.0	1,0	5,0	6,2	3,5	d + 0,7	3,0	1,6
5	5.5	3,7	8,0	6,0	8,0	2,0					6,5		d + 1,0		2,0
2.5	7,0	4,7	10,0	7,5				5,0			6,8	5,0		4,0	2,5
f 6		5,7		0,6	10			6,0	1,6		11,4	6,5	d + 1,2		
3.5		9,9		10,5			1,0	7,0			13,1	7,5		5,5	3,0
4		2,6	-T"	12,5	12	30		8,0	2,0	1,0	14,3	8,0	d + 1,5		
4.5	· T	8,5	ı	14,0	41	<u>`</u>		10			16,6	5,6		2,0	
		5,6		16,0		,			3,0		18,4		d + 1,8		4,0
2.5			·		16			12			18,7	10,5		8,0	
9	1	1		ı							18,9		d + 2,0	8,5	
dиП *	ина прото	* Ширина проточек дана для диаметров 6 мм и более.	ія диамет	ров 6 мм 1	и более.	_									

ГОСТ 10549-80 предусматривает также размеры для шага наружной и внутренней резьбы 0,2; 0,25 и 0,3 мм.

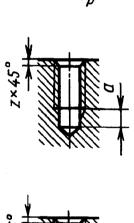
20. Размеры сбегов, недорезов, проточек и фасок (по ГОСТ 10549-80) для трубной цилиндрической резьбы

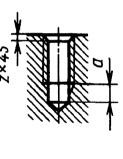
наружной резьбы Размеры, мм

Иля

	Фаска 2		1,0		1,6			2,0					
	đ,		6,0	8,0	11,0	14,5	18,0	20,0	23,5	27,0			
		R_1	6,0				0,5	-					
	узкая	R	5,0				1,0						
Проточка		f	1,6		2,5			3,0	`				
П	B	R_1				5,0							
	нормальная	R		1.0				1.6	<u> </u>				
	ЮН	f	2,5	•	4.0	<u>.</u>		0) Î				
Недорез а, не более	умень-	нъй	1,6		2.5	î		9	2				
Недо не б	норма-		2.5	ì	4.0	è.		0.3	n n				
Сбег х, не более	при угле заборной части инструмента	30°	1.0	î	1.5	C 61		ć	2,0				
C Coe	при угле заборной части инструмента	200	16) (1	7,7	t, 7		ç	2,4				
	Число шагов на длине 25,4 мм		38	9	C.	Ć.		,	14				
	Обозначение размера резьбы		1/16	1/0	1/,	3/°	1/2	5/2	3/4	1/8			

Продолжение табл. 20


	Фаска 2										2,5	_						16		
	đ _r		29,5	34,0	38,0	40,5	44,0	50,0	56,0	62,0	71,5	78,0	84,0	90,5	96,5	109,0	122,0	134,5	147,0	160,0
		$R_{\rm I}$									6,0									
	узкая	R									1,0									
Проточка		f									4,0									
Пр	1	Rı									1,0	`								
	нормальная	R									1.6	ì				-				
	фон	3								-	6.0	<u>,</u>								
Недорез а, не более	умень-	нъгж						_			4.0	2								
Недо	норма-										9									
, x, Jiee	аборной грумента	30°									3 6	6,								
Сбег х,	при угле заборной части инструмента	200									7	τ, Τ,								
	Число шагов на длине 25,4 мм										ţ	П								
	Обозначение размера резьбы		,	11,	1./8	11/4	13/8	11/2	13/4	7	21/4	$2^{1/2}$	23/4	m ;	31/4	$\frac{3^4}{2}$	4	4-/2	n f	51/2


комендуется применять резьбообразующий инструмент с углом заборной части 20°, а при уменьшенном недорезе и узкой проточке - с углом При выполнении наружной трубной цилиндрической резьбы напроход, а также в упор при нормальных недорезе и ширине проточки резаборной части 30°.

Продолжение табл. 20

езьбы внутренней Для

Размеры, мм

		4
	R/R	+
	- 1p	<u>T</u>
V	1	

	Фаска 2			1,0				1,6		
	đ	,	8,0	10,0	13,5	17,0	21,5	23,5	27,0	31,0
		R_1				0,5				
	узкая	R		1,0				1,6		
Проточка		f	2,5		3,0			5,0		
Ē	R	R_1		5,0				1,0		
	нормальная	R	1,0	•	1,6			2,0		
	Юн	f	4		2			∞		
Недорез а, не более	умень- шен-	нъй	2,5	`	3,0	`		5.0	`	
Недс не (норма-		4		5			∞	•	
Сбег х, не более	умень- шен-	ный	1,4		2.0			3,0		
д эн ЭЭ	норма-		2.2		3.3			8.4		
	Число шагов на длине 25,4 мм		28		19	}		4		
	Обозначение размера резъбы		1/16	1/8	1/4	3/8	1/2	8/8	3/4	8/2

Продолжение табл. 20

норма- умень- льный шен- ный <i>f R</i>	умень- ноу шен- лы ный ный
ный ƒ	
-	
10 6.0 10 3,0	
	A AV
	•

При выполнении внутренней трубной цилиндрической резьбы в упор и нормальном недорезе и ширине проточки рекомендуется приме-нять резьбообразующий инструмент с длиной заборной части не более трех шагов, а при уменьшенном недорезе и узкой проточке - с длиной Ширина узких проточек может быть уменьшена до 1,5 шага. заборной части не более двух шагов.

21. Размеры сбегов, недорезов, проточек и фасок для трубной конической резьбы (ГОСТ 10549-80)

Размеры, мм

резьбы

наружной

Для

Для внутренней резьбы

	Фаска		1,0		1,6	
	1	đ,	8,0	10,0	13,5	17,0
es .	Проточка	Ŗ		3,5 2 0,5 0,3 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0		
Внутренняя резьба	Прс	æ	1,0			
рення		f	3			
Внут	Недо-	рез <i>a</i> , не более	5,5		8,0	
	C6er	х, не более	3,5 2 0,5 0,3 6,0 8,0 5,0 3 1,0 0,5 11,0			
		ſр	0,9	3,0 5,0 3 1,0 0,5 11,0 4,0 8,0 5 1,6	14,0	
	Проточка	R R ₁	2,0 3,5 2 0,5 0,3 6,0 3,0 5,5 3 3 3,0 5,0 3,0 5,5 3 3,0 5,0 3,0 5,0 3 1,0 0,5 11,0 4,0 8,0 5			
, Ça	H	R				
pe3		<i>£</i>				
Наружная резьба	Недо-	рез а, не более	3,5	5,0 3 1,0 0,5 11,0		
,	Сбег х при угле	заборной части инструмента 20°, не более	2,0		3,0	,
	Число шагов на ллине	25,4 MM	28		19	
	Обозначе-	мера резь- бы	1/16	1/8	1/4	3/8

	•S.H	,
Z×45°	70	

Продолжение табл. 21

		#	Наружная резьба	резъб	, es				Внут	трення	Внутренняя резьба	ža		
Обозначе-	Число шагов	Сбег к шри угле	Нело-		a	Проточка		Céer	Недо-		IIp	Проточка		Фаска 2
Mepa pest- 6M	25,4 MM	заборной части инструмента 20°, не более	рез <i>а</i> , не более	<u> </u>	æ	R	df	х, не более	рез <i>а</i> , не более	f	~	R ₁	ďf	
1/2	PΓ	3.5	6.5	4	0.1		18,0	5,5	11,0	7	1,6	0,5	21,5	1,6
3/4	ξ.		·	·			23,5						27,0	
1						-	29,5						34,0	
11/4							38,0	`					42,5	
11/2							44,0						48,5	
2						5,0	0'95					1,0	0,09	
21/2	11	4,5	8,0	5	1,6		71,0	7,0	14,0	∞	2,0		76,0	2,0
æ							84,0				,eus		88,5	
31/2							98,0						101,0	
4							109,0						114,0	
۶							134,5						139,5	_
9							160,0						165,0	

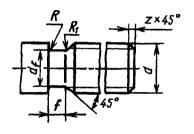
Ширина узких проточек для внутренней резьбы может быть уменьшена до 1,5 шага.

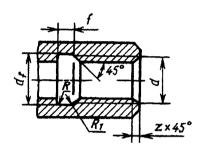
Размеры приведены для трубной конической резьбы по ГОСТ 6211-81.

Размеры сбегов, недорезов, проточек и фасок по ГОСТ 10549-80 для конической дюймовой резъбы с углом профиля 60° (см. эскиз к табл. 21)

Размеры, мм

	Фаска 2		1,0			1,6				2,0		
		df.	8,5	10,5	14,0	17,5	22,0	27,0	34,0	42,5	48,5	60,5
es es	Проточка	R_1		0,5					1,0			
Внутренняя резьба	IIpo	R		1,0					1,6			
рення		f	3		4		9			7		
Внут	Недо-	рез <i>а</i> , не более	9		6		11			41		
	Céer	х, не более	3,0	•	4,0		5,5			6,5		
		df	9	∞	11	14	18	23	29	38	44	56
	Проточка	R_1	6,0					0,5				
- Ça		R	5,0			1,0				1,6		
pear		f	2		е		4			5		
Наружная резьба	Недо-	рез <i>а</i> , не более	3,5		5,5		0,9	,		7,0		
H	Сбег х при угле	заборной части инструмента 20°, не более	2,5		3,5		4,5			5,5		
	Число шагов на длине	25,4 мм	27		18		14			111/2		
	Обозначе-	мера резь- бы	1/16	1/8	1/4	3/8	1/2	3/4	-	11/4	11/2	2


Размеры приведены для конической дюймовой резьбы с углом профиля 60° по ГОСТ 6111-52 в ред. 1992 г.


23. Размеры проточек и фасок для наружной и внутренней трапецендальной однозаходной резьбы (ГОСТ 10549-80)

Размеры, мм

Для наружной резьбы

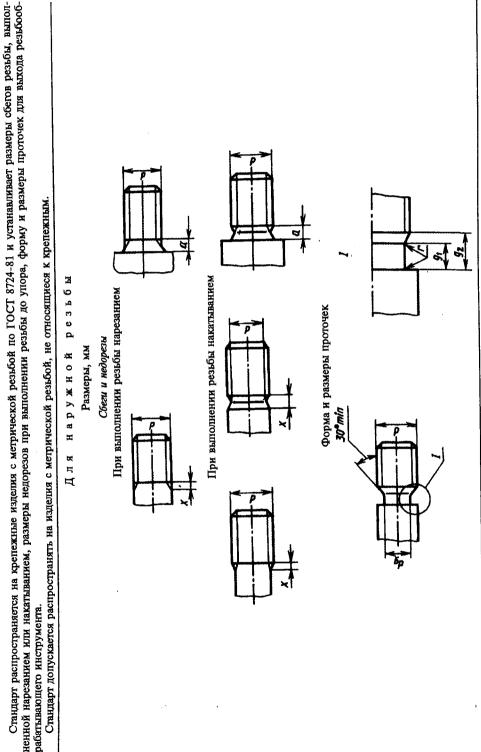
Для внутренней резьбы

Для многозаходной трапецеидальной резьбы ширину проточки принимают равной ширине проточки однозаходной резьбы, шаг которой равен ходу многозаходной резьбы. Размеры остальных элементов следует принимать по табл. 23.

III ar				Проточка		Фаска д
резьбы	f	R	R_1	наружная резьба d_f	внутренняя резьба <i>d</i> _f	
2	3	1,0	0,5	d - 3,0	d + 1,0	1,6
3	5	1,6		d - 4,2		2,0
4	6	1,6	, ,	d - 5,2	d + 1,1	2,5
5	8	2,0]	d - 7,0	d + 1,6	3,0
6	10	3,0	1,0	d - 8,0	1	3,5
8	12]	d - 10,2	d + 1.8	4,5
10	16	3,0		d - 12,5	<u> </u>	5,5
12	18			d - 14,5	d + 2,1	6,5
16	25			d - 19,5	d + 2,8	9,0
20		ĺ		d - 24,0	d + 3,0	11,0
24	30	5,0	2,0	d - 28,0	d + 3,5	13,0
32	40	′		d - 36,5	,	17,0
40	50			d - 44,5	d + 4,0	21,0
48	60			d - 52,8		25,0

Общие указания:

- 1. Нормальные проточки и недорезы должны иметь предпочтительное применение. Узкие проточки и уменьшенный недорез допускается применять в обоснованных случаях.
- 2. Допускается применять вместо проточек, указанных в табл. 20 23 при $f \le 2$ мм,


симметричные проточки (без фаски) с радиусом закругления с обеих сторон, равным R.

3. Предельные отклонения размеров проточек d_f и f назначаются исходя из конструктивных требований к изготовляемым деталям.

Допускается применять размеры сбегов, недорезов и проточек по табл. 24.

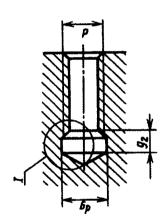
24. Размеры сбегов, недорезов, проточек для метрической резьбы крепежных изделий (ГОСТ 27148-86)

ненной нарезанием или накатыванием, размеры недорезов при выполнении резьбы до упора, форму и размеры проточек для выхода резьбооб-

Продолжение табл. 24

Mar	Номинальный диаметр	C6er x, 1	Сбег х, не более	He	Недорез а, не более	ulee		Проточка	тка	
резьбы Р	резьбы с круп- ным шагом d	нормаль- ный ~ 2,5 <i>P</i>	короткий ~ 1,25 <i>P</i>	нормаль- ный ~ 3 <i>P</i>	короткий ~ 2 <i>P</i>	дімнный ~ 4 <i>Р</i>	dg (h13*)	81, не менее	<i>8</i> 2, не более 3 <i>P</i>	r = 0,5P
0,35	1,6; 1,8	6,0	0,45	1,05	7,0	1,4	9'0 - p	9,0	1,05	0,16
0,4	2	-	6,5	1,2	8,0	1,6	d - 0,7	9,0	1,2	0,2
0,45	2,2; 2,5	1,1	0,6	1,35	0,9	1,8	d - 0,7	0,7	1,35	0,2
6,5	3	1,25	7,0	1,5	1	2	d - 0,8	8,0	1,5	0,2
9,0	3,5	1,5	0,75	1,8	1,2	2,4	d - 1	6,0	1,8	6,4
0,7	4	1,75	6,0	2,1	1,4	2,8	d - 1,1	1,1	2,1	0,4
0,75	4,5	1,9	1	2,25	1,5	3	d - 1,2	1,2	2,25	0,4
8′0	s	2	1	2,4	1,6	3,2	d - 1,3	1,3	2,4	6,0
	6; 7	2,5	1,25	3	2	4	d - 1,6	1,6	8	9,0
1,25	8	3,2	1,6	3,75	2,5	5	d - 2	2	3,75	9,0
1,5	10	3,8	1,9	4,5	٣	9	d - 2,3	2,5	4,5	8,0
1,75	12	4,3	2,2	5,25	3,5	7	d - 2,6	3	5,25	1
2	14; 16	5	2,5	9	4	8	d - 3	3,4	9	1
2,5	18; 20; 22	6,3	3,2	7,5	S	10	d - 3,6	4,4	7,5	1,2
m	24; 27	7,5	3,8	9	6	12	d - 4,4	5,2	6	1,6
3,5	30; 33	6	4,5	10,5	7	14	d - 5	6,2	10,5	1,6
4	36; 39	10	5	12	∞	16	d - 5,7	7	12	7
4,5	42; 45	11	5,5	13,5	6	18	d - 6,4	8	13,5	2
5	48; 52	12,5	6,3	15	10	20	d - 7	6	15	2,5
5,5	26; 60	14	7	16,5	11	22	T'L - P	11	17,5	3,2
9	64; 68	15	7,5	18	12	24	d - 8,3	11	18	3,2
* Для d :	* Для d ≤ 3 мм h12.									-
roct 27	ГОСТ 27148-86 предусматрив	ивает также р	азмеры для 1	езьбы с шак	вет также размеры для резьбы с шагом 0,2; 0,25 и 0,3 мм	0,3 MM.				

Нормальный сбег и проточка - для всех изделий классов точности А, Б и С.


Нормальный недорез - для изделий класса точности А, длинный недорез - для изделий классов точности В и С.

Короткий сбег и короткий недорез - для изделий, у которых по техническим причинам необходим уменьшенный выход резьбы.

Допускается изготовлять проточки с размерами, указанными в справочном приложении ГОСТ 27148-86.

Для внутренней резьбы

Размеры, мм

		Coer	Сбег х, не более	ę.	Недорез	Недорез а, не менее	нее			Проточка	62		
IIIar nearfu	Номинальный	HODMAILE-	корот-	ллин-	нормаль-	корот-	типн-	81, не менее	енее	82, не менее	нее	s _p	R_{\approx}
P	резьбы д	ный	КИЙ	нъй		кий	нъй	нормаль- ная	узкая	нормаль- ная	узкая	(H13)	≈0,5 <i>P</i>
0,35	1,6	7,0	0,4	1,4	2,2	1,5	3,2	1,4	6'0	1,9	1,4	d+0,2	0,16
0,4	2	8,0	9,0	1,6	2,5	1,5	3,5	1,6	1,0	2,2	1,6	d+0,2	0,2
0,45	2,5	6'0	9,0	1,8	3,0	2,0	4,0	1,8	1,1	2,4	1,7	d+0,2	0,2
0,5	3	1,0	8,0	2,0	3,0	2,0	5,0	2,0	1,25	2,7	2	d+0,3	0,2
9,0	3,5	1,2	8,0	2,4	3,5	2,5	5,5	2,4	1,5	3,3	2,4	d+0,3	0,4
7,0	4	1,4	1,0	2,8	3,5	2,5	6,0	2,8	1,75	3,8	2,75	d+0,3	0,4
,													

Продолжение табл. 24

Сбег х, не более Недорез а, не менее				Недорез а, 1	a, 1	не ме	нее			Проточка	RZ		
Номинальный попивпъ- корот- плин-	KODOT-		ллин		нормаль-	Kopor-	длин-	<i>g</i> 1, не менее	енее	82, не менее	же	dg.	
КИЙ	КИЙ		ный		ный	KKKĬ	нъй	нормаль- ная	узкая	нормаль- ная	узқая	(H15)	%0,3F
4,5 1,5 1,0 3,0	1,0	╂─	8,0	1_	4,0	2,5	7,0	3,0	1,9	4	2,9	d+0,3	6,4
	1,2		3,7		4,0	2,5	8,0	3,2	2,0	4,2	ю	d+0,3	6,4
<u>.</u>	1,5		4,		6,0	4,0	10,0	4,0	2,5	5,2	3,7	d+0,5	9,0
8 2,5 1,8 5,0	1,8	\vdash	2,		8,0	4,0	12,0	5,0	3,2	£'9	4,9	d+0,5	9,0
3,0	2,0		6,0		0,6	4,0	13,0	0,9	3,8	7,8	9,6	4+0,5	8,0
3,5 2,5	2,5		7,0		11,0	5,0	16,0	7,0	4,3	9,1	6,4	d+0,5	1
9	3,0	╁╴	8,0		11,0	5,0	16,0	8,0	5,0	10,3	7,3	d+0,5	
	3,5		10,0	_	12,0	0,9	18,0	10,0	6,3	13,0	9,3	d+0,5	1,2
6,0 4,0	4,0		12,	0	15,0	7,0	22,0	12,0	7,5	15,2	10,7	d+0,5	1,6
-	5,0	+-	4,	10	17,0	8,0	25,0	14,0	0,6	17,7	12,7	d+0,5	1,6
36; 39 8,0 6,0 16,0	0,9		16	0	19,0	9,0	28,0	16,0	10,0	20	14	d+0,5	7
42; 45 9,0 6,0 18,0	0,9		18,	0	23,0	11,0	33,0	18,0	11,0	23	16	4+0,5	7
48; 52 10,0 7,0 20,0	7,0	 	28,	0	26,0	12,0	37,0	20,0	12,5	36	18,5	4+0,5	2,5
11,0 8,0	8,0			22,0	28,0	13,0	40,0	22,0	14,0	288	20	4+0,5	3,2
64; 68 12,0 9,0 24,0	0,6		24	oʻ	28,0	13,0	42,0	34,0	15,0	30	17.	4+0,5	3,2
				1		ć		20, 60, 200					

ГОСТ 27148-86 предусматривает также размеры для резъбы с шагом 0,2; 0,25 и 0,3 мм.

ОТВЕРСТИЯ

25. Отверстия под нарезание метрической резьбы (по ГОСТ 19257-73)

Диаметры отверстия под нарезание метрической резьбы по ГОСТ 9150-81, ГОСТ 24705-81 с допусками по ГОСТ 16093-81 в сером чугуне по ГОСТ 1412-85, в сталях по ГОСТ 380-94, ГОСТ 1050-88, ГОСТ 4543-71, ГОСТ 10702-78, ГОСТ 5632-72 (кроме сплавов на никелевой основе), в алюминиевых литейных сплавах по ГОСТ 1583-93, в меди по ГОСТ 859-78.

Размеры и предельные отклонения диаметров отверстий резьб с крупным щагом Размеры, мм

		Диаме	тр отверст	ия под резьбу	с полем допус	ка
Номинальный диаметр резьбы <i>d</i>	Шаг резьбы <i>Р</i>	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4H5H; 5H	5H6H; 6H; 6G	7H; 7G
		Номина	л		Отклонения	
2,5	0,45	2,05	2,07	+0,07	+0,09	-
3	0,5	2,50	2,52	+0,08	+0,10	+0,14
3,5	0,6	2,90	2,93	+0,08	+0,11	+0,15
4	0,7	3,30	3,33	+0,08	+0,12	+0,16
4,5	0,75	3,70	3,73	+0,09	+0,17	+0,18
5	0,8	4,20	4,23	+0,11	+0,19	+0,22
6	1	4,95	5,0	+0,17	+0,20	+0,26
8	1,25	6,70	6,75	+0,17	+0,20	+0,26
10	1,5	8,43	8,50	+0,19	+0,22	+0,30
12	1,75	10,20	10,25	+0,21	+0,27	+0,36
14	2	11,90	11,95	+0,24	+0,30	+0,40
16		13,90	13,95	,	-,	, , , ,
18		15,35	15,40			
20	2,5	17,35	17,40	+0,30	+0,40	+0,53
22		19,35	19,40			•
24	3	20,85	20,90	+0,30	+0,40	+0,53
27		23,85	23,90	0,20	,,,,,	. 0,55
30	3,5	26,30	26,35			
33	3,5	29,30	29,35	+0,36	+0,48	+0,62
36	4	31,80	31,85		,,,,	-,
39	4	34,80	34,85	+0,36	+0,48	+0,62
42	4,5	37,25	37,30	+0,41	+0,55	+0,73
45	4,5	40,25	40,30	+0,41	+0,55	+0,73
48	5	42,70	42,80			
. 52	-	46,70	46,80			
56	5,5	50,20	50,30	+0,45	+0,60	+0,80
60	2,5	54,20	54,30	, ,,,,,	,,	⊤∪, ₀∪
64	6	57,70	57,80			
68		61,70	61,80			
	<u> </u>		01,00	L	L1	

ГОСТ предусматривает отверстия для резьб с крупным шагом $d = 1.0 \div 2.2$ мм.

26. Размеры и предельные отклонения днаметров отверстий резьб с мелким шагом Размеры, мм

		Диаме	тр отверсти	ия под резьбу	с полем допус	ка
Номинальный диаметр резьбы <i>d</i>	Шаг резьбы Р	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4H5H; 5H	5H6H; 6H; 6G	7H; 7G
-		Номина	n.		Отклонения	
2,5		2,15	2,17			
3	0,35	2,65	2,67	+0,05	+0,07	~
3,5		3,15	3,17			
4		3,50	3,52			
4,5	0,5	4,00	4,02	+0,08	+0,10	+0,14
5		4,50	4,52			
5,5		5,00	5,02			
6	0,5	5,50	5,52	+0,08	+0,10	+0,14
	0,75	5,20	5,23	+0,11	+0,17	+0,22
	0,5	7,50	7,52	+0,08	+0,10	+0,14
8	0,75	7,20	7,23	+0,11	+0,17	+0,22
	1	6,95	7,00	+0,17	+0,20	+0,26
	0,5	9,50	9,53	+0,08	+0,10	+0,14
10	0,75	9,20	9,23	+0,11	+0,17	+0,22
	1	8,95	9,00	+0,17	+0,20	+0,26
	1,25	8,70	8,75	+0,17	+0,20	+0,26
	0,5	11,50	11,52	+0,08	+0,10	+0,14
	0,75	11,20	11,23	+0,11	+0,17	+0,22
12	1	10,99	11,00	+0,17	+0,17	+0,26
	1,25	10,70	10,75	+0,17	+0,20	+0,26
	1,5	10,43	10,50	+0,19	+0,22	+0,30
	0,5	13,50	13,52	+0,08	+0,10	+0,14
	0,75	13,20	13,23	+0,11	+0,17	+0,22
14	1	12,95	13,00	+0,17	+0,20	+0,26
	1,25	12,70	12,75	+0,17	+0,20	+0,26
	1,5	12,43	12,50	+0,19	+0,22	+0,30
	0,5	15,50	15,52	+0,08	+0,10	+0,14
16	0,75	15,20	15,23	+0,11	+0,17	+0,22
	1	14,95	15,00	+0,17	+0,20	+0,26
	1,5	14,43	14,50	+0,19	+0,22	+0,30
	0,5	17,50	17,52	+0,08	+0,10	+0,14
	0,75	17,20	17,23	+0,11	+0,17	+0,22
18	1	16,95	17,00	+0,17	+0,20	+0,26
	1,5	16,43	16,50	+0,19	+0,22	+0,30
	2	15,90	15,95	+0,24	+0,30	+0,40

Продолжение табл. 26

	ı ————————————————————————————————————		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	ение таки. 26
		Диаме	тр отверст	ия под резьбу	с полем допус	ска
Номинальный диаметр резьбы <i>d</i>	Шаг резьбы <i>Р</i>	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4H5H; 5H	5H6H; 6H; 6G	7H; 7G
		Номина	aut .		Отклонения	
	0,5	19,50	19,52	+0,08	+0,10	+0,14
	0,75	19,20	19,23	+0,11	+0,17	+0,22
20	1	18,95	19,00	+0,17	+0,20	+0,26
	1,5	18,43	18,50	+0,19	+0,22	+0,30
	2	17,90	17,95	+0,24	+0,30	+0,40
	0,5	21,50	21,52	+0,08	+0,10	+0,14
	0,75	21,20	21,23	+0,11	+0,17	+0,22
22	1	20,95	21,00	+0,17	+0,20	+0,26
	1,5	20,43	20,50	+0,19	+0,22	+0,30
	2	19,90	19,95	+0,24	+0,30	+0,40
	0,75	23,20	23,23	+0,11	+0,17	+0,22
24	1	22,95	23,00	+0,17	+0,20	+0,26
	1,5	22,43	22,50	+0,19	+0,22	+0,30
	2	21,90	21,95	+0,24	+0,30	+0,40
	0,75	26,20	26,23	+0,11	+0,17	+0,22
27	1	25,95	26,00	+0,17	+0,20	+0,22
	1,5	25,43	25,50	+0,19	+0,22	+0,30
	2	24,90	24,95	+0,24	+0,30	+0,40
-	0,75	29,20	29,23	+0,11	+0,17	+0,22
	1	28,95	29,00	+0,17	+0,20	+0,26
30	1,5	28,43	28,50	+0,19	+0,22	+0,30
	2	27,90	27,95	+0,24	+0,30	+0,40
	3	26,85	26,90	+0,30	+0,40	+0,53
	0,75	32,20	32,23	+0,11	+0,17	+0,22
	1	31,95	32,00	+0,17	+0,20	+0,26
33	1,5	31,43	31,50	+0,19	+0,22	+0,30
	2	30,90	30,95	+0,24	+0,30	+0,40
	3	29,85	29,90	+0,30	+0,40	+0,53
	1	34,95	35,00	+0,17	+0,20	+0,26
36	1,5	34,43	34,50	+0,19	+0,22	+0,30
	2	33,90	33,95	+0,24	+0,30	+0,40
	3	32,85	32,90	+0,30	+0,40	+0,53
	1	37,95	38,00	+0,17	+0,20	+0,26
39	1,5	37,43	37,50	+0,19	+0,22	+0,30
	2	36,90	36,95	+0,24	+0,30	+0,40
	3	35,85	35,90	+0,30	+0,40	+0,53

Продолжение табл. 26

		Диаме	гр отверсти	ия под резьбу	с полем допус	ка
Номинальный диамегр резьбы <i>d</i>	Шаг резьбы <i>Р</i>	4H5H; 5H; 5H6H; 6H; 7H	6G; 7G	4H5H; 5H	5H6H; 6H; 6G	7H; 7G
		Номина	וט		Отклонения	
	1	40,95	41,00	+0,17	+0,20	+0,26
	1,5	40,43	40,50	+0,19	+0,22	+0,30
42	2	39,90	39,95	+0,24	+0,30	+0,40
	3	38,85	38,90	+0,30	+0,40	+0,53
	4	37,80	37,85	+0,36	+0,48	+0,62
	1	43,95	44,00	+0,17	+0,20	+0,26
	1,5	43,43	43,50	+0,19	+0,22	+0,30
45	2	42,90	42,95	+0,24	+0,30	+0,40
	3	41,85	41,90	+0,30	+0,40	+0,53
	4	40,80	40,85	+0,36	+0,48	+0,62

ГОСТ предусматривает отверстия для резьб с $d=1,0 \div 200$ мм и для d 3-го ряда.

ГОСТ предусматривает методику определения диаметров отверстий под нарезание метрической резьбы для материалов повышенной вязкости.

27. Диаметры отверстий под нарезание дюймовой конической резьбы с углом профиля 60° по ГОСТ 6111-52

Размеры отверстий под нарезание резьбы распространяются на металлы и сплавы, не облапающие повышенной вязкостью.

Размеры, мм

С развертыванием на конус

Без развертывания на конус

Продолжение табл. 27

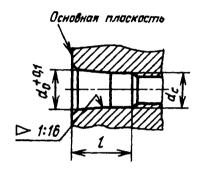
				Диаметр	Диаметр отверстия с развертыванием на конус	звертывание	и на конус		Диаметр	Диаметр отверстия
Размер резьбы,	Число шагов	Шаг резьбы	Внутренний диаметр		d_c		d_0	Глубина сверления	без развер Ко	без развертывания на конус
ТЮЙМЫ	на 1"	Ь	резьбы d_1	Номинал	Отклонения	Номинал	Отклонения	l	Номинал	Отклонения
1/16	7.7	0,941	6,389	6,00	+0,16	6;39	60'0+	13	6,3	+0,14
1/8			8,766	8,30	+0,20	8,76		14	8,7	
1/4	18	1,411	11,314	10,70	+0,24	11,31	+0,13	20	11,2	+0,24
3/8			14,797	14,25		14,80	,	21	14,7	
1/2	14	1,814	18,321	17,50	+0,28	18,32		26.5	18,25	+0,24
3/4			23,666	22,90	,	23,66		`	23,50	+0,28
1			29,694	28,75	+0,28	29,69	+0,17	33,5	29,6	+0,28
11/4	111/2	2,209	38,451	37,43	+0,34	38,45		34,5	38,5	+0,34
11/8			44,520	43,50	+0,34	44,52		34,5	44,5	+0,34

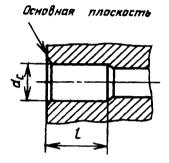
28. Диаметры отверстий под нарезание трубной цилиндрической резьбы (по ГОСТ 21348-75)

Диаметры отверстий под нарезание трубной цилиндрической резьбы по ГОСТ 6357-81 в изделиях из сталей по ГОСТ 380-94, ГОСТ 4543-71, ГОСТ 1050-88 и ГОСТ 5632-72 (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78.

			Лиаметр	Лиаметр отверстия под резьбу	и резьбу				Диаметр о	Диаметр отверстия под резьбу	ц резьбу
Номинальный размер резъбы,	Число	Шаг	Номинал	Отклонения для классов точности	ния для	Номинальный размер резьбы,	Число шагов	Шаг	Номинал	Отклонения для классов точности	ия для эчности
дюймы	на 1"			A	В	TONWIT				Ą	В
1/8	28	0,907	8,62	+0,10	+0,20						
1/4	05	1.337	11,50	+0,12	+0,25	21/4		_	62,80		
3/8	}	<u></u>	15,00			21/2			72,27		
1/2			18,68			23/4			78,62		
5/8		1 814	20,64	+0.14	+0,28	ю			84,97		
3/*	<u>-</u>	1,011	24,17			31/4			91,07		
1/6			27,93			31/2	11	2,309	97,42	+0,22	+0,43
6/			30,34			33/4			103,77		
11/0			35,00			4			110,12		
11/4			39,00			41/2			122,82		- 1-1
13/8		2,309	41,41	+0,18	+0,36	ν,			135,52		
1/8	·		44,90			51/2			148,22		
13/4			50,84			9			160,92		
			56,70								
					THEORETE	полученных на осно-	отверсти	килуап к	диаметров,	полученны	г на осно-

ГОСТ 21348-75 допускает под нарезание трубной дилиндрической резьбы применять отверстия друг вании экспериментальных данных.


29. Отверстия под нарезание трубной конической резьбы (ГОСТ 21350-75)


Отверстия предназначены под нарезание трубной конической резьбы по ГОСТ 6211-81 в изделиях из сталей по ГОСТ 380-94, ГОСТ 4543-71, ГОСТ 1050-88, ГОСТ 5632-72 (кроме сплавов на никелевой основе) и меди по ГОСТ 859-78.

Размеры, мм

С развертыванием на конус

Без развертывания на конус

			Отверсти	е с разверт на конус	тыванием	Отверстие вертывания	-	
Резьба, дюймы	Число шагов	IIIar P	a	lc	d ₀	d	;	Глубина сверления
	на 1"		Номинал	Откло- нение	Номинал	Номинал	Откло- нение	1
1/8	28	0,907	8,10	+0,20	8,57	8,25	+0,20	15
1/4	19	1,337	10,80	+0,24	11,45	11,05	+0,24	20
3/8			14,30		14,95	14,50		24
¹ / ₂	14	1,814	17,90	+0,24	18,63	18,10	+0,28	29
3/4			23,25	+0,28	24,12	23,60	ĺ	31
1			29,35	+0,28	30,29	29,65	+0,28	37
11/4	11	2,309	37,80	+0,34	38,95	38,30	0,34	40
11/2			43,70	+0,34	44,85	44,20	+0,34	42
2			55,25	+0,40	56,66	56,00	+0,40	44

Для резьб с номинальным размером свыше 2" номинальные диаметры отверстий d_0 и их предельные отклонения должны быть равны установленным ГОСТ 6211-81 для внутреннего диаметра резьбы.

Допускается под нарезание трубной конической резьбы применять отверстия других диаметров, полученных на основании экспериментальных данных.

30. Сквозные отверстия под крепежные детали (ГОСТ 11284-75)

Стандарт устанавливает размеры сквозных отверстий под болгы, винты, шпильки и заклепки с диаметрами стержней от 1,0 до 160 мм, применяемых для соединения деталей с зазорами.

А. Диаметры сквозных отверстий

Размеры, мм

Диаметр стержней крепеж-	Диаметр с	сквозных отн	ерстий d _h	Диаметр стержней крепеж-	Диаметр с	квозных отв (см. рис. 1)	ерстий d_h
ных де- талей	1-й ряд	2-й ряд	3-й ряд	ных де- талей	1-й ряд	2-й ряд	3-й ряд
2,0	2,2	2,4	2,6	18	19	20	21
2,5	2,7	2,9	3,1	20	21	22	24
3,0	3,2	3,4	3,6	22	23	24	26
3,5	3,7	3,9	4,2	24	25	26	28
4,0	4,3	4,5	4,8	27	28	30	32
4,5	4,8	5,0	5,3	30	31	33	35
5,0	5,3	5,5	5,8	33	34	36	. 38
6,0	6,4	6,6	7,0	36	37	39	42
7,0	7,4	7,6	8,0	39	40	42	45
8,0	8,4	9,0	10,0	42	43	45	48
10,0	10,5	11,0	12,0	45	.46	48	52
12,0	13,0	14,0 (13,5)	15,0 (14,5)	48	50	52	56
14,0	15,0	16,0 (15,5)	17,0 (16,5)	52	54	56	62
16,0	17,0	18,0 (17,5)	19,0 (18,5)	56	58	62	66

Примечания:

- 1. 3-й ряд отверстий не допускается применять для заклепочных соединений.
- 2. Предельные отклонения диаметров отверстий: для 1-го ряда по H12; для 2-го ряда по H13; для 3-го ряда по H14.
- 3. Размеры в скобках применять не рекомендуется.

Продолжение табл. 30

		продол	кение табл. 30
Б. Рекомендуеми	ые ряды сквозных отверсти	nĭ	
Количество и расположение отверстий	Способ образования отверстий	Тип соединения (см. рис. 1)	Рекомен- дуемый ряд сквозных отверстий
Любое количество отверстий и любое их расположение	Обработка отверстий по кондукторам	IиII	1-й ряд
Отверстия расположены в один ряд и координированы относительно оси отверстия или базовой плоскости	Пробивка отверстий штампами повышен- ной точности, литье	I	1-й ряд
A ₁ A ₁	под давлением и литье по выплавляемым моделям повышенной точности	п	2-й ряд
Отверстия (не более четырех) расположены в два ряда и координированы относительно их осей	Обработка отверстий по разметке, пробивка птампами обычной	I	2-й ряд
	точности, литье нор- мальной точности	п	3-й ряд
Отверстия расположены в два ряда и более и координированы относительно осей отверстий или базовых плоскостей	Пробивка отверстий штампами повыщенной точности, литье под давлением и литье по выплавляемым моделям повышенной точности	IиII	2-й ряд
Отверстия расположены по окружности	Обработка отверстий по разметке, пробивка штампами обычной точности, литье нормальной точности	I	3-й ряд

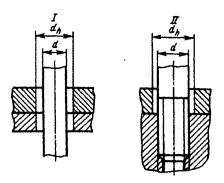
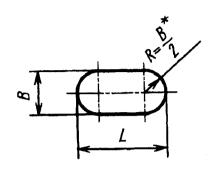


Рис. 1. Тины соединений крепежными деталями

Рекомендации по выбору рядов сквозных отверстий. Типы соединений указаны на рис. 1.

1. При независимой обработке отверстий каждой детали соединения с расстоянием между осями наиболее удаленных отверстий менее 500 мм для соединений, к которым предъявляются лишь требования собираемости, ряды сквозных отверстий рекомендуется выбирать по табл. 30.

- 2. Для соединений, к которым предъявляются требования собираемости и дополнительные требования обеспечения определенной степени относительного перемещения деталей, а также для соединений, к которым предъявляются лишь требования собираемости, но с расстоянием между осями наиболее удаленных отверстий в деталях 500 мм и более, допускается принимать более грубые (по сравнению с рекомендуемыми в табл. 30) ряды сквозных отверстий.
- 3. При совместной обработке отверстий в деталях соединения (для заклепочных и неразбираемых болтовых соединений) номинальный диаметр сквозного отверстия рекомендуется принимать равным наибольшему предельному размеру диаметра стержня крепежной детали. При этом отверстия должны быть раззенкованы на размер, соответствующий переходному радиусу между головкой и стержнем крепежной детали.
- При необходимости следует устранить контакт кромки отверстия с радиусом под головкой крепежной детали, отверстие рекомендуется раззенковать.


Отверстия под концы установочных винтов (ГОСТ 12415-80) Размеры, мм

	1 03/11	гры, мм			
Tom 1	Номинальный диаметр резьбы винта <i>d</i>	d ₁ (отклоне- ние по H14)	h (отклоне- ние по ± <u>ГГ14</u>	h ₁ (отклонение по ± <u>IT14</u>	h ₂
† With tith.	1,0	0,5	-		0,2
Tun2	1,2	0,6			0,3
	1,6	0,8	0,6		0,4
\forall	2,0	1,0	0,8	-	0,5
2 1 d.	2,5	1,5	1,0		0,7
	3,0	2,0	1,2		1,0
Mayana.	4,0	2,5	1,6		1,2
80-2	5,0	3,5			1,7
Tun 3	6,0	4,0	2,0	1,0	2,0
11-1-11	8,0	5,5	2,5		2,7
	10,0	7,0	3,0	1,2	3,5
4, 2	12,0	8,5	4,0	1,6	4,2
	16,0	12,0		2,0	6,0
UNIPRITA T	20,0	15,0	6,0	2,5	7,5
(so-1)	24,0	18,0		2,5	9,0

^{*} Размер для справок

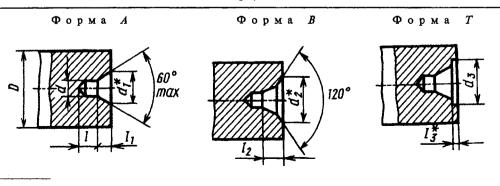
32. Отверстия сквозные продолговатые для болгов, винтов и ппилек (ГОСТ 16030-70)

Размеры, мм

d - диаметр стержней крепежных деталей.

ГОСТ 16030-70 устанавливает также размеры квадратных отверстий для болгов с квадратным подголовком диаметром от 5 до 24 мм.

* Размер для справок


	d	6	8	10	12	16	20	24	30	36	42	48
В	1-й ряд	6,6	9	11	13	17	22	26	33	39	45	52
	2-й ряд	7	10	12	14	18	24	28	35	42	48	56
	L*	10 - 20	12 - 40	14 - 45	18 - 45	20 - 60	25 - 80	32 - 100	40 - 125	45 - 125	50 - 125	60 - 125

^{*} Размер L в указанных пределах брать из ряда: 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 55; 60; 70; 80; 90; 100; 110; 125.

Стандарт устанавливает сквозные продолговатые отверстия для болгов, винтов и шпилек диаметром 2 - 48 мм.

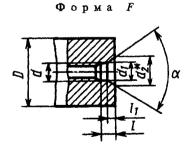
Предельные отклонения размеров отверстий по Н14.

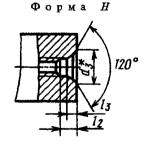
33. Центровые отверстия с углом конуса 60° (ГОСТ 14034-74)

^{*} Размер для справок.

Продолжение табл. 33

D	d	d_1	d_2	d ₃ ,	I,		h	l ₂ ,	<i>l</i> ₃ ,
				H14	не Me- нее	номинал	предельное отклонение	H12	нс менее
4	1,0	2,12	3,15	-	1,3	0,97	H11	1,27	-
5	(1,25)	2,65	4,00	-	1,6	1,21		1,60	-
6	1,6	3,35	5,00	-	2,0	1,52		1,99	-
10	2,0	4,25	6,30	7,0	2,5	1,95		2,54	0,6
14	2,5	5,30	8,00	9,0	3,1	2,42		3,20	0,8
20	3,15	6,70	10,00	12,0	3,9	3,07		4,03	0,9
30	4	8,50	12,50	16,0	5,0	3,90	H12	5,06	1,2
40	(5)	10,60	16,00	20,0	6,3	4,85		6,41	1,6
60	6,3	13,20	18,00	25,0	8,0	5,98		7,36	1,8
80	(8)	17,00	22,40	32,0	10,1	7,79		9,35	2,0
100	10	21,20	28,00	36,0	12,8	9,70		11,66	2,5
120	12	25,40	33,00	-	14,6	11,60		13,80	-


ГОСТ предусматривает также $D=2\div 3$ мм и $D=160\div 360$ мм.


Размеры, заключенные в скобки, применять не рекомендуется. Размеры D рекомендуемые. Пример обозначения центрового отверстия формы A диаметром d=1 мм:

Отв. центр. A1 ГОСТ 14034-74

34. Центровые отверстия с метрической резьбой (ГОСТ 14034-74)

Размеры, мм

* Размеры для справок. Размеры D рекомендуемые.

D для	формы	đ	d_1 ,	d_2	d ₃	l,	l_1 ,	<i>l</i> ₂ ,	<i>l</i> 3,	α
F	H		H14			не менее	H12	не более	H12	
8	-	M 3	3,2	5	-	2,8	1,56	-	_	
10	16	M4	4,3	6,5	8,2	3,5	1,90	4,0	2,4	60°
12,5	20	M 5	5,3	8,0	11,4	4,5	2,30	5,5	3,3	

Продолжение табл. 34

D для	формы	d	d_1 ,	d_2	d 3	1,	l_1 ,	<i>l</i> ₂ ,	l ₃ ,	α
F	H		H14			не менее	H12	не более	H12	
16	25	M6	6,4	10,0	13,3	5,5	3,00	6,5	4,0	
20	32	M8	8,4	12,5	16,0	7,0	3,50	8,0	4,5	
25	40	M10	11,0	15,6	19,8	9,0	4,00	10,2	5,2	
32	50	M12	13,0	18,0	22,0	10,0	4,30	11,2	5,5	60°
40	63	M16	17,0	22,8	28,7	11,0	5,00	12,5	6,5	
63	80	M20	21,0	28,0	33,0	12,5	6,00	14,0	7,5	
1	00	M24	25,0	36,0	43,0	14,0	9,50	16,0	11,5	
1	60	M30	31,0	44,8	51,8	18,0	12,00	20,0	14,0	

ГОСТ предусматривает также центровые отверстия с углом конуса 75°.

Пример обозначения центрового отверстия формы Fс диаметром резьбы d=M3:

Отв. центр. F M3 ГОСТ 14034-74

Технические требования. Длина конической поверхности l_1 в центровых отверстиях с углом конуса 60° (табл. 33) в технически обоснованных случаях может быть уменьшена до $0.5l_1$.

Резьба (табл. 34) - по ГОСТ 24705-81, поле допуска резьбы—7H по ГОСТ 16093-81.

Параметры шероховатости поверхностей центровых отверстий по ГОСТ 2789-73 должны быть: посадочных поверхностей $Ra \le 2,5$ мкм, поверхностей резьбы и предохранительных фасок $Rz \le 80$ мкм.

Применение форм центровых отверстий.

 Φ о р м а A - в случаях, когда после обработки необходимость в центровых отверстиях отпадает, и в случаях, когда сохранность центровых отверстий в процессе их эксплуата-

ции гарантируется соответствующей термообработкой.

 Φ о р м а B - в случаях, когда центровые отверстия являются базой для многократного использования, а также в случаях, когда центровые отверстия сохраняются в готовых изделиях.

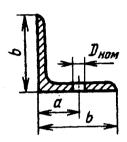
 Φ о р м а T - для оправок и калибров пробок.

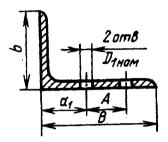
 Φ о р м ы F и H - для монтажных работ, транспортирования, хранения и термообработки деталей в вертикальном положении.

Назначение центровых отверстий формы A, В и T в зависимости от массы изделий (заготовок):

Масса изделия, кг, не более	<i>d</i> , мм	Масса изделия, кг, не более	<i>d</i> , мм	Масса изделия, кг, не более	<i>d</i> , мм
50	2	200	5	1500	12
80	2,5	360	6,3	2500	16
90	3,15	500	8	8000	20
100	. 4	800	10	20 000	25

ГОСТ 14034-74 предусматривает также и другие формы и размеры центровых отверстий.


РАЗМЕЩЕНИЕ ОТВЕРСТИЙ ПОД ЗАКЛЕПКИ И БОЛТЫ В ПРОКАТНЫХ ПРОФИЛЯХ


35. Отверстия в угловых стальных профилях по ГОСТ 8509-93 и ГОСТ 8510-86

Размеры, мм

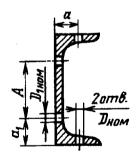
Уголки равнополочные

Уголки неравнополочные

При установке заклепок в два ряда в цепном порядке для всех угловых профилей (кроме профилей с шириной полки 125 и 140 мм) размеры A, a_1 и D_1 можно принимать такими же, как при шахматном расположении.

При стыковании двух угловых профилей размеры a, a_1, A, D и D_1 определяют индивидуально в соответствии с требованиями на изготовление стальных конструкций.

	Однор	ялное	<u> </u>	Двухряд	ное распол	ожение отв	ерстий	
b; B	располо	эжение		цепное		I	пахматное	· .
	а	$D_{\mathtt{Hom}}$	a_1	A	D _{1 HOM}	<i>a</i> ₁	A	$D_{1 {\scriptscriptstyle m HOM}}$
20	13	4,5	~	-	-	-	-	- · ·
25	15	5,5	-	-	-	-	-	-
28	15	6,5	-	-	-	-	-	-
32	18	6,5	-	-	-	-	-	-
36	20	9,0	-	-	- }	-	-	-
40	22	11,0	-	-	-	-	-	-
45	25	11,0	-	-	-	-	-	-
50	30	13,0	18	22	6,5	18	20	6,5
56	30	13,0	18	25	6,5	18	20	6,5
63	35	17,0	20	32	9,0	20	28	9,0
70	40	20,0	25	32	9,0	25	28	9,0
75	45	21,5	28	32	9,0	30	28	9,0
80	45	21,5	28	32	9,0	30	35	11,0
90	50	23,5	30	40	11,0	30	40	13
100	55	23,5	35	40	11,0	40	40	13
110	60	26	35	55	15,0	40	45	15,0
125	70	26	45	55	15,0	55	35	23,5
140	_ `	-	45	70	20,0	60	40	26
160	-	-	55	75	21,5	60	70	23,5
180	-	-	55	90	26,0	65	80	26,0

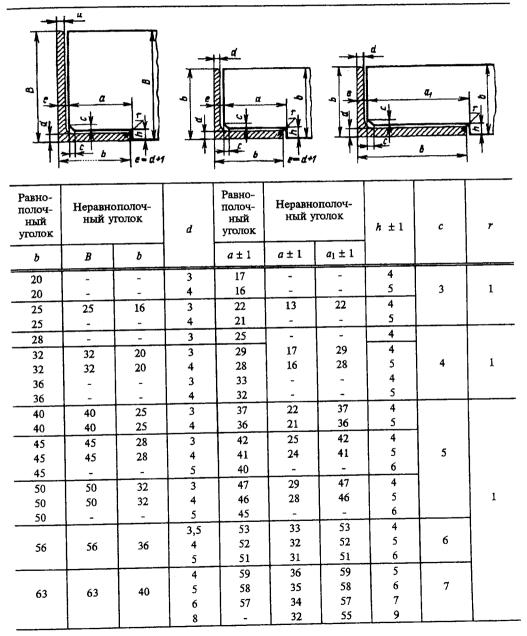

36. Отверстия в стальных двугаврах по ГОСТ 8239-89

Размеры, мм

	№	По	лка	C	тенка	
	профиля	A	$D_{ exttt{HOM}}$	А₁ наиб.	а	$D_{1 \text{ HOM}}$
	10	32	9,0	40	30	9,0
. A .	12	36	9,0	48	36	13,0
WILL STATE	14	45	11,0	60	40	13,0
	16	45	13,0	80	40	13,0
1 . 1	18	50	13,0	80	50	17,0
Y 4 amb.	20	55	17,0	100	50	17,0
	22	60	20,0	100	60	21,5
DHOM	24	60	20,0	120	60	21,5
	27	70	21,5	150	60	21,5
	30	75	23,5	170	65	23,5
	33	80	23,5	200	65	23,5
	36	80	23,5	220	70	23,5
	40	80	23,5	260	70	23,5

37. Отверстия в стальных швеллерах по ГОСТ 8240-89

Размеры, мм


Допуски на размеры $a,\ a_1,\ A,\ D$ и D_1 назначают индивидуально в зависимости от точности стальных конструкций к условий изготовления последних.

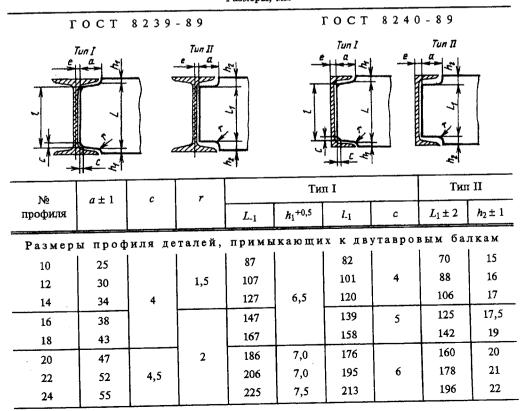
N⊵	По	лка		Стенка		N₂	По	лка		Стенка	
гофп Римф	а	$D_{ ext{HOM}}$	<i>А</i> наиб.	a_1	D _{1 HOM}	про- филя	а	D _{HOM}	А наиб.	<i>a</i> ₁	D _{1 HOM}
5	20	9,0	-	-	-	20	45	23,5	80	60	23,5
6,5	20	9,0	-	-	-	22	50	26,0	90	65	26,0
8	25	11,0	-	_	-	24	50	26,0	110	65	26,0
10	30	11,0	34	33	9,0*	27	60	26,0	130	70	26,0
12	30	17,0	44	38	13,0	30	60	26,0	160	70	26,0
14	35	17,0	56	42	15,0*	33	60	26,0	190	70	26,0
16	35	20,0	60	50	17,0*	36	70	26,0	210	75	26,0
18	40	20,0	70	55	20,0	40	70	26,0	250	75	26,0

^{*} При применении заклепок наибольшие номинальные диаметры отверстий могут быть увеличены на 2 мм.

ПРОФИЛЬ ДЕТАЛЕЙ, ПРИМЫКАЮЩИХ К ПРОКАТНЫМ ПРОФИЛЯМ В СВАРНЫХ КОНСТРУКЦИЯХ

38. Профиль деталей, примыкающих к стальным горячекатаным уголкам по ГОСТ 8509-93 и ГОСТ 8510-86

Продолжение табл. 38


Равно- полоч- ный уголок	Неравно ный ул		đ	Равно- полоч- ный уголок	Неравно ный у		h ±1	с	r
ь	В	ь		a ± 1	a ± 1	$a_1 \pm 1$			
	70	45	4,5	66	41	66	5		
	70	45	5	65	40	65	6		
70	-	- 1	6	64	-	-	7	8	
	-	-	7	63	-	-	8		
	-	_	8	62	-	-	9		
75	75	50	5	70	45	70	6		
75	75	50	6	69	44	69	7		
75	-	-	7	68	-	-	8 9		
75	75	50	8	67	42	67	10	9	1,5
75		-	9	66	- 45	75	6	,	1,5
-	80	50	5	75	45	ł .	6	Ì	
80	-	-	5,5	74	44	73	7		
80	80	50	6 7	73	-	- 73	8		
80	-	-	8	72	_	_	9		
80	90	56	5,5		51	85	7		
90	90	56	6	84	51	85	7		
90 90	90	56	7	83	50	84	8	10	
90	90	56	8	82	48	82	9		
90	-	-	9	81	_	-	10		
	100	63	6	-	58	- 95	7		
100	100	63	6,5	94	58	95	7		
100	100	63	7	94	57	94	8		
100	100	63	8	93	56	93	9	12	
100	100	63	10	91	54	91	11	ļ	
100	-	-	12	89	-	-	13	İ	
100	-	-	14	87	-	-	15		
100	-		16	85	-	-	17	1	
-	110	70	6,5	-	64	104	8		İ
110	110	70	7	104	64	104	8		2
110	110	70	8	103	63	103	9		-
-	125	80	7	110	74	119	8 9		
125	125	80	8	118	73	118	10		ļ
125	125	80	9 10	116	71	116	11		
125 125	125 125	80	12	114	69	114	13	1	
125	-	-	14	112	-	-	15	14	
. 125	-	_	16	110	_	_	17	1	
- 123	140	. 90	8	-	83	133	9	1	
140		-	9	132	-	-	10		
140	140	90	10	131	81	131	11		
140	-	-	12	129	-	-	13	ļ	

Продолжение табл. 38

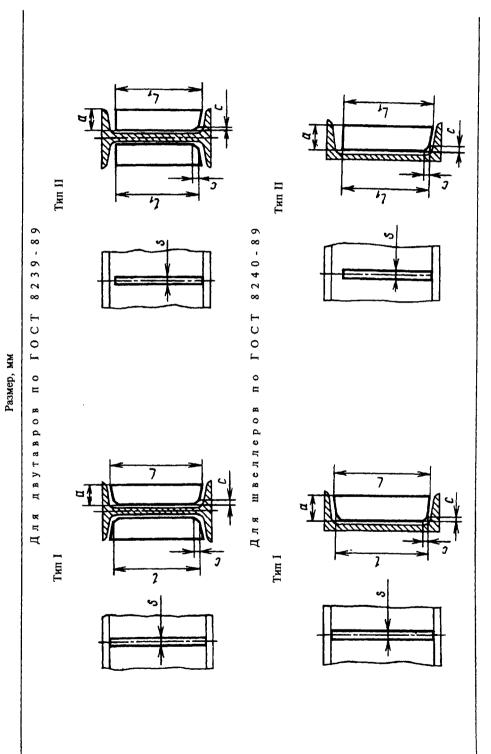
Равно- полоч- ный уголок	Неравнополоч- ный уголок		đ	Равно- полоч- ный уголок	Неравно ный у		h ± 1	с	r
b	В	ь		a ± 1	a ± 1	$a_1 \pm 1$			
	160	100	9	_	92	152	10		
160	160	100	10	152	91	151	11		
160	_	-	11	151	-	-	12		
160	160	100	12	150	89	149	13		
160	160	100	14	148	87	147	15		
160	-	-	16	146	-	-	17	16	3
160	-	ļ -	18	144	-	-	19		
160	-	-	20	142			21		
_	180	110	10	-	103	173	11		
180	-	-	11	171	-	-	12		
180	180	110	12	170	101	171	13	<u> </u>	

39. Профиль деталей, примыкающих к двугавровым балкам по ГОСТ 8239-89 и швеллерам по ГОСТ 8240-89

Размеры, мм

Продолжение табл. 39

№	a ± 1	с	r		Ти	пΙ		Тип II	
профиля				L-1	$h_1^{+0.5}$	<i>L</i> ₁	с	$L_1 \pm 2$	$h_2 \pm 1$
27	60	5		255	7,5	242	6	224	23
30	64	5,5	2,5	285	7,5	271	7	250	25
33	66	5,5		312	9,0	298	7	276	27
36	68	6,0	3,0	340	10,0	326	8	302	29
40	73			380		364		338	31
45	75	6,5	3,5	427	11,5	411	10	384	33
50	80	7		476	12	459	12	430	35
Pa	змеры	профи	ля дета	лей, п	римык	ающих	к швел	ілерам	
5	28			38	6,0	38		22	14
6,5	32	6	1,5	52	6,5	47	4	37	14
8	36			68	6,0	60		50	15
10	42			87	6,5	80		68	16
12	47		1,5	107		99	4	86	17
14	53		1,5	127	6,5	118	5	104	18
16	59	7	2,0	147		136	5	122	19
18	65	'	2,0	167		155	6	140	20
20	72		2,0	186	7,0	173	6	158	21
22	78		2,0	206		192	7	174	23
24	85	8	2,0	226	7,0	210	7	192	24
27	90	8	2,5	255	7,5	239	8	220	25
30	94	9	2,5	285	7,5	268	8	248	27
33	100	9	2,5	314	8,0	295	9	272	29
36	104	10	3,0	342	9,0	323	10	300	30
40	109			380	10,0	360	10	334	33


^{1.} Допускается стыкование примыкающих деталей, высота которых отлична от высоты уголка, двугавра, швеллера.

^{2.} Профиль типа I применяют в тех случаях, когда по расчету соединения на прочность требуется приварка примыкающих деталей к полкам двугавра или швеллера.

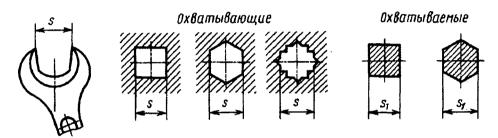
^{3.} Допускается принимать r=0.

^{4.} Поверхность примыкающих деталей по контуру обработки должна быть без заусенцев с высотой неровностей не более 0,5 мм.

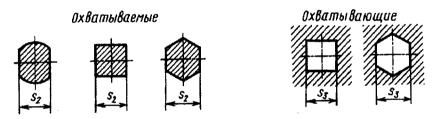
40. Форма ребер жесткости в прокатиых профилях

•	Į.
	Tagn.
-	СКЕНИЕ
r	-

2	2 + 2	C	,	Tr	Тип І	Тип П	II I	2	a ± 2	S	S	Тип І	п 1	Тип II	l II
жифофи	7 H 3	3	د	L_1	7.1	L_1	4	кижфофи	 			L_{-1}	<i>L</i> ₁	L_1	1,1
		Для двугавров	ровых бал	ых балок по ГОСТ 8239-89	CT 8239-	89				Для шве	шеров по	Для швеллеров по ГОСТ 8240-89	240-89	•	
10	25			87	82	08	78	∞	30		4	65	99	28	99
12	30	S	4	107	101	100	26	10	9	5	4	87	80	79	92
14	30			126	120	119	116	12	45		4	107	86	66	95
16	36		5	146	139	137	134	14	20	•	5	127	118	117	113
18	40	۷	5	166	158	157	153	16	55		5	146	136	136	131
20	45	>	9	185	176	174	170	18	09	9	9	166	155	154	149
22	20		9	206	195	194	189	20	65		9	185	173	173	167
24	50		9	224	213	212	207	22	92		7	205	192	161	185
27	98		9	254	242	242	236	24	80		7	225	210	210	203
30	09	~	7	284	271	270	264	27	85		∞	254	239	238	231
33	65	.	7	312	298	298	291	30	8	∞	∞	284	268	268	260
36	65		∞	340	326	325	318	33	95		6	312	295	294	286
40	70		∞	379	364	363	356	36	95		10	340	323	321	313
45	70	10	10	425	411	408	401	9	100		10	378	360	359	350
			 				2		on the course		r omnoë r	rormweett	-втол впифост емпой больжитей фонто имП	профиц	a vers-


Ребра жесткости типа I применяют при нагрузке, приложенной к обеим полкам профиля. При одной нагруженной полке профиля устанавливают ребра жесткости типа II.

МЕСТА ПОД КЛЮЧ И ПОД ГОЛОВКИ КРЕПЕЖНЫХ ДЕТАЛЕЙ, ПАЗЫ Т-ОБРАЗНЫЕ


41. Размеры зева (отверстия) ключа и под ключ (ГОСТ 6424-73 в ред. 1992 г.)

Стандарт устанавливает размеры зева (отверстия) ключей, конца ключей для изделий с углублением под ключ и размеры под ключ изделий повышенной, нормальной и грубой точности.

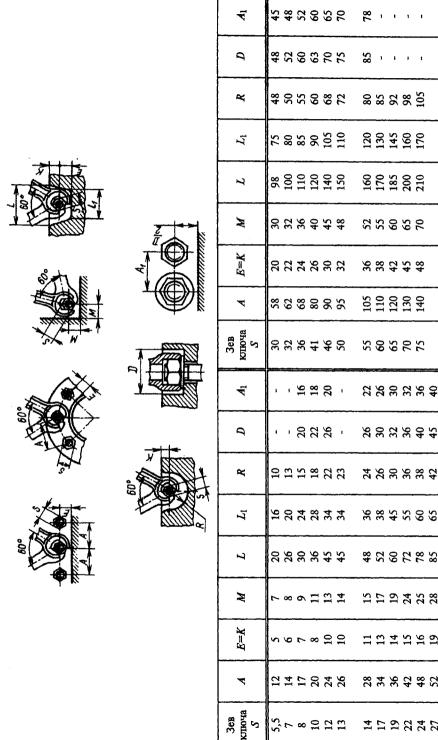
Размеры ключа

Размеры под ключ

			Предел	ьные откло	нения		
·	pa	змеров клю	ча		размеров	под ключ	
Номинальные размеры	охватыва	ющих <i>S</i>		ox	ватываемых	$\mathcal{S}_{\mathbf{i}}$	
S ; S_1 ; S_2 ; S_3	Кли	ми	охваты- ваемых		Изделия		охваты- вающих
	нормаль- ной точности	грубой точности	\mathcal{S}_1	повышен- ной точности	нормаль- ной точности	грубой точности	S ₃
2,5*; 3,0*	-	-	-0,040	-			+0,09 +0,03
3,2	+0,08 +0,02				-	-	
4,0; 5,0; 5,5	+0,12 +0,02	-	-0,048	-0,16			+0,12 +0,04
6,0*	10.15						

Продолжение табл. 41

			Преде	пьные откло	нения		
	pa	змеров клю	ча		размеров	под ключ	
Номинальные размеры	охватыва	ющих <i>S</i>		ox	ватываемых	\mathcal{S}_1	
S ; S_1 ; S_2 ; S_3	Кль	иг	охваты- ваемых		Изделия		охваты- вающих
	нормаль- ной точности	грубой ј точности	\mathcal{S}_1	повышен- ной точности	нормаль- ной точности	грубой точности	<i>S</i> ₃
7,0		-			-		
8,0; (9,0)	+0,15 +0,03	+0,18	-0,058	-0,20	-0,36		+0,15 +0,05
10		10,03			,,,,,		
(11)	+0,19 +0,04	+0,24 +0,04	-0,120	-0,24	-0,43		+0,18
							+0,06
12; 13	+0,24	+0,30					
·	+0,04	+0,04		-0,24	-0,43	-	
14; (15); 16	+0,27	+0,35	-0,120				+0,18
,	+0,05	+0,05				1	+0,06
17; 18	+0,30	+0,40					
·	+0,05	+0,05				1	
19; 21; 22; 24	+0,36	+0,46					
	+0,06	+0,06	-0,140	-0,28	-0,52		+0,21 +0,07
27; 30	+0,48	+0,58				-0,84	,
32	+0,08	+0,08					
34,0; 36,0;	+0,60	+0,70	-0,170	-0,34	-1,00	-1,00	+0,25 +0,05
41,0; 46,0; 50,0	+0,10	+0,10					

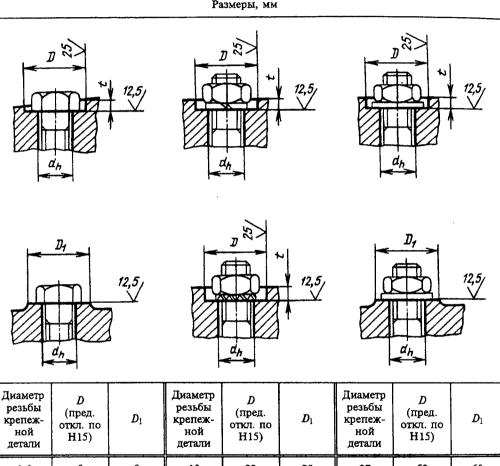

^{*} Допускается применять только для изделий с углублением под ключ и для ключей под это углубление. ГОСТ 6424-73 предусматривает также номинальные размеры 55 - 225 мм.

Примечания:

^{1.} Размеры, заключенные в скобки, допускается применять для ранее изготовленных изделий.

^{2.} Размеры 17, 19, 22 и 32 мм не являются предпочтительными.

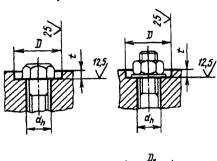
42. Места под гаечные ключи (ГОСТ 13682-80)

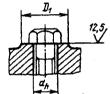


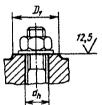
до 225 мм. Стандарт устанавливает наименьшие размеры мест под головки тасчных ключей с зевом ключа от 3,2.

43. Опорные поверхности под крепежные детали (ГОСТ 12876-67 в ред. 1987 г.)

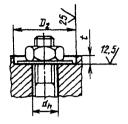
Стандарт распространяется на опорные поверхности под крепежные детали с диаметром стержня от 1 до 48 мм, изготовляемые по государственным стандартам.

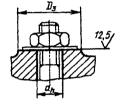

Опорные поверхности под шестигранные головки болтов и винтов, под шестигранные гайки с нормальным размером под ключ и под шайбы



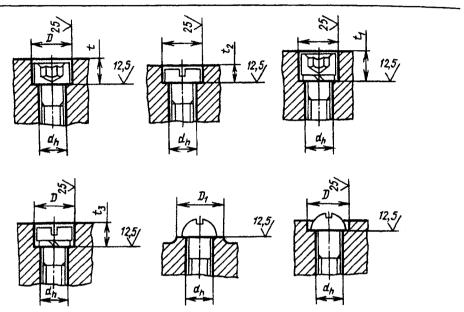

Диаметр резьбы крепеж- ной детали	<i>D</i> (пред. откл. по H15)	D_1	Диаметр резьбы крепеж- ной детали	<i>D</i> (пред. откл. по H15)	D_{l}	Диаметр резьбы крепеж- ной детали	<i>D</i> (пред. откл. по H15)	D_1
1,6	5	8	10	22	28	27	52	60
2	6	8	12	26	30	30	61	65
2,5	7,5	10	14	30	34	33	67	75
3	8	10	16	33	38	36	71	80
4	10	14	18	36	42	39	75	85
5	11	16	20	40	45	42	80	90
. 6	13,5	18	22	43	48	45	90	95
8	18	24	24	48	52	48	95	100

Продолжение табл. 43


Опорные поверхности под шестигранные головки болтов и винтов и шестигранные гайки с уменьшенным размером под ключ и под уменьшенные шайбы



Опорные поверхности под увеличенные шайбы

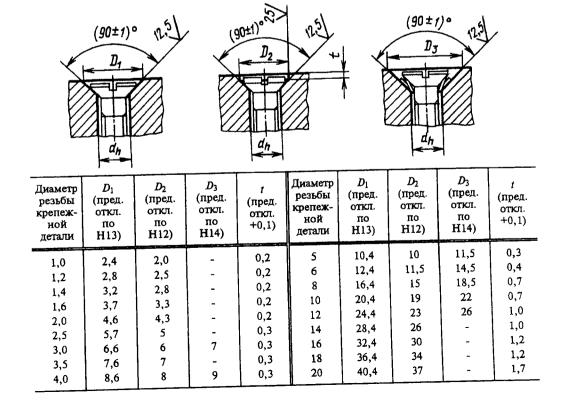

Размеры, мм

Диаметр резьбы крепеж- ной детали	<i>D</i> (пред. откл. по H15)	D_1	D ₂ (пред. откл. по H15)	D_3	Диаметр резьбы крепеж- ной детали	<i>D</i> (пред. откл. по H15)	D_1	D ₂ (пред. откл. по H15)	D ₃
1,6	5	8	6	8	18	32	38	60	65
2	6	8	7	10	20	36	42	65	70
2,5	7	10	10	12	22	40	45	70	75
3	8	10	12	14	24	42	48	75	80
4	10	14	14	16	27	48	52	85	90
5	12	16	18	20	30	55	60	95	100
6	13,5	18	20	24	33	60	65	100	105
8	18	20	26	30	36	65	70	105	110
10	20	24	34	38	39	71	75	115	120
12	24	28	40	45	42	75	80	125	130
14	26	30	45	48	45	85	90	135	140
16	30	34	52	55	48	90	100	150	155

Размер t устанавливается конструктором.

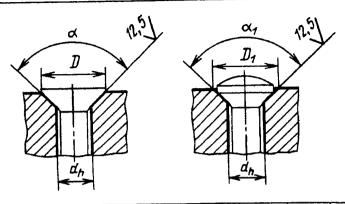
44. Опорные поверхности под головки винтов и шурупов, под шайбы стопорные (ГОСТ 12876-67)

Опорные поверхности под цилиндрические и полукруглые головки винтов со илищем и под цилиндрические головки винтов с шестигранным углублением под ключ


Диаметр резьбы крепежной детали	<i>D</i> (пред. откл. по H14)	D_1	<i>t</i> (пред. откл. по H14)	t ₁ (пред. откл. по H14)	t ₂ (пред. откл. по H14)	t ₃ (пред. откл. по H14)
1	2,2	-	-	-	0,8	_
1,2	2,5	_	-	-	0,9	_
1,4	2,8	-	-	-	1,0	-
1,6	3,3	-	-	-	1,2	_
1,8	3,8	-	-	-	1,5	-
2,0	4,3	-	_	-	1,6	2,2
2,5	5,0	-	-	-	2,0	2,7
3	6,0	-	3,4	4,3	2,4	3,3
3,5	6,5	-	4,0	-	2,9	3,8
4	8,0	12	4,6	5,5	3,2	4,5
4 5 6	10	15	5,7	7	4,0	5,5
	11	18	6,8	8,5	4,7	6,5
8	15	20	9	11	6	8
10	18	24	11	13,5	7	9,5
12	20	26	13	16	8	11
14	24	30	15	18,5	9	12,5
16	26	34	17,5	21	10,5	14
18	30	36	19,5	23	11,5	15
20	34	40	21,5	25,5	12,5	16,5

Продолжение табл. 44

Диаметр резьбы крепежной детали	D (пред. откл. по H14)	D_1	<i>t</i> (пред. откл. по H14)	<i>t</i> ₁ (пред. откл. по H14)	t ₂ (пред. откл. по H14)	t ₃ (пред. откл. по H14)
22	36	-	23,5	27,5	13,5	17,5
24	40	-	25,5	30,5	14,5	19,5
27	45	-	28,5	33,5	-	-
30	48	-	32	38	-	-
33	53	_	35	41	-	-
36	57	_	38	44	-	-
39	60	-	41	49	-	-
42	65	-	44	52	-	-
45	71	-	47	55	-	-
48	75	-	50	59	-	


Размеры t_1 и t_3 даны для винтов с нормальными или легкими пружинными шайбами по ГОСТ 6402-70.

Опорные поверхности под потайные и полупотайные головки винтов и шурупов и под шайбы стопорные с зубьями для винтов с потайной и полупотайной головками Размеры, мм

45. Опорные поверхности под заклепки с потайной и полупотайной головками

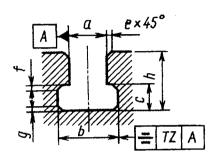
Размеры, мм

Диаметр стержня заклепки	<i>D</i> (пред. откл. по H14)	а (пред. откл. -2°)	D ₁ (пред. откл. по H14)	α ₁ (пред. откл. -2°)	Диаметр стержня заклепки	<i>D</i> (пред. откл. по Н14)	а (пред. откл. -2°)	D ₁ (пред. откл. по H14)	α ₁ (пред. откл. -2°)
1	1,7		-	-	10	16,4		17	
1,2	2,1		-	-	12	19,4	75°	20	75°
1,4	2,5		-	-	14	23		24	
1,6	2,7	j	-	-					
2	3,6		6		16	23		24	
2,5	4,2	90°	7.		17	26		27	Ì
3	4,8	ļ	8	120°	20	29	60°	30	60°
3,5	5,6		9,5		22	32		33	
4	6,4	1	10,5		24	35		36	
5	8,2		13		27	36		37	
6	9,7		11	90°	30	40	45°	41	45°
8	13,3		15		36	48	<u> </u>	49	<u> </u>

Общие указания к таблицам 43, 44, 45.

1. Обработка опорных поверхностей по табл. 43 проводится в технически обоснованных случаях.

Размер t устанавливается конструктором. При глубине t, превышающей $^{1}/_{3}$ высоты головки болга, (гайки), размеры D следует брать по табл. 42.


2. Между опорной и цилиндрической поверхностями допускается радиус закругления не более 0,3 мм.

У опорных поверхностей под шестигранные головки болгов без шайб и под цилиндрические и полукруглые головки винтов без шайб между опорной плоскостью и сквозным отверстием должна быть фаска 0,5 × 45° для крепежных деталей диаметром резьбы от 12 до 20 мм и $1 \times 45^{\circ}$ - для деталей диаметром резьбы свыше 20 мм.

- 3. Диаметры сквозных отверстий d_h по ГОСТ 11284-75 (табл. 30). Для опорных поверхностей под цилиндрические головки винтов сквозные отверстия по 3-му ряду табл. 30 не рекомендуются.
- 4. Для опорных поверхностей по табл. 44 при проектировании соединения допускается увеличивать размеры t, t_1 , t_2 , t_3 . В случае применения 1-го ряда сквозных отверстий по ГОСТ 11284-75 (табл. 30) для уменьшения зазора между головкой винта и цилиндрической поверхностью диаметром D допускается уменьшать диаметр D.

46. Пазы Т-образные обработанные (ГОСТ 1574-91)

Размеры, мм, Т-образных пазов, применяемых в столах металлорежущих станков, соответствуют стандарту ИСО 299-87

Поле допуска ширины *a*, не более: направляющих пазов - H8, зажимных пазов - H12.

Шероховатость боковых поверхностей, определяемых размером *а*, должна быть не более *Ra* 6,3 мкм, остальных поверхностей не более *Ra* 20 мкм по ГОСТ 2789-73.

Допускается вместо фасок e, f и g выполнять скрупление упла радиусом, не превышающим размеры фасок.

При нечетном числе Т-образных пазов следует предпочитать их симметричное расположение относительно направляющего паза.

В случае несимметричного расположения Т-образных пазов относительно направляющего паза, а также при четном числе пазов направляющий паз должен быть четко обозначен.

Конструкция и размеры болгов Т-образным пазам - по ГОСТ 13152.

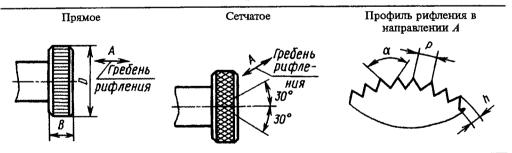
Допускается замена болтового соединения любым другим устройством, отвечающим требованиям взаимозаменяемости.

$\neg \neg$	ь		c	:	h		е	f	g	
а	Номин.	Пред. откл.	Номин.	Пред. откл.	Номин.	Пред. откл.]	не более		z
5	10,0	+1,0	3,5		8	+2				
6	11,0	+1,5	5,0		11					
8	14,5		7,0	+1	15	+3	1,0	0,6	1,0	
10	16,0		7,0		17	+4				
12	19,0	+2,0	8,0		20	+5			<u></u>	0,5
14	23,0	1 1	9,0		23				1,6	
18	30,0	1	12,0	+2	30	+6	1,6	}		
22	37,0	+3,0	16,0	1	38	+7		1,0		<u> </u>
28	46,0		20,0	1	48	+8	<u> </u>]	2,5	
36	56,0	+4,0	25,0	+3	61	+10			<u> </u>	<u> </u>
42	68,0	1	32,0	1	74	+11	2,5	1,6	4,0	1,0
48	80,0	+5,0	36,0	+4,0	84		_]	2,0	6,0	
54	90,0	1	90,0	<u></u>	94	+12	<u> </u>		<u> </u>	

Пример условного обозначения Т-образного направляющего паза шириной a=18 мм и полем допуска H8:

Расстояния, мм, между Т-образными пазами в зависимости от ширины пазов

Допускается применение меньших и больших значений размера t по сравнению с указанными, которые выбираются из ряда Ra10, а также промежуточных значений из ряда Ra20 по ГОСТ 6636.


a	t	а	t
5	20; 25; 32	22	(80); 100; 125; 160
6	25; 32; 40	28	100; 125; 160; 200
8	32; 40; 50	36	125; 160; 200; 250
10	40; 50; 63	42	160; 200; 250; 320
12	(40); 50; 63; 80	48	200; 250; 320; 400
14	(50); 63; 80; 100	54	250; 320; 400; 500
18	(63); 80; 100; 125		

 Π р и м е ч а н и е . Значения размера t, заключенные в скобки. являются непредпочтительными.

РИФЛЕНИЯ

47. Рифления прямые и сетчатые (по ГОСТ 21474-75)

Размеры, мм

F	у и флет	мадп вин	ые для в	сех мате	риалов						
	Диаметр накатываемой поверхности										
Ширина <i>В</i>	до 8	св. 8 до 16	св. 16 до 32	св. 32 до 63	св. 63 до 125	св. 125					
		Шаг рифления <i>Р</i>									
До 4		0,5	0,6	0,6							
Св. 4 " 8		0,6	0,6	0,6	0,8	1,0					
Св. 8 " 16	0,5	0,6	0,8	0,8							
Св. 16 до 32		0,6	0,8	1,0	1,0	1,2					
" 32			· ·		1,2	1,6					

Ри	ф.	Л	е	Н	И	Я	C	е	T	ч	а	T	ы	e	
----	----	---	---	---	---	---	---	---	---	---	---	---	---	---	--

	Ширина		Д	(иаметр накат	ываемой пове	рхности					
Материал заготовки	накаты- ваемой	до 8	св. 8 до 16	св. 16 до 32	св. 32 до 63	св. 63 до 125	св. 125				
	поверх- ности <i>В</i>	Шаг рифления <i>Р</i>									
	До 8			0,6	0,6	0,8	-				
Цветные металиы	Св. 8 " 16	0,5	0,6	0,8	0,8	0,8	-				
	Св. 16 " 32	-		0,8	1,0	1,0	-				
	" 32			0,8	1,0	1,2	1,6				
	До 8		0,6	0,8	0,8	0,8	-				
Сталь	Св. 8 " 16	0,5	0,8	1,0	1,0	1,0	-				
Сталь	Св. 16 " 32		0,8	1,0	1,2	1,2	-				
	" 32		0,8	1,6	1,2	1,6	2,0				

Примечания:

1. Шаги профилей Р брать из рядов:

прямых - 0,5; 0,6; 0,8; 1,0; 1,2; 1,6 мм;

сетчатых - 0,5; 0,6; 0,8; 1,0; 1,2; 1,6; 2,0 мм.

- 2. Высота рифления h: для стали $(0,25 \div 0,7)P$, для цветных металлов и сплавов $(0,25 \div 0,5)P$.
 - 3. Угол $\alpha = 70^{\circ}$ для рифлений по стали, $\alpha = 90^{\circ}$ для цветных металлов и сплавов.

 Π ример обозначения прямого рифления с шагом P=1,0 мм:

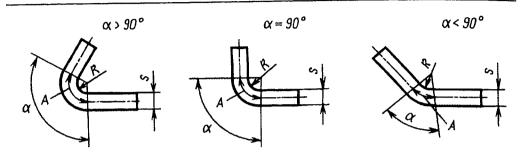
Рифление прямое 1,0 ГОСТ 21474-75

То же для сетчатого рифления:

Рифление прямое 1,0 ГОСТ 21474-75

48. Рифление для прессовых соединений металлических деталей с пластмассовыми Размеры, мм

	Номинальный	Фаски		
30°	диаметр	с	c_1	
	3	0,4	0,5	
c_1	4; 5; 6; 8; 10; 11	0,5	0,6	
C×45°	12; 14; 16; 18; 20	0,6	0,8	
	25; 28; 32	0,8	1,0	


Предельные отклонения отверстия Н9, накатываемой детали для накатки h8.

Оси отверстий в текстолите, гетинаксе и фибре должны быть расположены перпендикулярно к волокнам материала.

Минимальная толщина детали из пластмасс при запрессовке должна быть 3,5 мм.

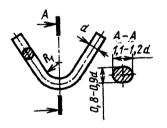
РАДИУСЫ ГИБКИ ЛИСТОВОГО И ФАСОННОГО ПРОКАТА. РАЗДЕЛКА УГОЛКОВ

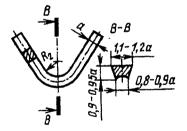
49. Минимальный радиус R гиба листового проката, мм

	Расп	оложения линии ги	ба проката в состоян	нии							
Материал	отожженном или	нормализованном	наклепанном								
	поперек волокон	вдоль волокон	поперек волокон	вдоль волокон							
Сталь: Ст3		2	S								
20	1,5 <i>S</i>										
45	2,6\$										
коррозион- но-стойкая	1.5	2.5	3 <i>S</i>	4 <i>S</i>							
Алюминий и ero сплавы:											
мягкие	1.5	1,5 <i>S</i>	1,5 <i>S</i>	2,5 <i>S</i>							
твердые	2.5	3 <i>S</i>	3 <i>S</i>	4.5							
Медь	_	1.5	1.5	2.5							
Латунь:											
мяткая	-	28,0	0,8\$	0,85							
твердая	-	4,5 <i>S</i>	4,5 <i>S</i>	4,5 <i>S</i>							

Развернутая длина изогнутого участка детали из листового материала при гибе на угол α определяется по формуле

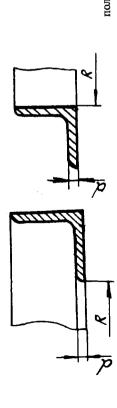
$$A=\pi(R+KS)\frac{\alpha}{180},$$


где A - длина нейтральной линии; R - внутренний радиус гиба; K - к ээффициент, определяющий положение нейтрального слоя при гибе (табл. 50); S - толщина листового материала, мм Π р и м е ч а н и е . Минимальные радиусы холодной гибки заготовок устанавливаются


по предельно допустимым деформациям крайних волокон. Их применяют только в случае конструктивной необходимости, во всех остальных случаях - увеличенные радиусы гиба.

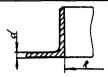
50. Значение коэффициента К

Мини- мальный		Толщина проката S, мм													
радиус гиба <i>R</i> , мм	0,5	1	1,5	2	2,5	3	4	5	6	8	10				
1	0,375	0,350	-	-	-	-	-	-		-	-				
2	0,415	0,375	0,357	0,350	-	-	-	-	-	-	-				
3	0,439	0,398	0,375	0,362	0,355	0,350	-	-	-	-	-				
4	0,459	0,415	0,391	0,374	0,365	0,360	0,358	-	-	-	-				
5	0,471	0,428	0,404	0,386	0,375	0,367	0,357	0,350	-	-	-				
6	0,480	0,440	0,415	0,398	0,385	0,375	0,363	0,355	0,350	-	-				
8		0,459	0,433	0,415	0,403	0,391	0,375	0,365	0,358	0,350	-				
10	0,500	0,470	0,447	0,429	0,416	0,405	0,387	0,375	0,366	0,356	0,350				
12		0,480	0,459	0,440	0,427	0,416	0,399	0,385	0,375	0,362	0,355				
16	0,500	-	0,473	0,459	0,444	0,433	0,416	0,403	0,392	0,375	0,365				
20	l	0,500	-	0,470	0,459	0,447	0,430	0,415	0,405	0,388	0,375				
25	-	-	0,500	-	0,470	0,460	0,443	0,430	0,417	0,402	0,387				
28	-	-	-	0,500	0,476	0,466	0,450	0,436	0,425	0,408	0,395				
30			<u>-</u>		0,480	0,470	0,455	0,440	0,430	0,412	0,400				


51. Минимальный радиус гиба металлов круглого и квадратного сечений, мм

Диаметр круга <i>d</i> или	C:	r3	Ст5	Сталь 20		Сталь 45		Сталь 12X18H10T	Л63	M1, M2
сторона квадрата <i>а</i>	R_1	R ₂	R_1	R_1	R ₂	R_1	R_2		<i>R</i> ₁	
5	-	-	-		-	-	-	-	2	-
6	-	-	-	2	-	-	-	-	2	2
8	3	-	-	3	-	5	-	7	2	2
10	8	10	-	8	10	10	-	8	6	6
12	10	12	13	10	12	13	-	10	6	6
14	10	14	14	10	14	16	-	11	-	-
16	13	16	16	13	16	16	16	13	10	10
18	16	-	18	-	-	18	-	14	-	10
20	16	20	20	16	20	20	20	16	13	13
22	18	_	22	18	, -	22	-	18	-	13
25	20	25	25	-	25	25	25	20	16	16
28] -	, -	-	22	-	30	-	22	-	16
30	25	30	30	25	30	30	30	24	18	18

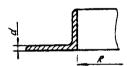
51а. Минимальные раднусы гиба R угловой равнополочной стали, мм



Материал - сталь Ст3

В числителе привелены значения радиуса гиба R угловой стали полкой наружу, в знаменателе - полкой внутрь.

	10	,	,		•		1	1	38	• ;	98	1	3 8	200
	6	-	,		ı	1	ı	24 & 24 &	ı	540 450	55 50 50 50	í	1	-
	∞	 - 	,		,	1	\$ \$	004 0084 0084	ı	480 400	<u> </u>	1	1	1
	7,5				1	375 450	ı	375 450	1	450 375	ı	450 375	ı	1
	7			,	2 2 3 5 5	350 420	1	350	,	420 350	ŧ	1	ı	,
	6,3	-	315	188	,	315	ŧ	315	? '	ı	,		1	1
офиля	5,6		000	\$\frac{\kappa}{2}\frac{\kappa}{2}	'	780 340 340 340	•	ı	1	1		ı	ı	1
Номер профиля	5		6	300	t	300	} ,	4	ı	1	1	1	ı	,
	4,5		. (222	•	,	ı	•	ı	ı	1	1	ι	1
	4		t	2 2 2 2 3 3 4	ı	ı	ı	ŧ	1	ı	t	ı	ı	1
	3.6		1	081 27 27	1	1	•	1	1	ı	ſ	ı	ı	ı
	3.2		1	9100	1	ı	1	ı	,	ı	1	ı	ŧ	ı
	2.5	26,	150	125	3 '	1	ŧ	ı	ı	1	,	1	,	ı
	,	,	32	ı	1	1	,	ı	1	1	1	ı	1	1
F	Голщина полки, мм		m	4	4,5	8	5,5	9	6,5	7	∞	6	10	12


516. Минимальный раднус гиба R угловой неравнополочной стали меньшей полкой наружу, мм

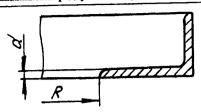
Материал - сталь Ст3

Толщина				Номер г	профиля			
полки, мм	3,2/2	4,5/2,8	5/3,2	6,3/4	7,5/5	8/5	9/5,6	10/6,3
4	100	140	160	-	-	-	-	-
5	_	_	-	-	250	-	-	-
5,5	-] -	-	-	-	-	280	-
6	_	-	_	200	250	250	-	315
7	_	<u> </u>	-	-	_	-	-	315
8	_] _ }	_	200	-	-	280	315
10	_	-	-	_	-	-	-	315

51в. Минимальный радиус гиба R угловой неравнополочной стали большой полкой наружу, мм

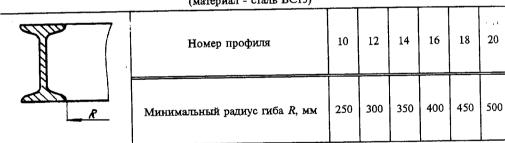
Материал - сталь Ст3

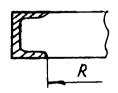
Толщина				Номер г	грофиля			
полки, мм	3,2/2	4,5/2,8	5/3,2	6,3/4	7,5/5	8/5	9/5,6	10/6,3
4	160	225	250	-	-	-	-	-
5	_	-	· _	-	375	-	-	-
5,5		-	_	_	-	-	450	_
6	_	1 _ 1	_	315	375	400	-	500
7	_		_	_	_	-	-	500
,	-		_	315	_	-	450	500
8 10	-	1 - 1	_	1	_		_	500


51г. Минимальный радвус гиба R угловой неравнополочной стали меньшей полкой внутрь, мм

Материал - сталь Ст3

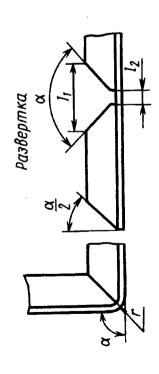
Толщина				Номер 1	кифофг			
полки, мм	3,2/2	4,5/2,8	5/3,2	6,3/4	7,5/5	8/5	9/5,6	10/6,3
4	120	170	195	-	-	-	-	-
5		_	_	_	300	-	-	-
5,5	_	_	-	-	-	-	340	-
_		i _		240	300	300	-	380
6	-		_	_	_	_	-	380
, ,	-	_	_	240	\ _	\ <u>-</u>	340	380
8	-	_	i -	1 2.0	ì _	١ -	-	380
10	i -	-			<u> </u>			


51д. Минимальный радиус гиба R угловой неравнополочной стали большей полкой внутрь, мм


Материал - сталь Ст3

Толщина				Номер г	рофиля			
полки, мм	3,2/2	4,5/2,8	5/3,2	6,3/4	7,5/5	8/5	9/5,6	10/6,3
4	195	270	300	-	-	-	-	-
5	-	-	-	-	450	-	-	-
5,5	_	-	_	-	-	-	545	-
6	_	-	-	380	450	480	-	600
7	-	_	_	-	-	-	-	600
8	_	_	-	380	-	-	545	600
10	_	_	_	-	-	-	-	600

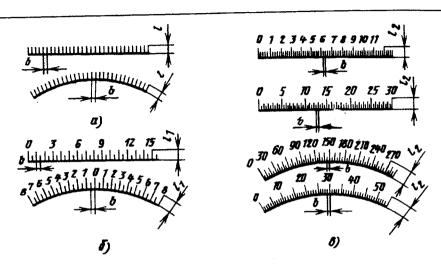
51e. Минимальный радиус гиба двутавровой балки, мм (материал - сталь ВСт3)


51ж. Минимальный радиус гиба швеллера, мм

Материал - сталь ВСт3

Номер профиля	5Π	6,5Π	8П	10Π	12Π	14Π	16Π	18Π	20Π
Минимальный радиус гиба <i>R</i> , мм	225	250	275	300	325	350	400	435	450

 Разделка угловой стали при гибке Размеры, мм



При свободной гибке уголка полкой: наружу $r_{\min}=25h$; внутрь $r_{\min}=30h$, где h - ширина полки в глоскости гиба, мм

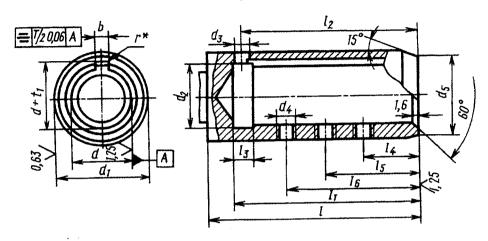
								Yron	Угол гибки α, градусы	х, градус	Ę						
Размеры		98		4	45	9	09	75	5	06		105	2	120	0	135	
профиля		1,	12	1/1	12	1/	1/2	η,	h	11	1/2	1,	4	1/1	h	1,1	h
20×20×3	3	6	2	14	4	20	5	26	9	34	7	44	8	59	6	82	11
25×25×4		11		17		22		32		42		22		73		102	
32×32×4		15		23		32		43		99		73		97		135	
36~36×4	,	17		27	٠,	37	9	49	∞	49	10	84	11	111	13	155	15
40×40×4	4	70	٠	30)	42		55		72		8		125		174	
45×45×4		22		34		48		63		82		107		142		198	
50×50×4		25	445	38		53		71		92		120		160		222	
9xE3xE9		31	_	48	ي ا	99	6	88	10	114	. 13	149	15	198	17	275	70
75×75×6	٥	37	r 	58		80		106		138		180		239		333	
											ĺ						

ШТРИХИ ШКАЛ

Штрихи для делительных шкал на деталях машин Размеры, мм

Тип	Виды		Длина	штрихов <i>l</i> , <i>l</i>	₁ , <i>l</i> ₂ при <i>b</i>	
шкалы	штрихов	до 1	св. 1 до 2	св. 2 до 3	св. 3 до 5	св. 5
а	Для последовательных (рядовых) отметок <i>l</i>	3	5	6	6	8
б	Для последовательных отметок, разделенных пополам, I_1	-	6	-	8	10
8	Для отметок с интервалом в три, пять и десять делений l_2	-	8	-	10	12

Ширину штрихов при b < 3 мм принимают 0,1 мм; при b > 3 мм - 0,2 мм с допуском +0,03 мм.


Разница в длине штрихов в пределах одной шкалы не должна превышать следующих значений: при длине штрихов до 3 мм - 0,2 мм; св. 3 до 5 мм - 0,3 мм; св. 5 мм - 0,5 мм.

КОНЦЫ ШПИНДЕЛЕЙ СТАНКОВ И ХВОСТОВИКИ ИНСТРУМЕНТОВ

54. Концы шпинделей агрегатных станков (ГОСТ 13876-87, ИСО 2905-74)

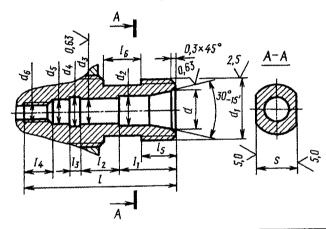
Стандарт распространяется на концы унифицированных шпинделей под переходные регулируемые втулки, оправки и фрезы для силовых головок, сверлильных, расточных, и фрезерных бабок, шпиндельных коробок и насадок, предназначенных для выполнения сверлильно-расточных, фрезерных и резьбонарезных работ на отдельных или встраиваемых в автоматические линии агрегатных станках, а также на концы шпинделей под цанги малогабаритных силовых головок.

Концы шпинделей под переходные регулируемые втулки Размеры, мм

* Радиус закругления r шпоночных пазов - по ГОСТ 23360-78.

d d ₁ Поле допуска	١, ١				. 1	l_1	12	13	- 1	ľ	i		<i>b</i>	
H7 f7	d ₂	<i>d</i> ₃	<i>d</i> 4 (поле допуска 6Н∵)	<i>d</i> ₅		не м			14	l ₅ (пред. откл.) ±0,1)	46	Но- мин.	Поле допу ска	d+t ₁ (пред. откл.) ±0,1)
8 15	8,6	3,5	M4×0,7	14,4	46	40	35		-	16	25	2		9
10 18	10,6	5	M5×0,8	17,4	60	52	48		-	22	32	3	C11	11
12 20	+	,	M6×1	19,2		-		8	-		33			13
16 25	+-	6		24	85	74	70		21	34	47	5		17,3
20 32	+-	ľ	M8×1	31	90	77	73							21,3
25 37	+	8	1	36	100	85	80	10	23	38	53	6		26,7
28 40	+-	1 -	M10×1	39	100	0.5	00						D10	29,7
36 50		┼──	 	49	128	106	101	12	28	45	62	8	1	37,7
48 67	+-	-	M12× ×1,25	66	152	129	123	14	40	57	74	10	1	50,1
60 90	+	 	1	88,6	172	150	140	20	30	60	90	16		63,6
80 11	+	+	M16× ×1,5	108,6	├		158	25	٦,			20	7	84,3

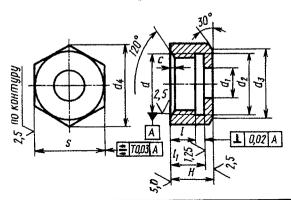
Примечания:


^{1.} Концы шпинделей d=48 и 60 мм допускается изготовлять с размером $l_1=105$ мм вместо указанного в таблице при соответствующем уменьшении размера l_2 .

^{2.} Размеры $d+t_1$, указанные в таблице для концов шпинделей d=20 и 36 мм, по согласованию с потребителем допускается заменять соответственно на 21,9 и 38,6 мм.

Уве	еличение раз	змера <i>1</i>	
<i>d</i> , мм	Приращение, мм	Число ступеней	Размер / концов шпинделей шпин-
8 - 12	4	12	дельных насадок для силовых головок с
14 - 30	5	15	плоскокулачковым приводом подачи
25 - 28	5	20	пиноли, а также концов шпинделей ука-
36 - 48	6	20	занных силовых головок допускается принимать не менее 50 мм.
60 - 80	10	12	принимать не менее 30 мм.

Концы шпинделей под цанги


Размеры, мм

D*	d (пред. откл. - 0,1)	d₁ (поле допуска6 g)	<i>d</i> ₂	d ₃ (поле допуска Н \$)	đ ₄	d ₅	d ₆ (поле допуска 7H)	1	l_1	<i>l</i> ₂	<i>l</i> ₃	<i>l</i> ₄	l ₅	16	S (пред. откл. - 0,2)
3	9	M12×1,25	6,2	6	6,5	5	M4	32	12	8	2	6	7	8	10
6	15	M22×1,5	10.2	10	10,5	9	M8	50	20	12	.3	10	10	10	17
10	18	M30×1,5	14,2	14	14,5	13	M12	60	26	15	3	12	15	12	22

*D - наибольший диаметр сверла, закрепленного в цанге.

Гайки для концов шпинделей под цанги Размеры, мм

								**!	одоовкоппо	
D*	d (поле допуска 7H)	d_1	d ₂	d ₃	<i>d</i> 4, не менее	Ħ	1	<i>I</i> ₁	S (поле допуска h11)	с
3	M12×1,25	6	12,5	18	21,1	10	6	8	19	0,6
6	M22×1,5	11	22,5	25	31,2	14	8	11	27	1,0
10	M30×1,5	15	30,5	34	40,3	20	12	16	36	1,0

Продолжение табл. 54

- *Д наибольший диаметр сверла, закрепленного в цанге.
- 1. Допускается изменение размера d_1 за зоной размещения резьбовых отверстий d4 (см. табл. 54).
- конпов 2. Допускается изготовление шпинлелей под переходные регулируемые втулки:
 - с окнами для удаления инструментов;
- с двумя резьбовыми отверстиями d_4 под стопорные винты, одним из которых должно быть среднее;
- с размером d_1 на одну ступень больше, чем указано в табл. 54 для данного размера d;
- с местной выемкой или увеличенным размером d_2 (взамен d_3), достаточными для выхода инструмента при обработке шпоночного паза.
- 3. Для шпиндельных насадок силовых головок с плоскокулачковым приводом подачи пиноли допускается изготовление концов шпинделей $d = 20 \div 28$ мм без резьбовых отверстий d_4 с буртом на наружном диаметре и с наружной резьбой на передней части конца шпинделя.
- 4. Для закрепления в концах пипинделей переходных регулируемых втулок должны ис-

- пользоваться винты с шестигранными или квадратными углублениями под ключ. Винты для отверстий $d_4 ≤ 10$ мм допускается изготовлять со шлицем под отвертку.
- 5. Внутренние конусы Морзе должны проверяться калибрами-пробками 4-й степени точности по ГОСТ 2849-77.
- 6. Внутренние конусы шпинделей должны соответствовать следующим степеням точно-

для станков класса точности В: конус Морзе по ΓΟCT 2848-75 AT5 конус с конусностью 7:24 по ΓΟCT 19860-93 AT4

7. Неуказанные предельные отклонения размеров: H14, $\pm \frac{IT14}{2}$.

55. Резьбовые концы штинделей токарных станков (ГОСТ 16868-71)

Стандарт распространяется на резьбовые концы шпинделей токарных и токарновинторезных станков по ГОСТ 18097-93.

Размеры, мм

	Резі	ба	<i>d</i> ₁ (пред.	<i>d</i> ₂ (пред.	L	1	с
q q q q q q q q q q q q q q q q q q q	d	шаг	откл. по h6)	откл. по h12)			
	M39	4,0	40	50	35	14	2,0
1 3022	M45	4,5	48	60	40	15	

Резьба - по ГОСТ 24705-81. Допуски на резьбу - по среднему классу точности с посадкой 6 g. FOCT 16093-81.

Проточка узкая - по ГОСТ 10549-80.

Канавка для выхода шлифовального круга - по ГОСТ 8820-69. Допускается взамен канавки выполнять переходный радиус 1,5 мм.

56. Концы пелифовальных шпинделей с наружным базирующим конусом (ГОСТ 2323-76)

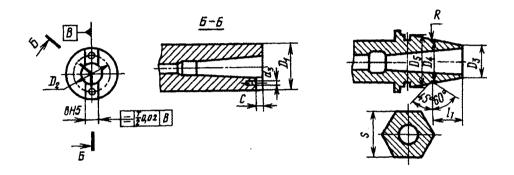
Стандарт распространяется на концы шлифовальных шпинделей с наружным базирующим конусом для посадки фланцев шлифовального инструмента.

Размеры, мм

Допускается уменьшение не более чем в 2 раза длины фасок с ₁ и с ₂ центрового отверстия с улюм 60°. Направление резьбы должно быть противоположным направлению вращения шлинделя. Длину L разрешается увеличить в 1,25 раза. Сегментые шпонки - по ГОСТ 24071-80. Допускается применять применять применять примениеские шпонки по ГОСТ 23360-78, но при этом шинрина паза b должна соответствовать указанной в табл. 54.	
Tum 2 Tum 2 To a constant of the constant of	
Trm 1 25,5	

Сегментные шпонки - по ГОСТ 24071-80 Допускается применять призматически шпонки по ГОСТ 23360-78, но при этом ши рина паза <i>b</i> должна соответствовать указан ной в табл. 54.
1

ၓ		1,0	1,2	2,0	·	2), f	,	ر ارد	3	6,0		ı	
را د		0,15		0,2		70	0,0	0,0	0,1		1,0		1	
v		0,2	0,3	9,0	`	-	O, 1	,	1,6	ļ	۰,۲	1	7,0	
<i>b</i> (пред.	90 P9)		ı			,	~) *	+	so v	اه	9 0	٩	OT	
**			ı			,	ر در در در	0,0	7,2	8,	8,8	10,5	ı	
14		3,0	3,5	4.5	<u>.</u>	,	0,9		8,0		11,0		ı	
13		12	15	22	1		32		42		62		1	
h		14	17	24	-7		35		45		92		ı	
Ч	-	10	12	10	01		74		36		20		09	
1			ı				16	20	25	32	40	20	92	8
T	Тип 1 Тип 2	10	12		9 6	70	25	32	04	20	99	80	100	125 -
d ₃		3.3) v		8,5		10,5	12.5	17.0		25,0			
d2		YK.	Y.	OTAT	 Ψ		M10	M12	M16		M24			
q_1		7,00	MIC.	IMIO	M10	M12	M16		M24	 	M36x	χ	M48×	×3
p							16	2	32	25	28	32	38	
D		Ş	2 5	71	16	70	25	3 1	40	2 6	59	80	<u>8</u>	125

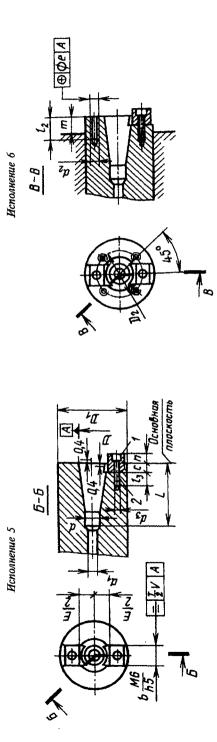

Примечание. Предельное отклонение для размера 1, равного 5,5; 6,0 мм, должно быть +0,2 мм; для 1, равного 7,2; 7,8; 8,8; +0,3 MM. 10,5 MDM

57. Концы ишинделей сверлильных, расточных и фрезерных станков (по ГОСТ 24644-81 в ред. 1992 г.)

Концы шпинделей с конусами Морзе и метрическими. Исполнение 1 - для сверлильных и расточных станков при установке хвостовика инструмента с лапкой; исполнение 2 - для сверлильных и расточных станков при установке хвостовика инструмента с резьбовым отверстием.

Исполнение 4

Исполнение 3 - с метрическим конусом и торцовой шпонкой для расточных станков.

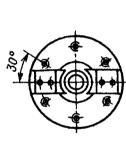

Обозначение ког	гуса шпинделя	D_1	<i>D</i> ₂ , не менее	с, не менее	d_1 , не менее	b (H5)
Метрический	M120	220	180	40	M10	40
	M160	320				

Исполнение 4 - с внутренним конусом Морзе и одновременно с наружным конусом с конусностью 7 : 24 для координатно-расточных станков.

Внутренний конус Морзе	Наружная конусность	<i>D</i> ₃	D_4	D ₅	<i>l</i> ₁ (пред. откл. +0,1)	R	S
2	7:24	31,84	32,8	42	18	1,5	36
3		48,33	50,0	60	20		50

Концы шпинделей с наружным укороченным конусом Морзе B10, B12, B18 - по ГОСТ 9953-82 для сверлильных станков.

Концы плинделей с конусностью 7:24



Исполнение 5 - с конусами от 30 до 70 - для сверлильных и расточных станков и с конусами 30, 40, 45, 50 - для фрезерных станков. I - шпонка; 2 - винт по ГОСТ 11738-84

Исполнение 7

Исполнение 6 - с конусами 30, 40, 45, 50, 55 - для расточных и фрезерных станков.

Исполнение 8

Конец шпинделя 5-30 ГОСТ 24644-81.

Исполнение 7 - с конусом 60 - для расточных и фрезерных станков.

Исполнение 8 - с конусами от 65 до 80 для расточных и фрезерных станков.

Размеры, мм

				7. 14.	rasmepm, mm					
		D_1						,		
Обозначение		Рядъ	th.		D ₂ (j \$ 12)	w	d (H12)	<i>d</i> ₁ , не менее	d ₂	d_3
Конуса	1-й	2-й	3-й	4-й (h5)						
30	•	90	70	69,832	54,0	1_	17,4		M10	,
40	ı	65	06	88,882	66,7		25,3	17		W6
!	80	06				0,15			M12	
45	80	06	100	101,600	0,08		32,4	21		M8
	100	'								
50	100	110	125	128,570	101,6		39,6		M16	
	125	160	.					27		
55	160	,	150	152,400	120,6	0,2	50,4			M10
09	200	1	220	221,440	177,8		60,2	35	M 20	
	250	220								
70	250	-	335	335,000	265,0	0,25	92,0	42	M24	M12
	320	,								
65				280,000	220,0	0,25	75,0	42	M20	M12
3 3		ı	ı	400,000	315,0	0.30	114,0	95	M24	M20
c	·			500,000	400,0	5	140,0	95	M30	
08										

Продолжение табл. 57

λ		0,03			0,04				0,05	
ħ1			ı			22	30	28	42	58
Винт (поз. 2)		M6×16	M8×20		M10×30		M12×45	M10×30	M12×45	M16×60
q		15,9	19,0		25,4		32,0		40,0	
E/2, He MeHee	16,5	23,0	30,0	36,0	48,0	61,0	0,06	75,0	108,0	136,0
и		8,0	9,5		12,5		20,0	16,0	25,0	31,5
<i>т</i> , не менее	12,5	16,0	18,0	19,0	25,0	38,0	50,0	38,0	50,0	50,0
o		8,0	9,5		12,5		20,0	16,0	25,0	31,5
l3		6	13		18		24	25	30	30
<i>l</i> ₂ , не менее	16	20	2	25		30	36	36	56	63
<i>L</i> , не женее	73	100	120	140	178	220	315	265	400	500
Обозначение конуса	30	40	45	50	55	09	70	65	75	80

Размер D - по ГОСТ 15945-82.

1-й и 2-й ряды - для сверлильных и расточных станков. Для 1 и 2-то рядов значения d_3 не регламентируются.

3-й ряд - для фрезерных станков. Значения D_2 даны для 3-го ряда. Для 1 и 2-го рядов значения D_2 выбирать по конструктивным со-

ображениям из таблицы.

Цля станков с ЧПУ резьбовые отверстия и допускается не применять. 4.

Допускается изготовлять шпиндели, в том числе координатно-расточных станков, с одним или двумя выступами с размерами шпонки По согласованию с потребителем допускается изготовлять концы шпинделей с размером $D_{
m l}$ по 4-му ряду. 6.5

n и b по таблице.

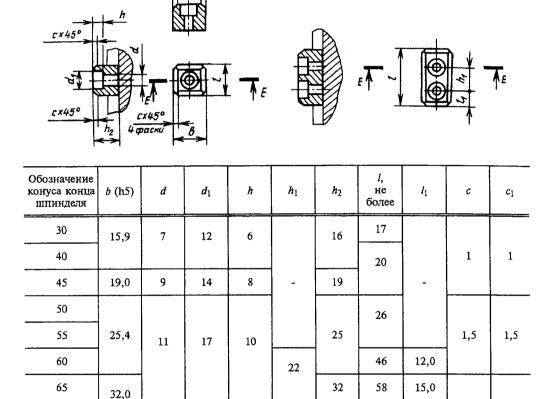
Допускается увеличение длины винта и размеров с и із до значений, определяемых расчетом.

Для станков с автоматической сменой инструмента размер L не регламентируется. **⊬**. ∞

Хвостовыки инструментов. По ГОСТ 24644-81 хвостовики инструментов изготовляют с конусами Морзе и метрическими: исполнения 1 - 3 для сверлильных и расточных станков, исполнение 4 - для фрезерных станков. Также изготовляют хвостовики инструментов с конусностью 7.24 исполнения 5 для сверлильных, расточных и фрезерных станков (табл. 57а).

57а. Хвостовики инструментов с конусностью 7:24 (ГОСТ 24644-81)

	7		90,0					0,1				
	b (H12)	16,1	,	19,3		25,7		32,4		40,5		
	7, не более	-	-				7			2		
Основная плоскость 14	t (пред. откл. -0,5)	16,2	22,5	29,0	35,6	45,0	0,09	72,0	86,0	104	132	
E 2	<i>l</i> _{6,} не менее	24	32 (30)	40 (38)	47	(45)	(95) 65	70		92		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15	8	10			12		ſ	16	,		
1 μ = Σ	14	50	29	98	105	130	165	1	256	,		
AVE TANK	<i>І</i> з, не менее	34 (50)	43 (70)	53 (70)	62	(06)	76 (110)	68	(160)	115	115	
	ų	70	95	110	130	168	210	_	300			
<i>Исполнение 5</i> * Размеры, мм	h ₁ (пред. отки. ±0,4)	1,6			3,2			4,0		2,0	0,9	
<i>H</i> C2	h	3	5	9	8	6	10	12	14	16	18	
	qę	M12	M16	M20	M24		M30	M32	M36	M48		
	q _s	16,5	24	30	38	48	88	7.5	06	110	136	
	d (a10)	17,4	25,3	32,4	39,6	50,4	60,2	75,0	92,0	114	140	
	D_3	95	63	08	5,76	130	156	195	250	280	350	
	Обозначение конуса хвостовика инструмента	30	40	45	50	55	09	65	70	75	80	


чений D_1 по табл. 57. 3. Размеры хвостовиков инструментов и технические требования на их изготовление для станков с ЧПУ с конусами 30 Π р и м е ч в и и я : 1. Размер D - по Γ OCT 15945-82. 2. В технически обоснованных спучаях допускается увеличивать размер D до : на-... 50 по ГОСТ 25827-93. Допускается применять такие хвостовики инструментов к станкам без ЧПУ. 4. Допускается изготовление хвостовиков инструментов с дламетром D=100 мм для конуса $50,\ D=160$ мм для конуса $60.\ 5.$ Размеры, заключенные в скобки, при новом проектировании не применять.

58. Шпонки (поз. 1 на эскизе к табл. 57) (ГОСТ 24644-81)

Размеры, мм

c1 × 30°

C1 × 30° E-E

Примечания:

40

70

75

80

1. Для станков с ЧПУ допускается увеличивать размеры c_1 и h_2 на одно и то же значение.

30

42

58

12

16

40

50

63

68

86

106

19,0

22,0

24,0

2,5

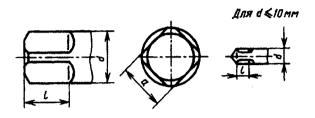
2,5

- 2. В технически обоснованных случаях допускается увеличивать размер l в пределах габарита, определяемого значениями D_1 , по табл. 57 (исполнения 5 8).
- 3. Твердость шпонок 36 ... 40 HRC_э.

13

17

20


26

Пример обозначения шпонки для конца шпинделя с конусом 30: Шпонка 30 ГОСТ 24644-81.

59. Диаметры, квадраты и отверстия под квадраты хвостовиков инструментов (ГОСТ 9523-84, ИСО 237-75)

Размеры, мм

Квадраты и диаметры хвостовиков основной серии

	ď*	Предпоч- тительный	Ква	драт	đ*		Предпоч- тительный	Квад	црат
св.	до	диаметр	а	1	CB.	до	диаметр	a	1
1,06	1,18	1,12	0,90		10,60	11,80	11,20	9,00	12
1,18	1,32	1,25	1,00		11,80	13,20	12,50	10,00	13
1,32	1,50	1,40	1,12		13,20	15,00	14,00	11,20	14
1,50	1,70	1,60	1,25	4	15,00	17,00	16,00	12,50	16
1,70	1,90	1,80	1,40		17,00	19,00	18,00	14,00	18
1,90	2,12	2,00	1,60		19,00	21,20	20,00	16,00	20
2,12	2,36	2,24	1,80		21,20	23,60	22,40	18,00	22
2,36	2,65	2,50	2,00		23,60	26,50	25,00	20,00	24
2,65	3,00	2,80	2,24		26,50	30,00	28,00	22,40	26
3,00	3,35	3,15	2,50	5	30,00	33,50	31,50	25,00	28
3,35	3,75	3,55	2,80		33,50	37,50	35,50	28,00	31
3,75	4,25	4,00	3,15	6	37,50	42,50	40,00	31,50	34
4,25	4,75	4,50	3,55		42,50	47,50	45,00	35,50	38
4,75	5,30	5,00	4,00	7	47,50	53,00	50,00	40,00	42
5,30	6,00	5,60	4,50		53,00	60,00	56,00	45,00	46
6,00	6,70	6,30	5,00	8	60,00	67,00	63,00	50,00	51
6,70	7,50	7,10	5,60		67,00	75,00	71,00	56,00	56
7,50	8,50	8,00	6,30	9	75,00	85,00	80,00	63,00	62
8,50	9,50	9,00	7,10	10	85,00	95,00	90,00	71,00	68
9,50	10,60	10,00	8,00	11	95,00	106,00	100,00	80,00	75

^{*} Из числа возможных диаметров в определенном интервале выбирается значение, ближайшее к значению предпочтительного диаметра хвостовика.

Квадраты и диаметры хвостовиков дополнительной серии

1,90

2,00

2,12

2,24

2,36

2,50

2,65

2,80

3,00

2,00

2,12

2,24

2,36

2,50

2,65

2,80

3,00

3,15

1,60

1,70

1,80

1,90

2,00

2,12

2,24

2,36

2,50

Продолжение табл. 59

востовика* d	Кв	адрат	Диаметр х	востовика* <i>d</i>	Ква	ират
до	а	I	св.	до	а	I
1,12	0,90		3,15	3,35	2,65	
1,18	0,95		3,35	3,55	2,80	5
1,25	1,00		3,55	3,75	3,00	
1,32	1,06		3,75	4,00	3,15	
1,40	1,12		4,00	4,25	3,35	6
1,50	1,18		4,25	4,50	3,55	:
1,60	1,25		4,50	4,75	3,75	
1,70	1,32	4	4,75	5,00	4,00	
1,80	1,40		5,00	5,30	4,25	7
1,90	1,50		5,30	5,60	4,50	
	1,12 1,18 1,25 1,32 1,40 1,50 1,60 1,70 1,80	до а 1,12 0,90 1,18 0,95 1,25 1,00 1,32 1,06 1,40 1,12 1,50 1,18 1,60 1,25 1,70 1,32 1,80 1,40	до а I 1,12 0,90 1,18 0,95 1,25 1,00 1,32 1,06 1,40 1,12 1,50 1,18 1,60 1,25 1,70 1,32 4 1,80 1,40	до a l cb. 1,12 0,90 3,15 1,18 0,95 3,35 1,25 1,00 3,55 1,32 1,06 3,75 1,40 1,12 4,00 1,50 1,18 4,25 1,60 1,25 4,50 1,70 1,32 4 4,75 1,80 1,40 5,00	до a I св. до 1,12 0,90 3,15 3,35 1,18 0,95 3,35 3,55 1,25 1,00 3,55 3,75 1,32 1,06 3,75 4,00 1,40 1,12 4,00 4,25 1,50 1,18 4,25 4,50 1,60 1,25 4,50 4,75 1,70 1,32 4 4,75 5,00 1,80 1,40 5,00 5,30	до а I св. до а 1,12 0,90 3,15 3,35 2,65 1,18 0,95 3,35 3,55 2,80 1,25 1,00 3,55 3,75 3,00 1,32 1,06 3,75 4,00 3,15 1,40 1,12 4,00 4,25 3,35 1,50 1,18 4,25 4,50 3,55 1,60 1,25 4,50 4,75 3,75 1,70 1,32 4 4,75 5,00 4,00 1,80 1,40 5,00 5,30 4,25

5,60

6,00

6,30

6,70

7,10

7,50

8,00

8,50

9,00

6,00

6,30

6,70

7,10

7,50

8,00

8,50

9,00

9,50

4,75

5,00

5,30

5,60

6,00

6,30

6,70

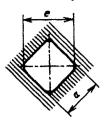
7,10

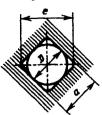
7,50

8

9

10


5


Поля допусков размеров диаметров и квадратов (ГОСТ 9523-84)

Разм	ер	Поле допуска				
а (для квадрата)	Хвостовик	h12 (включая погрешность формы и расположения)				
		h11 (рекомендуемый допуск на изготовление)				
đ		h9 или h11				

^{*} Из числа возможных диаметров в определенном интервале предпочтительным является значение, ближайшее к верхнему пределу.

Отверстия под квадраты

a D11	l, не менее	<i>D</i> , не более	a D11	l, не менее	D, не более
0,90	1,24		9,00	11,91	
1,00	1,38		10,00	13,31	
1,12	1,56		11,20	15,11	
1,25	1,76		12,50	17,11	-
1,40	1,96		14,00	19,13	
1,60	2,18		16,00	21,33	
1,80	2,42		18,00	23,73	
2,00	2,71		20,00	26,63	21,25
2,24	3,06		22,40	30,13	23,50
2,50	3,42	-	25,00	33,66	26,50
2,80	3,82	1	28,00	37,66	30,00
3,15	4,32		31,50	42,66	33,50
3,55	4,82		35,50	47,66	37,50
4,00	5,37		40,00	53,19	42,50
4,50	6,07		45,00	60,19	47,50
5,00	6,79		50,00	67,19	53,00
5,60	7,59		56,00	75,19	60,00
6,30	8,59		63,00	85,22	67,00
7,10	9,59		71,00	95,22	75,00
8,00	10,71		80,00	106,22	85,00

ГОСТ 9523-84 устанавливает диаметры хвостовиков и размеры квадратов для металлорежущих инструментов с цилиндрическими хвостовиками (развертки, метчики и др.).

Он включает две серии размеров - основную и дополнительную.

В каждой серии приведены размеры квадратов для данного диаметра хвостовика.

Полный диапазон диаметров подразделяется на интервалы, для каждого из которых дается соответствующий стандартный квадрат как для основной, так и для дополнительной серии, для использования в тех случаях, когда необходимо более мелкое разделение относительно малых диаметров.

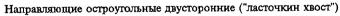
В табл. 59 значения сечений квадратов а и предпочтительных диаметров d приводятся в соответствии с рядом R20 предпочтительных чисел: границы интервалов диаметров являются вспомогательными величинами из ряда R40 предпочтительных чисел.

В основной серии приводятся не только две границы каждого интервала диаметров, но и значение предпочтительного диаметра, соответствующее теоретическому оптимальному отношению a:d=0,80 стороны квадрата и диаметра хвостовика.

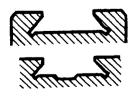
В границах любого интервала это отношение a:d изменяется от 0,75 до 0,85 для основной серии и от 0,80 до 0,85 для дополнительной серии, учитывая только номинальное значение a и d.

Если учитывать допуски на размеры a и d, то отношение не должно быть менее 0,72.

Соответствие настоящего стандарта международному стандарту ИСО 237—75.

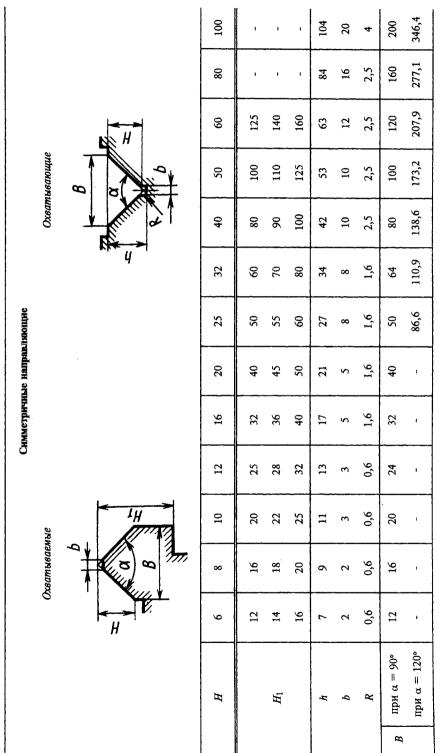

Диаметры хвостовиков и размеры квадратов, установленные в настоящем стандарте, полностью соответствуют ИСО 237-75.

В настоящем стандарте по сравнению со стандартом ИСО 237-75 предусмотрены размеры отверстий под квадраты.


НАПРАВЛЯЮЩИЕ СТАНКОВ

60. Типы и профили сечений направляющих

	оо. типы и профизи селения г	ieri kerrina arta arta arta arta arta arta arta ar									
Напра	не	Характеристика и									
охватываемые ¹	охватывающие ²	применение									
	Направляющие треугольные	симметричные									
		Повышенная точность перемещения движущихся частей вследствие меньшего влияния износа, чем у направляющих других типов. Саморегулируемая компенсация износа Охватываемые направляющие обеспечивают хорошие условия удаления стружки Охватывающие направляющие хорошо сохраняют смазочный материал Применяют с прижимными регулировочными планками и без них									
Направляющие треугольные несимметричные											
		Характеристика такая же, как для симметричных. Применяют при значительной разнице между вертикальными и горизонтальными усилиями, действующими на направляющие									
	Направляющие прямо	угольные									
		Просты в изготовлении. Воспринимают большие нагрузки. Регулировку осуществляют планками и клиньями									
		OOUUUA ("TOCTOUVUU VDOCT")									


Применяют при малых размерах по высоте. Регулировку осуществляют клиньями и планками. Плохо работают на отрыв при больших опрокидывающих моментах

¹ Рекомендуемые для малых скоростей перемещения.

² Рекомендуемые для малых и больших скоростей перемещения.

61. Треугольные направляющие

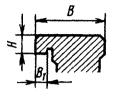
Размеры, мм

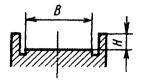
Размеры, мм

Несимметричные направляющие	
Охватываемие	Охватывающие
•	8
2	B
1 000	006 24
	4
H H	a me
	9

	Н	9	∞	10	12	16	70	25	32	40	20	99	80	100
		ç	25	ω	04	50	09	08	100	120	1	-	,	•
	п.	3 2	3 %	1 %	45	55	70	8	110	140	1	ı	ı	ı
	[77	1 %	3 8	6	20	09	80	100	125	160	,	,	,	'
	-	11	12	12	21	27	34	42	53	63	84	104	129	165
		1 (٦ ,	; ~	` ~	·	v	∞	10	12	16	70	70	25
	0	۷ 5	٠ .	90	0 6	0.6	9.0	1,0	1,0	1,0	2,5	2,5	2,5	2,5
	¥	1,0	1,00	25	2,50	57.7	73.0	92.4	115.5	138.6	184.8	230,9	ı	
	при β = 30°	23,1	/,/7	٠ ١	70,7	1,1,0	7,00	1, 2,	2001	1566	208.0	761 1	326.4	417.7
89	пон β = 25°	26,1	31,3	41,8	52,2	65,3	83,5	104,4	C,UCI	0,001	200,7	1,404	. 600	, ,
1	три в = 20°		ı	1	ı	77,8	9,66	124,5	155,6	186,7	248,9	311,2	388,9	471,7
	8 = 30°	0.50	0.50	0.75	0.75	1,25	1,25	2,00	2,50	3,00	4,0	5,0	•	ı
:	00 - q MqII	0.50	95.0	0.55	0.55	0.90	06.0	1,45	1,80	2,15	2,9	3,6	3,6	4,5
B	-с7 — д иди	0,50	2,5	2,6	5	090	090	0.95	1.20	1.45	1,9	2,4	2,4	3,0
	лри β = 20°	-	-	,		22,0	23.62	1,2						

Размер H_1 - рекомендуемый; размер B - справочный


62. Основные размеры профилей охватываемых и охватывающих направляющих

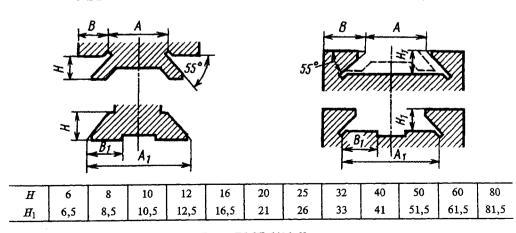

Размеры, мм

Охватываемые

Охватывающие

Охватываемые и охватывающие

H	8	10	12	16	20	25	32	40	50	60	80	100
	12	16	20	25	32	40	50	60	80	100	125	160
	16	20	25	32	40	50	60	80	100	125	160	200
В	20	25	32	40	50	60	80	100	125	160	200	250
	25	32	40	50	60	80	100	125	160	200	250	320
	32	40	50	60	80	100	125	160	200	250	320	400
	-	-	-	-	-	-	12	16	20	25	32	40
B_1	4	5	6	8	10	12	16	20	25	32	40	50
	5	6	8	10	12	16	20	25	32	40	50	60


При разделении рабочей плоскости направляющих выемкой размеры B_2 выбирают из ряда размеров B.

63. Основные размеры профилей охватываемых и охватывающих направляющих типа "ласточкин хвост"

Размеры, мм

Охватываемые

Охватывающие

A, A_1 , B и B_1 выбирают из ряда Ra по Γ OCT 6636-69.

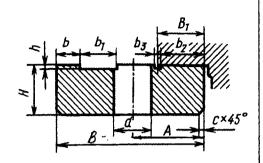
64. Фаски и канавки для выхода инструмента прямоугольных направляющих с прижимной планкой Размеры, мм

<u>I</u>	H	8; 10; 12; 16	20; 25; 32; 40	50; 60	80; 100
	h	1,6	2,0	3,0	5,0
	$h_1=r$	0,5	1,0	1,6	2,0
C7×45°	b	2,0	3,0	5,0	8,0
	с	1,6	2,0	2,5	3,0
D 7.	c_1	1,0	1,6	2,0	2,5

Фаски и канавки для выхода инструмента прямоугольных направляющих Размеры, мм

2	В	b	h=r	с	c_1
C ₁ ×45°	До 50	3	0,5	1,0	1,0
	Св. 50 до 100	4	1,0	1,6	1,0
	" 100 " 200	5	1,6	2,0	1,6
→ C×45°	" 200 " 400	6	2,0	3,0	2,0

66. Фаски и канавки для выхода инструмента остроугольных направляющих типа "ласточкин хвост"


Канавки изготовляют двух исполнений: 1 - прямоугольной формы; 2 - трапециевидной формы

Размеры, мм

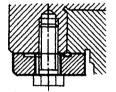
Исполнение 1 	H	6; 8; 10	12; 16	20	25; 32; 40	50; 60	80
S 15°-30°	b = h	2,0	3,0	4,0	5,0	6,0	8
	r	0,5	1,0	1,0	1,6	1,6	2
Исполнение 2	с	1,0	1,6	2,0	2,5	4,0	7
15°-30°	c ₁	-	0,5	0,5	1,0	1,6	2
	c ₂	0,7	1,0	1,4	1,8	2,8	5

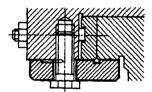
67. Прижимные планки

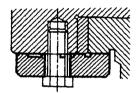
Прижимная планка

Прижимные планки применяют для прямоугольных направляющих скольжения станков.

В зависимости от величины опорных площадок прижимные планки изготовляют трех исполнений:


- 1 устанавливаемые без регулировочных планок и клиньев:
- 2 устанавливаемые вместе с регулировочными планками;
 - 3 устанавливаемые вместе с клиньями.

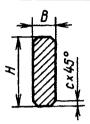

Размеры, мм


Примеры применения прижимных планок

Планки, устанавливаемые без регулировочных планок и клиньев Планки, устанавливаемые с регулировочными планками

Планки, устанавливаемые с регулировочными клиньями

$B_1 = H$	Испол- нение	В	A	b	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	đ	h	с
	1	12	8							
4	2	16	10			3		4,5		
	3	20	10							
	1	16	10	}						
5	2	20	12		<u> </u>	4		5,5		
	3	25	12	-	-		2		0,5	1,0
	1	20	12							İ
6	2	25	15			5		6,6		
	3	32	15			<u> </u>				<u>.</u>
	1	25	15							
8	2	32	20			7		9,0		
	3	40	20							

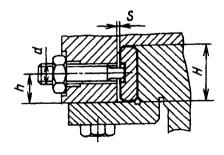

Продолжение табл. 67

$B_1 = H$	Испол- нение	B*	A	ь	<i>b</i> ₁	<i>b</i> ₂	b ₃	d	h	с
	1	32	20							
10	2	40	25			9		11		
	3	50	25				2		0,5	1,0
	1	40	25							
12	2	50	30			11		13		
	3	60	30							
	1	50	30							
16	2	60	35			14,5				
10	2	70	45							
	3	70	35	-	-			17		
	1	60	35	İ						
20	2	70	45			18,5		į		
	2	80	50							
	3	80	40							
	1	80	45				3		1,0	
25	2	90	55			23,5		22		
	2	100	60	İ		}				
	3	100	50							2,5
	1	100	50	25	25					
	2	110	70	15	20					
32	2	125	75	15	25	30,5		26		
	3	110	60	15	20					
	3	125	65	15	20				 	ļ
	1	125	65		35					
40	2	140	85		30	37,5		33		
	2	160	95	1	40				1	
	3	160	80	15	35	ļ	-		-	
	1	140	80		35		5		1,5	
50	2	180	105		45	47,5		39		
	3	180	95	<u> </u>	40				4	
60	1	160	95	15	40	57,5		45		
	3	200	110	20						

68. Планки регулировочные прямоугольные

Планки применяют для прямоугольных направляющих скольжения металло- и деревообрабатывающих станков.

Размеры, мм

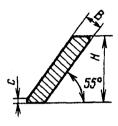


	Номи	нал	8	10	12	16	20	25	32	40	50	60	80	100
H	Откло	не-			-0	,3					-0	,5		
	ния	τ			-0),6					-0	,8		
<i>B</i> ±0,2	Ряды	1	-		-	-	-	~	8	10	12	15	20	25
		2	2,5	3	4	5	6	8	10	12	15	18	25	30
	С			1	,0			1	1,6 2,5					

Толщину планок В выбирают по 1-му и 2-му ряду в зависимости от материала, длины планок, воспринимаемых усилий и расстояния между регулировочными винтами.

69. Пример применения регулировочных планок

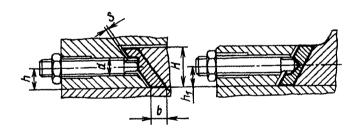
Размеры, мм



Типы винтов и гаек, а также форма зенковок и сверлений под винты не регламентируются.

\overline{H}	8	10	12	16	20	25	32	40	50	60	80	100
h	4	5	6	8	10	12	16	20	25	30	40	50
đ	M	14	M5	M6 M8	М	10	.M12	М	116	M20	M24	M 30
S			0	,5					1	,0		

70. Планки регулировочные остроугольные


Планки применяют для остроугольных направляющих скольжения типа "ласточкин хвост". Размеры, мм

Н (отклонение по h12)			6	8	10	12	16	20	25	32	40	50	60
В±0,16 Ряды 1		1	-		4,1	4,9	6,6	8,2		9,8	12,3		14,7
		2	4	,1	4,9	6,6	8,2	9,	8	12,3	14	1,7	18,0
С			1,0		1,6		2,5					4,0	

Толщину планок B выбирают по 1-му и 2-му ряду в зависимости от материала, длины планок, воспринимаемых усилий и расстояния между регулировочными винтами.

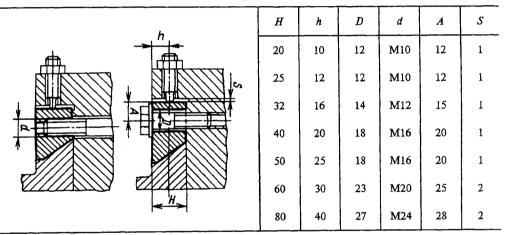
Примеры применения остроугольных регулировочных планок Размеры, мм

	H	6	8	10	12	16	20	25	32	40	50	60	
	h	3,3	4,2	5	6	8,5	10	12	16	20	25	30	
	h_1	2,7	3,8			7,5							
ь	1-й ряд	-	-	5	6	8	10	10	12	15	15	18	
	2-и ряд	5	5	6	8	10	12	12	15	18	18	22	
	ď	М3	M4	M5	M6	M8	M10	M10	M12	M16	M16	M20	
										ł	M20	M24	
S					0,5				0,8				

Типы винтов и гаек, а также форма зенковок и сверлений под винты не регламентируются.

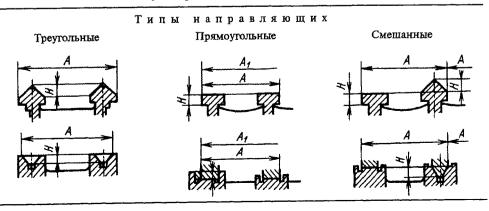
72. Планки регулировочные односкосные

Планки применяют для остроугольных направляющих скольжения типа "ласточкин хвост".

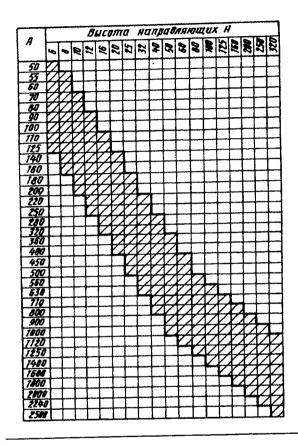

Размеры, мм

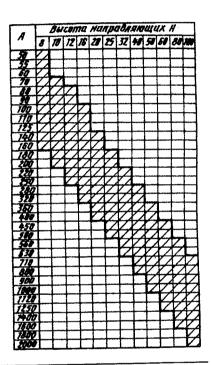
B & A	Н (отклонение по h12)	20	25	32	40	50	60	80
	$B \pm 0,2$	20	20	25	32	32	40	45
8,	B_1	33	36	46	58	64	79	96

73. Примеры применения регулировочных односкосных планок


Регулировочные планки изготовляют с гладкими и резьбовыми отверстиями под крепежные винты.

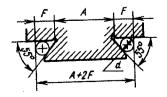
Размеры, мм

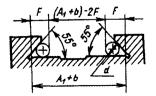

Типы и размеры винтов, гаек и шайб для регулирования и закрепления планок не регламентируются.


74. Рекомендуемые расстояния между направляющими, мм

Треугольные и прямоугольные направляющие

Смешанные направляющие

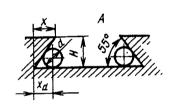


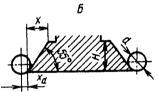


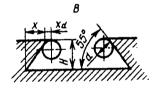
75. Измерение расстояния между боковыми гранями остроугольных направляющих типа "ласточкин хвост" с помощью цилиндрических роликов

Охватываемые направляющие

Охватывающие направляющие


 b - номинальная толщина планки плюс зазор. Для направляющих с регулировочным клином вместо размера
 b принимают толщину тонкого конца клина

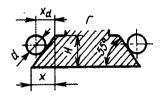

Продолжение табл. 75


_	H	d	F=1,4605d	Н	d	F=1,4605d
55°	4	2,5	3,65	20	12	17,53
1=	5	3	4,38	25	15	21,91
Marine II	6	3,5	5,11	32	18	26,29
F 5	8	5	7,30	40	25	36,51
Hammer)	10	6	8,76	50	30	43,82
$F_1 = F - 0.7(H - f)$ или	12	7	10,22	60	35	51,12
$F_1 = F - 0,7(H_1 - f)$ with $F_2 = F - 0,7(H_1 - f)$	16	9	13,14	80	50	73,02

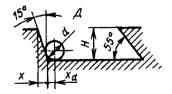
76. Размеры элементов угловых пазов, измеряемых по роликам

Размеры, мм

Для типов А, Г


Для типа Д

Для типа Б, В

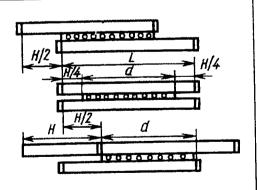

$$X_d = \frac{d}{2} \operatorname{ctg} \ 27^{\circ}30' = \frac{d}{2} 1,92098$$

$$X_d = \frac{d}{2} \operatorname{tg} 37^{\circ}30' = \frac{d}{2} 0,76733$$

$$X_d = \frac{d}{2} \operatorname{ctg} \ 27^{\circ}30' = \frac{d}{2} \ 1,92098$$
 $X_d = \frac{d}{2} \operatorname{tg} \ 37^{\circ}30' = \frac{d}{2} \ 0,76733$ $X_d = \frac{d}{2} \operatorname{tg} \ 27^{\circ}30' = \frac{d}{2} \ 0,52057$

Для типов А, Б, В, Г

 $X = H \text{ tg } 15^{\circ} = H 0,26795$

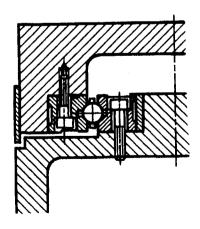

 $X = H \text{ tg } 35^{\circ} = H 0,70021$

Продолжение табл. 76

		X_d для типов		H	Х для т	ипов
<i>d</i>	Α, Γ	Б, В	Д		А, Б, В и Г	д
2,5	2,401	0,651	0,959	4	2,801	1,072
3	2,881	0,781	1,150	5	3,501	1,340
3,5	3,362	0,911	1,343	6	4,201	1,608
5	4,802	1,301	1,918	8	5,602	2,144
6	5,763	1,562	2,302	10	7,002	2,680
7	6,723	1,822	2,686	12	8,403	3,215
9	8,644	2,343	3,453	16	11,203	4,287
13	12,486	3,384	4,988	20	14,004	5,359
18	17,289	4,685	6,906	25	17,505	6,699
25	24,012	6,507	9,502	32	22,407	8,574
30	28,815	7,809	11,510	40	28,008	10,718
				50	35,010	13,398

77. Направляющие качения

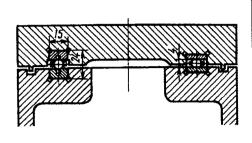
Схема и характеристика

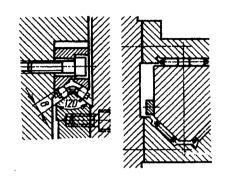


d - длина направляющих;

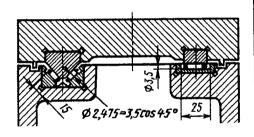
H - ход;

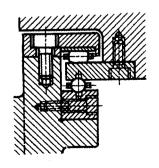
L - длина планок

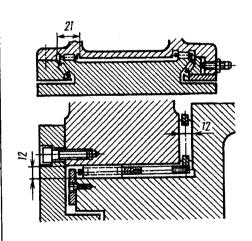

Направляющая для ограниченной длины перемещения. Тела качения помещены поодиночке или группами в отверстия жесткого сепаратора или без сепаратора и перемещаются вперед и назад по постоянной прямолинейной траектории, всегда находясь в нагруженном состоянии


Шариковая направляющая для прямолинейного перемещения. Ш рики, заключенные в обойму, катятся между направляющими планками; положение одной из планок регулируется с помощью клина. Конструктивно применяют при небольших нагрузках

Продолжение табл. 77

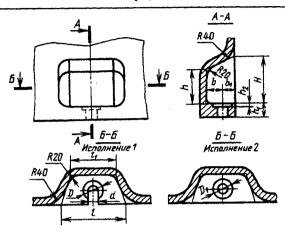

Схема и характеристика


Открытые направляющие салазок на шариках и роликах


Призматические направляющие на роликах и иглах

Открытые направляющие салазок на иглах различных диаметров

Закрытая конструкция салазок с роликами и шариками, расположенными друг над другом



Столы с направляющими типа "ласточкин хвост" и с плоскими направляющими на роликах

КРЕПЛЕНИЕ К ФУНДАМЕНТУ

78. Элементы станин под крепление к фундаменту

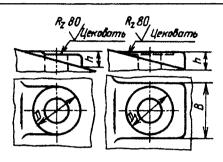
Размеры, мм

Размеры в скобках относятся к исполнению 2

d	D	D_1	b	b_1	H	h	h ₁	1	<i>I</i> ₁	h ₂
17	32	38	25	20	75	55	22	100	70	2
22	40	45	32	25	75	55	28	120	80	3
26	45	52	36	28	100	80	32	130	90	4
33 (32)	60	60	45	36	100	80	40	160	110	4
39 (38)	70	70	55	45	140	110	50	190	130	5
45 (44)	80	82	60	50	140	110	60	220	150	5

79. Приливы и отверстия в опорных плитах под фундаментные болты

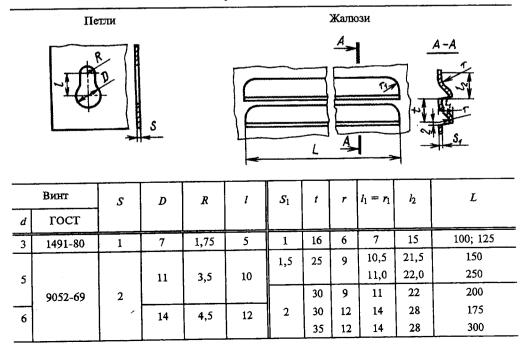
Размеры, мм При *H* > 4*d*


При сварной конструкции*

При $H \leq 4d$

ď	M 10	M12	M16	M20	M24	M30	M36	M42	M48
d_1	16	20	24	30	38	52	60	65	72
d_2	20	25	30	40	45	65	80	90	10
h_1	5	,6	8	10	12	15	18	21	24

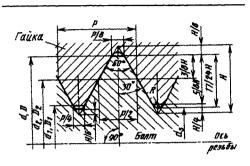
^{*} Для болгов диаметром более M36 допускается изготовление отверстий d_1 и d_2 газовой резкой с шероховатостью более указанной на рисунке.


Приливы на наклонных поверхностях под фундаментные болты Размеры, мм

d	M10	M12	M16	M20	M24	M30	M36	M42	M48
D	38	45	56	70	80	100	110	130	155
D_1	38	45	58	65	75	105	115	125	130
B	40	50	60	80	90	110	120	140	160
	4	4	4	6	6	8	8	10	12
Высота	4	6	6	8	8	10	10	12	16
прилива	6	8	8	10	10	12	12	16	20
h	8	10	10	12	12	16	16	20	25
	10	12	12	16	16	20	20	25	32

ПЕТЛИ И ЖАЛЮЗИ

81. Размеры петель и жалюзи, мм



РЕЗЬБЫ

МЕТРИЧЕСКАЯ РЕЗЬБА

Продолжение табл. 82

82. Основные размеры метрической резьбы, мм (по ГОСТ 9150-81, ГОСТ 8724-81, ГОСТ 24705-81)

- d, D наружные диаметры соответственно ужной резьбы (болга) и внутренней резьбы ки);
- d_2 , D_2 средние диаметры соответственно а и гайки;
- I_1 , D_1 внутренние диаметры соответст- S_1 оболга и гайки;
- ; внугренний диаметр болта по дну впа-
- шаг резьбы;
- высота исходного треугольника. минальные значения диаметров резьбы ы соответствовать указанным на чертеже юлице. Значения диаметров вычислены эдующим формулам:

$$H = 0,866025P;$$

$$D_2 = D - 2\frac{3}{8}H = D - 0,649519053P,$$

$$d_2 = d - 2\frac{3}{8}H = d - 0,649519053P;$$

$$D_1 = D - 2\frac{5}{8}H = D - 1,082531755P;$$

$$d_1 = d - 2\frac{5}{8}H = d - 1,082531755P$$

$$d_3 = d - 2\frac{17}{24}H = d - 1,226869322P.$$

		Диаметр	резьбы	
Шаг резьбы <i>Р</i>	наруж- ный	средний	внут- ренний	внут- ренний по дну впади- ны
		тным :	шагом	
0,40	2,0	1,740	1,567	1,509
0,45	(2,2)	1,908	1,713	1,648
0,45	2,5	2,208	2,013	1,948
0,50	3,0	2,675	2,459	2,387
0,60	(3,5)	3,110	2,850	2,764
0,70	4	3,546	3,242	3,141
0,75	(4,5)	4,013	3,688	3,580
0,80	5	4,480	4,134	4,019
1	6	5,350	4,918	4,773
1,25	8	7,188	6,647	6,466
1,50	10	9,026	8,376	8,160
1,75	12	10,863	10,106	9,853
2	(14)	12,701	11,835	11,546
2	16	14,701	13,835	13,546
2,5	(18)	16,376	15,294	14,933
2,5	20	18,376	17,294	16,933
2,5	(22)	20,376	19,294	18,933
3	24	22,051	20,752	20,319
3	(27)	25,051	23,752	23,319
3,5	30	27,727	26,211	25,706
3,5	(33)	30,727	29,211	28,706
4	36	33,402	31,670	31,093
4	(39)	36,402	34,670	34,093
4,5	42	39,077	37,129	36,479
4,5	(45)	42,077	40,129	39,479
5	48	44,752	42,587	41,866
5	(52)	48,752	46,587	45,866
5,5	56	52,428	50,046	49,252
5,5	(60)	56,428	54,046	53,252
6	64	60,103	57,505	56,639
6	(68)	64,103	61,505	60,639
	Смел	,	іагом	
0,25	2,0	1,838	1,729	1,693
	2,2	2,038	1,929	1,893
	2,5	2,273	2,121	2,071
0,35	3	2,773	2,621	2,571
	(3,5)	3,273	3,121	3,071

Продолжение табл. 82

Продолжение табл. 82

		Диаметр	резьбы				Диаметр	резьбы	
Шаг резьбы <i>Р</i>	наруж- ный	средний	редний внут- ренний рези по дну впади- ны	Шаг резьбы Р	наруж- ный	средний	внут- ренний	внут- ренний по дну впади- ны	
	4	3,675	3,459	3,387		56	55,350	54,917	54,773
	(4,5)	4,175	3,959	3,887		(60)	59,350	58,917	58,773
	5	4,675	4,459	4,387		64	63,350	62,917	62,773
	6	5,675	5,459	5,387	1,0	(68)	67,350	66,917	66,773
	8	7,675	7,459	7,387		72	71,350	70,917	70,773
0,5	10	9,675	9,459	9,387		(76)	75,350	74,917	74,773
•	12	11,675	11,459	11,387		80	79,350	78,917	78,773
	(14)	13,675	13,459	13,387		10	9,188	8,647	8,466
	16	15,675	15,459	15,387	1,25	12	11,188	10,647	10,467
	(18)	17,675	17,459	17,387		(14)	13,188	12,647	12,466
	20	19,675	19,459	19,387		12	11,026	10,376	10,160
	(22)	21,675	21,459	21,387		(14)	13,026	12,376	12,160
	6	5,513	5,188	5,080		16	15,026	14,376	14,160
	8	7,513	7,188	7,080		(18)	17,026	16,376	16,160
	10	9,513	9,188	9,080		20	19,026	18,376	18,160
	12	11,513	11,188	11,080		(22)	21,026	20,376	20,160
	(14)	13,513	13,188	13,080		24	23,026	22,376	22,160
	16	15,513	15,188	15,080		(27)	26,026	25,376	25,160
0.75	(18)	17,513	17,188	17,080		30	29,026	28,376	28,160
0,75	1	19,513	19,188	19,080		(33)	32,026	31,376	31,160
	20	21,513	21,188	21,080		36	35,026 38,026	34,376 37,376	34,160 37,160
	(22)	I	23,188	23,080		(39)	41,026	40,376	40,160
	24	23,513	26,188	26,080		(45)	44,026	43,376	43,160
	(27)	26,513	29,188	29,080		48	47,026	46,376	46,160
	30	29,513	1	32,080	1,5	(52)	51,026	50,376	50,160
	(33)	32,513	32,188	6,773	-	56	55,026	54,376	54,160
	8	7,350	6,917			(60)	59,026	58,376	58,160
	10	9,350	8,917	8,773		64	63,026	62,376	62,160
	12	11,350	10,917	10,773		(68)	67,026	66,376	66,160
	(14)	13,350	12,917	12,773		72	71,026	70,376	70,160
	16	15,350	14,917	14,773		(76)	75,026	74,376	74,160
	(18)	17,350	16,917	16,773		80	79,026	78,376 83,376	78,160 83,160
	20	19,350	18,917	18,773		(85)	84,026 89,026	88,376	88,160
	(22)	21,350	20,917	20,773	·	(95)	94,026	93,376	93,160
1,0	24	23,350	22,917	22,773		100	99,026	98,376	98,160
	(27)	26,350	25,917	25,773		(105)	104,026		103,160
	30	29,350	28,917	28,773		110	109,026	1	
	36	35,350	34,917	34,773		(115)	114,026		
	(39)	38,350	37,917	37,773		(120)	119,026	1	
	42	41,350	40,917	40,773		125	124,026	123,376	
	(45)	44,350	43,917	43,773		(130)	129,026		
	48	47,350	46,917	46,773		140	139,026		
	(52)	51,350	50,917	50,773		(150)	149,026	148,376	148,160

Продолжение табл. 82

Продолжение табл. 82

Варуж-Р найк средний наруж- ренний ренний ренний ренний ренний ренний и впади- на март най в в в в в в в в в в в в в в в в в в в			Диаметр	резьбы				Диаметр	резьбы	
20	резьбы			внут-	ренний по дну впади-	резьбы	ный		ренний	ренний по дну впади-
(22) 20,701 19,835 19,346 64 62,051 60,752 66,319 (27) 225,701 24,835 24,546 72 70,051 68,752 64,319 (33) 31,701 30,835 30,546 80 78,051 76,752 76,319 (33) 31,701 30,835 30,546 80 78,051 76,752 76,319 (39) 37,701 36,835 36,546 90 88,051 86,752 86,319 (45) 43,701 42,835 42,546 (100) 98,051 96,752 91,319 (45) 43,701 42,835 42,546 (100) 98,051 96,752 96,319 (52) 50,701 49,835 49,546 (105) 103,051 106,752 106,319 (60) 58,701 57,835 57,546 (120) 118,051 116,752 111,319 (60) 58,701 77,835 77,546 (150) 148,051 146,752 121,319 (68) 66,701 65,835 65,546 (130) 128,051 126,752 126,319 (105) 93,701 30,835 82,546 (130) 128,051 126,752 126,319 (150) 98,701 99,835 (105) 93,701 128,835 (105) 93,701 128,835 (105) 93,701 128,835 (105) 93,701 128,835 (105) 93,701 128,835 (105) 100 98,701 97,835 (105) 93,701 102,835 (105) 100,830 (105) 103,751 116,752 116,319 (105) 103,701 11,752 111,319 (105) 116,752 116,319 (105) 110,752 110,319 (105) 110,310 (117,315) 117,546 (105) 118,051 116,752 116,319 (105) 113,001 117,835 17,546 (105) 128,001		(18)	16,701	15,835						
24 22,701 21,835 21,546 (68) 66,051 60,752 64,319 30 28,701 27,835 27,546 (76) 74,051 72,752 72,319 36 33,701 32,835 32,546 (85) 83,051 86,752 86,319 42 40,070 39,835 39,546 (95) 93,051 91,752 91,319 (45) 48,467 14,675		20	18,701	17,835	17,546					
1,000 21		(22)	20,701	19,835			, ,	1		
1,27,01		24	22,701	21,835	21,546					
30		(27)	25,701	24,835	24,546					
(33) 31,701 30,835 30,346 80 78,051 76,752 76,319 (39) 37,701 36,835 35,546 90 88,051 86,752 86,319 (42) 40,701 39,835 39,546 100 98,051 96,752 96,319 (45) 43,701 42,835 42,546 100 98,051 96,752 96,319 (48) 46,701 45,835 45,546 100 98,051 96,752 96,319 (52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 (52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 (60) 58,701 57,835 57,546 (120) 118,051 111,752 111,319 (68) 66,701 65,835 65,546 (130) 128,051 124,752 126,319 (68) 66,701 65,835 65,546 (130) 128,051 126,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 92,546 (190) 188,051 166,752 166,319 (105) 103,701 102,835 102,546 (210) 208,051 206,752 206,319 (105) 103,701 102,835 102,546 (210) 208,051 206,752 206,319 (120) 118,701 117,835 117,546 (240) 238,051 236,752 236,319 (150) 148,701 137,835 137,546 (45) 42,402 40,670 40,093 (150) 148,701 177,835 177,546 (45) 42,402 40,670 40,093 (160) 158,701 177,835 177,546 (45) 42,402 40,670 40,093 (160) 158,701 177,835 177,546 (45) 42,402 40,670 40,093 (170) 168,701 167,835 167,546 (45) 42,402 40,670 40,093 (160) 188,701 177,835 177,546 (46) 57,402 57,670 57,093 (170) 168,701 177,835 177,546 (46) 57,402 57,670 57,093 (180) 188,701 177,835 177,546 (46) 57,402 57,670 57,093 (190) 188,701 177,835 177,546 (46) 57,402 57,670 57,093 (190) 188,701 177,835 177,546 (46) 57,402 57,670 57,093 (190) 188,701 177,835 177,546 (46) 57,402		30	28,701	27,835						
36 33,701 32,835 32,546 (85) 83,051 81,752 81,319 42 40,701 39,835 39,546 (95) 93,051 96,752 96,319 48 46,701 45,835 45,546 (105) 103,051 101,752 101,319 (52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 56 54,701 53,835 53,546 (115) 113,051 111,752 111,319 (60) 58,701 57,835 57,546 (120) 118,051 116,752 116,319 64 62,701 61,835 61,546 125 123,051 121,752 121,319 (68) 66,701 65,835 65,546 (130) 128,051 126,752 126,319 72 70,701 69,835 69,546 (140) 138,051 136,752 136,319 (76) 74,701 73,835 77,546 (150) 148,051 146,752 146,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 82,546 (170) 188,051 166,752 166,319 (95) 93,701 92,835 82,546 (170) 188,051 166,752 166,319 (105) 103,701 102,835 102,546 (200) 198,051 196,752 196,319 (105) 103,701 102,835 107,546 (240) 238,051 236,752 226,319 (115) 113,701 112,835 117,546 (240) 238,051 236,752 226,319 (120) 118,701 177,835 177,546 (300) 298,051 296,752 296,319 (150) 148,701 177,835 177,546 (260) 258,051 226,752 226,319 (150) 148,701 178,835 175,546 (240) 238,051 236,752 236,319 (150) 148,701 177,835 177,546 (45) 42,402 40,670 40,093 (160) 158,701 157,835 157,546 (45) 42,402 40,670 40,093 (160) 158,701 167,835 167,546 (45) 42,402 40,670 40,093 (160) 188,701 178,835 187,546 (45) 42,402 40,670 40,093 (160) 188,701 178,835 187,546 (45) 42,402 40,670 40,093 (170) 168,701 167,835 157,546 (45) 42,402 40,670 40,093 (180) 188,701 178,835 187,546 (45) 42,402 40,670 40,093 (180) 188,701 197,835 197,546 (46) 57,402 55,670 55,093 (190) 188,701 197,835 197,546 (4		(33)	31,701	30,835						1
(39) 37,701 36,835 36,546 90 88,051 86,752 86,319 (42) 40,701 39,835 39,546 (95) 93,051 91,732 91,339 (43) 48 46,701 45,835 45,546 100 98,051 96,752 96,319 (52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 (60) 58,701 57,835 53,546 (115) 113,051 111,752 111,319 (60) 58,701 57,835 53,546 (115) 113,051 111,752 111,319 (60) 58,701 57,835 57,546 (120) 118,051 116,752 116,319 (68) 66,701 69,835 69,546 (130) 128,051 126,752 126,319 (68) 66,701 69,835 69,546 (130) 128,051 136,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 (95) 93,701 92,835 (95) 93,701 92,835 (105) 100,98,701 100,835 102,546 (190) 188,051 166,752 166,319 (105) 103,701 102,835 102,546 (240) 238,051 206,752 206,319 (155) 113,010 112,835 112,546 (240) 238,051 236,752 236,319 (150) 118,701 117,835 117,546 (240) 238,051 246,752 266,319 (150) 118,701 117,835 117,546 (240) 238,051 246,752 266,319 (150) 128,701 122,835 122,546 (240) 238,051 236,752 236,319 (150) 128,701 122,835 122,546 (240) 238,051 236,752 236,319 (150) 148,701 177,835 177,546 (240) 238,051 246,752 246,319 (150) 148,701 177,835 177,546 (240) 238,051 246,752 246,319 (150) 148,701 177,835 177,546 (250) 248,051 246,752 246,319 (150) 128,701 122,835 122,546 (250) 258,051 266,752 266,319 (150) 148,701 177,835 177,546 (250) 248,051 246,752 246,319 (150) 148,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 148,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 188,701 157,835 157,546 (55) 42,402 40,670 40,093 (150) 188,701 157,835 157,546 (55) 42,402 40,670 40,093 (150) 188,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 188,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 188,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 188,701 177,835 177,546 (55) 42,402 40,670 40,093 (150) 188,701 177,835 177,546 (56) 53,402 51,670 55,093 (150) 188,701 177,835 177,546 (56) 53,402 51,670 55,093 (150) 188,701 177,835 177,546 (56) 53,402 51,670 55,093 (150) 188,701 177,835 177,546 (56) 50,093 (1		36	33,701	32,835						
42 40,701 39,835 39,546 (95) 93,051 91,752 91,319 48 46,701 42,835 42,546 (100 98,051 96,752 96,319 (52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 56 54,701 53,835 53,546 (115) 113,051 111,752 111,319 (60) 58,701 57,835 57,546 (120) 118,051 116,752 116,319 64 62,701 61,835 61,546 125 123,051 121,752 121,319 (68) 66,701 65,835 66,546 (130) 128,051 126,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 (150) 148,051 166,752 166,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 92,546 (190) 188,051 186,752 196,319 (105) 103,701 102,835 102,546 (210) 208,051 206,752 206,319 (105) 103,701 102,835 102,546 (210) 208,051 206,752 206,319 (115) 113,701 112,835 112,546 (240) 238,051 236,752 236,319 (120) 118,701 17,835 17,546 (240) 238,051 236,752 236,319 (150) 148,701 17,835 17,546 (300) 298,051 296,752 296,319 (150) 148,701 17,835 17,546 (260) 258,051 266,752 266,319 (170) 168,701 147,835 147,546 (45) 42,402 40,670 40,093 (170) 168,701 167,835 167,546 (45) 42,402 40,670 40,093 (180) 188,701 197,835 197,546 (45) 42,402 40,670 47,993 (180) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 4		(39)	37,701	36,835	36,546				ł ·	
48		42	40,701	39,835			(95)	93,051	91,752	E
(52) 50,701 49,835 49,546 3,0 110 108,051 106,752 106,319 56 54,701 53,835 53,546 (115) 113,051 111,752 111,319 (60) 58,701 57,835 57,546 (120) 118,051 116,752 116,319 64 62,701 61,835 61,546 125 123,051 121,752 121,319 (68) 66,701 65,835 65,546 (130) 128,051 126,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 (150) 148,051 146,752 166,319 90 88,701 87,835 87,546 (170) 168,051 166,752 166,319 90 88,701 87,835 87,546 (170) 168,051 166,752 166,319 (105) 103,701 102,835 102,546 200 198,051 196,752 196,319 (115) 113,701 112,835 112,546 (240) 238,051 236,752 206,319 (120) 118,701 117,835 117,546 (260) 258,051 236,752 246,319 (130) 128,701 127,835 177,546 (260) 258,051 266,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (170) 168,701 167,835 177,546 (260) 258,051 256,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (170) 168,701 177,835 177,546 (260) 258,051 256,752 266,319 (150) 148,701 147,835 147,546 (260) 258,051 256,752 266,319 (170) 168,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 (60) 57,402 55,670 55,093 180 178,701 177,835 187,546 (60) 57,402 55,670 55,093 180 178,701 177,835 187,546 (60) 57,402 55,670 55,093 180 178,701 177,835 187,546 (60) 57,402 55,670 55,093 180 180,103 180,103 18		(45)	43,701	42,835	42,546		100	98,051	96,752	96,319
11, 12, 12, 11, 13, 13, 11, 14, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 15		48	46,701	45,835			(105)	103,051	101,752	101,319
(60) 58,701 57,835 57,546 (120) 118,051 116,752 116,319 (68) 66,701 61,835 61,546 (130) 128,051 121,752 121,319 (68) 66,701 65,835 65,546 (130) 128,051 126,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 (85) 83,701 82,835 82,546 (170) 168,051 156,752 156,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 92,546 (190) 188,051 186,752 196,319 (100) 98,701 97,835 97,546 (190) 188,051 186,752 196,319 (105) 103,701 102,835 102,546 (210) 208,051 206,752 206,319 (115) 113,701 112,835 112,546 (220) 218,051 236,752 236,319 (120) 118,701 117,835 117,546 (240) 238,051 236,752 236,319 (120) 118,701 117,835 127,546 (300) 298,051 26,752 266,319 (150) 128,701 122,835 122,546 (260) 258,051 256,752 256,319 (150) 128,701 127,835 137,546 (300) 298,051 26,752 266,319 (150) 128,701 127,835 137,546 (300) 298,051 26,752 266,319 (150) 128,701 17,835 137,546 (300) 298,051 26,752 266,319 (150) 148,701 17,835 137,546 (300) 298,051 26,752 266,319 (150) 148,701 17,835 137,546 (300) 298,051 26,752 266,319 (150) 148,701 17,835 137,546 (45) 42,402 40,670 40,093 160 158,701 167,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (56) 57,402 55,670 55,093 (190) 188,701 187,835 187,546 (60 57,402 55,670 55,093 30 28,051 29,752 29,319 (76) 73,402 71,670 71,093 36 34,051 32,752 32,319 (76) 73,402 75,670 75,093 30 (33) 31,051 29,752 29,319 (76) 73,402 75,670 75,093 42 40,051 38,752 38,319 (90 87,402 85,670 85,093 42 40,051 38,752 38,319 (90 87,402 85,670 85,093 42 40,051 41,752 41,319 (95) 92,402 90,670 90,093		(52)	50,701	49,835	49,546	3,0	110	108,051	106,752	106,319
64 62,701 61,835 61,546 125 123,051 121,752 121,319 2,0 72 70,701 69,835 69,546 140 138,051 136,752 126,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 160 158,051 156,752 166,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 90 88,701 87,835 87,546 180 178,051 176,752 176,319 (95) 93,701 92,835 92,546 (190) 188,051 186,752 186,319 (105) 103,701 102,835 102,546 (200 198,051 206,752 206,319 (115) 113,701 112,835 117,546 (240) 238,051 236,752 236,319 (120) 118,701 117,835 177,546 (260)		56	54,701	53,835	53,546				1	
2,0 66,701 (68), 66,701 (65,835) 65,546 (9,546) (130) (128,051) 126,752 (126,319) 72 70,701 (69,835) 69,546 (140) 138,051 (136,752) 136,319 (146,319) (76) 74,701 (73,835) 73,546 (150) (148,051) 146,752 (146,319) 80 78,701 (77,835) 77,546 (170) (168,051) 166,752 (166,319) 90 88,701 (87,835) 82,546 (170) (168,051) 166,752 (166,319) 90 88,701 (97,835) 92,546 (190) (190) (188,051) 176,752 (176,319) (95) 93,701 (102,835) 92,546 (190) (188,051) (196,752 (196,319) (105) 103,701 (102,835) 102,546 (210) (208,051) (206,752 (206,319) (105) (115) (113,701 (112,835) (17,546 (240) (238,051) (238,051) (236,752 (236,319) (120) (118,701 (17,835) (17,546 (240) (238,051) (238,051) (236,752 (236,319) (130) (128,701 (122,835) (127,546 (260) (258,051) (256,752 (256,319) (130) (128,701 (127,835) (137,546 (260) (258,051) (256,752 (256,319) (150) (148,701) (147,835) (147,546 (45) (45) (42,402) (40,670 (40,093) (150) (148,701) (147,835) (147,546 (45) (45) (42,402) (40,670 (40,093) (150) (148,701) (147,835) (147,546 (52) (440) (238,051) (256,752 (256,319) (150) (188,701) (157,835) (157,546 (36) (52) (49,402) (47,670 (47,093) (150) (188,701) (157,835) (157,546 (45) (45) (42,402) (40,670 (40,093) (150) (188,701) (157,835) (157,546 (45) (45) (45) (42,402) (40,670 (47,093) (150) (188,701) (157,835) (157,546 (45) (45) (45) (45) (45		(60)	58,701	57,835	57,546			1		
2,0 72 70,701 69,835 69,546 140 138,051 136,752 136,319 (76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 160 158,051 156,752 156,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 (95) 93,701 92,835 92,546 (190) 188,051 186,752 186,319 (105) 103,701 102,835 102,546 200 198,051 196,752 196,319 (105) 103,701 107,835 107,546 (210) 208,051 206,752 206,319 (115) 113,701 112,835 112,546 220 218,051 246,752 246,319 (120) 118,701 117,835 117,546 (260) 250 248,051 246,752 266,319 125 123,701 122,835 127,546		64	62,701	61,835	61,546		i .			
(76) 74,701 73,835 73,546 (150) 148,051 156,752 156,319 (85) 83,701 82,835 82,546 (170) 168,051 166,752 156,319 (95) 93,701 92,835 97,546 (210) 188,051 186,752 186,319 (105) 103,701 102,835 100,546 (210) 108,701 108,701 112,835 112,546 (240) 238,051 236,752 246,319 (120) 118,701 117,835 117,546 (260) 258,051 256,752 256,319 (130) 128,701 127,835 127,546 (300) 298,051 226,752 266,319 (150) 148,701 137,835 137,546 (45) 42,402 40,670 40,093 (170) 168,701 157,835 167,546 (45) 42,402 40,670 40,093 (170) 168,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 177,546 (52) 49,402 47,670 47,093 (130) 128,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 187,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 187,546 (52) 49,402 47,670 47,093 (190) 188,701 177,835 187,546 (52) 49,402 47,670 47,093 (130) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (130) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 47,093 (130) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (190) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (130) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (130) 188,701 187,835 187,546 (52) 49,402 47,670 59,993 (190) 188,701 197,835 197,546 4,0 64 61,402 59,670 59,093 (130) 31,051 29,752 29,319 (76) 73,402 75,670 75,093 (130) 31,051 29,752 29,319 (76) 73,402 75,670 75,093 (130) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093		(68)	66,701	65,835	65,546				1 '	1 '
(76) 74,701 73,835 73,546 (150) 148,051 146,752 146,319 80 78,701 77,835 77,546 160 158,051 156,752 156,319 80 83,701 82,835 82,546 (170) 168,051 166,752 166,319 90 88,701 87,835 87,546 (190) 188,051 176,752 176,319 (95) 93,701 92,835 92,546 200 198,051 196,752 196,319 (105) 103,701 102,835 102,546 200 198,051 196,752 196,319 (105) 103,701 107,835 107,546 (240) 238,051 236,752 236,319 (115) 113,701 112,835 112,546 220 218,051 246,752 246,319 (120) 118,701 117,835 117,546 (260) 258,051 256,752 236,319 (120) 118,701 127,835 127,546 (260) 2	2,0	72	70,701	69,835	69,546					
(85) 83,701 82,835 82,546 (170) 168,051 166,752 166,319 90 88,701 87,835 87,546 180 178,051 176,752 176,319 (95) 93,701 92,835 92,546 200 198,051 196,752 196,319 (105) 103,701 102,835 102,546 200 198,051 216,752 216,319 (105) 103,701 102,835 102,546 220 218,051 216,752 216,319 (115) 113,701 112,835 112,546 220 218,051 216,752 216,319 (120) 118,701 117,835 117,546 (260) 238,051 236,752 236,319 (130) 128,701 127,835 127,546 280 278,051 276,752 276,319 (130) 128,701 147,835 137,546 280 278,051 296,752 296,319 (150) 148,701 147,835 157,546 42 <t< td=""><td></td><td>(76)</td><td>74,701</td><td>73,835</td><td>73,546</td><td></td><td></td><td></td><td></td><td></td></t<>		(76)	74,701	73,835	73,546					
180		80	78,701	77,835	77,546		1			
(95) 93,701 92,835 92,546 200 198,051 196,752 196,319 (105) 103,701 102,835 102,546 220 218,051 216,752 216,319 (115) 113,701 112,835 112,546 250 248,051 246,752 246,319 (120) 118,701 17,835 127,546 (260) 258,051 256,752 266,319 (130) 128,701 127,835 127,546 (300) 298,051 296,752 296,319 (150) 148,701 17,835 137,546 (45) 42,402 40,670 40,093 (170) 168,701 167,835 167,546 (45) 42,402 40,670 47,093 (190) 188,701 17,835 17,546 (52) 49,402 47,670 47,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (33) 31,051 29,752 26,319 (20) 198,701 197,835 197,546 (30) 298,051 296,752 256,093 (20) 198,701 197,835 197,546 (52) 49,402 47,670 47,093 (190) 188,701 187,835 187,546 (52) 49,402 47,670 47,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 51,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 198,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 187,835 187,546 (52) 49,402 47,670 59,093 (190) 188,701 187,835 187,546 (52) 49,402 47,670 59,093 (190) 188,701 187,835 187,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,093 (190) 188,701 197,835 197,546 (52) 49,402 47,670 59,0		(85)	83,701					1	1	E .
100 98,701 92,835 97,546 200 198,051 196,752 196,319		90	88,701	87,835	87,546		I .	1	1	1
100 98,701 97,835 97,948 (210) 208,051 206,752 206,319 110 103,701 102,835 102,546 220 218,051 216,752 216,319 (115) 113,701 112,835 112,546 250 248,051 246,752 246,319 (120) 118,701 117,835 117,546 (260) 258,051 256,752 256,319 125 123,701 122,835 122,546 280 278,051 276,752 276,319 (130) 128,701 127,835 127,546 (300) 298,051 296,752 296,319 140 138,701 137,835 137,546 42 39,402 37,670 37,093 (150) 148,701 147,835 147,546 (45) 42,402 40,670 40,093 160 158,701 157,835 157,546 (52) 49,402 47,670 47,093 180 178,701 177,835 167,546 (52) 49,		(95)	93,701	92,835	92,546					
105		100	98,701	97,835	97,546		t			1
110		(105)	103,701	102,835	102,546				1 '	
(115) 113,701 112,835 112,546 (260) 258,051 256,752 256,319 125 123,701 122,835 122,546 (260) 258,051 256,752 256,319 (130) 128,701 127,835 127,546 (300) 298,051 296,752 296,319 140 138,701 137,835 137,546 (45) 42,402 40,670 40,093 160 158,701 157,835 157,546 (45) 42,402 40,670 43,093 (170) 168,701 167,835 167,546 (52) 49,402 47,670 47,093 180 178,701 177,835 177,546 (52) 49,402 47,670 47,093 (190) 188,701 187,835 187,546 (52) 49,402 55,670 55,093 (190) 188,701 197,835 197,546 (50) 57,402 55,670 55,093 (190) 198,701 197,835 197,546 (40) 64 61,402 59,670 59,093 (33) 31,051 29,752 29,319 (76) 73,402 71,670 71,093 36 34,051 32,752 32,319 80 77,402 75,670 75,093 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093		110	108,701	107,835	107,546		I			1
(120) 118,701 117,835 117,546 (260) 258,051 256,752 256,319 125 123,701 122,835 122,546 280 278,051 276,752 276,319 (130) 128,701 127,835 127,546 (300) 298,051 296,752 296,319 140 138,701 137,835 137,546 42 39,402 37,670 37,093 (150) 148,701 147,835 147,546 (45) 42,402 40,670 40,093 160 158,701 167,835 167,546 (45) 42,402 40,670 40,093 180 178,701 177,835 177,546 56 53,402 51,670 51,093 (190) 188,701 187,835 187,546 60 57,402 55,670 55,093 200 198,701 197,835 197,546 4,0 64 61,402 59,670 59,093 (33) 31,051 29,752 29,319 72 <		(115)	113,701	112,835	112,546					
125		(120)	118,701	117,835	117,546					
(130) 128,701 127,835 127,546 (300) 298,051 296,752 296,319 140 138,701 137,835 137,546 42 39,402 37,670 37,093 (150) 148,701 147,835 147,546 (45) 42,402 40,670 40,093 160 158,701 157,835 157,546 48 45,402 43,670 43,093 (170) 168,701 167,835 167,546 (52) 49,402 47,670 47,093 180 178,701 177,835 187,546 56 53,402 51,670 51,093 (190) 188,701 187,835 187,546 60 57,402 55,670 55,093 200 198,701 197,835 197,546 4,0 64 61,402 59,670 59,093 (33) 31,051 29,752 29,319 (76) 73,402 71,670 71,093 3,0 (39) 37,051 35,752 35,319 80 <td></td> <td>125</td> <td>123,701</td> <td>122,835</td> <td>122,546</td> <td></td> <td></td> <td></td> <td></td> <td></td>		125	123,701	122,835	122,546					
140		(130)	128,701				1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		L					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1		1	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
200 198,701 197,835 197,546 4,0 64 61,402 59,670 59,093 30 28,051 26,752 26,319 72 69,402 67,670 67,093 (33) 31,051 29,752 29,319 (76) 73,402 71,670 71,093 36 34,051 32,752 32,319 80 77,402 75,670 75,093 3,0 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 42 40,051 38,752 38,319 90 87,402 85,670 85,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093				177,835			56	53,402	51,670	51,093
30 28,051 26,752 26,319 72 69,402 67,670 67,093 (33) 31,051 29,752 29,319 (76) 73,402 71,670 71,093 36 34,051 32,752 32,319 80 77,402 75,670 75,093 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 42 40,051 38,752 38,319 90 87,402 85,670 85,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093				187,835	187,546		60	57,402	55,670	
3,0 (39) 31,051 29,752 29,319 (76) 73,402 71,670 71,093 75,093 80 77,402 75,670 75,093 75,093 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093		200	198,701	197,835	197,546	4,0				
36 34,051 32,752 32,319 80 77,402 75,670 75,093 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093		30	28,051	26,752	26,319		1			
3,0 (39) 37,051 35,752 35,319 (85) 82,402 80,670 80,093 42 40,051 38,752 38,319 90 87,402 85,670 85,093 (45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093		(33)	31,051	29,752	29,319		1 ' '			
42		36	34,051	32,752	32,319					
(45) 43,051 41,752 41,319 (95) 92,402 90,670 90,093	3,0	(39)	37,051	1	1			1 .		
					38,319				1	
48 46,051 44,752 44,319 100 97,402 95,670 95,093		(45)	43,051		41,319		(95)	92,402		
		48	46,051	44,752	44,319	_	100	97,402	95,670	95,093

	Продолжение табл. 82							
		Диаметр	резьбы					
Шаг резьбы Р	наруж- ный			внут- ренний по дну впади- ны				
	(105)	102,402	100,670	100,093				
	110	107,402	105,670	105,093				
	(115)	112,402	110,670	110,093				
	(120)	117,402	115,670	115,093				
	125	122,402	120,670	120,093				
	(130)	127,402	125,670	125,093				
	140	137,402	135,670	135,093				
	(150)	147,402	145,670	145,093				
	160	157,402	155,670	155,093				
4,0	(170)	167,402	165,670	165,093				
	180	177,402	175,670	175,093				
	(190)	187,402	185,670	185,093				
	200	197,402	195,670	195,093				
	(210)	207,402	205,670	205,093				
	220	217,402	215,670	215,093				
	(240)	237,402	235,670	235,093				
	(260)	257,402	255,670	255,093				
	280	277,402	275,670	275,093				
	300	297,402	295,670	295,093				

Допуски метрических резьб (ГОСТ 16093-81)

Стандарт распространяется на метрическую резьбу с профилем по ГОСТ 9150-81, диаметрами от 1 до 600 мм по ГОСТ 8724-81 и ГОСТ 16967-81, основными размерами по ГОСТ 24705-81 и ГОСТ 24706-81 и устанавливает систему допусков и посадок с зазором.

Положения полей допусков наружной и внутренней резьб указаны на рис. 2, 3.

Отклонения отсчитываются от номинального профиля резьбы в направлении, перпендикулярном к оси резьбы.

Допуски диаметров резьбы устанавливаются по степеням точности, обозначаемым цифрами.

Степени точности и основные отклонения диаметров приведены в табл. 83, допуски диаметров резьбы - в табл. 84.

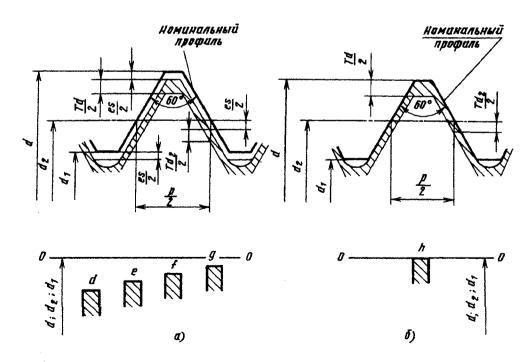


Рис. 2 Положения полей допусков наружной резьбы: a - с основными отклонениями d, e, f, g; δ - с основным отклонениям h

Допуски диаметров d_1 и D не устанавливаются.

Допуски среднего диаметра резьбы являются суммарными.

Положение поля допуска диаметра резьбы определяется основными отклонениями (верхним ез для наружной резьбы и нижним ЕІ - для внутренней) и обозначается буквой латинского алфавита, строчной для наружной резьбы и прописной для внутренней.

Поле допуска диаметра резьбы образуется сочетанием допуска и основного отклонения.

Поле допуска резьбы образуется сочетанием поля среднего диаметра с полем допуска диаметра выступов (диаметров d или D_1).

Обозначение поля допуска днаметра резьбы состоит из цифры, обозначающей степень точности, и буквы, обозначающей основное отклонение.

Например, 4h; бg; 6H.

Обозначение поля допуска резьбы состоит из обозначения поля допуска среднего диаметра, помещаемого на первом месте, и обозначения поля допуска диаметра выступов.

83. Степени точности и основные отклонения диаметров резьбы

Вид резьбы	Диа- метр	Степень точности	Основное отклонение
Наруж- ная	d	4; 6; 8	d; e; f; g; h
резьба	<i>d</i> ₂	3; 4; 5; 6; 7; 8; 9; 10*	d; e; f; g; h
Внутрен няя	<i>D</i> ₂	4; 5; 6; 7; 8; 9*	E; F; G; H
резьба	D_1	4; 5; 6; 7; 8	E; F; G; H

* Только для резьб на деталях из пластмасс.

Верхнее отклонение диаметра d_1 должно соответствовать основному отклонению диаметра d_2 .

Нижнее отклонение диаметра D должно соответствовать основному отклонению диаметра D_2 .

Основные отклонения Е и F установлены только для специального применения при значительных толщинах слоя защитного покрытия.

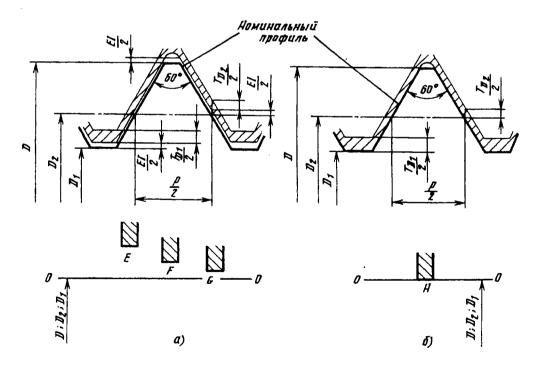
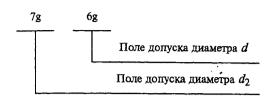
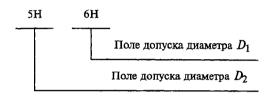
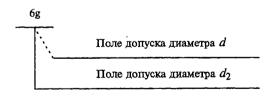
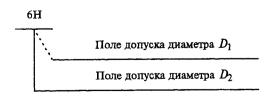




Рис. 3. Положение полей допусков внутренней резьбы: a - с основными отклонениями E, F, G; δ - с основным отклонением H


Например:



Если обозначение поля допуска диаметра выступов совпадает с обозначением поля допуска среднего диаметра, то оно в обозначении поля допуска резьбы не повторяется.

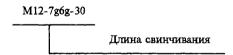
Например:

В условном обозначении резьбы обозначение поля допуска должно следовать за обозначением размера резьбы.

Примеры обозначения резьбы:

- с крупным шагом наружной резьбы: М12-бg; внутренней резьбы: М12-бH;
- с мелким шагом наружной резьбы: $M12 \times 1$ -6g; внутренней резьбы: $M12 \times 1$ -6H; левой резьбы

наружной резьбы: $M12 \times 1LH$ -6g; внутренней резьбы: $M12 \times 1LH$ -6H.


Длины свинчивания подразделяются на три группы: короткие S, нормальные N и длинные L.

Длина свинчивания N в условном обозначении резьбы не указывается.

Длина свинчивания, к которой относится допуск резьбы, должна быть указана в миллиметры в обозначении резьбы в следующих случаях:

- 1) если она относится к группе L;
- 2) если она относится к группе S, но меньше, чем вся длина резьбы.

Пример обозначения резьбы с длиной свинчивания, отличающейся от нормальной:

Посадка в резьбовом соединении обозначается дробью, в числителе которой указывают обозначение поля допуска внутренней резьбы, а в знаменателе - обозначение поля допуска наружной резьбы.

Например:

M12-6H/6g;

 $M12 \times 1-6H/6g$;

 $M12 \times 1LH-6H/6g$.

Допуск резьбы, если нет особых указаний, относится к наибольшей нормальной длине свинчивания, указанной в табл. 86, или ко всей длине резьбы, если она меньше наибольшей нормальной длины свинчивания.

84. Допуски диаметров резьбы (ГОСТ 16093-81)

Допуски диаметров d и D_1

	Hap	ужная резь	ба		Внутр	енняя резь	ба	
-				Степень то	очности		_	
Шаг Р,	4	6	8	4	5	6	7	8
MM				Допуск,	мкм			
Ī	(-)T _d							
0,2	36	56	-	38	48	60	-	-
0,25	42	67	-	45	56	71	-	-
0,3	48	75	-	53	67	85	-	-
0,35	53	85	-	63	80	100	-	-
0,4	60	95	-	71	90	112	~	-
0,45	63	100	-	80	100	125	-	-
0,5	67	106	-	90	112	140	180	-
0,6	80	125	-	100	125	160	200	-
0,7	90	140	-	112	140	180	224	-
0,75	90	140	-	118	150	190	236	-
0,8	95	150	236	125	160	200	250	315
1	112	180	280	150	190	236	300	375
1,25	132	212	335	170	212	265	335	425
1,5	150	236	375	190	236	300	375	475
1,75	170	265	425	212	265	335	425	530
2	180	280	450	236	300	375	475	600
2,5	212	335	530	280	355	450	560	710
3	236	375	600	315	400	500	630	800
3,5	265	425	670	355	450	560	710	900
4	300	475	750	375	475	600	750	950
4,5	315	500	800	425	530	670	850	1060
5	. 335	530	850	450	560	710	900	1120
5,5	355	560	900	475	600	750	950	1180
6	375	600	950	500	630	800	1000	1250

Продолжение табл. 84

Допуски	диаметра	d_2
---------	----------	-------

				(Степень :	гочности		1	
Номинальный диаметр	Шаг <i>Р</i> ,	3	4	5	6	7	8	9	10
резьбы <i>d</i> , мм				Дс	пуск (+	T_{d_2} , MK	СМ	L	
	0,2	24	30	38	48	(60)	(75)	-	-
От 1 до 1,4	0,25	26	34	42	53	(67)	(85)	_	-
	0,3	28	36	45	56	(71)	(90)	-	_
	0,2	25	32	40	50	(63)	(80)	-	-
	0,25	28	36	45	56	(71)	(90)	-	-
Св. 1,4 до 2,8	0,35	32	40	50	63	80	(100)	-	-
	0,4	34	42	53	67	85	(106)	- '	-
	0,45	36	45	56	71	90	(112)	-	-
	0,25	28	36	45	56	(71)	-	-	-
	0,35	34	42	53	67	85	(106)	-	-
	0,5	38	48	60	75	95	(118)	-	-
Св. 2,8 до 5,6	0,6	42	53	67	85	106	(132)	-	-
	0,7	45	56	71	90	112	(140)	-	-
	0,75	45	56	71	90	112	(140)	-	-
	0,8	48	60	75	95	118	150	190	236
	0,25	32	40	50	63	(80)	-	_	-
	0,35	36	45	56	71	90	-	-	_
	0,5	42	53	67	85	106	(132)		-
Св. 5,6 до 11,2	0,75	50	63	80	100	125	(160)	-	-
	1	56	71	90	112	140	180	224	280
	1,25	60	75	95	118	150	190	236	300
	1,5	67	85	106	132	170	212	265	335
	0,35	38	48	60	75	95	-	-	-
	0,5	45	56	71	90	112	(140)	-	-
	0,75	53	67	8 <i>5</i>	106	132	(170)	~	-
	1	60	75	95	118	150	190	236	300
Св. 11,2 до 22,4	1,25	67	85	106	132	170	212	265	335
	1,5	71	90	112	140	180	224	280	355
	1,75	75	95	118	150	190	236	300	375
	2	80	100	125	160	200	250	315	400
	2,5	85	106	132	170	212	265	335	425
	0,5	48	60	75	95	118	-	-	-
Св. 22,4 до 45	0,75	56	71	90	112	140	(180)	-	-
	1	63	80	100	125	160	200	250	315
	1,5	75	95	118	150	190	236	300	375

Продолжение табл. 84

				C	тепень т	очности					
Номинальный диаметр	Шаг <i>Р</i> , мм	3	4	5	6	7	8	9	10		
резьбы d , мм		Допуск (-) T_{d_2} , мкм									
Св. 22,4 до 45	2	85	106	132	170	212	265	335	425		
	3	100	125	160	200	250	315	400	500		
	3,5	106	132	170	212	265	335	425	530		
	4	112	140	180	224	280	355	450	560		
	4,5	118	150	190	236	300	375	475	600		
	0,5	50	63	80	100	125	٠	-	-		
	0,75	60	75	95	118	150	-	-	-		
	1	71	90	112	140	180	224	280	355		
	1,5	80	100	125	160	200	250	315	400		
Св. 45 до 90	2	90	112	140	180	224	280	355	450		
	3	106	132	170	212	265	335	425	530		
	4	118	150	190	236	300	375	475	600		
	5	125	160	200	250	315	400	500	630		
	5,5	132	170	212	265	335	425	530	670		
	6	140	180	224	280	355	450	560	710		
	0,75	63	80	100	125	160	-	-	-		
	1	75	95	118	150	190	-	-	-		
	1,5	85	106	132	170	212	265	335	425		
Св. 90 до 180	2	95	118	150	190	236	300	375	475		
	3	112	140	180	224	280	355	450	560		
	4	125	160	200	250	315	400	500	630		
	6	150	190	236	300	375	475	600	750		
	1,5	90	112	140	180	224	280	355	-		
	2	106	132	170	212	265	335	425	530		
Св. 180 до 355	3	125	160	200	250	315	400	500	630		
	4	140	180	224	280	355	450	560	710		
	6	160	200	250	315	400	500	630	800		
	2	112	140	180	224	280	355	450	-		
Св. 355 до 600	4	150	190	236	300	375	475	600	750		
	6	170	212	265	335	425	530	670	850		

Значения, указанные в скобках, по возможности не применять.

Продолжение табл. 84

Допу	ски	диаметра	D_2
------	-----	----------	-------

				Степень	точности	 -				
Номинальный диаметр	Шаг Р, мм	4	5	6	7	8	9			
резьбы <i>d</i> , мм		Допуск (+) $T_{\mathcal{D}_2}$, мкм								
	0,2	40	50	63	-	-	-			
От 1 до 1,4	0,25	45	56	71	-	-	-			
	0,3	48	60	75	-	-	-			
	0;2	42	53	67	-	-	-			
	0,25	48	60	75	-	-	-			
Св. 1,4 до 2,8	0,35	53	67	85	-	-	-			
	0,4	56	71	90	-	-	-			
	0,45	60	75	95	-	-	-			
	0,25	48	60	75	-	-	-			
Св. 2,8 до 5,6	0,35	56	71	9 0		-	-			
	0,5	63	80	100	125	-	-			
	0,6	71	90	112	140	-	-			
	0,7	75	95	118	150	-	-			
	0,75	75	95	118	150	-	-			
	0,8	80	100	125	160	200	250			
	0,25	53	67	85	-	-	-			
	0,35	60	75	95	-	-	<u>-</u>			
	0,5	71	90	112	140	_	-			
Св. 5,6 до 11,2	0,75	85	106	132	170	-	~			
	1	95	118	150	190	236	300			
	1,25	100	125	160	200	250	315			
	1,5	112	140	180	224	280	355			
	0,35	63	80	100	-	-	-			
	0,5	75	95	118	150	~	-			
	0,75	90	112	140	180	- !	-			
	1	110	125	160	200	250	315			
Св. 11,2 до 22,4	1,25	112	140	180	224	280	355			
	1,5	118	150	190	236	300	375			
	1,75	125	160	200	250	315	400			
	2	132	170	212	265	335	425			
	2,5	140	180	224	280	355	450			

Продолжение табл. 84

				Степень	точности						
Номинальный диаметр	Шаг <i>Р</i> ,	4	5	6	7	8	9				
резьбы d , мм		Допуск $(+)T_{D_2}$, мкм									
	0,5	80	100	125	-	-	-				
	0,75	95	118	150	190	-	~				
	1	106	132	170	212	265	335				
	1,5	125	160	200	250	315	400				
Св. 22,4 до 45	2	140	180	224	280	355	450				
	3	170	212	265	335	425	530				
	3,5	180	224	280	355	450	560				
	4	190	236	300	375	475	600				
	4,5	200	250	315	400	500	630				
	0,5	85	106	132	-	-	-				
	0,75	100	125	160	~	-	-				
	1	118	150	190	236	300	375				
	1,5	132	170	212	265	335	425				
	2	150 ·	190	236	300	375	475				
Св. 45 до 90	3	180	224	280	355	450	560				
	4	200	250	315	400	500	630				
	5	212	265	335	425	530	670				
	5,5	224	280	355	450	560	710				
	6	236	300	375	475	600	750				
	0,75	106	132	170	-	-	_				
	1	125	160	200	250	_	-				
	1,5	140	180	224	280	355	450				
Св. 90 до 180	2	160	200	250	315	400	500				
	3	190	236	300	375	475	600				
	4	212	265	335	425	530	670				
	6	250	315	400	500	630	800				
	1,5	150	190	236	300	375	-				
	2	180	224	280	355	450	560				
Св. 180 до 355	3	212	265	335	425	530	670				
	4	236	300	375	475	600	750				
	6	265	335	425	530	670	850				
	2	190	236	300	375	475	-				
Св. 355 до 600	4	250	315	400	500	630	800				
	6	280	355	450	560	710	900				

85. Основные отклонения диаметров наружной и внугренией резьбы

		Нарух	кная резі	ба		Внугренняя резьба					
				Диам	етр резьб	ы					
		-	d; d ₂				$D_1; L$	2			
Шаг Р, мм			C	сновное	тклонен	ие, мкм	e, mkm				
- -			es			EI					
	d	e	f	g	h	Е	F	G	Н		
0,2	-	-	-32	-17	0	-	+32	+17	0		
0,25	-	-	-33	-18	0	-	+33	+18	0		
0,3	-	-	-33	-18	0	-	+33	+18	0		
0,35	-	-	-34	-19	0	-	+34	+19	0		
0,4	-	-	-34	-19	0	-	+34	+19	0		
0,45	-	-	-35	-20	0	-	+35	+20	0		
0,5	-	-50	-36	-20	0	+50	+36	+20	0		
0,6	-	-53	-36	-21	0	+53	+36	+21	0		
0,7	<u>-</u>	-56	-38	-22	0	+56	+38	+22	0		
0,75	-	-56	-38	-22	0	+56	+38	+22	0		
0,8	-	-60	-38	-24	0	+60	+38	+24	0		
1	-90	-60	-40	-26	0	+60	+40	+26	0		
1,25	-95	-63	-42	-28	0	+63	+42	+28	0		
1,5	-95	-67	-45	-32	0	+67	+45	+32	0		
1,75	-100	-71	-48	-34	0	+71	+48	+34	0		
2	-100	-71	-52	-38	0	+71	+52	+38	0		
2,5	-106	-80	-58	-42	0	+80	-	+42	0		
3	-112	-85	-63	-48	0	+85	-	+48	0		
3,5	-118	-90	-	-53	0	+90	-	+53	0		
4	-125	-95	-	-60	0	+95	-	+60	0		
4,5	-132	-100	-	-63	0	+100	-	+63	0		
5	-132	-106	-	-71	0	+106	-	+71	0		
5,5	-140	-112	-	-75	0	+112	-	+75	0		
6	-150	-118	-	-80	0	+118		+80	0		

86. Длины свинчивания (ГОСТ 16093-81)

Размеры, мм

Номинальный диаметр	lllar –	Длина	свинчивания для гру	лпы
резьбы d	P	S	N	L
От 1 до 1,4	0,2 0,25 0,3	. До 0,5 » 0,6 » 0,7	Св. 0,5 до 1,4 » 0,6 » 1,7 » 0,7 » 2	Св. 1,4 » 1,7 » 2
Св. 1,4 до 2,8	0,2 0,25 0,35 0,4 0,45	До 0,5 » 0,6 » 0,8 » 1 » 1,3	CB. 0,5 до 1,5 » 0,6 » 1,9 » 0,8 » 2,6 » 1 » 3 » 1,3 » 3,8	CB. 1,5
Св. 2,8 до 5,6	0,25 0,35 0,5 0,6 0,7 0,75 0,8	До 0,7 » 1 » 1,5 » 1,7 » 2 » 2,2 » 2,5	Св. 0,7 до 2,1 » 1 » 3 » 1,5 » 4,5 » 1,7 » 5 » 2 » 6 » 2,2 » 6,7 » 2,5 » 7,5	CB. 2,1 3 4,5 6 6 7,5
Св. 5,6 до 11,2	0,25 0,35 0,5 0,75 1 1,25 1,5	До 0,8 » 1,1 » 1,6 » 2,4 » 3 » 4 » 5	CB. 0,8 до 2,4 * 1,1 * 3,4 * 1,6 * 4,7 * 2,4 * 7,1 * 3 * 9 * 4 * 12 * 5 * 15	Cb. 2,4 * 3,4 * 4,7 * 9 * 7,1 * 12 * 15
Св. 11,2 до 22,4	0,35 0,5 0,75 1 1,25 1,5 1,75 2 2,5	До 1,3 » 1,8 » 2,8 » 3,8 » 4,5 » 5,6 » 6 » 8 » 10	Св. 1,3 до 3,8 » 1,8 » 5,5 » 2,8 » 8,3 » 3,8 » 11 » 4,5 » 13 » 5,6 » 16 » 6 » 18 » 8 » 24 » 10 » 30	CB. 3,8
Св. 22,4 до 45	0,5 0,75 1 1,5 2 3 3,5 4 4,5	До 2,1 » 3,1 » 4 » 6,3 » 8,5 » 12 » 15 » 18 » 21	Св. 2,1 до 6,3 » 3,1 » 9,5 » 4 » 12 » 6,3 » 19 » 8,5 » 25 » 12 » 36 » 15 » 45 » 18 » 53 » 21 » 63	CB. 6,3 » 9,5 » 12 » 19 » 25 » 36 » 45 » 53 » 63

Продолжение табл. 86

Номинальный диаметр	Шаг	Длина	свинчивания для груг	ппы
резьбы <i>d</i>	P	S	N	L
	0,5	До 2,4	Св. 2,4 до 7,1	Св. 7,1
	0,75	» 3,6	» 3,6 » 11	» 1 1
	1	» 4,8	» 4,8 » 14	» 14
	1,5	» 7,5	» 7,5 » 22	» 22
Св. 45 до 90	2	» 9,5	» 9,5 » 28	» 28
	3	» 15	» 15 » 45	» 45
	4	» 19	» 19 » 56	» 56
	5	> 24	» 24 » 71	» 71
	5,5	» 28	* 28 * 85	» 85
	6	» 32	» 32 » 95	» 95
	0,75	До 4,2	Св. 4,2 до 12	Св. 12
	1	» 5,6	» 5,6 » 16	» 16
	1,5	» 8,3	» 8,3 » 25	» 25
Св. 90 до 180	2	» 12	» 12 » 36	» 36
	3	» 18	» 18 » 53	» 53
	4	» 24	» 24 » 71	→ 71
	6	» 36	» 36 » 106	» 106
	1,5	До 9,5	Св. 9,5 до 28	Св. 28
	2	» 13	» 13 » 38	» 38
Св. 180 до 355	3	» 20	» 20 » 60	» 60
	4	» 26	» 26 » 80	» 80
	6	» 40	» 40 » 118	» 118
	2	До 15	Св. 15 до 45	Св. 45
Св. 355 до 600	4	» 29	» 29 » 87	» 87
	6	» 43	» 43 » 130	» 130

Форма впадины резьбы (по ГОСТ 16093-81). Реальный профиль впадины наружной резьбы ни в одной точке не должен выходить за линию плоского среза на расстоя-

нии $\frac{H}{4}$ от вершины исходного треугольника.

При закругленной форме впадины наружной резьбы радиус кривизны реального профиля ни в одной точке не должен быть менее 0,1P (рис. 4, a).

Числовые значения наименьших радиусов закругления впадины наружной резьбы (R_{\min}) должны соответствовать указанным в табл. 87.

При высоких требованиях к прочности резьбы может устанавливаться наименьший радиус кривизны реального профиля впадины наружной резьбы $R_{\min} = 0.125 P$ (табл. 87).

При плоскосрезанной форме впадины наружной резьбы реальный профиль впадины следует располагать между линиями плоского

среза на расстоянии $\frac{H}{4}$ и $\frac{H}{8}$ от вершины исходного треугольника (рис. 4, δ).

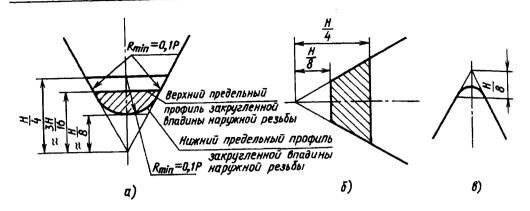


Рис. 4. Форма впадин резьбы: a - закругленная форма впадины наружной резьбы; δ - плоскосрезанная форма впадины наружной резьбы; δ - профиль впадины внутренней резьбы

Значение наименьших раднусов закругления впадины наружной резьбы

				1 dontopai, az				
Шаг Р	$R_{\min} = 0.1P$	$R_{\min} = 0.125P$	Шаг Р	$R_{\min} = 0.1P$	$R_{\min} = 0.125P$	Шаг Р	$R_{\min} = 0.1P$	$R_{\min} = 0.125P$
0,2	0,020	0,025	0,75	0,075	0,094	3,5	0,350	0,428
0,25	0,025	0,031	0,8	. 0,080	0,100			
0,3	0,030	0,038	1	0,100	0,125	4	0,400	0,500
0,35	0,035	0,044	1,25	0,125	0,156	4,5	0,450	0,562
0,4	0,040	0,050	1,5	0,150	0,188			
0,45	0,045	0,056	1,75	0,175	0,219	5	0,500	0,625
0,5	0,050	0,062	2	0,200	0,250	5,5	0,550	0,698
0,6	0,060	0,075	2,5	0,250	0,312	6	0,600	0,750
0.7	0.070	0,088	3	0,300	0,375	III		

Размеры, мм

Реальный профиль впадины внутренней резьбы ни в одной точке не должен выходить

за линию плоского среза на расстоянии $\frac{H}{8}$ от вершины исходного треугольника (рис. 4, θ).

Поля допусков наружной и внутренней резьбы, установленные в классах точности (точный, средний и грубый), должны соответствовать указанным в табл. 88.

Поля допусков, заключенные в рамки, следует применять предпочтительно.

Применение полей допусков, заключенных в скобки, следует по возможности ограничить.

При длинах свинчивания S и L допускается применять поля допусков, установленные для длин свинчивания N.

В обоснованных случаях допускается применять поля допусков резьбы, образованные

99	Поля	HORIVOTOR	COCT	16093-81)
88.	110713	AUDITORUS	11001	TABACANT

	Длина свинчивания												
Класс точности					N					L			
		Поле допуска наружной резьбы											
Точный		(3h4h)				4g	4h			(5h4h)			
Средний	5g6g	(5h6h)	6d	6e	6f	6g	6h	(7e6e)	7g6g	(7h6h)			
Грубый						8g	(8h)*		(9g8g)				

^{*} Только для резьбы с шагом $P \ge 0.8$ мм. Для резьбы с шагом P < 0.8 мм применяется поле допуска 8h6h.

	Длина свинчивания										
Класс точности	S	Λ	v	L							
	Поле допуска внутренней резьбы										
Точный		4H		4 H5H 5 H		6H					
Средний	(5G)	5H	6G	6H	(7G)	7H					
Грубый			7G	7 H	(8G)	8Н					

иными сочетаниями полей допусков среднего диаметра и диаметров выступов резьбы из числа приведенных в табл. 88, например:

для наружной резьбы - 4h6h; 8h6h; для внутренней резьбы - 5H6H.

Поля допусков наружной и внутренней резьбы, указанные в табл. 88, являются ограничительным отбором из всей совокупности полей допусков, которые могут быть получены различным сочетанием степеней точности и основных отклонений по табл. 83.

Поля допусков, не указанные в табл. 88, являются специальными. Их применение допускается в технически и экономически обоснованных случаях, если поля допусков по табл. 88 не могут обеспечить требования, предъявляемые к изделию.

В посадках допускаются любые сочетания полей допусков наружной и внутренней резьбы, установленных настоящим стандартом.

Предпочтительнее сочетать поля допусков одного класса точности.

Предельные отклонения для резьбы с защитными покрытиями. Предельные отклонения резьбы до нанесения защитного покрытия должны соответствовать настоящему стандарту, если применяемые толщины покрытий не требуют больших величин основных отклонений.

Если заданы предельные отклонения размеров резьбы до нанесения покрытия и нет других указаний, то размеры резьбы после нанесения покрытия не должны выходить за пределы, определяемые номинальным профилем резьбы и соответствующие основным отклонениям h и H.

Кл. 2

Кл. 2а

Кл. 3

Кл. 3Х

89. Замена допусков резьб

Болгы	
Поле допуска по ранее действовавшим стандартам	Поле допуска по ГОСТ 16093-81
Кл. 1 Кл. 2 Кл. 2а Кл. 3	4h 6g 6g 8g
Кл. 2аД Кл. 3Л } ГОСТ 10191-62	6g 6g
Гайки	
Поле допуска по ранее действовавшим стандартам	Поле допуска по ГОСТ 16093-81
К л. 1)	4H5H

МЕТРИЧЕСКАЯ КОНИЧЕСКАЯ РЕЗЬБА (по ГОСТ 25229-82)

ΓΟCT 9253-59

ГОСТ 10191-62

6H

6H

7**H**

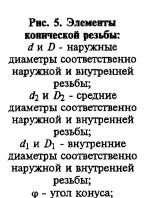
6G

Метрическая коническая резьба с конусностью 1:16 применяется для конических резьбовых соединений, а также в соединениях наружной конической резьбы с внутренней цилиндрической резьбой с профилем по ГОСТ 9150-81.

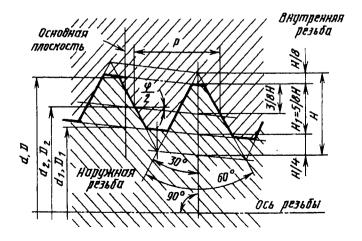
Профиль внутренней цилиндрической резьбы, соединяемой с наружной конической, должен иметь плоскосрезанную впадину.

Примечание. При отсутствии особых требований к плотности или при применении уплотнителей для достижения герметичности резьбового соединения форма впадины конической (наружной и внутренней) и цилиндрической (внутренней) резьбы не регламентируется.

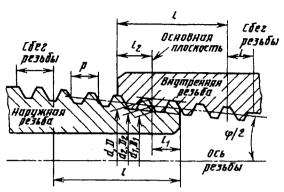
Профиль метрической конической резьбы (наружной и внутренней) приведен на рис. 5.


Диаметры, шаги, номинальные значения наружного, среднего и внутреннего диаметров внутренней цилиндрической резьбы должны соответствовать указанным на рис. 6 и в табл. 90.

Внутренняя цилиндрическая резьба должна обеспечивать ввинчивание наружной конической резьбы на глубину не менее 0.8ℓ .


Длина сквозной внутренней цилиндрической резьбы должна быть не менее величины $0.8(\ell_1 + \ell_2)$.

Обозначение резьбы должно состоять из букв МК (для конической резьбы) или М (для внутренней цилиндрической резьбы), номинального диаметра, шага и номера стандарта (для внутренней цилиндрической резьбы), например:


MK20 × 1,5; M20 × 1,5 FOCT 25229-82.

φ/2 - угол уклона; P - шаг резьбы; H - высота исходного треугольника

90. Диаметры, шаги и основные размеры конической (наружной и внутренней) резьбы, мм

 ℓ - рабочая длина резьбы; ℓ_1 - длина наружной резьбы от торца до основной плоскости; ℓ_2 - длина внутренней резьбы от торца до основной плоскости

Диаметр	резьбы	P		резьбы в ос плоскости	сновной	Дл	ина резьбы	[
1-й ряд	2-й ряд	:	d = D	$d_1 = D_1$	$d_2 = D_2$	l .	ℓ_1	<i>l</i> ₂
6 8 10	-	1	6,000 8,000 10,000	5,350 7,350 9,350	4,917 6,917 8,917	8	2,5	3
12 16	14	1,5	12,000 14,000 16,000 18,000	11,026 13,026 15,026 17,026	10,376 12,376 14,376 16,376	11	3,5	4
20 24	22	1,3	20,000 22,000 24,000	19,026 21,026 23,026	18,376 20,376 22,376			
30	27		27,000 30,000 33,000	25,701 28,701 31,701	24,835 27,835 30,835			
36	39		36,000 39,000 42,000	34,701 37,701 40,701	33,835 36,835 39,835	16	5	6
42 48	45	2	42,000 45,000 48,000	43,701	42,835 45,835			
56	52		52,000 56,000	50,701 54,701	49,835 53,835 57,835			
	60		60,000	58,701	37,833	<u> </u>		

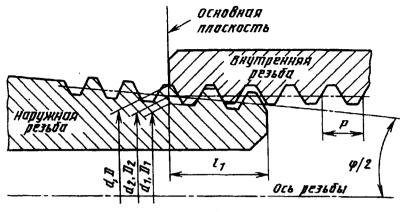


Рис. 6

Для левой резьбы после условного обозначения шага ставят буквы LH, например:

 $MK20 \times 1.5LH$;

 $M20 \times 1,5LH \ FOCT \ 25229-82.$

Обозначение конического резьбового соединения соответствует принятому для конической резьбы.

Соединение внутренней цилиндрической резьбы с наружной конической резьбой должно обозначаться дробью М/МК, номинальным диаметром, шагом и номером стандарта, например:

 $M/MK20 \times 1,5 \text{ FOCT } 25229-82;$

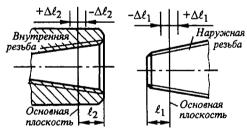
 $M/M20 \times 1.5 H \Gamma OCT 25229-82.$

Для внутренней цилиндрической резьбы, выполненной в соответствии с примечанием на с. 598, и в соединениях ее с наружной конической резьбой в обозначении номер стандарта не указывать.

Допуски. Осевое смещение основной плоскости $\Delta \ell_1$ наружной и $\Delta \ell_2$ внутренней резьбы (см. эскиз табл. 91) относительно номинального расположения не должно превышать величин, указанных в табл. 91.

Смещение основной плоскости является суммарным, включающим в себя отклонения среднего диаметра, шага, угла наклона боковой стороны профиля и угла конуса.

Предельные отклонения среза вершин и впадин (размеров $\frac{H}{8}$ и $\frac{H}{4}$), угла наклона

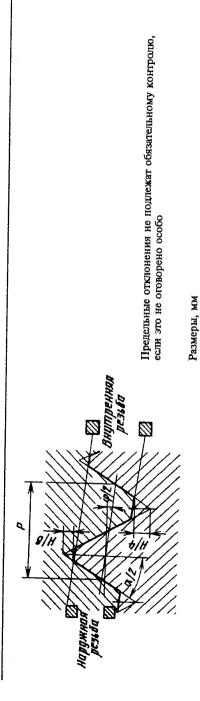

боковой стороны профиля $\frac{\alpha}{2}$, шага резьбы P и угла конуса ϕ (разность средних диаметров

на длине $\ell_1 + \ell_2$) должны соответствовать указанным в табл. 92.

Предельные отклонения внутреннего диаметра и среза впадин внутренней цилиндрической резьбы (размеры D_1 и $\frac{H}{8}$) приведены в табл. 93.

91. Осевое смещение основной плоскости $\Delta \ell_1$ наружной и $\Delta \ell_2$ внутренней резьбы

Размеры, мм



В основной плоскости средний диаметр имеет номинальное значение.

Номинальный диаметр резьбы d	P	$\Delta \ell_1$	$\Delta \ell_2$
От 6 до 10	1	±0,9	±1,2
Св. 10 до 24	1,5	±1,1	±1,5
» 24 » 60	2	±1,4	±1,8

Предельные отклонения $\Delta \ell_1$ и $\Delta \ell_2$ не распространяются на резьбы с длинами, меньшими указанных в табл. 90.

угла наклона боковой стороны профиля $\frac{\alpha}{2}$, P и угла конуса ϕ

-				Пределы	Предельные отклонения	ИЯ			Разност	средних диаметро на длине $\ell_1 + \ell_2$	Разность средних диаметров резьбы на длине $\ell_1 + \ell_2$
Номинальный диаметр	ď		$\frac{H}{8}$		H 4	5 α	шага <i>Р</i> на длине	шага <i>Р</i> а длине	Номи-	Предельн	Предельные отклонения резьбы
резьбы d		наружной	внутренней наружной внутренней	наружной	внутренней		$\ell_1 + \ell_2$	7		наружной	внутренней
От 6 до 10	-1	+0,032	±0,030	+0,050 +0,015	€0,0±				0,344	+0,038	+0,019
Св. 10 до 24	1,5	+0,048	±0,040	+0,065 +0,020	±0,04	±42.	±0,04	±0,07	0,469	+0,052	+0,026
* 24 * 60	2	+0,064	±0,050	+0,085	±0,05				0,688	+0,077	+0,038

BBJ i pena	са цаландра тесков	резвов,			
Bugmpegung / Bugmp			Пред	ельные откл	онения
	Номинальный диаметр	P	<u>H</u> 8	D	1
10 10 10 10 10 10 10 10 10 10 10 10 10 1	резьбы		8	верхнее	нижнее
D - наружный диаметр внутренней					
резьбы; D_1 - внутренний диаметр	От 6 до 10	1	±0,03	+0,12	0
внутренней резьбы; D_2 - средний					
диаметр внутренней резьбы;					:
Предельные отклонения размера	Св. 10 до 24	1,5	±0,04	+0,15	0
Н не подлежат обязательному					
контролю, если это не оговорено	» 24 » 60	2	±0,05	+0,19	0
особо					

93. Предельные отклонения внутреннего диаметра и среза впадин внутренней пилиндрической резьбы, мм

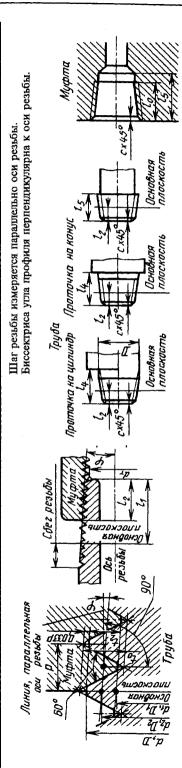
КОНИЧЕСКАЯ ДЮЙМОВАЯ РЕЗЬБА С УГЛОМ ПРОФИЛЯ 60 ° (по ГОСТ 6111-52* в ред. 1997 г.)

Стандарт распространяется на резьбовые соединения тогливных, масляных, водяных и воздушных трубопроводов машин и станков.

Примечание.

В трубопроводах из стальных водогазопроводных труб по ГОСТ 3262-75

соединения с конической резьбой должны выполняться по ГОСТ 6211-81.


Профиль и размеры конической дюймовой резьбы с углом профиля 60° должны соответствовать приведенным в табл. 94.

Отклонение расстояний вершин и впадин резьбы трубы и муфты от линии среднего диаметра резьбы (δh_1 и δh_2) не должны превышать указанных в табл. 94а.

94а. Отклонение расстояний вершин и впадин резьбы трубы и муфты от линии среднего диаметра резьбы

0,033P	Обозначение	$h_1 = h_2 = 1/2H_1$	$\delta h_1 = \delta h_2$
<u>h</u> ,	размера резьбы	мм	
h ₂	1/16 и 1/8"	0,3765	-0,045
	1/4 и 3/8"	0,5645	-0,065
0,033P	1/2 и 3/4"	0,7255	-0,085
1	1 - 2"	0,8835	-0,085

94. Размеры конической дюймовой резьбы с углом профиля 60°, мм (ГОСТ 6111-52*)

 $t_0 = 0,866P$; $t_2 = 0,8P$; $\varphi = 1 \circ 47'24$ "Kohychocts 2tg $\varphi = 1:16$

		ي ا	_ ا	~	7
æ	q	равоз	6,3	8,7	11,2
Муфта	70 чая сбег)	жовъфию виду	01	11	15
	57		13	14	70
	О		8,05	10,42	13,85
Tpy6a	v		1	-	1,5
Tp	⁽ 4, не менес		10,5	11,0	15,5
	45		8	8,5	12
	Рабо- чая высота витка t ₂		0,753	0,753	1,129
	Внут- ренний диаметр резъбы у торца трубы d _т		6,135	8,480	10,977
бы в жости	внут- рен- ний d ₁ ,	6,389	8,766	11,314	
Диаметр резьбы в основной плоскости	на- руж- ный д,		7,895	9,519 10,272	12,443 13,572 11,314
Диам	сред- ний <i>ф</i> 2, <i>D</i> 2		7,142	9,519	12,443
Длина резъбы	от торца трубы до основной плоскости	4,064	4,572	5,080	
Или	рабо- чая г,1	6,5	7,0	5,6	
	Шаг резь- бы <i>P</i>		0,941	0,941	1,411
	Число шагов на 1"		27	27	18
80	Обозначение разме <u>г</u> Безьбы		1/16"	1/8"	1/4"

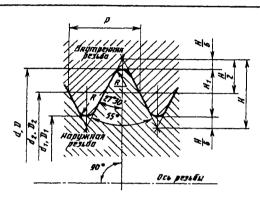
Продолжение табл. 94

ed			ищ	на резьбы	Диам	Диаметр резьбы в основной плоскости	бы в жости				Труба	Ća			Муфта	
Обозначение размер кадаеэq	Число шагов на 1'	Шаг резь- бы <i>Р</i>	рабо- чая 41	от торца трубы до основной плоскости	сред- ний <i>d</i> э, <i>D</i> 2	на- руж- ный д, D	внут- рен- ний <i>d</i> 1, <i>D</i> 1	Внут- ренний диаметр резъбы у горца грубы d _т	Рабо- чая высота витка t ₂	ls &	² 4, не менее	v	Q	65	40 чая сбег)	p
															для оправок	авок
3/8"	18	1,411	10,5	960'9	15,926	15,926 17,055 14,797	14,797	14,416	1,129	13	16,5	1,5	17,33	21	16	14,7
1/2"	4.	1,814	13,5	8,128	19,772	21,223	18,321	17,813	1,451	16,5	21,0	1,5	21,56 26,5	26,5	21	18,25
3/4"	14	1,814	14,0	8,611	25,117	26,568	23,666	23,128	1,451	17	21,5	1,5	26,91 26,5	26,5	21	23,5
t	111/2	2,209	17,5	10,160	31,461	33,228 29,694	29,694	29,059	1,767	21,5	26,5	2,0	33,69 33,5	33,5	26	29,6
1 1/4"	111/2	2,209	18,0	10,668	40,218	41,985	38,451	37,784	1,767	22	27,0	2,0	42,44 34,5	34,5	27	28,5
1 1/2"	111/2	2,209	18,5	10,688	46,287	48,054	44,520	43,853	1,767	22,5	27,5	2,0	48,54 34,5	34,5	27	44,5

Примечания: 1. При свинчивании без нагига трубы и муфты с номинальными размерами резьбы основная плоскость резьбы трубы совпадает с торцом муфты.

- 2. Размер ф. справочный
- Вместо резьбы 1/16" допускается применять резьбу М6 × 1 коническую ГОСТ 19853-74.
 - 4. Число шагов с полным профилем в резьбовом сопряжении не должно быть менее двух.
- 5. Допускается уменьшать размер 42 (расстояние от основной плоскости до торца трубы), при этом должна быть собподена разность pasmepos ℓ_1 - ℓ_2 .

Пример обозначения конической дюймовой резьбы 3/8 ": K 3/8 " ГОСТ 6111-52.


ТРУБНАЯ ЦИЛИНДРИЧЕСКАЯ РЕЗЬБА (по ГОСТ 6357-81)

Стандарт распространяется на трубную цилиндрическую резьбу, применяемую в цилиндрических резьбовых соединениях, а также в соединениях внутренней цилиндрической резьбы с наружной конической резьбой по ГОСТ 6211-81.

Допуски трубной пилиидрической резьбы (по ГОСТ 6357-81)

Допуски среднего диаметра резьбы устанавливают двух классов точности - А и В. Допуски среднего диаметра резьбы являются суммарными. Допуски диаметров d_1 и D не устанавливаются.

95. Размеры трубной цилиндрической резьбы

H - высота исходного треугольника;

 H_1 - рабочая высота профиля; R - радиус закругления вершины и

 к - радиус закругления вершины і впадины резьбы.

H = 0.960491P;

 $H_1 = 0,640327P$;

 $\frac{H}{\epsilon} = 0,160082P;$

R = 0.137329P

					Разме	ры, мм				
	ачение ьбы	08 Z HB	Шаг	Дия	іметр рез	ьбы	Рабочая высота	Радиус		<u>H</u> 6
1-й ряд	2-й ряд	Число шагов плине 25,4,	P	наруж- ный d = D	сред- ний $d_2 = D_2$	внут- ренний $d_1 = D_1$	профи- ля <i>H</i> _l	закрут- ления <i>R</i>	H	6
1/16"		20	0.007	7,723	7,142	6,561	0.600777	0.104557	0.001165	0.145104
1/8"	-	28	0,907	9,728	9,147	8,566	0,380///	0,124337	0,871165	0,145194
1/4 "				13,157	12,301	11,445	0.056117	0.102602	1 004156	0.014000
3/8"	-	19	1,337	16,662	15,806	14,950	0,856117	0,183603	1,284176	0,214029
1/2 " - 3/4 "	- 5/8" - 7/8"	14	1,814	20,955 22,911 26,441 30,201	19,793 21,749 25,279 29,039	18,631 20,587 24,117 27,877	1,161553	0,249115	1,742331	0,290389
1" - 11/4" - 11/2" - 2"	11/8" - 13/8" - 13/4" - 21/4"	11	2,309	33,249 37,897 41,910 44,323 47,803 53,746 59,614 65,710	31,770 36,418 40,431 42,844 46,324 52,267 58,135 64,231	30,291 34,939 38,952 41,365 44,845 50,788 56,656 62,752	1,478515	0,317093	2,217774	0,369629

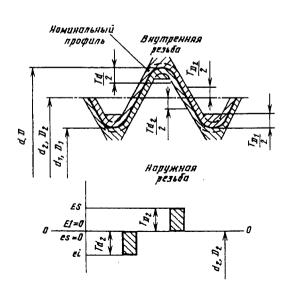
Продолжение табл. 95

	ачение ьбы	гов 2 на ,4, мм	Шаг	Диа	метр рез	ьбы	Рабочая высота	Радиус		Н
1-й ряд	2-й ряд	Число шаг длине 25,	P	наруж- ный d = D	сред- ний d ₂ = D ₂	внут- ренний $d_1 = D_1$	профи- ля <i>H</i> _l	закруг- ления <i>R</i>	H	<u>H</u> 6
21/2"	-			75,184	73,705	72,226				
_	2 3/4"	11	2,309	81,534	80,055	78,576	1,478515	0,317093	2,217774	0,369629
3"	-		1	87,884	86,405	84,926				
-	3 1/4"			93,980	92,501	91,022				
3 1/2 "	-			100,330	98,851	97,372			İ	
-	3 3/4"		ļ	106,680	105,201	103,722				
4"	-			133,030	111,551	110,072				
-	4 1/2"			125,730	124,251	122,772				
5 "	-			138,430	136,951	135,472				
-	51/2"			151,130	149,651	148,172				
6"	-			163,830	162,351	160,872				

При выборе размеров резьб 1-й ряд следует предпочитать 2-му.

Отклонения отсчитывают от номинального профиля резьбы в направлении, перпендикулярном к оси резьбы.

Допуски среднего диаметра внутренней резьбы, предназначенной для соединения с наружной конической резьбой по ГОСТ 6211—81, должны соответствовать классу точности А. При этом конструкция деталей с внутренней цилиндрической резьбой должна обеспечивать ввинчивание наружной конической резьбы на глубину не менее указанной в


ГОСТ 6211—81. Положения полей допусков резьбы приведены на рис. 7.

Допуск резьбы, если нет особых оговорок, относится к наибольшей нормальной длине свинчивания N, указанной в таблице, или ко всей длине резьбы, если она меньше наибольшей нормальной длины свинчивания.

В условное обозначение трубной цилиндрической резьбы должны входить:

буква G, обозначение размера резьбы и класс точности среднего диаметра.

Рис. 7. Положения полей допусков трубной циливдрической резьбы: еѕ и Eѕ - верхние отклонения диаметров соответственно наружной и внутренней резьбы; еі и EI - нижние отклонения диаметров наружной и внутренней резьбы; T_d , T_{d_2} , T_{D_1} , T_{D_2} - допуски диаметров d, d_2 , D_1 , D_2

96. Длины свинчивания (по ГОСТ 6357-81) Длины свинчивания подразделяют на две группы: нормальные N и длинные L Размеры, мм

Обозна- чение	Шаг	Длина свинч	ивания	Обозна- чение	Шаг	Длина свинч	кинвания
размера резьбы	P	N	L	размера резьбы	P	N	L
1/16"	0,907	Св. 40 до 12	Св. 12	2"			
1/8"				2 1/4"		•	
1/4 "	1,337	Св. 5 до 16	Св. 16	2 1/2"	2,309	Св. 12 до 36	Св. 36
3/8"				23/4"			
1/2"				3"			
5/8"	1,814	Св. 7 до 22	Св. 22	3 1/4 "			
3/4 "	1,01.			3 1/2"			
7/8"				3 3/4"			
1"				4"	2,309	Св. 13 до 40	Св. 40
1 1/8 "	2,309	Св. 10 до 30	Св. 30	4 1/2"			
1 1/4 "	2,307			5"			
1 3/8 "				51/2"			
1 1/2 "	2,309	Св. 12 до 36	Св. 36	6"			
1 3/4 "						<u> </u>	<u></u>

Числовые значения длин свинчивания установлены эмпирически.

97. Предельные отклонения диаметров наружной и внутренней резьбы (по ГОСТ 6357-81)

					(101)	001 000							
			H	Гаруж	ная резы	5a			Вну	тренняя	резьб	a	
Обо-	·					Диа	метри	д рез	ьбы				
зна-	Шаг	-	d		d_2		d_1	D		<i>D</i> ₂	l	D_1	
чение	P,				Γ	редельні	ые от	клоне	ния, мк	v.			
					e	i			E	S			
размера резьбы	Mit	es	ei	es	Класс А	Класс В	es	EI	Класс А	Класс В	EI	ES	EI
1/16"		0	-214	0	-107	-214	0	0	+107	+214	0	+282	0
1/10	0,907	0	-214	0	-107	-214	0	0	+107	+214	0	+282	0
1/4"	1 227	0	-250	0	-125	-250	0	0	+125	+250	0	+445	0
3/8"	1,337	0	-250	0	-125	-250	0	0	+125	+250	0	+445	0
1/2"	<u> </u>	0	-284	0	-142	-284	0	0	+142	+284	0	+541	0
5/8"	1 014	0	-284	0	-142	-284	0	0	+142	+284	0	+541	0
3/4"	1,814	0	-284	0	-142	-284	0	0	+142	+284	0	+541	0
7/8"		0	-284	0	-142	-284	0	0	+142	+284	0	+541	0

Продолжение табл. 97

		Наружная резьба						Внутренняя резьба						
Обо-		Диаметр					метр	оы резьбы						
зна-	III ar		d	d_2			d_1	D	D_2			D_1		
чение	Р,			Предельн			ые от	клонения, мкм						
размера	MM			ei				ES						
резьбы		es	ei	es	Класс А	Класс В	es	EI	Класс А	Класс В	EI	ES	EI	
1"		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
11/8"		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0.	
1 1/4"		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
1 3/8"		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
1 1/2"	2,309	0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
1 3/4"		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
2 "		0	-360	0	-180	-360	0	0	+180	+360	0	+640	0	
2 1/4"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
2 1/2"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
2 3/4"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
3 "		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
3 1/4"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
3 1/2 "		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
3 3/4"	2,309	0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
4 "	1	0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
4 1/2"	<u> </u>	0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
5"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
5 1/2"		0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	
6"	<u> </u>	0	-434	0	-217	-434	0	0	+217	+434	0	+640	0	

Нижнее отклонение внутреннего диаметра d_1 и верхнее отклонение наружного диаметра D не устанавливаются.

Условное обозначение для левой резьбы дополняется буквами LH.

Примеры условного обозначения резьбы:

класса точности А: *G 11/2-А* левой резьбы класса точности В *G 11/2LH-В*.

 $\dot{\mathcal{L}}_{\text{ЛИНА}}$ свинчивания N в обозначении резьбы не указывается.

Длина свинчивания L указывается в миллиметрах.

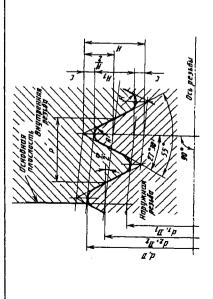
Пример: G 1 1/2LH-B-40.

Длина свинчивания

Посадка обозначается дробью, в числителе которой указывают обозначение класса точности внутренней резьбы, а в знаменателе - обозначение класса точности наружной резьбы.

Пример: *G 1 1/2-A/A*; *G 1 1/2LH-A/B*.

Соединение внутренней трубной цилиндрической резьбы класса точности А по настоящему стандарту с наружной трубной конической резьбой по ГОСТ 6211-81 обозначается следующим образом:

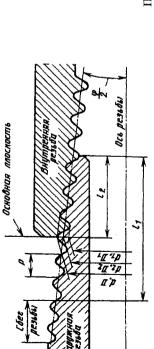

Пример:

$$\frac{G}{R}$$
 1 1/2 – A или G/R 1 1/2 – A.

TPYBHAR KOHMYECKAR PE3bBA (no FOCT 6211-81)

Стандарт распространяется на трубную коническую резьбу с конусностью 1: 16, применяемую в конических резьбовых соединениях, а также в соединениях наружной конической резьбы с внутренней ципиндрической резьбой с профилем по ГОСТ 6357-81.

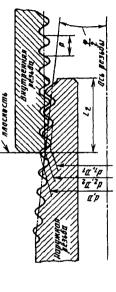
98. Профиль и основные размеры, мм, трубной конической резьбы



Конусность 2 $\lg \frac{\Phi}{2} = 1$; 16; $\varphi = 3 \circ 34$ ' 48 "; $\frac{\Phi}{2} = 1 \circ 47$ ' 24 "; $d \bowtie D$ - наружные диаметры соответственно наружной и внутренней резьбы; $d_1 \bowtie D_1$ - внутренние диаметры соответственно наружной и внутренней резьбы; $d_2 \bowtie D_2$ - средние диаметры соответственно наружной и внутренней резьбы; P - шаг резьбы; φ - угол конуса; $\varphi/2$ - угол уклона; H - высота исходного треугольника; H_1 - рабочая высота профиля; R - радиус закругления вершины и впадины резьбы; C - срез вершин и впадин резьбы;

H = 0.960237P; $H_1 = 0.640327P;$ C = 0.159955P;R = 0.137278P

OCHBBHAR



Пример обозначения резьбового соединения: трубная коническая резьба (внутрения и наружная):

$$\frac{R_c}{R}$$
 11/2; $\frac{R_c}{R}$ 11/2 LH.

$$\ell_1$$
 - рабочая длина резьбы;

 ℓ_2 - длина наружной резьбы от торца до основной плоскости

Продолжение табл. 98

Обозна-	Тисто					Диаметр	Диаметры резьбы в основной	сновной	Длина резьбы	езьбы
Шаг	патов на	H	H_1	O	×		плоскости			
Ь	длине 25,4 мм					q = p	$d_2 = D_2$	$d_1 = D_1$	41	£2
						7,723	7,142	6,561		
0,907	28	0,870935	0,580777	0,145079	0,124511	9,728	9,147	8,566	6,5	4,0
						13,157	12,301	11,445	1,6	6,0
1,337	19	1,283837	0,856117	0,213860	0,183541	16,662	15,806	14,950	10,1	6,4
						20,955	19,793	18,631	13,2	8,2
1,814	14	1,741870	1,161553	0,290158	0,249022	26,441	25,279	24,117	14,5	9,5
						33,249	31,770	30,291	16,8	10,4
						41,910	40,431	38,952	:	
						47,803	46,324	44,845	19,1	12,7
						59,614	58,135	56,656	23,4	15,9
						75,184	73,705	72,226	26,7	17,5
2,309	11	2,217187	1,478515	0,369336	0,316975	87,884	86,405	84,926	29,8	20,6
					-	100,330	98,851	97,372	31,4	22,2
						113,030	111,551	110,072	35,8	25,4
						138,430	136,951	135,472		
						163,830	162,351	160,872	40,1	28,6

99. Допуски трубной конической резьбы (по ГОСТ 6211-81)

Размеры, мм

$+\Delta_2 l_{2-1} l_1 - \Delta_2 l_2$	Обозначение	Смещение о плоскости		Предельные отклонения диаметра	
Внутрення резьба	размера резьбы	±∆ ₁ ℓ ₂	±Δ ₂ ℓ ₂	внутренней цилиндрической резьбы	
750052	1/16"				
	1/8"	0,9	1,1	±0,071	
	1/4"				
	3/8"	1,3	1,7	±0,104	
Основная 🖊	1/2"				
ππο ςκοςπ 6 - <u>ΔιΙ2 _ </u>	3/4"	1,8	2,3	±0,142	
Наружная	1 "				
резьба	1 1/4"				
	1 1/2"	2,3	2,9	±0,180	
	2"		ĺ		
	2 1/2"				
Основная	3"		3,5		
ПЛОСКОСТЬ	3 1/2"	3,5		±0,217	
imockocing	4"				
	5"				
В основной плоскости средний диа- метр имеет номинальное значение	6"				

П р и м е ч а н и е . Предельное отклонение $\Delta_1\ell_2$ и $\Delta_2\ell_2$ не распространяется на резьбы с длинами, меньшими указанных в табл. 98.

Допускается применять более короткие длины резьб.

Разность действительных размеров ℓ_1 - ℓ_2 должна быть не менее разности номинальных размеров ℓ_1 и ℓ_2 , указанных в табл. 98.

Осевое смещение основной плоскости $\Delta_1\ell_2$ наружной и $\Delta_2\ell_2$ внутренней резьбы относительно ее номинального расположения не должно превышать значений, указанных в табл. 99.

Допускается соединение наружной конической резьбы с внутренней цилиндрической резьбой класса точности А по ГОСТ 6357-81.

Длина внутренней конической резьбы должна быть не менее 0,8 (ℓ_1 - $\Delta_1\ell_2$), где $\Delta_1\ell_2$ - см. табл. 99.

Конструкция деталей с внутренней резьбой (конической и цилиндрической) должна обеспечивать ввинчивание наружной конической резьбы на глубину не менее $\ell_1 + \Delta_1 \ell_2$.

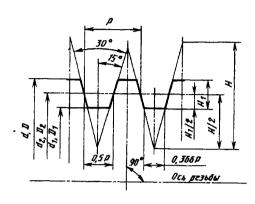
В условное обозначение резьбы должны входить буквы (R - для конической наружной резьбы; R_c - для конической внутренней резьбы; R_p - для цилиндрической внутренней резьбы) и обозначение размера резьбы.

Условное обозначение для левой резьбь допускается буквами LH.

Примеры обозначения резьбы внутренняя трубная резьба:

Rc 1 1/2; Rp 1 1/2;

левая резьба:

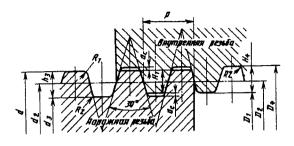

R 1 1/2LH; R_c 1 1/2LH; R_p 1 1/2LH.

ТРАПЕЦЕИДАЛЬНАЯ РЕЗЬБА (по ГОСТ 9484-81)

100. Профили и размеры резьбы

Размеры, мм

Основной профиль наружной и внутренней резьбы



d - наружный диаметр резьбы (винта); D - наружный диаметр внутренней резьбы (гайки); d_2 - средний диаметр наружной резьбы; D_2 - средний диаметр внутренней резьбы; d_1 - внутренний диаметр наружной резьбы; D_1 - внутренний диаметр внутренней резьбы; P - шаг резьбы; P - высота исходного треугольника; P - рабочая высота профиля.

Пример условного обозначения трапецеидальной однозаходной резьбы номинальным диаметром 20 мм, шагом 4 мм и полем допуска среднего диаметра 7e: $Tr 20 \times 4 - 7e$.

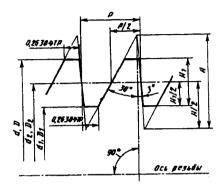
IIIar P	H = = 1,866P	$\frac{H}{2} = 0.933P$	$H_1 = -0.5P$	0,366 <i>P</i>	Шаг <i>Р</i>	H = = 1,866P	$\frac{H}{2} = 0.933P$	$H_1 = = 0,5P$	0,366 <i>P</i>
			0.85	0.510					
1,5	2,799	1,400	0,75	0,549	16	29,856	14,928	8	5,856
2	3,732	1,866	1	0,732	18	33,588	16,794	9	6,588
3	5,598	2,799	1,5	1,098	20	37,320	18,660	10	7,320
4	7,464	3,732	2	1,464	22	41,052	20,526	11	8,052
5	9,330	4,665	2,5	1,830	24	44,784	22,392	12	8,784
6	11,196	5,598	3	2,196	28	52,248	26,124	14	10,248
						ļ			
7	12.062	6 521	2.5	2.562	20	50 710	20.056		11.510
-	13,062	6,531	3,5	2,562	32	59,712	29,856	16	11,712
8	14,928	7,464	4	2,928	36	67,176	33,588	18	13,176
9	16,794	8,397	4,5	3,294	40	74,640	37,320	20	14,640
10	18,660	9,330	5	2 660	44	00 104	41.050	22	16 104
	,	,		3,660	44	82,104	41,052	22	16,104
12	22,392	11,196	6	4,392	48	89,568	44,784	24	17,568
14	26,124	13,062	7	5,124			ļ		
		<u> </u>				L	<u> </u>		

Номинальные профили наружной и внутренней резьбы

 h_3 - высота профиля наружной резьбы; H_4 - высота профиля внутренней резьбы; d_3 - внутренний диаметр наружной резьбы; D_4 - наружный диаметр внутренней резьбы; R_1 - радиус скрупления по вершине наружной резьбы; R_2 - радиус скрупления во впадине наружной и внутренней резьбы; a_c - зазор по вершине резьбы

Шаг Р	a _c	$h_3 = H_4 = 0,5P + a_c$	$R_{1 \max} = 0,5a_c$	$R_{2 \text{ max}} = a_c$	Шаг Р	a _c	$h_3 = H_4 = 0,5P + a_c$	$R_{1 \max} = $ $= 0,5a_c$	$R_{2 \text{ max}} = a_c$
1,5	0,15	0,9	0,075	0,15					
2	0,25	1,25	0,125	0,25	16	1	9	0,5	1
3	0,25	1,75	0,125	0,25	18	1	10	0,5	1
4	0,25	2,25	0,125	0,25	20	1	11	0,5	1
5	0,25	2,75	0,125	0,25	ļ				
6	0,5	3,5	0,25	0,5	22	1	12	0,5	1
$\frac{3}{7}$	0,5	4	0,25	0,5	24	1	13	0,5	1
8	0,5	4,5	0,25	0,5	28	1	15	0,5	1
		1	0,25	0,5			 		
9	0,5	5			32	1	17	0,5	1
10	0,5	5,5	0,25	0,5	li	1	19	0,5	1
12	0,5	6,5	0,25	0,5	36	1			_
14	1 _	8	0,5	1	40	1	21	0,5	1

Диаметры и шаги трапецеидальной резьбы по ГОСТ 24737-81

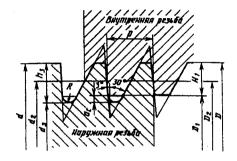

•		•				
Номинальный диаметр <i>d</i>	14	16; 18; 20	22; 24; 26; 28	30; 32; 34; 36	38; 40; 42	44
Шаг Р	2; 3	2; 4	2; 3; 5; 8	3; 6; 10	3; 6; 7; 10	3; 7; 8; 12
Номинальный диаметр d	46; 48	; 50; 52	55; 60	65; 70; 75; 80	85; 90; 95	100; 110
IIIar P	3; 8	3; 10	3; 8; 9; 12; 14	4; 10; 16	4; 5; 12; 18; 20	4; 5; 12; 20

ГОСТ предусматривает также диаметры резьбы до 640 и шаги до 24 мм.

УПОРНАЯ РЕЗЬБА (по ГОСТ 10177-82)

101. Профили и основные размеры резьбы, мм

Основной профиль, общий для наружной и внугренней резьбы


d и D - наружные диаметры соответственно наружной резьбы (винта) и внутренней резьбы (гайки); d_1 и D_1 - внутренние диаметры соответственно наружной и внутренней резьбы;

 d_2 и D_2 - средние диаметры соответственно наружной и внутренней резьбы;

Р - шаг резьбы;

H - высота исходного треугольника; H_1 - рабочая высота профиля

Номинальные профили наружной и внутренней резьбы

 d_3 - внутренний диаметр наружной резьбы; h_3 - высота профиля наружной резьбы; a_c - зазор по вершине резьбы; R - радиус закругления по впадине наружной резьбы

Размеры, мм

IIIar P	H = = 1,587911P	$\frac{H}{2}$ = 0,793956 <i>P</i>	$H_1 = -0.75P$	0,263841 <i>P</i>	$a_c = -0.117767P$	$h_3 = H_1 + a_c = 0.867767P$	R = 0,124271P
2	3,176	1,588	1,50	0,528	0,236	1,736	0,249
3	4,764	2,382	2,25	0,792	0,353	2,603	0,373
4	6,352	3,176	3,00	1,055	0,471	3,471	0,497
5	7,940	3,970	3,75	1,319	0,589	4,339	0,621
6	9,527	4,764	4,50	1,583	0,707	5,207	0,746
7	11,115	5,558	5,25	1,847	0,824	6,074	0,870
8	12,703	6,352	6,00	2,111	0,942	6,942	0,994
9	14,291	7,146	6,75	2,375	1,060	7,810	1,118
10	15,879	7,940	7,50	2,638	1,178	8,678	1,243
12	19,055	9,527	9,00	3,166	1,413	10,413	1,491

Продолжение табл. 101

Шаг Р	H = = 1,587911P	$\frac{H}{2}$ = -0,793956 <i>P</i>	$H_1 = -0.75P$	0,263841 <i>P</i>	$a_c = -0.117767P$	$h_3 = H_1 + a_c = 0.867767P$	R = 0,124271P
14	22,231	11,115	10,50	3,694	1,649	12,149	1,740
16	25,407	12,703	12,00	4,221	1,884	13,884	1,988
18	28,582	14,291	13,50	4,749	2,120	15,620	2,237
20	31,758	15,879	15,00	5,277	2,355	17,355	2,485
22	34,934	17,467	16,50	5,804	2,591	19,091	2,784
24	38,110	19,055	18,00	6,332	2,826	20,826	2,982
28	44,462	22,231	21,00	7,388	3,297	24,297	3,480
32	50,813	25,407	24,00	8,443	3,769	27,769	3,977
36	57,165	28,582	27,00	9,498	4,240	31,240	4,474
40	63,516	31,758	30,00	10,554	4,711	34,711	4,971
44	69,868	34,934	33,00	11,609	5,182	38,182	5,468
48	76,220	38,110	36,00	12,664	5,653	41,653	5,965

Значения диаметров (табл. 102) вычислены по следующим формулам:

$$d_2 = D_2 = d - 0.75P;$$

$$d_3 = d - 2h_3 = d - 1.735534P;$$

$$D_1 = d - 2H_1 = d - 1.5P.$$

В условное обозначение упорной резьбы должны входить: буква S, номинальный диаметр и шаг, например:

$$580 \times 10$$
.

Для левой резьбы после условного обозначения размера резьбы указывают буквы LH, например:

$$S80 \times 10$$
LH.

В условное обозначение многозаходной резьбы должны входить: буква S, номинальный диаметр, значение хода и в скобках буква P и значение шага, например:

для двухзаходовой резьбы с шагом 10 мм и значением хода 20 мм:

$$580 \times 20 \ (P10);$$

то же для левой резьбы:

$$S80 \times 20 \ (P10) \ LH.$$

102. Диаметры резьб в зависимости от шага (по ГОСТ 10177-82)

	MOM			Диаметр резьбы, мм	зэьбы, мм			Диаметр резьбы, мм	зъбы, мм	
трен- наружный $d = D$	внутрен- наружный D_1 $d=D$	наружный $d = D$	1_	c редний $d_2 = D_2$	внутрен- ний <i>d</i> 3	внутрен- ний D_1	наружный $d = D$	c редний $d_2=D_2$	внутрен- ний <i>d</i> 3	внугрен- ний D_1
			4	p = 4	4 MM			3 = d	8 MM	
7 65*	 	* 59		62,000	58,058	59	22*	16,000	8,116	10
9 70		70		67,000	63,058	64	24	18,000	10,116	12
11 80	-	80		77,000	73,058	74	56 *	20,000	12,116	14
13 100	=	100		92,000	93,058	94	28	22,000	14,116	16
15	15		•	P = f	5 NEW		4	38,000	30,116	32
17 22*		22*		18,250	13,322	14,5	20 *	44,000	36,116	38
19 24		24		20,250	15,322	16,5	\$5\$	49,000	41,116	43
21 26*		26*		22,250	17,322	18,5	09	54,000	46,116	48
23 28		28		24,250	19,322	20,5	160	154,000	146,116	148
25 90		8		86,250	81,322	82,5	180	174,000	166,116	168
100	100	100		96,250	91,322	92,5		P=1	10 MM	_
25,5 110*	25,5 110*	110*		106,250	101,322	102,5	30*	22,500	12,645	15
5,7;	27,5		•	P = 4	9 MM	. ,	32	24,500	14,645	17
31,5 30*	31,5 30*	30*		25,500	19,587	21	36	28,500	18,645	21
32,5 32	35,5 32	32		27,500	21,587	23	4	32,500	22,645	25
39,5 36	39,5 36	36		31,500	25,587	27	70	62,500	52,645	55
15,5 40	45,5 40	40		35,500	29,587	31	08	72,500	62,645	65
50,5 120	50,5 120	120		115,500	109,587	111	700	192,500	182,645	185
55,5 140		140		135,500	129,587	131	220	212,500	262,645	205
160	160	160		155,500	149,587	151		-		

Продолжение табл. 102

	Диаметр резьбы,	езьбы, мм			Диаметр резьбы, мм	езьбы, мм			Диаметр резьбы, мм	зъбы, мм	
наружный $d = D$	c редний $d_2=D_2$	внугрен- ний <i>d</i> 3	внутрен- ний $D_{ m l}$	наружный $d=D$	c редний $d_2=D_2$	внутрен- ний <i>d</i> з	внугрен- ний D_1	наружный $d=D$	c редний $d_1 = D_2$	внутрен- ний d ₃	внутрен- ний $D_{ m l}$
	P = 12	12 MM			P=20 MM	70 MM			P=32 MM	2 MM	
44	35,000	23,174	792	85*	70,000	50,289	55	180	156,000	124,463	132
*05	41,000	29,174	32	06	75,000	55,289	09	700	176,000	144,463	152
\$2\$	46,000		37	100	85,000	62,289	70	220	196,000	164,463	172
09	51,000	39,174	42	110*	95,000	75,289	80				
96	81,000	69,174	72	180	165,000	145,289	150		P=4	40 MM	
100	91,000	79,174	82	200	185,000	165,289	170	250*	220,000	180,578	190
110*	101,000	89,174	92	220	205,000	185,289	190	270	240,000	200,578	210
250*	241,000	229,174	232	\$095	545,000	525,289	230	280	250,000	210,578	220
280	271,000	259,174	262	280	565,000	545,289	550	300	270,000	230,578	240
320*	311,000	299,174	302		P=24 MM	7 MM		_			
360*	351,000	339,174	342	120	102,000	78,347	84	•	P = 4	48 MM	
400*	391,000	379,174	382	140	122,000	98,347	104	320*	284,000	236,694	248
	<i>p</i> == <i>d</i>	P=16 MM		160	142,000	118,347	124	360*	324,000	276,694	288
59	53,000	37,231	46	250	232,000	208,347	214	380	344,000	296,694	308
70	28,000	42,231	46	280	262,000	238,347	244	400*	364,000	316,694	328
80	000'89	52,231	99	* 009	582,000	558,347	564				
120	108,000	92,231	96	620	602,000	578,347	584			•	
140	128,000	112,231	116	640*	622,000	598,347	604				
160	148,000	132,231	136								
200	488,000	472,231	476								

Второй ряд диаметров.
 Первый ряд спедует предпочитать второму.

РЕЗЬБА МЕТРИЧЕСКАЯ ДЛЯ ДЕТАЛЕЙ ИЗ ПЛАСТМАСС (ГОСТ 11709-81)

Стандарт распространяется на метрическую резьбу диаметром от 1 до 180 мм для деталей из пластмасс, соединенных с пластмассовыми и металлическими деталями, и устанавливает профиль, основные размеры, допуски и предельные отклонения размеров такой резьбы (см. табл. 105).

Номинальный профиль резьбы и размеры его элементов - по ГОСТ 9150-81.

Форма впадины резьбы - по ГОСТ 16093-81.

На выступах наружной и внутренней резьбы допускается закругление кромок радиусом R_1 в соответствии с табл. 103.

Диаметры и шаги резьбы - по ГОСТ 8724—81.

Не допускается применять: мелкие шаги для диаметров < 4 мм; шаг 0,5 для диаметров > 16 мм; шаг 0,75 мм для диаметров > 18 мм; шаг 1 мм для диаметров > 36 мм.

Основные размеры резьбы - по ГОСТ 24705—81.

Длина свинчивания резьб - по ГОСТ 16093—81.

Допускается для диаметров от 3 до 8 мм применять особо крупные шаги.

Основные положения системы допусков, обозначения полей допусков, числовые значения допусков и основных отклонений для размеров резьб - по ГОСТ 16093-81.

Для металинческих деталей, сопрягаемых с деталями из пластмасс, поля допусков резьбы - по ГОСТ 16093—81.

В обоснованных случаях, если поля допусков по табл. 104 не обеспечивают предъявляемых к изделию требований, допускается применение других полей допусков по ГОСТ 16093-81.

В посадках резьбовых соединений допускаются любые сочетания из установленных настоящим стандартом полей допусков соответственно для наружной и внутренней резьбы.

Поля допусков (табл. 104) относятся к деталям, размеры которых определены при температуре 20 °C и относительной влажности окружающего воздуха 65 %.

Рекомендации по изготовлению резьбы на деталях из пластмасс

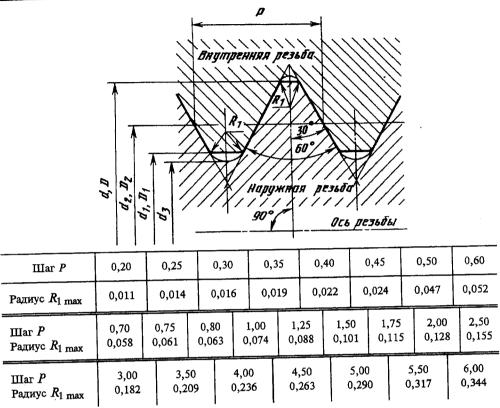
Методы получения резьбы. Получение резьбы на деталях из пластмасс в процессе прессования или литья под давлением является наиболее экономичным при массовом и крупносерийном производстве.

Изготовление резьбы на деталях из пластмасс резанием целесообразно в следующих случаях:

при изготовлении резьбы в деталях из листовых материалов и прутков;

в единичном производстве при выполнении ремонтных работ;

для обеспечения высокой точности при больших и нормальных длинах свинчивания.


Резьба в этом случае или нарезается полностью, или калибруется после формования ее литьем или прессованием. Наиболее целесообразно изготовлять резанием внутреннюю резьбу с применением метчиков.

Выбор степени точности резьбы. Степень точности необходимо выбирать с учетом эксплуатационных требований, предъявляемых к резьбовому соединению. При этом следует учитывать:

- 1) поля допусков класса точности "средний" предназначены для резьбовых деталей повышенной точности, к которым предъявляются требования по соосности соединяемых деталей, герметичности (с использованием специальных паст и др.);
- поля допусков класса точности "грубый" рекомендуются для нагружения резьбовых соединений. В этих соединениях не рекомендуется сопрягать детали из хрупких и упругопластичных материалов, так как прочность соединений при этом снижается в 3 - 5 раз;
- 3) поля допусков класса точности "очень грубый" предназначены для слабонагруженных резьбовых соединений деталей из пластмасс и соединений, в которых одна деталь металлическая. Соединения типа металл пластмасса будут иметь большую прочность, чем соединения типа пластмасса пластмасса.

Выбор шага резьбы часто определяется толщиной стенки детали. Так как детали, как правило, тонкостенны, то получили большое распространение резьбы с мелкими шагами.

103. Профиль и основные размеры метрической резьбы для деталей из пластмасс, мм

Значения $R_{
m 1\ max}$ рассчитаны по формулам:

 $R_{1~{
m max}}=0.054P$ при P<0.5 мм; $R_{1~{
m max}}=0.054P+0.02$ мм при $P\geq0.5$ мм.

104. Поля допусков (по ГОСТ 11709-81)

	,				Длин	а свинч	гивания	ī				
Класс точности		5		N	1	5		5	1	V	· I	,
резьбы]	Поле до	пуск	а наружной	резьбы	[По	ле допу	ска вну	тренне	й резьб	ўы
Средний	6g	бh	6g	6h	7g6g	7h6h	-	-	6G	6 H	7G	7H
Грубый	7g6g	7h6h	8g	8h (8h6h)	9g8g	9h8h	6G	6 H	7G	7H	8G	8H
Очень	9g8g	9h8h		10h8h	101	h8h	8G	8H	9H	8H	9Н	8H
грубый	7808) iion					<u> </u>				<u> </u>	

При длине свинчивания N и классе точности "грубый" поле допуска 8h6h для резьб с шагом P < 0.8 мм и поле допуска 8h - для резьб с шагом $P \ge 0.8$ мм.

При длинах свинчивания S и L допускается применять поля допусков, соответствующие длине свинчивания N.

105. Предельные отклонения днаметров резьбы (по ГОСТ 11709-81)

Значения предельных отклонений диаметров наружной и внутренней резьбы должны соответствовать ГОСТ 16093-81.

ei ei -236 -236 -335 -375 -425 -425 -425 -530 -530	9h8h 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			10h8h Диаметр резьбы d d2 Предельные отклонения, мкм s ei es -236 0 -236	Диаметр резьбы Диаметр резьбы выные отклонену еі ех 236 0 280 0	аьбы <i>d</i> ₂ нения, мк еі	d ₁		0,	9H8H		
P, MM d CS ei C,80 0 -236 1,00 0 -280 1,25 0 -335 1,00 0 -280 1,50 0 -375 1,50 0 -375 1,50 0 -375 1,50 0 -355 2,00 0 -425 2,50 0 -530			8 0	Диам <i>d</i> ецельные еі еі -236	етр резь	,бы ения, мя еі еі	1 1 1					
68 ei ei es ei 1,00 0 -236 1,25 0 -335 1,50 0 -375 1,50 0 -375 1,50 0 -375 1,50 0 -375 1,50 0 -375 1,75 0 -425 2,00 0 -530 2,50 0 -530				d едельные еі -236	а, отклоне еѕ 0	² ения, ми еі -236						
es ei 0,80 0 -236 1,00 0 -280 1,25 0 -335 1,00 0 -385 1,00 0 -375 1,00 0 -380 1,25 0 -335 1,75 0 -425 2,00 0 -530			8 0	едельные еі -236	отклоне es 0	ения, м ж еі -236	W.	q	^{7}Q	83	D_1	
68 ei 61				ei -236	8 0 0	ei -236						
0,80 0 -236 1,00 0 -280 1,25 0 -335 1,50 0 -375 1,25 0 -375 1,50 0 -375 1,50 0 -425 2,00 0 -450 2,50 0 -530			0	-236	0 0	-236	es	EI	ES	EI	ES	E
1,00 0 -280 1,25 0 -335 1,50 0 -375 1,00 0 -280 1,25 0 -335 1,50 0 -375 1,75 0 -425 2,00 0 -450 2,50 0 -530				000	0		0	0	+250	0	+315	0
1,25 0 -335 1,50 0 -375 1,00 0 -280 1,25 0 -335 1,50 0 -375 1,75 0 -425 2,00 0 -450 2,50 0 -530			0	087-		-280	0	0	+300	0	+375	0
1,50 0 -375 1,00 0 -280 1,25 0 -335 1,50 0 -375 1,75 0 -425 2,00 0 -530 2,50 0 -530		-	0	-335	0	-300	0	0	+315	0	+425	0
1,00 0 -280 1,25 0 -335 1,50 0 -375 1,75 0 -425 2,00 0 -450 2,50 0 -530		_	0	-375	0	-335	0	0	+355	0	+475	0
1,25 0 -335 1,50 0 -375 1,75 0 -425 2,00 0 -450 2,50 0 -530	_	0 057-	0	-280	0	-300	0	0	+315	0	+375	0
1,50 0 -375 1,75 0 -425 2,00 0 -450 2,50 0 -530	0	-265 0	0	-335	0	-335	0	0	+355	0	+425	0
0 -425 0 -450 0 -530	0	-280 0	0	-375	0	-355	0	0	+375	0	+475	0
0 -450 0 -530		-300 0	0	-425	0	-375	0	0	+400	0	+530	0
0 -530		-315 0	0	-450	0	-400	0	0	+425	0	009+	0
	0	-335 0	0	-530	0	-425	0	0	+450	0	+710	0
0280	0	-250 0	0	-280	0	-315	0	0	+335	0	+375	0
0 -375	0	-300 0	0	-375	0	-375	0	0	+400	0	+475	0
		-335 0	0	-450	0	-425	0	0	+450	0	009+	0
009- 0	0	-400 0	0	009-	0	-500	0	0	+530	0	008+	0
0.02- 0	0	-425 0	0	0/9-	0	-530	0	0	1+560	0	006+	0
0 -750	0	-450 0	0	-750	0	-560	0	0	009+	0	+950	0
008- 0	0	-475 0	0	-800	0	009-	0	0	+630	0	+1060	0

Продолжение табл. 105

					Поле допуска наружной резьбы	пуска на	тружной	і резьбы				Поле	допуска	внутре	Поле допуска внутренней резьбы	ьбы
Номинальный	Шаг			9h8h					10h8h					H8H6		
днаметр	P,							Диам	Диаметр резьбы	. 5бы						
резьбы д, мм	MM	J	p	p	d ₂	d_1	,	p	7	d_2	d_1	q	a l	ra	q	
							Пре	дельные	отклон	Предельные отклонения, мкм	W.					
		SO	ei	sə	ei	sə	æ	ei	sə	ei	es	IЭ	ES	EI	ES	EI
	1,00	0	-280	0	-280	0	0	-280	0	-355	0	0	+375	0	+375	0
	1,50	0	-375	0	-315	0	0	-375	0	-400	0	0	+425	0	+475	0
	2,00	0	-450	0	-355	0	0	-450	0	-450	0	0	+475	0	009+	0
Св. 45 до 90	3,00	0	-009	0	-425	0	0	009-	0	-530	0	0	+560	0	008+	0
	4,00	0	-750	0	-475	0	0	-750	0	009-	0	0	+630	0	+950	0
	5,00	0	-850	0	-500	0	0	-850	0	-630	0	0	0/9+	0	+1120	0
	5,50	0	006-	0	-530	0	0	-900	0	029-	0	0	+710	0	+1180	0
	00,9	0	-950	0	-560	0	0	-950	0	-710	0	0	+750	0	+1250	0
	1,50	0	-375	0	-335	0	0	-375	0	-425	0	0	+450	0	+475	0
	2,00	0	-450	0	-375	0	0	-450	0	-475	0	0	+500	0	009+	0
Св. 90 до 180	3,00	0	009-	0	-450	0	0	009-	0	-560	0	0	009+	0	+800	0
	4,00	0	-750	0	-500	0	0	-750	0	-630	0	0	0/9+	0	+950	0
	6,00	0	-950	0	009-	0	0	-950	0	-750	0	0	+800	0	+1250	0
Примечания: 1. Н	. вин	і. Нижн	tee ottoto	иение д	циаметра	d_1 не	устанав	пивается	, но ко	свенно (пранич	явается	формой	впади	ижнее отклонение диаметра d_1 не устанавливается, но косвенно отраничивается формой впадины наружной	жон

2. Верхнее отклонение диаметра D не устанавливается.

3. Обозначение резьбы - по ГОСТ 16093-81. 4. ГОСТ 11709-81 предусматривает также диаметры, щаги, допуски и длины свинчивания резьб с особо крупным шагом.

Примеры условного обозначения резьбы номинальным диаметром 24 мм с крупным шагом:

наружной резьбы: М24-10h8h;

внутренней резьбы: М24-9Н8Н.

наружной резьбы: М24х1-10h8h; с мелким шагом 1 мм: To жe,

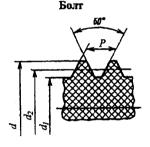
внутренней резьбы: М24х1-9Н8Н.

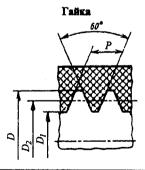
Расчет прочности обычно связывают с ллиной свинчивания. Длина должна быть оптимальной, т.е. чтобы прочность витков была равна прочности стенок пластмассовой детали. Больше этой величины длину брать не следует. так как вследствие осевой усадки с увеличением длины точность резьбы значительно снижается, уменьшается и прочность. Но при одной и той же длине свинчивания прочность резьбы зависит от величины шага. Наиболее прочной по результатам испытаний для реактопластов с порошкообразным и волокнистым наполнителем является резьба с шагом 1,5 мм. Резьбы с большими шагами имеют несколько меньшую прочность, но в таких резьбах нужно увеличить толщину стенки, что нежелательно.

Резьбы с шагом менее 1,5 мм вследствие переобогащения витков смолой, особенно у вершин и поверхности, имеют значительно меньшую (в несколько раз) прочность.

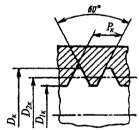
Однородность материала при литье резьбовых деталей из термопластов не изменяется.

но прочность резьб с малыми шагами падает вследствие соскакивания витков при сравнительно небольших радиальных деформациях летали. Наибольшая прочность отмечена у резьб с шагом 2 - 3 мм.

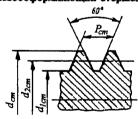

В резьбах, получаемых резанием, максимальная прочность для реактопластов с порошкообразным наполнителем достигается при шаге 1.5 мм.


нарезанных резьб в стек-Прочность ловолокните, текстолите, полиамидах возрастает с увеличением шага до 2,5 мм. Нарезанные резьбы диаметром до 10 мм прочнее резьб, полученных литьем и прессованием.

ГОСТ 15948-76 распространяется на резьбооформляющие детали (кольца и стержни) для формования метрической резьбы по ГОСТ 11709-81 в пластмассовых изделиях.


Расчет исполнительных размеров резьбы резьбооформляющих деталей следует выполнять в соответствии с табл. 106.

106. Расчет исполнительных размеров резьбы резьбооформляющих деталей (ГОСТ 15948-76)



Резьбооформляющее кольно

Резьбооформляющий стержень

Расчетная формула

Наружный диаметр

Средний диаметр

Внутренний диаметр

Шaг

Резьбооформляющее кольно

$$D_{\mathbf{x}} = d + d \cdot 0.01 S_{\mathbf{max}} - T_d - es \tag{1}$$

$$D_{2x} = d_2 + d_2 \cdot 0.01S_{\text{max}} - T_{d_2} - es \tag{2}$$

$$D_{2x} = d_2 + d_2 \cdot 0.01S_{\text{max}} - T_{d_2} - es$$

$$D_{1x} = d_1 + d_1 \cdot 0.01S_{\text{max}} - T_{d_2} - es - 0.144P$$

$$P_{x} = P(1 + 0.01S_{cp})$$
(3)

$$P_{\rm x} = P(1 + 0.01S_{\rm cp}) \tag{4}$$

Наименование размера	Расчетная формула	
Pe	вьбооформляющий стержень	
Наружный диаметр	$d_{\text{cr}} = D + D \cdot 0.01S_{\min} + T_{D_2} + EI$	(5)
Средний диаметр	$d_{2cT} = D_2 + D_2 \cdot 0.01S_{\min} + T_{D_2} + EI$ $d_{1cT} = D_1 + D_1 \cdot 0.01S_{\min} + T_{D_1} + EI$	(6)
Внутренний диаметр	$d_{1cr} = D_1 + D_1 \cdot 0.01S_{\min} + T_{D_1} + EI$	(7)
Шаг	$P_{\rm cr} = P_{\rm K} = P(1 + 0.01S_{\rm cp})$	(8)

Обозначения в формулах (1) - (8):

 $d,\ d_2$ и d_1 - соответственно наружный, средний и внутренний номинальный диаметры резьбы болга в мм;

 $D,\ D_2$ и D_1 - соответственно наружный, средний и внутренний номинальный диаметры резьбы гайки в мм;

P - mar резьбы;

 T_d и T_{d_2} - допуски наружного и среднего диаметров резьбы болта в мм;

 $T_{D_1}\,$ и $T_{D_1}\,$ - допуски среднего и внугреннего диаметров резьбы гайки в мм;

es - верхнее отклонение диаметров резьбы болта в мм;

ЕІ - нижнее отклонение диаметров резьбы гайки в мм;

 $S_{
m max},\ S_{
m min}$ и $S_{
m cp}$ - соответственно наибольшая, наименьшая и средняя усадка пластмассы в процентах.

Диаметры резьбы резьбооформляющих деталей, рассчитанные по формулам табл. 106 следует округлять в соответствии с требованиями, указанными в табл. 107, причем диаметры резьбы кольца следует округлять в сторону увеличения, а диаметры резьбы стержня - в сторону уменьшения.

107. Кратная величина округления диаметра резьбы, мм

Диаметр резьбы, мм	Степень точности среднего	циаметра формуемой резьбы
диаметр резьов, мм	6 - 7	8 - 10
До 10	0,005	0,02
Св. 10 до 50	0,010	
Св. 50 до 180	0,020	0,05

Предельные отклонения диаметров резьбы резьбооформляющих деталей следует назначать в соответствии с полями допусков, приведенными в табл. 108.

108. Предельные отклонения диаметров резьбоофрмляющих деталей

Comment chemien	Обозначение поля допуска	
Степень точности среднего иаметра формуемой резьбы	для кольца	для стержня
6 - 7	H7	h6
8 - 10	Н9	h9

Шаг резьбы резьбоофриляющих деталей, рассчитанный по формулам (4) и (8), округляется до сотых долей миллиметра.

Предельные отклонения шага резьбы резьбоофриляющих деталей следует назначать в соответствии с табл. 109.

Предельные отклонения шага относятся к расстояниям между любыми витками резьбы резьбоофриляющих деталей.

109.	Предельные	КИ ИЭНОКИТО	mara	резьбы
------	------------	--------------------	------	--------

Длина резьбы	Предельные отклонения шага		
До 12	±0,008		
Св. 12 до 32	±0,010		
» 32 » 50	±0,012		
» 50	±0,014		

Предельные отклонения половины угла профиля резьбы резьбооформляющих деталей следует назначать в соответствии с табл. 110.

119. Предельные отклонения половины угла профиля резьбы

Длина резьбы	Предельные отклонения шага		
До 0,35	±65		
Св. 0,35 до 0,60	±50		
» 0,60 » 1,00	±40		
* 1,00 * 1,50	±35		
* 1,50 * 3,00	±25		
3,00	±20		

СОЕДИНЕНИЯ ДЕТАЛЕЙ ИЗ ДРЕВЕСИНЫ И ДРЕВЕСНЫХ МАТЕРИАЛОВ (по ГОСТ 9330-76 в ред. 1992 г.)

Стандарт распространяется на основные шиповые соединения деталей из древесины и устанавливает их типы и размеры.

Типы основных соединений деталей из древесины (табл. 111 - 114) имеют следующие условные обозначения:

УК - угловое концевое; УЯ - угловое ящичное; УС - угловое серединное; К - по кромке; Ду - по длине на "ус".

Примечания к табл. 111 и 112:

- 1. Угловые соединения (концевые и серединные) допускается выполнять с фасками и фальцами, размеры которых соответствуют стандартизованному дереворежущему инструменту.
- 2. Допускается подсечка заплечников под углом 45°.
- 3. Дно паза может быть плоским или другой формы в зависимости от формы присоединяемой детали.

111. Типы и размеры угловых концевых соединений деталей из древесниы

Типы соединений	Условные обозначения, схемы и размеры соединений	
На шип открытый сквозной:	УК-1	
одинарный	34	
	$S_1 = 0.4S_0; S_2 = 0.5(S_0 - S_1)$	

Типы соединений	Условные обозначения, схемы и размеры соединений	
На шип открытый сквозной:	УК-2	
двойной	\$5, \$4 \$5, \$5	
	$S_1 = S_2 = S_3 = 0.20S_0; S_2 = 0.5[S_0 - (2S_1 + S_3)]$	
тройной	УК-3	
	52 51	
	$S_1 = S_3 = 0.14 S_0 \text{ m } S_2 = 0.15 S_0$	
На шип с полупотемком:	УК-4	
несквозной	S ₂ S ₀	
	$S_1 = 0.4S_0; \ \ell = (0.5 - 0.8)B; \ h = 0.7B_1$ $S_2 = 0.5(S_0 - S_1); \ b$ - He mehee 2 MM; $\ell_1 = (0.3 - 0.6)\ell$	
сквозной	УK-5	
	$S_1 = 0.4S_0; \ \ell = 0.5B; \ h = 0.6B_1; \ S_2 = 0.5(S_0 - S_1)$	

Продолжение табл. 111

Типы соединений	Условные обозначения, схемы и размеры соединений	
На шип с потемком:	УК-6	
несквозной	$S_1 = 0.4S_0; \ \ell = (0.5 - 0.8)B; \ h = 0.7B_1$ $S_2 = 0.5(S_0 - S_1); \ b$ - He methee 2 mm	
сквозной	УК-7	
	$S_1 = 0.4S_0$; $h = 0.6B_1$; $S_2 = 0.5(S_0 - S_1)$	
На шипы круглые вставные	VK-8	
(шканты): несквозные и сквозные	03551 Sample Sam	
	$S_1=0,4S_0;\ \ell$ - длина шканта (2,5 - 6) $d;$	
	ℓ ₁ более ℓ на 2 - 3 мм	
На ус со вставными круглыми шипами (шкантами): -	УК-9	
несквозные	$d = 0,4S_0; \ \ell$ - длина шканта $(2,5-6)d;$ ℓ_1 более ℓ на $2-3$ мм Допускается применять сквозные шканты	

Типы соединений	Условные обозначения, схемы и размеры соединений			
На ус со вставным плоским шипом:	УК-10			
несквозной	B 50			
	$S_1=0.4S_0$; Для деталей толщиной до 10 мм $S_1=2$ - 3 мм; $\ell=(1$ - 1,2) B ; $b=0.75$ B . Допускается соединение деталей на "ус" двойным вставным шипом, при этом $S_1=0.2S_0$			
сквозной		У К -11		
	$S_1=0,4S_0$; Для деталей толщиной до 10 мм $S_1=2$ - 3 мм; $\ell=(1$ - 1,2) \pmb{B} . Допускается соединение на "ус" двойным вставным шипом, при этом $S_1=0,2S_0$			
Зубчатое	VK-12 A			
	$egin{array}{cccccccccccccccccccccccccccccccccccc$			
	50 32 20 10 5	12,00 8,00 6,00 3,50 1,75	2,0 1,0 1,0 0,5 0,2	

Примечания: 1. Расчетные толщины шипов и диаметров шкантов соединений типов УК округляют до ближайшего размера: 4; 6; 8; 10; 12; 14; 16; 20 и 25 мм.

2. В соединениях типов УК-1 - УК-7 значение величины S_2 установлены для симметричного расположения шипов. При несимметричном расположении шипов величину S_2 устанавливают в зависимости от назначения и конструкции изделия.

При различных толщинах соединяемых деталей S_1 назначают в зависимости от толщины

с шипом.

3. В соединениях типов УК-1 - УК-3 и УК-7 допускается дополнительное крепление соединения нагелем на клею, а угол с принимают в зависимости от конструкции изделия.

112. Типы и размеры угловых серединных соединений деталей из древесины

На шин одвиарный: $YC-1$ несквозной в паз $YC-2$ $S_1 = 0.4.S_0; S_2 = 0.5(S_0 - S_1); b$ - не менее 2 мм. $\ell_1 = (0.3 - 0.8)B; \ell_2 = (0.2 - 0.3)B_1$. В соединениях типов $YC-1$, $YC-2$ лотускается двойной шил, при этом $S_1 = 0.2.S_0$, R соответствует радиусу фрезы $YC-4$ сквозной $S_1 = S_2 = S_3 = 0.20S_0; S_2 = 0.5[S_0 - (2S_1 + S_3)]$ В паз и гребень несквозной	Типы соединений	Условные обозначения, схемы и размеры соединений	
несквозной в паз $YC-2$ $S_1 = 0,4S_0; S_2 = 0,5(S_0 - S_1); b$ — не менее 2 мм. $t_1 = (0,3-0,3)B, t_2 = (0,2-0,3)B_1$. В соединениях ипов $YC-1$, $YC-2$ допускается двойной шип, при этом $S_1 = 0,2S_0$, R соответствует радиусу фрезы $S_1 = S_2 = S_3 = 0,20S_0; S_2 = 0,5[S_0 - (2S_1 + S_3)]$ В паз в гребень несквозной	На шип одинарный:	УС-1	
Сквозной Y_{C-3} $S_1 = 0.4S_0; \ S_2 = 0.5(S_0 - S_1); \ b - \text{не менее 2 мм.}$ $\ell_1 = (0.3 - 0.8)B; \ \ell_2 = (0.2 - 0.3)B_1.$ В соединениях типов Y_{C-1} , Y_{C-2} допускается двойной шип, при этом $S_1 = 0.2S_0$, R соответствует радиусу фрезы Y_{C-4} Сквозной $S_1 = S_2 = S_3 = 0.20S_0; \ S_2 = 0.5[S_0 - (2S_1 + S_3)]$ В паз и гребень несквозной $S_1 = S_2 = S_3 = 0.20S_0; \ S_2 = 0.5[S_0 - (2S_1 + S_3)]$	несквозной		
$S_1 = 0,4S_0; \ S_2 = 0,5(S_0 - S_1); \ b$ - не менее 2 мм. $\ell_1 = (0,3-0,8)B; \ \ell_2 = (0,2-0,3)B_1.$ В соединениях типов VC-1, VC-2 допускается двойной шип, при этом $S_1 = 0,2S_0, \ R$ соответствует радиусу фрезы . На шип двойной: $VC-4$ сквозной $S_1 = S_2 = S_3 = 0,20S_0; \ S_2 = 0,5[S_0 - (2S_1 + S_3)]$ В паз в гребень несквозной	несквозной в паз	YC-2	
$\ell_1=(0,3-0,8)B;\ \ell_2=(0,2-0,3)B_1.$ В соединениях типов УС-1, УС-2 допускается двойной шип, при этом $S_1=0,2S_0,\ R$ соответствует радиусу фрезы УС-4 сквозной $ S_1=S_2=S_3=0,20S_0;\ S_2=0,5[S_0-(2S_1+S_3)] $ В паз и гребень	сквозной	YC-3	
сквозной $S_1 = S_2 = S_3 = 0,20S_0; \ S_2 = 0,5[S_0 - (2S_1 + S_3)]$ В паз и гребень несквозной $S_1 = S_2 = S_3 = 0,20S_0; \ S_2 = 0,5[S_0 - (2S_1 + S_3)]$		$\ell_1 = (0,3-0,8)B;\ \ell_2 = (0,2-0,3)B_1.$ В соединениях типов УС-1, УС-2 допускается двойной шип, при этом $S_1 = 0,2S_0,\ R$ соответствует	
$S_1 = S_2 = S_3 = 0.20 S_0; \ S_2 = 0.5[S_0 - (2S_1 + S_3)]$ В паз и гребень несквозной	На шип двойной:	УС-4	
несквозной	сквозной	$S_1 = S_2 = S_3 = 0,20S_0; S_2 = 0,5[S_0 - (2S_1 + S_3)]$	
	В паз и гребень	УС-5	
$S_1 = (0.4 - 0.5)S_0; \ \ell = (0.3 - 0.8)S; \ S_2 = 0.5(S_0 - S_1);$ b - He mether 2 mm	несквозной	$S_1 = (0.4 - 0.5)S_0; \ \ell = (0.3 - 0.8)S; \ S_2 = 0.5(S_0 - S_1);$	

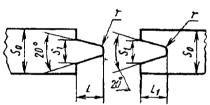
Продолжение табл. 112

Типы соединений	Условные обозначения, схемы и размеры соединений
В паз	УС-6
несквозной	$\ell = (0, 3 - 0, 8)S_0; b$ - He mehee 1 mm
На шипы круглые вставные (шканты) несквозные	УС-7 $d = 0,4S_0; \ \ell = (2,5-6)d; \ \ell_1 \ \text{более} \ \ell \ \text{на } 2-3 \ \text{мм}.$ Допускается применять сквозные шканты
На шип "ласточкин хвост" несквозной	УС-8 51 — 10°
	$\ell = (0, 3 - 0, 5) B_1; S_1 = 0,85 S_0;$ полученный размер округляют до ближайшего диаметра фрезы
	округляют до ближайшего диаметра фрезы 13; 14; 15; 16; 17 мм, а не менее S ₀

Примечания: 1. Расчетные толщины шипов и диаметры шкантов соединений типов УС округляют до ближайшего размера 4; 6; 8; 10; 12; 14; 16; 20 и 25 мм, а угол α устанавливают в зависимости от конструкции изделия.

2. В соединениях типов УС-1 - УС-4 значение величины S_2 установлены для симметричного расположения шипов. При несимметричном расположении шипов величину S_2 устанавливают в зависимости от назначения и конструкции изделия.

113. Типы и размеры угловых ящичных соединений (УЯ) деталей из древесины


Типы соединений	У	словные обозначения, схемы и размеры соединений	
На шип прямой открытый		Y9-1	
На шип "ласточкин хвост"	$S_1 =$	$S_3 = 6$; 8; 10; 12; 14; 18 mm; $\ell = S_0$; S_2 не менее $0.3S_0$ УЯ-2	
открытый		50 50 50	
	S	$S_1=0.85S_0$; полученный размер округляют до ближайшего диаметра фрезы: 13; 14; 15; 16 и 17 мм; - не менее $0.75S_0$; $S_3=(0.85-3)S_0$; $\ell=S_0$; $\alpha=10$ °. кается соединение на шип "ласточкин хвост" в полупотай	
На шип круглый вставной (шкант) открытый		VA-3	
	д	$d=0,4S_0$; полученный диаметр шкантов округляют о ближайшего размера 4; 6; 8; 10; 12; 16; 20 и 25 мм; $=(2,5-6)d;$ ℓ_1 более ℓ на 1 - 2 мм; $b=$ от 0 до d_{\min}	
114. Типы и ра	змеры со	единений по кромке (К) деталей из древесины	
Типы соединений		Условные обозначения, схемы и размеры соединений	
На рейку	K-1		

Типы соединений Условные обозначения, схемы и размеры соединений К-1 $\ell = 20 - 30 \text{ мм}; \ \ell_1 \text{ более } \ell \text{ на } 2 - 3 \text{ мм}; \ S_1 = 0.4 S_0 \\ \text{ (для реек из древесины)}; \ S_1 = 0.25 S_0 \text{ (для реек из фанеры)}. \ \text{Размер } S_1 \text{ округляют до ближайшего размера пазовой дисковой фрезы; 4; 5; 6; 8; 10; 12; 16 и 20 мм. Допускаются на кромках одно- и двухсторонние фаски$

Типы соединений	Условные обозначения, схемы и размеры соединений		
В четверть	K-2		
	$h = \frac{S_0}{2} -$	0,5 мм.	
	Допускаются на кромках одн		нние фаски
	MM	<u> </u>	
	S_0	<i>b</i>	
,	От 12 до 15 вкл.	6	
	Св. 15 » 20 »	8	
	* 20 * 30 *	10	
	» 30	16	
	Допускается в соединении деталей платформ грузовых автомобилей и прицепов при S_0 свыше 30 мм глубина четверти $b=8$ мм		
В паз и гребень	K-	-3	
прямоугольный			
	$r = ext{ от 1 до 2 мм; } \ell_1$ более ℓ на 1 - 2 мм мм		
	S_0	S_1	l
	От 10 до 12 вкл.	4	6
	Св. 12 » 19 »	6	6
	» 19 » 25 »	8	8
	» 25 » 29 »	10	10
	» 29 » 40 » 12 12 Допускается на кромках одно- и двухсторонние фаски Для тары, включая специальную, допускается при $S_0 = 22$ мм, $S_1 = 6$ мм, $\ell = 6$ мм. Допускается формирование соединения без заовативания радиусом r углов гребня и паза		

заоваливания радиусом r углов гребня и паза

				j	Продол	кение т	абл. 114
Типы соединений	Услові	ные обозн	ачения,	схемы и р	размеры	соедин	ений
В паз и гребень:				K-4			
прямоугольный		_					
		{	25.		50		
	S_0	S	S_1	l	ℓ_1	b	b_1
	28	6	7	6	7	15	14
	36	9	10	6	7	17	16
трапециидальный				K -5			
				7		$\frac{r}{\sqrt{10}}$	

\mathcal{S}_{1}	l	ℓ_1	r
5,5	7	8	1,5
6,5	8	9	2
8,5	10	11	2
9,0	10	11	2
11,5	12	13	3
14,5	12	15	3
16,5	12	15	3
	5,5 6,5 8,5 9,0 11,5	5,5 7 6,5 8 8,5 10 9,0 10 11,5 12 14,5 12	5,5 7 8 6,5 8 9 8,5 10 11 9,0 10 11 11,5 12 13 14,5 12 15

Допускается на кромках одно- и двухсторонние фаски. В соединении деталей платформ грузовых автомобилей и прицепов при S_0 свыше 30 мм допускается $\ell=7$ мм. Допускается формирование соединения без заоваливания радиусом г углов гребня и паза

Продолжение табл. 114

Типы соединений	Условные об	означения,	схемы и разн	меры соедин	ений
На гладкую фугу			K-6	}	
В паз и гребень			K-7		
прямоугольный		5			
	S_0	S_1	l	ℓ_1	b
	16	6	6	6,5	5
	27	6	6	7	10,5

Соединение деталей по длине на зубчатый шип должно соответствовать требованиям ГОСТ 19414-90.

Соединение деталей по длине на "ус" (Ду) должно соответствовать требованиям, указанным на рис. 8.

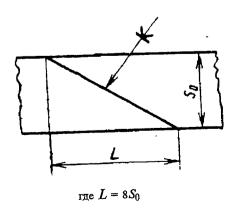


Рис. 8

В деталях, требующих повышенной прочности, длину усового соединения L устанавливают (10 - 12) S_0 .

Точность изготовления элементов и методы испытания соединений указаны в рекомендуемом приложении.

Величина отклонений от номинальных размеров шиловых соединений деталей из древесины устанавливается в нормативнотехнической документации на конкретные изделия и должна соответствовать требованиям ГОСТ 6449.1-82 и ГОСТ 6449.3-82.

ПРОЧНОСТЬ СОЕДИНЕНИЙ ДЕРЕВЯННЫХ ДЕТАЛЕЙ

Наибольшая прочность клеевых соединении деревянных деталей достигается при точности изготовления элементов соединения (толщина и ширина гнезда), обеспечивающей в период сборки натят от 0 до 0,3 мм. Нижний

предел от 0 до 0,2 мм принимают для шипов из древесины твердых лиственных пород, а верхний предел от 0,1 до 0,3 мм - для шипов из древесины хвойных и мягких лиственных пород.

Прочность угловых концевых и ящичных соединений (УК, УЯ) испытывают по схеме, указанной в ГОСТ 23166—78. Предел прочности вычисляют с погрешностью не более 0,001 МПа по формуле

$$\sigma = \frac{P \cdot 100}{BS},$$

где P - максимальная нагрузка при разрушении образца, H; B - ширина бруска, M; S - толщина бруска, M.

Прочность клеевого соединения на гладкую фугу при скалывании вдоль волокон испытывают по ГОСТ 15613.1-84.

Прочность соединений деталей по длине на "ус" испытывают на растяжение по ГОСТ 15613.5-79, при этом длина образца должна быть не менее 500 мм.

Испытания на статический изгиб проводят по ГОСТ 15613.4-78.

Прочность соединений типов УК и УС, используемых в конструкциях с горизонтальным расположением элементов и вертикальным направлением действия нагрузок, испытывают по схеме, указанной на рис. 9.

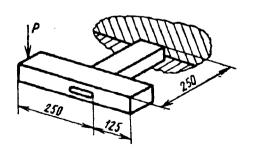


Рис. 9

Дополнительные источники

Концы шлифовальных шпинделей с внутренними центрирующими поверхностями -ГОСТ 2324-77.

Основные нормы взаимозаменяемости. Резьба. Термины и определения - ГОСТ 11708-82.

Основные нормы взаимозаменяемости. Резьба метрическая для приборостроения. Диаметры и шаги - ГОСТ 16967-81.

Основные нормы взаимозаменяемости. Резьба метрическая. Переходные посадки - ГОСТ 24834-81.

Основные нормы взаимозаменяемости. Резьба метрическая. Посадки с натягом - ГОСТ 4608-81.

Основные нормы взаимозаменяемости. Резьба метрическая для диаметров менее 1 мм. Допуски - ГОСТ 9000-81.

Основные нормы взаимозаменяемости. Резьба трапецеидальная многозаходная - ГОСТ 24739—81.

Основные нормы взаимозаменяемости. Резьба коническая вентилей и баллонов для газов - ГОСТ 9909-81.

Основные нормы взаимозаменяемости. Резьба упорная усиленная 45° - ГОСТ 13535-**8**7.

Резьба круглая для санитарно-технической арматуры. Профиль, основные размеры, допуска - ГОСТ 13536—68.

Основные нормы взаимозаменяемости. Резьба трапецеидальная однозаходная. Основные размеры - ГОСТ 24737-81.

Основные нормы взаимозаменяемости. Резьба трапецеидальная однозаходная. Диаметры и шаги - ГОСТ 24738-81.

Основные нормы взаимозаменяемости. Резьба трапецеидальная однозаходная. Допуски - ГОСТ 9562-81.

Основные нормы взаимозаменяемости. Резьба упорная. Допуски - ГОСТ 25096-82.

Хвостовики инструментов с конусом 7 : 24. Размеры. ГОСТ 25827-93 (ИСО 7388-1-81).

Глава VI

КРЕПЕЖНЫЕ ИЗДЕЛИЯ

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ НА БОЛТЫ, ВИНТЫ, ШПИЛЬКИ И ГАЙКИ (no FOCT 1759.0-87, FOCT 1759.4-87 n FOCT 1759.5-87)

Механические свойства болгов, винтов и шпилек из углеродистых и легированных сталей (ГОСТ 1759.4-87, ИСО 898/1-78)

Стандарт распространяется на болты, винты и шпильки из углеродистых нелегированных или легированных сталей с метрической резьбой по ГОСТ 24705-81 диаметром от 1 до 48 мм.

							*	Спасс пр	Класс прочности *1				
									8	8.8			
Механические свойства		3.6	4.6	8.4	5.6	5.8	9.9	8.9	д ≤ 16 мм	d > 16 мм	9.8 *2	10.9	12.9
	Номин.	300	4	400) ×	200	009	00	800	800	900	1000	1200
Временное сопротивление разрыву ов, МПа	Наиб.	330	400	420	200	520	009	0(800	830	906	1040	1220
	Наим.	95	120	130	155	160	15	190	250	255	290	320	385
Твердость по Виккерсу НV	Наиб.				250				320	335	360	380	435
	Наим.	8	114	124	147	152		181	238	242	276	304	366
Твердость по Бринеллю НВ	Наиб.				238				304	318	342	361	414

								×	ласс пр	Класс прочности *1			i	
Mevorimiacycia andiromo	Total di									8	8.8			
истани тески	ie ceonci	94	3.6	4.6	8.4	5.6	5.8	9.9	8.9	<i>d</i> ≤ 16 мм	d > 16 MM	9.8 *2	10.9	12.9
		Наим.	52	29	71	79	82	89		1	t	ı	•	
Teenmoore, 110	HRB	Наиб.				99,5				1	*	ı	ı	,
Роквелиу		Наим.								22	23	28	32	39
	HRC	Наиб.								32	34	37	39	44
Твердость повер НV 0,3 _{тах}	поверхности	Наиб.				,					*	*3		
Hnenen nekvuertu *4 cs. MH3	MI	Номин.	180	240	320	300	400	360	480	-	ſ	-	-	,
Thought teny town	a a	Наим.	190	240	340	300	420	360	480	-	ľ	ı	'	1
V-попит финис	NT-C-TU	Номин.				,				640	640	720	006	1080
σ _{0,2} , MΠa		Наим.								640	099	720	940	1100
Напряжение от п нагрузки о _п	пробной	$\frac{\sigma_{11}}{\sigma_{11}} \mu_{JJM}$ $\frac{\sigma_{12}}{\sigma_{0,2}}$	0,94	0,94	0,91	0,93	06'0	0,92	0,92	0,91	0,91	06'0	0,88	0,88
		МПа	180	225	310	280	380	440	440	580	009	650	830	970

Продолжение табл. 1

						×	Стасс п	Класс прочности *1			,	
,								∞	8.8			(
Механические свойства	3.6	4.6	4.8	4.6 4.8 5.6 5.8	5.8	9.9	8.9	d ≤ 16 mm	$d \le 16 \text{ mm}$ $d > 16 \text{ mm}$	9.8 *2	10.9	12.9
Относительное удлинение после	25	22	41	20	10	16	8	12	12	10	6	∞
разрыва 05, 70, не менее	нофП	HOCTS (олтов	Прочность болгов и винтов (кроме шпилек)	ля (кро	Ме шпи ному вы	 ллек) д лше.	олжна быть	Прочность болгов и вингов (кроме шлилек) должна быть не меньше минимального временного	инимальн	ого врем	енного
Thomas at a post of the										3,5	ç	15
Работа удара, Дж				25		8		œ —	₹	C7	27	
(Ударная вязкость КСU, Дж/см²), не		1		(20)	1	(40)	1	(09)	(09)	(20)	(40)	(30)
менее												

*1 Обозначение класса прочности болгов, винтов и шпилек состоит из двух цифр: первая соответствует 1/100 номинального значения временного сопротивления разрыву, МПа; вторая соответствует 1/10 отношения номинального значения предела текучести к временному сопротивлению, %. Произведение двух указанных цифр соответствует 1/10 номинального значения предела текучести, МПа.

 *2 Применяется только для диаметров резьбы $d \le 16$ мм.

*3 Твердость поверхности не должна быть более чем на 30 единиц по Виккерсу выше измеренной твердости сердцевины изделня при проведении измерений при НV 0,3. Для класса прочности 10.9 любое повышение твердости поверхности, при котором твердость будет превышать 390 НV, недопустимо.

*4 Если предел текучести не может быть определен, находят условный предел текучести $\sigma_{0.2}$.

В ГОСТ 1759.4-87 приводятся химический состав сталей для изготовления болгов, винтов и шпилек, рекомендуемые марки сталей, а также указания по их термообработке.

2. Механические свойства гаск из углеродистых в легарованных сталей (ГОСТ 1759.5-87)

В таблице значения твердости приведены только для таек с крупным шагом резьбы. Минимальные значения твердости обязательны только для термообработанных таек и таек, которые не могут быть испытаны пробной Нал

Класс прочности				Ī	Kyra	Класс прочности	. H				
		2				05				4	
Номинальный диаметр резьбы d, мм	Напряже- ние от тобной	Твердо Викке	Твердость по Виккерсу НV	Напряже- ние от пробной	Твердо Виккер	Твердость по Вижерсу НV	Твердость по Роквеллу НКС _э	сть по у НКС,	Напряже- ние от пробной	Твердость по Виккерсу HV	ть по зу НV
	нагрузки о <i>Е</i> , МПа	не менее	не более	нагрузки о <i>ғ</i> , МПа	не менее	не более	не менее	не более	нагрузки σ_{E} , МПа	не менее	не более
4 2											
4 - 7											
7 - 10	380	188	302	200	272	353	27,8	36	ı	ı	1
10 - 16											
16 - 48	T								510	117	30
					Кла	Класс прочности	ТИ				
		5			9				80		
Номинальный диаметр резьбы d, мм	Напряже- ние от пробной	Твердо Викке	Гвердость по Виккерсу НV	Напряже- ние от пробной	Твердо Викке	Твердость по Виккерсу НV	Напряже- ние от пробной	Твердс	Твердость по Роквеллу НКС _э	Твердость по Виккерсу HV	су НV
	нагрузки о <i>в</i> , МПа	не менее	не более	нагрузки о <i>ह</i> , МПа	не менее	не более	нагрузки σ_{E} МПа	не менее	не более	не менее	не более
4 ≥	520			009			800	170			
4 - 7	580	130		029	150		810		302		
7 - 10	965		302	089		302	830	188		ı	
10 - 16	610			700			840				
16 - 48	630	146		720	170		920	233	353		38

Продолжение табл. 2

		Th 110 HRC3	не более			38		
		Твердость по Роквеплу НКС _э	не менее не более не менее не более		31			t
	12	Твердость по Виккерсу НV	не более			353		
		Твердо			295			1
		Напряже- ние от пробной	нагрузки σ_{E} , МПа	1150	1150	1160	1190	1200
HT.		Твердость по Роквеллу НКС _э	не более			38		
Класс прочности		Твердо	не менее не более не менее не более			28		
Клас	10	Твердость по Виккерсу НV	не более			353		
		Твердо Виккер				272		
		Напряже- ние от	нагрузки о <i>ғ</i> , МПа	1040	1040	1040	1050	1060
		Твердость по Виккерсу НV	не более			302		
	6	Твердо	не менее	170			100	000
		Напряже- ние от	просиод нагрузки св. МПа	006	915	940	950	920
	TO COL		d, MM	4 ≥	4 - 7	7 - 10	10 - 16	16 - 48

Для классов прочности 04, 4, 5, 6, 9 нижний предел твердости НRC₃ не регламентируется, верхний - не более НRC₃ 30.

цифрой, указывающей наибольший класс прочности болгов, с которыми они могут сопрягаться в соединении, и соответствующей Классы прочности гаек с номинальной высотой, равной или более 0,8d (эффективная длина резьбы равна или более 0,6d), обозначаются 1/100 номинального напряжения от пробной нагрузки в испыпательной оправке. Кляссы прочности гаек с номинальной высотой, равной или более 0,5d и менее 0,8d (эффективная длина резьбы равна или более 0,4d и закаленной испытательной оправке, а первая указывает на то, что нагрузочная способность соединения данной гайки с болгом ниже, чем с менее 0,64), обозначаются комбинацией двух цифр; вторая цифра соответствует 1/100 номинального напряжения от пробной нагрузки закаленной оправкой и ниже, чем у гаек с высотой, равной или более 0,8d

ГОСТ 1759.5—87 предусматривает химический состав сталей для изготовления таск, а также рекомендуемые марки сталей.

	при пор	manibation remarks	-77-		
Условное обозначение группы *	Временное сопротивление _{ов} , МПа	Предел текучести о _т (о _{0,2}), МПа	Относи- тельное удлинение δ ₅ , %	Твердость по Бринеллю НВ	Марка материала или сплава *
		не мен	ree		
31	260	120	15	Не регламен- тируется	АМг5П, АМг5
32					Латунь Л63, ЛС59-1
33	310	Не регламен- тируется	12	75	Латунь ЛС59-1, Л63, антимаг- нитные
34	490			Не регламен- тируется	Бронза БрАМц9-2
35	370	195	10		Д1, Д1П, Д16, Д16П

3. Механические свойства болтов, винтов, шпилек из цветных сплавов при нормальной температуре (ГОСТ 1759.0-87)

* Относится также к гайкам.

ГОСТ 1759.0-87 предусматривает также марки коррозионно-стойких, жаростойких, жаропрочных и теплоустойчивых сталей для изготовления болгов, винтов, шпилек и гаек.

Допускается изготовлять болты, винты, шпильки и гайки из сплавов, не предусмотренных стандартом. При этом их механические свойства должны быть не ниже указанных в ГОСТе для соответствующих групп материала.

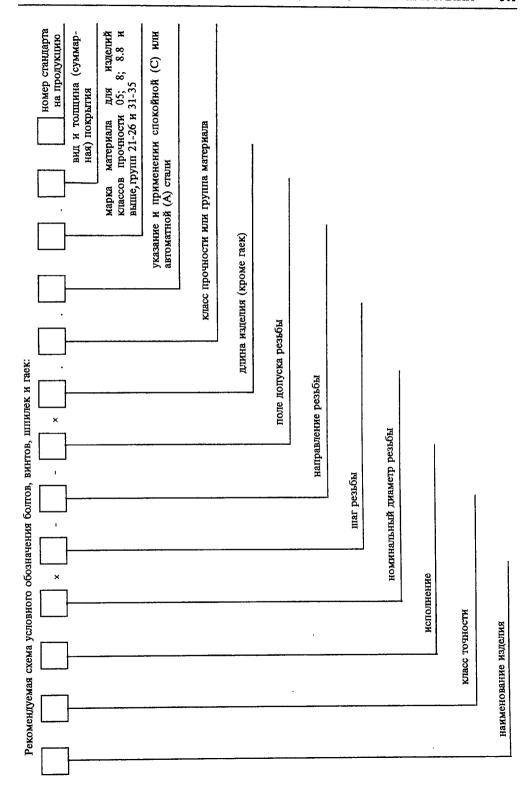
Примеры условных обозначений крепежных изделий.

Винт по ГОСТ 17473-80 класса точности A, исполнения 2, диаметром резьбы d=12 мм с мелким шагом резьбы, с полем допуска резьбы бе, длиной $\ell=60$ мм, класса прочности 5.8, из спокойной стали, с цинковым покрытием толщиной 9 мкм, хроматированным:

Винт A2M12×1.25-6e×60.58.С.019 ГОСТ 17473-80

Гайка по ГОСТ 5916-70 исполнения 2, диаметром резьбы d=12 мм, с мелким шагом резьбы, с левой резьбой, с полем допуска 6H, класса прочности 05, из стали марка 40X, с цинковым покрытием толщиной 6 мкм, хроматированным:

Гайка 2M12×1.25-LH-6H.05.40X.016 ГОСТ 5916-70


Примечания:

1. В условном обозначении не указываются:

исполнение 1, крупный шаг резьбы, правая резьба, отсутствие покрытия, а также параметры, однозначно определяемые стандартами на продукцию;

класс точности B, если стандартом на конкретное крепежное изделие предусматриваются два класса точности (A и B).

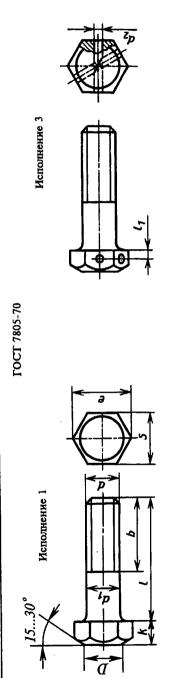
2. Если применяется покрытие, не предусмотренное настоящим стандартом, его обозначение указывается по ГОСТ 9.306-85.

4. Виды и условные обозначения покрытий болтов, винтов, шпилек и гаек (ГОСТ 1759.0-87)

Вид покрытия	Обозначение	покрытия
	по ГОСТ 9.306-85	цифровое
Цинковое, хроматированное	Ц. хр	01
Кадмиевое, хроматированное	Кд. хр	02
Многослойное: медь-никель	М. Н	03
Многослойное: медь-никель-хром	М. Н. Х. 6	04
Окисное, пропитанное маслом	Хим. Окс. прм	05
Фосфатное, пропитанное маслом	Хим. Фос. прм	06
Оловянное	О	04
Медное	M	08
Цинковое	ц	09
Окисное, наполненное хроматами	Ан. Окс. нхр	10
Окисное из кислых растворов	Хим. Пас	11
Серебряное	Ср	12
Никелевое	н	13

Болты, винты, шпильки и гайки изготовляют с одним из видов покрытий, указанных в табл. 4, или без покрытий. Допускается применять другие виды покрытий - по ГОСТ 9.303-84.

Выбор толщины покрытий - по ГОСТ 9.303-84.

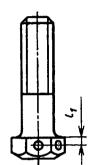

Технические требования - по ГОСТ 9.301-86.

BOJITSI

5. Болгы класса точности А

Болты с шестигранной головкой - ГОСТ 7805-70; болты с шестигранной уменьшенной головкой - ГОСТ 7808-70.

Размеры, мм



Исполнение 3

 $D \approx 0.95.S$. Диаметр резьбы $d = 1,6 \dots 48$ мм

FOCT 7808-70

Исполнение 1

 $D \approx 0.95 S_1$. Диаметр резьбы $d = 8 \dots 48$ мм

Длина болгов в и резьбы в приведена в табл. 7 и 8.

Peaksa $d = d$,	d = d	1.6	2	2.5	_ e	4	5	9	-	2	12	16	70	24	98	36	4	8
	ī	2(1	'						1	1	+	+	1	\dagger				
	крупный	0,35	0,4	0,45	5,0	0,7	8,0		1,25	1,5	1,75 .	7	2,5	ю	3,5	4	4,5	S
	мелкий	ı	ı	. 1	ı	1	ı	1	-	1,25	1,25	1,5	1,5	2	2	3	3	м
Отклонения ф	18 d		وْ وَ	-0,14			-0,18		-0,22	22	-0,27	7.7	,	-0,33			-0,39	
Размер под ключ S	S. POIICH IA	3,2	4	2	5,5	7	∞	10	13	16	18	24	30	36	46	55	65	75
Отклонение	не		• •	-0,18	_		-0,22		-0,27	27		-0,33		-0,62	62		-0,74	
Размер под ключ S ₁	д копоч S	,		,			'	ı	12	14	17	22	27	32	41	90	99	70
Отклонение	¥.	ı	1	ı	1	ı	ı	ı	_	-0,27			-0,33		,o	-0,62	-0,74	47
Высота головки к	ловки к	1,1	1,4	1,7	2	2,8	3,5	4	5,5	7	80	10	13	15	19	23	56	90
Отклонение	Ж		_	+0,12	_	_		±0,15		· 	±0,18		4	±0,21		±0,26	92	
Высота головки к	JORKH K	,			'		,	1	5	9	7	6	11	13	17	70	23	26
Отклонение	ие	1	1		,	1	1	1	q.	±0,15	+0 ,	±0,18		±0,21			±0,26	
Диаметр описан- ной окружности, не менее:	описан-	·						· · · · · · · · · · · · · · · · · · ·						27				
¥	ø	3,4	4,3	5,5	6,0	7,7	8,8	11,1	14,4	17,8	20,0	26,8	33,5	40,0	51,3	61,7	72,6	83,9
o.	e.	1		ſ	ı	1	1	ı	13,2	15,5	18,9	24,5	30,1	35,7	45,6	55,8	67,0	78,3

Резьба $d=d_1$	1,6	2	2,5	3	4	5	9	∞	10	12	16	20	24	30	36	42	48
Диаметр отверстия в головке d_2		'			1,0	1,2	2,0	2,5	2,5	3,2	4	4	4	4	S	5	5
Отклонение		·				,	+0,40						+0,48	8			
ℓ_1		'			1,4	1,8	2,0	2,8	3,5	4	5	6,5	7,5	5,6	11,5	13	15
Отклонение		,				±0,20	. 50			±0,24			±0,29			±0,35	
						Смещен	ие оси	TOJOBKI	Смещение оси головки относительно оси стержня	ительно	оси съ	кнже		•			
по ГОСТ 7805-70		0,	0,18			0,22		0,27		•	0,33		0,39	<u>&</u>	•	0,46	
по ГОСТ 7808-70									0,27		0,33	33		0,39		0,46	او

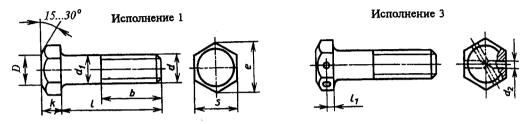
6 олта исполнения 1, диаметром резьбы d=12 мм, с размером под ключ S=18 мм, длиной ГОСТы предусматривают также и другие исполнения, варианты исполнений и нерекомендуемые диаметры и длины болгов. $\ell=60$ мм с крупным шагом резьбы, поле допуска 6g, класса прочности 5.8, без покрытия: обозначения

Boam M12-6g × 60.58 (S18) IOCT 7805-70

то же исполнение 3, с размером под ключ S=19 мм, с мелким шагом резьбы, поле допуска ба, класса прочности 10.9, из стали 40Х, с покрытием 01 толщиной 6 мкм:

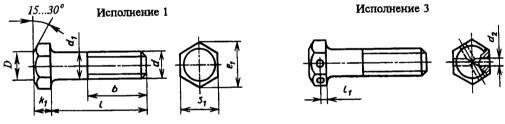
Bonm 3M12 x 1,25 - 6g x 60.109,40X.016 FOCT 7808-70

Допускается по соглашению между изготовителем и потребителем изготовлять болты с шагом резьбы 2 мм для номинальных днаметров Pesьба - по ГОСТ 24705-81. Сбег и недорез резьбы - по ГОСТ 10549-80. 36 - 48 MM.


По ГОСТ 7808-70 допускается изготовлять болты исполнения 1 с высотой головки, равной к. Технические требования - по ГОСТ 1759,0-87.

6. Болты класса точности В

Болты с шестигранной головкой - ГОСТ 7798-70, болты с шестигранной уменьшенной головкой - ГОСТ 7796-70.


Размеры, мм

FOCT 7798-70

 $D \approx 0.95 S$, d = 6 ... 48 MM

ГОСТ 7796-70

$D \approx 0.95S_1$, d	= 8	48	3 MM
-------------------------	-----	----	------

Резьб	Резьба $d = d_1$		8	10	12	16	20	24	30	36	42	48
Illar	инах крупный		1,25	1,5	1,75	2,0	2,5	3	3,5	4,0	4,5	5,0
резьбы			1,0	1,	25	1	,5	1	2	3		
Отклон	Отклонения d ₁		-0,	,36	-0,	43	43			-0,62		
Размер	Размер под ключ <i>S</i>		13	16	18	24	30	36	46	55	65	75
Отклон	Отклонение		-0,43		-0,52	-0	-0,84		-1,0		-1,2 -1,9	
Размер	под ключ Sı	-	12	14	17	22	27	32	41	50	60	70
Отклон	ение	-	ł	-0,43	•	-0,		84 -1,0			-1,2	-1,9
Высота	головки <i>k</i>	4	5,5	7	8	10	13	15	19	23	25	30
Отклон	Отклонение		,24	' ' ' ' '			±0,	42				
Высота	Высота головки k_1		5	6	7	9	11	13	17	20	23	26
Отклон	Отклонение		±),24	±c	,29		±0,35	•	±0,42		

Продолжение табл. 6	Про	лолжение	табл.	6
---------------------	-----	----------	-------	---

Резьба $d = d_1$ 6		8	10	12	16	20	24	30	36	42	48		
Диаметр описан- ной окружности, не менее:													
e	10,9	14,2	17,6	19,9	26,2	33,0	39,6	50,9	60,8	71,3	82,6		
e_1	-	13,1	15,3	18,7	23,9	29,6	35,0	45,2	55,4	66,4	76,9		
d_2	2 2,5			3,2		4	1	5					
Отклонение		+0,4			+0,48								
ℓ_1	2	2,8	3,5	4	5	6,5	7,5	9,5	11,5	13	15		
Отклонение	±c	,2		±0,24 ±0,29 ±0,35									
	Смещение оси головки относительно оси стержня												
по ГОСТ 7798-70	0,36	0,36 0,43			0,52		0,62		0,74				
по ГОСТ 7796-70	по ГОСТ 7796-70 - 0,43		0,43		0,	52	0,62			0,74			

ГОСТы предусматривают другие исполнения, варианты исполнений и нерекомендуемые диаметры и длины болгов.

Болты, для которых длина резьбы *b* (табл. 8) расположена над ломанной линией, допускается изготовлять с длиной резьбы до головки: это допущение распространяется только на болты по ГОСТ 7798-70 и ГОСТ 7796-70.

Пример обозначения болта исполнения 1, диаметром резьбы d=12 мм, с размером под ключ S=18 мм, длиной $\ell=60$ мм с крупным шагом резьбы, с полем допуска 6g, класса прочности 5.8, без покрытия:

Болт M12-6g × 60.58 (S18) ГОСТ 7798-70

то же исполнение 3, с размером под ключ S=19 мм, с мелким шагом резьбы, с полем допуска 6g, класса прочности 10.9, из стали 40X, с покрытием 01 толщиной 6 мкм:

Резьба - по ГОСТ 24705-81. Сбег и недорез резьбы - по ГОСТ 27148-86.

По соглашению с изготовителем допускается производить болгы с полем допуска 4h, бе и бd.

По ГОСТ 7796-70 допускается изготовлять болты исполнения 1 с высотой головки, равной k. Технические требования - по ГОСТ 1759.0-87.

7. Длины болтов ℓ и резьбы b при d=1,6-5 мм (ГОСТ 7805-70)

Размеры, мм

	<i>b</i> * при <i>d</i>								•	b* nj	ри <i>d</i>		
	1,6	2	2,5	3 -	4	5		1,6	2	2,5	3	4	5
2		-	-	•	-	-	4					-	-
3	×	×	×	-	-	-	6	×	×	×	×	×	×

Продолжение табл. 7

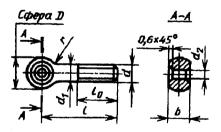
ℓ		······	<i>b</i> * п	ри <i>d</i>			ℓ			<i>b</i> * π	ри <i>d</i>		
	1,6	2	2,5	3	4	5		1,6	2	2,5	3	4	5
8							35						
	×	×	×	×	×	x	4 0			1			
10		1					45					14	
12	9	×	×	×	×	×	50						
14	9	10	11	12	×	×	55	- :	-	-	-	14	16
16	-	10	11	12	14	×	60					14	
20							65					-	
	-	-	11	12	14	16	70					-	
25							75			}		-	
30	-	-	-	12	14	16	80		<u> </u>		<u> </u>	-	

^{*} Знаком × отмечены болты с резьбой на всей длине стержня.

Длина для болгов d свыше 5 мм приведена в табл. 8.

8. Длины болтов ℓ и резьбы b (ГОСТ 7798-70, 7796-70, 7808-70, 7805-70*) Размеры, мм

· ·	Д	лина ре	зьбы <i>b</i> п	ри <i>d</i> (зн	аком ×	тмечен	ы болты	с резьбо	й по вс	ей длине	>)
	6	8	10	12	16	20	24	30	36	42	48
8	×	×	-	-	-	-	_				
10	×	×	×	-	-	-	-				
12	×	×	×] -	-	-	-				
14	×	×	×	×	-	-	-				
16	×	×	×	×	-	-	-	-	-	-	-
20	×	×	×	×	×	-	-				
25	18	×	×	×	×	×	-				
30	18	22	×	×	×	×	-				
35	18	22	26	30	×	×	×	}			
40			26	30	×	×	×	×	-	-	-
45				30	38	×	×	×	-	~	-
50			ļ		38	×	×	×	×	-	-
55	18	22	1	1	38	46	×	×	×	×	-
60	}	[26			46	×	×	×	×	-
65	1			30			54	×	×	×	×
70			}	}	38	46	<u> </u>	×	×	×	×
75				}		} '`	54	66	×	×	×
80								66	×	×	×


Продолжение табл. 8

ℓ	Д	Јлина ре	зьбы <i>b</i> і	іри <i>d</i> (зі	таком ×	отмечен	ы болты	с резьб		ей длин	
	6	8	10	12	16	20	24	30	36	42	48
90	18								78	×	×
100		22							78	×	×
110]		1	ł]]	78	90	
120] .		26	30	38	46	54	66	- <u>'</u> -		×
130									Ì	}	
140		ŀ					İ		78	90	102
150											
160											
170	- :	-				Ì					
180			32				ļ				
190]				}				
200			<u></u>	36							
220					44	52	60	72	84	96	108
220			}								
240											
260											
280											
300											

^{*} Для ГОСТ 7805-70 длины болтов при $d=1,6\dots 5$ мм в табл. 7.

9. Откидные болты (ГОСТ 14724-69)

Размеры, мм

Обозначен и е болтов	d	l	D	d_1	d ₂ (откло- нение по D11)	<i>b</i> (откло- нение по d11)	нор- маль- ная	0 увели- ченная	r	Δ*1	Мас- са *2, кг
7002 - 0557		40						25			0,011
0558		50									0,013
0559	M6	60	12	6	6	8	20	35	4	0,3	0,015
0560		70									0,017

Продолжение табл. 9

											14001.)
					d_2	b	l	0			Mac-
Обозначение болтов	d	l	D	d_1	(откло- нение по D11)	(откло- нение по d11)	нор- маль- ная	увели- ченная	r	Δ*1	ca *2, Kr
7002 - 0562		50						35			0,024
0563		60						45			0,028
0564	M8	70	16	8	8	10	25	45	4	0,3	0,032
0565		80	·					55			0,036
0566		90						55			0,040
0567		100						55			0,044
7002 - 0569		60						50			0,048
0570		70						50			0,054
0571		80						60			0,060
0572	M10	90	20	10	10	12 .	30	60	4	0,4	0,066
0573		100						70			0,073
0574		110						70			0,079
0575		125						70			0,088
7002 - 0577		70						55			0,068
0578		80						65			0,077
0579		90						65			0,086
0580		100			•			75	;		0,094
0581	M12	110	20	12	10	14	40	75		0,4	0,103
0582		125		:				75			0,117
0583		140						90			0,130
0584		160						90			0,148
7002 - 0586		80						-	6		0,151
0587		90						65			0,167
0588		100					ļ	75			0,183
0589	M16	110	28	16	12	18	50	75		0,5	0,198
0590		125						75			0,222
0591		140						90			0,246
0592		160						110			0,277
0593	<u> </u>	180						110			0,309

Продолжение табл. 9

0					d_2	b		² 0			Mac-
Обозначение болтов	d	l	D	<i>d</i> ₁	(откло- нение по D11)	(откло- нение по d11)	нор- маль- ная	увели- ченная	r	Δ*1	ca ^{™2} , KT
7002 - 0596		100						80			0,291
0597		110						80			0,316
0598		125						80			0,353
0599	M20	140	34	20	16	22	50	95	6	0,6	0,390
0600		160						110			0,435
0601		180						110			0,485
0602		200						110			0,534
7002 - 0607		125	-				60	80			0,509
0608		140					60	95		i	0,563
0609	M24	160	42	24	20	25	70	110	10	0,7	0,628
0610		180					70	110			0,699
0611		200				:	70	110			0,770
0612		220					70	110			0,841

^{*1} Допускаемое смещение оси головки относительно оси отверстия.

ГОСТ 14724-69 предусматривает и другие размеры.

Материал - сталь 45. Твердость - 34,5 ... 39,5 HRC_э.

Покрытие - Хим. Окс. прм (обозначение покрытия по ГОСТ 9.306-85). Допускается применение других видов защитных покрытий.

Неуказанные предельные отклонения размеров: валов h14, остальных $\pm \frac{t_2}{2}$.

Допуск перпендикулярности оси отверстия в головке к оси стержня болта - по 12-й степени точности ГОСТ 24643-81.

Резьба метрическая - по ГОСТ 24705-81, поле допуска резьбы 6g - по ГОСТ 16093-81.

Остальные технические требования - по ГОСТ 1759.0-87.

Пример обозначения откидного болта с нормальной длиной резьбы ℓ_0 , d=M6, $\ell=50$ мм:

Болт 7002-0558 ГОСТ 14724-69

то же с увеличенной длиной резьбы ℓ_0 :

Болт 7002-0558 У ГОСТ 14724-69

^{*2} Для болтов с нормальной длиной резьбы.

Болты к станочным обработанным пазам (ГОСТ 13152-67 в ред. 1990 г.)
 в болты быстросъемные к станочным пазам (ГОСТ 12201-66 в ред. 1990 г.)

Размеры, мм

	Janyckaenwi Bapuamm zanobku D=H	99	Macca, KT	0,037 0,044 0,050 - 0,056	0,073
	donyck	12201-	υ	1,5	1,5
99		FOCT 12201-66	В	10	12
FOCT 12201-66	©		ξ1	30	40
TOCT	L (1)	67	Масса, кт	0,040 0,046 0,051 0,057 0,063 0,070 0,070	0,076 0,086 0,095 0,103 0,112
		FOCT 13152-67	b (отклоне- ние по h12)	18	22
			3	30 30 32 32 32 32 32 32 32 32 32 32 32 32 32	00 00 04 00 00 04 04 04 04
		2.7		1,0	
		ų		7	∞
	2 2	H = Q		25	28
	Исполнение 2	7		50 50 50 50 50 50 50 50 50 50 50 50 50 5	3 6 2 8 8 9
79-7	₹ J	P		M 10	M 12
TOCT 13152-67	2 2	Ширкна станоч-	ного паза	12	14
	Исполнение 1 $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$	Обозначение болтов по ГОСТ	12201-66	7002 - 0355 0356 0357 - 0358	0360
	MCITO MCITO	Обозначение б по ГОСТ	13152-67	7002 - 2489 *1 2493 2497 2501 2502 2507 2509 7002 - 2519	2523 2527 2527 2531 2533 2533

						ĺ								
Обозначение болгов по ГОСТ	не болтов ЭСГ	Ширина станоч-	ď	T	H=Q	Ŋ	7.7		FOCT 13152-67	-67		rocr	FOCT 12201-66	99
13152-67	12201-66	ного						з	<i>b</i> (отклоне- ние по h12)	Масса, кт	ℓ_1	В	ပ	Масса, кт
7002 - 2537	,			110				\$		0,121				1 :
2539	- 0007	14	M17	125	28	œ	0.1	5 4	22	00,10	40	12	1,5	0,129
2541	5000 - 7007	1		8 4)	(0,0)	5 4 4		0,138				. ()
7002 - 2551	7002 - 0365			8				35		0,148				0,142
2555	,			70				35		0,164				1 1
2559	0366			80				20		0,180				0,175
2561	,			26				S 5		0,193				3000
2563	0367			9 5			-	S S		0,203				0,200
2567		18	M16	150	36	10	1,0	20	28	0,240	20	16	7	ı
1	0368			125				20		,	_			0,245
2569	,			130			_	20		0,256				1
2571	,			5 5				20		0,272				0 283
2573	0369			150				2 5		0,200				, to 2, o
2575	0370			180				ર જ		0,335				0,332
7002 - 2589	7002 - 0372			80				40		0,303				0,296
2591	,			8				20		0,324				1 6
2593	0373			100				2, 50		0,349				0,344
2927	1 1			120				205		0,398				,
-	0374	22	M20	125	42	14	1,0	20	34	, !	09	70	2,5	0,406
2599	1			130				20		0,423				,
2601	,			140				20		0,447				1 4
2603	0375			150				20		0,472				0,468
2605				00 5				3 :		0,437				240
2607	0376			180 200 200 200 200 200 200 200 200 200 2				2 E		0,540				0,540 -
5097	•			3				3						

0
_
ragn.
9
Ě
¥
ᅙ
ρg
Ë

Обозначен по Г	Обозначение болгов по ГОСТ	Ширина станоч-	P	7	D = H	"	2,1		FOCT 13152-67	19-		roct	FOCT 12201-66	9
13152-67	12201-66	ного	1	1	1	:		8	b (отклоне- ние по h12)	Масса, кт	ℓ_1	В	ပ	Масса, кт
7002 - 2617	ı			96				09		0,554				'
2619	7002 - 0379			100				09		0,589				0,520
2621	1			110				09		0,625				,
2623	ı			120				09		0,660				1
1	0380			125		_		09		1				0,604
2625	ı	28	M24	130	55	18	1,6	09	44	969'0	75	24	2,5	ı
2627	1		-	140			_	99		0,731				r
5629	0381			150				99		0,767				0,697
2631	1			160			_	09		0,802				,
2633	0382			180				80		0,862				0,802
7002 - 2635	,			700				80		0,933				,

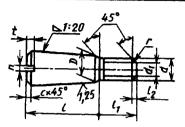
*! Приведены обозначения для исполнения 1; обозначение для исполнения 2 - спедующее четное число, например: 7002-2489 для исполнения 1 при $d={
m M}10$ и L=40; 7002-2490 для исполнения 2 при $d={
m M}10$ и L=40. *2 Размеры г в скобках - для болгов быстросъемных по ГОСТ 12201-66. ГОСТ 13152-67 предусматривает d = M8 ... M18, L = 25 ... 400 мм; ГОСТ 12201-66 предусматривает d = M8 ... M30, L = 32 ... 360 мм. Материал болгов - сталь 35 по ГОСТ 1050-88. Твердость 35 ... 40 НКС₃. Допускается замена на сталь других марок по механическим свойствам не ниже, чем у стали 35.

Механические свойства болгов должны соответствовать классу прочности 8.8 по ГОСТ 1759.4-87.

Неуказанные предельные отклонения размеров: h14, $\pm rac{l_2}{2}$.

Резьба метрическая - по ГОСТ 24705-81, поле допуска резьбы 6g - по ГОСТ 16093-81. Покрытие - Хим. Окс. прм (обозначение по ГОСТ 9.306-85)

Примеры обозначений:


Boam 7002-2489 FOCT 13152-67 болта к пазам станочным исполнения 1, $d={
m M}10$ и L=40 мм:

болта быстросъемного d = M10 и L = 40 мм:

Bonm 7002-0355 FOCT 12201-66

11. Болты конические повышенной точности (ГОСТ 15163-78)

Размеры, мм

Резьба метрическая по ГОСТ 24705-81.

Номинальні резьб		4	5	6	8	10	12	16
Шаг резьбы	крупный	0,7	0,8	1	1,25	1,5	1,75	2
PP	мелкий	-		-	1	1,25	1,25	1,5
D (пред. отк r	г. по h10)	5	6	8	10	12	14	20
d_1 (пред. отк	п. по h14)	2,5	3,5	4,0	5,5	7,0	8,5	12,0
ℓ_1 (пред. отк	т. по j _s 15)	12	14	16	18	20	25	30
ℓ_2 (пред. отк	т. по Н15)	1,0	1,2	1,5	2,0	2,5	3,0	4,0
п (пред. откл	. по Н15)	1,0	1,2	1,6	2,0	2,5	3,0	4,0
t	Не менее	1,2	1,5	1,8	2,3	2,7	3,2	4,0
	Не более	1,6	2,0	2,3	2,8	3,2	3,8	4,6
с		0,8	1,0	1,2	1,6	1,6	1,6	2,0
r		0,3	0,3	0,4	ზ,4	0,5	0,6	0,8
ℓ * (пред. отк	л. по Н15)	20 - 63	20 - 71	25 - 80	30 - 80	30 -	90	40 - 100
Отклонение от ти резьбы от конусной час	носительно	0,	20		0,2	.5		0,30
Отклонение ричности ши сительно части		0,	35		0,4	:5		0,50

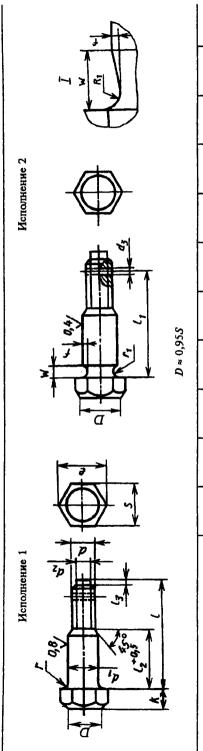
^{*} ℓ брать из ряда: 20; (22); 25; (28); (30); 32; (36); 40; (45); 50; (56); 63; 71; 80; (90); 100. Болты с размерами длин, заключенными в скобки, применять не рекомендуется.

 Π р и м е р обозначения болта с диаметром резьбы d=12 мм с крупным шагом резьбы, с полем допуска 6g, длиной конусной части $\ell=50$ мм, класса прочности 5.8, без покрытия:

BOAM M12-6g × 50.58 FOCT 15163-78

То же с мелким шагом резьбы, с полем допуска 6g, класса прочности 10.9, с покрытием 01, толщиной покрытия 3 мкм:

Boam M12 × 1,25-6g × 50.109.013 **FOCT** 15163-78


Допускается по согласованию между изготовителем и потребителем изготовлять: болты со сферическим концом (высотой сферической части, равной величине фаски с); болты без шлица; болты с контровочным отверстием на конце.

Технические требования - по ГОСТ 1759.0-87.

Механические свойства должны соответствовать классам прочности 5.8 - 12.9 для болгов из углеродистых и легированных сталей и группам 23 - 26 для болгов из жаропрочных коррозионно-стойких сталей (ГОСТ 1759.0-87).

12. Болты класса точности А с шестигранной уменьшенной головкой для отверстия из-под развертки (ГОСТ 7817-80)

Размеры, мм

Диаметр	Диаметр резьбы d	9	8	10	12	16	20	24	30	36	42	48
Шаг резьбы	крупный	1	1,25	1,5	1,75	7	2,5	3	3,5	4	4,5	5
	мелкий	-	1	1,25	1,25	1,5	1,5	7	7	3	3	3
Диаметр стержня d_1		7	6	11	13	17	21	25	32	38	44	20
Размер под ключ S		10	12	14	17	22	27	32	41	20	9	70
Высота головки к		4	5,5	2,0	8,0	10	13	15	19	23	76	98
Диаметр описанной окружности менее	окружности е, не	11,0	13,2	15,5	18,9	24,5	30,2	35,8	45,9	56,1	67,4	78,6
Диаметр болга ф		4,0	5,5	7,0	8,5	12,0	15,0	18,0	23,0	28,0	33,0	38,0
Длина конца болта ℓ_3 $pprox$	u e	1,5	1,5	2,0	2,0	3,0	4,0	4,0	5,0	0,9	0,7	8,0

~`
~
_
c)
7
~
H
o.
-
-
77
o.
₩.
75
=
2
O
=
~
0
Õ.
-
_
-

Диаметр резьбы d	езьбы d	9	8	10	12	16	20	24	30	36	42	84
Диаметр отверстия d_3		1,6	2,0	2,5	3,2	4,0	4,0	5,0	6,3	6,3	8,0	8,0
Радиус под головкой г		0,25	0	0,4	O	9,0	8,0	8	1,	1,0	1,2	1,6
Радиус канавки л		6,3	0	0,5				1,0				
Глубина канавки ƒ		°°	0,15					0,25				
Ширина канавки W		1,0	1,6	2,0				3,0	0			
Отклонение от 1 стержня и отверстия	пересечения осей	0,18	O O	0,22	o o	0,27		0,33			0,39	
o CI	резьбовой части относительно оси стержия		0,22		0,27		0,	0,33		0,39	66	
предельно ски	головки относи- тельно оси стержня	0,22		0,27		0	0,33		0,39		ó	0,46

1	<i>t</i> ₂	1						,				1	ı	,			1	20	اه
84						<u> </u>													09 0
	61	, , , , , , , , , , , , , , , , , , ,	<u>'</u>	۱,		<u>'</u>			<u>'</u>		-		'		<u>'</u>			100	110
42	62	ı	ı	,,,,	1	•	1	1	1	<u>'</u>	1	'	ı	'		1	45	55	65
4	41	ı	ı	ı	1	1	,	t	•	1	ı	· ·			1	1	91	101	Ξ
,,	62	,	ı	t	ı		,	1	ı	1	1		1		35	45	55	9	75
36	ℓ_1	,		ı	1	ı		1	ı		,	1		ı		84	45	104	114
	42	ı		1	,			,	,	ı	1	ı	25	90	40	20	09	70	08
30	ℓ_1	,	ı	ı	ı	ì	1	1	,	,	,	ı	1	ı	9/	98	96	106	116
	62		1	,	,	,	,	,	1	22	27	32	37	42	52	79	65	75	85
24	<i>ε</i> ₁	,		1		,	1	1		1	ι	59	49	69	79	68	66	109	119
	62	,		,	1	1		,	23	78	33	38	43		- 28	89	72	82	92
20	<i>e</i> ₁	_	1	t	,	,	1	1	1	20	55	- 09	9	02	 &	8	100	110	120
	62	,	1	r	,		17	77	27	32	37	42	47	52	62	72	78	88	8
16	61	1	1	1	ı	,	ı	41	46	51		61		71	81	91	101	111	121
	£2	-	1	,	13	18	23	78	33	38	43	48	53	28	89	78	82	92	102
12	61	-		,	ı	33	38	45	84	53	58	63	89	73	83	93	103	113	123
	<i>k</i> ₂	<u> </u>		,	17	70	25	98	35	40	45	50	55	9	70		85	95	
10	61	-	1	1	29,5	34,5	39,5	44,5	49,5	54,5	59,5	64,5	5,69	74,5	84,5	94,5	104,5	114,5	-
	 			· · ·															
∞	62	<u> </u>	<u>'</u>	15	70	22	23	32	37	42	47	52	57	62		-			1
	61	,		24,5	29,5	34,5	39,5	44,5	49,5	54,5	59,5	64,5	69,5	74,5	,	١	'	ı	1
9	62	∞	13	18	23	25	30	35	40	45	50	55	09	1	'	ı		1	1
	61	'	19,5	24,5	29,5	34,5	39,5	44,5	49,5	54,5	5,65	64,5	5,69	1	,	1	1	ı	1
Диаметр резьбы <i>d</i>	Длина болга в	20	25	30	35	40	45	50	55	09	59	70	75	80	8	100	110	120	130

48	£2	70	08	8	100	110	120	130
4	<i>ε</i> 1	120	130	140	150	160	170	180
42	62	75	85	95	105	115	125	135
4	ℓ_1	121	131	141	151	161	171	181
36	42	85	95	105	115	125	135	145
3	ℓ_1	124	134	144	154	164	174	184
30	42	90	100	110	120	130	140	150
3	ℓ_1	126	136	146	156	166	176	186
4	62	95	105	115	125	135	145	155
24	ℓ_1	129	139	149	159	169	179	189
0	62	102	112	122	132	142	152	162
20	ℓ_1	130	140	150	160	170	180	190
16	ℓ_2	108	118	128	138	148	158	168
	ℓ_1	131	141	151	161	171	181	191
12	ℓ_2	112	122	132	142	152	,	_
1	ℓ_1	133	143	153	163	173	1	-
10	62	1	1	1	1	t	t	_
1	ℓ_1	1	ı	1	ı	'	ı	ı
∞	73	-	1	ı)	ı	ı	ı
	41		ı	1	ı	1	1	1
9	62	ı	,	,	. 1)	ı	1
	٤1		1	ı	1	1	ı	ı
Диаметр резьбы <i>d</i>	Длина болта в	140	150	160	170	180	190	200

ГОСТ препусматривает исполнения болгов 1а и 2а без отверстия под шплинт, нерекомендуемые d и ℓ, а также свыше 200 мм.

Предельные отклонения размеров: d_1 - по h9 для исполнения 1 и по k6 для исполнения 2;

 $S \le 32$ - no h13 k S > 32 - no h14; k - no j_s14; ℓ_1 - no +IT14;

 d_2 - по h14; r, r, f и W - по h11; d_3 - по H14; ℓ - по js15. Пример обозначения болга исполнения 1 диаметром резьбы d=12 мм с крупным шагом резьбы, с полем допуска 6g,

Boam M12-6g × 60.58 FOCT 7817-80

длиной $\ell = 60$ мм, класса прочности 5.8, без покрытия:

То же исполнения 2, диаметром резьбы 12 мм с мелким шагом резьбы, с полем допуска 6g, длиной $\ell=60$ мм, класса прочности 10.9, из стали 40Х, с покрытием 01 толщиной 9 мкм:

BOAM 2M12 x 1,25-6g x 60.109.40X.019 FOCT 7817-80

Резьба - по ГОСТ 24705-81, недорез резьбы - короткий по ГОСТ 10549-80. Технические требования - по ГОСТ 1759.0-87.

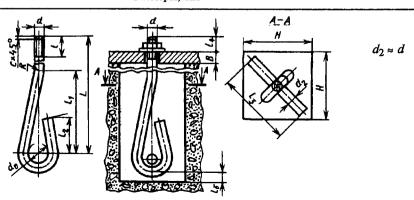
Цопускается наличие на торцах болтов центровых отверстий.

13. Болты фундаментные (ГОСТ 24379.1-80)

Размеры, мм

Тип 1, исполнение 2	Номи- нальный диаметр резьбы <i>d</i>	L	ℓ_0	ℓ_1	ℓ_2	R	с	Масса, кг
→ d /	12	300 400 500	80	100	50	12	1,6	0,35 0,44 0,52
(cx45°	16	300 400 500	90	130	60	16	2	0,66 0,82 0,97
	20	400 500 600	100⁄	160	80	20		1,32 1,57 1,81
	24	500 600 710	110	200	100	24	2,5	2,35 2,71 3,10
5 (R	30	600 710 800	120	250	120	30		4,55 5,16 5,66
12	36	900 710 800 900	130	300	140	36	3	6,22 7,59 8,31 9,10
		1000	L				<u> </u>	9,91

Стандарт распространяется на фундаментные болты диаметром резьбы 12 ... 140 мм и предусматривает изготовление болтов шести типов.


Пример условного обозначения болта типа 1, исполнения 2, диаметром резьбы d=20 мм, длиной L=500 мм, из стапи BCт3пc2:

Болт 1.2.M20 × 500.BCm3nc2 ГОСТ 24379.1-80

Резьба - по ГОСТ 24705-81, поле допуска 8g - по ГОСТ 16093-81. Общие технические условия - по ГОСТ 24379.0-80.

14. Фундаментные болты с закладным стержнем и колодцем

Размеры, мм

Продолжение табл. 14

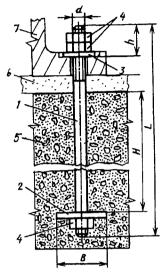
Номи- нальный диаметр резьбы шпильки d	12	16	20	24	27	30	36	42	48
	25	30	35	45	50	55	60	70	80
l	2 5	30	35	45	50	55	60	65	70
ℓ_1	100	120	140	180	200	220	250	280	320
ℓ_2	40	50	60	70	80	90	100	120	150
R	16	18	20	22	24	26	28	30	32
c	1,6	2	2	2,5	2,5	2,5	3	3	4
$L_{\rm i}$ *1	165	200	230	290	330	370	410	450	500
ℓ_3	90	100	110	120	130	140	150	160	170
ℓ_5	20	20	20	20	30	30	30	30	30
ℓ_4	16	20	25	30,	34	36	42	48	50
H	80	90	100	110	120	130	140	150	160
В	100 - 150	100 - 150	100 - 150	100 - 200	100 - 250	150 - 300	250 - 350	300 - 450	350 - 500
P*2 _{max} , H	17 000	26 000	41 000	60 000	78 000	96 000	140 000	203 500	285 000
L*3	200 - 300	250 - 600	300 - 800	350 - 1000	500 - 1000	600 - 1200	800 - 1400	1000 - 1500	1200 - 1500

 $^{^{*1}}$ L_1 - длина развертки крючка болга.

Материал фундаментных болгов и закладных стержней - сталь 35.

Допускается изготовление фундаментных болгов из калиброванного проката по ГОСТ 7417-75, а также из других материалов, механические свойства которых не ниже механических свойств стали 35. В этом случае допускаемая нагрузка на болт $P_{\text{доп}}$ должна быть рассчитана конструктором.

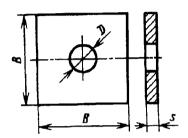
Резьба - по ГОСТ 24705-81; поле допуска 8g - по ГОСТ 16093-81.


^{*2} Ртах - допускаемая нагрузка на болт.

 $^{^{*3}}$ Размер L в указанных пределах брать из ряда: 200; 250; 300; 350; 400; 500; 600; 800; 1000; 1200; 1400; 1500.

15. Фундаментные болты с анкерной плитой (по ГОСТ 24379.1-80)

Размеры, мм


Тип 2, исполнение 1

Болты устанавливают ДΟ бетонирования фундаментов. 1 - шпилька резьбовая; 2 - плита анкерная; 3 -

шайба; 4 - гайка по ГОСТ 5915-70; 5 фундамент; 6 - подливка; 7 - оборудование.

Плита анкерная

Номинальный диаметр резьбы шпильки <i>d</i>	16	20	24	30	36	42	48
h	40	50	60	70	80	90	100
<i>H</i> , не менее	250	300	350	450	550	650	750
L *	300 - 1250	400 - 1400	500 - 1700	600 - 2000	710 - 2300	800 - 2500	900 - 2800
S	14	16	18	20	20	25	28
D H17	22	26	32	38	45	50	60
В	65	80	100	120	150	170	190
Масса плиты, кг	0,42	0,74	1,30	2,10	3,28	5,29	7,31

Размер L в указанных пределах выбирать из ряда: 300; 400; 500; 600; 710; 800; 900; 1000; 1120; 1250; 1320; 1400; 1500; 1600; 1700; 1800; 1900; 2000; 2120; 2240; 2300; 2500; 2650; 2800.

Методика расчета фундаментных болтов. 1. Фундаментные болты рассчитывают на учетом предварительной растяжение затяжки, характеризуемой коэффициентом 1,35, по уравнению

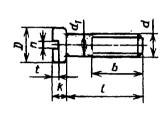
$$1,35P = \frac{\pi d_1^2}{4}\sigma_p.$$

2. Внутренний диаметр резьбы болга d_1 определяют по формуле

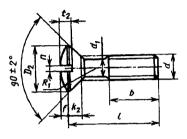
$$d_1 = 1.31 \sqrt{\frac{P}{[\sigma_p]}},$$

где P - полная сила, растягивающая болт, [σ_р] - допускаемое напряжение растяжение материала болга, МПа.

бетон закладки болта принимают равной 15 - 20 диаметрам болга, что обусловливает равнопрочность его при работе на разрыв и на выдергивание из бетона.

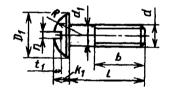

винты

16. Винты классов точности А и В

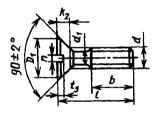

Винты с цилиндрической головкой (ГОСТ 1491-80), с полукруглой головкой (ГОСТ 17473-80), с полупотайной головкой (ГОСТ 17474-80), с потайной головкой (ГОСТ 17475-80).

Размеры, мм

ΓΟCT 1491-80



ГОСТ 17474-80 Исполнение 1



$$d = 1 \dots 20 \text{ mm}; \quad d_1 = d$$

ГОСТ 17473-80 Исполнение 1

ГОСТ 17475-80 Исполнение 1

$$d = 1 \dots 20 \text{ mm}; \quad d_1 = d$$

Pe	зьба <i>d</i>	2	2,5	3	4	5	6	8	10	12	16
Шаг	крупный	0,4	0,45	0,5	0,7	0,8	1,0	1,25	1,5	1,75	2,0
резьбы	мелкий	-	-	-	-	-	-	1,0	1,25	1,25	1,5
), D ₁	3,8	4,5	5,5	7,0	8,5	10	13	16	18	24
	D_2	3,8	4,7	5,6	7,4	9,2	11,0	14,5	18,0	21,5	28,5
	k	1,3	1,6	2,0	2,6	3,3	3,9	5,0	6,0	7,0	9,0
	k_1	1,4	1,7	2,1	2,8	3,5	4,2	5,6	7,0	8,0	11
k2, н	е более	1,2	1,5	1,65	2,2	2,5	3,0	4,0	5,0	6,0	8,0
	f	0,5	0,6	0,75	1,0	1,25	1,5	2,0	2,5	3,0	4,0
	R	2,0	2,4	2,9	3,6	4,4	5,1	6,6	8,1	9,1	12,1
	R_1	4,2	5,4	6,0	8,0	9,4	12	15	19	22,5	30
<i>t</i> ,	не менее	0,6	0,7	0,9	1,2	1,5	1,8	2,3	2,7	3,2	4,0
-7	не более	0,85	1,0	1,3	1,6	2,0	2,3	2,8	3,2	3,8	4,6
<i>t</i> ₁ ,	не менее	0,75	0,9	1,0	1,6	2,1	2,3	3,26	3,76	3,96	4,76
-1,	не более	1,05	1,3	1,4	2,0	2,5	2,7	3,74	4,24	4,44	5,24

Pe	езьба <i>d</i>	2	2,5	3	4	5	6	8	10	12	16
t ₂ ,	не менее	0,8	1,0	1,2	1,6	2,0	2,4	3,2	4,0	4,8	6,4
- 27	не более	1,0	1,2	1,45	1,9	2,3	2,8	3,7	4,5	5,4	7,2
t3,	не менее	0,4	0,5	0,6	0,8	1,0	1,2	1,6	2,0	2,4	3,2
- 37	не более	0,6	0,73	0,85	1,1	1,35	1,6	2,1	2,6	3,0	4,0
n	не менее	0,56	0,66	0,86	1,06	1,26	1,66	2,06	2,56	3,06	4,07
*	не более	0,70	0,8	1,0	1,2	1,51	1,91	2,31	2,81	3,31	4,37

17. Длины винтов по ГОСТ 1491-80, ГОСТ 17473-80, ГОСТ 17475-80 Размеры, мм

l	Длин	а резьбі	ы <i>b</i> при	d (знак	ом × от	мечены не ме	винты с нее	резьбо	й на все	й длине	е стержі	ня),
	2	2,5	3	4	5	6	8	10	12	16	18	20
3				•	-							
4				×	-							
5				×	-	-						
6				×	×							
8	×	×	×				-	-	-	-	-	-
9				×	×	×						
10												
11												
12	×	×	×	_ ×	×			-	-			
14	10	11	×	×	×	×	x	-	•			
16	10	11	12	×	×			-	-			
20	10	11	12	14	16			×	×			
25		11	12				×	×	×	-		
30		-	12	14	16		22	×	×	×		
35		-	-	(22)	(25)		22	26	30	×		
40		-	-				22	26	30	×		
45					16	18						}
50			.		16	(28)	}					
55	~				-		Ì					
60		-	-	-	<u> </u>		22	26	30	38	42	46
65							(34)	(40)	(46)	(58)	(64)	(70)
70					-	-	,					
75												
80		L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>

В скобках приведена удлиненная длина резьбы, которая является предпочтительной.

18. Дляны внятов по ГОСТ 17474-80

Размеры, мм

l	Длина г	оезьбы <i>b</i>	при <i>d</i> (зн	аком × с	тмечены не м		резьбой	на всей)	плине сте	ржня),
	2	2,5	3	4	5	6	8	10	12	16
3		-	-	-	-					1
4 5 6		×	×	~	-	-	-			!
2		×	×	×	-		-			
	×	×	×	×	×			-	-	
					. [-			
9		×	×	×			-			
10							×			_
11					· ×	×	×			
12	X 10	×	×	×					-	į
14	10	X	×	×			×	×	-	ļ
16	10 10	11	12	× 14					×	
20	10	11							×	
25	ļ	11	12	14 14			×	X		
30	l	-	12	14			× 22	×		×
35	1	_	_	14			22	× 26	×	×
40	-	<u> </u>		14				20		
45		{			16	18			l	×
50 55	_		{		10	10			1	×
55	-	ł				-]	× 38
60	-	İ	1				22	26	30	- 30
65	1	_	_	1 -	1		22	20	30	1
70 75		1	}	į						38
80		Ì	,	1				1	ļ	1

ГОСТы предусматривают также другие исполнения, нерекомендуемые диаметры и длины, $d=1\dots 1.6$ мм; d=20 мм; $\ell=90\dots 120$ мм, а также "удлиненную" длину резьбы.

Диаметр d_1 равен наружному диаметру резьбы или диаметру стержня под накатывание

метрической резьбы по ГОСТ 19256-73.

Пример обозначения винта класса точности A, диаметром резьбы d=12 мм, с крупным шагом резьбы, с полем допуска 6g, длиной $\ell=50$ мм, класса прочности 5.8, без покрытия:

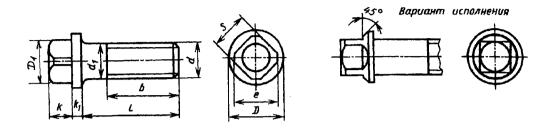
Винт А.М12-6g × 50.58 ГОСТ 1491-80

То же, с мелким шагом резьбы, класса прочности 10.9, из стали 40X, с покрытием 01 толшиной 9 мкм:

Винт A.M12 × 1,25 - 6g × 50.109.40X.019 ГОСТ 1491-80

Резьба - по ГОСТ 24705-81. Сбег и недорез резьбы - по ГОСТ 10549-80.

Технические требования - по ГОСТ 1759.0-87.


Предельные отклонения размеров винтов приведены в табл. 19.

19. Предельные отклонения размеров винтов

Размеры	Предельные отклонения д	ля классов точности
I asmopa	A	В
1 иаметр стержня d_1	h13	h14
Циаметр головки: <i>D</i>	h12	h14
Диаметр толовки. D	h14	js15
D ₁	h14	-
Высота головки: k	h13 при <i>d</i> ≤ 5	h14
BRICOTA TOTOBRAI.	h14 при d > 5	
· k 1	is14	js15
-	is15	js17
Длина винта <i>l</i>	1	

20. Винты установочные с квадратной головкой и буртиком классов точности А и В (по ГОСТ 1488-84)

Размеры, мм

 $D_1 = (0.90 \dots 0.95)S$

		,					r
Резьба <i>d</i>	5	6	8	10	12	16	20
d_1	5	6	8	10	12	16	20
S	5	7	8	10	12	17	22
k	3,5	5,5	5,5	7	8	10	13
e	6,5	9	10	13	16	22	28
D	7,5	11	14	16	20	25	30
<i>k</i> ₁	2	2	2	3	3	4	5
l		b (знак	× означает р	езьбу по вс	ей длине ст	ержня)	
14	×	×	_	-			
16	×	×	×	-	-	-	
20	16	×	×	×			
25	16	×	×	×			-
30				×	×	-]
35	16	18	22	26	30	-	
40			i	26	30	×	
45	1			26	30	38	
50		18	22	26			×
55		-	-	26	}		46
60	-	-	-	26	30	38	46
65	1	-	-	-			46
70			<u> </u>	-			46

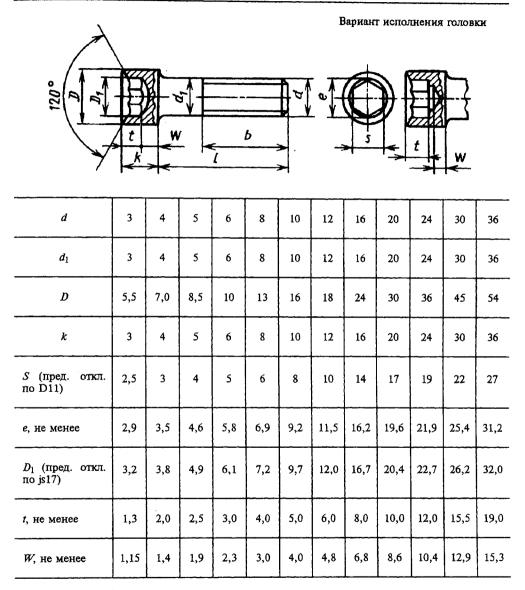
ГОСТ предусматривает ℓ до 110 мм.

Пример обозначения винта класса точности A, диаметром резьбы d=10 мм, с полем допуска 6g, длиной $\ell=25$ мм, класса прочности 14H, без покрытия:

Винт А.М10-6g × 25.14Н ГОСТ 1488-84

То же класса прочности 45H, из стали 40X, с покрытием 01 толщиной 6 мкм:

Винт А.М10-6g × 25.45Н.40Х.016 ГОСТ 1488-84


Резьба - по ГОСТ 24705-81.

Механические свойства винтов из углеродистых и легированных сталей - по ГОСТ 25556-82, из других материалов - по ГОСТ 1759.0-87.

Допуски размеров, отклонений формы и расположения поверхностей по ГОСТ 1759.1-82. Остальные технические требования - по ГОСТ 1759.0-87.

21. Винты с цилиндрической головкой и шестигранным углублением под ключ класса точности A (по ГОСТ 11738-84)

Размеры, мм

ГОСТ предусматривает также нерекомендуемые диаметры резьб.

Пример обозначения винта диаметром резьбы d=12 мм с полем допуска 6g, длиной $\ell=40$ мм, класса прочности 8.8, без покрытия:

Винт М12-6g × 40.88 ГОСТ 11738-84

то же класса прочности 10.9, из стали 40Х, с покрытием 01 толщиной 6 мкм:

Винт M12-6g × 40.109.40X.016 ГОСТ 11738-84

Резьба - по ГОСТ 24705-81. Длины винтов и резьбы приведены в табл. 22.

22. Длины винтов по ГОСТ 11738-84, мм

Длина стержня	Длина	резьбы	<i>b</i> п́ри <i>d</i>	(знаком	× отмеч	іены виі	нты с ре	зьбой на	ь всей дл	шне сте	(кнж
l	4	5	6	8	10	12	16	20	24	30	36
6		-	-	-	~						
8		×	-	-	-		Ì	l			
10	×	×	×	i -	-	-	i -	-	l		
12		×	×	×	-			Ì	ĺ]	
14		×	×	×	×				-	-	
16	×	×	×	×	×	-	_	_			-
20	×	×	×	×	×	×] -	-		1	
25	×	×	×	×	×	×	×	-		Ì	
30	20	22	×	×	×	×	×	×			
35	20			×	×	×	×	×	-	-	1
40	20	22	24	28	×	×	×	×	-	-	}
45	-			28	32	×	×	×	×	×	
50				28	32	36	×	×	×	×	
55		-					×	×	×		×
60			-	28			44	×	×	×	×
65				:		ł	44	×	×		×
70	-	-			32	36	44	52	×		×
75				28					×	×	×
80			- '	28			44	52	×	×	×
90	Ì			-			1		60	×	×
100						·			60	72	×
110	До	пускает	отеи в	товлять	винты	36					×
120	с диам	етром г	тадкой т	части с	гержня	36	j	}		Ì	84
130				стержн		36	44	52	60	72	84
140		пвание : СТ 1925		ской ре	зьбы -	-					84
150	Фо	рма дна	шестиг	ранного	углуб-		44			 	
160	ления произвольная.						44			ł	}
170	Допуски размеров, отклонений					-	} -	52	60	72	84
180	формы и расположения поверхнос					-	-			}	Ì
190	тей - по ГОСТ 1759.1-82.					-	-]		(
200	<u> </u>	···				-					

Технические требования по **FOCT** 1759.0-87.

Механические свойства винтов должны соответствовать классам прочности 8.8 и 12.9. Допускается изготовлять винты с механиче-СКИМИ свойствами, классам прочности 10.9.

соответствующими 5.6; 6.8

23. Винты невыпадающие класса точности В с пилиндрической (ГОСТ 10336-80) и полукруглой (ГОСТ 10341-80) головками

Размеры, мм

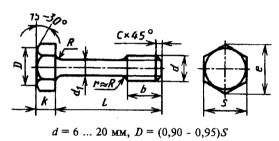
ΓΟCT 10336-80 ΓΟCT 10341-80 Исполнение 1 Исполнение 1 CX45° L Диаметр 2,5 3 4 5 6 8 10 12 резьбы d d_1 1,6 2,0 2,8 3,5 4.0 5,5 7.0 9,0 3 5 b 4 6 8 10 12 16 D 4,5 5,5 7,0 8,5 10.0 13.0 16,0 18,0 Отклонение -0.30-0,36-0,43k 1.6 2,0 2,6 3,9 5.0 3,3 6.0 7,0 Отклонение -0,25-0,30 -0,361,7 2,8 k_1 2,1 3,5 5,6 8,0 4,2 7,0 Отклонение ±0,20 ±0,24 $\pm 0,29$ 0,66 -0,86 -1,06 ~ 1,26 -2,06 -2.56 n 1,66 -3.06 -0,80 1,0 1,20 1,51 1,91 2,31 2,81 3,31 t 0,7 -0,9 -1.5 -1.2 -1,8 -2,3 -2.7 -3,2 -1,3 1,6 2,0 2,3 2,8 1,0 3,2 3,8 0.9 -1,0 -1,6 -2,1 -2,3 -3,26 ~ 3,76 -3,96 t_1 3,74 4,24 1,3 1,4 2,0 2,5 2,7 4,44 2,0 c, не более 0,9 1,0 1,4 1,6 2,5 3,0 3,5 R, не более 0,2 0,4 0,5 0,6 4,4 5,1 6,6 2,4 2,9 3,6 8,1 9,1 R_1 6 - 60 8 - 60 10 - 80 12 - 8022 - 80 22 - 8028 - 80 6 - 18l *

^{*} Размер ℓ в указанных пределах брать из ряда: 6; 8; 10; 12; (14); 16; (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80. Длины винтов, заключенные в скобки, применять не рекомендуется.

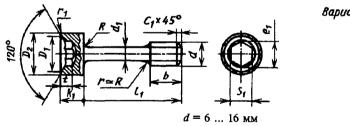
ГОСТ 10336-80 предусматривает также исполнения 2 и 3, ГОСТ 10341-80 - исполнение 2. Пример обозначения винта исполнения 1 диаметром резьбы d=8 мм с полем допуска 6g, длиной $\ell=25$ мм, класса прочности 5.8, без покрытия:

Винт M8-6g × 25.58 ГОСТ 10336-80

То же класса прочности 8.8, из стали 35X, с цинковым покрытием толщиной 9 мкм, $_{\rm xpo-}$ матированным:

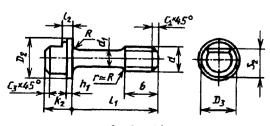

Винт М8-6g × 25.88.35Х.019 ГОСТ 10341-80

Резьба - по ГОСТ 24705-81.


Технические требования - по ГОСТ 1759.0-87.

24. Винты невыпадающие с шестигранной головкой (ГОСТ 10338-80), с цилиндрической головкой и шестигранным углублением под ключ (ГОСТ 10342-80), с лыской под ключ (ГОСТ 10343-80) класса точности В

ΓΟCT 10338-80



ΓΟCT 10342-80

ΓΟCT 10343-80

d = 6 ... 16 MM

Продолжение табл. 24

Размеры, мм

Диаметр резьбы d	6	8	10	12	16	20 *i
d_1	4,0	5,5	7,0	9,0	11,0	14,0
Отклонение	-0,	18	-0,	22	-0,2	27
b	8	10	12	16	20	25
Отклонение	2,0	2,5	3,0	3,5	4,0	5,0
ℓ_2	2,0	2,5	3,0	4,0	5,0	-
Отклонение	±0	,20		±0,	24	-
S	10	13	17	19	24	30
Отклонение	-0,22	-0	,27		-0,33	
S_1	5	6	8	10	14	-
Отклонение	+0	0,3),15		0,4 ,19	+0,05 +0,23	-
S_2	4,5	6,0	7,5	9,0	12,0	-
Отклонение	-0	,18	-0	,22	-0,27	
k	4,0	5,5	7,0	8,0	10,0	13,0
Отклонение	±0	,24		±0,29		±0,43
k_1	6	8	10	12	16	-
Отклонение	-0,30	-(),36	-0	,43	
k ₂	8	10	12	16	20	-
Отклонение	±4),29	±),35	±0,42	-
D_1	6,1	7,2	9,7	12,0	16,7	<u> </u>
D_2	10	13	16	18	24	-
Отклонение *2	-0,22		-0,27		-0,33	-
Отклонение *3	-0,30		-0,43		-0,52	
	6	8	10	12	16	-
Отклонение	-0,18	_	0,22	(),27	-
е, не менее	11,0	14,4	18,9	21,1	26,8	33,6
e_1	5,8	6,9	9,2	11,5	16,2	-
с, не более	2,0	2,5	3,0	3,5	4,0	5,0
<i>c</i> ₁ , не более	2,0	2,5	3,0	3,5	4,0	<u> </u>
с2, не более	2,0	2,5	3,0	4,0	5,0	<u> </u>
					2,0	

ę *5

*l*₁ *5

	m.	\sim	ゕゕ	TTM	FAT	TTTO	ma	F 77	. 24

R, не более	0,4	0	,5	0,6	0,	8			
r_1 или фаска, не более	0,5	0	,8	1,0	1,0	-			
t	3,4	4,4	5,5	6,5	8,5	-			
h, не более	3,7	4,7	6,0	7,2	9,2	-			
Высота буртика h ₁	1,6	2,0	2,5	3,0	4,0	-			
Отклонение		±0	,20		±0,24				
Допуск соосности головки *4 относительно стержня в диаметральном выражении IT14:									
по ГОСТ 10338-80	0,72 0,86 1,04								
по ГОСТ 10342-80	0,72		0,86		1,04	-			
по ГОСТ 10343-80	0	,60	0.	,72	0,86	-			
		T	1	1					

18 - 80

18 - 60

22 - 100

22 - 80

22 - 100

22 - 80

28 - 100

28 - 80

50 - 100

50 - 80

50 - 100

 Π ример обозначения винта диаметром резьбы d=8 мм с полем допуска 6g, длиной $\ell=25$ мм, класса прочности 5.8, без покрытия:

Винт М8-6g × 25.58 ГОСТ 10338-80

то же по ГОСТ 10342-63, класса прочности 8.8, из стали 35X, с цинковым покрытием толщиной 9 мкм, хроматированным:

Винт М8-6g × 25.88.35Х.019 ГОСТ 10342-80

то же по ГОСТ 10343-80:

Винт М8-6g × 25.88.35Х.019 ГОСТ 10343-80

Резьба - по ГОСТ 24705-81, шаг резьбы - крупный. Сбег резьбы - по ГОСТ 10549-80. Технические требования - по ГОСТ 1759.0-87.

Конструктивная особенность и применение невыпадающих винтов. В отличие от крепежных винтов общего назначения диаметр гладкой части стержня невыпадающих винтов равен примерно 0,7 диаметра резьбы.

Невыпадающие винты имеют большое применение в зарубежной практике. Так, кро-

ме невыпадающих винтов с гладким стержнем диаметром меньше внутреннего диаметра резьбы применяют обычные винты с отверстием в стержне и штифтом в нем, как показано на рис. 1.

В отечественном машиностроении невыпадающие винты (рис. 2) наиболее широко

^{*1} По ГОСТ 10338-80.

^{*2} По ГОСТ 10342-80.

^{*3} По ГОСТ 10343-80.

^{*4} По ГОСТ 10342-80 - и шестигранного углубления.

^{*5} Размеры ℓ и ℓ_1 в указанных пределах брать из ряда: (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80; (90); 100. Последние два значения – только по ГОСТ 10338-80; длины винтов, заключенные в скобки, применять не рекомендуется.

ВИНТЫ 673

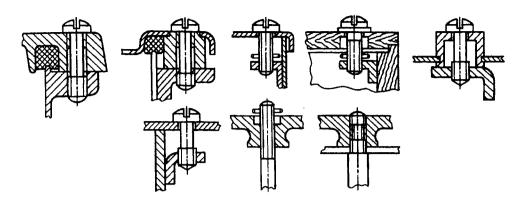


Рис. 1. Примеры применения невыпадающих винтов в зарубежной практике

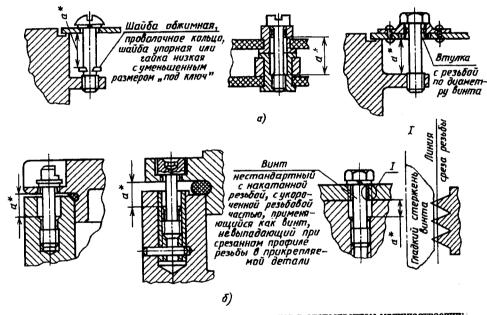


Рис. 2. Примеры применения невыпадающих винтов в отечественном машиностроении: а - при толщине прикрепляемой детали менее двух шагов резьбы винта;

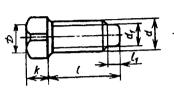
 δ - при толщине прикрепляемой детали более двух щагов резьбы винта

* Размер $a > \ell_0 \; (\ell_0$ - длина резьбы)

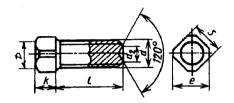
используют в откидных деталях, водонепроницаемых и взрывобезопасных крышках и заглушках, а также при установке приборов, панелей как в комбинации с фиксирующими втулками, так и без них, и в других подобных случаях.

Конструкции и размеры невыпадающих винтов, изображенных в примерах на рис. 2, приведены в табл. 23 и 24. Для невыпадающих винтов с цилиндрической полукруглой головкой (рис. 2) стандарт предусматривает также исполнения головки II и III.

Невыпадающие ванты могут быть с цилиндрической головкой и сферой на ней, с потайной и полупотайной головками и с цилиндрической накатанной головкой.


Диаметры и длины невыпадающих винтов всех типов объединены в единые ряды, отличающиеся только диапазоном применения. Для винтов некоторых типов диапазоны расширены с учетом перспективного использования их. Принята единая форма резьбового конца винта - "усеченный конус".

25. Винты установочные с квадратной головкой и цилиндрическим и засверленным концами классов точности А и В (по ГОСТ 1482-84 и ГОСТ 1485-84)


Размеры, мм

ΓΟCT 1482-84

ΓΟCT 1485-84

 $D = (0.90 \dots 0.95)S$

Резьба <i>d</i>	6	8	10	12	16	20
S	7	8	10	12	17	22
k	6	7	8	10	14	18
e	9	10	13	16	22	28
d_1	4	5,5	7	8,5	12	15
d_2	3	5	6	8	10	14
ℓ_1	3	4	5	6	8	10
ℓ *	12 - 35	14 - 40	16 - 50	20 - 60	25 - 80	35 - 100

^{*} Размер ℓ в указанных пределах брать из ряда: 12; 14; 16; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 90; 100 мм.

 Π ример обозначения винта класса точности A, диаметром резьбы d=10 мм с полем допуска 6g, длиной $\ell=25$ мм, класса прочности 14H, без покрытия:

Винт А.М10-6g × 25.14H ГОСТ 1482-84

То же класса прочности 45H, из стали 35X, с цинковым покрытием толщиной 6 мкм, хроматированным:

Винт А.М10-6g × 25.45Н.35Х.016 ГОСТ 1482-84.

Резьба - по ГОСТ 24705-81, шаг резьбы - крупный.

Механические свойства винтов из углеродистых и легированных сталей - по ГОСТ 25556-82, из других материалов - по ГОСТ 1759.0-87.

Допуски размеров, отклонений формы и расположения поверхностей - по ГОСТ 1759.1-82. Остальные технические требования - по ГОСТ 1759.0-87.

26. Вняты установочные с коническем, плоским, цилиндрическими концами и прямым плищем классов точности А и В (FOCT 1476-93, FOCT 1477-93 H FOCT 1478-93)

TOCT 1476 03 (IJCO 7434-83)	FOCT 1477-93 (MCO
(ca-tct/ 0011) cc-0/t1 100 I	
15.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25.00	- X
	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
April 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ī.	

766-84)	• /	
FOCT 1477-93 (MCO 4766-84)	2021 20	7 7
1477-93	# <u>F</u>	
roct 1	7	

January 197	<u> </u> -
2.02	Sumar.
7,	v

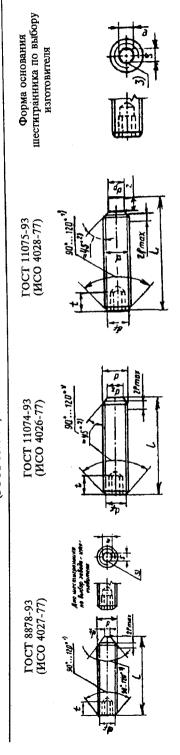
Вариант

FOCT 1478-93 (MCO 7435-83)

Угол 120° обязателен для коротких винтов.

2) Yron 45° othocyrcs tollsko	ко к части 1	к части конца ниже внутреннего диаметра ас резьбы	внутрение:	го диаметр	а ф резьбы						
Ливмето резьбы д	1,6	2	2,5	3	(3,5)	4	5	9	8	10	12
Har nearfin P	0.35	0,4	0,45	0,5	9,0	2,0	8,0	1	1,25	1,5	1,75
g.	0.16	0,2	0,25	0,3	0,35	0,4	0,5	1,5	2	2,5	3
d. max	0.8		1.5	2	2,2	2,5	3,5	4	5,5	7	8,5
min	0.55	0,75	1,25	1,75	1,95	2,25	3,2	3,7	5,2	6,64	8,14
и номинальный	0.25	0,25	0,4	0,4	0,5	9'0	8,0	1	1,2	1,6	2
THE THE	1.05	1.25	1.5	1,75	2	2,25	2,75	3,25	4,3	5,3	6,3
	0.8	1	1,25	1,5	1,75	2	2,5	3	4	5	9
* max	0 74	0.84	0.95	1.05	1,21	1,42	1,63	2	2,5	3	3,6
min	0,56	0,64	0,72	8,0	96'0	1,12	1,28	1,6	2	2,4	2,8
F* HOMMH. TO FOCT:											
1476-93	2 - 8	2 - 10	2,5 - 12	3 - 16	4 - 20	4 - 20	5 - 25	6 - 30	8 - 40		12 - 60
1477-93	2 - 8	2 - 10	3 - 12	3 - 16	4 - 20	4 - (22)	5 - 25	6 - 30	8 - 40	10 - 50	1
1478-93	2 - 8	2 - 10	4 - 12	5 - 16	5 - 20	6 - (22)	8 - 25	8 - 30	10 - 40	12 - 50	12 - 60
						,					

 * Плоскую площадку d_i на коническом конце можно не делать для винтов диаметром $d \le 5$ мм; конец можно слетка скруглить.


Примеры условного обозначения Установочный винт с цилиндрическим концом и прямым шлицем класса точности В, диаметром резьбы 10 мм, с полем допуска ба, ** Размер ℓ в указанных пределах брать из ряда: 2; 2,5; 3; 4; 5; 6; 8; 10; 12; (14); 16; (18); 20; (22); 25, (28); 30; 35; 40; 45; 50; 55; 60. ГОСТы 1476-93, 1477-93 предусматривают также d=1,0; 1,2 мм.

Burm M10-6g × 25.22H FOCT 1478-93 длиной 25 мм, класса прочности 22Н, без покрытия:

То же, класса точности А, класса прочности 45Н, из стали 40Х, с химическим окисным покрытием, пропитанным маслом:

Bunm A.M10-6g × 25.45H.40X.05 FOCT 1478-93

27. Вниты установочные с шестиграным уллублением под ключ н конпческим, плоским, цилиндрическими концами классов точности А и В (ГОСТ 8878-93, ГОСТ 11074-93 и ГОСТ 11075-93)

1) Угол 120° обязателен для коротких винтов.

 $^2)$ Угол 45 $^{\circ}$ относится только к части конца ниже внутреннего диаметра d_f резьбы.

3) Допускается небольшое скругление или зенковка.

у допускается неос	" Hollyckaetch heodibilite chyfinethe for Selfadiae.	i Selikomer								
Пиаметр резьбы д		4	5	9	8	10	12	16	20	24
Шаг резьбы Р		7,0	8,0	1,0	1,25	1,50	1,75	2,0	2,5	3,0
7 7	min	2,25	3,2	3,7	5,2	6,64	8,14	11,57	14,57	17,57
. žn (dn	тах	2,5	3,5	4,0	5,5	7,0	8,5	12,0	15,0	18,0
d _b max		0	0	1,5	2,0	2,5	3,0	4,0	5,0	6,0
df					Внутренн	Внутренний диаметр резьбы	резьбы			
e. min*		2,30	2,87	3,44	4,58	5,72	98'9	9,15	11,43	13,72
ú	min	2,020	2,520	3,020	4,020	5,020	6,020	8,025	10,025	12,032
ċ	max	2,045	2,560	3,080	4,095	5,095	6,095	8,115	10,115	12,142
t, min		2,5	3,0	3,5	5,0	6,0	8,0	10,0	12,0	15,0
•										

25 - 100

20 - 100

16 - 100

12 - 80

10 - 70

8 - 55

8 - 45

6 - 25

5 - 20

11075-93

	укорочен- min	mim	1,0	1,25	1,5	2,0	2,5	3,0	4,0	5,0	6,0
	HSIЙ:	max	1,25	1,5	1,75	2,25	2,75	3,25	4,3	5,3	6,3
:2	цилинд-	min	2,0	2,5	3,0	4,0	5,0	6,0	8,0	10,0	12,0
	рический: max	max	2,25	2,75	3,25	4,3	5,3	6,3	8,36	10,36	12,43
*	1001										
<i>с</i> ., номин	£ , номин. по 1 ОС 1.		0	,	30	ý	02 - 9	8 - 80	10 - 90	12 - 100	16 - 100
	11074-93	m	2,5 - 20	2 - 6	oc - +	SC - C	2	3			į
	8878-93	~	3 - 20	4 - 25	5 - 45	09 - 9	8 - 70	10 - 80	8 - 70 10 - 80 12 - 90	16 - 100 20 - 100	20 - 100

Продолжение табл. 27

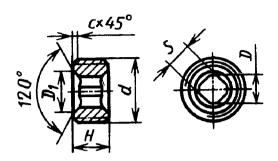
Стандарты предусматривают также $d=1,6;\,2;\,2,5;\,3$ мм.

Установочный винт с коническим концом и шестигранным углублением под ключ класса точности В, диаметром резьбы d=10 мм, с обозначения Примеры условного

полем допуска 6g, длиной $\ell=25$ мм, класса прочности 14H, без покрытия:

Винт M10-6g × 25.14H ГОСТ 8878-93

То же, класса точности А, класса прочности 45Н, из стали 40Х, с химическим окиснъм покрытием, пролитанным маслом:


Burn A.M10-6g × 25.45H.40X.05 ГОСТ 8878-93

[•] е_{тіп} = 1,145_{тіп}, за исключением размеров М1,6; М2; М2,5.

^{**} Размер ℓ в указанных пределах брать из ряда: 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25, 30; 35; 40; 45; 50; 55; 60; 70; 80; 90.

28. Винты регулирующие с квадратным отверстием под ключ (по ГОСТ 13897-68 в ред. 1990 г.)

Размеры, мм

Обозначение винтов	đ	Н	D	D_1	S (D11)	с	Допуск соосности отверстия относительно диаметра винта в радиусном выражении	Масса 100 шт., кг
6000 - 0451	M10 × 1	4	4,1	4,3	3	1	0,3	0,17
0452	M10 × 1	6	4,1	4,3	3	1	0,3	0,36
0453	M12 × 1,25	8	5,5	5,7	4	1,6	0,4	1,50
0454	M14 × 1,5	8	6,8	7,4	5	1,6	0,4	0,80
0561	M16 × 1,5	10	8,3	9	6	1,6	0,4	1,30
0562	M20 × 1,5	10	10,9	12	8	1,6	0,5	1,97
0563	M22 × 1,5	10	10,9	12	8	1,6	0,5	2,48
0564	M27 × 2	14	13,7	15	10	2	0,5	5,80
6000 - 0565	M33 × 2	14	16,5	18	12	2	0,6	7,77

Пример условного обозначения винта $d = M27 \times 2$:

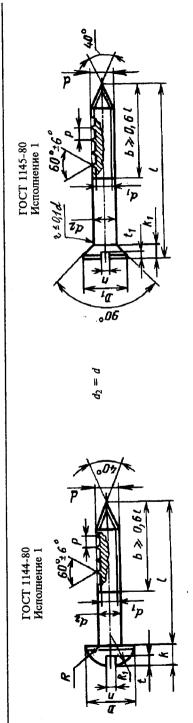
Винт 6000-0564 ГОСТ 13897-68

Материал - сталь марки 40Х по ГОСТ 4543-71.

Твердость 36,5 ... 41,5 HRC_э.

Резьба метрическая - по ГОСТ 24705-81. Поле допуска резьбы - 8g по ГОСТ 16093-81.

Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.


Покрытие - Хим. Окс. прм по ГОСТ 9.303-84.

Технические требования - по ГОСТ 1759.0-87.

ШУРУПЫ

29. Шурупы с полукруглой головкой (ГОСТ 1144-80) и с потайной головкой (ГОСТ 1145-80)

Размеры, мм

1,4 1,7 2,1 1,0 1,25 1,25 4 5 6 3,8 4,7 5,6 1,4 1,7 2,1 1,2 1,5 1,65 3,2 4,0 4,8 1,6 2,0 2,4 0,7 0,8 1,0	1,6 2 2,5	3	3,5	4	5	9	8	10
P 0,8 1,0 1,25 1,25 D 3,2 4 5 6 P_1 3,0 3,8 4,7 5,6 k 1,1 1,4 1,7 2,1 k_1 0,96 1,2 1,5 1,65 R_1 2,6 3,2 4,0 4,8 R 1,3 1,6 2,0 2,4 He Goire 0,6 0,7 0,8 1,0	1,1 1,4 1,7			2,8	3,5	4,2	5,6	7,0
D 3,2 4 5 6 D ₁ 3,0 3,8 4,7 5,6 k 1,1 1,4 1,7 2,1 k ₁ 0,96 1,2 1,5 1,65 R 2,6 3,2 4,0 4,8 R 1,3 1,6 2,0 2,4 He Goire 0,6 0,7 0,8 1,0	1,0		1,5	1,75	2,0	2,5	3,5	4,5
D_1 3,0 3,8 4,7 5,6 k 1,1 1,4 1,7 2,1 k_1 0,96 1,2 1,5 1,65 $R_1 \approx$ 2,6 3,2 4,0 4,8 $R \approx$ 1,3 1,6 2,0 2,4 He Goire 0,6 0,7 0,8 1,0	3,2 4 5	9	7	∞	10	12	16	20
k 1,1 1,4 1,7 2,1 k_1 0,96 1,2 1,5 1,65 R_1 2,6 3,2 4,0 4,8 R 1,3 1,6 2,0 2,4 He Goire 0,6 0,7 0,8 1,0	3,8		-	7,4	9,2	11,0	14,5	18,0
k_1 0,96 1,2 1,5 1,65 $R_1 \approx$ 2,6 3,2 4,0 4,8 $R \approx$ 1,3 1,6 2,0 2,4 He Goire 0,6 0,7 0,8 1,0	1,4		2,4	2,8	3,5	4,2	5,6	7,0
$R_1 \approx 2.6$ 3,2 4,0 4,8 $R \approx 1,3$ 1,6 2,0 2,4 He Goiree 0,6 0,7 0,8 1,0	1,2			2,2	2,5	3,0	4	5
$R \approx 1,3 1,6 2,0 2,4$ He Goiree 0,6 0,7 0,8 1,0	3,2			6,4	8,0	9,6	12,8	16,0
0,6 0,7 0,8 1,0	1,6			3,2	4,0	4,8	6,4	8,0
	7,0			1,2	1,51	1,91	2,31	2,81
0,66 0,86	0,56		98'0	1,06	1,26	1,66	2,06	2,56

10	4,24	2,6	80 - 100
8	3,74	2,1	10 - 30
9	2,7	1,6	18 - 100
5	2,5	1,35	13 - 70
4	2,0	1,1	13 - 60
3,5	1,7	1,0	10 - 40
3	1,4	0,85	10 - 30
2,5	1,3	0,73	7 - 16 7 - 25
2	1,1	9,0	7 - 16
9,1	0,4	5,0	7 - 13
_	не более	не более	
p	1	1,	8

* Размер & в указанных пределах брать из ряда: 7; 10; 13; 16; 18; 20; 22; 25; 30; 35; 40; 45; 50; 60; 70; 80; 90; 100.

Стандартами предусматриваются также исполнения 2, 3 и 4 шурупов с резьбой до головки, с крестообразными шлицами.

Длины $\ell=18$ мм и $\ell=22$ мм применять не рекомендуется.

шурупа с полукруглой головкой исполнения 1, d=3 мм, $\ell=20$ мм, из низкоуглеродистой обозначения стали, без покрытия: Пример

IIIypyn 1-3 \times 20 FOCT 1144-80

то же с цинковым покрытием толциной 6 мкм, нанесенным способом катодного восстановления, хроматированным: IIIypyn 1-3 x 20.016 FOCT 1144-80

Технические требования. Шурупы должны изготовляться:

15527-70.

из углеродистых сталей марок 08кп, 10кп, из коррозионно-стойких сталей по ГОСТ 5632-72, из латуни по ГОСТ 12920-67 и по ГОСТ

По соглашению между изготовителем и потребителем допускается изготовлять из других материалов с механическими свойствами не ниже вышеприведенных материалов.

Установлены следующие условные обозначения материалов: углеродистые стаги ... 0; коррозионно-стойкие стаги ... 2; латуни ...3.

Шурупы должны изготовляться с покрытием (табл. 30) или без покрытия.

Виды покрытий и их условные обозначения - по ГОСТ 1759.0-87.

	30. Виды, 000 3	и кинэрки	толщины п	окрытии щ	урушов					
		Услови	я эксплуат	ации и обо	значения					
Вид покрытий	Материал	легкие 1	средние 2	жесткие 3	очень жесткие 4	Условное обозначение покрытий				
		Толщ	ина покры	гий, мкм, н	е мен ее					
Цинковое с хро- матированием	Низкоуглеро- дистая сталь	Ц6	Ц9	Ц9	Ц15	01				
Кадмиевое с хро- матированием		Кд6	Кд9	Кд12	Кд15	02				
Многослойное: медь-никель		М6Н3	М6Н3	М9Н3	M12H3	03				
Никелевое	Латунь	Н6	Н6	Н9	H12	03				
Многослойное: никель-хром		H3X1	H6X1	H9X1	H12X1	04				
Окисное						05				
Фосфатное с промасливанием	Низкоуглеро- дистая сталь		Не регламентируется							
Цинковое		ц6 ц9			09					
Пассивное (химическое)	Коррозион- но-стойкая		Не регламентируется							

30. Виды, обозначения и толщины покрытий шурупов

Характеристика условий эксплуатации - по ГОСТ 9.303-84.

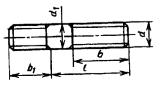
сталь

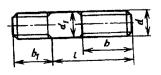
ШПИЛЬКИ РЕЗЬБОВЫЕ

31. Шпильки классов точности A и B с ввинчиваемыми концами длиной 1; 1,25; 1,6; 2,0 и 2,5 d (исполнение 1)

Размеры, мм

Шпильки

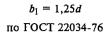

Класса точности В с ввинчиваемыми концами:

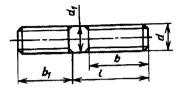

$$b_1 = 1d$$

no FOCT 22032-76

$$b_1 = 2d$$

no FOCT 22038-76





Продолжение табл. 31

b₁ = 2,5d πο ΓΟCT 22040-76

Класса точности А - соответственно по ГОСТ 22033-76, ГОСТ 22035-76, ГОСТ 22037-76, ГОСТ 22039-76, ГОСТ 22041-76.

d = a	t_1	3	4	5	6	8	10	12	16	20	24	30	36	42	48
Шаг Р	круп- ный	0,5	0,7	0,8	1	1,25	1,5	1,75	2	2,5	3	3,5	4	4,5	5
	мел- кий	-	-	-	_	1	1,	1,25		1,5		2	3		
Длина	đ	3	4	5	6	8	10	12	16	20	24	30	36	42	48
ввинчи-	1,25d	4	5	6,5	7,5	10	12	15	20	25	30	38	45	52	60
ваемого	1,6 <i>d</i>	5	6,5	8	10	14	16	20	25	32	38	48	56	68	76
резьбового	2 <i>d</i>	6	8	10	12	16	20	24	32	40	48	60	72	84	95
конца <i>b</i> ₁	2,5 <i>d</i>	7,5	10	12	16	20	25	30	40	50	60	75	88	105	120
Длина гаечного конца b (предельное отклонение $\pm 2P$)															

конца <i>b</i> 1	2,5 <i>d</i>	7,5	10	12	16	20	25	30	40	50	60	75	88	105	120
	-	Длин	а гаеч	ного	конца	<i>b</i> (пр	едель	ное о	тклон	ение	+2 <i>P</i>)				
12	· · · · · · · · · · · · · · · · · · ·	×	×	×	×	×	-	-	-	-	-	-	-	-	-
14			×	×	×	×	-	-	-	-	-	-	-	-	-
16				×	×	×	×	-	-	-	-	-	-	-	-
20					×	×	×	-	-	-	-	-	-	-	-
25						×	×	×	×	-	- '	-	-	-	-
30							×	×	×	-	-	-	-	-	-
35							ļ	×	×	-	-	-	-	-	-
40									×	×	-	-	-	-	-
45		1			Ì				×	×	×	-	-	-	-
50; 5	55	12	14	16	18	20	26	30	38	×	×	-	-	-	-
60; 6	55							ļ			×	×	-	-	-
70; 7	15	ļ									-	×	×	-	-
- 80										46	54	×	×	×	×
85; 9	00												×	×	×
100	•					ĺ						66	78	×	×
110										ļ				90	×

											гродо	DECITI	.0 100	
 $d = d_1$	3	4	5	6	8	10	12	16	20	24	30	36	42	48
 130	18	20	22	24	28	32	36	44	52	60	72	84	96	×
140 - 200 *						i								108
 220	-	-	-	-	-	-	49	57	65	73	85	97	109	121
240	-	-	-	-	-	-	-	-						

Знаком \times отмечены шпильки с длиной гаечного конца $b = \ell$ - 0,5d - 2P.

Для шпилек класса точности В отклонения: d_1 - по h14; b_1 - по js17; ℓ - по js16; для класса точности А: d_1 - по h12; b_1 - по js16; ℓ - по js15.

ГОСТы предусматривают $d_1=2$; 2,5 мм; ℓ до 300 мм и нерекомендуемые d и ℓ , а также исполнение 2.

Пример обозначения шпильки исполнения 1 диаметром резьбы d=16 мм с крупным шагом P=2 мм, с полем допуска бд, длиной $\ell=120$ мм, с длиной ввинчиваемого резьбового конца $b_1=1,25d$, класса точности B, класса прочности 5.8, без покрытия:

Шпилька M16-6g × 120.58 ГОСТ 22034-76

то же с мелким шагом P=1,5 мм, класса прочности 10.9, из стали марки $40\mathrm{X}$, с покрытием 02 толщиной 6 мкм:

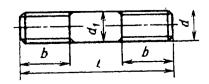
Шпилька M16 × 1,5-6g × 120.109.40X.026 ГОСТ 22034—76

Резьба - по ГОСТ 24705-81, поле допуска 6g - по ГОСТ 16093-81.

Поверхность гладкой части стержня d_1 не обрабатывается при изготовлении шпилек из калиброванного проката.

Длина гладкой части стержня со сбегом резьбы гаечного конца b должка быть не менее 0.5d.

Допускается по соглашению между изготовителем и потребителем изготовлять:


а) резьбу с полем допуска 8g по ГОСТ 16093-81;

б) резьбу с натягом по ГОСТ 4608-81 на ввинчиваемом конце шпильки, с указанием об этом в условном обозначении шпильки.

Технические требования - по ГОСТ 1759.0-87.

32. Шпильки класса точности В (ГОСТ 22042-76) и класса точности А (ГОСТ 22043-76) для деталей с гладкими отверстиями

Размеры, мм

^{*} В указанных пределах брать из ряда: 140; 150; 160; 170; 180; 190; 200 мм.

					_							родол	тжени	е табл	1. 32
d = a	t_1	3	4	5	6	8	10	12	16	20	24	30	36	42	48
Шаг Р	круп- ный	0,5	0,7	0,8	1	1,25	1,5	1,75	2	2,5	3	3,5	4	4,5	5
	мел- кий	-	-	-	-	1	1,	25	1.	,5		2		3	
Длина	a ℓ		Д	лина	резьб	ового	конц	а <i>b</i> (п	редел	ьные	откло	нения	+2 <i>P</i>)	
10				-	-					İ	İ				
12							1								
14; 1	16					<u> </u>	-	-	ł						
20; 2	25							ļ	-	-	-				
30															
35												İ			
40]						<u> </u>	Ì						
45; :	50							ļ							
55; (50	<u> </u>					L	<u> </u>		1					
65; ′	70]		ł				<u></u>		1	l				
75		12	14	16	18	22	26	30	<u> </u>	<u> </u>		-	-	-	-
80; 85	; 90									<u> </u>	l		1		
100)			İ		l			38	L	l			1	1
110;	120					<u> </u>	<u> </u>	<u> </u>		46		<u> </u>	. ↓		
130 - 1	160 *				Ì	1									
170;	180	18	20	22	24	28	32	36	44	52	60	72		ł	
190 -	200	<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	84	$oxed{oxed}$	
220	0							1					İ		
240; 260;	280; 300	31	33	35	37	41	45	49	57	65	73	85	97	109	121
320; 34	0; 360	_	_	-	<u> </u>	-	<u> </u>	49	57	65	73	85	97	109	121

* В указанных пределах брать из ряда: 130; 140; 150; 160 мм.

Для шпилек класса точности В отклонения: d_1 - по h14; ℓ - по js16; для класса точности A: d_1 - по h12; ℓ - по js15.

Между ступенчатыми линиями резьба на шпильках выполняется по всей длине; по заказу потребителя допускается резьба по всей длине всех шпилек.

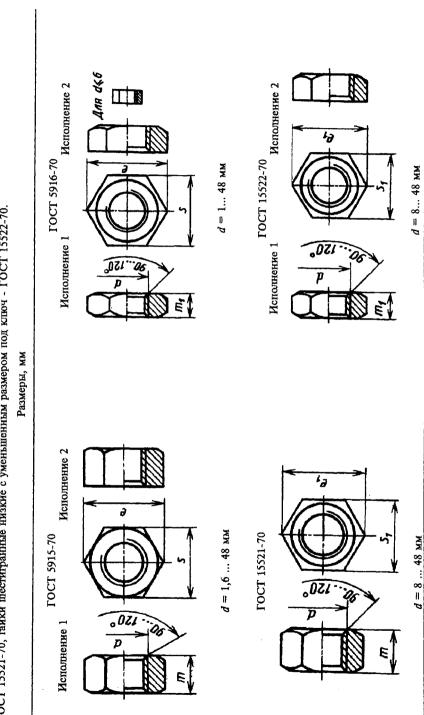
ГОСТы предусматривают $d=2;\ 2,5$ мм; ℓ до 500 мм и нерекомендуемые d и ℓ , а также исполнение 2.

Пример обозначения шпильки исполнения 1 диаметром резьбы d=10 мм с крупным шагом P=1,5 мм, с полем допуска 6g, длиной $\ell=200$ мм, класса прочности 5.8, без покрытия:

Шпилька M10-6g × 200.58 ГОСТ 22042-76

Резьба - по ГОСТ 24705-81, поле допуска 6g - по ГОСТ 16093-81.

Поверхность гладкой части стержня не обрабатывается при изготовлении шпилек из калиброванного проката.


Допускается по соглашению между изготовителем и потребителем изготовлять резьбу с полем допуска 8g по ГОСТ 16093-81.

Технические требования - по ГОСТ 1759.0-87.

ГАЙКИ

33. Шестигранные гайки класса точности В

Гайки шестигранные - ГОСТ 5915-70, гайки шестигранные низкие - ГОСТ 5916-70, гайки шестигранные с уменьшенным размером под ключ - ГОСТ 15521-70, гайки шестигранные низкие с уменьшенным размером под ключ - ГОСТ 15522-70.

Продолжение табл. 33

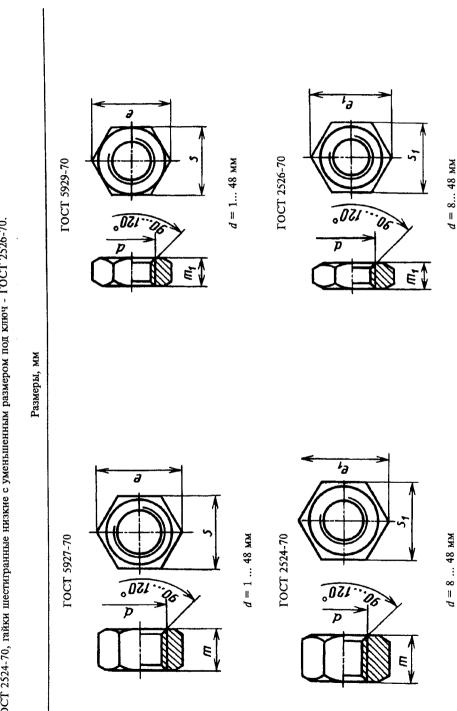
Pesi	Резьба д	2	2,5	3	4	5	9	~	92	12	16	20	24	30	36	42	48
IIIar	крупный	0,4	0,45	5,0	7,0	8,0	1,0	1,25	1,5	1,75	2	2,5	. 3	3,5	4	4,5	S
резъбы	мелкий	ı	ı	ı	ı	1	1	1,0	1,25	1,25	1,5	1,5	2 .	2	3	3	3
	S	4	5	5,5	7	8	10	13	17	19	24	30	36	46	55	9	75
Отки	Отклонение		-0,3	_		-0,36		-0,43	43	-0,52	-0,84	84	-1	-1,0	-1,2	-1,9	
	Sı	,	,	١	,		1	12	, 14	17	22	27	32	41	50	09	70
Отки	Отклонение	ı						-	-0,43		-0,	-0,84		-1,0		-1,2	-1,9
	8	4,2	5,3	6,5	7,5	8,6	10,9	14,2	18,7	6,02	26,2	33,0	39,6	50,9	8,09	71,3	82,6
	e ₁	í	ı	ı	1	4	ţ	13,1	15,3	18,7	23,9	29,6	35,0	45,2	55,4	66,4	6,97
Bac	Высота т	1,6	2,0	2,4	3,2	4,0	5,0	6,5	8	10	13	16	19	24	29	34	38
OTKOK	Отклонение		9,0-	_		-0,75		_	-0,90		-1,	-1,10		-1,30		-1,60	90
Выс	Высота т1	1,2	1,6	1,8	2,2	2,7	3,2	4	5	9	∞	10	12	15	18	21	24
Отки	Отклонение		_	9,0-				-0,	-0,75		-0,	-0,90		-1,1		-1,3	3
^* ГОСТ 5 по ГОС	∆*1 по ГОСТ 5915-70 и по ГОСТ 5916-70		0,3			96,0		0,	0,43		0,52		0,	0,62		0,74	

Pessoa d	2	2,5	3	4	5	9	∞	10	12	16	70	24	30	36	42	48
А ₁ *1 по ГОСТ 15521-70 и по ГОСТ 15522-70								0,43		0,52	25		0,62		0,74	4
		Ŭ 	acca *2 1	000 стал	ънък га	ек (испс	лиения	Масса *2 1000 стальных гаек (исполнения 1)с крупным шагом резьбы, кг	пным ш	атом ре	зьбы, ка	٠,	•	•	-	
110 FOCT 5915-70	0,14	0,27	0,38	08'0	1,44	1,44 2,57	5,55	10,2	15,7	15,7 37,6	71,4	123	242	417	624	956
по ГОСТ 5916-70	0,07	0,16	0,22	0,43	99,0	1,25	2,67	6,11	8,3	17,7	35,5	8,65	127	217	361	558
по ГОСТ 15521-70	ı		1	1	ı	ı	4,07	6,26	10,4	24,0	43,3	71,2	151	772	755	765
110 FOCT 15522-70	1			ı	1	1	2,12	3,42	6,26	6,26 13,4	25,2	39,9	87,0	161	279	448

ГОСТы предусматривают также нерекомендуемые размеры гаек. ГОСТ 5915-70 и ГОСТ 5916-70 предусматривают гайки с диаметром гайки исполнения 1, диаметром резьбы d=12 мм с размером под ключ S=18 мм, с крупным шагом резьбы, с полем допуска 6Н, класса прочности 5, без покрытия: обозначения резьбы менее 2 мм. Пример

Iaйка M12-6H.5 (S18) ГОСТ 5915-70

то же исполнения 2, с размером под ключ S=19 мм, с мелким шагом резьбы, класса прочности 12, из стали 40X, с покрытием 01 толщиной 6 мкм:


Гайка 2M12 × 1,25-6H.12.40X.016 ГОСТ 15522-70

Резъба - по ГОСТ 24705-81. Технические требования - по ГОСТ 1759.0-87.

^{*2} Для гаек из алюминиевого сплава величины массы, указанные в таблице, следует умножить на коэффициент 0,356, из латуни - на *1 Δ и Δ_1 - предельные смещения осей отверстий относительно граней. коэффициент 1,08

34. Шестигранные гайки класса точности А

Гайки шестигранные - ГОСТ 5927-70, тайки шестигранные низкие - ГОСТ 5929-70, тайки шестигранные с уменьшенным размером под ключ - ГОСТ 2526-70.

Pesj	Pe3b6a d	2	2,5	3	4	5	9	8	10	12	16	20	24	30	36	42	48
	крупный	4,0	0,45	5,0	7,0	8,0	1,0	1,25	1,5	1,75	2	2,5	3	3,5	4	4,5	S
Шаг резьбы	мелкий		ı	1	ı	ı	,	1,0	1,25	1,25	1,5	1,5	2	2	ε.	3	3
	S	4	5	5,5	7	∞	10	13	17	19	24	30	36	46	55	65	75
OTKI	Отклонение		ا -0,18			-0,22		-0,27	27	-	-0,33		-0,62	62	!	-0,74	
	Sı		'	r	٠	,	1	12	14	17	22	27	32	41	50	09	70
OTIC	Отклонение		1	ı	1	ı	ı	_	-0,27		-0,	-0,33	-0,39	-0,	-0,62	-0,74	4
	0	4,3	5,5	9	7,7	8,8	11,1	14,4	18,9	21,1	26,8	33,5	40,0	51,3	61,3	72,6	83,9
	6.	,	1		1	ı	ı	13,3	15,5	18,9	24,5	30,1	35,7	45,6	55,8	67,0	78,3
Вы	Высота т	1,6	2,0	2,4	3,2	4,0	5,0	6,5	8	10	13	16	19	24	29	34	38
OTIC	Отклонение		ا -0,25	_		-0,30	_		-0,36		0-	-0,43		-0,52		-0,62	52
Bu	Высота т	1,2	1,6	1,8	2,2	2,7	3,2	4	5	9	8	10	12	15	18	21	24
Ork	Отклонение			-0,25	_	_		-	-0,30		0-	-0,36		-0,43		-0,52	22
LOCI	А*1 по ГОСТ 5927-70 и		0,30			0,36		0	0,43		0,52		0	0,62		0,74	
DI OII	01 2727 13																

474

297

171

93,9

4,4

26,5

14,3

Продолжение табл. 34

Резьба <i>d</i>	2	2,5	3	4	5	9	8	10	12	16	20	24	30	36	42	48
Δ ₁ *1 по ГОСТ 2524-70 ң по ГОСТ 2526-70] ,					0,43		0,52	22		0,62	·	0,74	4
					Масс	, 2 1000	Масса *2 1000 стальных гаек, кг	ых гаек,	五				•	•	-	
по ГОСТ 5927-70	0,14	0,27	0,38	08'0	1,44 2	53	5,55 10,22	10,22	15,7 37,6	37,6	71,4	123	242	417	624	956
по ГОСТ 5929-70	80,0	0,19	0,24	0,46	0,72	1,42	2,94 6	,54	9,29 18,8		37,2	64,4	135	230	380	584
по ГОСТ 2524-70		1	,	1	1	1	4,07	4,07 6,26	10,4 24,0	24,0	43,3 71,2	71,2	151	772	755	765

6,73 3,71 2,35 TIO FOCT 2526-70

*2 Для таек из апоминиевого сплава величины массы, указанные в таблице, спедует умножить на коэффициент 0,356, из латуни - на коэффициент 1,08. *1 Δ и Δ_1 - предельные смещения осей отверстий относительно граней.

Допускается по соглашению между изготовителем и потребителем изготовлять гайки по ГОСТ 5927-70 и ГОСТ 5929-70 диаметров резьб ГОСТы предусматривают также нерекомендуемые размеры таек. ГОСТ 5927-70 и ГОСТ 5929-70 предусматривают гайки с диаметром резьбы менее 2 мм.

Пример обозначения гайки диаметром резьбы d=12 мм с размером под ключ S=18 мм, с крупным шагом резьбы, с полем допуска 6Н, класса прочности 5, без покрытия:

36 - 48 с шагом резъбы 2 мм.

Гайка M12-6H.5 (S18) ГОСТ 5927-70

то же класса прочности 6, из стали A12, без покрытия:

Iaŭka M12-6H.6.A (S18) IOCT 5929-70

то же с размером под ключ S = 19 мм, с мелким шагом резьбы, класса прочности 12, из стали 40X, с покрытием 01 толщиной 6 мкм:

ľaŭka M12 × 1,25-6H.12.40X.016 ГОСТ 2524-70

Резьба - по ГОСГ 24705-81. Технические требования - по ГОСТ 1759.0-87.

35. Прорезные шестигранные гайки

Гайки шестигранные прорезные с уменьшенным размером под ключ класса точности А -ГОСТ 2528-73 и гайки шестигранные прорезные низкие с уменьшенным размером под ключ класса точности А - ГОСТ 5935-73

Размеры, мм

FOCT 5935-73

	B		,	0	u ,	m,	200		3		
Pesi	ьба <i>d</i>	8	10	12	16	20	24	30	36	42	48
IIIar	крупный	1,25	1,5	1,75	2	2,5	3	3,5	4	4,5	5
резьбы	мелкий	1	1,25	1,25	1,5	1,5	2	2	3	3	3
	S	12	14	17	22	27	32	41	50	60	70
	h	9,5	12	15	19	22	27	33	38	46	50
	h ₁	7	8	10	12	13	15	18	20	23	25
6	:≥	13,2	15,5	18,9	24,5	30,2	35,8	45,9	56,1	67,4	78,5
Число:	прорезей				6	5				8	
	n	2,5	2,8	3,5	4,5	4,5	5,5	7	7	9	9
	m	6,5	8	10	13	16	19	24	29	34	38
i	m ₁	4	5	6	7	8	9	11	13	14	16
_ III 1	MINHI	2×20	2,5×25		4×32	4×36	5×40	6,3×50	6,3×63	8×71	8×80
			Mac	ca *1 10	00 сталь	ных гае	K, Kľ		1	l	1
FOCT 25	528-73	5,42	8,64	16,03	32,55	57,77	96,76	201	360	621,9	962,8
гост 59	935-73	3,768	5,659	10,36	19,63	32,79	51,72	105,1	183,3	293,1	459,9

^{•1} Для гаск из алюминиевого сплава величины массы, указанные в таблице, следует умножить на коэффициент 0,356, для гаек из латуни - на коэффициент 1,08.

 Π ример обозначения гайки диаметром резьбы d=12 мм с крупным шагом резьбы, с полем допуска 6Н, класса прочности 5, без покрытия:

Гайка М12-6Н.5 ГОСТ 2528-73

то же с мелким шагом резьбы с покрытием 01 толщиной 9 мкм:

Гайка M12 × 1,25-6H.5.019 ГОСТ 5935-73

Резьба - по ГОСТ 24705-81.

FOCT 2528-73

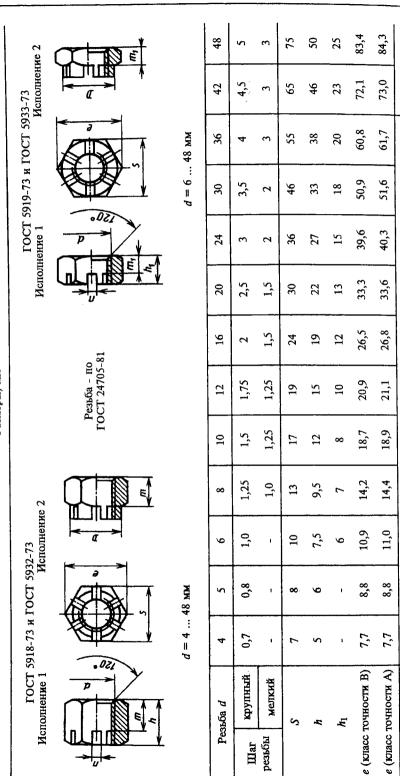
Форма дна прорези может быть плоской, скругленной или с фаской.

Допускается выполнение фаски на резьбе со стороны прорезей.

Технические требования - по ГОСТ 1759.0-87.

Допуски размеров и отклонений формы и расположения поверхностей - по ГОСТ 1759.1-82.

∞


9

Число прорезей

36. Прорезные в корончатые шестигранные гайки

Гайки шестигранные прорезные и корончатые класса точности В - ГОСТ 5918-73, гайки шестигранные прорезные и корончатые класса точности А - ГОСТ 5932-73, гайки шестигранные прорезные и корончатые низкие класса точности В - ГОСТ 5919-73, гайки шестигранные прорезные и корончатые низкие класса точности А - ГОСТ 5933-73

Размеры, мм

Pearling d	4	5	9	8	10	12	16	20	24	30	36	42	48
1 BORO T	12	4.	2	2,5	2,8	3,5	4,5	4,5	5,5	7	7	6	6
: }	3.2	4	5	6,5	∞	10	13	16	19	24	29	34	38
: A	i '	. ,	3,5	4	5	9	7	∞	6	Ξ	13	14	16
, m	ì	ı	. 1	ı	ı	17	22	28	34	42	20	28	65
Шплинт:													
исполнение 1	1×12	1,2×12	1,6×16	2×20	2,5×25	3,2×32	4×36	4×40	5×45	6,3×63	6,3×71	8×80	8×90
исполнение 2	,		1	1	1	3,2×25	4×32	4×36	5×40	6,3×50	6,3×60	8×71	8×80
				Macca * 10)00 стальн	Масса * 1000 стальных гаек исполнения 1, кг	сполнения	1 1, KT				•	
no FOCT 5918-73	1,099	1,633	3,226	6,861	15,45	22,55	43,18	81,44	142,5	291,2	488,2	800,5	1192
и ГОСТ 5932-74 по ГОСТ 5919-73 и ГОСТ 5933-73	ι	t	2,473	4,789	10,12	14,59	20,08	46,32	76,35	152,6	248,9	378,2	570,5
* Для таек из апюминиевого сплава величины массы, указанные в таблице, следует умножить на коэффициент 0,356, из латуни - на	<u> </u>	вого сплав	за величи	ны массы	, указанн	ые в таби	ице, след	ует умнож	ить на к	оэффипие	нт 0,356,	из латун	н - на

для таск из коэффициент 1,08.

Iaŭka M12-6H.5 (S18) IOCT 5918-73 шагом резьбы, с полем допуска 6Н, класса прочности 5, без покрытия:

Пример обозначения гайки исполнения 1, диаметром резьбы d=12 мм с размером под ключ S=18 мм, с крупным

ГОСТы предусматривают также нерекомендуемые размеры гаек.

то же исполнения 2, с мелким шагом резьбы, с покрытием 01 толщиной 9 мкм:

Iaŭкa 2M12 × 1,25-6H.5.019 ГОСТ 5932-73

Форма дна прорези может быть плоской, скругленной или с фаской. Допускается выполнение фаски на резьбе со стороны прорезей. Технические требования - по ГОСТ 1759.0-87.

Допуски размеров и отклонений формы и расположения поверхностей - ГОСТ 1759.1-82.

Гайки шестигранные высокие - ГОСТ 15524-70 и гайки шестигранные особо высокие - ГОСТ 5931-70 37. Гайки высокие и особо высокие класса точности А

Размеры, мм

] I	FOCT 15524-70	24-70								100	FOCT 5931-70	70		
·	P	30:150°		<i>a</i>		по Г	Резьба - по ГОСТ 24705-81	05-81		₩ W		0021.00		<i>d</i>	
	p	$d = 3 \dots 48 \text{ MM}$	3 MM								= p	$d = 3 \dots 48 \text{ MM}$	Ä		
Pes	Резьба д	3	4	5	9	8	10	12	16	20	24	30	36	42	48
Шаг	крупный	6,5	0,7	8,0		1,25	1,5	1,75	2	2,5	3	3,5	4	4,5	5
резьбы	мелкий	1	ţ	ı	1	1,0	1,25	1,25	1,5	1,5	2	2	3	3	ю
	S	5,5	1	∞	10	13	17	61	24	30	36	46	55	99	7.5
Отки	Отклонение	-0,18		-0,22		-0,	-0,27		-0,38		-0	-0,62		-0,74	
	u	9	7,7	8,8	11,1	14,4	18,9	21,1	26,8	33,5	40,0	51,3	61,3	72,6	83,9
-	#	3,6	4,8	9	7,2	9,6	12	14	19	24	29	36	43	20	58
Отю	Отклонение		-0,30		-0,	-0,36	-0,43	43		-0,52			-0,62		-0,74
7	m ₁		1			12	15	18	24	30	36	45	54	63	7.1
Откл	Отклонение		;				-0,43	_	-0,52	52	-0,62	62		-0,74	

Резьба <i>d</i>	3	4	5	9	∞	10	12	16	20	24	30	36	42	48
Смещение оси от- верстия относитель- но граней	0,3		0,36		0,43	£		0,52		0,0	0,62		0,74	
				Ž.	Масса * 1000 стальных гаек, кг	00 crams	tsix raek,	Z Z						
по ГОСТ 15524-70	95,0	1,18	1,80	3,19	8,28	16,9	22,5	41,2	93,2	170	335	575	931	1451
по ГОСТ 5931-70	1	ı)	ı	9,65	16,3	30,1	6,65	117	202	421	715	1179	1781
							,			•		,		

* Для гаек из апкоминиевого сплава величины массы, указанные в таблице, следует умножить на коэффициент 0,356, из латуни - на коэффициент 1,08.

Гайка M12-6H.5 (S18) ГОСТ 15524-70 полем допуска 6Н, класса прочности 5, без покрытия:

обозначения гайки диаметром резьбы d=12 мм с размером под ключ S=18 мм, с крупным шагом резьбы, с

ГОСТы предусматривают также нерекомендуемые размеры таек.

Пример

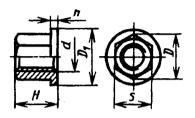
Гайка M12-6H.64 (S18) ГОСТ 15524-70 то же класса прочности 6, из стали А12, без покрытия:

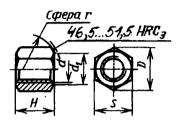
-

то же с размером под ключ S=19 мм, с мелким шагом резьбы, класса прочности 12, из стали 40X, с покрытием 01 толщиной 6 мкм:

Гайка M12 × 1,25-6H.12.40X.016 ГОСТ 15524-70

Допускается по соглашению между изготовителем и потребителем изготовлять: тайки с полем допуска 4Н5Н, 6G и 7G, а также тайки с


диаметром резьбы 36 - 48 с шагом 2 мм. Технические требования - по ГОСТ 1759.0-87.


38. Гайки шестигранные с буртиком и со сферическим торцом по ГОСТ 8918-69 и по ГОСТ 14727-69

Размеры, мм

Гайки с буртиком по ГОСТ 8918-69

Гайки со сферическим торцом по ГОСТ 14727-69 Исполнение 1

Обозначени	ие по ГОСТ		Общие разм	еры		-	Гайка СТ 89			Гайка СТ 14	по 727-69
8918-69	14727-69	d	S (откло- нение по h13)	Н	D	D_1	h	Mac- ca, Kr	d_1	r	Mac- ca, KT
7003-0301	7003-0271	M6	10	9	11,5	14	2	0,005	7	9	0,004
0302	0273	M8	14	12	16,2	18	2	0,013	9	12	0,011
0303	0275	M10	17	15	19,6	22	3	0,026	11	15	0,021
0304	0277	M12	19	18	21,9	25	3	0,036	14	18	0,031
0305	0279	M16	24	24	27,7	30	4	0,068	18	22	0,060
0306	0281	M20	30	30	34,6	38	5	0,134	22	27	0,120
0307	0283	M24	36	36	41,6	45	5	0,228	26	32	0,206
0308	0285	M30	46	45	53,1	58	6	0,460	32	40	0,419
0309	0287	M36	55	54	63,5	68	7	0,817	38	50	0,715
0310	0289	M42	65	63	75,0	80	8	1,304	45	58	1,170
7003-0311	7003-0290	M48	75	72	86,3	90	8	1,948	52	67	1,800

ГОСТ 14727-69 предусматривает также исполнение 2.

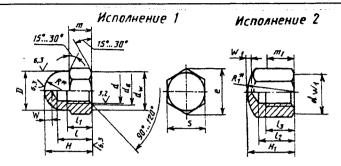
Материал - сталь 40X. Твердость 34,5 ... 39,5 HRC_э.

Неуказанные предельные отклонения размеров: отверстий - H14; валов - h14; остальных - t_2

Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6Н по ГОСТ 16093-81.

Покрытие - Хим. Окс. прм (по ГОСТ 9.306-85). По соглашению с потребителем допускается применение других видов покрытий.

Технические требования - по ГОСТ 1759.0-87.


Пример обозначения шестигранной гайки с буртиком размером d = M6:

Гайка 7003-0301 ГОСТ 8918-69

Пример обозначения шестигранной гайки со сферическим торцом исполнения 1, размером d=M6:

Гайка 7003-0271 ГОСТ 14727-69

39. Гайки колпачковые класса точности А (ГОСТ 11860-85 в ред. 1992 г.)

* Размер для справок.

т - минимальная высота под ключ.

mi - Minini	IMCDIDITOT DI		<u> </u>								
	альный резьбы <i>d</i>	3	4	5	6	8	10	12	16	20	24
Шаг	крупный	0,5	0,7	0,8	1	1,25	1,5	1,75	2	2,5	3
резьбы	мелкий	-	-	-	-	1	1,2	25	1,	5	2
Размер по	д ключ <i>S</i>	5,5	7	8	10	13	16	18	24	30	36
е, не мене		6,0	7,7	8,8	11,1	14,4	17,8	20	26,7	33,5	40
	h14	7,5	8,0	10,0	12,0	15,0	18,0	22,0	28,0	34,0	42,0
	h14	2,4	3,2	4,0	5,0	6,5	8,0	10,0	13,0	16,0	19,0
	hl4	5,0	6,5	7,5	9,5	12,5	15,0	17,0	23,0	28,0	34,0
d_a	не более	3,45	4,60	5,75	6,75	8,75	10,80	13,00	17,30	21,60	25,90
	не менее	3	4	5	6	8	10	12	16	20	24
	}≈	2,5	3,2	3,7	4,7	6,2	7,5	8,5	11,5	14,0	17,0
ℓ, js15		5,0	5,5	7,5	8,0	11	13	16	21	26	31
		2	3	3,8	4	6	7	9	13	16	19
ℓ_1 , не ме		5,0	5,8	6,8	8,3	11,3	14,3	16,2	22,2	28,2	33,2
$d_{\mathbf{w}}$, He Me		3,0	3,0		,0			3,0	4,0	5,0	6,0
w, He Me			5,5	7	9	12	14	16	20	25	30
	, h14	 	2,75	3,5	4,5	6	7	8	10	12,5	15
	е менее		8	10	12	15	20	25	30	35	40
	₹1 ≈	 -	4,4	5,2	7	9,5	11	13,5	17	21	24
ℓ_2 , не бо	лее	ļ				6	7	9	13	16	19
ℓ3, не ме	енее		3	3,8	4				1		33,6
dwl, He M			6,3	7,2	9,0	11,7	14,6	16,6	22,5	28,2	33,6
w _l , He M		-		1	1,5	1		2		2,5	1_3_

ГОСТы предусматривают также нерекомендуемые размеры.

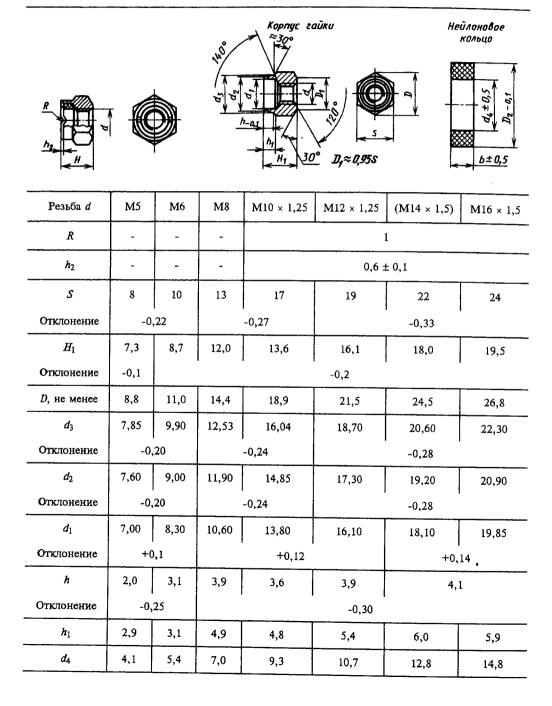
Пример обозначений гайки исполнения 1 с d=12 мм, класса прочности 5, с крупным шагом резьбы, с полем допуска 6Н, без покрытия:

Гайка М12-6Н.5 ГОСТ 11860-85

то же исполнения 2, группы 23, из стали 20Х13, с мелким шагом резьбы, с покрытием 08 толщиной 9 мкм:

Гайка 2M12 × 1,25-6H.23.20X13.089 ГОСТ 11860-85

Неуказанные допуски размеров и отклонений формы и расположения поверхностей - по ΓΟCT 1759.1-82.


Допускается на вершине колпачка плоская площадка диаметром не более 0,3D.

Технические требования - по ГОСТ 1759.0-87.

40. Самостопорящиеся шестигранные гайки с нейлоновым кольцом

Гайки не рекомендуется применять для работы при температуре свыше 90 °C, а также в тех случаях, когда может произойти перерезание нейлонового кольца (наличие лысок, отверстий и т. п. на резьбовой части стержня)

Размеры, мм

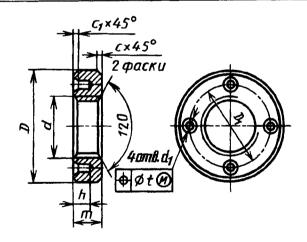
Продолжение та

Резьба <i>d</i>	M 5	M6	M8	M10 × 1,25	M12 × 1,25	(M14 × 1,5)	M16 × 1,5
D_2	7,0	8,25	10,8	13,8	16,2	18,1	19,8
b	2	,0		3,0	3,5	4,	0

Материал кольца - капрон, нейлон.

Механические свойства гаек, изготовленных из углеродистых сталей, классы прочности 5 и 8 - по ГОСТ 1759.5-87.

Покрытия и его толщина - по ГОСТ 9.303-84.


Резьба метрическая - по ГОСТ 24705-81, поле допуска 6Н - по ГОСТ 16093-81.

Цикл полного завертывания состоит из нескольких оборотов и заканчивается, котда резьба болга выходит из гайки на четыре витка.

Остальные технические требования - по ГОСТ 1759.0-87 для гаек класса точности А.

41. Круглые гайки с радиально расположенными отверстиями класса точности A (по ГОСТ 8381-73)

Размеры, мм

* Размер D до накатки.

Номиналь-	Шаг р	езьбы	D	т Откл	<i>d</i> ₁ юнение	h	<i>с</i> , не	с ₁ , не	Шаг риф-	Macca * 1000
резьбы <i>d</i>	круп- ный	мел- кий	по h14	по h14	по H13	по +IT14	бо- лее	бо- лее	ле- ний, <i>Р</i>	raek, Kr
2	0,4	-	5,5	2,0	1,0	1,2	0,3	0,1	0,6	0,304
2,5	0,45	-	7,0	2,2	1,2	1,5	0,3	0,1	0,6	0,532

Продолжение табл. 41

Номиналь-	Шаг ре	зэгря	D	m	d_1	h	с,	c ₁ ,	Шаг	Macca *
ный диаметр				Откл	онение		не	не	риф-	1000
резъбы <i>d</i>	круп- ный	мел- кий	πο hl4	πο hl4	по H13	по +IT14	бо- лее	бо- лее	ле- ний, <i>Р</i>	raek, Kr
3	0,5	_	8,0	2,5	1,5	1,7	0,3	0,1	0,6	0,75
4	0,7	-	10	3,4	1,5	2,0	0,3	0,1	0,6	1,69
5	0,8	-	12	4,2	2,0	2,3	0,5	0,2	0,8	2,96
6	1,0	-	16	5,0	3,0	3,5	0,5	0,2	0,8	6,16
8	1,25	1,0	20	5,0	3,0	4,5	0,8	0,4	I	9,67
10	1,5	1,25	25	6,0	3,5	4,5	0,8	0,4	1	18,64
12	1,75	1,25	28	6,0	3,5	5,0	0,8	0,4	1	23,01
16	2,0	1,5	32	7,0	4,0	6,0	1,2	0,6	I	32,33
20	2,5	1,5	36	8,0	4,0	6,0	1,2	0,6	1	44,72

^{*} Масса приведена для стальных гаек с крупным шагом.

 Π ример обозначения гайки диаметром резьбы d=12 мм с крупным шагом резьбы, с полем допуска 7H, класса прочности 5, без покрытия:

Гайка М12-6Н.5 ГОСТ 8381-73

то же с мелким шагом резьбы, с полем допуска 6Н, класса прочности 12, из стали 40Х, с покрытием 02 толщиной 9 мкм:

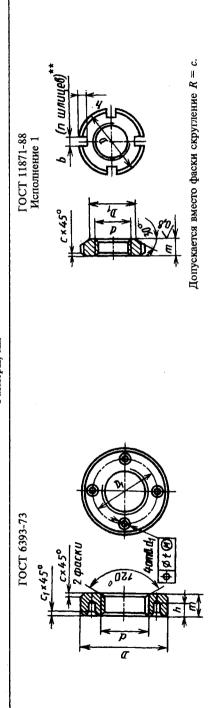
Гайка M12 × 1,25-6H.12.40X.029 ГОСТ 8381-73

Резьба - по ГОСТ 24705-81.

Допускается изготовление гаек без рифлений.

Поверхности отверстий под ключ стальных гаек должны иметь твердость $37.5 \dots 43.5$ HRC₃.

Стальные гайки должны быгь подвергнуты объемной термической обработке до твердости $28 \dots 33,5 \ \mathrm{HRC_3}.$


Допускается стальные гайки изготовлять без термической обработки.

Допуск перпендикулярности опорной поверхности гайки относительно оси резьбы - по 10-й степени точности ГОСТ 24643-81. Допуск параллельности опорных поверхностей гайки - по 10-й степени точности ГОСТ 24643-81.

Технические требования - по ГОСТ 1759.0-87.

42. Круглые гайки с отверствями на торпе под ключ класса точности А (по ГОСТ 6393-73) и плищевые класса точности А (по ГОСТ 11871-88)

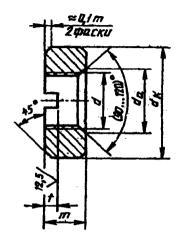
Размеры, мм

	-88		Macca 1000	гаек, кг	12,15	19,81	21,66	22,95	56,69	29,09	31,66	50,67	63,42	69,40	75,60
	FOCT 11871-88	h	Отклонение	по Н14		1,5			2,0					2,5	
	ľ	q	Откло	по Н14	4	4	9		9					9	
			Macca 1000	гаек, кг	9,55	18,67	26,33	29,52	32,14	35,68	38,76	49,11	76,62	83,99	68'06
	73		с ₁ , не более			0,4			0,4			0,4	0,4	0,4	9,0
	FOCT 6393-73	ų	9	по +IT14		5			5			5	S	S	7
		* W	Отклонение	по h14	(9) 8	∞	∞		∞			8 (10)	10	10	10
		d_1		по Н13		m		3	3,5	3,5	3,5	3,5	4	4	4,5
			<i>с</i> , не более			9,0		9,0	1,0 (0,6)	1,0				1	
	phi		ν1Ω		13 (13,5)	15 (15,5)	18 (17,5)	20 (18,5)	77	24	27 (26)	30 (29)	34 (31)	34 (35)	39 (38)
•	Общие размеры		D^* (отклонение	по h12)	18 (22)	22 (24)	26	28	30	32	34	38	42	45	48
			Шаг резьбы		1	1,25	1,25					•	1,5		
			g		8	10	12	14	16	18	20	22	24	27	30

Продолжение табл. 42

		Общие размеры	phi				FOCT 6393-73	73		I	FOCT 11871-88	88
,					d_1	* 111	Ч			q	h	
B	Шаг резьбы	Д * (отклонение	Δ ₁ *	с, не более		Отклонение	же	с ₁ , не более	Масса 1000	Отклонение	нение	Масса 1000
		по h12)			по Н13	по h14	по +ІТ14		гаек, кг	по Н14	по Н14	raek, kr
33		52	40		4,5				104,7			81,45
98	1,5	55	48 (42)	-	4,5	10		9,0	113,9	∞	m	85,43
8 4		09	48		2,5				136,5			107,81
¥	,					,	1		1,27,3			14/,17
4	L,1	0/ 1	(55) 95		۰	2	7	9,0	186,1	∞	m	151,13
84	۲,۲	75	64 (58)	-	9	12		9,0	261,1	∞	3,5	195,48
22	1,5	08	64 (61)		9	12		9,0	290,7	10	3,5	211,03
25	2	85	72 (65)	1,6	8	12		-	318,8	10	4	229,87
8		8	72 (70)		00	12	8		349,7	10		257,16
2		95	80 (75)		∞	12	∞		386,4	10	4,0	285,79
89		100	80		∞	15	∞		530,7	10		412,71
72		105	90 (85)		6	15	11		533,5	10		450,82
76		110	(88) 06			15		-	579,4	10		450,31
8		115	100 (90)		6	15	11		626,7	10	4,0	491,47
82		120	105 (98)			15			660,3	10		545,95
8	7		110 (102)	1,6		18			836,7	12		696,42
95			110 (108)		6	18	11	н	877,0	12	4,0	740,82
100			120 (115)		٥	18	11	-	891,6	12	4,0	794,73
105			125 (120)		'	(18)	ı	1	,	12	4,0	830,78
110			130 (125)		1	(22)	ı	•	1	4	5,5	1195,5
115			135 (132)									1264,9
120			140 (137)		1	(22)	,	,		14	5,5	1315,3
125		165	145 (142)									1365,7

* Размеры, указанные в скобках, относятся к гайкам по ГОСТ 11871-88. ** n = 4 для d = 8 - 100 км; n = 6 для d свыше 100 мм.


ГОСТ 11871-88 предусматривает также d=6 и d=130 ... 200 мм и тайки исполнения 2.

Пример обозначения гайки по ГОСТ 11871-88 исполнения 1, диаметром резьбы d ≃16 мм с мелким шагом резьбы 1,5 мм, с полем допуска бН, из углеродистой стали марки 35, с покрытием химическим окисным и пропитанным маслом:

Iaŭka M16 × 1,5-6H.05.05 IOCT 11871-88

43. Круглые гайки со плищем на торце класса точности В (по ГОСТ 10657-80 в ред. 1992 г.)

Размеры, им

Резьба по ГОСТ 24705-81. Поля допусков резьбы - по ГОСТ 1759.1-82.

Допуски формы и расположения поверхностей по ГОСТ 24643-81:

допуск симметричности шлица относительно оси резьбы - по 13-й степени точности:

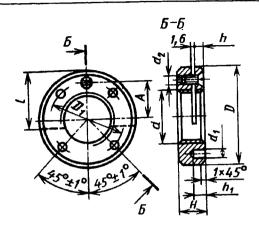
допуск соосности наружного диаметра относительно оси резьбы - по 12-й степени точности.

Допуск перпендикулярности опорных поверхностей гайки относительно оси резьбы соответствует 1°.

Номина диаметр г		M2,5	М3	M4	M 5	M 6	М8	M 10	M12	M16	M20
Шаг	крупный	0,45	0,5	0,7	0,8	1,0	1,25	1,5	1,75	2,0	2,5
резьбы <i>Р</i>	мелкий	-	-	-	-	-	1,0	1,25	1,25	1,5	1,5
d _a	min	2,5	3,0	4,0	5,0	6,0	8,0	10,0	12,0	16,0	20,0
	max	2,9	3,5	4,6	5,75	6,75	8,75	10,8	13,0	17,3	21,6
d _K	min	5,2	5,7	7,64	8,64	10,57	13,57	17,57	20,48	25,48	31,38
_	max	5,5	6,0	8,0	9,0	11,0	14,0	18,0	21,0	26,0	32,0
m	min	1,95	2,25	3,2	3,9	4,7	6,14	7,64	9,64	11,57	13,57
	max	2,2	2,5	3,5	4,2	5,0	6,5	8,0	10,0	12,0	14,0
	ном	1,2	1,2	1,4	2,0	2,5	3,0	3,5	4,0	4,0	5,0
n	min	1,26	1,26	1,46	2,06	2,56	3,06	3,57	4,07	4,07	5,07
	max	1,51	1,51	1,71	2,31	2,81	3,31	3,87	4,37	4,37	5,37
t	min	0,9	1,0	1,2	1,5	2,0	2,5	3,2	3,8	3,8	4,8
	max	1,1	1,2	1,6	1,9	2,4	3,0	3,7	4,3	4,3	5,5
Масса 1000 гаск, кг	стальных	0,26	0,41	1,04	1,83	2,53	5,26	11,03	21,06	36,27	56,32

Для определения массы гаек из латуни массы, указанные в таблице, следует умножить на коэффициент 1,08.

 $\hat{\Gamma}\hat{O}C\hat{\Gamma}$ предусматривает также d=1 ... 2,0 мм.


Пример обозначения гайки диаметром резьбы d=12 мм с крупным шагом резьбы, с полем допуска 6H, класса прочности 5, с покрытием химическим и пропитанным маслом:

Гайка М12-6Н.5.05 ГОСТ 10657-80

то же с мелким шагом резьбы, из материала группы 32, латуни марки Л63, с серебряным покрытием толщиной 9 мкм:

Гайка M12 × 1,25-6H.32.Л63.129 ГОСТ 10657-80

44. Гайки с контрящим винтом (по ГОСТ 12460-67) Размеры, мм

Обозначение гайки *	d	<i>D</i> h13	D_1	H	<i>d</i> ₁ H13	h ₁	d_2	A	h	l	Винт по ГОСТ 17475-80	Мас- са, кг
7003-0133/001	M16×1,5	40	27					14		24		0,08
-0134/001	M18×1,5	42	30		3,5			15		24		0,08
-0135/001	M20×1,5	44	34			5,0		16		26	M4-6g×	0,09
7003-0136/001	M22×1,5	46	34	10	4,0		M4	17	2,5	27	×8.66.05	0,10
-0137/001	M24×1,5	48	34					18		30		0,10
-0138/001	M27×1,5	52	38			6,5		20		32		0,12
7003-0139/001	M30×1,5	57	42		4,5			22		35		0,17
-0140/001	M33×1,5	60	48					23,5		36		0,18
-0141/001	M36×1,5	64	48					25,0		38	M5-6g×	0,20
-0142/001	M39×1,5	67	56	12		7,0	M5	26,5	3,0	40	×10.66.05	0,21
7003-0143/001	M42×1,5	70	56					28,0		42		0,23
-0144/001	M45×1,5	75	64	:	6,0			30		45		0,26
-0145/001	M48×1,5	75	64			ļ		30		45		0,24
-0146/001	M52×1,5	80	64					33		48		0,27
7003-0147/001	M56 × 2	90	72			7		36,5		53		0,48
-0148/001	M60 × 2	95	80		8,0			39		57	M6-6g×	0,54
7003-0149/001	M64 × 2	98	80	16		8		41	}	60	×14.66.05	0,54
-0150/001	M68 × 2	100	80				M6	42	4,0	60		0,58
7003-0151/001	M72 × 2	105	90	1				44]	63	M6-6g×	0,58
-0152/001	M76 × 2	110	90		ļ	1	1	47		65	×14.66.05	0,62
7003-0153/001	M80 × 2	122	100		9,0	11		51	5	71		0,94
-0154/001	M85 × 2	126	110			ĺ		53	5	73	M8-6g×	0,96
-0155/001	M90 × 2	132	110	18	1		M8	55	6	76	×16.66.05	1,03
-0156/001	M95 × 2	137	120			1	1	58	6	80		1,14
-0157/001	M100×2	142	120					60,5	6	82		1,12
* Обознач	ение гайки	в сбот	ре с ви	нтом	. как	и обо	значет	ние гай	тки. н	o без	пробного	числа

^{*} Обозначение гайки в сборе с винтом, как и обозначение гайки, но без дробного числа 001, например, обозначение гайки $d = M18 \times 1.5$ с контряшим винтом:

Гайка 7003-0134 ГОСТ 12460-67

обозначение гайки $d = M18 \times 1,5$:

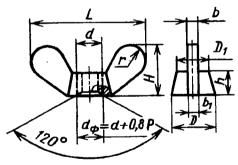
Гайка 7003-0134/001 ГОСТ 12460-67

Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6H по ГОСТ 16093-81. Сквозные отверстия под винты - по ГОСТ 11284-75.

Опорные поверхности под винты - по ГОСТ 12876-67.

Неуказанные предельные отклонения размеров: отверстий - H14; валов - h14; остальных - $\pm \frac{t_2}{2}$.

Размеры фасок резьбы - по ГОСТ 10549-80.


Материал - сталь 45 ... Допускается применение других сталей марок с механическими свойствами не ниже, чем у стали 45. Твердость 32,0 ... 36,5 HRC₃.

Покрытие - Хим. Окс. прм (по ГОСТ 9.306-85).

Остальные технические требования - по ГОСТ 1759.0-87.

45. Гайки-барашки (по ГОСТ 3032-76)

Размеры, мм

Размеры гаек, заключенные в скобки, применять не рекомендуется.

Номинальный диаметр резьбы	3	4	5	6	8	10	12	(14)	16	(18)	20	24
Шаг резьбы <i>Р</i> : крупный	0,5	0,7	0,8	1,0	1,25	1,5	1,75	2	2	2,5	2,5	3
мелкий	_	_	-	-	1,0	1,	25		1	,5		2
D	7	8	10	12	15	18	22	26	30	32	34	45
D_1	6	7	8	10	13	15	19	22	26	28	30	38
L	20	24	28	32	40	48	55	60	70	75	85	100
H	8	10	12	14	18	22	26	30	32	34	38	48
h (js15)	3	4	5	6	8	10 .	12	14	14	16	16	20
h (313)	1,2	1,5	2,0	2,5	3,0	3,4	4,0	5,0	6,0	6,0	7,0	9,0
<i>b</i> ₁	1,5	2,0	2,5	3,0	3,4	4,0	5,0	6,0	7,0	7,0	8,0	11
r	3,0	4,0	4,5	5,0	6,0	7,0	8,5	9,0	10,0	11,0	11,5	15,0

Номинальный диаметр резьбы	3	4	5	6	8	10	12	(14)	16	(18)	20	24
Масса 1000 стальных гаек с крупным шагом резьбы	1,52	2,74	4,56	7,82	14,9	24,8	43,4	66,2	94,4	114	142	311

Для определения массы гаек из других материалов, указанные в таблице массы следует умножить на коэффициенты: 0,356 - для алюминиевого сплава; 1,08 - для латуни; 0,92 - для ковкого чугуна.

Стандартом предусматривается также исполнение гаек с отверстиями в ушках.

Пример обозначения гайки диаметром резьбы d=10 мм с крупным шагом резьбы, с полем допуска 6H, класса прочности 6, без покрытия:

Гайка М10-6Н.6 ГОСТ 3032-76

то же с мелким шагом резьбы, из материала группы 32, латуни Л63, с покрытием 03 толшиной 6 мкм:

Гайка M10 × 1,25-6H,32.Л63.036 ГОСТ 3032-76

Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6H по ГОСТ 16093-81. Допускается поле допуска резьбы 5H6H или 6G.

Допуск перпендикулярности опорной поверхности относительно оси резьбы - $0.0175 \times 0.8 D$.

Допуск соосности оси резьбового отверстия относительно оси конуса в диаметральном выражении - 2IT15.

Гайки-барашки изготовляют из материалов по ГОСТ 1759.0-87. Допускается применение сталей марок 25Л, 35Л, 40Л, 45Л по ГОСТ 977-88 и чугуна по ГОСТ 1215-79 или ГОСТ 7293-85. Остальные технические требования - по ГОСТ 1759.0-87.

ШАЙБЫ

46. Технические требования на шайбы (по ГОСТ 18123-82)

Стандарт распространяется на круглые шайбы (ГОСТ 11371-78, 6958-78, 10450-78, 9649-78), косые (ГОСТ 10906-78) и стопорные (ГОСТ 13463-77 - 13466-77).

Вид материала	Марка материала	гост	Условное обозначение марки (группы)
Углеродистые стали	08, 08кп, 10, 10кп	1050-88	01
	Ст3, Ст3кп	380-94	02
	15	-	03
	20	1050-88	04
	35		05
	45		06
Пегированные стали	40X, 30XTCA	4543-71	11

Продолжение табл. 46

Pur versevers	Management	FOCT	Условное обозначение
Вид материала	Марка материала	гост	марки (группы)
Коррозионно-стойкие	12X18H10T	5632-72	21
стали	20X13		22
Латуни	Л63, ЛС59-1	15527-70	32
	Л63 антимагнитная		33
Бронза	БрАМи9-2	18175-78	34
Медь	M3	859-78	38
	AMr5		31
Алюминиевые сплавы	Д1	4784-97	35
	АД1		37

По соглашению между изготовителем и потребителем допускается изготовлять шайбы из материалов, не предусмотренных стандартом.

По заказу потребителя шайбы изготовляют термообработанными.

Покрытия, их условные обозначения и толщины - по ГОСТ 1759.0-87. Допускается применять и другие покрытия по ГОСТ 9.306-85.

Лапки стопорных шайб при их двукратном загибе и отгибе на угол 90 $^{\circ}$ не должны ломаться и иметь трещины.

Схема построения условного обозначения шайб

Шайба	x.	XX ×	xx.	XX.	x x.	XXX	ГОСТ х х-хх
	T						
	1	2	3	4	5	6 7	8

1 - исполнение (исполнение 1 не указывается); 2 - диаметр резьбы крепежной детали; 3 - толщина. Указывается для шайб с толщиной, не предусмотренной в стандартах на конкретные виды шайб; 4 - условное обозначение марки (группы) материала; 5 - марка материала. Указывается для групп 01; 02; 11; 32 и для материала, не предусмотренного в настоящем стандарте. Допускается в конструкторской документации не указывать марку материала для групп 01; 02; 11; 32; 6 - условное обозначение вида покрытия. Отсутствие покрытия не указывается; 7 - толщина покрытия. Для многослойного покрытия указывается суммарная толщина всех компонентов. Условное обозначение покрытия, которое не предусмотрено в настоящем стандарте, - по ГОСТ 9.306-85; 8 - обозначение стандарта на конкретный вид шайбы.

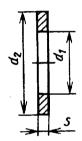
Если стандарт на конкретный вид шайбы предусматривает для одного исполнения два класса точности A и C, то в условном обозначении шайбы перед исполнением должна указываться соответствующая буква.

Примеры условных обозначений:

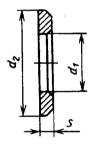
Шайба по ГОСТ 11371-78 исполнения 1 для крепежной детали с диаметром резьбы 12 мм, с толщиной, установленной в стандарте, из стали марки 15, с цинковым покрытием толщиной 9 мкм хроматированным:

то же, из стали марки Ст3кп:

Шайба 12.02.Cm3кn.019 ГОСТ 11371-78


то же, исполнение 2, толщиной 4 мм, не предусмотренной в стандарте на конкретный вид шайбы, из стали марки 08X18H12T, с титановым покрытием, не предусмотренным в настоящем стандарте:

Шайба 2.12 × 4.08X18H12T.Tu9 ГОСТ 11371-78


47. Увеличенные шайбы (ГОСТ 6958-78), шайбы (ГОСТ 11371-78), уменьшенные шайбы (ГОСТ 10450-78) класса точности А

Размеры, мм

Πο ΓΟСΤ 6958-78 ΓΟСΤ 10450-78

По ГОСТ 11371-78

Диаметр		Шайб	ы увел	иченные		Шайб	ы	Шайб	бы умен	ьшенные
резьбы крепежной детали	d_1	d_2	s	Масса 1000 шт., кг	<i>d</i> ₂	s	Масса * 1000 шт., кг	<i>d</i> ₂	S	Масса 1000 шт., кг
2,0	2,2	6	0,5	0,095	5,0	0,3	0,035	4,5	0,3	0,029
2,5	2,7	8	0,5	0,178	6,5	0,5	0,102	5,0	0,5	0,058
3,0	3,2	9	0,8	0,350	7,0	0,5	0,110	6,0	0,5	0,078
4,0	4,3	12	1,0	0,89	9,0	0,8	0,282	8,0	0,5	0,143
5,0	5,3	15	1,2	1,452	10,0	1,0	0,415	9,0	1,0	0,330
6,0	6,4	18	1,6	2,796	12,0	1,6	0,732	11,0	1,6	0,786
8,0	8,4	24	2,0	6,130	16,0	1,6	1,077	15,0	1,6	1,524
10,0	10,5	30	2,5	12,17	20,0	2,0	2,716	18,0	1,6	2,112
12,0	13,0	37	3,0	20,00	24,0	2,5	5,558	20,0	2,0	2,916
14,0	15,0	44	3,0	32,00	28,0	2,5	7,795	24,0	2,5	5,412
16,0	17,0	50	3,0	41,00	30,0	3,0	10,000	28,0	2,5	7,636
18,0	19,0	56	4,0	68,00	34,0	3,0	13,23	30,0	3,0	10,32
20,0	21,0	60	4,0	78,00	37,0	3,0	15,56	34,0	3,0	12,84
22,0	23,0	66	5,0	118,0	39,0	3,0	16,53	37,0	3,0	15,22
24,0	25,0	72	5,0	131,0	44,0	4,0	29,53	39,0	4,0	22,59
27,0	28,0	85	6,0	238,0	50,0	4,0	39,12	44,0	4,0	28,67

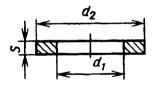
									11pc	должен	ine lawi. T/
	Диаметр		Шай	бы увел	иченные		Шай(Б Ы	Шайб	бы умен	њшенные
_	резьбы крепежной детали	d_1	<i>d</i> ₂	s	Масса 1000 шт., кг	d ₂	s	Масса * 1000 шт., кг	d ₂	S	Масса 1000 шт., кг
	30,0	31,0	92	6,0	277,0	56,0	4,0	50,08	50,0	4,0	38,30
	36,0	37,0	110	8,0	529,0	66,0	5,0	86,12	60,0	5,0	68,80
	42,0	43,0	-	-	-	78,0	7,0	169,07	_	_	_
	48,0	50,0	-	-	<u> </u>	92.0	8.0	273.09	_		_

Продолжение табл. 47

Для определения массы шайб значения массы, указанные в таблице для стальных шайб, следует умножить на коэффициенты: 0,356 - для алюминиевого сплава; 0,97 - для бронзы; 1,08 - для латуни; 1,13 - для меди.

ГОСТы предусматривают $d_1 = 1,0; 1,2; 1,4; 1,6$ мм, а также шайбы класса точности С.

Пример условного обозначения увеличенной шайбы класса точности А для крепежной детали диаметром резьбы 12 мм установленной стандартом толщины, из стали 08кп, с цинковым покрытием, толщиной 9 мкм:


Шайба A12.01.08кn.019 ГОСТ 6958~78

Предельные отклонения для класса точности A: наружного диаметра d_2 - по h14, при s>4 - по h15; диаметра отверстия d_1 - по H13, при s>4 - по H14.

48. Шайбы класса точности А для пальцев (ГОСТ 9649-78)

Стальные шайбы предназначены для применения в шарнирных соединениях механизмов общего назначения.

Размеры, мм

d_1	4	5	6	8	10	12	16	20	(25)	(28)	(32)	36	40	50	55	60	70	80	90
d_2	8	10	12	15	18	20	24	30	36	40	45	50	56	66	72	78	92	98	110
s	0,8	1	1,6	2,0	2,5		2	3		4		6,0	6	8	8	10	10	12	12

ГОСТ предусматривает $d_1 = 3$, 14, 18, 24, 27, 30, 33, 45, 65, 75 и 100 мм. Размеры, указанные в скобках, применять не рекомендуется.

Пример условного обозначения шайбы с диаметром $d_1=12$ мм, из стали 08кп, с окисным покрытием:

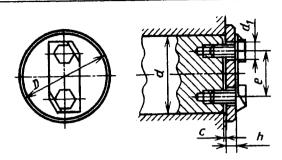
Шайба 12.01.08кп.05 ГОСТ 6958-78

Предельные отклонения: наружного диаметра d_2 - по h14, диаметра отверстия d_1 - по H11. Остальные технические требования - по ГОСТ 18123-82.

Концевые шайбы (по ГОСТ 14734-69)
 Размеры, мм

	1	2												
НИЯ		Штяфт по	TOCT 3128-70	3 × 10					4 × 12					
Пример применения		Исполнение 2	Болт по ГОСТ 7798-70	-				,	M6×16.56.05					
При	• •	Исполнение 1	Винт по ГОСТ 17475-80	M5×12.56.05					M6×16.56.05					
2			ϵ_1	10					12					•
е шай	On the second		2	16					18					
репление шайб Исполнение 2			K7	۳					4					
ов и кр			d ₃	MS					M6					
Рекомендуемые концы валов и крепление шайб Исполнение 1			Do	20-24	24-28		28-32		32-36		36-40		40-45	
уемые ко ние 1			Мас- са, кт	0,018	0,029	0,030	0,037	0,038	0,046	0,047	0,059	0,060	0,074	
екомендуемы Исполнение 1	1		v	9,0					1,0					
Pek	\overline{a}		d2	3,5					4,5					
те 2			ďı	10,3	12,3	١	12,3	1	12,3		12,3	-	12,3	
Исполнение 2	> V		ď	5,5					9'9					
	3		A±0,2	7,5	9,0			10,0			12,0		16,0	
Шайбы			H	4					2				_	_
		_	a	187	32		36		40		45		S	
же 1	te atem	9M	исполнен Н	-	-	2	1	2	1	7	-	7	_	
Исполнение 1			Обозначе- ние шайб	7019-0621	7019-0622	-0623	7019-0624	-0625	7019-0626	-0627	7019-0628	-0629	7019-0630	

Продолжение табл. 49

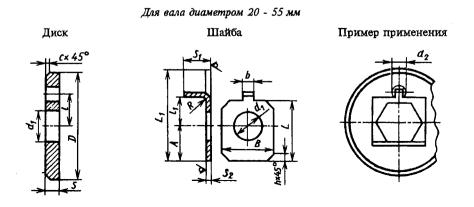

	ЭИ														Исполнение 1	Исполнение 1 Исполнение 2	Штифт по
Обозначе- ние шайб	Исполнен	Q	H	A±0,2	ā	d_1	d ₂	u	Mac- ca, Kr	D_0	d ₃	4 ₄ K7	J	ℓ_1	Винт по ГОСТ 17475-80	Болт по ГОСТ 7798-70	TOCT 3128-70
7019-0632	-	56	2	16,0	9'9	12,3	4,5	9'0	0,094	45-50	M6	4	18	12	M6×16.56.05	M6×16.56.05	4 × 12
-0633	7					ı			0,095								
7019-0634	-	63				16,5			0,141	50-55							
-0635	2			70		•			0,143								
7019-0636	-1	19				16,5			0,160	92-95							
-0637	7					ì			0,162		_						
7019-0638	-	71	,			16,5			0,180	59-09							,
-0639	7		9	25	9/	ı	5,5	1,6	0,182		M8	'n	77	16	M8×20.56.05	M8×20.56.05	5 × 16
7019-0640	-	75				16,5			0,202	65-70							
-0641	7					١			0,204								
7019-0642	_	85				16,5			0,261	70-75							
-0643	7			28		ı			0,263								
-0644	_	8				16,5			0,294	75-80							
7019-0645	7					ı			0,296								
															;		Ų

Материал - сталь 45 по ГОСТ 1050-88. Допускается применять стали других марок с механическими свойствами не ниже, чем у стали 45. Покрытие - Хим. Окс. прм по ГОСТ 9.306-85. Допускается по соглашению между изготовителем и потребителем применять другие виды . Пример обозначения концевой шайбы исполнения 1, диаметром D=28 мм: покрытий.

Шайба 7019-0621 ГОСТ 14734-69

50. Концевые шайбы с двумя болтами для торцового крепления деталей

Размеры, мм

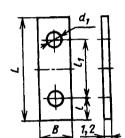

d	D	h	d_1	е	с, не более	Болт
От 35 до 40	50			20		
Св. 40° » 45	55	6	9	20	4	M8 × 20
* 45 * 50	60			25		
Св. 50 до 60	70	8		30		
» 60 » 70	80	8	14	36		M12 × 30
» 70 » 80	90	10	į.	40		
» 80 » 90	110	10		45	5	
Св. 90 до 100	120			50		
» 100 » 110	125	12	18	55		M16 × 36
» 110 » 120	140	<u> </u>		60		
* 120 * 130	150			65		

Материал - сталь 45.

51. Торцовое крепление дисками на валах

Применяется для крепления на валах деталей привода (шестерен, звездочек, шкивов и др.) с помощью торцовых дисков и плоской шайбы.

Размеры, мм

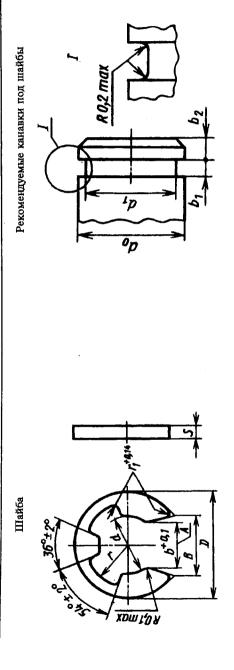

Продолжение табл. 51

Диа-											٠					Maco	а, кг
метр вала	D	S	<i>d</i> ₁	d_2	1	с	В	L	\mathcal{S}_{l}	I_1	A	R= =S ₂	b	h	Li	диска	шай- бы
20	30	4	7	3	7	1	14	15	10	6,5	9	1	2,5	3	25	0,020	0,002
25	36	4	9	4	9	1	18	19	11	8,5	11	1	3,5	3	30	0,034	0,003
30	40	4	11	5	11	1	23	24	12	10,5	14	1	4,5	3	36	0,045	0,004
36	45	4	11	5	11	1	23	24	12	10,5	14	1	4,5	3	36	0,065	0,004
40	50	6	13	5	15	1,6	25	30	13	14,5	17	1	4,5	5	44	0,087	0,008
45	55	6	13	5	15	1,6	25	30	13	14,5	17	1	4,5	5	44	0,10	0,008
50	60	6	13	5	15	1,6	25	30	13	14,5	17	1	4,5	5	44	0,13	0,008
55	65	6	17	6	20	1,6	30	40	14	19,5	21	1,2	5,5	8	55	0,14	0,012

Для вала диаметром 60 - 100 мм Шайба

1,6×45°

Диск



Диаметр	D	S	d_1	L	В	1	l_1	Macca	, Kr
вала			1				-	диска	шайбы
60	70	,						0,14	0,013
65	75	5	11	60	20	14	32	0,17	0,013
70	80			·	•			0,18	0,013
75	85	5						0,21	0,019
80	90	5						0,24	0,019
85	100	8						0,48	0,019
90	105		13	85	24	17	50	0,53	0,019
95	110	8						0,59	0,019
100	115							0,64	0,019

Материал - сталь Ст3кп.

52. Упоряме быстросъемные пайбы в клязьки для нях (по ГОСТ 11648-75)

Размеры, мм

<i>b</i> .	не менее	0,4	8,0	1,2	1,2	1,2	2,0	2,5	3,5	
	Откло- нение	90,0	90,0	90,0	90,0	0,10	0,10	0,10	0,10	
lq	Номи-	6,5	0,5	0,7	6,0	1,1	1,4	1,4	1,8	
ďı	(откло- нение по h11)	1,6	2,0	3,0	5,0	7,0	9,0	12,0	15,0	
	Диаметр вала <i>d</i> ₀	От 2 до 2,5	CB. 2,5 > 4	» 4 » 6.	8 * 9 *	* 8 * 10	* 10 * 12,5	* 12,5 * 16	* 16 * 20	
	٢	0,4	0,4	9,0	9,0	9,0	9,0	9,0	9,0	
	Откло- нение	90,0±	40,0€	₹0,0	₹0,0	€0,04	±0,10	±0,10	±0,12	
7	Номи-	1,3	2,1	3,3	4,4	2,6	8,9	9,5	12,0	
	p	1,3	1,7	2,6	4,4	6,2	8,0	10,8	13,5	
В	(откло- нение по H14)	1,8	2,4	3,6	5,5	8,0	10,0	13,0	16,0	l
Š	Откло- нение	±0,04	±0,0±	₹0,0₹	±0,05	±0,07	₹0,04	€0,04	±0,11	
-,	Номи- нал	6,4	0,4	9,0	8,0	1,0	1,2	1,2	1,6	
D	(откло- нение по h12)	4	9	0	12	15	18	74	30	
q	(откло- нение по Н12)	1,6	2,0	3,0	5,0	7,0	9,0	12,0	15,0	

Пример обозначения шайбы свнутренним диаметром d = 5 мм из бронзы БрКМц3-1, с покрытием 07 толщиной 6 мкм:

Шайба 5.БрКМц3-1.076 ГОСТ 11648-75

Технические требования. Шайбы изготовляют из углеродистой качественной конструкционной стали марки 65Г или безоловянной бронзы марки БрКМц3-1 по ГОСТ 18175-78.

По заказу потребителя шайбы изготовляют с покрытием. Виды и условные обозначения покрытий - по ГОСТ 1759.0-87. Толщины покрытий назначают в соответствии с ГОСТ 9.306-85 по соглашению между изготовителем и потребителем.

Допуск плоскостности шайб - не более 0,1 мм.

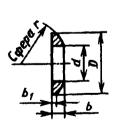
Допуск соосности оси наружного диаметра относительно оси внутреннего диаметра для $d \ge 5$ мм не более 0,04 мм, для d > 5 мм - не более 0,05 мм.

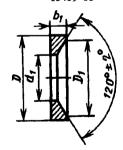
Допуск симметричности паза A относительно оси внутреннего диаметра для $d \le 7$ мм не более 0,05 мм, для $d \ge 7$ мм - не более 0,1 мм; допуск симметричности выступа E - не более 1°.

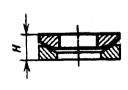
Стальные шайбы должны иметь твердость 390 ... 502 HV, бронзовые - не менее 186HV.

Допускаемые осевые нагрузки на шайбы приведены в табл. 53.

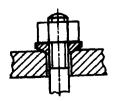
53. Допускаемые осевые нагрузки на упорные шайбы

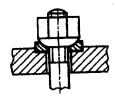

ď	Допус	каемая ос шайбу, Н	евая нагру , не более		d		аемая осе пайбу, Н,		
(откло- нение по	RUUL	d _{0 min}	для о	d _{0 max}	(откло- нение по	для с	d _{0 min}	для а	
Н12), мм	сталь- ную	брон- зовую	сталь- ную	брон- зовую	Н12), мм	сталь- ную	брон- зовую	сталь- ную	брон- зовую
1,6	70	50	100	80	7,0	600	500	1400	1000
2,0	100	60	350	250	9,0	800	600	2400	1800
3,0	300	200	700	600	12,0	1000	800	2800	2200
5,0	450	350	1100	900	15,0	1200	1000	4400	3500

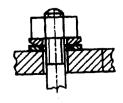

54. Шайбы сферические и конические


Размеры, мм

Шайба сферическая по ГОСТ 13438-68


Шайба коническая по ГОСТ 13439-68 Справочная высота шайб





Примеры применения сферических и конических шайб

Продолжение табл. 54

Размеры, мм

Обозначе	ние шайб		Общ		(Сфери	ческая	г шай	ба	Ko	эгинс	ская і	шайба
сфери- ческих	кони- ческих	Диаметр стержня	D	Н	đ	ь	b_1	r	Mac- ca, кг	D_1	d_1	<i>b</i> ₂	Mac- ca, ĸr
7019-0391	7019-0411	6	12	4	6,4	2,4	1	9	0,001	11	7	2,8	0,002
0392	0412	8	17	5	8,4	3,5	1	12	0,003	16	10	3,5	0,004
0393	0413	10	21	6	10,5	4,0	1	15	0,005	20	12	4,2	0,007
0394	0414	12	24	7,2	13	4,5	1,2	18	0,008	22	15	5,0	0,010
0395	0415	16	30	8,5	17	5,3	1,2	22	0,012	28	19	6,2	0,019
0396	0416	20	36	10,5	21	6,3	1,6	27	0,021	33	24	7,5	0,026
0397	0417	24	44	13,5	25	8	2	32	0,042	41	28	9,5	0,056
0398	0418	30	56	17	31	10	2,5	40	0,082	52	35	12	0,126
0399	0419	36	68	22	37	14	4	50	0,166	64	42	15	0,222
0400	0420	42	78	26,5	43	16	5,5	58	0,250	74	48	18	0,365
7019-0401	7019-0421	48	92	35	50	21	8	67	0,525	85	56	22	0,641

Пример обозначения сферической щайбы под стержень диаметром 6 мм:

Шайба 7019-0391 ГОСТ 13438-68

то же конической шайбы:

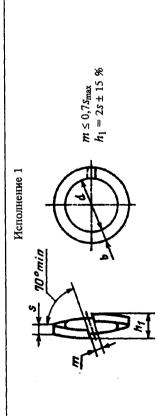
Шайба 7019-0411 ГОСТ 13438-68

Материал - сталь марки 45 по ГОСТ 1050-88.

Допускается применять сталь других марок с механическими свойствами не ниже, чем у стали 45.

Твердость 41 ... 46,5 HRC₃.

Неуказанные предельные отклонения размеров:


отверстий - H14, валов - h14, остальных - $\pm \frac{t_2}{2}$.

Покрытие - Хим. Окс. прм по ГОСТ 9.306-85. Допускается по соглашению между изготовителем и потребителем применять другие виды поркытий.

55. Пружиниме шайбы (по ГОСТ 6402-70 в ред. 1993 г.)

Размеры, мм

Исполнение 2

Пружинные шайбы изготовляют с квадратным поперечным сечением четырех типов: Н - нормальные; Т - тяжелые; ОТ - особо тяжелые; Л - легкие.

JI - JIGI MIG.						Шайбы					Pacy	Расчетная упругая сила	гругая	HUTA
Huavem	P		Леткие (Л)	(E)	Норма	Нормальные (Н)	ľ	Гяжелые (Т)	Особо т	Эсобо тяжелые (OT)	шай	шайб из стали 65Г, Н	ли 65Г,	H
болта, винта,	1	q	S	Масса 1000 шт.,	q = s	Масса 1000 шт.,	q = s	Масса 1000 шт.,	q = s	Macca 1000 mr.,	П	н	T	OT
ШПИЛЬКИ				χţ		Į.		¥		N.				
2	2,1	8.0	0,5	0,030	0,5	0,017	9,0	0,025	1	1	7,8	11,8	26,5	,
2.5	2,6	0.8	9.0	0,042	9,0	0,030	8,0	0,056	1	ŀ	14,7	16,7	27,8	1
'n	3.1	1,0	0,8	0,084	8,0	0,064	1,0	0,105		,	35,3	38,2	101	ı
3.5	3,0	1,0	0.8	0,094	1,0	0,117	,	1	ı	1	21,6	71,5	1	1
, 4	4	1,2	0,8	0,129	1,0	0,129	1,4	0,273	•	1	14,7	52,9	230	ı
- رح	1, 2,	17	1,0	0,191	1,2	0,228	1,6	0,432	,	1	28,4	71,5	252	,
ی د	6,1	1,6	1,2	0,378	1,4	0,376	2,0	0,827	•	ı	36,3	88,2	418	,
	7.2	2.0	1,6	0,749	2,0	0,936	1	ı	ı	ŗ	92,1	586	,	
. 00	28,2	2,0	1,6	0,287	2,0	1,034	2,5	1,678	•	,	71,5	214	583	,
- - -	10.2	2,5	2,0	1,608	2,5	2,010	3,0	2,984	3,5	4,212	114	339	770	1490
12	12.2	3,5	2,5	3,462	3,0	3,450	3,5	4,816	4,0	6,488	187	66	1000	1774
7 7	14.2	0,4	3,0	5,487	3,2	4,480	4,0	7,316	4,5	6),509	295	463	1235	2058
. 4	16,3	4,5	3,2	7,507	3,5	6,084	4,5	10,56	2,0	13,34	283	495	1509	2372
× ×	18,3	5,0	3,5	10,23	4,0	8,960	5,0	14,62	5,5	18,06	305	673	1803	2734
20	20.5	5,5	4,0	14,33	4,5	12,69	5,5	19,70	0,9	23,89	434	856	2107	3077
22	22,5	6,0	4,5	19,25	5,0	17,21	0,9	25,66	7,0	36,14	265	1107	2479	4841
!														

S
S
,i
riG
-
22
L
43
3
₽
-
9
≫ €
Е
\sim
⋍
=
~
ο,
$\overline{}$
_

						Шайбы					Pacy	Расчетная упругая сила	о вило	ила
Диаметр	p		Легкие (Л)	(II)	Норма	Нормальные (Н)	Тяже	Тяжелые (Т)	Особо в	Особо тяжелые (ОТ)	шай	шайб из стали 65Г, Н	ли 65Г,	H
болта, винта, шпилъки		q	s	Масса 1000 шт., кт	q = s	Масса 1000 шт., кт	s = b	Масса 1000 шт., кг	q = s	Масса 1000 шт., кт	П	Н	Т	OT
24	24,5	6,5	4,8	24,16	5,5	22,68	7,0	38,55	8.0	51.93	642	1382	3989	7085
27	27,5	7,0	5,5	33,14	0,9	30,10	8,0	26,67	9.0	73,71	928	1539	5459	9055
30	30,5	8,0	0,9	46,14	6,5	39,05	9,0	79,80	10	101.1	1029	1695	7115	11192
33	33,5	10	0,9	65,07	7,0	49,52	. ,		t	` ,	692	1882	,	,
38	36,5	10	6,0	69,51	8,0	70,99	10	115,9	12	173,9	999	2773	7428	16317
39	39,5	10	6,0	73,90	8,5	86,37	ı	1	ı	. ,	469	2999		
42	42,5	12	7,0	113,9	0,6	103,8	12	195,2	1	1	756	3244	11535	,
45	45,5	12	7,0	120,1	9,5	123,5	1	ı	ı	ı	643	3489	1	,
48	48,5	12	7,0	126,3	10	145,4	,	ı	ı	ı	554	3753	ı	,

римечания: 1. Допускается увеличение размера S в пределах 10 % от номинального размера.

обозначения шайбы исполнения 1 для болта, винта, шпильки диаметром резьбы 12 мм: 2. Для определения массы шайб из бронзы массу, указанную в таблице, следует умножить на коэффилиент 1,08. легкой из бронзы БрКМц3-1 без покрытия:

Шайба 12Л БрКМц3-1 ГОСТ 6402-70 нормальной из стали 65Г с кадмиевым покрытием толщиной 9 мкм:

Maŭ6a 12 65F 029 FOCT 6402-70 тяжелой исполнения 2 из стали 30Х13 с пассивным покрытием:

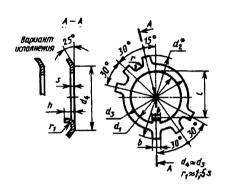
IIIaŭ6a 2 12T30X13 11 FOCT 6402-70

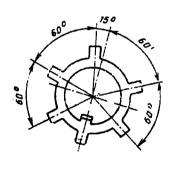
Пружинные шайбы изготовляют из проволоки по ГОСТ 11850-72 или по другой нормативно-технической документации из стали марок Допускается изготовление пружинных шайб из бронзы марки БрКМц-1 по ГОСТ 18175-78 или других цветных сплавов. 65Г, 70 и 30Х13.

Твердость стальных шайб 41,5 ... 49,6 НКСэ, бронзовых - не мене 90 НКВ. Допускается увеличенная твердость шайб из стали 70 до 51,5 HRG.

Шайбы изготовияют с покрытием или без покрытия. Виды покрытий, их условные обозначения и толщины - по ГОСТ 1759.0-87. Допускается применять другие виды покрытий по ГОСТ 9.306-85.

56. Стопорные многолапчатые шайбы (по ГОСТ 11872-89)


Стопорные многолагчатые шайбы класса точности А предназначены для стопорения круглых пллицевых гаек; изготовляют типов: Л - легкие; Н - нормальные.


Размеры, мм

Тил Н - нормальные

Исполнение 1

*	Размер	d_2	В	развертке.
---	--------	-------	---	------------

Диаметр резьб	d ₁ (поле допуска H12)	. d ₂	<i>d</i> ₃ по допус	b vie ka h14	h	! (поле допуска H14)	<i>r</i> , не более	S	Масса 1000 стальных шайб, кг
5 6 8 10	5,2 6,2 8,5 10,5	16 18 24 26	8,0 9,5 14 16	1,5 1,8 3,0 3,5	1,5-2,5 2-3 2-3 2,5-4	3,2 4,2 5,5 7,0	0,2	0,8 0,8 1,0 1,0	0,433 0,573 1,560 1,850
12 14 16 18	12,5 14,5 16,5 18,5	28 30 32 34	18 20 22 24	3,8 3,8 4,8 4,8	2,5-4 2,5-4 2,5-4 3,5-6	9,0 11 13 15	0,2 0,2 0,5 0,5		2,070 2,200 2,612 2,786
20 22 24 27	20,5 22,5 24,5 27,5	36 40 44 47	27 30 33 36	4,8 4,8 4,8 4,8	3,5-6 3,5-6 3,5-6 4,5-8	17 19 21 24	0,5	1,0	3,247 3,770 4,770 4,822
30 33 36 39	30,5 33,5 36,5 39,5	50 54 58 62	39 42 45 48	4,8 5,8 5,8 5,8	4,5-8	27 30 33 36		1,0 1,6 1,6 1,6	5,136 9,598 10,32 11,04

Продолжение табл. 56

	d_1		d ₃	b		1			Macca 1000
Диаметр резьб	(поле допуска Н12)	<i>d</i> ₂		оле ка h14	h	(поле допуска H14)	г, не более	S	стальных шайб, кг
42	42,5	67	52	5,8	4,5-8	39	0,5		12,78
45	45,5	72	56	5,8	4,5-8	42	0,5		14,65
48	48,5	77	60	7,8	4,5-8	45	0,8		18,17
52	52,5	82	65	7,8	5,5-10	49	0,8		20,45
56	57	87	70	7,8		53			22,29
60	61	92	75	7,8	5,5-10	57		1,6	24,79
64	65	97	80	7,8		61			27,46
68	69	102	85	9,5		65	0,8		31,74
72	73	107	90			69			34,77
76	77	112	95	9,5		73			37,97
80	81	117	100			76			41,47
85	86	122	105			81		:	43,35
90	91	127	110		6,5-13	86			58,52
95	96	132	115	11,5		91			60,86
100	101	137	120			96			63,20
105	106	142	125			101	1,0	2,0	65,54
110	111	152	130			106			73,06
115	116	157	135	13,5		111			75,40
120	121	162	140			116			78,70
125	126	167	145			121			80,08

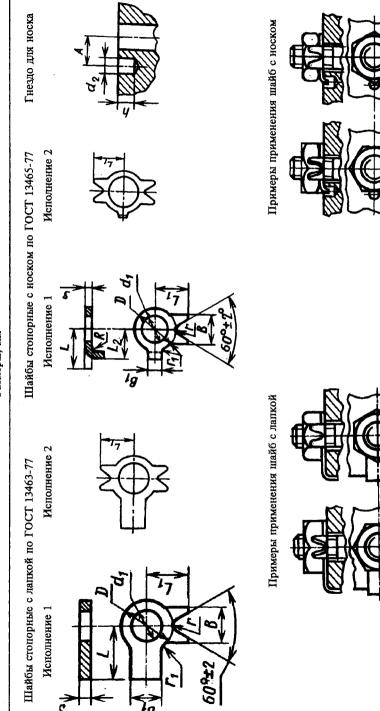
Примечания: 1. Допускается изготовление шайб без отгиба лапок на угол 25°.

Пример обозначения стопорной многолачатой шайбы исполнения 1, типа H, для круглой шлицевой гайки с диаметром резьбы 64 мм, из материала группы 01, с покрытием 05:

Шайба Н.64.01.05 ГОСТ 11872-89

то же исполнения 2 из материала группы 02, с покрытием 02 толщиной 9 мкм:

Шайба 2Н.64.02.029 ГОСТ 11872-89


Легкий тип шайб в обозначении не указывается.

^{2.} Для определения массы латунных шайб значения массы, указанные в таблице, умножают на коэффициент 1,08.

57. Шайбы стопорные класса точности А (по ГОСТ 13463-77 в ГОСТ 13465-77)

Стопорные шайбы с лапкой и носком предназначены для устранения самоотвинчивания шестигранных гаек и болтов с шестигранной

Размеры, мм

Продолжение табл.57

	ı	_	1						ı								
IOCKB	ų	(поле допуска ±IT15)		5			9		9	9	∞		∞		∞	∞	10
Гнездо для носка	d,	(поле допуска H14)	3	3	4	4	4	٠	5	'n	9	7	7	∞	8	6	6
Гне	-	(поле до- пуска ± <u>тт</u> \$)	4,3	5,3	8,9	7,3	8,1	9,6	11,5	11,5	14,5	17,5	17,5	19,5	19,5	21,2	24,2
OCT	Масса	1000 urr., kr	0,124	0,166	0,232	0,524	1,061	1,468	1,667	2,051	2,579	3,363	3,888	4,307	5,359	11,03	13,76
no I		R*1				-						1,6			1,6	7	7
Шайба с носком по ГОСТ 13465-77	8	(поле до- пуска h14)	2,4	2,4	3,4	3,4	3,4	4,	4,4	4,4	5,4	9	9	7	7	∞ ∞	∞
йба с	12	cKa 5	4,5	5,5	7	7,5	8,5	10	12	12	15	18	18	92	20	22	25
IIIai	T	поле допуска js15	7,5	8,5	10	11,5	12,5	14	16	16	70	24	24	26	26	78	32
сой по 3-77	Macca	1000 III.,	0,189	0,283	0,387	0,875	1,574	2,338	3,185	3,480	4,595	6,048	6,432	7,839	8,688	18,57	28,33
Шайба с лапкой по ГОСТ 13463-77	1	(поле до- пуска јя15)	12	14	16	18	70	22	28	78	32	36	36	42	42	84	52
Пайб	8	(поле до- пуска h14)	3	4	5	9	∞	10	12	12	15	18	18	70	20	24	76
		Δ. 2	0,25	6,0	0,3		6,0	-				·	6,4				
		א יו		5,0		5'0	-	1		2		2	7	3		ю	
		£ .		9,5		0,5	5,0	1,2		1,2		1,2	1,2	1,6		1,6	
) H		s		5,0		8,0	1,0	1,0	-	1,0			1,0		1,0	1,6	1,6
е размеры	Li	(поле до- пуска js15)	5	9	7,5	6	11	13	15	17	20	22	24	25	28	30	32
Общие	В	ле уска .4	4	2	9	7,5	6	10	12	12	15	18	18	20	70	24	56
	a	поле допуска h14	5,5	7	∞	10	41	17	19	77	24	27	30	32	36	41	46
	ď	(поле до- пуска H12)	3,2	4,3	5,3	6,4	8,4	10,5	13	15	17	19	21	23	25	28	31
	Диа-	метр резьбы болга (гайки)	ю	4	5	9	«	10	12	(14)	16	(18)	20	(22)	24	(27)	30

57
5
ĕ
<u>.</u>
H
×
5
ᇢ
٩

OCKB	# .	(поле допуска ±ГТ15)		10	10	12
Гнездо для носка	¢,	допуска Н14)		12	12	14
Гне	₹	HOTE HOCKS	7	29,2	35,2	39,2
OCT	Macca	1000 FF FF FF FF FF FF FF FF FF FF FF FF FF		19,76 29,2	27,17	40,23
по Г		¥.			7	
Шайба с носком по ГОСТ 13465-77	B	(поле до- пуска h14)		Ξ	11	13
йба с	L L_1	re rcka .5		30	36	\$
Ша	7	поле допуска js15		38	4	8
Шайба с лапкой по ГОСТ 13463-77	Масса	1000 KT.,		30,55	42,53	55,30
айба с лапкой г ГОСТ 13463-77	7	(поле до- пуска js15)		09	02	80
Шайб ГО	Bı	(поле до- пуска h14)		30	36	40
		ν. γ.			6,5	
		۲ :		3	4	4
		۲.1			7	
1 24		'n			1,6	
е размеры	L_1	(поле до- пуска js15)		38	42	90
Общие	В	ле /ска .4		30	36	40
	q	поле допуска h14	_	55	65	75
	4	(поле до- пуска H12)		37	43	50
	Диа-	метр резьбы болта (гайки)		38	42	48

^{*1} Пред. откл. размеров от 1 мм и более по js16; размеров менее 1 мм ±0,1.

В технически обоснованных случаях диаметр отверстия d_1 можно принимать равным номинальному диаметру резьбы с полем допуска

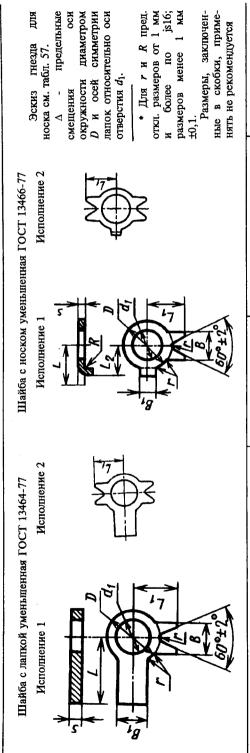
Допускается изготовлять шайбы с предварительно отогнутыми лапками под углом < 15°до диаметра D_1 , с радиусом гибки 1,6 мм. По согласованию с потребителем допускается изготовлять шайбы без углового выреза (60 ± 2)°. Допускается изготовлять шайбы без скругления концов радиусом г. Технические требования - по ГОСТ 18123-82.

Шайба 10.01.016 ГОСТ 13463-77

Пример обозначения стопорной шайбы сдиаметром резьбы 10 мм, из материала группы 01, с покрытием 01 толщиной

то же исполнения 2 с предельным отклонением по В12, из материала группы 01, с покрытием 05:

Haŭba 2.10.B12.01.05 FOCT 13463-77


 $^{^{*2}}$ Δ - несимметричность носка и лапок относительно осей отверстия диаметром $d_1.$

В табілице приведена масса шайб из стали; для определения массы шайб из других материалов следует использовать коэффициенты: 1,009 - для коррозионно-стойких сталей; 1,08 - для латуни.

58. Шайбы стопорные уменьшенные класса точности А (ГОСТ 13464-77 и ГОСТ 13466-77)

Уменьшенные стопорные шайбы с лапкой или носком предназначены для стопорения шестигранных гаек и болгов с шестигранной головкой, с уменьшенным размером под ключ.

Размеры, мм

юска	h	(поле допуска ±IT15)		9	
Гнездо для носка	d_2	(поле опуска Н14)	4	4	5
Гне	¥	$ \begin{array}{c c} 1000 & (\text{поле} \\ \text{шг.,} & \text{до.} \\ \text{кг.} & \text{пуска} \\ \frac{T75}{2} \\ \end{array} $	7,3	8,1	9,6
CT	Macca	1000 IIIT., KT	0,548	0,843	1,6 1,069
o		R*	1,0	1,6	1,6
Шайба с носком по ГОСТ 13466-77	L_2	поле допуска js15	11,5 7,5 1,0 0,548	8,5 1,6 0,843	10
йба с ни 13	T	по допу js1	11,5	12,5	14
Ша	B_1	(поле до- пуска h14)	3,4	3,4	4,4
кой по 4-77		1000 mt., kr	0,673	1,109	1,518
Шайба с лапкой по ГОСТ 13464-77	T	(поле до- пуска js15)	12	14	18
Haif TO	B_1	(поле до- пуска h14)	9	7	∞
		Δ		0,2	
		*.	5,0	5,0	1,0
		N	8,0	1,0	1,0
Общие размеры	L_1	(поле до- пуска js15)	6	11	13
бщие р	В	поле цопуска h14	7,5	0	10
Ō	a	по доп. hj	10	12	14
	d ₁	(поле до- пуска В12)	9	∞	10
		Диа- метр резьбы	9	∞	10

Продолжение табл. 58

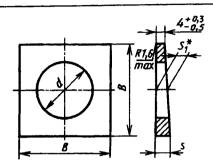
		ŏ	эщие р	Общие размеры				Шайб ГО	Шайба с лапкой по ГОСТ 13464-77	юй по 4-77	III at	йба с но 13	Шайба с носком по ГОСТ 13466-77	10 FO	T)	Гне	Гнездо для носка	оска
	ď	a	В	L_1				B ₁	T	Macca	B_1	T	L_2		Macca	V	d_2	ų
Диа- метр резьбы	(поле до- пуска В12)	поле допуска h14	ле уска [4	(поле до- пуска js15)	× 3	*	٧	(поле до- пуска h14)	(поле до- пуска js15)	1000 IIIT., KT	(поле до- пуска h14)	поле допуска js15	поле опуска js15	**	1000 IIT., KT	(поле до- пуска ± 7715)	(поле допуска H14)	Α Ι
12	12	17	11	15	1,0	1,0	0,2	10	70	2,077	4,4	16	12		1,433	11,5	5	9
(14)	14	19	12	17	1,2	1,2	0,25	11	24	3,146	4,4	91	12		1,913	11,5	5	9
16	16	22	13	18	1,2	1,2	0,25	12	26	3,809	5,4	20	15		2,572	14,5	9	80
(18)	138	24	14	20		1,2		14	30	4,765	9	24	18	1,6	3,069	17,5	7	
70	20	27	16	22	1,2	1,6	0,25	16	32	5,862	9	24	18		3,639	17,5	7	∞
(22)	22	30	18	24		1,6		18	34	7,061	7	56	70		4,565	19,5	8	
24	24	32	19	25		1,6		19	38	8,056	7	56	70		4,778	19,5	∞	
														1	-	1		

В таблице приведена масса шайб из стали.

Пример обозначения стопорной шайбы сдиаметром резьбы 10 мм, из материала группы 03, с покрытием 01 толщиной 6 MXM:

Шайба 10.03.016 ГОСТ 13464-77

Haŭ6a 2.10.03.016 FOCT 13464-77


то же исполнения 2:

Допускается изготовлять шайбы с предварительно отогнутыми лапками под углом ≤ 15°до диаметра D₁, с раднусом гибки 1,6 мм. Технические требования - по ГОСТ 18123-82.

59. Косые шайбы (ГОСТ 10906-78)

Косые шайбы класса точности С предназначены для подкладывания под гайки или головки болгов с целью выравнивания 10 % уклонов полок швеллеров и 12 % уклонов полок двугавровых балок.

Размеры, мм

Диаметр резь- бы крепежной детали	6	8	10	12	14	16	18	20	22	24	27
d	6,6	9	11	13	15	17	19	22	24	26	30
В	1	.6	20		30			40		50)
Предельное		+1,0	•		+1,0			+1,0		+1	,4
отклонение		-1,5		}	-1,7			-1,9		-2,	.3
s (пред. откл.	5	,8	6,2		7,3			8,4		9,	5
+0,3										!	
-0,5)	:						<u> </u>				
s ₁ *	4	,9	5,1		5,7			6,2		6,	8
Масса 1000 шт., кт	8,5	7,4	12,2	34,3	32,1	29,9	64,1	59,4	55,9	104,4	95,7

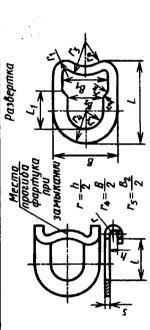
^{*} Размер для справок.

В таблице приведена масса стальных шайб. Для определения массы шайб, изготовленных из других материалов, табличные значения умножать на коэффициенты: 0,356 - для алюминия; 0,970 - для бронзы; 1,080 - для латуни.

Пример условного обозначения косой шайбы для крепежной детали диаметром 12 мм, из стали марки Ст3, с цинковым покрытием толщиной 6 мкм, хроматированным:

Шайба 12.02.Ст3.016 ГОСТ 10906-78

Шайбы изготовляют из прокатной стали по ГОСТ 5157-83. Допускается изготовление косых шайб из полосовой или листовой стали.


Допуск симметричности квадрата относительно оси отверстия в диаметральном выражении 2IT14 (определять по размеру В).

Технические требования - по ГОСТ 18123-82.

60. Illamon samkobne IIIE3

Размеры, мм

4

Номинальный циаметр валика	7	ų	Т	L_2	8	В	B_1	B	ت	£	ž	Допускаемая осевая нагрузка, Н	Масса 1000 шт., кт
4-5	4 ± 0,5	2	14	4	1,0	∞	5	3,1	1,8	0,3	5,5	1 000	0,05
8-9	5,0±9	3	17	2	1,0	12	∞	4,1	3,0	4,0	8,0	1 500	0,1
10-13	10 ± 0,5	4	25	6	1,0	18	13	8,1	4,5	0,5	12,0	2 300	0,2
14-17	13 ± 0,8	4	32	12	1,6	24	17	10,2	5,5	9,0	16,0	5 500	5,0
18-20	17 ± 0,8	5	38	91	1,6	28	20	14,2	0,9	0,7	18,0	7 000	9,0
22-24	21 ± 0.8	S	44	70	2,0	32	24	18,2	6,0	8,0	20,0	10 300	6,0
25-28	24 ± 0,8	9	20	23	2,0	38	28	20,2	7,5	1,0	24,0	11 800	1,2
30-32	28 ± 0,8	9	56	56	2,0	42	32	24,7	7,5	1,0	26,0	14 000	1,5
36-38	33 ± 0,8	7	64	32	2,5	48	38	28,2	8,0	1,5	29,0	21 300	2,4
40-42	37 ± 0,8	7	70	35	2,5	22	42	32,2	0,6	1,5	31,0	23 500	3,1
45-48	43 ± 0,8	∞	78	40	2,5	09	48	36,2	10,0	1,5	36,0	25 800	3,7
50-52	46±1	00	85	4	3,0	96	52	40,3	10,0	2,0	40,0	35 000	5,1
55-60	53 ± 1	∞	86	20	3,0	9/	62	45,3	11,0	2,0	45,0	38 000	5,8
65-70	63±1	6	112	58	3,0	98	72	55,3	11,0	2,0	50,0	42 000	6,5
75-80	73±1	6	124	89	3,0	%	82	65,3	13,0	3,0	55,0	64 300	11,3
85-90	83±1	10	138	78	3,0	110	92	75,3	15,0	3,0	64,0	72 500	14,2
95-100	93±1	10	148	88 .	3,0	120	102	85,3	17,0	3,0	0,69	82 500	14,9

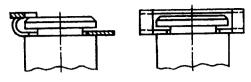


Рис. 3. Шайбы ШЕЗ до замыкания

Шайбы замковые ШЕЗ имеют удлиненную форму с загнутым концом (фартуком). Их

применяют как стопорное устройство, предохраняющее от осевого смещения детали конструкций, не требующих предварительной затяжки. При установке шайбу заводят в проточку штыря или вала до упора, после чего с помощью специального ключа или легкими ударами прогибают середину перемычки фартука до совмещения ее с буртиком вала (рис. 3 и 4).

Рис. 5. Примеры применения шайб ШЕЗ

Разбирая узел, тем же ключом, отверткой или рычагом выпрямляют перемычку и снимают шайбу.

При правильном выполнении операций установки и снятия шайбы, изготовленные из пластичного материала (например, из стали 10), могут быть использованы до 20 раз.

Для обеспечения правильной работы шайбы необходимо выбрать продольный зазор между шайбой и валиком.

Примеры применения шайбы ШЕЗ приведены на рис. 5, a - s.

Материал - сталь марок Ст2 или 10.

В технически обоснованных случаях шайбы можно изготовлять из коррозионностойкой стали и сталей с особыми физическими свойствами по ГОСТ 5632-72, а также из алюминиевых сплавов АМц и АМг по ГОСТ 4784-97.

Антикоррозионное покрытие указывают в заказе.

Допуски на свободные размеры - по hl4,

Допускаемое смешение осей внутреннего и внешнего контуров:

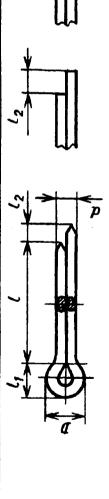
- 0.3 мм для ШЕЗ-4 ШЕЗ-18:
- 0,4 мм для ШЕЗ-22 ШЕЗ-95.

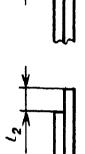
Допускаемая осевая нагрузка указана в табл. 60 для стали Ст2; коэффициент запаса ≈ 4.

При штамповке шайб необходимо иметь в виду, что гибка фартука должна выполняться поперек волокон проката.

Фартук шайбы гнуть в сторону, противоположную завалу от штамповки.

Размеры валиков и проточек под шайбы ШЕЗ указаны в гл. I, т. II.


Пример обозначения шайбы замковой ШЕЗ для валика диаметром 6 - 8 мм:


H14 и $\frac{t_2}{2}$.

шплинты и штифты

61. Шплинты (ГОСТ 397-79 в ред. 1989 г.)

Размеры, мм

Условный диаметр шплинта	тр шплинт	3 do .	8,0	1,0	1,2	1,6	2,0	2,5	3,2	4,0	5,0	6,3	8,0	10,0	13,0
p	наиб.		7,0	6,0	1,0	1,4	1,8	2,3	2,9	3,7	4,6	5,9	7,5	9,5	12,4
	наим.		9,0	8,0	6,0	1,3	1,7	2,1	2,7	3,5	4,4	5,7	7,3	9,3	12,1
40	наиб.		1,6	1,6	2,5	2,5	2,5	2,5	3,2	4,0	4,0	4,0	4,0	6,3	6,3
	наим.		0,8	8,0	1,3	1,3	1,3	1,3	1,6	2,0	2,0	2,0	2,0	3,2	3,2
h_1	l ₁ ≈		2,4	3,0	3,0	3,2	4,0	5,0	6,4	8,0	10,0	12,6	16,0	20,0	26,0
Q	наиб.		1,4	1,8	2,0	2,8	3,6	4,6	5,8	7,4	9,2	11,8	15,0	19,0	24,0
	наим.		1,2	1,6	1,7	2,4	3,2	4,0	5,1	6,5	8,0	10,3	13,1	16,6	21,7
Рекомендуе-	Болт	CB.	2,5	3,5	4,5	5'5	7,0	0'6	11,0	14,0	20,0	27,0	39,0	96,0	0,08
мые днаметры		до	3,5	4,5	5,5	0,7	0,6	11,0	14,0	20,0	27,0	39,0	96,0	0,08	120,0
соединяемых	Штифт,	CB.	2,0	3,0	4,0	0,5	0'9	8,0	0,6	12,0	17,0	23,0	0,62	44,0	0,69
деталей	OCB	ДО	3,0	4,0	5,0	0'9	8,0	0,6	12,0	17,0	23,0	29,0	44,0	0,69	110,0
Длина шплинта / **	**/		5-16	6-20	8-25	8-32	10-40	12-50	14-63	18-80	20-100	20-125	40-160	45-200	71-250

ГОСТ 397-79 предусматривает $d_0 = 0.6$; 16; 20 мм.

Условный диаметр шллинта ф равияется диаметру отверстия под шплинт.
 18; 20; 22; 28; 32; 36; 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 14; 16; 18; 20; 22; 28; 32; 36; 40; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250.

62. Рекомендуемые марки материала для шилинтов и обозначение их

Материал	Условное обозначение материала	Вид покрытия
Низкоупперодистые стали с содержанием углерода не свыше 0,20 % по ГОСТ 1050-88 и ГОСТ 380-94	0	Цинковое с хроматированием Кадмиевое с хроматированием Окисное Фосфатное с пропиткой маслом
Коррозионно-стойкая сталь 12X18H10T по ГОСТ 5632-72	2	Окисное из кислых растворов
Л63 по ГОСТ 15527-70	3	Никелевое
АМЦ по ГОСТ 4784-97	4	Окисное, наполненное в растворе бихромата калия

Толщина металлического покрытия от 6 до 12 мкм. Обозначение покрытия - по ГОСТ 1759.0-87.

Технические требования к покрытиям - по ГОСТ 9.301-86.

Технические требования. Шплинты должны изготовляться из низкоуглеродистых сталей. Допускается изготовлять шплинты из коррозионно-стойких сталей или из цветных металлов и их сплавов (табл. 62).

Допускается:

- а) в случае изготовления шпилинтов из проволоки с покрытием отсутствие покрытия на торцах ветвей;
- б) в случае готовых шплинтов отсутствие покрытия на внутренней стороне ветвей в месте их соприкосновения.

Допускается перекос ветвей, не вызывающий изменение размера шплинта за пределы условного диаметра d_0 .

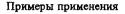
Допускается зазор между ветвями шплинтов, не вызывающий изменение размера шплинта за пределы условного диаметра d_0 . При этом диаметр шплинта со сжатыми ветвями должен соответствовать диаметру d.

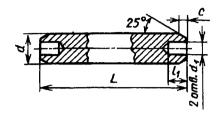
Обозначение шплинтов. Шплинты следует обозначать по схеме, указанной ниже, на примере шплинта с условным диаметром 5 мм, длиной 28 мм, из латуни, с никелевым покрытием толщиной 6 мкм:

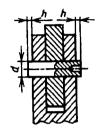
Шплинт 5 x 28.3.036. ГОСТ 397-79

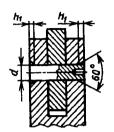
Схема обозначения шплинтов:

Шпликт	5 ×	28.	3.	03	6	ГОСТ 397-79							
						Обозначение государствен- ного стандарта							
					Толщина по	окрытия							
				Обозначени	е вида покры	RUTI							
			Обозначение марки материала										
		Длина штл	инта										
	Условный ;	циаметр шил	инта										
Наименование	: летали												


 Π р и м е ч а н и е . Марка материала 0 (низкоуглеродистая сталь) и отсутствие покрытия в обозначении не указываются.


63. Цилиндрические заклепочные штифты (ГОСТ 10774-80)


Штифты предназначены для соединения неразборных конструкций.


Размеры, мм

Тип 1

Тип 2 - без фасок на концах

			ore datem			
đ	L	d_1	l_1	с	h	<i>h</i> ₁
2,0	6 - 20	1,0	1,6	0,3	0,5	0,6
2,5	8 - 25	1,6	1,8	0,5	0,5	0,6
3,0	8 - 30	2,0	2,0	0,5	0,5	1,0
4,0	10 - 40	2,0	2,5	0,6	1,0	1,0
5,0	12 - 50	3,0	3,0	0,8	1,0	1,6
6,0	14 - 60	4,0	4,0	1,0	1,6	1,6
8,0	16 - 80	5,0	5,0	1,2	1,6	2,0
10,0	20 - 100	6,0	6,0	1,6	2,0	2,5
12,0	25 -140	8,0	8,0	1,6	2,0	3,0
16,0	30 - 200	11,0	12,0	2,0	3,0	4,0
20,0	36 - 200	15,0	12,0	2,5	3,0	5,0
25,0	45 - 200	19,0	14,0	3,0	4,0	6,0

Длина штифтов L должна выбираться из ряда: 6; 8; 10; 12; 14; 16; 20; 25; 30; 36; 40; 45; 50; 55; 60; 65; 70; 80; 90; 100; 110; 120; 140; 160; 180; 200 mm.

Материал - стал марки 45 по ГОСТ 1050-88.

 Π ример обозначения штифта типа 1 диаметром d=8h9, длиной L=45 мм, без покрытия:

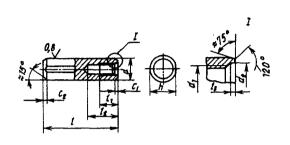
Штифт 8h9 × 45 ГОСТ 10774-80

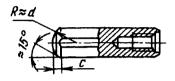
То же типа 2 диаметром d=8h11, длиной L=45 мм, с химическим окисным покрытием, пропитанным маслом:

Штифт 8h11 × 45 Хим. Окс. прм ГОСТ 10774-80

Размеры h и h_1 - рекомендуемые.

Допуск соосности отверстий d_1 относительно оси поверхности d - IT13. За номинальный размер при определении предельного отклонения следует принимать параметр d.


64. Цилиндрические штифты с внутренней резьбой (по ГОСТ 12207-79)


Штифты предназначены для применения в глухих отверстиях. Штифты изготовляют класса точности А исполнений: 1 - незакаленные; 2 - закаленные.

Размеры, мм

Исполнение 1

Исполнение 2

Вариант изготовления конца

_											
	d	6	8	10	12	16	20	25	30	40	50
_	d_1	M4	M5	N	16	M8	M10	M16	М	20	M24
	d_2	4,3	5,3	6	,4	8,4	10,5	17	2	1	25
	с	2,1	2,6	3	3,8	4,6		6	7	8	10
	$c_1 \approx$	0,8	1	1,2	1,6	2	2,5	3	4	5	6,3
_	<i>c</i> ₂ ≈	1,2	1,6	2	2,5	3	3,5	4	5	6,3	8
	<i>I</i> ₁	6	8	10	12	16	18	24	3	0	36
	<i>l</i> ₂	10	12	16	20	25	28	35	4	0	50
_	<i>l</i> ₃	1		1,2		1	,5		2	2	,5
	h	5,5	7,5	9,5	11,5	15,5	19	24	29	39	49
_	l	16-60	18-80	22-100	26-120	30-160	45-200	50-200	60-200	80-200	100-200

Примеры обозначения незакаленного штифта диаметром d=10 мм, длиной l=40 мм, без покрытия:

Штифт 10 × 40 ГОСТ 12207-79

то же закаленного штифта из стали марки 20Х с покрытием Хим. Окс. прм:

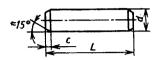
Штифт 2.10 × 40.20Х. Хим. Окс. прм ГОСТ 12207-79

Технические требования - по ГОСТ 26862-86.

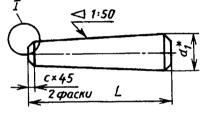
65. Штифты пилиндрические и конические незакаленные

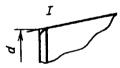
Размеры, мм

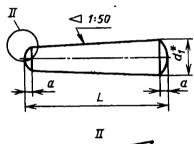
Штифты цилиндрические по ГОСТ 3128-70 (ИСО 2338-86)



Исполнение 2, В






Штифты конические по ГОСТ 3129-70 (ИСО 2339-86 в части штифтов класса точности А)

Исполнение 2, В

Исполнение 1, А

* Размер для справок; подсчитывают по формуле $d_1 = d + \frac{L}{50}$.

А, В, С - классы точности.

d c≈ a≈	2 0,35 0,25	2,5 0,4 0,3	3 0,5 0,4	4 0,63 0,5	5 0,8 0,63	6 1,2 0,8	8 1,6 1,0	10 2 1,2	12 2,5 1,6	16 3 2	20 3,5 2,5
L	4 * 5 * 6 * 8 10 12 14 16 20 25 30	5 * 6 * 8 * 10 12 14 16 20 25 30 36	6 * 8 * 10 * 12 14 16 20 25 30 36 40	8 * 10 * 12 * 14 * 16 20 25 30 36 40 45	10 * 12 * 14 * 16 20 25 30 36 40 45 50	12 * 14 * 16 * 20 25 30 36 40 45 50 55	16 * 20 * 25 30 36 40 45 50 55 60 65	20 * 25 * 30 36 40 45 50 55 60 65 70	25 * 30 * 36 40 45 50 55 60 65 70 80	30 * 36 * 40 45 50 55 60 65 70 80 90	40 * 45 * 50 55 60 65 70 80 90 100 110
	36	40	45	50	55	60	70	80	90	100	120

Продолжение	таби	65
продолжение	Iawı.	U.J

d	2	2,5	3	4	5	6	8	10	12	16	20
c ≈	0,35	0,4	0,5	0,63	0,8	1,2	1,6	2	2,5	3	3,5
a ≈	0,25	0,3	0,4	0,5	0,63	0,8	1,0	1,2	1,6	2	2,5
L	40 *	45 50 *	50 55 60 *	55 60 65 70 80 *	60 65 70 80 90 100 *	65 70 80 90 100 110 120 *	80 90 100 110 120 140 160 *	90 100 110 120 140 160 180 **	100 110 120 140 160 180 ** 200 **	110 120 140 160 180 200 220 250 280	140 160 180 200 220 250 280

* Только для цилиндрических штифтов.

Длины штифтов рекомендуется выбирать из ряда: 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, (25), 26, 28, 30, 32, 35, (36), 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 140, 160, 180, 200, 220, 250, 280 мм.

ГОСТ 3128-70 и ГОСТ 3129-70 предусматривают $d=0,6\dots 50$ мм и нерекомендуемые размеры.

Примеры обозначения цилиндрического штифта исполнения 1, d=10 мм, L=60 мм:

Штифт 10 × 60 ГОСТ 3128-70

То же исполнения 2, d = 10 мм, L = 60 мм:

Штифт 2.10 × 60 ГОСТ 3128-70

Примеры обозначения конического штифта исполнения 1, d=10 мм, L=60 мм:

Штифт 10 × 60 ГОСТ 3129-70

То же исполнения 2:

Штифт 2.10 × 60 ГОСТ 3129-70

Технические требования для цилиндрических к конических штифтов (по ГОСТ 26882-86).

Предельные отклонения диаметров штифтов должны соответствовать:

цилиндрических класса точности А - m6 (n6);

цилиндрических класса точности B - h8 (h9);

конических класса точности A - hl0; конических класса точности B - h11.

Предельные отклонения конусности штифтов должны соответствовать:

класса точности A - $\pm \frac{AT8}{2}$;

класса точности $B - \pm \frac{AT10}{2}$

Резьба - по ГОСТ 24705-81. Шаг резьбы - крупный.

Поля допусков резьбы - по ГОСТ 16093-81; бg - для наружной; бН - для внутренней. Предельные отклонения длины резьбы - плюс 2 шага резьбы.

Незакаленные штифты изготовляют из стали марки 45 по ГОСТ 1050-88, ГОСТ 10702-78. Допускается по согласованию между изготовителем и потребителем применять другие марки материалов. Закаленные штифты изготовляют из углеродистых качественных или легированных сталей.

Твердость незакаленных штифтов должна быть не менее 78 HRB.

Твердость закаленных штифтов должна быть $58 \dots 62 \ HRC_3$.

Значения параметров шероховатости *Ra* рабочих поверхностей штифтов не должны быть более: 0,8 мкм для класса точности A; 1,6 мкм для класса точности B; 3,2 мкм для класса точности С.

^{**} Только для конических штифтов.

66. Штифты конические с внутренней резьбой незакаленные (по ГОСТ 9464-79)

Стандарт соответствует ИСО 8736-86 в части штифтов конических класса точности А.

Размеры, мм

(класс точности В) Исполнение 2 (класс точности А) Исполнение 1 47:50 Rzd p

							35	00	(22)	40	<u>د</u>
K	· •	~	10	12	16	07	7	30	(70)	2	
7	2	,	Ŝ				7.53	000	0031	000	ACM.
re	MA	Ms	Me	W8	M10	M12	MIO	M70	M20	INTEO	177AT
al al	LTAT					٩		7.	21	2.	25
7	4 3	5.3	4.9	4.8	10,5	13	1/	7.7	177	17	
72	261	212				ű	3.0	40	Ş	40	۶
I. III MOUPE	10	12	91	20	25	78	33	40	2	2	
I) HC MCUCC	21	7.							000	20	36
~	y	×	2	12	16	18	47	٥	2	20	3
- 72	0	0	S				Š	0	0.0	9.0	2.5
_	-	1.0	1.2	1.2	1.5	1,5	7,0	7,0	7,0	۲,7	2,7
27	7,1	761	767				,	,		Ç	7
	80	10	1.2	1,6	2,0	2,5	3,0	4,0	4,0	J,U	Cio
~ 7	2,0	267	- 2				8	•	4	٧	7
,	-	1.0	1.6	1.6	2,0	2,5	٥٠٠	4,0	7,0	0,0	262
3	1,0	7,7				000	000	000 07	70 250	080.08	90-280
-	16-60	18-80	22-100	26-120	32-160	40-700	20-200	007-00	007-07	007-00	
,											

шти фта исполнения 1 (класса точности A), диаметром d=10 мм, длиной l=60 мм, без IIImuфm 10 × 60 FOCT 9464-79 обозначения Пример покрытия:

То же, исполнения 2 (класса точности В) с покрытием Хим. Окс. прм:

Штифт 2.10 \times 60 Хим. Окс. прм ГОСТ 9464-79

Технические требования - по ГОСТ 26862-86

67. Конвческие штифты с резьбовой цапфой незакаленные (по ГОСТ 9465-79)

Стандарт соответствует ИСО 8737-86 в части штифтов конических класса точности А.

MM	
Размеры,	

				50	M36	78	70	12	6,3	220-400	
	A	1		40	M30	65	58	10,5	5,0	190-320	
гие 2 эсги В)				30	M24	52	46	6	4,0	160-280	1000
Исполнение 2 (класс точности В)		cx45°		25	M20	45	40	7,5	3,0	140-250	. 1 — 00 — 1 — 00 — 1 — 1
	Ĺ		:	20	M16	39	35	9	2,5	120-190	
				16	M16	39	35	9	2,0	100-160	
				12	M12	30,5	27	5,3	1,6	80-140	
		/ p	<u> </u>	10	M10	27	24	4,5	1,6	65-100	
ie 1 ли А)	тупить		9 0	8	M8	24,5	22	4	1,2	55-75	
Исполнение 1 (класс точности A)	סאינת עלמו	25 : 77	1	9	M6	20	18	3	1,0	45-60	
٣	острые крамки притупить			5	MS	15.6	14	2,4	8,0	40-50	
	8V	p		P	, 7	не более	не менее	д не более	0	1	
						-	0	7 He	f		

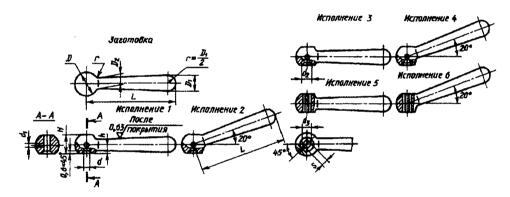
шти фта исполнения 1, диаметром d=10 мм, длиной l=80 мм, без покрытия: Штифт 10 × 80 ГОСТ 9465-79 обозначения Примеры

То же, исполнения 2, с химическим окисным покрытием, пропитанным маслом:

IIIтифт 2.10 \times 80 Хим. Окс. прм FOCT 9465-79

Конец резьбовой папфы - ступенчатый со сферой по ГОСТ 12414-66. Технические требования - по ГОСТ 26862-86.

Глава VII


СТАНДАРТНЫЕ И НОРМАЛИЗОВАННЫЕ ДЕТАЛИ И УЗЛЫ

РУКОЯТКИ, РУЧКИ, ФИКСАТОРЫ

1. Рукоятки с шаровой головкой (по ГОСТ 3055-69)

Размеры, мм

Размер d_1 - после сборки. Отверстие d_1 под штифт просверлить насквозь и развернуть с полем допуска K7

Обозначение рукояток	Испол- нение	L	D	D_1	D ₂	H	h	d (H7)	d_1	<i>d</i> ₂	<i>d</i> ₃	s (D11)	r	Мас- са, кг
7061-0001	Заготовка					-	-	-	-		-	-		0,042
0002	1							8		-	-	-		0,036
0003	2	63	16	10	7				ŀ				1,6	
0004	3				ļ	12,0	5,0	-	3	M8	-	-		0,036
0005	4		ŀ						ļ					
0006	5		İ					-	1	-	7,0	5		0,037
0007	6		l				Ĺ		<u> </u>			<u> </u>	<u> </u>	<u> </u>
0008	Заготовка								-	_				0,086
0009	1	1			İ			10		-	-	-		0,074
0010	2	80	20	13	9	i	٠.		1				1,6	
0011	3	1		}		14,5	6,0	-	3	M10	-	-		0,076
0012	4					1	1		1				1	ļ
0013	5	1								-	9,9	7		0,077
0014	6			<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	lacksquare	<u> </u>	<u> </u>	<u> </u>	<u>L</u>	<u> </u>

											Hpc	одолжен	ие	габл. 1
Обозначение рукояток	Испол- нение	L	D	D_1	D_2	H	h	d (H7)	d_1	d_2	d_3	s (D11)	r	Мас- са, кг
0015	Заготовка					-					-			0,164
0016	1							12		-	-	-	_ ا	0,141
0017	2	100	25	16	11								2,5	
0018	3					19,0	8,0	-	4	M12	-	-		0,142
0019	4				İ	1			-		10.5	<u> </u>		
0020	5							-	l	-	12,7	9		0,414
0021	6						ļ		 		<u> </u>			
0022	Заготовка					<u> </u>			<u> -</u>		<u> </u>	-	ļ	0,327
0023	1							16		-	-	-	L _	0,278
0024	2	125	32	20	14	Ì				L			2,5	
0025	3	1			i	24	10	-	5	M16	-	-	ļ	0,285
0026	4			1		Ĭ		L					1	<u> </u>
0027	5	1		ļ		1	ļ	-	1	-	15	11		0,297
0028	6	l		<u> </u>	L	<u> </u>		<u> </u>		ļ			┝	<u> </u>
0029	Заготовка					<u></u>			<u> -</u>	-		-	1	0,665
0030	1]						20]	-	-	-		0,564
. 0031	2	160	40	25	18	1	}		1		Ļ	Ļ	4	L

Пример обозначения рукоятки с шаровой головкой исполнения 1, длиной L=63 мм: Рукоятка 7061-0002 ГОСТ 3055-69.

12,5

Технические требования к рукояткам по ГОСТ 3055-69 (табл. 1). Изготовляют также рукоятки длиной L=200 мм. При сборке отверстие d_1 под штифт просверлить насквозь и развернуть с отклонениями по H7.

6

0032 0033

0034 7061-0035

Материал - сталь 45. Допускается применять сталь других марок с механическими свойствами не ниже, чем у стали 45. Твердость головой рукояток исполнений 5 и 6 - 36,5 ... 41,5 HRC₃.

Неуказанные предельные отклонения размеров: отверстий - H14, валов - h14, остальных $\pm t_2$ / 2. Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6H по ГОСТ 16093-81.

Покрытие наружных поверхностей рукояток всех исполнений - X18.м (обозначение покрытия - по ГОСТ 9.306-85).

Технические требования к рукояткам по ГОСТ 8923-69 и ГОСТ 8924-69 (табл. 2). Материал рукоятки - сталь 45. Допускается применять сталь других марок с механическими свойствами не ниже, чем у стали 45.

Неуказанные предельные отклонения размеров: отверстий - H14, валов - h14, остальных $\pm t_2$ / 2. Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6g. Покрытие рукояток (кроме поверхностей d и d_1) - X18.м (обозначение покрытия - по ГОСТ 9.306-85). Допускается применение других видов покрытий по соглашению между изготовителем и потребителем.

При сборке резьбовой конец под шаровую ручку (дет. 2) смазать эпоксидной смолой или

клеем, предназначенным для склеивания пластмассовых и металлических поверхностей.

19.3

14

6 M20

Прополистия -- 6-

0.577

0.591

Пример обозначения цилиндрической рукоятки исполнения 1, d=8 мм, L=80 мм:

Рукоятка 7061-0061 ГОСТ 8923-69.

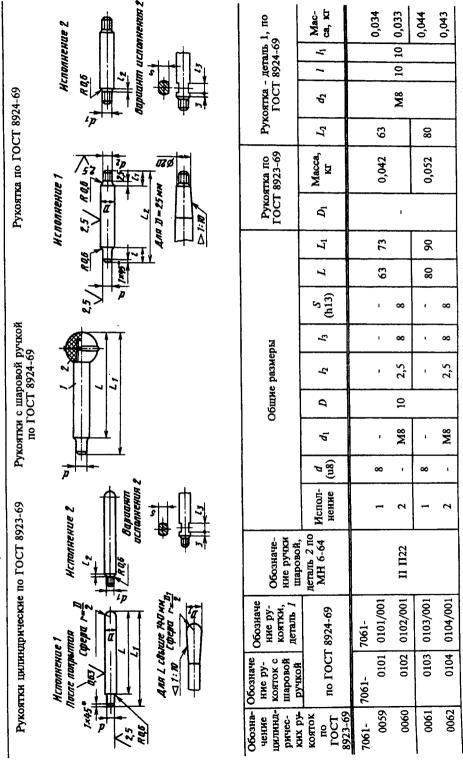
Примеры обозначения рукоятки, с шаровой ручкой исполнения 1, d=8 мм, L=63 мм:

Рукоятка 7061-0101 ГОСТ 8924-69; то же варианта рукоятки исполнения 2, $d_1 = 8$ мм. L = 63 мм:

Рукоятка 7061-0102 В ГОСТ 8924-69; то же рукоятка исполнения 2 со стальной шаровой ручкой:

Рукоятка 7061-0102 Ст. ГОСТ 8924-69.

Технические требования к фасонным ручкам (табл. 3). Неуказанные предельные отклонения размеров: отверстий H14, валов h14, остальных $\pm t_2$ / 2. Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 8g.


Стальные ручки следует покрывать защитным покрытием. Покрытие стержня - Хим. Окс. прм (обозначение покрытия по ГОСТ 9.306-85).

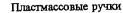
Примеры об значения ручки фасонной пластмассовой исполнения I, L=75 мм, l=22 мм:

Ручка I Π 75 × 22 то же стальной исполнения Π , L = 75 мм, l = 15 мм:

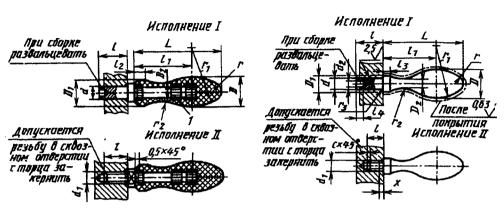
Ручка II 75 × 15

2. Рукоятки цилинцрические и с шаровой ручкой (по ГОСТ 8923-69 и 8924-69)

Продолжение табл. 2


1, по	Мас- са, кт	0,057	0,056	0,064	0,063	0,081	0,080	0,104	0,103	0,135	0,132	0,174	0,171	0,198	0,195	0,229	0,226
-fe9-	1/		10				10						12				
дета 8924	-	10		12			12		\Box				15				
Рукоятка - деталь 1, по ГОСТ 8924-69	d_2		M8				M8						M10				
Ружо	L_2	00		82		102		127		100		125		140		160	
Рукоятка по ГОСТ 8923-69	Масса, кт	0.064		0,077	0,075	0,094	0,093	0,117	0,115	0,167	0,165	0,207	0,204	0,230	0,228	0,282	0,280
Рукоя ГОСТ	D_1	,	ı							1						70	
	L_1	110		92		112		137		115		140		155		175	
	T	9	221	80		100		125		100		125		140		160	
	,S (h13)	ı	80	ı	10	-	10		10	ı	12	ı	12	ŝ	12	'	12
151	13	1	∞	1	8	-	∞		∞	-	10	ı	10	ı	10	'	10
Общие размеры	h	,	2,5	,	2,5	1	2,5	ı	2,5	1	2,5	•	2,5	ī	2,5	ı	2,5
бшие	a	10	3	12			12						16				
0	a_1	,	M8	,	M10	,	M10	,	M10	,	M12	1	M12		M12	1	M12
	(8n)	-	1	12	1	10	i	10	1	12	ı	12	,	12	1	12	1
	Испол-	-	- 7	-	2	1	7	1	7	1	7	1	2	-	2	1	7
Обозначе- ние ручки шаровой.	деталь 2 по МН 6-64		п п22				11 1122						П П30				
Обозначе ние ру- коятки, деталь 1		7061-	0106/001	0107/001	0108/001	0109/001	0110/001	0111/001	0112/001	0113/001	0114/001	0115/001	0116/001	0117/001	0118/001	0119/001	0120/001
Обозначе ние ру- кояток с шаровой	по ГОСТ 8924-69	7061-	0106	0107	0108	0109	0110	0111	0112	0113	0114	0115	0116	0117	0118	0119	0120
Обозна- чение цилинд- ричес- ких nv-	кояток по ГОСТ 8923-69		0064	9000	9900	2900	8900	6900	0000	0071	0072	0073	0074	0075	9200	0077	0078

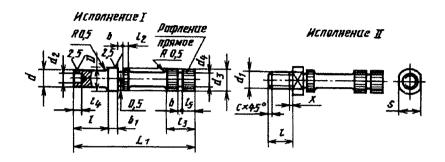
Продолжение табл. 2


	1, по	Мас- са, кг		0,294	0,289	0,343	0,338	0,442	0,437	9,565	0,560	0,467	0,457	0,621	0,611	0,841	0,804	1,084	1,074	
	ann 1	η,					15		1				1		15				\dashv	
	, жет	1					20								12					
Today.	Рукоятка - деталь 1, по ГОСТ 8924-69	d ₂					M12								M12					
	Рук	L_2		137		157		137		247		152		192		242		312		. 738.
	Рукоятка по ГОСТ 8923-69	Масса, кт		0,369	0,364	0,460	0,455	0,560	0,555	0,683	0,678	0,749	0,739	0,903	0,893	1,095	1,085	1,366	1,356	= 40 и 50 мм. Технические требования к рукояткам см. на с. 738.
	Руко ГОСТ	D_1		,				25							32					KORTIKA
	· · · · · · · · · · · · · · · · · · ·	L_1		160		180		220		270		185		225		275		345		я к ру
		T		140		160		200		250		160		200		250		320		ования
		, (h13)		,	14	1	14	ı	14	ı	14		19	1	19	1	19	1	19	е треб
	þPI	h		1	10	'	10	•	10	,	10	-	12	-	12	-	12	ı	12	ччески
	Общие размеры	h		1	3	ı	3	-	3	ı	æ	,	4		4		4	r	4	. Техн
)бщие	О					20								25	<u> </u>		·		50 MM
		d_1		'	M16	1	M16	1	M16	-	M16	1	M20	ι	M20	-	M20		M20	= 40 и
		(8u)		16	1	16	;	16	1	16	1	20	1	70	ı	20	ı	20	ı	и с Г
		Испол-		1	7	1	2	1	7	1	7	-	7	-1	2	-	2		2	э рукоятк
	Обозначе- ние ручки шаровой,	детаћ. 2 по МН 6-64					П П40								П П50					ривает также рукоятки с L
	Обозначе ние ру- коятки, деталь I	8924-69	7061-	0121/001	0122/001	0123/001	0124/001	0127/001	0128/001	0129/001	0130/001	0131/001	0132/001	0133/001	0134/001	0135/001	0136/001	0137/001	0138/001	ГОСТ 8923-69 предусмат
	Обозначе ние ру- кояток с шаровой ручкой	по ГОСТ 8924-69	7061-	0121	0122	0123	0124	0127	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	CT 8923-69
	Обозна- чение цилинд- ричес- ких ру-	кояток по ГОСТ 8923-69		6200	0800	0081	0082	0083	0084	0085	9800	0087	0088	0089	0600	1600	0092	0003	000	

3. Ручки

Размеры,

Стальные ручки


			Общи	е раз	меры				Ππε	астма	ссово	й руч	жи	(Сталь	ной р	учки	[
	D	d	d_1	r	'n	r_2	<i>l</i> д испо ни	лне	l_1	D_1	D_2	l_2	Mac ca,	D_1	<i>D</i> ₂	d_2	<i>r</i> ₃	Mac ca,
		(h9)					I	11					KT					KT
							10											
48	15	6	М6	5	30	27	12	10	32,1	12	9	6	0,014	10	8	4,0		0,04
							15											
							12											
60	19	8	M8	6	38	35	15	12	39,4	15	12	8	0,030	12	10	5,5	0,5	0,08
							18	<u> </u>				ļ						
				_			15						0.000	• •		7.0		0.17
. 75	24	10	M10	8	48	40	18	15	49,6	18	16	10	0,060	16	13	7,0		0,17
					-		22	-			<u> </u>		<u> </u>		ļ			
95	30	12	M12	10	60	52	25	20	63,2	22	20	15	0,115	20	16	9,0	ļ	0,33
93	30	12	MIZ	10	60	32	28	20	03,2	22	20	13	0,113	20	10),0		
	 	-					28	ļ	 	<u> </u>	-	 	<u> </u>		-	 	0,8	
120	38	16	M16	12	75	58	32	25	77,1	28	25	18	0,235	25	20	12		0,62
120							36	1						ļ				

Материал ручек - пластмасса черного цвета (допускается изготовление ручек из пластмассы Технические требования к ручкам см. на с. 738.

фасонные

MM

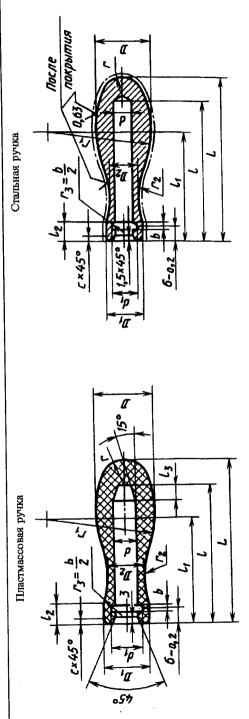
Стержень

Ста	льноі	і ручк	иист	ержня						Стер	РИЖ				
$l_3 = d_4$	14	с	x	D	d_2	<i>d</i> ₃	L ₁ , испо		l_2	l_3	<i>l</i> 5	S	ь	<i>b</i> ₁	Mac- ca,
							I	II				(h13)		_	KT
5	3	1	2	10	5	8	52	48	4	12	5	8		4	0,008
6	4			12	6,5	10	65	58	5	15	7	10	2	5	0,02
8	5	1,5	2,5	17	8,5	12	82	76	6	20	9	14		8	0,04
10	6			20	10	14	98	90	8	25	11	17	3	10	0,07
14	. 8	2	3	25	14	18	125	115	11	30	14	19		15	0,155

другого цвета), сталь 15 или 35 или сталь А12. Материал стержня - сталь 35 или сталь А12.

 Рукоятки вращающиеся Размеры мм

	газмеры, мм								
Пластмассовые рукоятки	Стальные рукоятки					, <i>І</i> испо	<i>l</i> для исполнения	Масса рукоятки, кт	эса Ки, кг
		7	a	р (Н3)	d_1	Ι	п	пласт- массо- вой	сталь- ной
Исполнение <u>Г</u> При сфарке	Исполнение I					12			
pasdansuedams 3 2 1	paskanhuebamb, 7 1	09	19	∞	M8	15	12	0,04	0,1
						18			
						15			
1 Исполнение П	/ Mcnanwenue II	75	24	10	M10	18	15	90'0	0,18
						22			
	d, l					22			
Допускается резьбу в сквазнам отверстии с торца закернить	Дапускается резьбу в сквозном	95	30	12	M12	25	20	0,15	0,37
	тиверство с пкрца закернить					28			
						28			
		120	38	16	M16	32	25	0,28	89,0
I - ручка; 2 - стерж	- стержень; 3 - кольцо-замок					36			

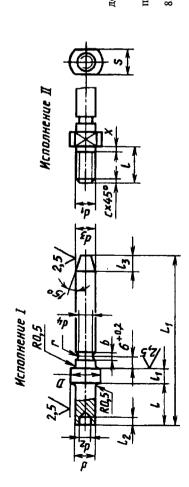

рукоят к и исполнения I, L = 75пластмассовой ращающейся ᅜ 55 обозначен Пример MM; l = 22 MM;

Рукоятка I II75 × 22 МН 5-64; то же стальной исполнения $\Pi, L = 75$ мм; l = 15 мм:

Рукоятка II 75 × 15 МН 5-64

Продолжение табл. 4

Ручка. Деталь 1


р у ч к н пластмассовой длиной L=75 мм: Ручка $\Pi 75/1$ МН 5-64; обозначения Примеры

то же стальной:

Ручка 75 / 1 МН 5-64.

		Масса, кт	90,0	0,12	0,24	0,42
	ручка	ن	-			
	Стальная ручка	h	9	8	10	12
	CTR	D_2	10	13	16	70
		D_1	12	16	20	25
		c Macca, D_1 D_2 h	0,01 12 10	0,02 16 13	0,04 20 16 10 1,5	28 25 20 15 1,5 0,07 25 20 12
	учка	2			1	1,5
	совая 1	l3	9	∞	10	15
	Пластмассовая ручка	I_1 $b^{+0,1}$ D_1 D_2 I_2	8	18 16 10	22 20 15 10 1	70
	ij	D	12	16	70	25
		D_1	15	18	22	
The same of the sa		b+0,1	1.6		2.0	î
,		1,	39,4	49,6	63,2	77,1
		1	35 50 39,4 1.6 15 12 8	65	8	75 58 100 77,1
		5	35	40	60 52	58
	Общие размеры	۲	38	84	09	75
	бщие р		9	8	10	12
	$ ^{\circ}$	$d d_1 + 0.3$	9,4	11,6	13.8	18,0
		d (H11)		10		
		q	19	24	: %	
		T	8	7,	3	120

Стержень. Деталь 2

Материал - сталь 35 или A12. Отклонения на размеры, не ограниченные цопусками, - $\frac{H14}{h14}$.

Резьба метрическая - по ГОСТ 24705-81, поле допуска 8g - по ГОСТ 16093-81. Покрытие - Хим. Окс. прм (по ГОСТ 9.306-

оо). Пример обозначения стержня исполнения I для рукоятки L=75 мм; l=22 мм: $Cmepжene\ I\ 75 x 22 / 2 MH 5-64$

Mac ca,	ĮŽ		0,03			0,04			
			9,0			9,0			
×			1,2 1,5 2,5 0,6 0,03			1,2 1,5 2,5 0,6 0,04			
J			1,5			1,5			
$b^{+0,1}$			1,2			1,2			
$S \qquad b^{+0,1}$	(h12)		10			14			
h	'		9			∞			
12			4			S			
η,			S			∞			
I для ис- полнения	II		12			15			
<i>I</i> для ис- полнения	I	12	15	18	15 18 22				
L_1 для исполнения	П		62			85			
<i>L</i> 1 дл	I		62		85				
d ₄			5,7			1,7			
d ₃	(d11)		∞			10			
d ₂	1		5,5 8			7			
ď	'		M8			M10			
B	(h9)		∞			10			
Q			12			16			
Длина	T		09			75			

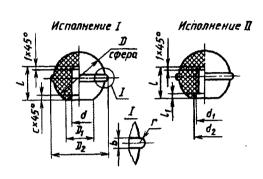
Продолжение табл. 4

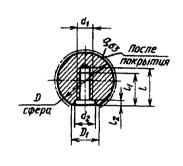
Mac ca,	ĮZ .		0,10			0,21			
*				6,0					
×			1,5 2,5			m			
J			1,5			2			
b+0,1				1,8					
S b+0,1	(h12)		17			19			
13			10			15			
1/2	-	-	9			∞			
1/4	_		10			12			
ис-	Π		70			25			
I для ис- полнения	I	22	25	78	28	32	36		
нис-	П		102			130			
L ₁ для ис- полнения	П		110		140				
d _k	<u> </u>		6		13				
dy.	(d11)		12			16			
*			6			12			
d,	i		M12			M16			
7	(gg)		12			16			
()		70			25			
Длина	T		95			120			

Кольцо-замок. Деталь 3

P	Длина ручки L	р	p	К	Длина заготовки	Масса, кг
7	09	7,2		4,5	21,1	0,01
	7.5	0,6		8,4	26,3	0,02
0	95	10,8	4.1	5,1	32,9	0,03
	120	14,6	;	5,6	44,2	0,05

Материал - проволока класса II по ГОСТ 9389-75. Отклонения размеров - н14 - h14


обозначения кольца-замка D=9 мм: $Konsupo 75/3 \ MH 5-64.$ Пример


5. Шаровые ручки (по нормали машиностроения МН 6-64)

Размеры, мм

Пластмассовые

0	бщие	разм	ры			П	тастма	ассовая	ручка	ı		. (Сталь	ная р	учка
D	<i>D</i> ₁ ± ±0,5	d_1	d_2	D_2	d (H11)	<i>l</i> для испол- нения I-II	l_1	r	b	с	Масса, кг, испол- нения I-II	1	<i>I</i> ₁	l_2	Macca, KT
12	8	M5	6	13	5	7	2	0,25	0,5	0,8	0,001	8	7	1	0,01
16	10	M 6	7	17	6	9	2	0,25	0,5	0,8	0,003	13	9	1,5	0,02
22	12	M8	10	23	8	16	2,5	0,50	1,0	1,2	0,006	16	14	2,5	0,03
30	15	M10	12	31	10	18	3	0,50	1,0	1,2	0,018	18	14	3	0,10
40	18	M12	14	42	12	24	3	1,0	2,0	1,8	0,041	30	24	3	0,25
50	20	M12	14	52	12	24	3	1,0	2,0	1,8	0,083	30	24	3	0,50

Материал - пластмасса - прессовочный материал, сталь 15 или 35.

Отклонения на размеры, не ограниченные допусками, - по $\frac{\text{H}14}{\text{h}14}$

Резьба метрическая - по ГОСТ 24705-81, поле допуска 7Н - по ГОСТ 16093-81.

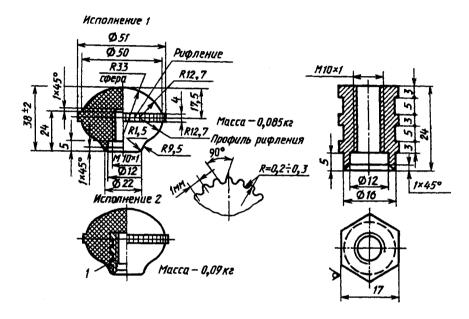
Пластмассовые ручки I и II исполнения устанавливать на рычаг, смазанный эпоксидной смолой.

Рукоятки к ручке - ГОСТ 8924-69 (табл. 2).

В обозначение ручек вводится обозначение их цвета: черный - П; красный - ПК; белый - ПБ.

Пример обозначения шаровой пластмассовой ручки черного цвета, исполнения $I,\ D=50$ мм:

Ручка П 50 МН 6-64.


Пример обозначения шаровой стальной ручки D=50 мм:

Ручка 50 МН 6-64.

6. Ручки рычагов управления

Размеры, мм

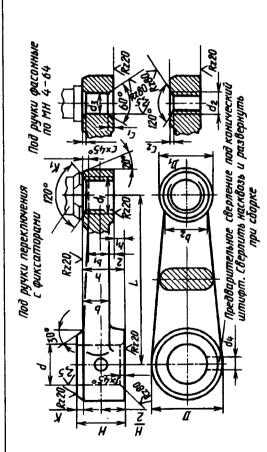
Втулка. Деталь 1

Материал ручки рычагов - пластмасса этрол.

Материал втулки - прокат калиброванный шестигранный:

Шестигранних
$$\frac{17 \text{ ГОСТ } 8560 - 78}{40 \text{ ГОСТ } 1051 - 73}$$
.

Ручку исполнения І навинчивать на рычаг, смазанный эпоксидной смолой.

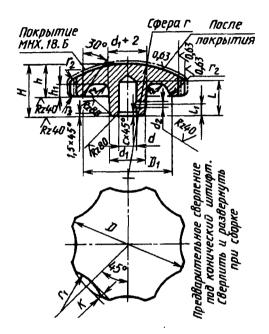

Отклонения размеров, не ограниченных допусками, $\frac{H14}{h14}$

Резьба метрическая - по ГОСТ 24705-81, поле допуска 7H - по ГОСТ 16093-81. Покрытие втулки - Хим. Окс. прм (по ГОСТ 9.306-85).

7. Рукоятки кривошилные	25 y x 25	Размеры, мм
	<i>K</i> 27.	

														(3					
7	S	в	D	d (H9)	d_1	R	Н	h	h_1	<i>h</i> 2	В	L_1	1	h	11	c	l ₂	25	Масса, кт
99	$10^{+0.3}_{+0.1}$	13,5	70	9	15	20	22	∞	4	3	12	62,0	16	2,5	1,0	5,0	1,0	1,0	0,10
08	$10^{+0.3}_{+0.1}$	13,5	70	9	15	25	22	∞	4	4	12	77,0	16	2,5	1,0	6,0	1,0	1,0	0,12
100	$12^{+0,3}_{+0,1}$	16,5	24	∞	18	32	26	10	5	S	16	97,0	70	3,0	1,0	0,5	1,5	1,0	0,17
125	$14^{+0,3}_{+0,1}$	19,0	28	10	21	40	30	12	9	9	20	122,5	25	4,0	1,5	9,5	2,0	1,0	0,27
160	$17^{+0,3}_{+0,1}$	23,0	32	10	25	20	34	12	7	∞	20	155,5	25	4,0	1,5	6,0	2,0	1,0	0,39
200	$19^{+0,4}_{+0,1}$	26,0	37	12	28	99	38	14	∞	10	24	195,5	32	5,0	2,0	1,0	2,0	1,5	0,67
250	$22^{+0,4}_{+0,1}$	30,0	42	12	32	80	43	14	6	12	24	243,0	32	5,0	2,0	1,0	2,0	1,5	0,84
320	$24^{+0,4}_{+0,1}$	33,0	47	16	36	100	48	16	10	16	28	312,5	40	0,9	2,0	1,0	2,5	1,5	1,40
-	Материал - сталь марок 35	- cranb	марок	35 и Ст5	.5.														

8. Рукоятки переключения


Размеры, мм

Масса, кт	0,265	0,360	0,615	0,900	1,50	2,15
Штифт по ГОСТ 3129-70	6 × 30		6 × 40		8 × 50	
ొ	1,0		1,5		1,5	
c ₁	12 10 22 0,5 2,0 1,0		16 12 26 1,0 2,5 1,5		5 22 15 30 1,0 3,0 1,5	
c	6,5		1,0		1,0	
b	22		56		30	
b_1	10		12		15	
q	12	4	16	18	22	24
K_1	3		4		Ŋ	
K	3	4	4	5	9	7
lμ	5		28 24 6		36 28 6	
ų	20		24		28	
Н	22	25	28	32	98	40
<i>d</i> ₄	و		9		∞	
$ \frac{d_3}{(H7)} d_4 H h h_1 K K_1 b b_1 b_2 $	10		12		16	
42	M10		M12		M16	
d_1	M18x1,5 M10 10 6 22 20 5		M22×1.5 M12 12		M27x1.5 M16 16 8	
(h7)	18		22		28	
$D \mid D_1 \mid$	80 32 26		40 32		50 40	2
D	32		04	2	ĉ	3
T	08	100	125	160	700	250

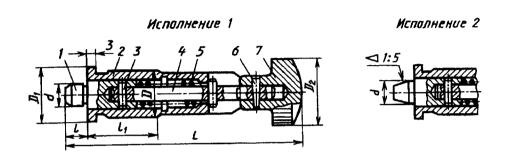
Материал - чутун СЧ32. Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 7Н по ГОСТ 16093-81.

9. Звездообразные рукоятки

Размеры, мм

D	D_1	d (H9)	r	'n	<i>r</i> 2	Н	h ₁	k	d_1	d_2	L	l_1	с	Штифт конический, ГОСТ 3129-70	Macca, kr
65	50	8	65	25	3	30	8	4	20	2,8	20	6	1,0	3 × 20	0,3
80	60	10	80	30	3	35	8	5	22	2,8	22	8	1,0	3 × 22	0,5
100	80	12	100	35	4	40	12	6	25	3,8	25	8	1,5	4 × 25	0,95

Материал - чугун СЧ15.


Отклонения размеров, не ограниченных допусками, - по $\frac{H14}{h14}$.

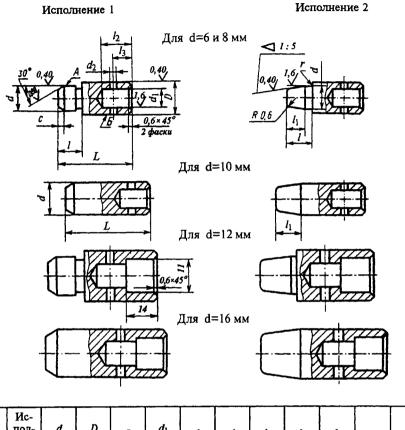
Наружные нехромированные поверхности рукоятки покрыть грунтовкой. Загрунтованные поверхности красить при монтаже под цвет изделия.

10. Фиксаторы с вытяжной ручкой для станочных приспособлений (по ГОСТ 13160-67 в ред. 1990 г.)

Фиксаторы с вытяжной ручкой предназначены для применения в делительных приспособлениях.

Размеры, мм

Отверстия под штифты в деталях 1 и 4 обработать при сборке, поля допусков H7, параметр Ra не более 0.80 мкм.


					Деталь 3	Деталь 4	Деталь 5	Деталь 6	Деталь 7
Обозначение фиксаторов	Испол- нение	d (g6)	L	Масса, кт	цилиндри	ифт ческий по 3128-70	Пружина по ГОСТ 13165-67		Кнопка по табл. 13
7037-0061	1	6	83	0,108					
0062	2			0,107					
0063	1	8	85	0,110	2 × 10	6 × 60	7039-	2 × 12	D ₂ =25
0064	2			0,109			2011		
0065	1	10	87	0,112					
0066	2			0,110			<u> </u>		ļ
0067	1	12	105	0,243					
0068	2			0,240	3 × 16	8 × 80	7039-	3 × 14	$D_2=32$
0069	1	16	109	0,256			2014		
7037-0070	2	<u> </u>		0,253	<u> </u>				

Пример обозначения фиксатора с вытяжной ручкой исполнения 1 размером d=6 мм:

Фиксатор 7037-0061 ГОСТ 13160-67.

Фиксатор, деталь 1

Продолжение табл. 10

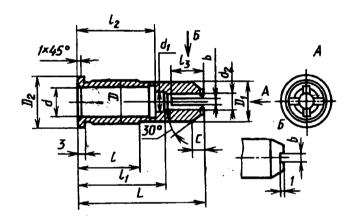
Обозна- чение фикса- тора	Ис- пол- не- ние	d (g6)	D (g6)	L	d ₁ (H9)	d_2	1	<i>I</i> ₁	<i>l</i> ₂	<i>l</i> 3	С	r	Мас- са, кг
7037-													
0061/001	1	6		22			6	-		l	1,6	-	0,009
0062/001	2		10	L	<u> </u>	·	Ĺ	4				0,6	0,008
0063/001	1	8		24	6	1,9	8	-	10	6	2	-	0,011
0064/001	2		İ	<u> </u>]	Ì		6		1		0,6	0,010
0065/001	ı	10	-	26]	j	-	-		Į.	3	-	0,013
0066/001	2]		<u> </u>	<u> </u>	8		<u> </u>			0,011
0067/001	1	12	16	36			12	-			3	-	0,034
0068/001	2	1	<u> </u>		8	2,9		10	22	17		1	0,031
7037-]								
0069/001	1	16	-	40	1	1	-	-		1	4	-	0,047
0070/001	2						<u> </u>	13	<u> </u>		<u> </u>		0,044

Пример обозначения фиксатора исполнения l размером d=6 мм:

Фиксатор 7037-0061/001 ГОСТ 13160/67.

Материал - сталь 20X; твердость 56 ... 61 HRC₃; цементировать на глубину 0.8 - 1.2 мм, отверстия d_1 и d_2 от цементации предохранить.

Продолжение табл. 10


Допуски на угловые размеры - по 8-й степени точности ГОСТ 8908-81. Допуски радиального биения поверхности диаметра d относительно поверхности диаметра D - по 6-й степени точности ГОСТ 24643-81.

Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.

Покрытие - Хим. Окс. прм (обозначение по ГОСТ 9.306-85).

Втулка, деталь 2

Размеры, мм

Обозначение втулок	d (H7)	D (h6)	D_1	<i>D</i> ₂	d_1	d_2	L	1	l_1	<i>l</i> ₂	<i>l</i> ₃	ь	с	Мас- са, кг
7037-0061/002	10	16	15	20	9	6,3	55	25	40	28	11	2,5	3	0,054
7037-0067/002	16	22	21	26	11	8,5	65	32	45	40	17	3,5	6	0,112

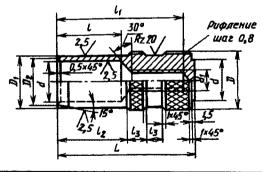
Пример обозначения втулки размером d=10 мм:

Втулка 7037-0061/002 ГОСТ 13160-67.

Материал - сталь 45 по ГОСТ 1050-88. Допускается изготовлять из сталей других марок по механическим свойствам не ниже, чем у стали 45. Твердость 41,5 ... 46,5 HRC₃.

Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.

Допуск радиального биения поверхности диаметра D относительно поверхности диаметра d - по 4-й степени точности ГОСТ 24643-81.

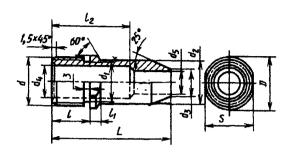

Покрытие - Хим. Окс. прм (обозначение по ГОСТ 9.306-85).

11. Ручки переключения с фиксатором

Размеры, мм

Tun 🏻 Ручка шаровая Tun I D D_{l} $L_{\rm HaM6}$ L_{l наиб *I* ≈ $I_{\rm I}$ l_2 l_3 80 90 55 15 5 30 65 24 100 110 70 18 28 40 6 80 90 22 32 50 125 135 8 100

Втулка Размеры, мм

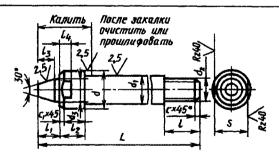


D	D_1	D_2	d+0,3	d ₁	L	<i>[</i> +1	1,	12	13	Масса, кг
24	22	20	18	М8	46	25	42	22	6	0,095
28	26	24	22	M12	60	30	55	30	8	0,175
32	30	28	26	M12	78	37	72	40	10	0,340

Материал - сталь марок Ст5, 35 и A12. Поле допуска резьбы 7H - по ГОСТ 16093-81.

Продолжение табл. 11

Стержень Размеры, мм



D	đ	d_1	d_2	d ₃	d ₄	<i>d</i> ₅	L	1	11	l_2^{+1}	S-0,28	Macca,
		(откл. -0,2)			(H9)							кг
22	M18×1,5	16	18 ^{-0,1}	12	14	10	49	15	4	30	19	0,038
25	M22×1,5	19,8	$22^{-0,1}_{-0,3}$	14	16	12	57	18	5	36	22	0,065
30	M27×1,5	24,8	$26^{-0,1}_{-0,3}$	16	20	14	70	22	6	46	27	0,120

Материал - сталь марок Ст5, 35 и A12. Резьба - по ГОСТ 24705-81. Поле допуска резьбы 8g по ГОСТ 16093-81.

Фиксатор

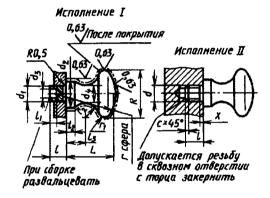
Размеры, мм

d (h9)	d ₁ (f9)	<i>d</i> ₂	d ₃	L	1	l_1	<i>l</i> ₂	<i>l</i> ₃	14	S _{-0,24}	С	c_1	Масса, кг
14	10	M8	8	74	12	9,0	9	7	4	11	1,2	1,0	0,045
16	12	M12	10	90	17	10,5	11	8	5	14	1,8	1,5	0,085
20	14	M12	12	108	20	12,5	14	10	6	17	1,8	1,5	0,140

Материал - сталь 45. Твердость 42 HRC₃. Резьба - по ГОСТ 24705-81. Поле допуска резьбы 8g по ГОСТ 16093-81.

Продолжение табл. 11

Пружин	а
Размеры,	MM


d t	$D^{+0,5}$	d	t	L	Полное число витков	Длина заготовки	Масса, кг
	12,0	1,0	3,2	34	12	415	0,003
	14,5	1,2	3,8	40	12	520	0,004
	17,5	1,6	4,5	48	12	605	0,009

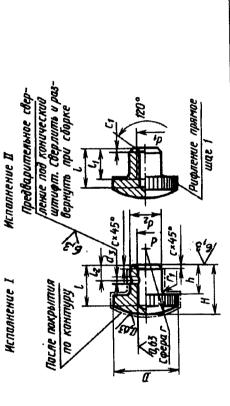
Материал - проволока стальная углеродистая пружинная, кл. ІІ по ГОСТ 9389-75.

кнопки

12. Кнопки

Размеры, мм

R=	d	d_1	d_2	<i>d</i> ₃	d ₄		-попон ния	l_1	12	13	r	מ	<i>r</i> 2	С	x	Macca,
=L						I	II									KT
20	M6	6	12	4	8	6	8	3	3,6	8	25	2,5	5,5	1	2	0,025
25	M8	8	16	5,5	10	8	10	3	4,5	10	32	3,0	7,5	1,5	2,5	0,050
32	M10	10	20	7	12	10	13	4	5,5	13	40	4,0	9,5	1,5	2,5	0,10
40	M12	12	25	9	16	13	16	5	6,5	16	50	5,0	12,0	1,5	2,5	0,20
_50	M16	16	32	12	20	16	20	6	9,0	21	63	6,0	15,0	2	3	0,38


Материал - сталь 15 или 35.

Отклонения на размеры, не ограниченные допусками, $\frac{\text{H}14}{\text{h}14}$

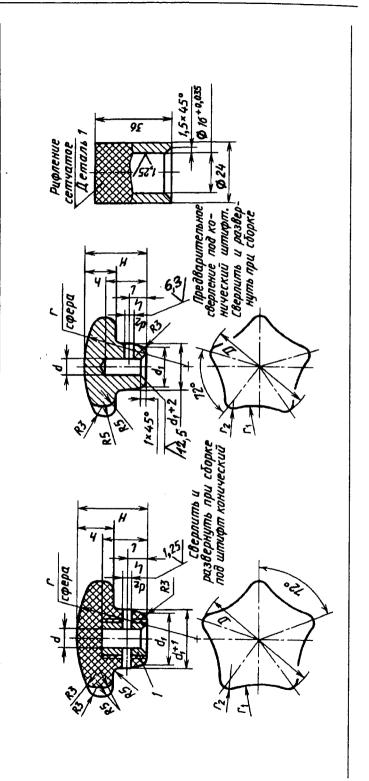
Поле допуска резьбы 7Н по ГОСТ 16093-81.

Покрытие - М6.Н9.Х3. б (обозначение покрытия по ГОСТ 9.306-85).

Кнопки с рифлением
 Размеры, мм

Масса, кт	0,005	0,0008	0,015	0,030	090'0	0,120	0,280
Штифт конический, ГОСТ 3129-70	1,6 × 6	1,6 × 8	2 × 10	2 × 12	3 × 16	3 × 20	4 × 25
٢	8,0		1,0		1,5		2
7	12	16	20	25	32	40	95
7,7	6,0		0,7		1,0		1,5
v	0,5		0,8		1.0	`	1,5
12	2,5	4	9	9	8	10	12
1/1	5,5	7,5	9,0	11	14	18	24
1	7	6	12	16	20	25	30
'n	5	∞	10	12	16	70	24
d_3	1.5	ر د ا	1 0	C, T	٥ ر	9,4	3,8
<i>d</i> ₂	9	88	10	12	15	70	25
d_1	M3	M4	MS	M6	M8	M10	M12
Н	10	41	18	22	28	34	40
(6H) p	3	4	~	, , ,	, «	, 9	12
D	12	; '2	2 5	, ,	3 8	40	208

Материал - сталь 15 или 35. Допускается использование стали других марок с механическими свойствами не ниже, чем у сталей 15 и 35.


Отклонения на размеры, не ограниченные допусками, - по

h14 Покрытие М6.Н9.Х3.6 (обозначение покрытия - по ГОСТ 9.306-85)

телемителистия. Арг. (поставление покрытия - по гост 9.300-83). Резьба метрическая - по ГОСТ 24705-81, поле допуска 7H - по ГОСТ 16093-81.

14. Кнопки поворотиме

Размеры, мм

14
табл.
лжение
Продог

	Масса, кт	0,15	0,34	0,62	
Чугунная кнопка	Штифт конический, ГОСТ 3129-70	3 × 20	3 × 25	4 × 30	
Чугун	1/	- 8	10	16	
	1	20	28	40	0000
	d_2	2,8	2,8	3,8	7
	d_1	20	25	98	
	Масса, кт	0,087	0,123	36 16 0,165	
опка	4	8	12	16	
ая кн	1	22	26	36	
Пластмассовая кнопка	d₂ под штифт конический, ГОСТ 3129-70	4 × 32	4 × 32	4 × 36	2
	d_1	32	32	36	
	ű	5	ν.	9	
	ŗ.	25	32	40	
мфэ	*	15 50	70	8	
e pası	h	15	18	22	
Общие размеры	H	30	9	50	
	(6H)	01	12	16	;
	D	50	99	80	

Материал кнопок: пластмасса - прессовочный материал черного или красного цвета, чугун СЧ20; материал втулки - сталь Ст3 или сталь

CTS

Наружные поверхности чугунных кнопок загрунтовать. Загрунтованные поверхности красить под цвет изделия. Покрытие втупки - Хим. Окс. прм (по ГОСТ 9.306-85).

Покрытие вгулки - Хим. Окс. прм (по ГОСТ 9.300-85). В обозначения кнопок вводится обозначение их цвета: черный - П; красный - ПК; белый - ПБ.

Пример

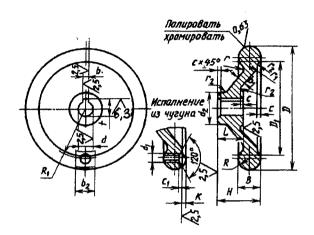
Пример

пластмассовой белого цвета D=65 мм: Кнопка ПБ 65 МН 12-64. КНОПКИ обозначения

обозначения кнопки чугунной D=65 мм:

Кнопка 65 МН 12-64.

ж и :


Пример обозначения втулки:

Втулка 80 / 1 МН 12-64.

МАХОВИЧКИ

15. Маховички без спиц

Размеры, мм

D	В	(H		d_1	<i>d</i> ₂	D_1	b (D10)	<i>b</i> ₁	<i>b</i> ₂	t (H12)	L	Н
65	12	8	8 M5		16	50	3	5	10	9,1	14	25
80	15	10)	M5	20	62	3	6	10	11,1	16	28
100	18	12	2	M6	24	78	4	7	12	13,6	18	32
	K	с	r	n	<i>r</i> ₂	R	R_1	с	c_1	Масса чугунного маховичка, кг		
65	2,5	1,5	4	8	1,5	6,0	26	0,5	0,5		0,210	
80	2,5	2,0	5	11	2,0	7,5	32	0,5	0,5	0,400		
100	33,0	2,0	6	15	2,0	9,0	41	1,0	0,5	0,870		

Материал - чугун СЧ15; сплавы алюминиевые литейные.

Ручки к маховичкам - по нормали МН 4-64.

Наружные нехромированные поверхности металлических маховичков загрунтовать.

Загрунтованные поверхности окрашивают при монтаже под цвет изделия.

Отклонения свободных размеров - по $\frac{H14}{h14}$.

Резьба метрическая - по ГОСТ 24705-81, поле допуска 7Н - по ГОСТ 16093-81.

Маховички со спицами (по нормали машиностроения МН 8-64)
 Размеры, мм

	£	9	7	∞	6	10
	74	5,5	9	7	80	0
مهر سا	٤	12	16	70	24	28
	r.	45	09	80	102	135
The state of the s	ŗ	18	22	79	ı	ı
Bapuanm ucnonsobanus naumenuu marabuwa c pywadi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	i.	6	10	11	12,5	14
A natura np marabum np marabum np np np np np np np np np np np np np	В	20	22	25	28	32
Wednesday of the state of the s	p_{l}	8	6	10	11	13
	d+t ₁ (H12)	15,6	17,9	23,3	27,6	32,6
Indication of the state of the	(6H) q	4	5	9	8	80
	В	18	20	22	25	28
E 20 10 20 20 10 2	T	18	20	24	28	34
and the state of t	Н	36	40	45	20	55
' <i>x</i> '	d_1	28	32	36	45	55
	d (H7)	14	16	70	25	30
	a	125	160	200	250	320

Продолжение табл. 16

•		мчество Масса ¹ , пиц кт				
Количество Мас		спиц к				
_	сі спип		1,5 3	1,5 3	1,5 3 2,0 3 2,0 3	1,5 3 2,0 3 2,0 3 2,5 3
ι _ο ο			0,8 1,5	0,8 1,5 1,0 2,0	0,8 1,5 1,0 2,0 1,0 2,0	1
•			7	8 1	8 1 9	7 0 8 1 9 1 10 1
	K_1	⊩	_ 1 _			
	K	ō	`	10	10	11 12
	٤	~	•	92	10	10 10 21
	۴	و	,	∞ ∞	× ×	8 8 11
	۲	4	_	4,5	4,5	4,5
	۶.	3,4		3,7	3,7	3,7
тие 👍	резъбо-	M8		M10	M10	M10 M10 M12
Отверстие	гладкое (Н9)	8		10	10	10
	d_2	40	_	45	45	45 50 60
	Q	125		160	160	160 200 250

1 Для чугунных маховичков.

Нормаль МН 8-64 предусматривает металлические маховички D = 400 и 500 мм, а также пластмассовые D = 125 ... 320 мм.

Материал - чугун СЧ15, сплавы алюминиевые литейные.

Отклонения на размеры, не ограниченные допусками, - по h14, H14, $\pm \frac{t_2}{2}$.

маховичка чугунного D=250 мм: обозначения Пример

Маховичок 250 МН 8-64;

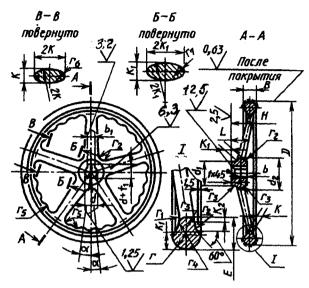
то же, алюминиевого:

Маховичок АЛ250 МН 8-64.

В случае необходимости применения металлических маховичков с ручкой используется платик в.

Допускается изготовление металлических маховичков с резьбовым отверстием под ручку; при этом в обозначении взамен d_3 указывают

Маховичок 250 × M12 MH 8-64.


Допускаемое радиальное и торцовое биение на металлическом ободе 0,25 мм.

диаметр резъбы, например:

Наружные нехромированные поверхности металлических маховичков загрунтовывают.

Загрунтованные поверхности красят при монтаже под цвет изделия.

17. Маховички со спицами и с выемкой на ободе (по нормали машиностроения МН 9-64)

D	d	(H7		d_1	d_2		H	L	В	a	+t ₁ (H12)	ь	b ₁ (H9)	E	r
250		25		45	60	5	0	28	25		27,6	11	8	28	12,5
320		30		55	72	5	5	34	28		32,6	13	8	32	14
D	<i>r</i> 1	12	<i>r</i> ₃	r ₄	r 5	r ₆	<i>r</i> 7	K	K ₁	<i>K</i> ₂	α	Число спиц	Масса чугунного маховичка, кг		
250	24	4	8	10	12	4,5	5,5	12	16	5	90	5	2,5		
320	28	5	9	11,5	13	4	6	14	18	6	7° 31′	5	6,0		

МН 9-64 предусматривает также маховички металлические D=400 и 500 мм и пластмассовые D=250 и 320 мм.

Материал - чугун СЧ15, сплавы алюминиевые литейные.

Отклонения на размеры, не ограниченные допусками: h14, H14, $\pm \frac{t_2}{2}$.

Допускается радиальное и торцовое биение на металлическом ободе 0,25 мм.

Наружные нехромированные поверхности металлических маховичков загрунтовывают.

Загрунтованные поверхности красят при монтаже под цвет изделия.

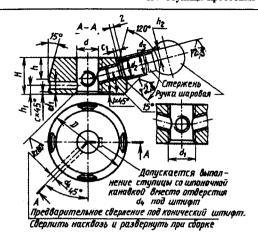
Пример обозначения маховичка чугунного D = 250 мм:

Маховичок 250 МН 9-64;

то же, алюминиевого:

Маховичок АЛ250 МН 9-64.

ІНТУРВАЛЬНЫЕ ГАЙКИ И СТУПИЦЫ 18. Ступицы с горизонтальным стержием

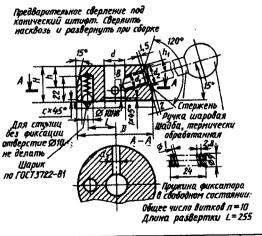

Размеры, мм

Исполнение П насквозь и развернуть при сборке Тредварительное сверление под конический штифт. Сверлить 4-4 Исполнение I *Ітержень* Stxl H

Macca,	Ä	0,23	0,45	0,87
рт по 1129-70	90	3 × 30	4 × 40	5 × 50
Штифт по ГОСТ 3129-70	ds	6 × 30	6 × 40 4 × 40	8 × 50 5 × 50
Cl		2	2,5	3
0		10 26 3,0 1,5	33 3,5 1,5 2,5	7
1/		3,0	3,5	4,5
1		56	33	42
147		01	12	15 42 4,5 2
h 1		12	15	18
h		23	28	36
Н		48	09	75
9p		м	4	5
ds		9	9	∞
d4		17	21	26
d ₃		M12	M16	M20
42	(H/)	12	16	70
q_1		M16	MZ0	M30
p.	(/EF)	18	22	28
q		32	40	50

Материал - сталь 35 по ГОСТ 1050-88. Допускается использование стали других марок с механическими свойствами не ниже, чем у стаги 35. Верхние и боковые поверхности полировать и хромировать; допускается применение полированных нехромированных ступиц

19. Ступица крестовая


Размеры, мм

Верхние и боковые поверхности полировать и хромировать или только полировать.

D	d (H7)	d_1	d_2	d ₃	<i>d</i> ₄	Н	h	h ₁	h ₂	с	c_1	Штифт по ГОСТ 3129-70	Мас- са, кг
65	18	M20	M12	17	6	30	18	7	10	2,0	1,5	6 × 70	0,55
80	22	M24	M16	21	6	36	22	9	12	2,5	1,5	6 × 80	0,98
100	28	M 30	M20	28	8	44	27	11	15	3,0	2,0	8 × 100	1,85

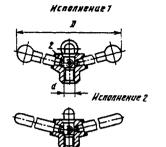
Материал - сталь марки Ст5 или чугун СЧ30.

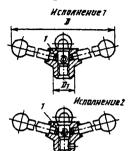
20. Ступица рукояток переключения

Размеры, мм

Верхние и боковые поверхности полировать и хромировать или только полировать.

	d	d,	d_2	d_3	1	н	h	h ₁	c	Штифт по	Масса сту	лицы, кг
D	(H7)	a_1	L 42	-3						ГОСТ 3129-70	стальной	чугунной
65	18	M12	17	6	24	30	18	10	2,0	6 × 70	0,63	1,04
80	22	M16	21	6	32	36	22	12	2,5	6 × 80	1,13	0,58


Материал - сталь марок Ст5 и 35 или чугун СЧ30.


21. Штурвальные

Размеры,

Гайки штурвальные по ГОСТ 14728-69 в ред. 1990 г.

Рукоятки штурвальные по ГОСТ 14741-69 в ред. 1990 г.

											Общие
Обозначе- ние гайки штур- вальной	Обозначе- ние гайки	Обозначе- ние руко- ятки штур- вальной	Обозначе- ние корпуса	Испол- нение	D	D_1	D_2	Н	d ₂	d ₃	d ₄
7003-	7003-	7061-	7061-								
0321	0321/001	0146	0146/001	1	160	24	45	32	14	11	M8
0322		0147	0147/001	2							
0323	0323/001	0148	0148/001	1	200	30	55	42	18	13	M10
0324		0149	0149/001	2						L	
0325	0325/001	0150	0150/001	1	250	36	63	50	22		
0326		0151	0151/001	2						17	M12
0327	0327/001	0152	0152/001	1	300	42	70	55	26		
0328		0153	0153/001	2							
0329	0329/001	0154	0154/001	1	380	52	85	70	34	21	M16
7003 - 0330		7061 - 0155	0155/001	2			L				

Материал - сталь 45. Допускается применение стали других марок с механическими свойст

Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{l_2}{2}$.

Резьба - по ГОСТ 24705-81. Поле допуска резьбы - 6H по ГОСТ 16093-81.

Покрытие - Хим. Окс. прм (обозначение покрытия - по ГОСТ 9.306-85). Допускается при При сборке в корпусе отверстие d_6 под штифт просверлить насквозь и развернуть с откло При сборке резьбу рукоятки (деталь I) смазать эпоксидной смолой или клеем, предназна Пример обозначения штурвальной гайки исполнения 1, d = I Гайка 7003-0321

то же, гайки с рукоятками со стальными шаровыми ручками:

Гайка 7003-0321 Ст

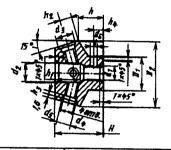
то же, гайки d = M12:

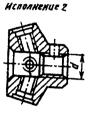
Гайка 7003-0321 / 001

Пример обозначения штурвальной рукоятки исполнения 1, *Рукоятка 7061-0146* то же, штурвальной рукоятки со стальными шаровыми ручками:

Рукоятка 7061-0146 Ст

то же, корпуса исполнения 1, d = 12 мм:


Kopnyc 7061-0146 / 001


гайки и рукоятки

MM

Корпус. Деталь 1 по ГОСТ 14741-69 Исполнение 1

Гайка. Деталь 2 по ГОСТ 14728-69

разме	ры]	Корпу	с. Де	галь 1			Гай	іка. Деталь	2
<i>d</i> ₅	h	h_1	h ₂	h ₃	d	d_1	<i>d</i> ₆	h ₄	Mac- ca,	Рукоят- ка по	ď	Ma cca,	ŀ	ачение эятки
									КT	FOCT 8924-69		кг	по ГОСТ 8924-69	по ГОСТ 8923-69
					l					7061-				
8,5	16	16	9		-	12	4	6	0,190	0102	M12	0,193	7061-0102	
					M12	-			0,193		-		_	7061-0060
10,5	22	20	10		-	16	5	8	0,354	0108	M16	0,361	0108	_
				3	M16			Ĺ	0,361		-	-	_	0066
	28				-	20	8	10	0,573	0114	M20	0,585	0114	
13		23	12		M20	-			0,585		-	-	-	0072
	32				-	25	8	12	0,711	0116	M24	0,742	0116	_
					M24	-			0,742		-		_	0074
17	43	28	14	4	-	32	8	16	1,345	7061-	M30	1,415	7061-0124	_
		L			M30		l	<u> </u>	1,415	0124	-	-		7061-0082

вами не ниже, чем у стали 45. Твердость 31,5 ... 36,5 НКСа.

менение других видов защитных покрытий.

нением по Н7.

ченным для склеивания металлических поверхностей.

M12:

ΓΟCT 14728-69;

ГОСТ 14728-69;

ΓΟCT 14728-69.

D = 160 MM:

FOCT 14741-69;

ΓΟCT 14741-69;

ΓΟCT 14741-69.

22. Ступицы рукояток переключения без фиксатора и с фиксатором

Размеры, мм

		,														Штифт по Масса сту- ГОСТ 3129-70 пицы, кт	г по 129-70	Масса пипы,	cry-
d (H7)	ď	d ₂ (H7) d ₃ d ₄	<i>q</i> ₃	ą.	v	Q	$D D_1 = I_3 L L_1 L_2 I$	7	L_1	I_2	~	4	4	h	R	d3	d 4	без с фик- фик- сатора сато- ром	с фик- сато- ром
18	M12	12		4	1,0	32	22	32	35	38	18	==	30	10	6	6 4 1,0 32 22 32 35 38 18 11 30 10 9 6x30 4x22 0,14 0,16	4×22	0,14	0,16
22	M16	91	9	4	1,5 40	40	28	40	43	43 49 22 14	22	4	40 12 11	12	11	6×40	4×25	0,28	0,32
28*	M20	70	∞	2	1,5	20	5 1,5 50 36 50	90	54	•	- 28 18	18	,	16	1	8×50 5×36 0,52	5×36	0,52	,
* Разме	• Размеры в послепней строке только для рукояток переключения без фиксации	CTDOKE TO	JIBKO	O RITE	укояток	пере	Ключен	ия бе	з фик	сации									

Материал - чугун СЧ30.

зажимы

23. Зажимы для стальных канатов

Винтовые зажимы для образования разъемных соединений стальных канатов грузоподъемных устройств, захватных приспособлений и монтажной оснастки.

H Скоба, деталь 2 Колодки, деталь 1 Размеры, мм Зажим

Общий размер А					🕺	Колодка, деталь І	g g	ic la	e l					Ö	Скоба, деталь 2	цета	B 2		. 0	Шайба Мас- пружин- са ная, ле- за-
Отк- Обо- доне- даче-)60- 1аче- <i>d L</i> ние	7 p	~		7	- P	*	- 14	<u> </u>		~	2	Mac- ca, KT	Мас- Обо- са, значе- кт ние	ש	H 1		Mac-ca,	FOCT 5915-70	Taub 4 - X 10 N
7/1 9 38 18 20 12 14 8 6 6 3,5 1,6 0,03 7/2 M8 36 15 0,03 M8-7H.5.016 8H65F 0,07	7/1 9 38 1	9 38 1	 		8	17	17	8	L°	۴	3,5	5 11,6	0,03	7/2	M8	36	15	0,03	M8-7H.5.016	8H65F
±0,5 10/1 11 48 24 24 14 18 12 8 8 5 1,6 0,06 10/2 M10 50 20 0,06 M10-7H.S.016 10H65F 0,14	10/1 11 48	11 48	∞	Ñ	4 2,		=	=======================================			2	1,6	90,0	10/2	M10	50	70	0,06	M10-7H.5.016	10H65F

Продолжение табл. 23

Mac- ga - ag	M8, Kr	0,26	0,32	0,57	69'0	1,27	1,56	2,33	3,97	4,54	6,35	10,27
	таль 4 - по ГОСТ 6402-70	12H65F	12H65F	12H65F	16Н65Г	20H65F	20H65F	24H65F	30H65F	30H65F	30H65F	36H65F
Гайка, деталь 3 - по	1.0C1 5915-70	M12- 7H.5.016	M12- 7H.5.016	M16- 7H.5.016	M16- 7H.5.016	M20- 7H.5.016	M20- 7H.5.016	M24- 7H.5.016	M30- 7H.5.016	M30- 7H.5.016	M30- 7H.5.016	M36- 7H.5.016
	Ma- cca, ĸr	0,11	,15	0,27	0,3	0,53	9,0	96'0	1,76	1,9	2,4	3,92
2 9	o '	30 0	30 0,15	-	04			55	09	09	70	75
	H	63 3		- \$8	95 ,	02	125	150	170	180	210	250
Скоба, деталь	a	M12	M12 70	M16 85 40	M16	M20 120 45	M20 125 45	M24 150 55	M30 170 60 1,76	M30	M30	M36 250 75 3,92
Ck	Обо- значе- нке	13/2	16/2	19/2	23/2	2//2	32/2	37/2	41/2	45/2 M30 180 60	52/2 M30 210 70	62/2
	Ma- cca,	1,6 0,12	0,16	0,24	0,32	0,61	0,74	1,0	1,7	2,0	3,4	5,45
	2	9,1	1,6	7	7	2	7	2,5	2,5	2,5	ю	3
	~	6,5	∞	9,5	11,5	13,5	16	20 18,5 2,5	20 20,5 2,5	22,5 2,5	26	31
	R.	9	10	12	12	16	16			70	25	25
P 1	1/2	12	11	18 12	41	18	20	22	25	28	28	30
Колодка, деталь	1 4	14	16	18	20	25	40 27	48 32	38	42	42	47 73 42
а, д	7	22	24	21 26	30	36			55	09	65	73
ТОДК	P	16	16		21	26	26	30	36	36	42	47
Ko	89	28	30	36	38	45	45	55	99	65	75	96
		78	32	36	6	50	55	<u>~~</u>	130 74	0 78		0 95
	T	55	99	17 70 36 36	8	95	22 100	26 120 64 55	<u>3</u>	3 140	33 150 85	39 180 95 90
	р	13	13		17	77			33	33		
	Обо- значе- ние	13/1	16/1	19/1	23/1	27/1	32/1	37/1	41/1	45/1	52/1	62/1
ций ер А	Отк- лоне- ние		±0,5					11,0				
Общий размер	Номи-	28	30	36	40	20	55	99	75	80	96	105
Лиамето		Св. 10 до 13	Св. 13 до 16	Св. 16 до 19	Св. 19 до 23	Св. 23 до 27	Св. 27 до 32	Св. 32 до 37	Св. 37 до 41	Св. 41 до 45	Св. 45 до 52	Св. 52 до 62
Обозна-	зажи-	13	16	19	23	27	32	37	41	45	52	79

Разрешается для стопорения гаек применять отгибные планки.

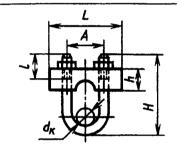
Детали зажимов должны изготовляться:

колодка - штамповкой из стали марки Ст3кп - по ГОСТ 380-94. Припуски, допуски и штамповочные уклоны по второй группе - ГОСТ 7505-89. Допускается изготовление отливок из стали марки 25Л-II по ГОСТ 977-88; скоба - из горячекатаной стали 30.

Предельные отклонения размеров, не ограниченных допусками:

охватывающих - по H14, охватываемых - по h14, прочих - \pm t/2.

Резьба метрическая - по ГОСТ 24705-81, поле допуска 6g - по ГОСТ 16093-81.


В деталях зажимов не должно быть плен, трещин и расслоений. Поверхности должны быть чистыми.

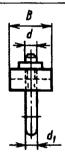
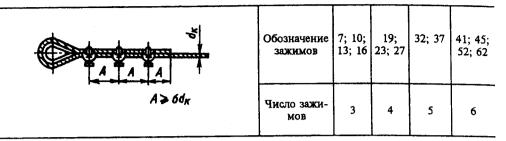

Все детали должны иметь цинковое хроматированное покрытие (по ГОСТ 9.306-85) толщиной не менее 21 мкм для колодок и скоб и не менее 9 мкм для гаек и шайб; покрытие сплошное и гладкое, без пузырей и трещин.

Схема установки зажимов приведена в табл. 25.

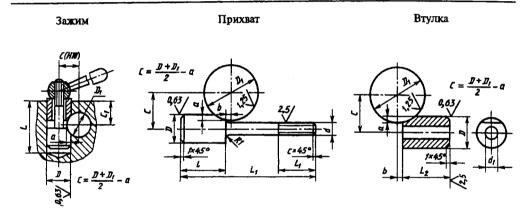
24. Зажимы планочные для стальных канатов

Размеры, мм



Резьба метрическая - по ГОСТ 24705-81 с полем допуска резьбы скобы 6g - по ГОСТ 16093-81.

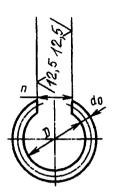
Диаметр каната d _K	$d=d_1$	A	Н	L	В	h	1	Масса, кг
От 4,6 до 5,5 Св. 5,5 " 6,5	6	14	30	28	15	10 12	12	0,045 0,052
Св. 6,5 до 8,5	10	22	50 55	45	25	16 20	18 20	0,23 0,26
Св. 11 до 13	12	13	70 75	60	35 45	24 28	22 25	0,48 0,68
Св. 15 до 18,5 " 18,5 " 21,5	16	38 42	90 105	70 80	55 65	30 34	30 35	1,04 1,81
Св. 21,5 до 25,0	20 24	52 60	125 135	100 115	70 90	40	45	2,75 3,30


Материал - сталь Ст3 по ГОСТ 380-94.

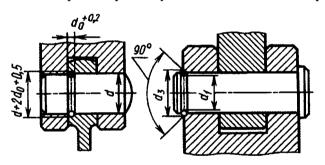
25. Схема установки зажимов

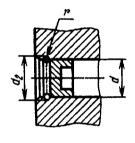
26. Зажим для пилиндрических деталей

Размеры, мм


$D\left(\frac{H7}{f7}\right)$	D_1	C_1	L	а	L_{l}	1	d	<i>I</i> ₁	b	с	L_2	d_1
16+0,019	От 20 до 28	18 25 28 30 35	40 55 60 65 75	3	55 70 75 90 85	16 23 25 28 30	М8	20	2,5	1,2	18 25 28 30 35	8,5
20+0,023	Св. 28 до 45	28 33	60 70	4	78 88	25 30	M10	25	3,0	1,5	28 35	10,5
25+0,023	Св. 40 до 50	38	80	4,5	105	35	M12	30	3,5	1,8	38	13,5

Материал - сталь 45. Твердость 26,5 ... 31,5 HRC₃.


КОЛЬЦА


27. Запорные кольца

Размеры, мм

Примеры применения запорных колец

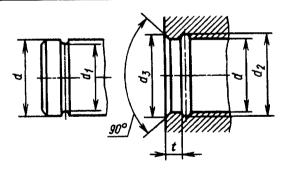
Установка колец на ось или вал

Установка колец в отверстие

Номи- нальный		1	D			Номи- нальный		1	D		
диаметр оси или отверстия d	d ₀	Номи- нал	Откло- нение	n	Масса 1000 шт., кг	диаметр оси или отверстия d	d ₀	Номи- нал	Откло- нение	n	Масса 1000 шт., кт
4		3,4			0,042	16	1,6	14,5	±0,1	6,0	0,695
5		4,4		2,5	0,054	18		16,5			0,790
6	0,8	5,4			0,067	20		18,2			1,309
8		7,2	±0,1	4,0	0,083	22	2,0	20,2	±0,15	10,0	1,457
10		9,2			0,106	25		23,2			1,704
12		11			0,191	28	_	26,2	İ.,		1,926
*	1,0			6,0		32	2,5	30	±0,2	12,0	3,469
14		13			2,234	36		34			3,968

Продолжение табл. 27

Номи- нальный		1)			Номи- нальный)		
диаметр оси или отверстия d	d ₀	Номи- нал	Откло- нение	n	Масса 1000 шт., кг	диаметр оси или отверстия d	d_0	Номи- нал	Откло- нение	n	Масса 1000 шт., кг
38		36		12	4,195	70		67			12,33
40	i	38			4,445	75	ĺ	72			13,32
42	2,5	40	±0,2		4,525	80		77	}	25	14,32
45		43		16	4,888	85		82			15,31
48		46			5,251	90	3,2	87	±0,3	<u> </u>	16,30
50		48	l		5,493	95		92	}	ļ	17,29
55		52			9,68						
60	3,2	57	±0,3	20	10,67	100		97		32	17,84
65	1	62			11,66					<u></u>	


Материал - проволока стальная углеродистая пружинная класса II - по ГОСТ 9389-75. Плоскостность кольца проверяется свободным прохождением его через калибр-щель. Допускаемое отклонение от плоскостности - не более 0,1 мм. Кольцо должно входить в канавку вала без радиального зазора по внутреннему диаметру.

Кольцо запорное 20 МН 470-61.

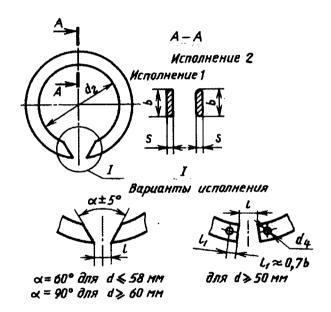
Пример обозначения кольца для d=20 мм:

28. Проточки под запорные кольца

Размеры, мм

Номинальный	Проточка	а наружная	Проточка внутренняя						
диаметр оси или проточка		d_1		d ₂	d_3	t _{Haum}			
отверстия d	Номинал Отклонение		1	Отклонение	_				
4	3,6								
5	4,6	-0,1	-	-	-	-			
6	5,6								

Продолжение табл. 28


Номинальный	Проточка	1 наружная		Проточка вну	тренняя	
диаметр оси или проточка		d_1		<i>d</i> ₂	<i>d</i> ₃	t _{наим}
отверстия <i>d</i>	Номинал	Отклонение	Номинал	Отклонение	u,	'HANM
8	7,6		8,4		9,2	1,6
10	9,6		10,4		11,2	,
12	11,4		12,6		13,5	
13	12,4	-0,1	13,6	±0,1	14,5	2,5
14	13,4		14,6		15,5	
16	15,0		17,0		18	3,0
18	17,0		19,0		20,0	·
20	18,8		21,2		22,5	
22	20,8		23,2		24,5	
25	23,8		26,2		27,5	
28	26,8		29,2	+0,2	30,5	4,0
30	28,8	}	31,2		32,5	
32	30,5		33,5		35,5	
36	34,5	-0,2	37,5		39,5	
38	36,5		39,5		41,5	
40	38,5		41,5		43,5	
42	40,5		43,5		45,5	5,0
45	43,5		46,5		48,5	
48	46,5		49,5		51,5	
50	48,5		51,5		53,5	
55	53,0		57,5		60,0	
60	58,0		62,5		65,0	
65	63,0		67,5		70,0	
70	68,0		72,5		75,0	
75	73,0	-0,3	77,5	+0,3	80,0	6,0
80	78,0		82,5		85,0	
85	83,0		87,5		90,0	
90	88,0		92,5		95,0	
95	93,0		97,5		100,0	
100	98,0		102,5		105,0	

Пружинные упорные плоские наружные кольца и Размеры,

Пружинные упорные плоские наружные концентрические и эксцентрические кольца и ка лей на валах и в узлах различных машин.

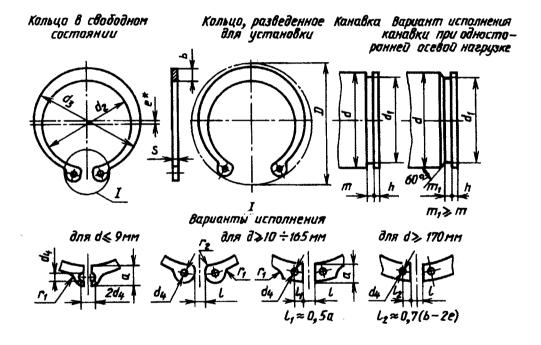
Предусматривают три класса точности колец: A, B и C (соответственно более точные, точ Кольца наружные концентрические по ГОСТ 13940-86 в зависимости от технологии изго

Наружные концентрические кольца по ГОСТ 13940-86

*	Размер	для	справок	•
---	--------	-----	---------	---

Условный диаметр	1	іцие меры		Кол	ьцо к	онцен	грическое	Кольцо					
кольца (диаметр	//•				Теоретическая								
			d ₄	S	b	! ≈	масса 1000 колец, кт≈	<i>d</i> ₃ ≈	d ₄	S	b ≈	<i>а</i> , не более	
4	3,5			0,4	0,8		0,03	4,96	1	0,4	0,9	2,2	
5	4,5	+0,075 -0,15	_	0,6		0,8	0,06	6,16		0,6	1,1	2,5	
6 .	5,4			0,7	1,2	<u></u>	0,13	7,34	1,15	0,7	1,3	2,7	

канавки для них (по ГОСТ 13940-86 и ГОСТ 13942-86)


мм

навки для них применяют для закрепления радиальных подшипников качения и других дета-

ные и менее точные).

товляют двух исполнений: 1 - штамповкой; 2 - навивкой из стальной плющеной ленты.

Наружные эксцентрические кольца по ГОСТ 13942-86

эксі	центрич	еское					Kar	навка		Допускаемая
				Теоретиче		d_1		т (поле		осевая нагрузка,
<i>l</i> ≈	г у, не более	<i>r</i> ₁ ≈	D, не менее	е (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	h, не менее	кН
		1,6	8,8	0,17	0,021	3,6		0,5		0,60
-	-		10,7	0,27	0,066	4,6	-0,075	0,7	0,6	0,75
		1,8	12,2	0,33	0,107	5,6		0,8		0,90

Условный диаметр		щие меры		Кол	ьцо к	онцент	грическое				Кольцо		
кольца (диаметр вала) d	Номи- нал	<i>d</i> ₂ Пред. откл.	d ₄	s	b	<i>l</i> ≈	Теоретическая масса 1000 колец, кг≈	<i>d</i> 3 ≈	d ₄	S	<i>b</i> ≈	<i>а</i> , не более	
7	6,4			0,8	1,2	0,8	0,17	8,54		0,8	1,4	3,1	
8	7,2	+0,09 -0,18					0,18	9,3	1,2		1,5	3,2	
9	8,2			1,0	1,7	2,0	0,38	10,6			1,7		
10	9,2	+0,15 -0,30					0,42	11,8	1,5			3,3	
11	10,2			-	-	1	-	12,8		1,0	1,8		
12	11,0					3,0	0,58	13,6					
13	11,9			1,0	2,0		0,61	14,7			2,0	3,4	
14	12,9						0,66	15,9	1,7		2,1	3,5	
15	13,8	+0,18 -0,36				4,0	0,71	17,0			2,2	3,6	
16	14,7		-				1,08	17,9				3,7	
17	15,7				2,5		1,16	19,1			2,3	3,8	
18	16,5						1,18	19,9			2,4	3,9	
19	17,5			1,2			1,40	21,1		1,2	2,5		
20	18,2					5,0	1,85	21,8	2,0		2,6	4,0	
22	20,2				3,2	,	2,02	24,2	·		2,8	4,2	
23	21,1						2,08	25,3	·		2,9	4,3	
24	22,1	+0,21 -0,42					2,18	26,3			3,0	4,4	
25	23,1				3,2	5,0	2,86	27,3			3,0	4,4	
26	24,0			1,2	4,0	6,0	2,90	28,2	2,0	1,2	3,1	4,5	
28	25,8						3,13	30,2			3,2	4,7	

Продолжение табл. 29

эксп	ентриче	ское					Kar	навка		Допускаемая
<i>l</i> ≈	<i>r</i> ₂ , не более	<i>r</i> ₁ ≈	<i>D</i> , не менее	е (справ.)	Теоретическая масса 1000 колец, кт ≈	<i>d</i> Номи- нал	Пред. откл.	т (поле допуска Н13)	<i>h</i> , не менее	осевая нагрузка, кН
			13,8	0,33	0,140	6,6		0,9	0,6	1,06
-	-	2,0	15,2	0,45	0,440	7,5	-0,09			1,52
			16,4		0,460	8,5			0,75	1,68
2,0		1,5	17,6	0,5	0,490	9,5				1,96
			18,6		0,510	10,5		1,2	0,9	2,77
			19,6]	0,520	11,3			1,1	3,39
		2,0	20,8		0,550	12,2			1,2	3,96
			22,0		0,600	13,2				4,27
			23,2	0,6	0,639	14,1	-0,11		1,4	5,13
	1,0		24,4		1,043	15,0			1,5	6,08
3,0		2,5	25,6		1,058	16,0				6,47
			26,8	0,7	1,117	16,8			1,8	8,15
			27,8		1,447	17,8		1,4		8,66
			29,0		1,665	18,6			2,1	10,6
			31,4	0,8	1,885	20,6	-0,21			11,7
			32,4		2,000	21,5			2,3	12,7
		3,0	33,8	0,9	2,004	22,5				13,7
			34,8	0,9	2,684	23,5				14,2
			36,0	1,0	2,782	24,5	-0,21	1,4	2,3	14,9
			38,4		2,892	26,5				16,0

Условный диаметр		щие шие		Кол	ьцо ко	нцент	рическое				k	Сольцо
кольца (диаметр		d_2					Теоретическая					
вала) <i>d</i>	Номи- нал	Пред. откл.	d ₄	S	b	<i>I</i> ≈	масса 1000 колец, кт≈	<i>d</i> ₃ ≈	d ₄	S	<i>b</i> ≈	<i>а</i> , не более
29	26,8						3,33	31,6	2,0		3,4	4,8
30	27,8	+0,21 -0,42		1,2	4,0		3,34	32,8		1,2	3,5	5,0
32	29,5					6,0	3,53	34,5			3,6	5,2
34	31,4						3,80	36,8			3,8	5,4
35	32,2						7,29	37,6			3,9	5,6
36	33,0	+0,25 -0,50					7,36	38,6			4,0	
37	34,0						7,71	39,8			4,1	5,7
38	35,0						7,78	40,6			4,2	5,8
40	36,5			1,7	5,0		8,11	42,5		1,7	4,4	6,0
42	38,5						8,51	44,7			4,5	6,5
45	41,5						9,14	48,1	2,5		4,7	6,7
46	42,5	+0,39 -0,78				8,0	9,26	49,3			4,8	6,8
48	44,5						9,87	51,7			5,0	6,9
50	45,8						14,40	53,0	i		5,1	6,9
52	47,8		2,0	2,0	6,0		15,00	55,2			5,2	7,0
54	49,8						15,20	57,4] }		5,3	7,0
55	50,8						15,90	58,6		2,0	5,4	7,2
. 56	51,8	+0,46 -0,92	2,0	2,0	6,0		16,00	59,8			5,5	7,3
58	53,8						16,80	61,6			5,6	
60	55,8					10,0	17,20	64,0			5,8	7,4

Продолжение табл. 29

экси	ентриче	еское					Kar	навка		Допускаемая
					Теоретическая	d	1	т (поле		осевая нагрузка,
<i>l</i> ≈	г _{а,} не более	<i>r</i> 1 ≈	<i>D</i> , не менее	е (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	h, не менее	кН
	1,0		39,6	1,0	2,992	27,5	-0,21		2,3	16,7
3,0			41,0		3,102	28,5		1,4		17,1
			43,4	1,1	3,342	30,2			2,7	22,0
	į		45,8		3,552	32,0				22,3
			47,2		6,300	33,0				26,7
			48,2	1,2	6,563	34,0			3,0	27,4
		3,0	49,2		6,763	35,0				28,2
	2,0		50,6		6,963	36,0			_	29,0
5,0			53,0		7,267	37,5	-0,25	1,9		39,0
			56,0	1,4	7,564	39,5				40,0
			59,4		8,067	42,5			3,8	42,9
			61,4		8,367	43,5				43,9
			62,8	1	8,767	45,5				45,7
			64,8		12,994	47,0				57,0
		4,0	67,0	1,5	13,494	49,0			4,5	59,4
6,0			68,0	7	13,794	51,0	-0,30			61,7
			70,4		14,294	52,0		2,2		62,9
6,0	2,0	4,0	71,6		14,594	53,0	_0,30		4,5	64,0
0,0	2,3	',"	73,6	1,7	15,094	55,0	7			66,4
			75,8		15,494	57,0				68,8

Условный диаметр		іщие меры		Кол	ъцо к	онцен	трическое				K	ольцо
кольца (диаметр вала) d	Номи- нал	d₁ Пред. откл.	d ₄	S	b	<i>l</i> ≈	Теоретическая масса 1000 колец, кт ≈	<i>d</i> ₃ ≈	d ₄	S	<i>b</i> ≈	<i>а</i> , не более
62	57,8		2,0	2,0	6,0		17,80	66,4	2,5	2,0	6,0	7,5
65	60,8	•					22,80	70,0			6,3	7,8
68	63,6						28,80	73,2			6,5	8,0
70	65,6				7,0		29,60	75,4			6,6	8,1
72	67,6	+0,46 -0,92					30,80	77,8	3,0		6,8	8,2
75	70,6		2,5	2,5			31,80	80,6		2,5	7,0	8,4
78	73,5					10,0	38,50	84,1			7,3	8,6
80	75,0				8,0		38,80	85,8			7,4	8,7
82	77,0				·		40,30	88,2			7,6	
85	79,5						41,40	91,1			7,8	,,,
88	82,5						45,80	94,5			8,0	
90	84,5						52,40	96,5			8,2	8,8
92	86,5	+0,54 -1,08	3,0	3,0	8,5	i	54,20	98,7	3,5	3,0	8,3	
95	89,5			-			55,20	102,3		-,-	8,6	9,4
98	92,5					12,0	55,80	105,9			8,9	9,5
100	94,5						56,40	108,1			9,0	9,6

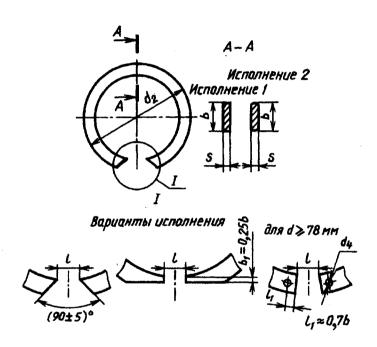
Размеры d_3 , b, l и r_1 допускается корректировать при изготовлении колец.

Допускается в изделиях, спроектированных до 01.01.88, применять кольца с размером a, Осевая нагрузка определена для условий: рабочие кромки кольца острые; углы у основания без зазора; прилегающая к кольцу поверхность закрепляемой детали без скругления или фаски; ГОСТ 13940-86 и ГОСТ 13942-86 предусматривают также диаметры валов $d = 102 \div 200$ мм.

Продолжение табл. 29

эксі	јентрич	еское					Ka	навка	-	Допускаемая
<i>!</i> ≈	<i>т</i> _д , не более	<i>r</i> 1 ≈	<i>D</i> , не менее	е (справ.)	Теоретическая масса 1000 колец, кт ≈	и Номи- нал	I ₁ Пред. откл.	т (поле допуска Н13)	<i>h</i> , не менее	осевая нагрузка, кН
			78,0		15,994	59,0		2,2		71,1
			81,6		20,445	62,0				74,7
			85,0	1,7	25,883	65,0				78,2
			87,2		26,683	67,0			4,5	80,6
			89,4		27,483	69,0		2,8		82,9
			92,8		28,614	72,0	-0,30			86,4
			96,2		31,914	75,0				90,0
6,0	2,0	4,0	98,2	2,0	34,914	76,5				107
			101,0		36,214	78,5				109
			104,0		37,114	81,5				114
			107,0		38,414	84,5				118
			109,0		47,615	86,5			5,3	121
			110,0		48,007	88,5		3,4	:	124
			115,0	2,2	49,607	91,5	-0,35			128
			120,0		50,207	94,5				132
	•		121,0		50,671	96,5				135

большим, чем задано в таблице, если это не влияет на собираемость изделия. и наружная кромка канавки без скругления или фаски; закрепляемая деталь установлена на валу предел прочности материала вала не менее 300 МПа.


30. Пружинные упорные плоские внутренние кольца и

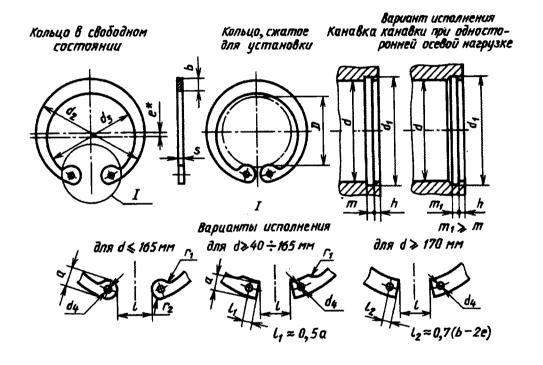
Размеры.

Пружинные упорные плоские внутренние концентрические и эксцентрические кольца деталей в корпусах и узлах различных машин.

Предусматриваются три класса точности колец: *А, В* и *С* (соответственно более точные и Кольца внутренние концентрические по ГОСТ 13941-86 в зависимости от технологии изго

Внутренние концентрические кольца по ГОСТ 13941-86

Условный диаметр		іщие меры	Кольцо концентрическое						Кольцо					
кольца (диаметр отверстия) d	Номи- нал	нал откл.		S	ь	<i>l</i> ≈	Теоретическая <i>i</i> масса 1000 ≈ колец, кг ≈		d_4	s	<i>b</i> ≈	а, не более		
8	8,8		- Tour-1	0,8	1,0	3,0	0,11	7,2	1,0	0,8	1,1	2,4		
9	9,8	+0,36	_			3,5	0,13	7,9	_,_	-,-	1,3	2,5		
10	10,8	-0,18		1,0	1,3		0,26	8,9	1,5	1,0	1,4	3,2		
11	11,8				,	4,0	0,29	9,8	,-	,-	1,5	3,3		


канавки для них (по ГОСТ 13941-86 и ГОСТ 13943-86)

мм

 $_{
m H}$ канавки для них применяют для закрепления радиальных подшипников качения и других менее точные).

говляют двух исполнений: 1 - штамповкой; 2 - навивкой из стальной плющеной ленты.

Внутренние эксцентрические кольца по ГОСТ 13943-86

экси	ентрич	еское					Kaı	Допускаемая			
		Теоретич		Теоретическая	d_1		т (поле		осевая нагрузка,		
<i>l</i> ≈	<i>г</i> ъ не более	<i>r</i> ₁ ≈	<i>D</i> , не более	е (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	h, не менее	кН	
3,0		1,2	2,8	0,3	0,14	8,5	+0,09	0,9		1,68	
3,5	1,0	-,-	3,5	0,35	0,18	9,5			0,75	1,76	
,,,,]	1,6	3,1	0,45	0,29	10,5	+0,11	1,2		1,96	
4,0			3,9	0,5	0,32	11,5				2,17	

Условный диаметр		щие меры	Кольцо концентрическое						Кольцо												
кольца (диаметр отверстия) d	Номи- нал	d ₂ Пред. откл.	d4	s	ь	<i>l</i> ≈	Теоретическая масса 1000 колец, кг≈	<i>d</i> ₃ ≈	d ₄	S	b ≈	<i>а</i> , не более									
12	13,0					4,0	0,40	10,6	1,5		1,7	3,4									
13	14,1						0,45	11,5			1,8	3,6									
14	15,1	+0,36 -0,18			1,7	4,5	0,48	12,3	·		1,9	3,7									
15	16,2	+0,42					0,53	13,2	1,7		2,0										
16	17,3		+0,42					5,0	0,57	14,3	i			3,8							
17	18,4				1,0			0,61	15,2		1,0	2,1	3,9								
18	19,6			+0,42					0,75	16,2			2,2	4,1							
19	20,6				+0,42 -0,21										0,80	17,4			2,3		
20	21,8							2,0	6,0	0,85	18,4										
21	22,8					+0,42 -0,21	+0,42 -0,21	+0,42 -0,21					0,90	19,2			2,4	4,2			
22	23,8								-0,21	-0,21	-0,21	-				0,95	20,2			2,5	
23	24,9															1,47	21,3	2,0			
24	25,9											7,0	1,52	22,1	_,•	1,2	2,6	4,4			
25	26,9							,-	1,59	23,1		-,-	2,7	4,5							
26	28,0						1,67	24,0			2,8	4,7									
28	30,2	+0,50 -0,25		1,2	2,5		1,81	26,0			2,9										
29	31,2					8,0	1,92	27,2		1,2		4,8									
30	32,2						1,97	28,0			3,0										
32	34,5		-0,25	-0,25				9,0	2,12	29,9		-,-	3,2								
34	36,5											- ,-	2,26	31,7	2,5		3,3	5,4			
35	37,8				3,2	10,0	2,88	32,8			3,4										

Продолжение табл. 30

эксцентрическое						Канавка				Допускаемая
			_		Теоретическая	d	i	<i>т</i> (поле		осевая нагрузка,
<i>l</i> ≈	<i>r</i> ₂, не более	<i>r</i> ₁ ≈	<i>D</i> , не более	е (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	h, не менее	кН
4,0		1,7	4,7		0,36	12,7			1,1	3,33
			5,3		0,40	13,8			1,2	4,11
4,5		1,8	6,0		0,43	14,8	+0,11			4,32
	1,0		7,0	0,5	0,48	15,9			1,4	5,30
5,0		1,9	7,7	ļ ļ	0,51	17,0			1,5	6,46
			8,4		0,55	18,0		1,2		6,86
		2,0	8,9		0,67	19,2			1,8	7,86
			9,8		0,72	20,2				9,20
6,0			10,6	0,6	0,76	21,4	+0,21			11,0
			11,6		0,81	22,4		1,4	2,1	11,8
		2,5	12,6		0,85	23,4				12,7
7,0			13,6	0,7	1,20	24,5				13,7
			14,2		1,31	25,5			2,3	14,5
7,0	2,0		15,0	0,8	1,42	26,5				14,7
		3,0	15,6		1,53	27,5	<u> </u>			15,5
			17,4	0,8	1,64	29,5	+0,21			17,2
8,0		3,0	18,4		1,69	30,5		i.	2,3	17,6
			19,4		1,75	31,5		1,4		18,0
9,0			20,2	0,9	1,85	33,8	+0,25		2,7	23,5
		3,5	22,2		1,97	35,8				23,5
10,0			23,2		2,50	37,0			3,0	28,2

Условный диаметр		Общие Кольцо концентрическое размеры				Кольцо																	
кольца (диаметр	d ₂						Теоретическая																
отверстия) d	Номи- нал	Пред. откл.	d ₄	3	s b		масса 1000 колец, кг≈	<i>d</i> ₃ ≈	<i>d</i> ₄	S	b ≈	<i>а</i> , не более											
36	38,8						2,98	33,8			3,5	5,4											
37	39,8	+0,50 -0,25		1,2	3,2	10,0	3,04	34,6		1,2	3,6	5,5											
38	40,8						3,16	35,4			3,7												
40	43,5					12,0	5,77	37,7			3,9	5,8											
42	45,5	+0,78					6,06	39,3			4,1	5,9											
45	48,5	-0,39 +0,92 -0,46					6,22	42,1			4,2	6,2											
46	49,5				4,0	14,0	6,44	43,1			4,3	6,3											
47	50,6				ľ		6,48	44,0			4,4	6,4											
48	51,6		+0,92 -0,46						6,65	44,8	2,5		4,5	Í									
50	54,2			_				7,03	47,2			4,6	6,5										
52	56,2			+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46								8,81	49,4			4,7	6,7		
54	58,2																	1,7			9,32	51,2	
55	59,2												9,60	51,8			5,0	6,8					
56	60,2								+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46	+0,92 -0,46					9,79	52,6	
58	62,2								16,0	9,97	54,4			5,2	6,9								
60	64,2				5,0		10,40	56,0			5,4	7,3											
62	66,2						10,75	57,8			5,5	.,.											
65	69,2				. !		11,40	60,2			5,8	7,6											
68	72,5						12,10	62,9			6,1												
70	74,5						12,34	65,1	3,0		6,2	7,8											
72	76,5						18,0	12,53	66,7			6,4	,,0										
75	79,5					,-	13,31	69,3			6,6												

Продолжение табл. 30

эксцентрическое							Kar		Допускаемая	
					Теоретическая	đ	1	т (поле		осевая нагрузка,
l ≈	<i>г</i> ₂ , не более	71 ≈	<i>D</i> , не более	<i>е</i> (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	h, не менее	кН
			24,2	2,63		38,0				29,0
10,0		3,5	25,0		2,73	39,0		1,4	3,0	29,8
			26,0	1,0	2,84	40,0				31,6
12,0		4,5	27,4		5,00	42,5	+0,25			40,4
12,0			29,2		5,40	44,5				43,0
			31,6		5,80	47,5			3,8	45,2
		į	32,2	1,1	5,90	48,5				46,0
14,0	2,0	5,0	33,2		6,10	49,5				47,2
·			34,6		6,40	50,5				48,2
			36,0		6,80	53,0				60,7
			37,6		8,00	55,0				62,9
		5,5	39,6		8,50	57,0		1,9		64,7
			40,4		8,80	58,0				66,4
			41,4		8,90	59,0	+0,30			67,5
16,0			43,2	1,3	9,10	61,0			4,5	69,6
			44,4	1 '''	9,90	63,0				72,5
			46,4		10,3	65,0				74,7
		6,0	48,8		10,9	68,0				78,2
		'	51,4		11,4	71,0				81,7
			53,4		11,8	73,0				84,2
18,0	7		55,4		12,2	75,0				86,1
10,			58,4		12,8	78,0				90,0

Условный диаметр		щие меры		Кольцо концентрическое						Колы						
кольца (диаметр отверстия) d	Номи- нал	d ₂ Пред. откл.	d ₄	s	b	<i>I</i> ≈	Теоретическая масса 1000 колец, кт ≈	<i>d</i> ₃ ≈	d ₄	s	<i>b</i> ≈	<i>а</i> , не более				
78	82,5						20,69	71,9			6,8					
80	85,5					18,0	21,33	74,5	3,0		7,0	8,5				
82	87,5						22,06	76,5								
85	90,5						22,58	79,1			7,2					
88	93,5		2,0	2,0	6,0		23,62	81,7		2,0	7,4	8,6				
90	95,5	+1,08 -0,54					24,16	83,9			7,6					
92	97,5						20,0	24,92	85,5	3,5		7,8	8,7			
95	100,5						25,55	87,9			8,1	8,8				
98	103,5						26,67	90,5			8,3	9,0				
100	105,5						26,97	92,3			8,4					
102	108,0									39,98	94,6			8,5	9,2	
105	111,0											40,88	97,2			8,7
108	114,0						}		42,67	99,8	3,5		8,9	9,5		
110	116,0				7,0	22,0	43,08	102,2			9,0	10,4				
112	118,0		2,5	2,5			44,57	104,0			9,1	10,5				
115	121,5	+1,26 -0,63					45,49	107,1		2,5	9,3	,-				
120	126,5						47,79	111,3			9,7					
125	131,5						49,79	116,3			10,0	11,0				
130	136,5						59,44	120,9	4,0		10,2	11,2				
135	141,5				8,0	24,0	60,85	125,3			10,5					
140	146,5				0,0	7,,0	63,25	129,9			10,7					
145	151,5						65,85	134,5			10,9	11,4				

Продолжение табл. 30

эксп	ентрич	еское					Каз	навка		Допускаемая
					Теоретическая	đ	1	т (поле		осевая нагрузка,
<i>I</i> ≈	та, не более	<i>r</i> ₁ ≈	<i>D</i> , не более	е (справ.)	масса 1000 колец, кг≈	Номи- нал	Пред. откл.	допуска Н13)	<i>h</i> , не менее	кН
			60,0		18,6	81,0			4,5	93,5
18,0		6,5	62,0		19,2	83,5				112
			64,0	1,5	19,6	85,5				115
			66,8		20,4	88,5				119
:		7,0	69,8		20,8	91,5	+0,35	2,2		123
			71,8		21,8	93,5			5,3	126
20,0			73,6		22,3	95,5			_	129
			76,4	1,8	23,1	98,5				133
			79,0		23,8	101,5		į		137
		7,5	81,0		24,3	103,5				139
	2,0		82,6		34,4	106,0				163
			85,6	1,8	36,8	109,0				168
			88,0		38,0	112,0	+0,54			173
22,0			88,2		38,8	114,0				176
			90,0	2,1	39,2	116,0				179
		8,5	93,0		40,9	119,0		2,8	6,0	183
			97,0		43,0	124,0				191
			102,0		44,8	129,0				197
	,0		107,0		53,5	134,0	+0,63			207
24,0			112,0	2,4	54,8	139,0				214
		10,0	117,0		57,0	144,0				222
			122,0		69,3	149,0				230

Условный диаметр		іщие меры		Кол	ьцо к	онцент	грическое		•		ŀ	Сольцо
кольца (диаметр		d _k					Теоретическая					
отверстия) d	Номи- нал	Пред. откл.	d ₄	s	b	<i>!</i> ≈	масса 1000 колец, кт≈	<i>d</i> ₃ ≈	d ₄	s	<i>b</i> ≈	<i>а</i> , не более
150	157,5						80,72	140,5			11,2	12,0
155	162,5						83,63	145,1	4,0		11,4	ŕ
160	167,5	+1,26 -0,63			8,5		86,72	149,7			11,6	13,0
165	172,5		3,0		9,5	28,0	89,72	152,5			11,8	,
170	177,5						92,47	156,7			12,2	
175	182,5						114,00	161,3			12,7	
180	188,0						117,20	165,8			13,2	
185	193,0		-	3,0	-	-	<u>.</u>	169,8			13,7	
190	198,0		3,0		9,5	28,0	124,20	174,6		3,0	13,8	
195	203,0		9,5		-	-	-	179,6				
200	208,0	+1,44 -0,72	3,0		9,5		130,11	184,2	3,0			-
210	218,0					30,0	151,01	194,2				
215	224,0						156,51	200,2				
220	229,0		3,5		10,5		159,10	205,2			14,0	
225	234,0		3,5		,	32,0	163,90	210,2				
230	239,0			}		,	167,80	215,2				
240	249,0					176,50	225,2					

Размеры d_3 , b, l и r_1 допускается корректировать при изготовлении колец.

Допускается в изделиях, спроектированных до 01.01.88, применять кольца с размером a, Осевая нагрузка определена для условий: рабочие кромки кольца острые; углы у основания верстии без зазора; прилегающая к кольцу поверхность закрепляемой детали без скругления ГОСТ 13941-86 и ГОСТ 13943-86 предусматривают также диаметр отверстия d = 250 + 320 мм.

Продолжение табл. 30

эксі	ентрич	еское					Kai	Іавка		Допускаемая
					Теоретическая	d	1	т (поле		осевая нагрузка,
<i>l</i> ≈	гъ не более	<i>r</i> ₁ ≈	<i>D</i> , не более	е (справ.)	масса 1000 колец, кт≈	Номи- нал	Пред. откл.	допуска Н13)	<i>h</i> , не менее	кН
			125,0		77,4	155,0				298
	3,0	10,0	130,0	2,7	80,0	160,0		<u> </u>		309
			133,0		82,8	165,0	+0,63	<u>.</u> !		319
			138,0	1,8	85,4	170,0	1 ",""			328
28,0			145,0		88,0	175,0				338
			149,0		105,4	180,0			7,5	348
			153,0	┧	108,6	185,0	0			358
			157,0		112,0	190,0		3,4		368
			162,0		115,4	195,0				377
	1		167,0		118,6	200,0				385
30,0	-	-	171,0	2,1	121,8	205,0				394
			181,0	7	140,8	215,0	+0,72			416
			186,0	1	145,6	221,0				512
	1		191,0		148,1	226,0				523
32,0	,0		196,0		152,1	231,0			9,0	535
152,			201,0		156,1	236,0				548
			211,0		164,2	246,0				569

большим, чем задано в таблице, если это не влияет на собираемость изделия. и наружная кромка канавки без скругления или фаски; закрепляемая деталь установлена в отили фаски; предел прочности материала отверстия не менее 300 МПа.

31. Допуски размеров, формы и расположения поверхностей колец

Наименование размера или допуска	ГОСТ степен ГОСТ	допуско 25347-8 и точнос 24643-8	2 или ти по 1 для
	A	В	С
Толщина	hll	h12	h13
Допуск плоскостности	11	12	13
Допуск перпендикулярности цилиндрической поверхности рабочего диаметра к опорной боковой поверхности кольца при толщине: $s \le 1 \\ 1 < s \le 2 \\ s > 2$	10 12 14	1 1 1	3

Пример условного обозначения пружинного упорного плоского наружного концентрического кольца исполнения класса точности А с условным диаметром 30 мм из стали 65Г без покрытия:

Кольцо АЗО ГОСТ 13940-86.

То же, исполнения 2, класса точности В, из стали марки 60C2A, с кадмиевым покрытием толщиной 6 мкм, хроматированным:

Кольцо 2В30.60С2А.Кд6.хр ГОСТ 13940-86.

Пример условного обозначения пружинного упорного плоского внутреннего кольца исполнения 1, класса точности А, с условным диаметром 30 мм, из стали марки 65Г, без покрытия:

Кольцо АЗО ГОСТ 13941-86.

То же, исполнения 2, класса точности В, из стали марки 60С2А, с кадмиевым покрытием толщиной 6 мкм, хроматированным:

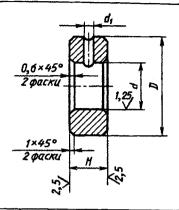
Кольцо 2B30.60C2A.Кд6. хр ГОСТ 13941-86.

Технические требования к плоским упорным пружинным кольцам и канавкам для них. Кольца должны изготовляться из рессорно-пружинной стали марки 65Г по ГОСТ 14959-79.

Сортамент стали - холоднокатаная лента по ГОСТ 2283-79 или плющеная лента по ГОСТ 10234-77.

Допускается применять для изготовления колец другие марки пружинных сталей и другой сортамент.

Для концентрических колец классов точности В и С из плющеной ленты допускается развод концов от плоскостности на величину не более толщины кольца, который устраняется под нагрузкой 20H.


Допуск параплельности боковых опорных поверхностей равен половине допуска толщины кольца.

Предельные отклонения размеров до $1\,$ мм назначаются такие же, как и для размеров от $1\,$ до $3\,$ мм.

Шероховатость поверхности колец и канавок должна соответствовать значениям *Ra*, указанным ниже.

Наименование поверхности	Пара шерохог <i>Ra</i> , мк классов т	ватости м, для
	A	B, C
Боковая опорная поверхность кольца	0,8	3,2
Цилиндрическая поверхность рабочего диаметра кольца	1,6	6,3
Остальные поверхности кольца	6,3	12,5
Боковая поверхность канавки	3,	2
Цилиндрическая и ко- ническая поверхность	6,	.3

32. Установочные кольца со штифтовым креплением (по ГОСТ 3130-77) Размеры, мм

Допускается изготовление колец без фасок на одной из торцовых поверхностей, являющейся опорной, и на внутренней цилиндрической поверхности.

đ	D	H	d_1	Штифт конический по ГОСТ 3129-70*	Мас- са, кг	d	D	Н	d_1	Штифт конический по ГОСТ 3129-70*	Мас-
8	20		i	3 × 20	0,018	50	80	18		8 × 80	0,427
10	22	9	3	3 × 25	0,021	56	85	20	8	8 × 90	0,502
12	25			3 × 25	0,027	60	90	20		8 × 90	0,548
14	29			4 × 30	0,035	63	95	20		10 × 100	0,599
15	30	1		4 × 30	0,041	71	100	22		20 11 200	0,670
16	30	10	4	4 × 30	0,039	75	110		10	10 × 110	0,907
18	34			4 × 36	0,050	80	110	22		10 × 110	0,793
20	36			4 × 36	0,054	85	120			10 × 120	1,007
22	38			5 × 40	0,073	90	120			10 × 120	0,878
25	42	12	5	5 × 45	0,083	95	120				0,847
28	45			5 × 45	0,090	100	140	25	10	10 × 140	1,527
30	48	11		6 × 50	0,119	105	140				1,364
32	52	14		6 × 55	0,143	110	150			12 × 160	1,903
36	55	16	6	6 × 55	0,168	120	160	30	12		2,051
40	60	16		6 × 60	0,195	125	170			12 × 180	2,429
45	70	18		6 × 70	0,316	130					2,185

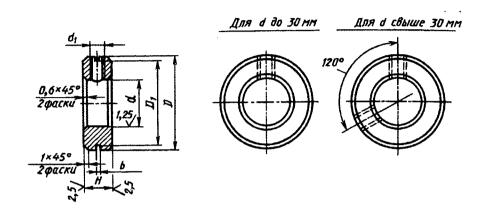
^{*} Длина штифтов - справочная.

ГОСТ приводит нерекомендуемые размеры колец.

Пример обозначения установочного кольца диаметром $d=30\,$ мм из стали 20, с покрытием 06 толщиной 6 мкм:

Кольцо 30.20.066 ГОСТ 3130-77.

Материал для изготовления колец - сталь марок 20, 35, 45. Допускается применять материалы других марок.


Виды покрытий, их условные обозначения и толпдины - по ГОСТ 1759.0-87. Допускается применять другие виды покрытий - по ГОСТ 9.306-85.

Торцовое биение - не более половины допуска, установленного на размер d.

Предельные отклонения размеров: D - по h11; d - по H7; H - по h14; d_1 - по H11.

Допускается по согласованию с потребителем устанавливать предельные отклонения на внутренний диаметр d по H9.

33. Установочные кольца с винтовым креплением (по ГОСТ 2832-77)

đ	D	Н	d_1	Винт по ГОСТ 1476-84	Масса 1 шт., кт	d	D	H	d_1	Винт по ГОСТ 1476-84	Масса 1 шт., кг
8	20				0,020	60	85				0,431
10	22	10	M5	M5 × 8	0,023	63	90	20	M10	$M10 \times 16$	0,437
12	25				0,029	71	95				0,490
14	28				0,042	75	105			M12 × 20	0,640
15	30				0,048	80	110	22		M12 × 20	0,747
16	30	12	М6	M 6 × 10	0,046	85	110			M12 × 16	0,646
18	34				0,059	90	120			M12 × 20	0,945
20	36				0,064	95	125	25		M12 × 20	1,000
22	39				0,068	100	130			M12 × 20	1,048
25	42	14			0,093	105	130		M12	M12 × 16	0,880
28	45				0,102	110	150				1,850
30	48		M8	M8 × 12	0,132	120	160				2,000
32	52	16			0,160	125	170			M12 × 25	2,385
36	55				0,160	130	170	30			2,146
40	60				0,187	140	180				2,300
45	70				0,321						
50	75	18	M10	M10 × 16	0,330	150	200			M12 × 30	3,160
56	80		<u> </u>		0,373				<u> </u>		

Продолжение табл. 33

ГОСТ предусматривает $d = 160 \dots 200$ им и нерекомендуемые размеры.

Пример обозначения установочного кольца диаметром d=30 мм из стали 20, с покрытием 06 толщиной 6 мкм:

Кольцо 30.20.066 ГОСТ 2832-77.

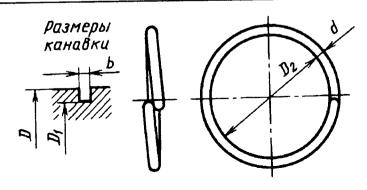
Установочные кольца должны быть изготовлены из стали марок 20, 35, 45 по ГОСТ 1050-88. По требованию потребителя допускается применять материалы других марок.

Виды покрытий, их условные обозначения и толщины - по ГОСТ 1759.0-87. Допускается применять другие виды покрытий - по ГОСТ 9.306-85.

Резьба - по ГОСТ 24705-81, поле допуска резьбы 6Н - по ГОСТ 16093-81.

Ториовое биение не должно быть более половины допуска, установленного на размер d.

Предельные отклонения размеров: d - по H7; D и H - по h14. Допускается по согласованию с потребителем устанавливать предельные отклонения на внугренний диаметр d по H9.


Установочные кольца диаметром d=140 мм и более в целях предохранения установочных винтов от вывинчивания должны быть обвязаны проволокой вместо установки пружинных колец. Узел проволоки закладывают в специально просверленное отверстие диаметром, равным трем диаметрам проволо-

ки, и глубиной не менее половины толщины кольиз.

Пружинное кольцо и размеры канавки под пружинное кольцо D_1 и b - по ГОСТ 2833-77.

По требованию потребителя допускается изготовлять установочные кольца без канавки под пружинное кольцо.

Пружинные кольца для стопорения винтов и канавки для них (ГОСТ 2833-77 в ред. 1990 г.)

Продолжение табл. 34

Диаметр детали D *	Кана	івка	Пр жин кол	ное	Длина заготовки	Масса 1000 шт., кт	Диаметр детали D*	Кан	авка	Пр жин кол	ное	Длина заготовки	Масса 1000 шт., кт
Др	D_{l}	b	<i>D</i> ₂	đ	331	1000	ды	D_{i}	b	D_2	đ	331	0001
20	16,5		15		52	0,157	63	57		55		180	1,598
21	17,5		16		55	0,166	65	59		55		184	1,634
22	18,5		17		58	0,175	70	64		60		200	1,776
24	20,5		19		64	0,193	75	69		65		215	1,909
25	21,5		20		68	0,205			1,6		1,2		
26	22,5	1,0	21	0,7	71	0,214	80	74		70		230	2,042
28	24		22		75	0,227	85	79		75		248	2,202
30	26		24		81	0,245	90	84		80		263	2,335
32	28		26		88	0,266	95	89		85		278	2,469
34	30		28		93	0,281	100	94		90		294	2,611
36	32		30		100	0,302							
38	34		32		106	0,320	105	98		95		310	6,181
40	35		32		110	0,679	110	103		100		325	6,481
42	37		34		115	0,710	120	113	<u> </u>	110		356	7,099
45	40		38		126	0,777	125	118		110		368	7,338
48	43	1,2	40	1,0	134	0,827	130	123	2,0	120	1,8	388	7,737
50	45		40		140	0,864	140	133		130		418	8,335
52	47		42		145	0,895	150	143		140		450	8,973
55	49		45		154	0,968	160	153		150		481	9,591
60	54		50		168	1,495	170	163		160		514	10,249

^{*} Условный диаметр кольца.

Пример обозначения пружинного кольца условным диаметром D=50 мм из проволоки класса II, с покрытием 01 толщиной 3 мкм:

Кольцо 50 II 01 3 ГОСТ 2833-77.

Кольца должны изготовляться из стальной углеродистой пружинной проволоки классов II, IIA и III по ГОСТ 9389-75.

Предельные отклонения размеров: D_1 и длины заготовки - по h14; b и D_2 - по H14; d - по ГОСТ 9389-75.

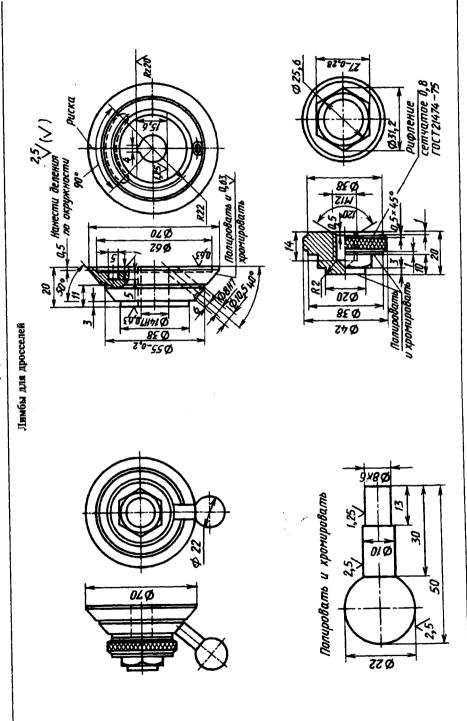
Виды покрытий, их условные обозначения и толщины - по ГОСТ 1759.0-87. Допускается применять другие виды покрытий - по ГОСТ 9.306-85.

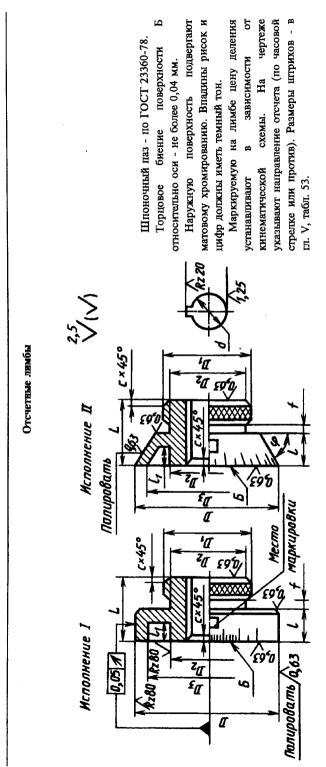
ДЕЛИТЕЛЬНЫЕ КОЛЬЦА, ЛИМБЫ И НОНИУСЫ

35. Кольца делительные, устанавливаемые на начало отсчета

Маркируемую на лимбе цену деления устанавливают в зависимости от кинематической схемы и указывают при заказе.

Диаметр кольца <i>D</i>	32 32; 40 50
d H7	8 10; 12 14; 16
Число делений по окруж- ности	50
S	1,0
p	∞
v	2 1,0 8 1,0
f	2
£1 £2 £3 £4	9
63	16
62	3,5 8,5 16
61	3,5
e-0,1	17
Длина заготовки пружины L_1	27
T	20
D ₅	16
D ₃ D ₄ D ₅	18 22
D³	1
70	20 27
D ₁ H7/h6	25
ď	30
D h7	32


Продолжение табл. 35


Диаметр кольца <i>D</i>	50; 65	65	65; 80	80	80; 100; 125; 160; 200	100; 125; 160; 200	160; 200
d H7	18	20	22	25	28	32; 35	40
Число делений по окруж- ности	50; 100		50; 100	100; 200	100; 200	100;200; 300	200; 300; 400
∾		1,0				1,5	
P	∞	10	10	12	12	41	14
v	1,0	1,5	1,5	2,0	2,0	3,0	3,0
7		7	!		2	m	3
£4	11	12	13	41	41	16	16
l3	18	70	22	25	25	30	30
62	8,5	10,5	10,5	12,0	12,5	14,5	14,5
ℓ_1	3,5	4,0	4,0	5,0 12,0	5,0	7,0 14,5	7,0 14,5
$\ell_{-0,3}^{-0,1}$	19	02	22	25	25	30	30
Длина заготовки пружины L_1	40		62		61	701	157
7	24	26	28	32	32	38	38
D _S	24		38		ε	70	100
D_4	28	34	04	50	20	59	65
B	'		1	65	08	100	130
Ŋ	34	44	57	72	92	112	148
<i>D</i> ₁ H7/ħ6	9	20	65	80	100	125	160
8	84	99	75	8	110	135	170
D P	20	99	08	100	125	160	200

Наружную поверхность поцвергают матовому хромированию. Впадины рисок и цифр должны иметь темный тон. Шпоночный паз - по ГОСТ 23360-78.

Размеры штрихов - см. гл. V, табл. 53.

36. Лимбы Размеры, мм

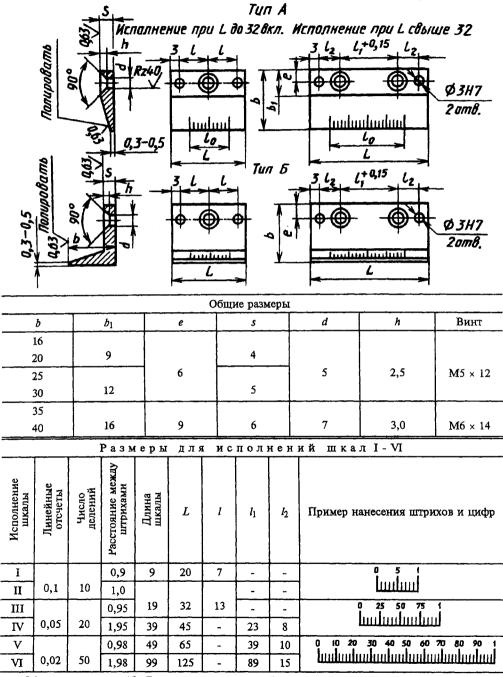
Диаметр лимба	i			25; 32		
а (откло- нения	по Н7)			8		
		ı	ŧ	60 72		
кности эний	угловых	ı	09	09		
Число делений по окружности при отсчете перемещений			36			
ний по юте пер	XIX		ı			
по деле	линейных					
Чис	Ιſ		20			
ф, гра-	дусы		09			
Ü			1,0			
ð			7			
1		-	4	5		
~		∞	6	10		
T		16	18	20		
D_3				-	26	32
D	D		18	22		
D_1		16	20	25		
D (откло- нения	по f7)	25	32	40		

Продолжение табл. 36

Диаметр лимба	р			32; 40	40	40; 50	50	50; 65	65	65; 80	80	80; 100; 125;	160; 200	100; 125;	160; 200	160; 200				
d (откло- нения	по Н7)			10		14		18						32; 35		40				
при		72	ŧ		,					180		180					360	970	200	
кности	угловых	09	72		7.2					72		72					180		ı	
окрух	(36	09		09					09		09					72	9	78 180	
Число делений по окружности при отсчете перемещений	ıX		ı							•		1					300	Ş	904	
ю деле отсч	линейных		100								200						200	Ş	99	
Чис	EF.		50							100		100					100	5	007	
φ, rpa-	дусы	09	45		45		,								45					
J			1,5							•	1,5	•					,	2,0		
٠,			ю							ю		ю					4	,	4	
4		9	7		∞	•				10		10	-,				12	ç	17	
1		11	12		14					16		16					70	ę	25	
T		22	25		28					32		32					9	,	04	
D ₃		42	52		65					85		110					145		180	
D_2		27	32		42					20	·	20					09	;	6	
D_1		30	35		45					55		55					65		75	
D (откло- нения	по ГЛ)	20	65		08					100		125					160		200	

Материал - сталь 45. Долускается использование стали других марок с механическими свойствами не ниже, чем у стали 45.

7. Нониусы угловые с отсчетом 5' и 2'

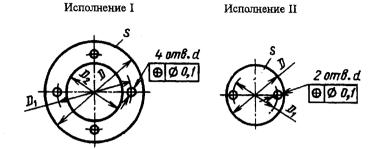

	Примеры нанесения итриков и цифр		Тип I Исполнение 1	Тип II Исполнение <i>I</i> и и и и зо оо зо оо шишии и и и и и и и и и и и и и и и	Тип III Исполнение
	<i>l</i> 0 по хорде		0,1917R	0,3816R	0,5008 <i>R</i>
	Угол шкалы Ф		11	12	29
3	Число делений для исполь- зования шкалы	п	24	24	30
	Чи дели д исп 30ви	I	12	12	15
OTCHETOR	Vino- Bbie otcye-		5,	.5	2.
CHOBBLE C	Тип	_	I	п	Ħ
3/. MOHNYCLA YEJOBEAC COTCYCOM 3 M A			Kenamenue npu L do 32 ken. Henomenue npu L chuwe 32 L S L S L S C S S S S S S S S S S S	12 43 45 16 16 16 16 16 16 16 16 16 16 16 16 16	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Продолжение табл. 37

Xopia L l l1 h2 Xop- K Xopia 7,668 20 7 - 1,008 19,08 12,077 20 7 - 1,008 24,04 15,336 3 1 - 1,008 24,04 19,170 3 13 - - 1,00 38,16 23,004 35 13 - - 1,20 45,792 30,672 2 2 2,56 61,056 38,340 45 - 2 2,56 61,056 47,425 2 39 10 5,04 120,204 76,680 90 - 60 12 6,4 152,64 98,850 125 8 15,08 190,80		ı - L	Общ	Общие размеры, мм	азмег	phi, y	8								Разм	Размеры нониуса, мм, со шкалой	иуса,	MM, 6	O IIIK	той						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Винт			П						П			-			Ш			
6 6 2,5 M5x12 1,60 19,170 20 7 - 1,008 24,04 1,008 12,077 20 7 - 1,008 24,04 1,28 15,336 32 13 - 1,28 30,528 5 2,5 M5x12 1,60 19,170 32 13 13 - 1,92 45,792 2,56 30,672 3 8 3,16 3,2 38,340 45 - 23 8 3,2 16,356 5 4,0 47,425 5 6 9 6,385 65 - 39 10 5,04 120,204 8,0 98,850 125 - 89 15 8,4 190,80	p p_1	p_1		0	5	p	h	TOCT 17475- 80	Хор- да К	Хорда 10	L	1	4	4	Хор- да К		T	1	4	4	Хор- да <i>К</i>	Хорда <i>l</i> 0	T	1	η	4
6 6 2,5 M5x12 1,60 19,103									0,64	7,668					0,64	15,264					0,672	20,032				
6 6 2,5 M5x12 1,60 19,170 20 7 - 1,008 24,04 5 1,28 15,336 32 13 - 1,60 38,16 5 2,5 M5x12 1,60 19,170 32 13 - 1,92 45,792 2,56 30,672 2,004 45 - 23 8 3,20 3,2 38,340 45 - 23 8 3,20 4,0 47,425 5 - 39 10 5,04 120,204 9 6 7 3,0 M6x14 6,4 76,680 90 - 60 12 6,4 152,64 8,0 98,850 125 - 89 15 8,4 190,80									08'0	9,585					0,80	19,08	32	13	ı	1	0,84	25,04	32	13		ı
6 2.5 M5x12 1,60 19,170 13.0 1,00 19,170 2,004 2.5 M5x12 1,60 19,170 2,004 2.5 M5x12 1,50 19,170 2,004 2.5 M5x12 1,50 19,170 2,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1	70		6		4				1,008	12,077	20	7	1	1	1,008						1,058	31,55				
6 2,5 M5×12 1,60 19,170 32 13 - 1,92 45,792 23,004 25 23,004 35 13 - 1,92 45,792 25,56 30,672 45 - 2,38 8 3,2 13 5,58 10,565 10,									1,28	15,336	-				1,28	30,528					1,344	40,064				
5 1,92 23,004 32 13 - 1,92 45,792 2,56 30,672 45 - 23 8 61,056 3,2 38,340 45 - 23 8 3,2 76,32 4,0 47,425 65 - 39 10 5,04 120,204 5,04 60,385 65 - 39 10 5,04 120,204 8,0 98,850 125 - 89 15 8,4 190,80				9		9	2,5	M5x12	1,60	19,170					1,60	38,16	45	ı	23	80	1,68	50,08	45	1	23	∞
5 7 3,0 M6×14 6,4 76,680 12 6 15 6 15 6 15 6 15 6 15 6 15 6 1 15	25										32	13	ı	1	1,92	45,792					2,016	60,096	65	1	39	10
3,2 38,340 45 - 23 8 3,2 76,32 4,0 47,425 65 - 39 10 5,04 120,204 5,04 60,385 65 - 39 10 5,04 120,204 6,4 76,680 90 - 60 12 6,4 152,64 8,0 98,850 125 - 89 15 8,4 190,80			12		2				2,56	30,672					2,56	61,056		ι	39	10	2,688	80,128	96	1	09	12
9 6 7 3,0 M6×14 6,4 76,680 90 - 60 12 6,4 120,204 8,0 98,850 125 - 89 15 8,4 190,80	30								3,2	38,340	45	ı	23	∞	3,2	76,32	96	-	09	12	3,36	100,16	125	1	89	15
9 6 7 3,0 M6×14 6,4 76,680 90 - 60 12 6,4 120,204 8,0 98,850 125 - 89 15 8,4 190,80										47,425					4,0	95,4			-		4,2	125,20				
9 6 7 3,0 M6×14 6,4 76,680 90 - 60 12 6,4 152,64 8,0 98,850 125 - 89 15 8,4 190,80	35									60,385	65	ł	39	10	5,04	120,204	125	1	89	15	5,292	157,752	160	ı	114	07
98,850 125 - 89 15 8,4 190,80			16	0	9	7		M6×14	6,4	76,680	90	ı	09	12	6,4	152,64	160	-	114		6,72	200,32	210	ı	164	
	40								8,0	98,850	125	1	89	15	8,4	190,80	210	-	164	20	1	1	,	-	ı	ı

Материал - сталь 45. Все кромки, кроме рабочих, притупить. Хромирование матовое. Впадины рисок и цифр должны иметь темный тон. Размеры штриков - см. гл. V, табл. 53.

38. Ноннусы линейные с отсчетом 0,1; 0,05 и 0,02 мм Размеры, мм



Материал - сталь 45. Все кромки, кроме рабочих, притупить. Хромирование матовое. Впадины рисок и цифр должны иметь темный тон. Размеры штрихов - см. гл. V, табл. 53.

ТАБЛИЧКИ ДЛЯ МАШИН И ПРИБОРОВ

39. Круглые таблички (по ГОСТ 12970-67)

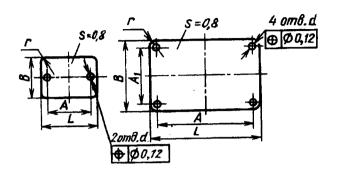
Размеры, мм

Смещение осей отверстий d от номинального расположения не более 0,1 мм.

Таблички изготовляют из тонколистовой холоднокатаной стали по ГОСТ 19904-90, тонколистового алюминиевого сплава по ГОСТ 21631-76, декоративного бумажно-слоистого пластика по ГОСТ 9590-76 и других конструкционных материалов.

Параметр шероховатости лицевой поверхности табличек не более Ra=2 мкм по ГОСТ 2789-73.

D (отклонение	D_1	D_2	S	<i>d</i> (отклонение	Число	Масса 1000 табличе	
по h14)	•	2		по Н14)	отверстий	Исполнение I	Исполнение II
16	10					1,21	
20	14	-	!		2	1,92	-
25	18					3,03	
32	25		0,8	2,4		5,00	
40	32	20			4	7,79	5,82
50	40	25				12,23	9,15
63	53	32	0,8	2,4		17,65	12,60
80	71	40	ŕ		ļ	31,46	23,57
100	90	50	0,8		4	49,07	36,75
125	115	63	1,0			96,00	73,82
160	150	80	1,0	3,4		157,5	118,0
200	190	100	1,0			246,2	184,2
250	240	125	1,5			571,3	432,9


Размеры s приведены для табличек из стали. Для табличек из других материалов размеры sустанавливаются по согласованию с заказчиком.

Пример обозначения круглой таблички D = 16 мм:

Табличка 16 ГОСТ 12970-67.

40. Прямоугольные таблички (ГОСТ 12971-67)

Размеры, мм

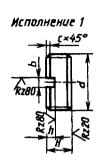
ГОСТ 12971-67 предусматривает $L=16 \dots 500$ мм; $B=6 \dots 140$ мм; толщину 1,0 и 1,5 мм.

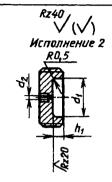
Допускается изготовление табличек без радиуса закругления r.

L (отклонение по h14)	В (отклонение по h14)	A	A_1	r	d (отклонение по H14)	Число отверстий	Масса 1000 стальных табличек, кт
25	10 12 16	18	-	2,4		2	1,52 1,84 2,46
50	20 25 32	40	- - 22	2,5 2,5 5		2 2 4	6,23 7,80 9,95
63	20 25 32 40 50	53	- 22 30 40	2,5 2,5 5 5 5	2,4	2 2 4 4 4	7,49 9,37 11,96 14,98 18,75
80	32 40 50 63	71	22 30 40 53	5		4	15,98 20,00 25,03 30,05
100	32 40 50 63 80	90	22 30 40 53 71				20,00 25,03 31,31 37,59 50,01
125	40 50 63 80	115	30 40 53 71	5	3,4	4	31,31 39,16 47,01 62,57
160	50 63 80	150	40 53 71				50,15 60,19 100,25
200	63 80 100 125	190	53 71 90 115				75,27 100,25 156,7 196,0

Пример обозначения прямоугольной таблички L=50 мм, B=20 мм: Tабличка 50×20 ГОСТ 12971-67.

ПРОБКИ И ЗАГЛУШКИ


41. Пробки резьбовые (по ГОСТ 12202-66)


Размеры, мм

Неуказанные предельные отклонения размеров: H14, h14, $\pm t_2$ /2.

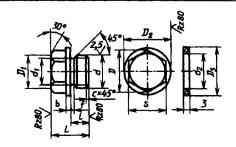
Поле допуска резьбы 6g - по ГОСТ 16093-81.

Размеры фасок для резьбы - по ГОСТ 10549-80.

Обозначен	ие пробок		<i>d</i> ₁ (поле						Maco	га, кг
Исполне- ние 1	Исполне- ние 2	đ	допус- ка H13)	d_2	Ħ	h	<i>h</i> ₁	ь	Исполне- ние 1	Исполне- ние 2
7009-0223	_	M8×1	~	-	6	1,5	-	1,2	0,0022	-
0225	7009-0226	M10×1	5	1,6	6	2	2	1,6	0,0037	0,0034
0227	0228	M12×1,25	7	1,6	8	2,5	3	2	0,0065	0,0054
0229	0230	M14×1,5	8	2,5	10	3	4	2,5	0,0120	0,0100
0231	0232	M16×1,5	10	2,5	10	3	4	2,5	0,0130	0,0120
0233	0234	M18×1,5	12	2,5	10	3	4	2,5	0,0199	0,0159
0235			14	2,5	10	3	4	2,5	0,0250	0,0200
0237	0238	M22×1,5	16	2,5	10	3,5	4	3	0,0290	0,0230
0239	0240	M24×1,5	18	2,5	10	3,5	4	3	0,0345	0,0265
0241	0242	M27×1,5	21	2,5	10	3,5	4	3	0,0440	0,0330
7009~0243	7009~0244	M30×1,5	24	2,5	10	3,5	4	3	0,0540	0,0400

ГОСТ 12202-66 предусматривает $d = M6 \times 0.75$ и $d = M33 \dots M48$.

Материал - сталь 45. Твердость 32 ... 37 HRC₃.


Покрытие - Хим. Окс. прм по ГОСТ 9.306-85.

Пример обозначения резьбовой пробки исполнения 1, $d = M10 \times 1$:

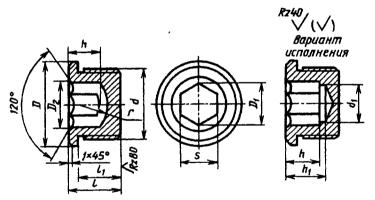
Пробка 7009 - 0225 ГОСТ 12202-66.

42. Пробки с прокладками

Размеры, мм

Поле допуска резьбы 8g - по ГОСТ 16093-81.

Продолжение табл. 42

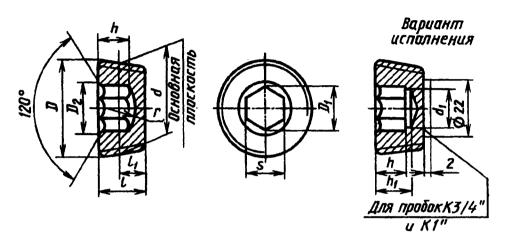

đ	l	L	b	f	с	D	D_{I}	D ₂	s	d_1	D ₃	<i>d</i> ₂	Масса пробки, кг
M10×1 M12×1,25 M16×1,5 M20×1,5 M24×1,5 M30×1,5 M36×1,5	10 12 13 13 13 15 17	18 22 24 25 28 32 36	2 3 3 4 4 4 4	2 2,5 2,5 2,5 2,5 2,5 2,5 2,5	1,0 1,5 1,5 1,5 1,5 1,5 1,5	16,2 19,6 21,9 25,4 31,2 36,9 41,6	13 16 18 21 26 30 34	18 20 25 30 34 40 45	14 17 19 22 27 32 36	8,5 10,2 13,8 17,8 21,8 27,8 33,8	20 22 28 32 36 42 48	10 12 16 20 24 30 36	0,017 0,028 0,045 0,069 0,078 0,168 0,238

Материал пробки - сталь Ст3. Оксидировать. Материал прокладки - паронит.

43. Цилиндрические пробки с внугренним шестигранником

Пробки предназначены для герметичного закрытия каналов в гидросхемах и системах смазки.

Размеры, мм


Резьба метрическая по ГОСТ 24705-81 с полем допуска 8g по ГОСТ 16093-81

						s						Macca
Резьба <i>d</i>	<i>d</i> ₁	D	D_1	<i>D</i> ₂	Номи- нал	Откло- нение	I	l ₁	h	h_1	r	100 шт., кг
M10×1	5	14	5,8	6,1	5	+0,12	12	9	3,5	4	4,0	0,8
M12×1,25	6	17	6,9	7,2	6	+0,04	14	10	4	5	4,75	1,3
M16×1,5	8	22	9,2	9,7	8	+0,15	16	12	5	6	6,5	2,6
M20×1,5	10	26	11,5	12,0	10	+0,05	18	14	7	8	8,5	4,3
M24×1,5	14	30	16,2	16,7	14	+0,18	20	16	11	13	11,0	5,3
M27×1,5	17	34	19,6	20,4	17	+0,06	22	18	15	16	13,0	8,1
M33×1,5	19	40	21,9	22,7	19	+0,21	25	20	16	18	15,0	13,8
M42×1,5	24	50	27,7	28,5	24	+0,07	32	25	20	23	18,5	28,4

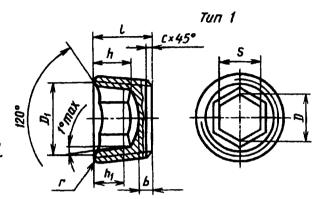
44. Конические пробки с внутренним шестигранником

Пробки предназначены для герметичного закрытия каналов в гидросистемах и смазочных системах.

Размеры, мм

Резьба - по ГОСТ 6111-52

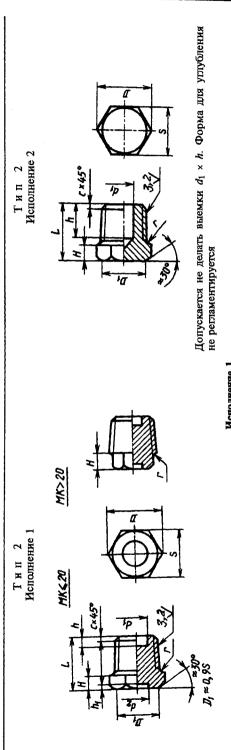
Резь- ба, дюй- мы	Наруж- ный диаметр резьбы d	d ₁	D	<i>D</i> ₁	<i>D</i> ₂	Номи- нал	S Откло- нение	1	l ₁	h	hi	r	Macca 100 urr., . kr
1/8	10,272	5	10,42	5,8	6,1	5	+0,12	7,0	4,572	3,5	4	4,00	0,3
1/4	13,572	6	13,84	6,9	7,2	6	+0,04	9,5	5,080	4	5	4,75	0,7
3/8	17,055	8	17,32	9,2	9,7	8	+0,15	10,5	6,096	5	6	6,5	1,7
1/2	21,223	10	21,54	11,5	12,0	10	+0,05	13,5	8,128	7	8	8,5	3,0
3/4	26,568	12	26,89	13,8	14,3	12	+0,18	14,0	8,611	9	10	9,5	5,2
1	33,228	14	33,67	16,2	16,7	14	+0,06	17,5	10,160	11	13	11	11,6
1 1/4	41,985	17	42,42	19,6	20,4	17		18,0	10,668	13	15	13	16,0


Технические требования на цилиндрические и конические пробки - табл. 43 и 44.

Материал - сталь марок 10кп, 35 по ГОСТ 1050-88.

Покрытие - Хим. Окс. прм (по ГОСТ 9.306-85).

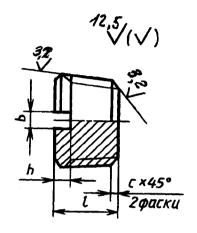
45. Конические резьбовые пробки с шестигранным углублением


Размеры, мм

Форма дна не регламентируется. Допускается вместо закругления радиусом r делать фаску $c \times 45$ $^{\circ}$

ламетр 10 9-82	<i>P</i>		S	D,	Диа- метр		ина бки	Углуб- ление	Вы-	c	r	b	Macca
Наружный диаметр резьбы по ГОСТ 25229-82	Шаг резьбы	Номинал	Предоткл. мкм	не ме- нее	фаски <i>D</i> ₁ , не более	Номинал	Пред.откл.	<i>h</i> , не ме- нее	<i>h</i> ₁ , не ме- нее	H	е боле	е	1000 urt., kr
							0						
MK10	1	5	+105	5,8	6,5	9	-580	4	3	1,0	0,7	3	4,79
MK12	1,5		+30	6,9	7,6	12	0	5	4	1,6	1,0		10,21
							-700						
MK16													17,52
MK18	1,5	8	+130	9,2	10,1	13		6	5		1,0		22,2
MK20		10	+40	11,5	12,4		-700	7	6	1,6	1,3	4	26,7
MK22	1,5	12	+160	13,8	14,3	15					1,3	}	37,71
MK24	1,5	14	+50	16,2	17,0	15		9	7		1,3		42,80
MK30	2,0	17	, ,,,,	19,6	21,0	18		11	9		1,9		93,20
MK36	2	19	+195	21,9	23,0	20	0	13	10	2,0	1,9	5	129,20
MK42			+65			24	+840	16	13		2,3		221,18

46. Конические резьбовые пробки с пестигранной головкой


		Масса 1000 пт., кг	12,39 21,94	36,94 53,8; 63,6
		<i>h</i> ₁ , не более	1,5	2,0
		<i>h</i> , не более	t	4
		<i>d</i> 2, не более	9 11	15
		<i>d</i> ₁ , не более	t	8 10
		л, не более	1,8	2,3
		с, не более	1,0	1,6
исполнение і	7	Предоткл. мкм	0 -700 0 -840	0 -840
Mello	7	твнимоН	16 21	22 23
	Н	Предотки. Мкм	0 -480	0 -480 0 -580
	ī	Номинал	5	6
		Д, не менее	13,1 15,3	20,9
	S	Предоткл. мкм	0 -270	-330
	4	твнимоН	12 14	19
	ď	Шат резьбы	1,5	1,5
	l	Наружный диам Резьбы по Наружный диам	MK10 MK12	MK16 MK18; MK20

														Продолж	Продолжение табл. 46
IK22 IK24	1,5	19		20,9	8 10	0 -580	21		1,6	2,3	10 12	15	4	2,0	57,58 70,25
IK30 IK36	2,7	24 27	-330	26,5 29,9	11	0-700	27	-840	2,0	2,8	14 18	20	9	4,0	114,30 148,54
IK42		30		33,3	13		29			3,3	20	24	8		214,44

57,58 70,25	114,30 148,54	214,44			Масса 1000 шт., кг	12,47 21,14	35,65	55,85	85,99	148,53	244,85 352,96
2,0	4,0	r			<i>h</i> , не более	ı	12	12	10	16	16 14
4	9	∞	į								
15	20	24			<i>d</i> 1, не более	ſ	∞	10	12	16	20 24
10 12	14 18	70			г, не более	1,8	2,3	2,3	2,3		5,3
2,3	2,8	3,3									
1,6	2,0				с, не более	1,0	71	1,0			2,0
	0 -840		Исполнение 2	T	Предотка. по h15, мкм	0 -700 0 -840	•	-840		0 -840	0 -1000 0 -1000
21	27	29	Испо		Номинал	16 21	22	23	23	31	33
0-580	002-			Н	по h15, мкм Предоткл.	0 -480	-480	-480	-580	085-	0 -700 0 -700
8 10	11	13			пзнимоН	\$	9	7	6	6	11
20,9	26,5 29,9	33,3			<i>D</i> , не менее	13,1 15,3	20,9	24,3	29,9	35,0	45,2 50,9
	0 -330			S	по h13, мкм Предотки.	0-270	G	-330			-390
19	24 27	30			Номинал	12	19	77	27	32	41
1,5	2,7			d	Шаг резьбы	1,5	31	C, 1			2,0
MK22 MK24	MK30 MK36	MK42		ł	Наружный диам резьбы по Резьбы по	MK10 MK12	MK16	MK20	MK24	MK30	MK36 MK42

47. Конические резьбовые пробки со шлицем

Размеры, мм

Допускается делать резьбу по всей длине пробки.

Допускается со стороны большого диаметра вместо фаски $c \times 45$ ° делать скругление радиусом r, равным c.

Наруж-					ь		h			
ный диаметр резьбы <i>d</i> по ГОСТ 25229-82	Шаг резьбы <i>Р</i>	Но- ми- нал	Пред. откл. по h15, мкм	Но- ми- нал	Пред. откл. по H15, мкм	Но- ми- нал	Пред. откл. по $\pm \frac{IT16}{2}$, мкм	с, не бо- лее	Смеще- ние оси шлица*	Масса 1000 шт., кт
MK10 MK12	1,0 1,5	11 14	0	2,5 3,0	+400 0	2,5 2,0	+300 -300	1,0 1,6	0,4 0,5	6,39 11,71
MK16 MK20 MK24	1,5	15 15 16	-700	4,0	+480 0	4,0 4,0 5,0	+375 -375	1,6	0,5 0,5 0,6	22,34 35,32 50,23
MK30	2,0	22	0 -340	,		6,0		2,0	0,6	105,68

^{*} Смещение относительно оси пробки.

В табл. 45 - 47 масса приведена для стальных пробок. Для определения массы пробок, изготовленных из других материалов, табличные величины следует умножить на коэффициенты: 1,08 - для латуни; 0,356 - для алюминиевого сплава.

Пример обозначения пробки типа 1, с метрической конической резьбой (МК), наружным диаметром 20 мм, из стали марки 10кп, с покрытием кадмиевым с хроматированием толщиной 6 мкм:

Пробка 1 - МК 20.10кп. Кд6.хр.

Технические требования. Пробки должны изготовляться из сталей марок 10кп, 20кп, 35 по ГОСТ 10702-78, латуни марки Л63 по

ГОСТ 15527-70, алюминиевых деформируемых сплавов марок Д1П, Д16П по ГОСТ 4784-97, из сталей марок 20, 35 по ГОСТ 1050-88 и А12 по ГОСТ 1414-75.

Предельные отклонения упловых размеров - по ГОСТ 8908-81.

Неуказанные предельные отклонения размеров $\pm \frac{t}{2}$.

Смещения осей головки и шестигранного углубления относительно оси пробки должны соответствовать указанным в табл. 48.

Технологические уклоны пробок типов 1 и 2 (исполнение 1) не должны превышать $1 \circ 30$.

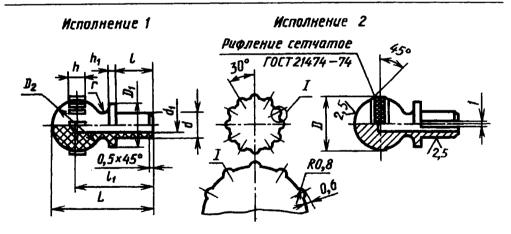
48. Смещения осей головки и пестигранного углубления относительно оси пробки, мм

	Смещения с	_
Резьба <i>d</i> × <i>P</i> по ГОСТ 25229-82	оси головки, не более	оси шес- тигранного углубления, не более
MK10 × 1; MK12 × 1,5	0,43	0,36
MK16 × 1,5 - MK20 × 1,5	0,52	0,43
MK22 × 1,5 - MK30 × 2	0,52	0,52
MK36 × 2	0,52	0,62
MK42 × 2	0,62	0,62

Виды и условные обозначения покрытий по ГОСТ 9.306-85 должны соответствовать указанным ниже:

Ц. хр - цинковое, хроматированное;

Кд. хр - кадмиевое, хроматированное; Фос. прм - фосфатное с пропиткой маслом;


Ан. Окс. хр - окисное анодное хроматированное.

Допускается по согласованию с потребителем изготовлять пробки с оловянным и медным покрытием, а также без покрытий.

Толщина покрытий - по ГОСТ 9.306-85.

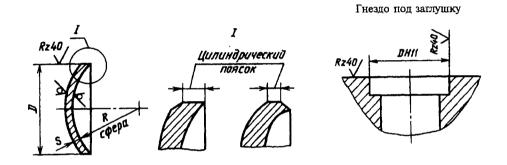
Срок службы пробок должен соответствовать сроку службы изделия, на которое они устанавливаются.

49. Пробки для смазочных отверстий (ГОСТ 12217-66)

	ачение бок	d (OT-											ì	cca, T
Исполне- ние 1	Исполне- ние 2	кло- не- ние по h11)	D_2	D	D_1	r	d 1	h ₁	1	<i>I</i> ₁	h	L	Испол- нение 1	Испол- нение 2
7094-0001	7094-0002	4	8	9	8	1,0	-	1,0	6	-	3	16	0,001	0,004
0003	0004	6	12	13	10	1,6	3,5	2,0	10	20	4	25	0,002	0,009
0005	0006	8	16	17	14	2,0	4,6	2,5	12	25	5	32	0,006	0,022
7094-0007	7094-0008	10	20	21	18	2,5	6,0	3,0	16	32	6	40	0,012	0,043

Продолжение табл. 49

Материал для исполнения 1 - ПЭ для пробок по ТУ МХП № 4437-65. Материал для исполнения 2 - сталь марки Ст3сп по ГОСТ 380-94. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки Ст3сп.


Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.

Покрытие - Хим. Окс. прм по ГОСТ 9.306-85.

Пример условного обозначения пробки исполнения 1 диаметром d=4 мм:

Пробка 7094-0001 ГОСТ 12217-66

50. Заглушки сферические (ГОСТ 3111-81)

D , 1	мм	Пред.		Пред.		Mac-	D,	мм	Пред.		Пред.		Mac-
1-й ряд	2-й ряд	откл. h11, мкм	<i>R</i> , мм	откл. <u>IT16</u> , 2 мкм	S _{min} , MM	са 1000 шт., кт≈	1-й ряд	2-й ряд	OTKII. hll, mkm	R, MM	откл. <u>IT16</u> , 2 мкм	S _{min} , MM	са 1000 шт., кг≈
	6,0	0 -75	6,0	±375	1	0,22		42,0		65,0			19,64
6,3		0				0,24		45,0		70,0			24,80
	7,1	-90	7,0	±450		0,27		48,0	0	75,0	±950		27,00
8,0			8,0			0,63	50,0		-160	65,0			30,04
10,0			11,0			0,99	50,0			80,0		2	30,75
12,0			13,0	±550	1,4	1,42		52,0		82,0	<u> </u>		32,00
	14,0	0	17,0			1,92		55,0	0	85,0	±1100		37,85
16,0		-110	20,0	±650		2,51		56,0	-190	85,0			38,54
	18,0		23,0	1		3,18		58,0	<u> </u>	92,0	<u> </u>		39,91

Продолжение табл. 50

D,	мм	Пред.		Пред.		Mac-	D,	мм	Пред.		Пред.		Mac-
1-й ряд	2-й ряд	откл. h11, мкм	<i>R</i> , мм	откл. <u>IT16</u> , мкм	S _{min} , MM	са 1000 шт., кг≈	1-й ряд	2-й ряд	откл. hll, мкм	R, mm	откл. <u>IT16</u> , 2 мкм	S _{min} , MM	са 1000 шт., кг≈
20,0			26,0			3,95		60,0		76,0			42,00
	22,0		28,0	±650	1,4	4,76		60,0		80,0	±950	2	42,50
	24,0		30,0			6,70		60,0		93,0	±1100		43,90
25,0			30,0			6,98	63,0		0	95,0			48,84
	26,0	0	32,0			7,26		65,0	-190	105,0			50,39
	28,0	-130	36,0			9,60		70,0		115,0			61,24
	30,0		30,0			10,00		71,0		115,0		2,5	62,11
	30,0		32,0	±800		10,00		75,0		125,0			70,00
	30,0		40,0		2	10,28	80,0			130,0	±1250	!	98,60
32,0			45,0			12,55		90,0		125,0			125,0
	35,0	0	50,0			15,00		95,0	0	150,0			153,40
	36,0	-160	50,0			15,45	100,0		-220	175,0			184,86
	38,0		55,0	±850		17,77		110,0		200,0		3	223,60
40,0			60,0			18,70	125,0		0 -250	225,0	±1450		228,40

Заглушки, указанные во 2-м ряду, применяются только в изделиях, поставленных на производство и разработанных до внедрения в действие настоящего стандарта.

Толщину материала выбирают из ряда: 1,0; 1,4; 2,0; 2,5; 3 мм.

В таблице указана масса стальных заглушек при минимальной толщине. Для определения массы заглушки из алюминиевого сплава массу, указанную в таблице, следует умножить на коэффициент 0,337; для определения массы заглушек из латуни - умножить на коэффициент 1,12.

Боковая поверхность заглушек должна иметь цилиндрический поясок шириной не менее 30 % толщины материала. Заусенцы на цилиндрическом пояске не допускаются.

Гнезда, в которые вставляются заглушки, рекомендуется выполнять в соответствии с приведенным выше эскизом. Глубину гнезда устанавливают в рабочих чертежах на изделие.

Виды покрытий заглушек: цинковое с хроматированием, кадмиевое с хроматированием, химическое оксидирование по ГОСТ 9.306-85. Заглушки, работающие в масле и изготовленные из алюминиевого сплава или латуни, выполняются без покрытия.

Пример условного обозначения заглушки с D=20 мм, из стали марки 10кп, с покрытием кадмиевым, с хроматированием толщиной 6 мкм:

Заглушка 20 - 10кп.Кд.6.хр. ГОСТ 3111-81.

То же с $D=20\,$ мм, из стали марки 8кп, без покрытия:

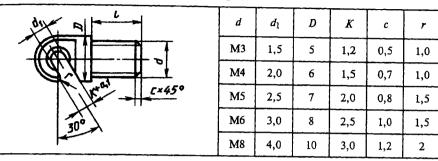
Заглушка 20 - 08кп ГОСТ 3111-81.

I

5,0

6,0

7,5

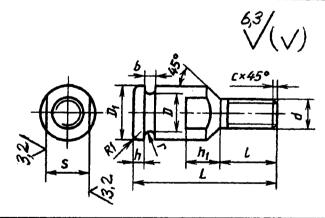

9,0

12,0

винты для пружин

51. Винты с ушком для пружин

Размеры, мм


Твердость 30 ... 40 HRC₃.

Оксидировать.

Поле допуска резьбы 8g - по ГОСТ 16093-81.

Материал - сталь 35 по ГОСТ 1050-88. Допускается применять стали других марок с механическими свойствами не ниже, чем у стали 35.

52. Винты с канавкой для пружин растяжения (по ГОСТ 12199-66) Размеры, мм

Обозначение	D	D_1	d	L	r	b	h	h 1	1	я (откло- нение по h14)	Масса, кт
7009-0161	4,5	6	M4	16	0,3	1	1,6	4	8	5	0,003
0162	5,5	8	M5	20	0,3	1,2	2	5	10	7	0,005
0163	7	10	M6	25	0,3	1,6	2	6	12	8	0,008
0164	9	12	М8	32	0,5	2	2,5	8	16	10	0,019
0165	9	12	M10	32	0,5	2	2,5	8	16	10	0,022
7009-0166	11	16	M10	40	0,8	2,5	3	10	20	14	0,036

Продолжение	табл.	52
-------------	-------	----

Обозначение	D	D_1	d	L	r	ь	ħ	h ₁	I	s (откло- нение по h14)	Масса, кг
7009-0167	11	16	M12	40	0,8	2,5	3	10	20	14	0,037
0168	14	20	M12	50	0,8	3,2	4	12	20	17	0,076
7009-0169	18	25	M16	60	0,8	4	5	16	25	22	0,149

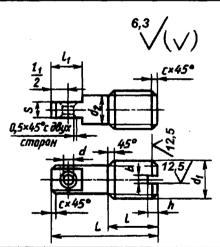
Материал - сталь 45 по ГОСТ 1050-88.

Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки 45.

Твердость 32 ... 37 HRC₃.

Неуказанные предельные отклонения размеров: H14, hl4, $\pm \frac{t_2}{2}$.

Резьба - метрическая по ГОСТ 24705-81. Поле допуска резьбы - 6g по ГОСТ 16093-81. Размеры сбегов и фасок для резьбы - по ГОСТ 10549-80.


Покрытие - Хим. Окс. при по ГОСТ 9.306-85.

Пример условного обозначения винта с канавкой для пружин растяжения диаметром D=4,5 мм, d=M4:

Винт 7009-0161 ГОСТ 12199-66

53. Винты с отверстием для пружин растяжения (ГОСТ 12200-66)

Размеры, мм

Резьба метрическая по ГОСТ 24705-81.

Поле допуска резьбы - 6g по ГОСТ 16093-81.

Размеры сбегов и фасок для резьбы - по ГОСТ 10549-80.

Обозначение	d (откло- нение по Н14)	d_1	d ₂	L	1	<i>l</i> ₁	3	ь	h	с	Масса, кг
7009-0211	1,6	M4	3	12	6	4	2	0,6	1,4	0,5	0,001
0212	2	M5	4	16	8	5	2,5	0,8	1,8	1	0,002
0213	2,5	M6	4,5	20	10	6	3	1	2	1	0,003
7009-0214	3	M8	6	25	12	7	4	1,2	2,5	1,5	0,007

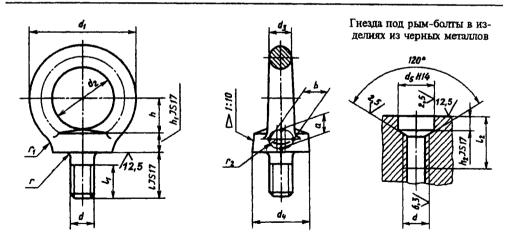
									Hpo	должен	ие табл. 53
Обозначение	d (откло- нение по Н14)	d ₁	d ₂	L	1	11	s	b	h	с	Масса, кг
7009-0215	4	M10	8	32	16	9	5	1,6	3	1,5	0,016
0216	5	M12	10	40	20	10	6	2	3,5	1,5	0,023
7009-0217	6	M16	12	50	25	12	8	2	3,5	2	0,060

Материал - сталь марки 45 по ГОСТ 1050-88.

Твердость 32 ... 37 HRC₃.

Неуказанные предельные отклонения размеров: отверстий - H14, валов - h14, остальных -

Покрытие - Хим. Окс. прм по ГОСТ 9.306-85.


Пример условного обозначения винта сотверстием для пружин растяжения диаметром d = 1,6 мм:

Винт 7009-0211 ГОСТ 12200-66.

ГРУЗОВЫЕ ВИНТЫ, СТЯЖНЫЕ МУФТЫ

54. Рым-болты (по ГОСТ 4751-73 в ред. 1990 г.)

Рым-болгы предназначены для подъема, опускания или удержания на весу изделий при монтажных и такелажных работах.

Для установки в одной плоскости колец двух ввинченных до упора рым-болгов допускается применение плоских шайб до 1 мм - под рым-болты с резьбой М8 - М12; не более половины шага резьбы - под рым-болты с резьбой свыше М12.

Пример условного обозначения рым-болта срезьбой М8 без покрытия:

Рым-болт М8 ГОСТ 4751-73.

То же с мелкой резьбой M100 × 6, с покрытием 01 (цинковое с хроматированием) толщиной 9 мкм:

Рым-болт M100 × 6.019 ГОСТ 4751-73.

Продолжение табл. 54

	··					P	азмері	л, мм							
Услов- ное обозна- чение резьбы d	d 1	<i>d</i> ₂	<i>d</i> ₃	d4	ь	h	h_1	1	<i>l</i> ₁ , не ме- нее	٣	71	Macca 1 urr., kr	d ₅	h ₂	<i>l</i> ₂ , не ме- нее
М8	36	20	8	20	10	12	6	18	12	:	4	0,05	13	5	19
M10	45	25	10	25	12	16	8	21	15	2		0,12	15	6	22
M12	54	30	12	30	14	18	10	25	19		6	0,19	17		26
M16	63	35	14	36	16	20	12	32	25			0,31	22	7	33
M20	72	40	16	40	19	24	14	38	29		8	0,50	28	9	39
M24	90	50	20	50	24	29	16	45	35	3	12	0,87	32	10	47
M30	108	60	24	63	28	37	18	55	44		15	1,58	38	11	57
M36	126	70	28	75	32	43	22	63	51		18	2,43	45	12	65
M42	144	80	32	85	38	50	25	72	58	4	20	3,72	52		74
M48	162	90	36	95	42	52	30	82	68		22	5,54	60	14	84
M56	180	100	40	105	48	60	34	95	78			8,09	68		97
M64	198	110	44	115	52	65	40	110	93		25	10,95	75		112
M72×6	234	130	52	135	62	75	45	115	98	5		18,54	85	17	117
M80×6	270	150	60	160	70	88	50	125	108		35	25,40	95		127
M100×6	324	180	72	190	85	105	60	150	133		40	43,82	115		152

Технические требования. Рым-болты должны быть изготовлены из стали марки 20 или 25 (подгруппа а) по ГОСТ 1050-88 штамповкой. Допускается изготовление ковкой.

Соответствие материала предусмотренным маркам должно быть подтверждено

сертификатом предприятия - изготовителя металла.

Технические требования к штампованным поковкам - по ГОСТ 7505-89, класс точности II, степень сложности СЗ.

55. Грузоподъемность рым-болтов

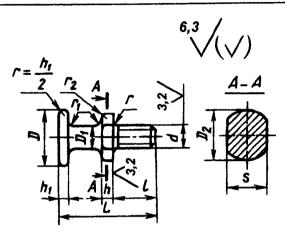
	Груз	оподъемность на 1 рым-бол при направлении стропов	тг, кг,
		под углом 45° от	вертикальной оси
	по вертикальной оси рым-болта	в плоскости кольца	с отклонением от плоскости кольца
Условное обозначение резьбы		***	250
M8	120	80	40
M10	200	125	65
M12	300	175	90
M16	550	250	125
M20	850	325	150
M24	1250	500	250
M30	2000	700	350
M36	3000	1000	500
M42	4000	1300	650
M48	5000	1650	800
M56	6200	2000	1000
M64	7500	2500	1250
M72×6	10000	3500	1750
M80×6	14000	4500	2250
M100×6	20000	6500	3250

При подъеме груза направление стропов под углом от вертикальной оси рым-болта свыше $45\,^\circ$ не допускается.

При изготовлении рым-болтов свободной ковкой в подкладных штампах допускается увеличивать плюсовые допуски в 2 раза.

На внутренней окружности кольца допускается лыска, получаемая после зачистки заусенцев, при условии сохранения размера в пределах допусков.

Заварка или заделка дефектов не допускается.


Рым-болты после штамповки или ковки должны быть нормализованы и очищены от окалины.

56. Твердость нормализованных рым-болтов

Марка стали	Твердость НВ рым-болгов с размером резьбы								
	от М8 до М64	от M72 × 6 до M100 × 6							
20 25	105 - 149 134 - 187	95 - 121 105 - 149							

57. Грузовые винты (дапфы) (по ГОСТ 8922-69)

Предназначены для подъема, опускания и удержания на весу механических устройств Размеры, им

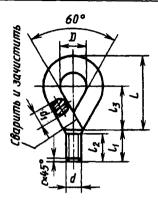
Обозна- чение винтов	d	L	D	Dı	D ₂	<i>S</i> h13	I	h	h i	r	n	n	Допус- каемая нагруз- ка, Н	Масса, кг. не более
7095-0021	M12	50	32	12	25	22	22	6	5	2	4	2	1200	0,085
0022	M16	65	40	16	30	24	28	8	6	2	6	2	2000	0,170
0023	M20	80	45	20	36	27	32	10	8	3	8	2	3000	0,314
0024	M24	95	55	25	45	36	38	10	10	3	8	3	4800	0,562
0025	M30	110	65	30	55	41	45	12	10	3	10	4	7200	0,918
0026	M36	125	70	36	60	46	52	12	12	4	10	4	11000	1,374
0027	M42	140	80	42	70	60	60	12	14	4	12	5	16500	2,056
7095-0028	M48	160	85	50	75	65	70	14	16	4	12	5	24200	2,977

Материал - сталь марки 20 по ГОСТ 1050-88. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки 20. Неуказанные предельные отклонения размеров: hl4, остальных $\pm \frac{f_2}{2}$.

Резьба метрическая - по ГОСТ 24705-81. Предельные отклонения резьбы - 6g по ГОСТ 16093-81.

Размеры недорезов и фасок для резьбы - по ГОСТ 10549-80.

Покрытие - Хим. Окс. прм по ГОСТ 9.306-85. По соглашению с потребителем допускается применение других видов защитных покрытий.

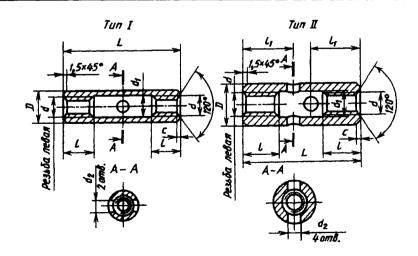

Пример условного обозначения грузового винта диаметром d = M12:

Винт 7095-0021 ГОСТ 8922-69.

Размеры гнезд под грузовые винты и остальные технические требования - по ГОСТ 4751-73 (табл. 55 и 56).

58. Грузовой болт

Размеры, мм


đ	D	L	<i>I</i> ₁	<i>l</i> ₂	<i>l</i> ₃	d_1	с	Грузоподъем- ность, кг	Длина заготовки	Масса, кт
M12	25	68	30	28	40,5	15	1,5	500	185	0,237
M16	32	84	40	35	50,0	18	1,8	1000	240	0,455
M 20	40	112	42	40	68,0	24	2,0	1500	300	1,000

Материал - сталь 45.

Резьба метрическая - по ГОСТ 24705-81, поле допуска 8g - по ГОСТ 16093-81.

Грузовой болт испытывают на прочность нагрузкой, превышающей их номинальную грузоподъемность на 100 %.

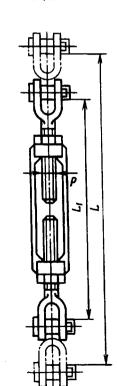
59. Муфты стяжные круглые

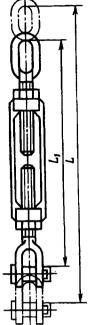
Продолжение табл. 59

						Продол	жение ташт. 39			
	D	d _i	d_2							
đ		Поле дог	гуска Н14	1	с	l_1	L			
Тип І										
M12	24	14	8	18 ± 1	1,0	-	-			
M16	30	18	10	24 ± 1 1,0		~	-			
Тип ІІ										
		22	12	30 ± 1	1,0	42 ± 0,6	100 ± 0,8			
M20	35					52 ± 0,8	120 ± 1,0			
						62 ± 0,8	140 ± 1,0			
						72 ± 0,8	160 ± 1,0			
	40 26 16 36	26	16	36 ± 1		60 ± 0,8	140 ± 1,0			
M24						70 ± 0,8	160 ± 1,0			
						80 ± 0.8	180 ± 1,0			
			1,5	90 ± 0,8	200 ± 1,0					
	50	32	20	45 ± 1		68 ± 0.8	160 ± 1,0			
M30						78 ± 0.8	180 ± 1,0			
						88 ± 0.8	200 ± 1,0			
				••···		113 ± 0,8	250 ± 1,0			
	60	38	20	55 ± 2	2,0	78 ± 0.8	180 ± 1,0			
M36						88 ± 0.8	200 ± 1,0			
						113 ± 0.8	250 ± 1,0			
						138 ± 1,0	300 ± 1,5			
	70	44	26	60 ± 2		85 ± 0,8	200 ± 1,0			
M42						110 ± 0,8	250 ± 1,0			
						135 ± 1,0	300 ± 1,5			

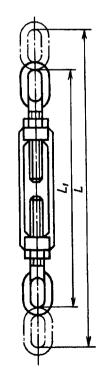
Материал - сталь 45. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали 45.

TAIIPEIIBI

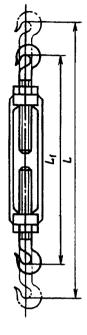

Тапрепы изготовляют следующих типов: ОШ - с открытой штампованной муфтой; ОС - с открытой сварной муфтой; ЗС - с закрытой сварной муфтой.

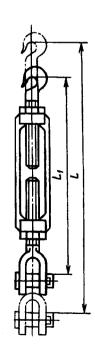

60. Основные параметры, масса и исполнение талрепов

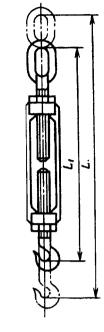
с открытой птампованной муфтой


Исполнение ВВ (вилка - вилка)

Исполнение ВУ (вилка - ушко)

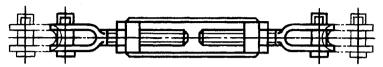


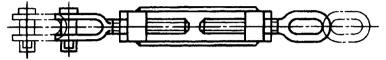



Исполнение УУ (ушко - ушко)

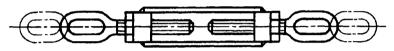
Исполнение ГУ (гак - ушко)

Исполнение ВГ (вилка - гак)

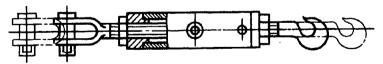


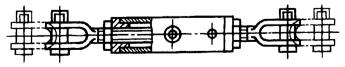

Допуска	Допускаемая нагрузка, кН	узка,	86'0	1,96	2,94	4,9	7,84	11,76	15,68	19,6	24,5	31,6	39,2	49	61,74
Масса, кт, не более:	г, не болк	*					-								
для исп	для исполнения ВВ	BB	0,14	0,37	0,50	0,92	1,10	1,90	2,26	3,00	3,80	5,80	6,90	12,80	13,90
*	*	By	0,13	0,35	0,45	06,0	1,00	1,85	2,10	2,80	3,60	2,60	9,60	12,30	31,60
*	*	ķ	0,12	0,33	0,42	0,85	0,95	1,80	2,00	2,70	3,40	5,40	6,20	11,90	13,10
*	*	E	0,15	0,50	0,70	1,28	1,45	2,40	ı	1	ı	ı	ı	t	ı
*	*	BI	0,14	0,45	09'0	1,10	1,26	2,15	1	ı	ı	1	1	ŧ	1
*	*	<u> </u>	0,13	0,42	95,0	1,10	1,20	2,10	1	1	1	1	1	1	

61. Основные параметры, масса и исполнение талрепов с открытой сварной муфтой


Исполнение ВВ (вилка - вилка)

Исполнение ВУ (вилка - ушко)

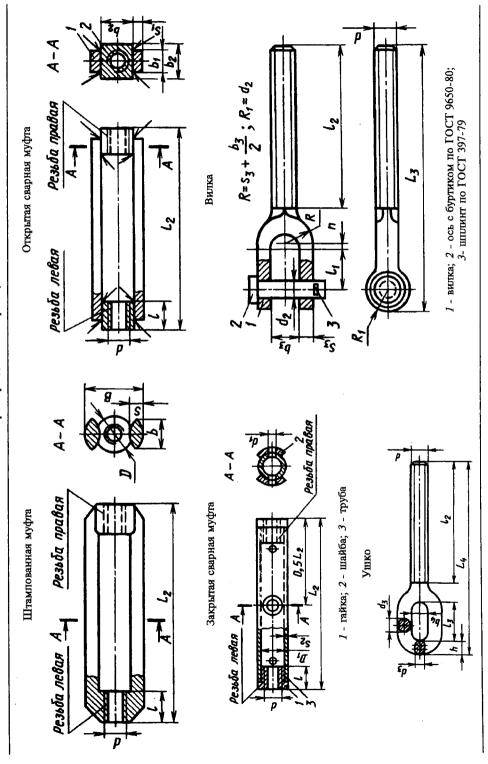

Исполнение УУ (ушко - ушко)


Допускаемая нагрузка, кН	19,6	24,5	31,6	39,2	49	61,74	78,4	98	122,5	156,5	196
Масса, кг, не бо- лее:											
для исполнения ВВ	3,6	4,2	6,0	7,1	12,8	14,0	20,8	23,6	33,4	42,9	55,3
для исполнения ВУ	3,5	4,0	5,9	6,8	12,3	13,7	20,0	22,7	32,4	40,8	53,0
для исполнения УУ	3,3	3,8	5,6	6,4	11,9	13,3	19,1	21,8	31,4	38,7	50,8

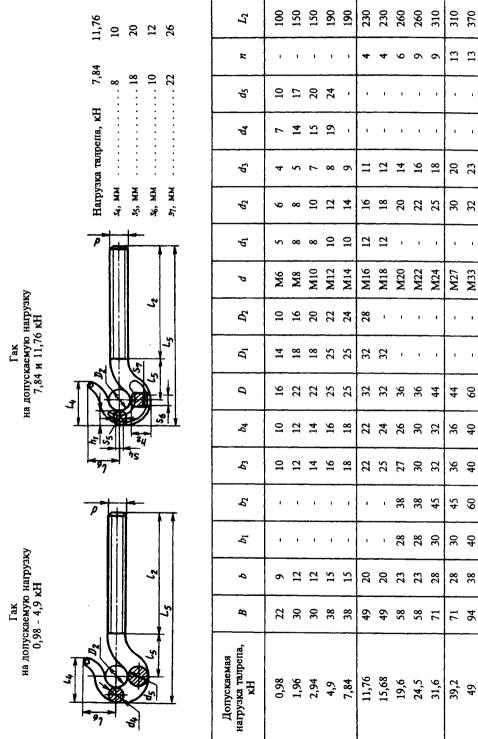
62. Основные параметры, масса и исполнение талрепов с закрытой сварной муфтой

Исполнение ВГ (вилка - гак)

Исполнение ВВ (вилка - вилка)



Допускаемая нагрузка, кН	0,98	1,96	2,94	4,9	7,84	11,76	15,68
Масса, кг, не более:							
для исполнения ВГ	0,14	0,36	0,52	0,95	1,10	1,80	-
* * BB	0,14	0,30	0,42	0,76	0,95	1,52	1,90


63. Основные размеры талренов, мм

			6	. OCHOBE	оз. Основные размеры талренов, мм	Spira Taurp	ellob, Mb							
								Исполнение	нение					
Допускаемая	Резьба	Ход талрела	B	BB	χ	2	TI		By	V	BF	L	ΓY	
нагрузка, кН	талрепа	$L \cdot L_1$	T	L_1	T	L_1	T	L_1	T	$L_{\rm l}$	Т	L_1	Т	L_1
86,0	9W	75	230	155	244	169	236	161	237	162	233	158	240	165
1,96	M8	112	324	212	344	232	360	248	334	222	342	230	352	240
2,94	M10	112	341	229	365	253	383	271	353	241	362	250	374	762
4,9	M12	140	421	281	449	309	461	321	435	295	441	301	455	315
7,84	M14	140	434	294	466	326	472	332	450	310	453	313	469	329
11,76	M16	168	524	356	558	390	558	390	541	373	541	373	558	330
15,68	M18	168	542	374	582	414	,	,	295	394	ı	1	1	1
19,6	M20	185	603	418	653	468	ı	,	628	443	ı	'	ı	1
24,5	M22	185	629	444	681	496	ı	1	959	470	1	ı	,	ı
31,6	M24	212	719	207	787	575	1	t	753	541	1	,	1	,
39,2	M27	212	757	545	821	609	ı	ı	789	21.1	,	1	ı	1
49	M33	248	881	633	949	701	1	1	915	299	1	ı	1	ı
61,74	M36	248	900	652	926	728	ı	ı	938	069		1	1	'_
78,4	M39	265	286	722	1083	818	,	ı	1035	770	,	ł	ı	1
86	M42	265	1027	762	1121	856	1	1	1074	809	ı	,	1	1
122,5	M48	290	1133	843	1231	941	1	1	1182	892	1	ı	٠	1
156,8	M52	290	1159	698	1261	971	1	ı	1210	920	,	ı	ı	•
196	M56	308	1247	939	1391	1083	ı	ı	1319	1011	ı	ı	ſ	ı

64. Основные размеры деталей талрепов, мм

34	
Продолжение табл. 64	
	Fax
	Гак

Продолжение табл. 64

370	410	410	460	460	28	83	4	4	9	9	9	9	∞	∞	∞	10	10	12	14	16	18	20	ì
13	14	14	16	18	21	\$2	2	7	2	Э	3	8	3	,			-	'	ı	-		1	
,	,	,	ı		•	ş	1	,	1		-	,	,	12	21	14	14	18	18	20	70	22	
	1	1	,	,	'	s	9	∞	∞	10	10	13	13	15	15	19	19	25	1	-	,	,	-
26	53	32	36	39	43	142		1	ı	,	56	30	1	,	4	-	-	'	ı	-	,	'	
36	9	45	20	55	99	h_1	1	,	,	,	24	97	ı	,	,	-		ı	1	•	,	1	
		,	ı	ı	ı	ų	5	9	6	10	11	14	15	18	70	22	25	53	32	36	40	45	
M36	M39	M42	M48	M52	M56	91	15	76	30	36	41	46	1	ı	,	-	ı	,	1	١.	ı	,	
	,	ı	,	,	,	1/5	20	34	42	45	48	55	,	1	ı	,	,	,	1	'	ı	ı	
	1		ı	,		14	20	34	40	47	59	09	•	ı	ı	ı	-	'	,	1		t	
09	ı	1	ı	ı	1	h	19	24	78	34	40	47	55	09	20	80	06	100	105	120	130	140	
44	48	52	56	79	99	r _l	54	8	8	100	100	122	122	136	136	162	162	195	195	218	218	242	
44	64	22	28	63	68	4	13	14	18	22	27	31	36	33	47	49	09	65	72	81	94	101	
09	70	70	80	8	100	1	10	15	15	70	70	25	25	30	30	40	40	20	20	99	09	07	
40	45	45	99	99	63	Ls	98	137	148	176	184	217	ı	ı	ı	ı	-	ı	ı		-	ι	
38	,	•	1	ı	•	77	98	120	131	159	168	204	215	242	257	298	315	366	380	427	446	492	
94	1	ı		ı	ı	L_3	98	116	126	154	162	195	208	230	248	282	305	348	365	408	430	472	
61,74	78,4	86	122,5	156,8	196	Допускаемая нагрузка талрепа, кН	86,0	1,96	2,94	4,9	7,84	11,76	15,68	9,61	24,5	31,6	39,2	49	61,74	78,4	86	122,5	

65. Материалы деталей талро

Наименование деталей	Марка стали
Муфта штампованная, вил- ка, ушко, гак, ось с бурти- ком	Сталь 25
Труба	Сталь 20
Струна открытой сварной муфты	ВСт3сп4
Гайки сварных муфт	ВСт3сп2
Шайба закрытой сварной муфты	ВСт3сп

Качество материала кованых деталей должно соответствовать категории прочности КП 25 по ГОСТ 8479-70. Для остальных деталей несущих элементов предел текучести стали не менее 230 МПа.

Допуски на размеры штамповок - по ГОСТ 7505-89.

Контргайки - по ГОСТ 5916-70. Труба - по ГОСТ 8734-75.

Метрическая резьба - по ГОСТ 24705-81, поле допуска болтов - 8g, гаек - 7H по ГОСТ 16093-81, сбеги - по ГОСТ 10549-80. Проточки в резьбах не допускаются.

Сварка должна проводиться электродами, механические свойства которых не ниже свойств электродов типа 942A по ГОСТ 9467-75. Сварные швы зачищают.

В деталях талрепов не должно быть трещин, раковин и других дефектов, влияющих на прочность.

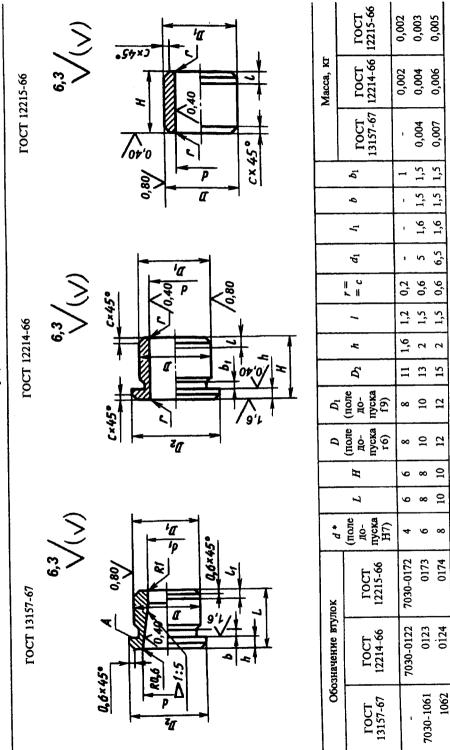
Хвостовики вилок, ушков и гаков должны изготовляться с правой и левой резьбой.

Все детали талрепов должны иметь покрытия по ГОСТ 9.306-85, обеспечивающие эксплуатацию талрепов в обычных и тропических условиях.

ВТУЛКИ

Технические требования. Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.

Для втулок по ГОСТ 12214-66 и по ГОСТ 12215-66 допуск радиального биения поверхности диаметра d относительно поверхности диаметра D и для втулки по ГОСТ 13157-67 допуск радиального биения поверхности D относительно конической поверхности по 4-й степени точности ГОСТ 24643-81.


Для втулок по ГОСТ 12214-66 и по ГОСТ 12215-66 допуск торцового биения опорного торца относительно поверхности диаметра d и для втулок по ГОСТ 13157-67 допуск торцового биения поверхности A относительно конической поверхности по 5-й степени точности ГОСТ 24643-81.

Для втулок по ГОСТ 12214-66 и по ГОСТ 12215-66 покрытие Хим. Окс. прм. Для втулок по ГОСТ 13157-67 покрытие Хтв.18 (обозначение покрытий по ГОСТ 9.306-85).

Размеры втулок приведены в табл. 66.

66. Втулки конические для фиксаторов (ГОСТ 13157-67), втулки с бургиком (ГОСТ 12214-66) и втулки (ГОСТ 12215-66) для фиксаторов и установочных пальцев

Размеры, мм

Продолжение табл. 66

	FOCT 12215-66	0,012	0,016	0,020	0,025
Масса, кт	TOCT	0,013	0,014	0,024	0,029
	TOCT 13157-67	0,015	0,022	0,034	•
	ρľ	7	2	7	2
	q	7	7	3	t .
	I, b	1,6	1,6	7	•
	ďı	8	9,5	13	1
	$l = c d_1$	9'0	22 3 1,5 0,6 9,5 1,6 2	3 1,5 0,6 13	26 3 1,5 0,6
	1	1,5	1,5	1,5	1,5
	Z.	3	3	3	
	D	20	22	26	26
D	(поле до- до- пуска губ пуска губ гб) f9)	16 20 3 1,5 0,6 8 1,6 2	18	22	22
О	(поле до- пуска гб)	16	18	22	22
	H	12	14 14	14	18
	7	10 12 12	41	16 18 14	1
* 8	(поле до- пуска H7)		12	16	16
лок	FOCT 12215-66	7030-0175	0176	0177	7030-0178
Обозначение втулок	TOCT 12214-66	7030-0125	0126	0127	7030-0128
066	FOCT 13157-67	7030-1063	1064	7030-1065	1

Для втулок конических по ГОСТ 13157-67 размер d - $6^{+0,025}$, $8^{+0,030}$, $10^{+0,030}$, $12^{+0,035}$, $16^{+0,035}$ мм.

FOCT 13157-67 предусматривает также d = 20 мм, FOCT 12214-66 предусматривает d = 2,5 мм и d = 20 ... 50 мм.

Материал - сталь марки У8А по ГОСТ 1435-90. Допускается замена материала на стали других марок с механическими свойствами не ниже, чем у стали марки У8А. Материал для втулок по ГОСТ 12214-66 диаметров свыше 20 мм- сталь марки 20Х по ГОСТ 4543-71. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали марки 20Х.

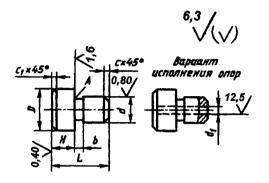
Гвердость конических втулок 56 ... 61 НRС3. Глубина цементованного слоя для втулок из стали марки 20X - 0,8 - 1,2 мм.

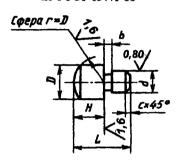
Размеры канавок для выхода шлифовального круга - по ГОСТ 8820-69.

Конусность - по ГОСТ 8593-81, допуски на угловые размеры - по 8-й степени гочности ГОСТ 8908-81.

 Φ и к сатора размером d=6 мм: для втулки условного обозначения конической Пример

Втулка 7030-1061 ГОСТ 13157-67.


ОПОРЫ


67. Опоры постоянные с плоской и сферической головкой

Размеры, мм

Опора с плоской головкой - по ГОСТ 13440-68

Опора со сферической головкой по ГОСТ 13441-68

Обозначе	ние опор		1	Общ	не размерт	Ŋ		Оп	ора с голов	плоской кой	Опора со сферической головкой
с плоской головкой	со сферичес- кой головкой	D	Н*	L	d (поле допуска s7)	b	с	d ₁	c ₁	Масса, кг	Масса, кг
7034-0264	7034-0314	6	6	11	4	1	0,4	-	0,6	0,002	0,002
0267	0317	8	8	16	6	2	0,4	2	0,6	0,005	0,005
0270	0320	10	10	18	6	2	0,6	2	1,0	0,008	0,008
0274	0324	12	12	22	8	3	0,6	2	1,0	0,015	0,015
0275	0325	12	16	26	8	3	0,6	2	1,0	0,018	0,018
0279	0329	16	16	28	10	3	0,6	4	1,0	0,032	0,031
0280	0330	16	-20	32	10	3	0,6	4	1,0	0,039	0,037
0284	0334	20	20	36	12	3	1,0	4	1,6	0,063	0,060
0285	0335	20	25	40	12	3	1,0	4	1,6	0,074	0,072
0290	0340	25	25	45	16	3	1,0	6	1,6	0,127	0,121
0291	0341	25	32	52	16	3	1,0	6	1,6	0,154	0,148
0295	0345	32	32	50	20	3	1,6	6	1,6	0,218	0,206
7034-0296	7034-0346	32	32	58	20	3	1,6	6	1,6	0,265	0,253

^{*} Для опоры с плоской головкой (ГОСТ 13440-68) пред. откл. h6 или $^{+0.3}_{-0.2}$ - припуск на шлифование при сборке или в комплекте.

Для опоры со сферической головкой (ГОСТ 13441-68) пред. откл. h12.

Материал - сталь У7А по ГОСТ 1435-90 для опор $D \le 12$ мм; сталь 20Х по ГОСТ 4543-71 для опор D > 12 мм.

Допускается замена на стали других марок с механическими свойствами не ниже, чем у марок У7А и 20Х.

Твердость 56 ... 61 HRC₃. Опоры из стали 20X цементовать на глубину 0,8 - 1,2 мм.

Неуказанные предельные отклонения размеров: H14, h14, $\pm \frac{t_2}{2}$.

Продолжение табл. 67

Размеры канавок для выхода шлифовального круга - по ГОСТ 8820-69.

Покрытие - Хим. Окс. прм (обозначение покрытия по ГОСТ 9.306-85). По соглашению сторон допускается применение других видов защитных покрытий.

Для опор по ГОСТ 13440-68 отклонение от перпендикулярности опорного торца A относительно поверхности диаметром d - не более 0,01 мм (только для опор размером H, изготовляемых с предельным отклонением h6).

Пример обозначения постоянной опоры с плоской головкой размерами D=6 мм, H=6 мм, с предельными отклонениями размера H по h6:

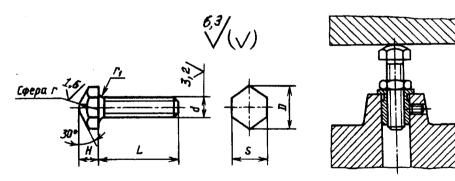
Onopa 7034-0261h6 FOCT 13440-68;

то же с предельными отклонениями размера $H_{+0,2}^{+0,3}$:

Опора 7034-0261 ГОСТ 13440-68.

Пример обозначения для варианта исполнения постоянной опоры с плоской головкой размерами D=6 мм, H=4 мм, с предельными отклонениями размера $H^{+0.3}_{-0.2}$:

Опора 7034-0265 В ГОСТ 13440-68.


Пример обозначения постоянной опоры со сферической головкой размерами D=5 мм, H=3 мм:

Onopa 7034-0311 FOCT 13441-68.

68. Регулируемые опоры с шестигранной головкой (по ГОСТ 4085-68)

Размеры, мм

Пример применения

Обозначение опор	d	L	H	S (поле допуска h13)	D	r	ካ	Масса, кг
7035-0405 0406 0407 0408 0409	M8	20 25 30 35 40	6	12	13,8			0,013 0,014 0,016 0,017 0,019
0410 0411 0412 0413 0414 0415	M10	25 30 35 45 50	8	14	16,2	5	0,5	0,023 0,025 0,028 0,030 0,033 0,035

Продолжение табл. 68

Обозначение опор	d	L	Н	S (поле допуска h13)	D	r	'n	Масса, кг
7035-0416		30						0,040
0417		35						0,044
0418		40			i			0,048
0419	M12	45	10	17	19,6		0,8	0,051
0420		50						0,055
0421		55						0,058
0422		60						0,062
0423		40				5		0,093
0424		45						0,100
0425		50		1				0,106
0426	M16	55	12	22	25,4			0,113
0427		60						0,120
0428		70						0,133
0429		80					1,0	0,146
0430		50						0,184
0431		55						0,195
0432		60				1		0,205
0433	M20	70	16	27	31,2			0,226
0434	ļ	80					l	0,246
0435	1	90			ļ		ļ	0,267
0436		100					L	0,288
0437		60				12		0,301
0438		70			1			0,331
0439		80						0,361
0440	M24	90	20	32	36,9			0,391
0441	1	100			1		1,2	0,420
0442		110						0,450
0443		125				1		0,495
7035-0444	M30	80	25	41	47,3			0,646

Пример обозначения регулируемой опоры с шестигранной головкой размерами $d=M8,\ L=20$ мм:

Onopa 7035-0405 FOCT 4085-68.

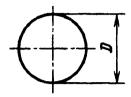
Материал - сталь 45 по ГОСТ 1050-88. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали 45.

Твердость головки 41 ... 46,5 HRC_э.

Для опор размером $L \le 50$ мм допускается твердость на всей длине опоры 35 ... 39 HRC₃.

Неуказанные предельные отклонения размеров: hl4, $\pm \frac{t_2}{2}$.

Резьба метрическая - по ГОСТ 24705-81.


Поле допуска резьбы - 8g по ГОСТ 16093-81.

Размеры недорезов и фасок для резьбы - по ГОСТ 10549-80.

Покрытие - Хим. Окс. прм (обозначение покрытия по ГОСТ 9.306-85). По соглашению сторон допускается применение других видов защитных покрытий.

ШАРИКИ И РОЛИКИ

69. Шарики

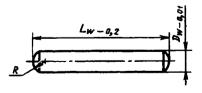
Диаметр D: 1,5; 2,5; 3; 3,5; 4; 5; 5,5; 6; 6,5; 7; 8; 9; 10; 11; 12; 14; 15; 16; 17; 19 мм.

Технические требования на шарики по ГОСТ 3722-81. Материал - сталь шарико- и роликоподшипниковая по ГОСТ 801-78 и ГОСТ 4727-63, допускается изготовление из других сталей.

Твердость при диаметре до 45 мм 63 ... 67 HRC₃, св. 45 мм 61 ... 67 HRC₃.

70. Цилиндрические ролики

Размеры, мм


d × l	d×1	d × l	$d \times l$	$d \times l$	d × l	d×1
4 × 6 4 × 8 4 × 12 5 × 5 5 × 8 5 × 10	6 × 6 6 × 8 6 × 10 6 × 12 7 × 10 7 × 21	8 × 8 8 × 12 8 × 16 8 × 20 8 × 24 9 × 9	9 × 12 10 × 14 10 × 10 10 × 12 10 × 20 10 × 25	10 × 30 11 × 11 12 × 12 12 × 16 13 × 13 14 × 14	14 × 20 14 × 28 15 × 15 16 × 16 18 × 18 18 × 26	20 × 20 22 × 30 24 × 24


Материал - сталь шарико- и роликоподшилниковая по ГОСТ 801-78.

71. Ролики игольчатые (по ГОСТ 6870-81)

Размеры, мм

Исполнение А

$$R$$
 не менее $\frac{D_w}{2}$ и не более $\frac{L_w}{2}$;

 $D_{\mathrm{w}}\,$ - номинальный диаметр ролика;

 $L_{\mathrm{w}}\,$ - номинальная длина ролика;

R - номинальный радиус сферы торца ролика;

r - номинальная координата фаски ролика с плоским торцом;

 $r_{s \; min} \;$ и $r_{s \; max} \;$ - предельные координаты фасок роликов с плоским торцом

Продолжение табл. 71

$D_{\mathbf{w}}$	L_{w}	$r \ (r_{s \text{ min}}, r_{s \text{ max}})$	Масса 1000 шт., кг	D_{w}	$L_{\rm w}$	r (r _{s min} , r _{s max})	Масса 1000 шт., кг	D_{W}	$L_{\rm w}$	r (r _{s min} , r _{s max})	Масса 1000 шт., кг
	7,8		0,15		15,8		0,61		17,8		1,35
	9,8		0,16		17,8		0,69	3,5	19,8		1,51
1,6	11,8		0,19	2,5	19,8		0,76		23,8		1,80
	13,8		0,22		21,8		0,85		29,8		2,25
	15,8		0,25		23,8		0,92		19,8		1,97
	(6,3)		0,15		9,8		0,54	4,0	23,8	0,1	2,37
	7,8	0,1	0,19	 	11,8		0,65		29,8		2,95
	9,8		0,24		13,8	0,1	0,76		39,8		3,90
	11,8		0,29		15,8		0,87		24,8	(0,1;	3,64
2	13,8		0,34		17,8		0,99		19,8	0,6)	4,62
	15,8	(0,1;	0,39	3,0	19,8	(0,1;	1,10	5,0	39,8		6,15
	17,8	0,4)	0,45		21,8	0,4)	1,22		44,8		6,94
	19,8		0,49		23,8		1,32		49,8		7,50
	7,8		0,30		27,8		1,54				
2,5	9,8		0,38		29,8		1,62	(6,0)	49,8		11,05
	11,8		0,45		13,8	0,1	1,05		59,8		13,25
	13,8		0,53	3,5	15,8	(0,1; 0,6)	1,20				

Масса роликов рассчитана при плотности 7,85 кг/дм³.

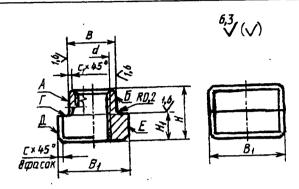
Размеры, указанные в скобках, применять не рекомендуется.

Материал - сталь ШX15 по ГОСТ 801-78 и ГОСТ 4727-83.

Твердость 62 ... 68 HRC3. Разброс твердости в партии - не более 3 единиц HRC3.

Степень точности роликов	Разноразмерность по диаметру D_{wL} , мкм	Предельное отклонение формы, мкм (непостоянство диаметра, огранка, конусообразность, бочкообразность)	Параметр шероховатости цилиндрической поверхности <i>Ra</i> , мкм
2	2	1,0	0,08
3	3	1,5	0,16
5	5	2,5	0,16

Допуски, кроме конусообразности и бочкообразности, заданы в среднем сечении ролика. Пример условного обозначения игольчатого ролика $D_{\rm w}=2$ мм, $L_{\rm w}=15.8$ мм, исполнения A, степени точности 3:


Ролик 2 × 15,8 A 3 ГОСТ 6870-81;

то же, исполнения В:

Ролик 2 × 15,8 В 3 ГОСТ 6870-81.

СУХАРИ, ОСЕДЕРЖАТЕЛИ, ПЕТЛИ

72. Сухари к обработанным станочным пазам (по ГОСТ А 31.0175.40-91)

Размеры, мм

Обозначение сухарей	B dll	<i>B</i> ₁	H	H_{I}	đ	с	c_{i}	Масса, кг не более
7004-2041	6	9	7	4	M5			0,003
7004-2042	8	12	8	5	M6	1,0	0,4	0,006
7004-2043	10	14	11	6	M8			0,012
7004-2044	12	18	14	7	M10			0,022
7004-2045	14	22	16	8	M12	1,6		0,035
7004-2046	18	28	20	10	M16		0,6	0,070
7004-2047	22	34	28	14	M20			0,153
7004-2048	28	44	34	18	M24	2,5		0,327
7004-2049	36	54	45	22	M30			0,522
7004-2050	42	65	52	26	M36		1,0	1,061
7004-2051	48	75	60	30	M42	4,0		1,609
7004-2052	54	85	68	34	M48	1		2,305

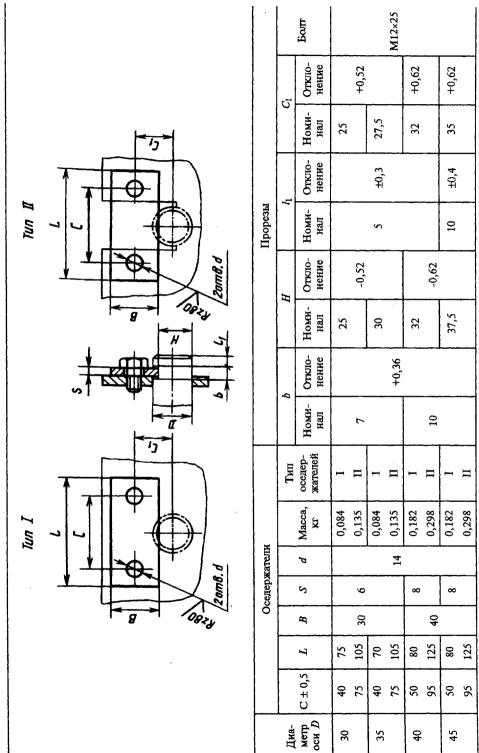
Материал - сталь марки 45 по ГОСТ 1050-88. Допускается замена на стали других марок с механическими свойствами не ниже, чем у стали 45.

Твердость 36,5 ... 41,5 HRC₃.

Допуск плоскостности поверхности Г - по 10-й степени точности ГОСТ 24643-81.

Допуск перпендикулярности поверхностей A и Б относительно поверхности Γ - по 11-й степени точности Γ OCT 24643-81.

Допуск симметричности поверхностей Д, Е и оси отверстий относительно плоскости симметрии поверхностей А и Б: при $B \le 22$ T/2 ... 0,2 мм, при $B \ge 22$ T/2 ... 0,3 мм.


Остальные технические требования - по ГОСТ 31.0171.01-91.

Пример условного обозначения сухаря к станочным обработанным пазам размером B=6 мм:

Сухарь 7004-2041 А 31.0175.40-91.

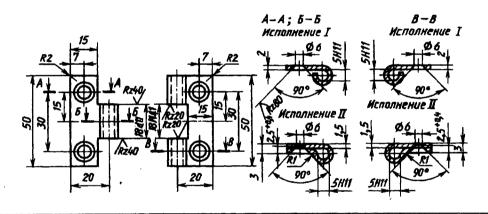
73. Оседержателн (по нормали Гипроуглеманта)

Размеры, мм

Продолжение табл. 73

		Болт		M12×25			····					M16x35							M20×40	
	ري ا	Откло- нение				+0,62								+0,62			+0,74		+0,74	
	0	Номи- нал	37		4		40		42		45		48		20		55		62	
	h	Откло- нение									±0,4									
Прорезы	1	Номи- нал								10							15		15	
	Н	Откло- нение				-0,62						-0,74							-0,87	
	1	Номи-	42		47,5		20		54,5		09		65,5		70		80		87	
	q	Откло- нение		+0,36				_					+0,43							
	7	Номи-		10									12							
	Тип	оседер- жателей	I	П	I	П	I	п	I	П	н	11	Ι	11	I	11	-	П	ŀ	II
		Масса, кг	0,182	0,298	0,182	0,298	0,274	0,480	0,274	0,480	0,274	0,480	0,274	0,480	506,0	0,525	905,0	0,525	0,450	0,803
катели		Ø.		14								18							22	
Оседержатели		_ك ر		∞									10					·		
$ ^{\circ}$		В								40									50	
		T	8	125	80	125	100	165	108	165	100	165	100	165	110	180	110	180	130	220
		C ± 0,5	50	95	20	95	09	125	99	125	09	125	09	125	70	140	0/	140	08	170
	Пия	Merp och D	50		55		09		65		70		75		80		8		100	

Стопорение болгов для оседержателей I и II типов производится пружинной шайбой по ГОСТ 6402-70 или проволокой. Оседержатели следует устанавливать таким образом, чтобы они не воспринимали нагрузку оси. Материал - сталь Ст3. Сортамент: полоса - по ГОСТ 103-76.


На каждый конец оси устанавливают по держателю.

74. Петли шариирные

Размеры, мм

WI DOWN IN THE WAY TO A PERSON OF THE PERSON	Ħ	50	65	80
	s	2	2,5	3
мсполнение II мсполнение III мсполнение II мсполнение IV		1,5	2	2,5

Петли левые и правые исполнений ІиІІ

Петли исполнений III и IV Размеры, мм

Продолжение табл.	74
-------------------	----

Н	В	b	h	d (поле допуска H11)	d_1	h_1	а	a_1	s	r
65	25	19,5	16	5	6	-	20	9	2,5	1,0
					7	3			2,0	
80	32	23,5	20	6	7	-	25	12	3,0	1,5
					9	4			2,5	Í

Материал - сталь Ct3 по ГОСТ 380-94. Наружную поверхность петель полировать и оксидировать.

Ось петли Размеры, мм

, †	Ħ	đ	L	h
2,2	65	5	50	2,0
 <> <	80		64	ŕ
Наружную поверхность оси оксидировать	80	6	79,5	2,5

Стержень и шайба Размеры, мм

Стержень 75° 2,5/	d (поле допуска h11)	d_1	L	1	<i>I</i> I	h	D	с
L	5	3	50 64	5,0	4	2,5	9	1,0
15° h	6	4	79,5	5,5	5	3,0	11	1,5

Материал стержня - сталь 35 по ГОСТ 1050-88, шайбы - сталь Ст3 по ГОСТ 380-94.

Глава VIII

ЗАЩИТНЫЕ И ЗАЩИТНО-ДЕКОРАТИВНЫЕ ПОКРЫТИЯ МЕТАЛЛОВ

ЛАКОКРАСОЧНЫЕ ПОКРЫТИЯ

Лакокрасочные покрытия (масляные и эмалевые краски, а также нитроэмали) применяют для защитных и декоративных целей.

Масляные краски, приготовленные на маслах и олифах, выпускают разных цветов в пастообразном виде. Перед употреблением их разводят олифой до рабочей вязкости и наносят на изделие кистью иди пульверизатором. Покрытия масляными красками обладают слабым глянцем.

Эмалевые краски готовят на лаках; различают эмали масляные, спиртовые и нитроэмали, приготовленные на лаках эфиров целлюлозы.

Эмали выпускают готовыми к употреблению. Масляные эмали наносят кистью или пульверизатором, а нитроэмали - преимущественно пульверизатором, так как они быстро высыхают.

Покрытия эмалями отличаются хорошим блеском и повышенной твердостью, устойчивы к изменению температуры от минус 40 до плюс 60 °C.

ГРУППЫ, ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ И КЛАССЫ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ

(по ГОСТ 9.032-74 в ред. 1991 г.)

ГОСТ 9.032-74 распространяется на лакокрасочные покрытия (далее - покрытия) поверхностей изделий и устанавливает группы, технические требования и обозначения покрытий.

В зависимости от назначения покрытия делятся на группы (табл. 1).

Классы лакокрасочных покрытий и требования к ним приведены в табл. 2; требования к поверхности окрашиваемого металла - в табл. 3; требования к блеску покрытий - в табл. 4.

1. Группы лакокрасочных покрытий

Группа покрытий	Условия эксплуатации	Обозначение условий эксплуатации
Атмосферостойкие	Климатические факторы	По ГОСТ 9.104-79
Водостойкие	Морская, пресная вода и ее пары Пресная вода и ее пары Морская вода	4 4/1 4/2
	Рентгеновские и другие виды излучении, глубокий холод, открытое пламя, биологические воздействия и др.	5
Специальные	Ренттеновские и другие виды излучений Глубокий холод (температура ниже минус	5/1 5/2
	60 °C) Открытое пламя Воздействие биологических факторов	5/3 5/4

Продолжение табл. 1

Группа покрытий	Условия эксплуатации	Обозначение условий эксплуатации
	Минеральные масла и смазки, бензин, керосин и другие нефтепродукты	6
Маслобензостойкие	Минеральные масла и смазки	6/1
,	Бензин, керосин и другие нефтепродукты	6/2
	Различные химические реагенты	7
	Агрессивные газы, пары	7/1
Химически стойкие	Растворы кислот и кислых солей	7/2
	Растворы щелочей и основных солей	7/3
	Растворы нейтральных солей	7/4
Термостойкие	Температура выше 60 °C	8
Электроизоляцион- ные и электропро- водные	Электрический ток, напряжение, электрическая дуга и поверхностные разряды	9
	Электроизоляционные	9/1
	Электропроводные	9/2

 Π р и м е ч а н и е . К обозначению условий эксплуатации термостойких покрытий добавляют значение предельной температуры, например, 8_{160} •C.

При необходимости значение предельной температуры добавляют и к обозначению условий эксплуатации других покрытий, например,

460 °C, 6/1 150 °C, 9200 °C.

Классы лакокрасочных покрытий и технические требования к ним (по ГОСТ 9.032-74)

					;					
					Ho	Норма для покрытий				
					гладких	X			релье	рельефных
Класс пок- рытия	Наименование дефекта			однотонных	нных			рисунча- тых (мо- лотковых)	«Муаро- вык»	«Шагре- невых»
		высокоглянцевых	слянцевых, в том числе с лесси- рующим эффектом	полу- глянце- вых	товых	матовых	глубоко- матовых	глянцевых полума- и полу- товых и глянцевых матовых	полума- товых и матовых	полума- товых
–	Включения: число пт./м². не более			,	'	4	ı	١		
	размер, мм, не более расстояния между включениями мм не менее	Не допускаются	отся	1 1	l 1	0,2 100	1 1	1 1	l i	
	Шагрень	Не допускается	ется			Не допускается	-		,	
	Потеки	Не допускаются	отся	•	1	Не допускаются		1	í	1
٠	Штрихи, риски	Не допускаются	ОТСЯ	,	-	Не допускаются		-	-	-
	Волнистость, мм, не более	Не допускается	ется	-	_	Не допускается	1	_	-	. ~
	Разнооттеночность	Не допускается	ется	ı	1	Не допускается	1	-		1
Ħ	Включения:	•	,	•	•	C	G	G	c	c
	число шт./м², не более	4 6	4 0	4 C	4 0	0 0	۰ ر د	× 6	٥ ٥	ه د د
	размер, мм, пе осолествательной включе-	100		100	501	100	.00	.00		£.00
	ниями, мм, не менее							-		
	Шагрень		Допус	Допускается незначительная	значите	льная		He	Не нормируется	ся
	Штрихи, риски				Допу	Допускаются отдельные				
٠	Потеки	100			1	Не допускаются				
	Волнистость, мм, не более				-	Не допускается				
	Разнооттеночность					Не допускается				
	Неоднородность рисунка			Не нормируется	ируется			He	Не допускается	ь.
							1			

Продолжение табл. 2

					Hol	Норма для покрытий				
					гладжих	,			рельефных	фных
Класс пок- рытия	с Наименование дефекта я			однотонных	нных			рисунча- тых (мо- лотковых)	«Муаро- вых»	«Шагре- невых»
		высокоглянцевых	слянцевых, в том числе с лесси- рующим эффектом	полу- глянце- вых	полу- мато- вых	матовых	глубоко- матовых	глянцевых полума- и полу- товых и глянцевых матовых	полума- товых и матовых	полума- товых
Ш	Включения:									
	число $\operatorname{илт}/M^2$, не более	1	10	15	15	25	25	25	25	25
	размер, мм, не оолее расстояния между включе-	1 1	50	50 50	0,0 50	30 30	30	., 6, 6,	6,0 9,0	0,5 30
	Illarpetts	•		Лопу	Kaerca	Лопускается незначительная		He	He Honwanverca	50
	Штрихи, риски	1				Не допускаются	NOTCH		7	
	Потеки	·				Допускаются отдельные	тдельные			
	Волнистость, мм, не более	_	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
	Разнооттеночность	•				Не допускается	зется			
	Неоднородность рисунка	•			Не нор	Не нормируется		He	Не допускается	КЭ
IV	Включения: число шт./м², не более	•	 -	1		2	2	2	2	2
	размер, мм, не более	t 1	1,0	1,0	1,0	1,0	1,0	0,1	1,0	1,0
	ниями, мм, не менее		2	2	2	2	2	2	2	2
	Шагрень	_			Допу	Цопускается		出	Не нормируется	CA
	Потеки	_				Не допускаются	ROTOR			
	Штрихи, риски	1				Допускаются отдельные	гдельные			
	Волнистость, мм, не более	1	2	2	2	2	2	2	2	2
	Разнооттеночность	•				Не допускается	ется			
	Неоднородность рисунка				Не нор	Не нормируется		He	Не допускается	СЯ

Продолжение табл. 2

Наименование дефекта ГЛЯНЦЕВЫХ БЕЛОКОГЛЯНЦЕВЫХ БРОМ ПОЛУС. ВИЗИВОКОГЛЯНЦЕВЫХ ПОЛУС. ВИЗИВОВНИЕМИ. В ТОВ МАТОВЫХ ВИЗИВОВНИЕМИ. ДОПУСКАВО ДОПУСКАВО ДОПУСКАВО НЕ ДОПУСКАВО НЕ НЕ ДОПУСКАВО ДОПОТОКАВО ДОПОТОКАВО ДОПОТОКАВО						Hop	Норма для покрытий	İ			
Наименование дефекта размения дефекта размер декта полу- дета полу- дета мато Включения: число шт./м², не более размер, ми, не более дедноственодность, ми, не более дедноствения: число шт./м², не более дедноствения: число шт./м², не более дедноствения: число шт./м², не более дедноствения: дедноствения: число шт./м², не более дедноствения: деднос		-				гладких				релье	рельефных
Включения: размер, мм, не более соле выструкае полу-вых нато-высто-высто-высто-высто-вых нато-высто-высто-высто-высто-высто-высто-высто-высто-высто-высто	Класс пок-	Наименование дефекта			одното	нных			рисунча- тых (мо- лотковых)	«Муаро- вых»	«Шагре- невых»
Включения: 4 4 4 4 4 4 4 4 4 4 4 4 2,0 <t< th=""><th></th><th></th><th>высокоглянцевых</th><th></th><th>полу- глянце- вых</th><th>полу- мато- вых</th><th>матовых</th><th>глубоко- матовых</th><th>глянцевых и полу- слянцевых</th><th>полума- товых и матовых</th><th>полума- товых</th></t<>			высокоглянцевых		полу- глянце- вых	полу- мато- вых	матовых	глубоко- матовых	глянцевых и полу- слянцевых	полума- товых и матовых	полума- товых
размер, мм, не более Допускает Потеки - 2,5 </td <td>></td> <td>Включения: число шт./м², не более</td> <td>1</td> <td>1 3</td> <td>2.0</td> <td>2.0</td> <td>4 2.0</td> <td>2,0</td> <td>4 3,0</td> <td>4 3,0</td> <td>3,0</td>	>	Включения: число шт./м², не более	1	1 3	2.0	2.0	4 2.0	2,0	4 3,0	4 3,0	3,0
Шарень 2,5		размер, мм, не оолее					Допускается		He	Не нормируется	тся
Прикли риски - 2,5 <th< td=""><td>'_</td><td>Потект</td><td>,</td><td>,</td><td></td><td></td><td>Допускан</td><td>этся отдел</td><td>ьные</td><td></td><td></td></th<>	'_	Потект	,	,			Допускан	этся отдел	ьные		
Волнистость, мм, не более - 2,5 <td></td> <td>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>,</td> <td>ľ</td> <td></td> <td></td> <td>Дог</td> <td>Допускаются</td> <td></td> <td></td> <td></td>		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,	ľ			Дог	Допускаются			
Разднооттенотисть Не нормиру Неоднородность рисунка -		Волнистость, мм. не более	,	,	2,5	2,5		2,5	2,5	2,5	2,5
Включения: В включения В включения В включения В включения В включения В включения В в в в в в в в в в в в в в в в в в в в		Разнооттеночность		'		ľ	Нед	опускается		90200000	004
Включения: 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 30		Неоднородность рисунка	1	1		Ŧ	е нормируется		Ĕ	пе допускается	Z .
размер, мм, не более Шарень Потеки Потеки Шприки, риски Волнистость, мм, не более Разнооттеночность Неоднородность рисунка Включения Не нормир	5	Включения: число шт./м², не более	1	1 1	3.0	3.0	3.0 3.0	3,0	8 3,0	8 3,0	3,0
Потеки Потеки Потеки Волнистость, ми, не более Разнооттеночность Неоднородность рисунка Включения		размер, мм, не оолее		-			Допускается		He	Не нормируется	жж
ППтрихи, риски - - 4,0 4,0 4, Волнистость, ми, не более - <t< td=""><td></td><td>Папрепь</td><td> </td><td></td><td></td><td></td><td>Допускав</td><td>отся отдел</td><td>ьные</td><td></td><td></td></t<>		Папрепь					Допускав	отся отдел	ьные		
Штрихи, риски 4,0 4,0 4,0 Волнистость, ми, не более - - 4,0 4,0 Разностеночность исунка - - Не нормируется Включения - - Не нормируются		HOISEN	'				Дог	Допускаются			
Разнооттеночность рисунка - Не нормируются Включения	-	Волительной зам не более			4,0	4,0		4,0	4,0	4,0	4,0
Газнолтеночность рисунка Неоднородность рисунка Включения		DOUGHACIOCIB, MM, 110 COLOR		-			J[o]	Допускается			
Включения		Газнооттеночность Неолнородность рисунка	1				le нормируется		7	Допускается	88
X1	IIA	Включения	1	-		H 	с нормируются		ı	1	Не нор- мируются
- не нормируется Патрень		Шагрень	ſ	ı		H	Не нормируется		1	,	Не нор- мируется

C Продолжение табл.

					Hot	Норма для покрытий				•
					глалких	<u> </u>			pen	релъефных
Класс	Наименование пефекта			олнотонных	HHLX			рисунча- «Муаро	«Myapo	*IIIarpe-
TOK-								TEIX (MO-	-BbIX»	H eBbIX®
DELTING								лотковых)		
		высокоглянцевых	глянцевых, в том	полу-	полу-	Матовых	глубоко-	глянцевых	полума-	полуж
			числе с	глянце- мато-	мато-		Matobeta		товых и	×
			лесси-	BELX	BECX			глянцевыжматовых	Marobay	
			рующим эффектом							
Z	Потекти	1	-		1 ^H	Не нормируются		-		Не нор-
	_									мируются
	Штыки риски	1	1		H	Не нормируются		1	1	Не нор-
										мируются
	Волнистость, им не более	,	-		H	Не нормируется		,	,	Не нор-
										мируется
	Разностеночность				T 	Не нормируется		,		Не нор-
						•				мируется
	Неолноролность рисунка				Ŧ	Не нормируется		-	1	-фон әҢ
										мируется

В технически обоснованных случаях допускается применение высокоглянцевых покрытий для III-IV классов, глянцевых - для V-VII. При этом нормы для высокоглянцевых покрытий III-IV классов должны соответствовать нормам для глянцевых покрытий, глянцевых V-VII Знак «-» обозначает, что применение покрытий для данного класса недопустимо или экономически нецелесообразно.

классов - для полуматовых.

3. Для изделий площадью окрашиваемой поверхности менее 1 м² для I-III классов количество включений пересчитывают на данную площадь, если получают не целое число, то значение округляют в сторону большего числа. В таблице приведен размер одного включения. При оценке покрытия учитывают все включения, видимые при условиях, что контроль проводят при дневном или искусственном рассеянном свете, на расстоянии 0,3 м от предмета осмотра. Нормы искусственного освещения принимают по СНиП II-A,9-71. Для покрытий всех классов допускается другое количество включений, если при этом размер каждого включения и суммарный размер включений не превышает указанного для данного класса в таблице.

4. Допускается для IV-VII классов отдельные неровности поверхности, обусловленные состоянием окрашиваемой поверхности. 5. Допускается для литых изделий массой более 10 т увеличение волнистости покрытий на 2 мм для III-VI классов.

6. Допускается для сварных и клепаных изделий с окрашиваемой поверхностью более 5 м² увеличение волнистости покрытий на 2,5 мм для III класса, на 3,5 мм для IV-VI классов.

7. Допускается применять классификацию и обозначение по нормативно-технической документации в случае, если специфика окрашиваемых неметаллических материалов не позволяет характеризовать класс покрытия по табл. 2.

3. Требования к окращиваемым металлическим поверхностям (по ГОСТ 9.032-74)

a organizament metripist restain noiseparoetam (no 1 002 7.002 7.1)	Норма для получения покрытий	глацких	однотонных фисунча- тых (мо- лотковых) «Муаро- вых» «Шагре- невых»	глянцевых, ах числе с глянце вых лески- вых вых вых вых вых вых вых вых вых вых		1	допускаются Не допускаются		6,3 6,3 6,3 6,3 6,3 20 20 20 80 80 80 80 80 80 80 80	He A	Не допускаются		10 10 10 10 10 80 80 80 80 80 80 80 80 80 80 80 80		1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Не допускаются
w merupakana morepakana	Норма для п	гладких	однотонных	полу- полу- глянце- мато- вых вых	1	-	•			He	Нед					Нед
mina a capaminonemen				глянцевых певых числе с лесси- рующим эффектом	4	Не допускается	Не допускаются		6,3 6,3 80 80				10 10 500 500		1,5	
			Наименование показателей окрашиваемой поверхностя		Шероховатость <i>Rz</i> по ГОСТ 2789-73, мкм, не более	Неплоскостность, мм	Отдельные неровности (высота, глубина)	Шероховатость <i>R</i> 2 по ГОСТ 2789-73, мкм, не более, поверх-ности:	не подлежащей ппатлеванию подлежащей шпатлеванию	Неплоскостность, мм	Отдельные неровности (высота, глубина), мм	Шероховатость <i>R</i> 2 по ГОСТ 2789-73, мкм, не более, поверх-	не подлежащей шпатлеванию подлежащей шпатлеванию	Неплоскостность, мм, не более,	подлежащей шпатлеванию подлежащей шпатлеванию	Отдельные неровности (высота,
			Класс пок- рытия	and the second second second second second second second second second second second second second second seco	_	1		ш				III		•	•	

Продолжение табл. 3

	рельефных	«Шагре- невых»	полума- товых	80 500	2 3,5 2	320	2,5
	penre	«Муаро- вых»	полума- товых и матовых	80 500	2 3,5 2	320	2,5
		рисунча- тых (мо- лотковых)	глянцевых полума- и полу- товых и глянцевых матовых	80 500	2 3,5 2	320	2,5
срытий			глубоко- матовых	80 500	2 3,5 2	320 уется	2,5
Норма для получения покрытий	КИХ	>	матовых	80 500	2 3,5 2	320 33 He Hopmupyercs	2,5 4 3
Морм	гладких	однотонных	полу- мато- вых	80	2 3,5 2	320	2,5
		То	полу- глянце- вых	80 500	2 3,5 2	320	2,5 4 3
			глянцевых, в том числе с лесси- рующим эффектом	80 500	2 3,5 2	320	2,5
			высокоглян- цевых	80	2 3,5 2	1 (1 1
		Наименование показателей окрашиваемой поверхности		Шероховатость <i>R</i> 2 по ГОСТ 2789-73, мкм, не более, поверхности: не подлежащей шпатлеванию подлежащей ппатлеванию	Неплоскостность, мм, не более, поверхности: не подлежащей шпатлеванию подлежащей шпатлеванию Отдельные неровности (высота, глубина), мм, не более	Шероховатость Rz по ГОСТ 2789-73, мкм, не более, поверхности: не подлежащей шпатлеванию подлежащей шпатлеванию	Неплоскостность, мм, не более, поверхности: не подлежащей ппатлеванию подлежащей ппатлеванию Отдельные неровности (высота, глубина), мм, не более
	-	Класс пок- рытия		ΣΙ		>	

Продолжение табл. 3

														
	рельефных	«Шarpe- невых»	полума- товых				4 5,5	ۍ		Не нор-	мируется Не нор- мируется		Не нор-	мируется Не нор- мируется
	рели	«Муаро- вых»	сполума- товых и сматовых			 	5,5	5		'	1		ı	1
		рисунча- тых (мо- лотковых)	глянцевых полума- и полу- товых и глянцевых матовых		-		5,5	5		ł	ı		1	ı
крытий			глубоко- матовых		уется уется		4 5,5	5						
Норма для получения покрытий	KWX		матовых		Не нормируется Не нормируется		5,5	5		Не нормируется	Не нормируется		Не нормируется	Не нормируется
Норм	гладких	однотонных	полу- мато- вых		-		5,5	S		Не норм	Не норм		Не норм	Не норм
		то	полу- глянце- вых				4 5,5	5		•			-	
		-	глянцевых, в том числе с лесси- рующим эффектом		-		4 5,5	5		-			•	
			высокоглян- цевых				1 1	!		1	r		ı	1
		Наименование показателей окрашиваемой поверхности		Шероховатость Rz по ГОСТ 2789-73, мкм, не более, поверх-ности:	не подлежащей шпатлеванию подлежащей шпатлеванию	Неплоскостность, мм, не более поверхности:	не подлежащей шпатлеванию подлежащей шпатлеванию	Отдельные неровности (высота, глубина), мм, не более	Шероховатость Rz по ГОСТ 2789-73, мкм, не более, поверх-ности:	не подлежащей шпатлеванию	подлежащей шпатлеванию	Неплоскостность, мм, не более поверхности:	не подлежащей шпатлеванию	подлежащей шпатлеванию
		Класс пок- рытия		Ĭ					ΙΙΛ			<u> </u>		

Продолжение табл. 3

Бысокоглян В том полу-						Норм	Норма для получения покрытий	крытий				
высокоглян- цевых тесси- тующим эффектом вых тотковы тотковы						глал	КИХ			pens	ефных	
глянцевых, цевых числе с глянцев мато. полу- вых и полу- полу- вых рукошим эффектом полу- вых вых вых вых вых вых вых вых вых вых	Наименование показателей	телей			HÌTO	отонных	,		рисунча-	«Муаро-		
ГЛЯНЦЕВЫХ,	окрашиваемой поверхности	кности							тых (мо- лотковых)	- 1	невых»	
рующим эффектом (высота, - 5 5 5 5 5			высокоглян- цевых	глянцевых, в том числе с лесси-	полу- глянце- вых	полу- мато- вых	матовых	глубоко- матовых	глянцевых и полу- глянцевых	полума- товых и матовых	полума- товых	
(BLICOTA, - 5 5 5 5 5				рующим эффектом		-						
	VII Отдельные неровности (высота, глубина), мм. не более	(высота,	1	5	5	5	5	S	1	,	5	

4. Допускается для изделий с окрашиваемой поверхностью более 5 м² увеличение неплоскостности на 2,5 мм для III класса, на 3,5 мм для 3. При окрашивании литых деталей массой более 10 т допускается увеличение неплоскостности на 2 мм для III-VI классов. чения к другому.

2. Дия всех классов покрытий не допускаются забоины, неровно обрезанные края, острые кромки и углы в местах перехода от одного се-

5. При окрашивании литых деталей массой более 5 т для III и IV классов допускается увеличение шероховатости поверхности, подлежащей IV-VI классов.

ппатлеванию, до 630 мкм.

6. Для покрытий I класса допускается только местное шпатлевание.

7. Под отдельными неровностями поверхности понимают неровности размерами (длина или ширина) не более 20 мм.

8. Требования по неплоскостности поверхности даны для плоских поверхностей с наибольшим размером более 500 мм. При оценке непло-9. Для поверхностей, подвергаемых шпатлеванию, под покрытия III класса допускается наличие отдельных неровностей высотой до 1 мм. скостности поверхности отдельные неровности в расчет не принимаются

4. Требования к блеску покрытий

			Cren	ень блеска,	Степень блеска, %, для покрытий	ытий				
			гладких						рельефных	XIc
		однотонных	}			рисуг (молот	рисунчатых (молотковых)	«Муарк	Муаровых»	«Шагреневых»
высокоглян- цевых	ысокоглян- глянцевых, в том цевых числе глянцевых с лессирующим эффектом	полуглянце- вых	полумато- вых	Матовых	глубоко- матовых	глянцевых	полуглянце- вых	полума- товых	матовых	матовых полуматовых
Более 59	Or 59 40 50	Or 49 no 37	Or 36 до 20	От 19 до 4	Or 19 Не более до 4 3	Or 59 10 39	Or 39 до 24		•	Or 12 40 8

ОБОЗНАЧЕНИЕ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ

Обозначение покрытий записывают в следующем порядке:

обозначение лакокрасочного материала внешнего слоя покрытия по ГОСТ 9825-73;

класс покрытия по табл. 2 или по соответствующей нормативно-технической документации с указанием ее обозначения;

обозначение условий эксплуатации:

в части воздействия климатических факторов - группа условий эксплуатации по ГОСТ 9.104-79;

в части воздействия особых сред - по табл. 1.

Допускается в обозначении покрытия вместо лакокрасочного материала внешнего слоя покрытия записывать обозначение лакокрасочных материалов в технологической последовательности нанесения (грунтовка, шпатлевка и т.д.) с указанием числа слоев или обозначать покрытие в соответствии со стандартами или техническими условиями.

Обозначение лакокрасочного материала, класса покрытия и обозначение условий эксплуатации отделяют точками. При воздействии различных условий эксплуатации их обозначения разделяют знаком «тире». Примеры обозначения покрытий приведены в табл. 5.

5. Примеры обозначения лакокрасочных покрытий

Обозначение покрытия	Характеристика покрытия
Эмаль МЛ-152 синяя. II.VI	Покрытие синей эмалью МЛ-152 по II классу, эксплуатирующееся на открытом воздухе умеренного макроклиматического района
Эмаль ХС-710 серая.	Покрытие серой эмалью ХС-710 с последующей лаки-
Лак XC-76. IV.7/2	ровкой лаком XC-76 по IV классу, эксплуатирующееся при воздействии растворов кислот
Эмаль XB-124 голубая. V. 7/1-T2	Покрытие голубой эмалью XB-124 по V классу, эксплуатирующееся под навесом в атмосфере, загрязненной газами химических и других производств, в условиях тропического сухого макроклиматического района
Грунтовка ФЛ-03к коричневая. VI.У3	Покрытия грунтовкой ФЛ-03к по VI классу, эксплуатирующееся в закрытом помещении с естественной вентиляцией без искусственно регулируемых климатических условий в условиях умеренного макроклиматического района
Эмаль ПФ-115 темно-серая 896.III.VI	Покрытие темно-серой 896 эмалью ПФ-115 по III классу, эксплуатирующееся на открытом воздухе умеренного макроклиматического района

В обозначении покрытий допускается указывать специальные условия эксплуатации полным наименованием.

Если окрашенная поверхность одновременно или поочередно находится в различных условиях эксплуатации, то они все указываются в обозначении. При этом на первом месте ставится основное условие эксплуатации.

Если лакокрасочному покрытию предшествует металлическое или неметаллическое неорганическое покрытие, то их обозначения разделяются чертой дроби, причем на второе место ставится обозначение лакокрасочного покрытия.

Например, кадмиевое покрытие, толщи-

ной 6 мкм, с последующим окрашиванием красно-коричневой поливинилбутиральной эмалью ВЛ-515 по III классу, для эксплуатации покрытия при воздействии нефтепродуктов:

Кд6/Эмаль ВЛ-515 красно-коричневая. III.6/2

ГРУППЫ УСЛОВИЙ ЭКСПЛУАТАЦИИ ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ (по ГОСТ 9.104-79 в ред. 1991 г.)

ГОСТ 9.104-79 распространяется на лакокрасочные покрытия изделий и устанавливает группы условий эксплуатации покрытий для макроклиматических районов и категорий размещения по ГОСТ 15150-69.

Условия эксплуатации изделий с покрытиями (табл. 6) установлены в зависимости от стойкости покрытий к воздействию совокуп-

ности климатических факторов, значения которых обусловлены нормальными значениями на открытом воздухе различных макроклиматических районов и категориями размещения окращенных поверхностей.

6. Условия эксплуатации покрытий (по ГОСТ 9.104-79)

Климатическое исполнение изделий по ГОСТ 15150-69	Категория размещения окрашенных поверхностей по ГОСТ 15150-69	Обозначение усло изделий с	рвий эксплуатации покрытием
		буквенное	цифровое
У	1, 1.1	У1	1
	2, 2.1	У2	2
	3, 3.1	У3	3
	4, 4.1, 4.2	УХЛ4	4
	5, 5.1	В5	5
ХЛ	1, 1.1	ХЛ1	6
	2, 2.1	ХЛ2	7
	3, 3.1	ХЛ3	8
	4, 4.1, 4.2	УХЛ4	4
	5, 5.1	В5	5
УХЛ	1, 1.1	УХЛ1	9
	2, 2.1	УХЛ2	10
	3, 3.1	УХЛ3	11
	4, 4.1, 4.2	УХЛ4	4
	5, 5.1	В5	5
Т, ТВ, ТС	1, 1.1	T1	12
	2, 2.1	T2	13
	3, 3.1	T3	14
	4, 4.1, 4.2	O4	15
	5, 5.1	B5	5
OM, M, TM	1, 1.1 2, 2.1 3, 3.1 4, 4.1, 4.2 5, 5.1	OM1 OM2 OM3 OM4	16 17 18 19
0	1, 1.1	O1	20
	2, 2.1	O2	21
	3, 3.1	B3	22
	4, 4.1, 4.2	O4	15
	5, 5.1	B5	5
В	1, 1.1	B1	23
	2, 2.1	B2	24
	3, 3.1	B3	22
	4, 4.1, 4.2	B4	25
	5, 5.1	B5	5

Параметры климатических факторов, характеризующих макроклиматические районы по ГОСТ 15150-69, установлены ГОСТ 9.039-74, ГОСТ 16350-80, ГОСТ 24482-80.

Соответствие ранее принятых обозначений обозначениям условий эксплуатации по табл. 6 приведено в табл. 7.

7. Соответствие ранее принятых обозначений	обозначениям условий эксплуатации
по ГОСТ 9.104-79 в	

Макроклиматический	Ранее принятые	Обозначение усло	вий эксплуатации
район по ГОСТ 15150-69	категории размещения	ранее принятое	по табл. 6
Умеренный	1	Ж2	УІ
	2	C_1	У2
	3	Л	УХЛ4
	4	ОЖ3	B5
Холодный	1	Ж3	ХЛ1
	2	C ₃	ХЛ2
	3	Л	УХЛ4
	4	ОЖ3	B5
Тропический сухой и	1	ОЖ2	T1
тропический влажный	2	Ж ₁	T2
	3	C_2	T3
	4	ОЖ3	B5
Морской умеренно-	1	Ж4	OM1
холодный	2	Ж4	OM2
	3	c_i	OM3
	4	ОЖ3	В5
Морской тропический	1	ОЖ4	OM1
	2	ОЖ₄	OM2
	3	C_2	OM3
	4	O Ж ₃	B5

МЕТАЛЛИЧЕСКИЕ И НЕМЕТАЛЛИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ ПОКРЫТИЯ

ОБОЗНАЧЕНИЯ ПОКРЫТИЙ (по ГОСТ 9.306-85 в ред. 1993 г.)

Стандарт устанавливает обозначения металлических и неметаллических неорганических покрытий в технической документации.

Обозначения способов обработки основного металла приведены в табл. 8, получения покрытия - в табл. 9.

8. Обозначения способов обработки основного металла

Способ обработки основного металла	Обозна- чение	Способ обработки основного металла	Обозна- чение
Крацевание	крц	Химическое полирование	хп
Штампование	штм	Электрохимическое полирование	эп
Штрихование	штр	«Снежное» травление	снж
Вибронакатывание	вбр	Обработка «под жемчуг»	ж
Алмазная обработка	алм	Нанесение дугообразных линий	дл
Сатинирование	стн	Нанесение волосяных линий	вл
Матирование	мт	Пассивирование	Хим.Пас
Механическое полирование	мп		

9. Обозначение способов получения покрытия

Способ получения покрытия	Обозна- чение	Способ получения покрытия	Обозна- чение
Катодное восстановление	_	Конденсационный (вакуумный)	Кон
Анодное окисление*	Ан	Контактный	Кт
Химический	Хим	Контактно-механический	Км
Горячий	Гор	Катодное распыление	Кp
Диффузионный	Диф	Вжигание	Вж
Термическое напыление	П₀ ГОСТ	Эмалирование	Эм
-	9.304-87	Плакирование	Пк
Термическое разложение**	Тр		

^{*} Способ получения покрытий, окрашивающихся в процессе анодного окисления алюминия и его сплавов, магния и его сплавов, титановых сплавов, обозначают «Аноцвет».

Материал покрытия, состоящий из металла, обозначают символами в виде одной или двух букв, входящих в русское наименование соответствующего металла (табл. 10).

10. Обозначения материала покрытия, состоящего из металля

Металл покрытия	Обозначение	Металл покрытия	Обозначение
Алюминий	A	Палладий	Пд
Висмут	Ви	Платина	Пл
Вольфрам	В	Рений	Pe
Железо	ж	Родий	Рд
Золото	3л	Рутений	Py
Индий	Ин	Свинец	С
Иридий	Ир	Серебро	Cp
Кадмий	Кд	Сурьма	Су
Кобальт	Ко	Титан	Ти
Медь	М	Хром	x
Никель	н	Цинк	ц
Олово	0		

Обозначения никелевых и хромовых покрытий даны в табл. 11.

Материал покрытия, состоящий из сплава, обозначают символами компонентов, входящих в состав сплава, разделяя их знаком дефис, и в скобках указывают максимальную массовую долю первого или первого и второго (в случае трехкомпонентного сплава) компонентов в сплаве, отделяя их точкой с запятой.

Примеры обозначения; покрытие сплавом медь-цинк с массовой долей меди 50-60~% и цинка 40-50~%

M-II (60);

покрытие сплавом медь-олово-свинец с массовой долей меди 70-78 %, олова 10-18 %, свинца 4-20 %

M-O-C (78; 18).

^{**} Способ получения покрытий термическим разложением металлорганических соединений обозначают МосТр.

11. Обозначения никелевых и хромовых покрытий

Наименование	Обозначение	
покрытия	сокращенное	полное
Никелевое, получаемое блестящим из электролита с блеско- образующими добавками, содержащее более 0,04 % серы	-	Нб
Никелевое матовое или полублестящее, содержащее менее 0,05 % серы; относительное удлинение при испытании на растяжение не менее 8 %	-	Нпб
Никелевое: содержащее 0,12-0,20 % серы двухслойное (дуплекс) трехслойное (триплекс) двуслойное композиционное - никель-сил* двуслойное композиционное трехслойное композиционное	- Нд Нт Нсил Ндз Нтз	Нс Нпб. Нб Нпб. Нс. Нб Нб. Нз Нпб. Нз Нпб. Нс. Нз
Хромовое: обычное пористое микротрещинное микропористое «молочное» двуслойное	- - - - - Хд	X X11 Xмт Xмп Xмол Xмол, X, тв

^{*} При необходимости в технических требованиях чертежа указывают символ химического элемента или формулу химического соединения, используемого в качестве соосаждаемого вещества.

 Π р и м е ч а н и е . Допускается применять сокращенные обозначения и указывать суммарную толщину покрытия.

В обозначении материала покрытия сплавом (табл. 12) при необходимости допускается указывать минимальную и максимальную массовые доли компонентов, например, покрытие сплавом золото-никель с массовой долей золота 93,0-95,0 %, никеля 5,0-7,0 % обозначают Зл-Н (93,0-95,0).

В обозначении покрытия сплавами на основе драгоценных металлов деталей часов и ювелирных изделий допускается указывать среднюю массовую долю компонентов.

Для вновь разрабатываемых сплавов обозначение компонентов производят в порядке уменьшения их массовой доли.

12. Обозначения покрытий сплавами

Наименование материала покрытия сплавами	Обозначение	Наименование материала покрытия сплавами	Обозначение
Алюминий-цинк	А-Ц	Золото-медь-кадмий	Зл-М-Кд
Золото-серебро	Зл-Ср	Золото-кобальт	Зл-Ко
Золото-серебро-медь	Зл-Ср-М	Золото-никель-кобаль	Зл-Н-Ко
Золото-сурьма	Зл-Су	Золото-платина	Зл-Пл
Золото-никель	Зл-Н	Золото-индий	Зл-Ин
Золото-цинк-никель	Зл-Ц-Н	Медь-олово (бронза)	M-O
Золото-медь	3л-М	Медь-олово-цинк (латунь)	М-О-Ц

Продолжение табл. 12

Наименование материала покрытия сплавами	Обозначение	Наименование материала покрытия сплавами	Обозначение
Медь-цинк (латунь)	м-ц	Олово-свинец	0-C
Медь-свинец-олово (бронза)	M-C-O	Олово-цинк	0-Ц
Никель-бор	н-Б	Палладий-никель	Пд-Н
Никель-вольфрам	н-в	Серебро-медь	Cp-M
Никель-железо	н-ж	Серебро-сурьма	Cp-Cy
Никель-кадмий	Н-Кл	Серебро-палладий	Ср-Пд
Никель-кобальт	H-Ko	Кобальт-вольфрам	Ko-B
Никель-фосфор	н-Ф	Кобальт-вольфрам-ванадий	Ko-B-Ba
Никель-кобальт-вольфрам	H-Ko-B	Кобальт-марганец	Ко-Мц
Никель-кобальт-фосфор	Н-Ко-Ф	Цинк-никель	Ц-Н
Никель-хром-железо	н-х-ж	Цинк-титан	Ц-Ти
Олово-висмут	О-Ви	Калмий-титан	Кд-Ти
Олово-кадмий	О-Кл	Хром-ванадий	X-Ba
Олово-кобальт	O-Ko	Хром-углерод	х-у
Олово-никель	О-Н	Нитрид титана	Ти-Аз

В обозначении материала покрытия, получаемого способом вжигания, указывают марку исходного материала (пасты) в соответствии с нормативно-технической документацией.

В обозначении покрытия припоем, получаемого горячим способом, указывают марку припоя по ГОСТ 21930-76, ГОСТ 21931-76.

Обозначения неметаллических неорганических покрытий приведено ниже:

Неметаллическое неорганическое покрытие	Обозначение
Окисное	Окс
Фосфатное	Фос

При необходимости указания электролита (раствора), из которого требуется получить

покрытие, используют обозначения, приведенные в обязательных приложениях к ГОСТ 9.306-85.

Электролиты (растворы), не указанные в приложениях, обозначают полным наименованием, например, Ц9. хлористоаммонийный. хр, М15. пирофосфатный.

13. Обозначения функциональных свойств покрытий

Функциональные свойства покрытия	Обозначение
Твердое	ТВ
Электроизоляционное	эиз
Электропроводное	3

14. Обозначения декоративных свойств покрытий

Јекоративное свойство	Декоративный признак покрытия	Обозначение
Блеск	Зеркальное	3K
{	Блестящее	б
Ĭ	Полублестящее	пб
	Матовое	м
Шероховатость	Гладкое	гл
1	Слегка шероховатое	сш
	Шероховатое	ш
j	Весьма шероховатое	вш
Рисунчатость	Рисунчатое	рсч
Текстура	Кристаллическое	кр
	Слоистое	сл
Цвет*	-	Наименование цвета

^{*} Цвет покрытия, соответствующий естественному цвету осажденного металла (цинка, меди, хрома, золота и др.), не служит основанием для отнесения покрытия к окрашенным. Цвет покрытия обозначают полным наименованием, за исключением черного покрытия - ч.

15. Обозначения дополнительной обрас	ботки покрытия
--------------------------------------	----------------

Дополнительная обработка покрытия	Обозначение
Гидрофобизирование	гфж
Наполнение в воде	нв
Наполнение в растворе хроматов	нхр
Нанесение лакокрасочного покрытия	лкп
Оксидирование	окс
Оплавление	опл
Пропитка (лаком, клеем, эмульсией и др.)	прп
Пропитка маслом	прм
Термообработка	т
Тонирование	тн
Фосфатирование	фос
Химическое окрашивание, в том числе наполнение в растворе красителя	Наименование цвета
Хроматирование*	хр
Электрохимическое окрашивание	эл. Наименование цвет

^{*} При необходимости обозначают цвет хроматной пленки: хаки - хаки, бесцветной - бцв; цвет радужной пленки - без обозначения.

Обозначение дополнительной обработки покрытия пропиткой, гидрофобизированием, нанесением лакокрасочного покрытия допускается заменять обозначением марки материала, применяемого для дополнительной обработки.

Марку материала, применяемого для дополнительной обработки покрытия, обозначают в соответствии с нормативно-технической документацией на материал.

Обозначение конкретного лакокрасочного покрытия, применяемого в качестве дополнительной обработки, производят по ГОСТ 9.032-74.

Способы получения, материал покрытия, обозначение электролита (раствора), свойства и цвет покрытия, дополнительную обработку, не приведенные в стандарте, обозначают по технической документации или записывают полным наименованием.

Порядок обозначения покрытия в технической документации:

обозначение способа обработки основного метадла (при необходимости);

обозначение способа получения покрытия; обозначение материала покрытия; минимальная толщина покрытия;

обозначение электролита (раствора), из которого требуется получить покрытие (при необходимости) (табл. 15 а; 15 б);

обозначение функциональных или декоративных свойств покрытия (при необходимости):

обозначение дополнительной обработки (при необходимости).

В обозначении покрытия не обязательно наличие всех перечисленных составляющих.

При необходимости в обозначении покрытия допускается указывать минимальную и максимальную толцины через дефис.

Допускается в обозначении покрытия указывать способ получения, материал и толщину покрытия, при этом остальные составляющие условного обозначения указывают в технических требованиях чертежа.

Толщину покрытия, равную или менее 1 мкм, в обозначении не указывают, если нет технической необходимости (за исключением драгоценных металлов).

Покрытия, используемые в качестве технологических (например, цинковое при цинкатной обработке алюминия и его сплавов, никелевое на коррозионко-стойкой стали, медное на сплавах меди, медное на стали из цианистого электролита перед кислым меднением) допускается в обозначении не указывать.

Если покрытие подвергается нескольким видам дополнительной обработки, их указывают в технологической последовательности. Запись обозначения покрытия производят в строчку. Все составляющие обозначения отделяют друг от друга точками, за исключением материала покрытия и толщины, а также обозначения дополнительной обработки лакокрасочным покрытием, которое отделяют от обозначения металлического или неметаллического неорганического покрытия чертой проби.

Обозначение способа получения и материала покрытия следует писать с прописное буквы, остальных составляющих - со строчных.

Примеры записи обозначения покрытий приведены в табл. 16.

15а. Обозначения электролитов для получения покрытий (по ГОСТ 9.306-85)

Основной металл	Наименование покрытия	Основные компоненты	Обозначение
Алюминий и его сплавы	Окисное	Хромовый ангидрид Щавелевая кислота, соли титана Борная кислота, хромовый ангидрид	хром эмт эмт
Магний и его сплавы	Окисное	Бифторид аммония или фтористый калий Бифторид аммония, двухромовокислый калий или хромовый ангидрид Бифторид аммония, двухромовокислый натрий, ортофосфорная кислота	фтор. хром фтор. хром. фос

15б. Обозначения растворов для получения покрытий

Основной металл	Наименование покрытия	Основные компоненты	Обозначение
Магний и его сплазы	Окисное	Двухромовокислый калий (натрий) с различными активаторами Двухромовокислый калий (натрий) с различными активаторами, плавиковая кислота и фтористый калий (натрий)	хром хром. фтор
Магний и его сплавы	Окисное	Едкий натр, станнат калия, ацетат натрия, пирофосфат натрия	стан
Сталь, чугун	Окисное	Молибденовокислый аммоний	мдн
Сталь	Фосфатное	Барий азотнокислый, цинк монофосфат, цинк азотнокислый	окс
Чугун	Фосфатное	Барий азотнокислый, кислота ортофосфорная, марганца двуокись	окс
Магний и его сплавы	Фосфатное	Монофосфат бария, фосфорная кислота, фтористый натрий	фтор

16. Примеры записи обозначений покрытий

Покрытие	Обозначение
Цинковое толщиной 6 мкм с бесцветным хроматированием	Ц6. хр. бцв
Цинковое толщиной 15 мкм с хроматированием хаки	Ц15. хр. хаки
Цинковое толщиной 9 мкм с радужным хроматированием с по- следующим нанесением лакокрасочного покрытия	Ц9. хр/лкп
Цинковое толщиной 6 мкм, оксидированное в черный цвет	Ц6. окс. ч
Цинковое толщиной 6 мкм, фосфатированное в растворе, содержащем азотнокислый барий, монофосфат цинка, азотнокислый цинк, пропитанное маслом	Ц6. фос. окс. прм
Цинковое толщиной 15 мкм, фосфатированное, гидрофобизированное	Ц15. фос. гфж
Цинковое толщиной 6 мкм, получаемое из электролита, в котором отсутствуют цианистые соли	Ц6. нецианистый
Кадмиевое толщиной 3 мкм, с подслоем никеля толщиной 9 мкм, с последующей термообработкой, хроматированное	Н9. Кд3. т. хр
Никелевое толщиной 12 мкм, блестящее, получаемое на виброна- катанной поверхности с последующим полированием	вбр. Н12. б
Никелевое толщиной 15 мкм, блестящее, получаемое из электролита с блескообразователем	H6. 15
Хромовое толщиной 0,5-1 мкм, блестящее, с подслоем сил - ни- келя толщиной 9 мкм	Нсил9. Х.б
Хромовое толщиной 0,5-1 мкм, с подслоем полублестящего никеля толщиной 12 мкм, получаемое на сатинированной поверхности	стн. Нп612. Х
Хромовое толщиной $0,5$ -1 мкм, блестящее с подслоем меди толщиной 24 мкм и двухслойного никеля толщиной 15 мкм	М24. Нд.15. Х.6
Хромовое толщиной $0,5$ -1 мкм, блестящее, с подслоем меди толщиной 30 мкм и трехслойного никеля толщиной 15 мкм	M30. HT15. X.6
Хромовое толщиной 0,5-1 мкм, блестящее с подслоем двухслойного никелевого композиционного покрытия толщиной 18 мкм	Ндз18. Х. б
Хромовое двухслойное толщиной 36 мкм: «молочное» толщиной 24 мкм, твердое толщиной 12 мкм	Хд 36; Хмол24; Х12. тв
Покрытие сплавом олово-свинец с массовой долей олова 55-60 % толщиной 3 мкм, оплавленное	О-С (60) 3.опл.
Покрытие сплавом олово-свинец с массовой долей олова 35-40 % толщиной 6 мкм, с подслоем никеля толщиной 6 мкм	H6. O-C(40)6
Оловянное толщиной 3 мкм, кристаллическое, с последующим нанесением лакокрасочного покрытия	03. кр/лкп
Медное толщиной 6 мкм, блестящее, тонированное а синий цвет, с последующим нанесением лакокрасочного покрытия	М6. б. тн. синий/лкп
Покрытие сплавом золото-никель толщиной 3 мкм, с подслоем никеля толщиной 3 мкм	Н3.3л-Н(98,5-99,5)3

Покрытие	Обозначение
Золотое толщиной 1 мкм, получаемое на поверхности после алмазной обработки	алм. 3л1
Химическое никелевое толщиной 9 мкм, гидрофобизированное	Хим. Н9. гфж; Хим. Н9. гфж 139-41
Химическое фосфатное, пропитанное маслом	Хим. Фос. прм
Химическое фосфатное, получаемое в растворе, содержащем азотнокислый барий, монофосфат цинка, азотнокислый цинк	Хим. Фос. окс
Химическое окисное электропроводное	Хим. Окс. э
Химическое окисное, получаемое в растворе, содержащем едкий натр, станнат калия, ацетат натрия, пирофосфат натрия с последующим нанесением лакокрасочного покрытия	Хим. Окс. стан/лкп
Химическое окисное, получаемое в растворе двухромовокислого калия (натрия) с различными активаторами	Хим. Окс. хром
Химическое окисное, получаемое в растворе, содержащем молиб- деновокислый аммоний, пропитанное маслом	Хим. Окс. мдн. прм
Анодно-окисное твердое, наполненное в растворе хроматов	Ан. Окс. тв. нхр
Анодно-окисное электроизоляционное с последующим нанесением лакокрасочного покрытия	Ан. Окс. эиз/лкп
Анодно-окисное твердое, пропитанное маслом	Ан. Окс. тв. прм; Ан. Окс. тв. масло 137-02
Анодно-окисное, получаемое на штрихованной поверхности	штр. Ан. Окс
Анодно-окисное, получаемое окрашенным в зеленый цвет в процессе анодного окисления	Аноцвет. зеленый
Анодно-окисное, окращенное электрохимическим способом в темно-серый цвет	Ан. Окс. Эл. темно-серый
Анодно-окисное, получаемое на химически полированной поверхности, окрашенное химическим способом в красный цвет	хп. Ан. Окс. красный
Анодно-окисное, получаемое в электролите, содержащем хромовый ангидрид	Ан. Окс. хром
Анодно-окисное, получаемое в электролите, содержащем щавелевую кислоту и соли титана, твердое	Ан. Окс. эмт. тв
Анодно-окисное, получаемое на матированной поверхности в электролите, содержащем борную кислоту, хромовый ангидрид	мт. Ан. Окс. эмт
Горячее покрытие, получаемое из припоя ПОС 61	Гор. ПОС61
Серебряное толщиной 9 мкм, с подслоем химического никелевого покрытия толщиной 3 мкм	Хим. Н3. Ср9
Покрытие, получаемое способом химического пассивирования, гидрофобизированное	Хим. Пас.гфж

ОБОЗНАЧЕНИЕ ПОКРЫТИЙ ПО МЕЖДУНАРОДНЫМ СТАНДАРТАМ

Материал основного металла и покрытия обозначают химическим символом элемента. Материал основного металла, состоящий из сплава, обозначают химическим символом элемента с максимальной массовой долей. Основной неметаллический материал обозначают NM, пластмассу - PL.

Материал покрытия, состоящий из сплава, обозначают химическими символами компонентов, входящих в сплав, разделяя их знаком дефис. Максимальную массовую долю первого компонента указывают после химического символа первого компонента перед знаком дефис.

17. Обозначение способов получения покрытия по международным стандартам

Способ получения покрытия	Обозначение
Катодное восстановление	-
Анодное окисление	An
Химический	-
Горячий	· <u>-</u>
Термическое напыление	met

18. Обозначения дополнительной обработки покрытия по международным стандартам

Дополнительная обработка покрытия	Обозначение
Оплавление	f
Наполнение	u
Хроматирование*	С

^{*} Цвет хроматной пленки обозначают:

Покрытия А и В относятся к 1-му классу хроматных покрытий; покрытия С и D, обладающие более высокой коррозионной стойкостью, относятся ко 2-му классу.

19. Обозначение типов никелевых и хромовых покрытий по международным стандартам

Наименование покрытия	Обозначение
1. Хромовое обычное	Crr
2. Хромовое без трещин	Crf
3. Хромовое микротрещинное	Crmc
4. Хромовое микропористое	Crmp
5. Никелевое блестящее	Nib
 Никелевое матовое или полублестящее, требующее полировки 	Nip
7. Никелевое матовое или полублестящее, которое не следует полировать механическим способом	Nis
8. Никелевое двухслойное или трехслойное	Nid

А - бесцветный с голубаватым оттенком; В - бесцветный с радужным оттенком; С - желтый, радужный; D - оливковый (хаки).

Обозначение записывают в строчку в следующем порядке:

химический символ основного металла или обозначение неметалла, за которым следует наклонная черта;

способ нанесения покрытия, при необходимости указывают химический символ металла подслоя;

химический символ металла покрытия (при необходимости в круглых скобках указывают чистоту металла в процентах);

цифру, выражающую минимальную толщину покрытия на рабочей поверхности в мкм; обозначение типа покрытия (при необходимости);

обозначение дополнительной обработки и класса (при необходимости).

20. Примеры обозначений покрытий по международным стандартам

Покрытие	Обозначение	Международный стандарт
1. Цинковое покрытие по железу или стали тол- щиной 5 мкм	Fe/Zn5	ИСО 2081
2. Цинковое покрытие по железу или стали тол- щиной 25 мкм с бесцветным хроматным покрытием 1-го класса	Fe/Zn25clA	ИСО 4520
3. Оловянное оплавленное покрытие толщиной 5 мкм, нанесенное на железо или сталь по подслою никеля толщиной 2,5 мкм	Fe/Ni2,5Sn5f	ИСО 2093
4. Серебряное покрытие по латуни толщиной 20 мкм	Cu/Ag20	ИСО 4521
5. Золотое покрытие с содержанием золота 99,5 % на медном сплаве толщиной 0,5 мкм	Cu/Au(99,5)0,5	ИСО 4523
6. Микротрещинное хромовое покрытие толщиной до 1 мкм, по блестящему никелю толщиной 25 мкм, на пластмассе	PL/Ni25bCrmc	ИСО 4525
7. Покрытие сплавом олово-свинец, с содержанием олова 60 % толщиной 10 мкм, оплавленное, по железу или стали с подслоем никеля толщиной 5 мкм	Fe/Ni5Sn60-Pb10f	ИСО 7587

ОБЩИЕ ТРЕБОВАНИЯ К ВЫБОРУ ПОКРЫТИЙ (по ГОСТ 9.303-84 в ред. 1993 г.)

Стандарт устанавливает общие требования к выбору металлических и неметаллических неорганических покрытий (далее - покрытий) деталей и сборочных единиц (далее - деталей), наносимых химическим, электрохимическим и горячим (олово и его сплавы) способами.

Стандарт не распространяется на покрытия, применяемые в качестве технологических, покрытия деталей часов и ювелирных изделий, за исключением требований по установлению максимальной толщины покрытия.

При выборе покрытий следует учитывать:

назначение детали, назначение покрытия,

условия эксплуатации детали с покрытием по ГОСТ 15150-69.

материал детали,

свойства покрытия и его влияние на механические и другие характеристики материала детали,

способ получения покрытия и его влияние на механические и другие характеристики материала детали,

экологичность металла покрытия и технологического процесса нанесения,

допустимость контакта металлов и металлических и неметаллических покрытий по ГОСТ 9.005-72,

экономическую целесообразность. Выбор покрытия проводят по табл. 21, 22.

21. Климатические исполнения изделий и категории размещения деталей с покрытиями

Группы условий эксплуатации покрытий по ГОСТ 9.303-84		
1	У, УХЛ (ХЛ) 2.1; 3*; 3.1 TC 3*; 3.1 УХЛ (ХЛ). TC 4; 4.2 УХЛ (ХЛ). ТВ. TC. O,	
	M, TM, OM, B 4.1	
2	TC 1.1; 2; 3 TB, T, O 2.1 TB, T 3*; 3.1 TB, O, M, TM, OM, B 4; 4.2	
3	TC 1 Y, YX/I (X/I) 1**; 1.1; 2; 3	
4	TB, T, O, M, TM, OM, B 1.1	
5	У, УХЛ (ХЛ) 1 ТВ, Т, О 1**; 2 ТВ, Т 3	
6	M, TM, OM, B 1***; 2***; 2.1; 3; 3.1	
7	ТВ, Т, О 1 УХЛ (ХЛ), ТВ, ТС, О, М, ТМ, ОМ, В 5; 5.1	
8	M, TM, OM, B 1; 2	

Обозначения, например, УХЛ (ХЛ), ТВ, ТС, О, М, ТМ, ОМ, В 4.1 следует читать: УХЛ4.1; ХЛ4.1; ТВ4.1; ТС4.1; О4.1; М4.1; ТМ4.1; ОМ4.1; В4.1.

Стандарт устанавливает минимальную толщину покрытия, которая обеспечивает защитную способность и (или) его функциональные свойства в заданных условиях при длительных (годы) сроках службы изделия, установленных в стандартах и технических условиях на изделие.

Применение минимальной толщины покрытия, превышающей установленную стандартом, согласовывают с заказчиком в установленном порядке.

В тех случаях, когда в графе табл. 22 "Толщина! покрытий для условий эксплуатации покрытий по ГОСТ 15150-69" приведен интервал толщин, минимальную толщину покрытия в указанных пределах устанавливают в нормативно-технической документации с учетом специфики изделия (детали) и технологии получения покрытия.

^{*} Только для деталей, размещенных в оболочках изделий с естественной или искусственной вентиляцией.
** Только для изделий, специально предназначенных для эксплуатации в атмосфере типа I.

^{***} Только для изделий и деталей, защищенных от попадания брызг морской воды.

22. Металлические и неметаллические

Металл	Обозначение	1	Толщина ¹ покр	ытий для условий
детали	покрытия по ГОСТ 9.306-85	Назначение покрытия	1	2
	Ц. хр.бцв	Защитное, защитно- декоративное ²	6	123
	Ц.хр.	Защитное, защитно- декоративное ²	6	93
	Ц.хр.	Защитное, защитно- декоративное ²	6	15
	Ц.хр.хаки	Защитное, защитно- декоративное ²	6	9
	Ц.хр.ч	Защитное, защитно- декоративное ² , светопо- глощающее		15
	Ц.хр/лкп	Защитное	-	6
	Ц.фос.гфж	Защитное	-	15
Сталь углеродистая	Ц.фос/лкп	Защитное	-	6
	ц	Защитное	6	9
	Кд	Защитное	-	-
	Кд.хр	Защитное, защитно- декоративное ²	-	-
	Кд.хр	Защитное, защитно- декоративное ²	-	
	H.6	Защитно-декоративное	9	-
i	Хим.Н	Защитное, под пайку	6	*
	Хим.Н.тв	Для повышения изно- состойкости и твердости	9	12-15
	Н	Защитное, под пайку, для повышения электро- проводности	9	テータに送れてい デオール・サルオル January January Ale
	Нд	Защитное, защитно- декоративное	-	344 18 35.31 312 12 13 13 13 13 13
	H6.X.6	Защитно-декоративное	9	24 Голицина хрома

неорганические покрытия

сплуа	тации г	юкрыті	ий по Г	OCT 1515	0-69	Дополнительные указания	Порядковы номер
3	4	5	6	7	8		покрытия
15	15 ³	-	-	-	-	-	1
93	93	93	-	18 ³	-	Не допускается для деталей, являю- щихся арматурой пластмассы	2
15	15	15	_	24-30	-	Допускается при невозможности дополнительной защиты	3
9	9	15	-	18	-	Допускается применять Ц.хр. желтое	4
15	15	18	-	-	•	-	5
6	9	9	9	12	12	Для деталей сложной конфигурации, обрабатываемых в автоматических линиях, толщину цинкового покрытия на внутренних поверхностях не нормировать, если нет других требований в конструкторской документации	6
-	15	-	18	18	-	-	7
6	9	9	9	12	12	Для деталей сложной конфигурации, обрабатываемых в автоматических линиях, толщину цинкового покрытия на внутренних поверхностях не нормировать, если нет других требований в конструкторской документации	1
-	-	-	-	-	-	Допускается для деталей, подлежащих точечной сварке, притирке, для электропроводящих деталей и для защиты от коррозии в специфических условиях	9
-	-	-	30	30	40	Назначать для электропроводя-	10
<u>-</u>	123	-	183	183	183	Назначать для изделий, предна- значенных для работы при непо- средственном контакте с морской водой и в условиях тропического климата	11
-	15	-	21	21	21	Допускается при невозможности дополнительной защиты	12
18	-	-	-	<u> </u>	-	-	13
15	15	-	-	† -	-	Рекомендуется для сложнопрофилированных деталей	14
18	18	18	18	18	18	-	15
18	-	-	 -	-	-	-	16
18	-	30	-	-	-	-	17
24	24 ,0 мкм	35	 -	-	 -	-	18

Металл	Обозначение покрытия по	Назначение	Толицина! п	окрытий для условий
детали	ГОСТ 9.306-85	покрытия	1	2
	H.X	Защитное	9	24
				 Толщина хрома
	Нсил.Х.б	Защитно-декоративное	-	21
				толщина хрома
	Ндз.Х.б	Защитно-декоративное	-	18 Толщина хрома
	Нд.Х.б	Защитно-декоративное	-	18-21 Толщина хрома
	Нт.Х.б	Защитно-декоративное	-	15 Толцина хрома
	M.H	Защитное	6; 3	18; 9
	М.Нб	Защитно-декоративное	6; 6	18; 12
Сталь	М.Нб	Защитно-декоративное	6; 6	9; 12
утлеродистая	М.Н.ч	Защитно-декоративное, светопоглощающее	3	15
	M.H6.X.6	2		Толщина черного
	M.Ho.A.o	Защитно-декоративное	9; 6	24; 12 Толщина хрома
	M.H6.X.6	Защитно-декоративное	6; 9	9;15
				Толщина хрома
	M.H.X	Защитное	6; 3	15; 9 Толщина хрома
	М.Нсил.Х.б	Защитно-декоративное	-	15; 9
				 Толщина хрома
•	М.Нт.Х.б	Защитно-декоративное	-	Толщина хрома
	М. Ндз.Х.б	Защитно-декоративное	-	
				Толщина хрома
	М.Нд.Х.б	Защитно-декоративное	-	- Толщина хрома
	М.Нтз.Х.б	Защитно-декоративное	-	-
				Толщина хрома
	М.Н.Х.ч	Защитно-декоративное, светопоглощающее	6; 15	6; 15 Толщина черного

Продолжение табл. 22

эксплуа	тации г	токрытт	ий по Г	OCT 1515	50-69	Дополнительные указания	Порядковый номер
3	4	5	6	7 .	8		покрытия
24 0,5-1,0	-) мкм	-	-	-	-	Рекомендуется для поверхно- стей, к которым предъявляют требо- вания обеспечения низкого коэф- фициента трения	19
21	21	30	30	-	-	Толицина 0,25-0,5 мкм обеспечивает получение микропористого хромового покрытия	20
	,5 мкм		90 1				21
18	18	30	30	35	-]	-	21
0,5-1,0				 ,		· · · · · · · · · · · · · · · · · · ·	
18-21	21	30	30	40	-	-	22
0,5-1,0) мкм						
15	15	24	24	35	- 1	-	23
0,5-1,6	0 мкм	,					
18; 9	18; 9	18; 9	18; 9	-	-	-	24
18; 12		18; 18	18: 18		_	-	25
9; 12	9; 12	+	-	-	-	При невозможности наращива- ния медного подслоя в сернокислом электролите	26
15	15	-	_	-	_	-	27
	ı	і рмируе	i i TCS	1	'		
				35; 15	-	-	28
0,5-1,	•	150, 10	150, 101	33, 13	ı		Į
9; 18	9; 18	Γ -	T _ 1		Τ	При невозможности наращива-	29
9, 10	9, 10	-	-			ния медного подслоя в сернокислом	
0.5-1.	0 мкм	,			ı	электролите	
15: 9	21 · 15	21. 15	21. 15	21; 15	I -	-	30
	0 мкм	121, 15	12, 10	42, 20	1		1
15; 9	15; 9 0,5 MKM	30; 15	30; 15	30; 15	30; 15	Толщина 0,25-0,5 мкм обеспечивает получение микропористого хромового покрытия	31
0,23-0		30: 15	30; 15	30; 15	30; 15	-	32
0510) MAN	120, 13	120, 12	, ,,,,,	1 20, 13		
0,5-1,0	MKM	24: 15	24.15	24:21	24-21	Толщина 0,25-0,5 мкм обеспечи-	33
0,25-0	.5 MKM	24; 15	24;15	24;21	24;21	вает получение микропористого хромового покрытия]
0,25 0	1 _	24- 15	24; 15	30; 15	30; 15	-	34
0,5-1,0) MKM	* - , 13	L-7, 13	1 30, 13	1 50, 15		1
-	-	-	-	30; 15	30; 15	Толщина 0,25-0,5 мкм обеспечивает получение микропористого	35
	,5 мкм			·	т	хромового покрытия	
6; 15	-	-	-	-	† -	-	36
Ynowa	не нор	мирует	ся			<u> </u>	

Металл	Обозначение покрытия по	Назначение	Толщина ¹ покрь	пий для условий
детали	ГОСТ 9.306-85	покрытия	1	2
	Х.тв	Для повышения износо- стойкости и твердости		ину покрытия вой документа
	Хмол	Для работы на трение	Толц ле	ину покрытия вой документа
	Хмол	Защитное	9	18
	Хмол.Х.тв	Для повышения изно- состойкости, защитное	6; 3	9; 9
	Ц.Хч.прм	Защитное	6-9; 3	9-12; 3
	Хπ	Для повышения изно- состойкости		ину покрытия вой документа
	Н.Х.ч	Декоративное, свето- поглощающее	3	3
	M.O-C (60) ⁹	Под пайку	6; 6	6; 6
			0, 0	0,0
	М.О-С (60).опл ⁹	Под пайку	6; 3	6; 3
Сталь углеродистая	М.О-Ви (99,8)	Под пайку	6; 6	6; 6
	M.M-O (60)	Для снижения переходного сопротивления, повышения поверхностей электропроводности, под пайку	9; 6	21; 9
	M.O-H (65)	Защитное, для повы- шения поверхностей элек- тропроводности, под пайку	21; 9	21; 9
	H.O	Защитное, под пайку	6; 6	12; 9
	H.O-C (60)9	Защитное, под пайку	6; 6	12; 9
	Н.О-С (60).опл ⁹	Защитное, под пайку	6; 3	12; 3
	Н.О-Ви (99,8)	Защитное, под пайку	6; 6	12; 9
	Гор.О	Защитное, под пайку		He

ксплуа	тации г	юкрыти	ий по Г	OCT 1515	60-69	Дополнительные указания	Порядковый номер
3	4	5	6	7	8		покрытия
	вливаю о выбор					При назначении покрытия на сложнопрофилированные детали, например, на прессформы, следует учитывать невозможность получения из стандартных электролитов и ванн равномерного по толщине покрытия (или его отсутствие) в отверстиях, пазах, вырезах, на вогнутых участках деталей, внутренних поверхностих и местах сопряжения неразъемных сборочных единиц	37
	вливаю о выбор					-	38
18	18	24	24	35	60	-	39
9; 9	9; 9	12; 12		24; 24	24; 24	Допускается при невозможности применения X.тв	40
9-12; 3	9-12; 3	9-12; 3	9-12; 3		-	_	41
	авливаю о выбој					-	42
-	-	-	-	-	-	-	43
12; 9	не нор 12; 9	12; 9 ³		12; 93	12; 93	Покрытие не подвержено игло- образованию	44
12; 3	12; 3	12; 3 ³	12; 3 ³	12; 3 ³	12; 3 ³	Покрытие не подвержено игло- образованию	45
12; 9	12; 9	12; 9 ³	12; 9 ³	12; 9 ³	12; 93	Допускается, если иглообразование не влияет на работоспособность изделия	46
21; 9	21; 9	21; 93	21; 9 ³	21; 9 ³	21; 9 ³	Покрытие не подвержено игло-образованию	47
21; 9	21; 9	21; 93	21; 93	21; 9 ³	21; 93	Покрытие не подвержено игло- образованию	48
12; 9	12; 9	15; 12 ³	15; 12 ³	15; 12 ³	-	Допускается, если иглообразование не влияет на работоспособность изделия	49
12; 9	12; 9	15; 12 ³	15; 12 ³	15; 12 ³	-	Покрытие не подвержено игло- образованию. Допускается приме- нять H.O-C (40)	50
12; 3	12; 3	12; 3 ³	12; 3 ³	12; 3 ³	12; 3 ³	Покрытие не подвержено игло- образованию	51
12; 9	12; 9	15; 12 ³	15; 12 ³	15; 12 ³	-	Допускается, если иглообразова- ние не влияет на работоспособность изделия	52
норм	ируется	I				Допускается, если иглообразова- ние не влияет на работоспособность изделия	53

Металл	Обозначение покрытия по	Назначение	Толщина ¹ покр	ытий для условий	
детали	FOCT 9.306-85	покрытия	1	2	
	Н.Гор.ПОС	Защитное, под пайку	Толщина Толщина покрытия		
	Хим. Окс.прм	Защитное	+	+	
Сталь	Хим.Окс./лкп	Защитное	+	+	
углеродистая	Хим.Фос.прм	Защитное	+	+	
	Хим.Фос.окс	Защитное	+	+	
	Хим.Фос.прп	Защитное	+	+	
	Хим.Фос/лкп	Защитное, для электро- изоляции	+	+	
	Хим.Фос.гфж	Защитное	+	+	
	Х.тв	Для повышения изно- состойкости	9	9	
	Хмол	Защитное, для работы на трение	9	18	
	Хим.Н	Для повышения изно- состойкости	9	9	
	Н	Защитное, под пайку, для повышения электро- проводности	6	9	
	Н.Х.ч	Светопоглощающее	3 To	3 лщина черного	
Сталь коррозионно-	М.Х.ч	Светопоглощающее	3 3		
стойкая	Гор.ПОС	Под пайку	Толщина черного		
		Tion many	He		
	Н.Гор.ПОС	Защитное, под пайку	Толщина никеля Толщина покрытия		
	Хим.Пас	Защитное	+	+	
	Хим.Пас.гфж	Защитное	+	+	
	эп	Защитное	+	+	
	Хим.Пас/лкп	Защитное	+	+	
	О.Ц.хр	Защитное	3; 6	3; 15	
Чугун	О.Кд.хр	Защитное		3, 13	
	О.Ц.фос.гфж	Защитное	·	-	
	Нб	Защитно-декоративное	9		

сплуа	тации п			OCT 1515	0-69	Дополнительные указания	Порядковый номер
3	4	5	6	7	8		покрытия
	я 1-6 мы IOC не		уется			Покрытие не подвержено игло- образованию	54
+	+	-	-	-	-	Для условий эксплуатации 2, 3, 4 допускается при периодическом возобновлении смазки на поверхности	55
+	+	+	+	+	+	-	56
+	+	+	+	-	-	Для условий эксплуатации 2-6 до- пускается при периодическом возоб- новлении смазки на поверхности	57
+	+	+	+	-	••		57a
+	+	+	+	+	-	-	58
+	+	+	+	+	+	-	59
+	+	+	-		_	-	60
9	9	9	9	9	9	-	61
18	18	18	18	24	24	-	62
9	9	9	9	9	9	-	63
9	9	12	12	12	12	Толщина покрытия под пайку высокотемпературынми припоями - 6-9 мкм, низкотемпературными - 1-3 мкм для всех условий эксплуатации	64
. 3	3	- 1	-	-	-	-	65
<u> </u>	не нор	мируето	Я				
3	3	-	-	-	-	-	66
хрома	не нор	мирует	ся				
норм	ируется					Покрытие не подвержено игло- образованию	67
	нее 1 м		руется			Покрытие не подвержено игло- образованию	68
+	+	-	-	-	-	На высоколегированных сталях	69
+	+	+	-	-	-	аустенитного, аустенитно- ферритного и мартенситноферрит- ного классов в условиях эксплуата- ции 5-8 допускается применять, если очаги коррозии не влияют на работоспособность изделия	70
+	+	+	-	-	-	Высоколегированные стали до- пускается применять в условиях эксплуатации 6 и 7, а стали типа 18- 8 - и в условиях эксплуатации 8	71
+	+	+	+	+	+	-	72
3; 30	3; 15	3; 30	-	-	-	-	73
-	-	-	-	3; 21	-	-	74
-	-			3; 18	_	-	75
18	-	-	-	-	- T	-	75a

Металл	Обозначение покрытия по	Назначение	Толщина ¹ покры	тий для условий	
детали	FOCT 9.306-85	покрытия	1	2	
	Х.тв	Для повышения изно- состойкости, защитно- декоративное	12	24	
	Хмол	Защитно-декоративное	9	18	
Чугун	Хмол.Х.тв	Для повышения изно- состойкости, защитно- декоративное	6; 3	15; 9	
	Хп	Для повыщения изно- состойкости		ину покрытия гации по выбо	
	Гор.О	Защитное		He	
	H	Защитное, под пайку	1-6	1-6	
	Нб	Защитно-декоративное	6	9	
	H6.X6	Защитно-декоративное	6 T	9 олщина хрома	
	H.X	Защитное	6	9	
			T	опцина хрома	
Медь и медные сплавы	Хим.Н.тв	Защитное, для повышения износостойкости, под пайку	6	9	
	Хим.Н	Защитное	6	9	
	Н.Х.ч	Защитно-декоративное	6	6	
			Толщина черного		
	Хмол	Защитное, для повы- шения износостойкости при малых нагрузках	9	18	
	Н.Х.ч	Светопоглощающее	1-3	3-6	
			Тол	иина черного	
	0	Под пайку, защитное	3	6	
	H.O	Под пайку, защитное	1-3; 3	1-3; 6	
	О.опл.	Под пайку, защитное	3	3	
	O-C (60)9	Под пайку, защитное	6	9	
	О-С (60).опл ⁹	Под пайку, защитное	6	6	
	M.M-O (60)	Под пайку, для повы- шения поверхностей элек- тропроводности	3; 6	3; 9	

				FOCT 15	150-69	Дополнительные указания	Порядковь номер
3	4	5	6	7	8		покрытия
24	24	40	40	40	-	-	76
18	18	24	24	24	-		77
15; 9	15; 9	21; 21	21; 21	-	-	-	78
устана:	вливаю	т в отра	і аслевой	доку-			80*
норми		·					
1-6	1-6	9	9	15	15		81
9	9	12	12	- 13	13	Толщину никелевого покрытия	82
						на литых деталях для условий экс- плуатации 1 принимают равной 12 мкм, для условий эксплуатации 2-5 принимают равной 15 мкм	83
9 0,5-1,0	9 мкм	15	15	15	15	Толщину никелевого покрытия на литых деталях для условий экс-	84
9	9 .	12	15	15	15	плуатации 1 принимают равной 12	85
),5-1,0		: :		· · · · · · · · · · · · · · · · · · ·	r. Har	мкм, для условий эксплуатации 2-5 принимают равной 15 мкм	03
9	9	12	12	15	15	Рекомендуется для сложнопрофилированных деталей	86
9	9	12	12	15	15	Рекомендуется для сложнопрофилированных деталей	86a
9 рома н	9 те норм	9 иируетс	9 я	15		-	87
18	18	18	18	21	-	-	88
6 рома н	6 не норм	пируетс	я	-	-	-	89
9	9	9	9	9	93	Допускается, если иглообразование не влияет на работоспособность изделия	90
3; 6	3; 6	3; 6	3; 6 3. : 3. : : : : : : : : : : : : : : : : : : :	-1:	переме юя, сохр в эвекти	Рекомендуется только для лату- ней Допускается, если иглообразо- вание не влияет на работоспособ- ность изпелия	90a
3	3	3	3	3	3 ;	юн Допускается, если иглообразова-	91
9	9		0,26	9 07	ם א 193 אכ	пние полимет на работоспособность	92
6	6	6	6	6 0	pran@xact	изделия: Покрытие по меди не под- вержено ислообразованию	93
3; 9	3; 9	3; 12	3, 12	0.0		МО (60) — Применять — Приме	94
	n and market for the state of		0.25-2	-0	H RIF.	ленгог Декоративное,	

Металл	Обозначение по- крытия по	11	Толщина ¹ покры	лий для услови
детали	FOCT 9.306-85	Назначение покрытия	1	2
	M-O (60)	Под пайку, для повы- шения поверхностей элек- тропроводности	6	9
	O-H(65)	Защитное, для повыше- ния износостойкости	-	-
	H.O-C (60) ⁹	Под пайку	1-3; 6	1-3; 6
	Н.О-С (60).опл ⁹	Под пайку	1-3; 3	1-3; 3
	О-Ви (99,8)	Под пайку, защитное	6	9
	Н.О-Ви (99,8)	Под пайку, защитное	1-3; 3	1-3; 6
главы	Cp ⁴	Для повышения поверх- ностной электропроводно- сти, снижения переходного сопротивления	3	3-6
Медь и медные сплавы	H.Cp ⁴	Для повышения поверх- ностной электропроводно- сти, снижения переходного сопротивления	1-3; 3	1-3; 3
Медь и	Зл	Для снижения переходного сопротивления	0,25-2	0,5-3
	Η.3π ¹⁰	Для снижения переход- ного сопротивления, сохра- нения постоянства электри-	1-3; 0,25-1	1-3; 1-2
	Зл-Н (99,5-99,9)	ческих параметров Для получения низкого стабильного переходного сопротивления	0,25-2	3
	Зл-Н (98,5-99,5)	Для получения низкого стабильного переходного сопротивления, для деталей, работающих в условиях трения	0,25-2	3
	Зл-Н (93,0-95,0)	Декоративное, для по- вышения износостойкости	0,25-2	3

сплуа	тации г	окрыт	ий по Г	OCT 1515	0-69	Дополнительные указания	Порядковый номер
3	4	5	6	7	8		покрытия
9	9	12	12	12	12		94a
-	_	12	12	15	15		95
3; 6	3; 6	3; 6	3; 6	3; 6	-	При необходимости защиты паяного соединения вид дополнительной защиты устанавливают по	96
3; 3	3; 3	3; 3	3; 3	3; 3	3; 3	отраслевой нормативно-технической документации. Покрытия не подвержены игло- образованию	97
9	9	12	12	12 ³	12 ³	Допускается, если иглообразова- ние не влияет на работоспособность изделия	98
	1-3; 6			1-3; 6 ³	1-3; 9 ³	Допускается, если иглообразование не влияет на работоспособность изделия	99
3-6	6	9	9	9-12	9-12	На электроконтактные детали рекомендуется наносить местные покрытия. Места подлежащие пай- ке, покрывать не рекомендуется,	100
1-3; 3	1-3; 3	3-6; 3-6	3-6; 3-6	3-6; 6-9	3-6; 9	учитывая вероятность миграции серебра	101
1-3	2-3	3-6	3-6	6	6	На электроконтактные детали рекомендуется наносить местные покрытия. Места, подлежащие пайке, покрывать не рекомендуется. Для деталей, подвергающихся действию повышенных температур (до 400 °C), следует назначать покрыпия с никелевым подслоем. Толщину никелевого подслоя для латунных деталей с шероховатостью поверхности $Ra > 1,25$ для условий эксплуатации 4-8 принимают равными 3-6 мкм	102
1-3; 1-2	1-3; 1-3	-	-	-	-	На электроконтактные детали рекомендуется наносить местные покрытия. Места, подлежащие пайке, покрывать не рекомендуется	103
1-2	2-3	3-6	3-6	6	6	Для деталей подвергающихся воздействию повышенных температур (до 400 °C), следует назначать	104
1-2	2-3	3-6	3-6	6	6	покрытия с никелевым подслоем Толщину никелевого подслоя для латунных деталей с шероховатостью поверхности $Ra > 1,25$ для условий эксплуатации 4-8 прини-	
1-2	2-3	3-6	3-6	6	6	мают равными 3-6 мкм	104б

Металл	Обозначение по- крытия по	Назначение	Толщина ¹ покр	ытий для условий
детали	ΓΟCT 9.306-85	покрытия	1	2
	Н.Зл-Н (99,5-99,9) ¹⁰	Для получения низкого стабильного переходного сопротивления	1-3; 0,5-1	1-3; 1-2
	H.3π-H (98,5-99,5) ¹⁰	Для получения низкого стабильного переходного сопротивления, для деталей, работающих в условиях трения	1-3; 0,5-1	1-3; 1-2
	Н.Зл-Н (93,0-95,0) ¹⁰	Декоративное, для по- вышения износостойкости	1-3; 0,5-1	1-3; 1-2
	Зл-Ко (99,5-99,9)	Для снижения переходного сопротивления, повышения износостойкости	0,25-1	1-3
	Н.Зл-Ко (99,5-99,9) ¹⁰	Для снижения переходного сопротивления, сохранения постоянства электрических параметров, повышения износостойкости	1-3; 0,5-1	1-3; 1-2
Jabbi	Пд	Для снижения переходного сопротивления, сохранения постоянства электрических параметров, повышения износостойкости	0,5-2	0,5-2
Медь и медные сплавы	Пд-Н	Для снижения переходного сопротивления, сохранения постоянства электрических параметров, повышения износостойкости	0,5-2	0,5-2
Медъ	Н.Пд	Для снижения переходного сопротивления, сохранения постоянства электрических параметров, повышения износостойкости	1-3; 0,25-1	1-3; 1-3
	Н.Пд-Н	Для снижения переходного сопротивления, сохранения постоянства электрических параметров, повышения износостойкости	1-3; 0,25-1	1-3; 1-3
	Н.Рд	Для снижения переход- ного сопротивления, сохра- нения постоянства электри- ческих параметров, повы- шения износостойкости, отражательной способности	1-3	1-3 Толщина родия
	Гор.О	Под пайку, защитное		Не
	Гор.ПОС	Под пайку, защитное		He

Продолжение табл. 22

сплуа	тации г	юкрыти	й по Г	OCT 15150)-69	Дополнительные указания	Порядковый номер
3	4	5	6	7	8		покрытия
l-3; 1-2	1-3; 1-3	-	-	-	-		105
1-3; 1-2	1-3; 1-3	-	-	-	-	На электроконтактные детали рекомендуется наносить местные покрытия. Места, подлежащие пайке, покрывать не рекомендуется Для деталей подвергающихся воздействию повышенных темпера-	105a
1-3; 1-2	1-3; 1-3	1-3; 1-3	1-3; 1-3	1-3; 1-3	1-3; 1-3	тур (до 400 °C), следует назначать покрытия с никелевым подслоем	105б
1-2	1-3	3-6	3-6	6	6	Толщину никелевого подслоя для латунных деталей с шероховатостью поверхности $Ra > 1,25$ для условий эксплуатации 4-8 прини-	106
1-3; 1-2	1-3; 1-3	-	-	-	-	мают равными 3-6 мкм	107
1-2	1-2	1-3	1-3	2-3	2-3	·	108
1-2	1-2	1-3	1-3	2-3	2-3	Рекомендуется при повышен- ных требованиях по износостойко- сти и стабильности переходного сопротивления.	108a
1-3; 1-2	1-3;	6-9; 1-3	6-9; 1-3	6-9; 1-3	6-9; 1-3	Не допускается применять в одном объеме с органическими материалами и резинами	109
1-3; 1-2	1-3; 1-3	6-9; 1-3	6-9; 1-3	6-9; 1-3	6-9; 1-3		109a
3-6	3-6	6-9	6-9	6-9	6-9	Рекомендуется при повышенных требованиях по износостойкости и стабильности переходного сопротивления	110
0,5-1	икм ируется	,	· · · · · · · · · · · · · · · · · · ·	I	I	Допускается, если иглообразова-	111
норм	ирустся					ние не влияет на работоспособность изделия	·
норм	ируется	(Покрытие не подвержено игло- образованию	112

Металл	Обозначение по- крытия по	Назначение	Толщина ¹ покр	ытий для условий
детали	ГОСТ 9.306-85	покрытия	1	2
	Н.Гор.ПОС	Под пайку, защитное	1-3	1-3
Ħ			Тол	 щина Гор. ПОС
лав	Хим.Пас	Защитное	+	+5
5	Хим. Пас.прм	Защитное	+	+
41616	Хим.Пас/лкп	Защитное	+	+
Медь и медные сплавы	Хим.Пас.гфж	Защитное	+	+
Z Z	Хим.Окс	Защитно-декторативное	+	
ЗДЪ	Хим.Окс/лкп	Защитное	+	+
Ĭ	Хим.Окс.гфж	Защитно-декторативное	+	+
	Хим.Окс.прм	Защитное	+	+
	Ан.Окс	Защитно-декторативное	+	-
	Ан.Окс.гфж	Защитно-декторативное	+	+
	Ан.Окс.прм	Защитное	+	+
	Ц.хр	Для обеспечения свин- чивания	6	6
	Н.Кд.хр	Защитное	12; 6	18; 18
	Н.М.Кд.хр	Защитное	3; 9; 6	3; 15; 18
	Хим.Н.М.Кд.хр	Защитное	6; 9; 6	6; 15; 18
	Н.М.Кд	Под пайку	6; 3; 6	9; 6; 15
	Хим.Н.М.Кд	Под пайку	6; 3; 6	9; 6; 15
авы	H	Защитное	18	24
CILI	Хим.Н	Под пайку, для повы-	6	12-18
ele ı		шения износостойкости		
ниев	Х.тв	Для повышения износо- стойкости	18	-
MM	М.Н.Х.б	Защитно-декоративное	18; 6	18; 12
MIC				Толщина хром
Алюминий и алюминиевые сплавы	Н.М.Ср	Для повышения поверх- ностной электропроводно- сти	9; 3; 1-3	9; 3; 3-6
Алкоми	Хим.Н.М.Ср	Для повышения поверх- ностной электропроводно- сти	9; 3; 1-3	9; 3; 3-6
	Н.О-Ви (99,8)	Под пайку	9; 6	-
	H.O-C (60) ⁹	Под пайку	9; 6	-
	M.H.O-C (60) ⁹	Под пайку, для снижения переходного сопротивеления	9; 6; 9	-

Продолжение табл. 22

			й по ГС 6 Т	CT 15150		Дополнительные указания	Порядковый номер
3	4	5	0	7	8		покрытия
		_				Покрытие не подвержено игло- образованию	113
+5	мируется +5	——					114
			+5	+5,6	+5,6		115
+	+	+					116
+	+	+	+	+	+ +		117
+	+	+	+	+	+	-	
-							118
+	+	+	+	+	-		118a
+	+	+5	+5	+5,6	+5,6		119
+	+	+5	+5	+5,6	+5,6	<u> </u>	120
-	-	-	-	-		-	121
+	+	-	-	1	-		122
+	+	-	- [-	-	-	123
6	6	-	-	-	-	-	124
-	18; 18						125
-	3; 15; 18	-	-	-	-	-	126
-	6; 15; 18	-	-	-	-	-	127
-	9; 6; 15	-	-	-	-	-	128
-	9; 6; 15	-	-	-	-	-	129
				-	-		130
2-18	12-18	-	-		-	-	131
-	-	-	-	-	-	-	132
8; 12		-	-	-	-		133
0,5-1		12; 3;	12; 3;	12; 3; 6	12; 3;	Для деталей простой конфигура-	134
9; 3 3-6	9; 3 3-6	3-6	3-6	12, 3, 0	6	пии	
9; 3; 6-9	9; 3; 6-9	18; 3; 6-9	18; 3; 6-9	18; 3; 6-9	18; 3; 6-9	Для деталей сложной конфигу- рации	135
9; 9	-	-	-	-	-	Допускается, если иглообразование не влияет на работоспособность изделия	,
9; 9	 -	12: 12	12; 12	12; 12	12; 12	Покрытие не подвержено иглооб-	137
7, 9	-	-	-	-	, 12	разованию	138

. Металл	Обозначение по- крытия по	Назначение	Толшина ¹ покры	пий для условий
детали	ГОСТ 9.306-85	покрытия	1	2
	Хим.Н.О-С (60) ⁹	Под пайку, для повы- щения поверхностей элек- тропроводности	-	-
	Хим.Н.М.М-О (60)	Под пайку, для повы- шения поверхностей элек- тропроводности	<u>-</u>	-
	Р.М.Н. ч	Защитно-декоративное	9; 15 Тол	цина черного
	Ан.Окс.нхр	Защитное	+	+
Ħ	Ан.Окс.нхр/лкп	Защитное	+	+
стигав	Ан.Окс.хром/лкп	Защитное	+	+
BMe (Ан.Окс.хром	Защитное	+	+
минис	Ан.Окс.наимен.цвета	Защитно-декоративное	+	+
(ajirol	Аноцвет	Защитно-декоративное	+	+
ний и	Аноцвет.нв	Защитно-декоративное	+	+
Алюминий и алюминиевые сплавы	Ан.Окс.хром.гфж	Защитное	+	+
	Ан.Окс.нв	Защитно-декоративное	+	+
	Ан.Окс.нв/лкп	Защитно-декоративное	+	+
	Ан.Окс.эмт	Защитно-декоративное	+	+
	Ан.Окс.эмт.тв	Защитно-декоративное	+	+
	Хим.Окс	Защитное	+	-
	Хим.Окс/лкп	Защитное	+	+
	Хим.Окс.э	Для повышения поверх- ностной электропроводности	+	*

Продолжение табл. 22

сплуа	тации і	покрыт	ий по Г	OCT 151	50-69	Дополнительные указания	Порядковы номер
3	4	5	6	7	8		покрытия
-	-	9; 9	9; 9	18; 12	18; 12	Покрытие не подвержено иглооб-	139
-	-	9; 3; 9	9; 3; 9	18; 3; 12	18; 3; 12	разованию	140
-	- не ног	-	-	-	-	-	141
+	+	+	+	<u>+</u> 6	+6	Для неплакированных деформируемых сплавов типа Д16, Д19, В95, АК4, АК6, АК4-1 и литейных сплавов допускается для условий эксплуатации 2, 3, 4 при дополнительной защите. В условиях эксплуатации 5, 6 допускается при периодическом возобновлении смазки на поверхности покрытия	142
+	+	+	+	+	+	-	143
+	+	+	+	+	+	-	144
+	+	-	 -	-	-	Для неплакированных деформируе- мых сплавов типа Д16, Д19, В95,	145
+	+	-	-	-	 -	АК4, АК6, АК4-1 и литейных сплавов типа АЛ2, АЛ9 допускается	147*
+	+	-	-	-	-	только для условий эксплуатации 1	148
+	+	-	-	-	-	-	149
+	+	-	-	-	-	Для неплакированных деформируемых сплавов типа Д16, Д19, В95, АК4, АК6, АК4-1 допускается в условиях эксплуатации 2, 3, 4 с дополнительной защитой и литейных сплавов типа АЛ2, для условий эксплуатации 1-4	150
+	+	-	-	-	-	-	151
+	+	+	+	+	+	-	152
+	+	-	-	† -	1 -	_	153
+	+	+	+	+	+	<u>-</u>	154
-	-	-	 -	+	 -		155
+	+	+	++	-	+	-	156
	+	+	+	 -	 -	-	157

Металл	Обозначение по- крытия по	Назначение	Толщина ¹ покры	итий для услови
детали	ΓΟCT 9.306-85	покрытия	1	2
78	Ан.Окс.эмт. наиме- нование цвета	Защитно-декоративное	+	+
сплав	Ан.Окс.эиз/лкп	Для электроизоляции	+	+
Pric (Ан.Окс.эиз.прп	Для электроизоляции	+	+
Жев	Ан.Окс.эиз.гфж	Для электроизоляции	+	+
Алюминий и алюминиевые сплавы	Ан.Окс.тв	Для повышения износо- стойкости	+	+
и ал	Ан.Окс.тв.нхр	Для повышения износо- стойкости	+	+
иний	Ан.Окс.нв	Для повышения износо- стойкости	+	+
AJIFOM	Ан.Окс.тв.прм	Для повышения износо- стойкости	+	+
	М.Н.б	Защитно-декоративное	9; 9	-
	M.H.X.6	Защитно-декоративное	9; 6	-
9 _			7	। Голщина хром
Цинковые сплавы	М.Нд.Х.б	Защитно-декоративное	-	- Голщина хром
Ци	М.Нт.Х.б	Защитно-декоративное	-	-
		· !	7	। Голщина хром
	Хим.Фос/лкп	Защитное `	+	+
	Хроматирование	Защитно-декоративное	+	
	Хроматирование/лкп	Защитно-декоративное	+	+
	Х.тв	Для повышения износо- стойкости	9	9
	Хим.Н	Для повышения износо- стойкости	9	9
	Н	Под пайку ⁸	3	3
BL	Хим.Н.М.Ср	Для повышения поверх- ностной электропроводности	3; 3; 6	3; 3; 6
новые сплавы	H.M.Cp	Для повышения поверх- ностной электропроводности	3; 3; 6	3; 3; 6
Титановы	H.M.M-O (60)	Под пайку, для повы- шения поверхностей элек- тропроводности	3; 3; 9	3; 3; 9
Ξ	H.O-C (60)	Под пайку	3; 3	3; 3
	Н.Х.ч	Для обеспечения светопогло- щения	3-6	3-6
	V 77 V			лщина черног
	Уим.Н.Х.ч	Для обеспечения светопогло- щения	3-6	3-6
		1	Tο	лщина черног

сплуа	гации п	окрыти		OCT 1515	0-69	Дополнительные указания	Порядковы номер
3	4	5	6	7	8		покрытия
+	+	-	-	-	-]	•	158
+	+	+	+	+	+	Для литейных сплавов не реко- мендуется	159
+	+	-	-	-	-	-	160
+	+	-	-	-	-	-	161
+	+	-	-	-	-	-	162
+	+	+6	+6	-	-	Для условий эксплуатации 5, 6 допускается применять при допол-	163
+	+	+6	+6	-	-	нительной защите	164
+	+	-	-	-	_	Для деталей из литейных сплавов не допускается для условий эксплуатации 2, 3, 4	165
; 15		9; 30	-	-	-	-	166
; 15 5-1,0	- MKM	9; 24	-	9; 30	-	-	167
- 7	- МКМ	9; 18	-	9; 24	-	Толщина меди для условий экс- плуатации 5, 7 допускается 6 мкм	168
-	- MKM	9; 18	-	9; 24	-	при нанесении медного подслоя из цианистого электролита	169
+	+	-	-	-	-	-	171*
-	-	-		-	-	-	172
+	+	+	+	+	+	-	173
9	9	9	9	9	9	-	174
9	9	9	9	9	9	Рекомендуется при малых на- грузках	175
3	3	3-6	3-6	3-6	3-6	Рекомендуется наносить мест- ные покрытия	176
3; 3; 6	3; 3; 6	3; 3; 6	3; 3; 6	3; 3; 6	3; 3; 6	Для деталей сложной конфигу- рации	177
3; 3; 6	3; 3;	3; 3; 6	3; 3; 6	3; 3; 6	3; 3; 6	Для деталей простой конфигура- ции	178
3; 3;	3; 3;	3; 3; 9	3; 3; 9	3; 3; 9	3; 3; 9	-	179
3; 3	3; 3	3; 3 ³	3; 3 ³	3; 63	3; 6 ³	-	180
3-6	3-6	-	-	-	-	Для деталей простой конфигура- ции	181
рома		мируето	Я	<u> </u>		Для деталей сложной конфигу-	182
3-6	3-6					I II TO TOTO TAKE ATOMICAN MOUNTY-	ι 1Χ2

Металл	Обозначение по- крытия по	Назначение	Толщина ¹ покрыпий для условий			
детали	FOCT 9.306-85	покрытия	1	2		
Титановые	Аноцвет	Декоративное	+	+		
сплавы	Ан.Окс	Для обеспечения адге- зии клеев, лкп и т.п.	+	+		
Магний и	Хим.Окс/лкп	Защитное	+	+		
магниевые сплавы	Хим.Фос/лкп	Защитное	+	+		
	Аноцвет/лкп	Защитное	+	+		

¹ Здесь для металлических покрытий указана толщина покрытия в микрометрах, для неме-

Примечания:

- 1. Знак "+" означает, что покрытие допускается в данных условиях эксплуатации, знак "-"
- 2. Толщина первого слоя двухслойного никелевого покрытия составляет 60 70 % от общей трехслойного никелевого покрытия составляет 60 70 % от общей толщины, толщина второго
 - 3. Двухслойное никелевое покрытие с заполнителем (Ндз) включает: первый слой никель
 - 4. Допускается заменять подслой М на Н.М при сохранении суммарной толщины покрытия.

² Применяют в случаях, когда декоративные свойства сохраняются в течение заданных сроков.

 $^{^3}$ С дополнительной защитой, кроме лакокрасочных покрытий, например, смазка и т. п.; указанную в табл. 22 для условий эксплуатации 2 (для покрытия № 11 при использовании ла-

⁴ Допускается применять покрытия сплавами с теми же толщинами.

⁵ Применяют для латуней (цинк до 20 %) и специальных бронз.

⁶ Допускается применять, если появление незначительных коррозионных повреждений не

⁷ Применяют для сплавов с повышенной коррозионной стойкостью типа МА8, МЯ5пч,

⁸ Рекомендуется пайка низкотемпературными припоями.

⁹ В отраслевой нормативно-технической документации допускается заменять покрытия О-С применять без подслоя меди.

¹⁰ Допускается заменять электрохимический никелевый подслой на химический.

ксплуа	тации	покрыт	ий по Г	OCT 151	50-69	Дополнительные указания	Порядковый номер	
3	4	5	6	7	8		покрытия	
+	+	+	+	+	+	Рекомендуется для улучшения свинчиваемости деталей	183	
+	+	+	+	+	+	Рекомендуется для улучшения свинчиваемости деталей	184	
+	+	+	+	+	+6,7	-	185	
+	+	+	+	+	+6,7	-	186	
+	+	+	+	+	+	-	187	

таллических неорганических покрытий приведена допустимость применения.

при использовании лакокрасочного покрытия применяют толщину металлического покрытия, кокрасочного покрытия толщина кадмиевого покрытия - 9 мкм).

влияет на работоспособность изделия. ВМЛ9.

(60) на О-С (40) с учетом конструктивных особенностей изделия. Покрытия № 44; 45 допускается

означает, что данное покрытие для данных условий эксплуатации не рекомендуется. толщины, толщина второго слоя - 40 - 30 % от общей толщины. Толщина первого слоя слоя - 5-10 % и третьего слоя - 40 - 30 %.

полублестящий, второй слой - никель блестящий с заполнителем (каолином).

Допустимую максимальную толщину покрытия в зависимости от минимальной устанавливают в соответствии с табл. 23.

Для многослойных покрытий требования к максимальной толщине распространяются на кажлый слой покрытия.

При условии дополнительной защиты детали (в отдельности или в составе узла) или готового изделия допускается уменьшение толщины покрытия, в том числе для деталей, на которые по условиям сопряжения невозможно нанести покрытие толщиной, указанной в табл. 22.

Покрытия деталей с внутренней и наружной резьбой, в том числе крепежных, выби-

рают по табл. 22 с учетом предельных отклонений резьбы, допустимых для обеспечения необходимых посадок резьбовых деталей.

Для условий эксплуатации 1 допускается толщина покрытия крепежных деталей 3 или 6 мкм, а соответствующая ей максимальная толщина-6 или 9 мкм, если для требуемых предельных отклонений невозможно установить большую толщину покрытия.

Предельные отклонения резьб до нанесения покрытия должны соответствовать стандартам на резьбы, если примененные толщины покрытия не требуют больших величин основных отклонений.

23. Допустимая максимальная толщина металлических покрытий в зависимости от минимальной

B SABUCIMOCIN OF MANAMALIBRON											
Металл	Толщин	на, мкм	Металл	Толщин	на, мкм						
покрытия	минимальная	максимальная	покрытия	минимальная	максимальная						
1. Золото, палладий, родий и их сплавы	0,1 0,25 0,5 1 2 3 4 5	0,25 0,5 1 2 3 4 5 6	3. Цинк, кадмий, медь, ни- кель, олово и их сплавы	1 3 6 9 12 15 18 21 24 30 35 40	3 6 9 15 18 21 24 30 33 40 45						
2. Серебро	0,5 1 2 3 4 5 6 7 8 9 10 11	1 3 4 5 6 7 8 9 10 11 12 13 14	4. Хром	1 3 6 9 12 15 18 21 24 30 35 40 45 50 60	3 6 9 18 21 30 33 41 44 50 55 60 65 80 90						

Примечания:

1. При необходимости обеспечения функциональных свойств минимальную толщину покрытия золотом, палладием, родием и их сплавами более 6 мкм и серебром более 12 мкм устанавливают по согласованию с заказчиком в отраслевой нормативно-технической документации.

2. Для покрытий золотом, палладием, родием и их сплавами при минимальной толщине более 6 мкм и серебром более 12 мкм максимальную толщину покрытия устанавливают соответственно более на 1 и 3 мкм. В технически обоснованных случаях по согласованию с заказчиком, например, при нанесении покрытия на волноводы, изделия радиоэлектронной техники сложной конфигурации, допускается при минимальной толщине покрытий серебром 6 мкм и более максимальную толщину устанавливать более на 3 мкм.

Для резьб с посадками с зазором в тех случаях, когда заданы предельные отклонения размеров резьбы до нанесения покрытия и нет других указаний, размеры резьбы после нанесения покрытия не должны выходить за пределы, определяемые номинальным профилем резьбы и соответствующие основным отклонениям h и H.

При толщине покрытия резьбовых деталей, пружин и деталей типа пружин меньшей толщины покрытия (табл. 22) для соответствующих

металлов и условий эксплуатации (кроме крепежных деталей для условий эксплуатации 1, указанных выше) проводят дополнительную защиту резьбовых деталей, пружин и деталей типа пружин или сопрягаемых соединений, или изделия в целом или предусматривают для этих деталей применение коррозионно-стойких материалов.

Покрытия в указанном случае для деталей с метрической резьбой для условий эксплуатации 2-8 приведены в табл. 24.

24. Металлические покрытия для деталей с метрической резьбой

Металл детали	Назначение покрытия	Обозначение покрытия по ГОСТ 9.306-85	Шаг резьбы, мм	Рекомендуемое основное отклонение по ГОСТ 16093-81 до нанесения покрытия	Минималь- ная толщина покрытия, мкм
Сталь углеро- дистая и сред- нелегированная		Ц.хр; Ц.фос.окс; Кд.хр; Кд.фос; Кд.фос.окс; Н.Х ^{1*})	До 0,45 От 0,5 до 0,75 От 0,8 до 1,75 От 2 до 6	g, H; g, G e, H; e, G e, H; e, G e, G	3 6 9 12
Сталь корро- зионно-стойкая; титан и его сплавы	Для улучше- ния свинчи- ваемости	M; Cp	До 1,75	e, H; e, G	3
Медь и ее	Защитное	H; H.X ^{1*)}	До 0,45	g, H; g, G	3
сплавы	Зашитное,	O-H*)	От 0,5 до 0,75	e, H; e, G	6
	под пайку Под пайку	О-Ц	От 0,8 до 1,75 От 2 до 6	e, H; e, G	9 12
				e, G	
	Для повыше- ния электро-	Ср	До 0,45 От 0,5 до 0,75	g, H; g, G e, H; e, G	3 6
	проводности,		От 0,8 до 1,75	e, H; e, G	6 9
	снижения пе- реходного со- противления				
		О; О-С; О-Ви	До 0,45	g, H; g, G	3
		О; О-С; О-Ви			6
	Защитное,	H.O; H.O-C;	От 0,5 до 0,75	e, H; e, G	1; 3
	под пайку	Н.О-Ви			
		О; О-С; О-Ви			9
		H.O; H.O-C;	От 0,8 до 1,75	e, H; e, G	3; 6
		Н.О-Ви			
	,	О; О-С; О-Ви			12
		H.O; H.O-C;	От 2 до 6	e, G	3; 9
		Н.О-Ви			<u> </u>
	Для повыше-	3л ²	До 0,75	g, H; g, G	3
	ния электро- проводности,				
	снижения пе-				
	реходного со-				
	противления	İ	1	t	

^{*} Допускается назначать покрытие в качестве защитно-декоративного.

^{1*} Толщина хрома 0,5-1,0 мкм.

 $^{2^*}$ Покрытие назначают на одну из сопрягаемых деталей, вторая деталь покрытия не имеет. Примечания:

^{1.} Максимальная толщина покрытия не должна превышать установленную в табл. 23. Толщина покрытия для деталей с внутренней резьбой - 6-9 мкм для шагов резьбы до 1,75 мм и 9-15 мкм для шагов резьбы 2-6 мм.

^{2.} Допускается применять покрытия с меньшими толщинами, если они установлены в табл. 22 для соответствующих условий эксплуатации.

Для деталей, выполненных по 5, 6 квалитетам, рекомендуется применять неметаллические неорганические покрытия.

Требования к выбору полей допусков и посадок для гладких сопрягаемых элементов деталей, выполненных по 6-10 квалитетам, и толщины металлических покрытий для этих элементов и всей детали, имеющей такие элементы, приведены в табл. 25.

При толщине покрытия деталей с гладкими сопрягаемыми элементами меньшей толщины покрытия по табл. 22 для соответствующих металлов и условий эксплуатации (кроме условий эксплуатации 1) проводят их дополнительную защиту.

Для неразъемных соединений при помощи посадок с натягом дополнительную защиту мест контакта с внешней средой допускается проводить после сборки узла или изделия.

Для разъемных соединений при помощи посадок с зазором проводят дополнительную защиту поверхности сопрягаемых деталей (сопрягаемых соединений) или изделия в целом или же предусматривают для этих деталей применение коррозионно-стойких материалов.

Общие требования к основному металлу и покрытиям должны соответствовать ГОСТ 9.301-86.

Операции технологических процессов получения покрытий электрохимическим и химическим способами установлены ГОСТ 9.305-84.

Не рекомендуется предусматривать нанесение электрохимических или химических покрытий на металлическую арматуру после запрессовки ее в пластмассу.

Поверхность глухих и (или) узких отверстиях, зазорах и щелях деталей, где электрохимические покрытия по ГОСТ 9.301-86 могут отсутствовать, должна быть защищена от коррозии смазками, лакокрасочными покрытиями и т.п.

На детали, соединяемые в сборочные единицы свинчиванием, точечной сваркой, клепкой, прессованием, посадкой и т.п., покрытия следует наносить до сборки.

На детали, имеющие сварные швы, выполнение газовой электродуговой сваркой, и на детали, имеющие паяные соединения, допускается наносить электрохимические и химические покрытия при условии непрерывности и герметичности сварного или паяного шва по всему периметру, исключающих затекание электролита в зазоры или поры.

На сборочные единицы с применением точечной или контактной сварки, сварки прерывистым швом или заклепочных соединений нанесение электрохимических или химических покрытий до или после сварки или клепки допускается:

если соединения производятся клеесварным способом без зазоров;

в случае сварки по токопроводящему грунту или клепки по грунту;

в случае предварительной герметизации шва;

если конструкция соединения или специальные технологические отверстия обеспечивают удаление электролита.

Для условий эксплуатации 5-8 табл. 22 указанные покрытия рекомендуется наносить на детали до сварки или клепки. После сварки или клепки на детали дополнительно должны быть нанесены лакокрасочные или металлизационные покрытия

Не допускается назначать химические и электрохимические покрытия на детали из алюминиевых сплавов, имеющие клеевые соелинения.

Для защиты литых деталей из всех металлов и сплавов, предназначенных для всех условий эксплуатации, предпочтительно предусматривать лакокрасочные и металлизационные покрытия.

Для условий эксплуатации 1 допускается наносить металлические электрохимические и химические покрытия на детали из черных металлов и сплавов, отлитых любым методом.

Для условий эксплуатации 2-4 допускается наносить электрохимические и химические покрытия на детали из стали, медных и цинковых сплавов, отлитые в кокиль, под давлением и по выплавляемым моделям.

Не рекомендуется наносить металлические электрохимические и химические покрытия на литые детали из всех металлов и сплавов для условий эксплуатации 5-8, а также детали из алюминия и его сплавов для условий эксплуатации 2-8. Возможность нанесения указанных покрытий устанавливают в нормативно-технической документации на изделия отрасли.

Для внутренних деталей изделий, работающих в условиях эксплуатации 5-8 при затрудненном обмене воздуха между внутренним пространством изделия и внешней средой и наличии в указанном замкнутом пространстве органических материалов, способных при старении выделять летучие коррозионно-агрессивные вещества, не допускается применять цинковые покрытия без дополнительной защиты.

Для деталей изделий, эксплуатирующихся в герметизированных объемах при наличии органических материалов, способных при старении выделять летучие коррозионноагрессивные вещества, вызывающие коррозию покрытия, не допускается применять цинковые и кадмиевые покрытия без дополнительной защиты лакокрасочными покрытиями. Для условий эксплуатации 7 применение кадмиевых покрытий рекомендуется при необходимости сохранения товарного вида покрытий.

Применение цинковых (соединения кадмия экологически опаснее соединений цинка) покрытий рекомендуется, если сохранение товарного вида покрытий не обязательно.

25. Поля допусков и посадок и толщин металлических покрытий для деталей 6-10 квалитетов с гладкими сопрягаемыми элементами

1. Сочетание полей допусков для вала и отверстия в системе отверстия под посадки с зазором, переходные посадки и посадки с натягом.

					Посал	ки пос	ле покр	*питы				
			с заз	ором			переходные			С	натяго	M
	<u>H7</u>	<u>H7</u>	<u>H7</u>	<u>H9</u>	<u>H9</u>	<u>H10</u>	<u>H7</u>	<u>H7</u>	<u>H7</u>	<u>H7</u>	<u>H7</u>	H8
Размеры,	g6	h6	_f7	h8	f9	h10	k6	m6	n6	р6	r6	s7
мм		Обозначение поля допуска отверстия до нанесения покрытия										
	H7	H7	H7	Н9	Н9	H 10	H7	H7	H7	H7	H7	H8
		Обозначение поля допуска вала до нанесения покрытия**										
	fg6	g6	ef7	f8	f9	e9	k6	m6	n6	р6	т6	s7
					Голщин	а покр	ытия ва	ла, мкі	M			
От 1 до 3									- 1			
Св. 3 до 6					3-6		<u> </u>					
Св. 6 до 10							3-6					
Св. 10 до 18	3-	-6	3-6		6-9							
Св. 18 до 30												
Св. 30 до 50			6-9		9-15							

^{*} Посадки с зазором получаются, если детали изготовляют с использованием половины поля допуска на размер. При выполнении деталей по крайним предельным отклонениям поля допуска и нанесении максимальной толщины покрытия, а также при размерах деталей до 10 мм возможно получение посадки с небольшим натягом. В этом случае при полном сопряжении по длине и диаметру допускается металлические покрытия не наносить, а защиту обеспечивать нанесением покрытия Хим. Фос. прм с защитой после сборки торцевых поверхностей лакокрасочным покрытием.

^{*} Поле допуска fg6, ef7 взято из дополнительного ряда полей допусков по ГОСТ 25347-82.

^{2.} Толщину покрытия для валов с размерами более 50 мкм под посадки с зазором устанавливают 9-15 мкм.

^{3.} Толщину покрытия для отверстий под посадки с зазором, переходные посадки и посадки с гарантированным натягом во всех интервалах устанавливают от 3 до 6 мкм.

При наличии резьбовых и гладких посадочных поверхностей на одной детали толщина покрытия, минимально установленная для любой из этих поверхностей, принимается для всей детали.

5. Предельные отклонения дополнительного ряда полей допусков fg6, ef7 в интервалах размеров от 1,0 до 50 мм.

Продолжение табл. 25

Размеры, мм	Предельное отклонение поля допуска, мкм		
	fg6	ef7	
От 1 до 3	-4 -10	-10 -20	
Св. 3 до 6	-6 -14	-14 -26	
Св. 6 до 10	-8 -17	-18 -33	
Св. 10 до 18	-11 -22	-24 -42	
Св. 18 до 30	-13 -26	-30 -51	
Св. 30 до 50	-17 -33	-36 -61	

- 6. Для посадки подшипников на вал в интервалах размеров от 1 до 6 мм применяют поле допусков е7, свыше 6 до 30 поле допуска еf7, свыше 30 поле допуска f7. Толщина покрытия при этом должна быть 3-6 мкм.
- 7. Размеры деталей обеспечиваются проверкой до нанесения покрытия и контролем тол-
- Примеры выбора полей допусков отверстий и валов под покрытия для обеспечения оптимального сопряжения в посадках в зависимости от квалитета, по которому должны изготовпяться детали.

Пример 1. Выбор поля допуска под покрытие для посадок с зазором.

Принято: Диаметр 20 мм, посадка $\frac{H9}{h8}$

Выполняется: отверстие диаметром 20 мм Н9 с толщиной покрытия 3-6 мкм (см. пункт 3); вал диаметром 20 мм f8 вместо вала диаметром 20 мм h8 с толщиной покрытия по пункту 1 для интервала (св. 18 до 30 мм) - 6-9 мкм.

Пример 2. Выбор поля допуска под покрытие для переходных посадок.

Принято: Диаметр 20 мм, посадка $\frac{H7}{1.6}$.

Выполняется: отверстие диаметром 20 мм H7 с толщиной покрытия 3-6 мкм (см. пункт 3); вал диаметром 20 мм k6 с толщиной покрытия по пункту 1 для интервала (св. 18 до 30 мм) - 3-6 мкм.

Соответствие обозначений групп условий эксплуатации, использованных в ГОСТ 9.303-84, ранее принятым, приведено в табл. 26.

26. Соответствие обозначений групп условий эксплуатации покрытий по ГОСТ 9.303-84 международным и ранее принятым обозначениям

(бозначение групп условий эксплуата			
По ГОСТ 9.303-84	По международным стандартам	Ранее принятое		
	ИСО на покрытия	Основные группы	Дополнительные группы	
1	0*	Л	-	
	1			
2		С	C1; C2	
3	2		C2; C3	
4		_	C4	
5	3	Ж	Ж1; Ж2	
6	_		Ж3	
7	4	ОЖ	ОЖ1; ОЖ2	
8	1 '		ОЖ3	

^{*} Декоративное применение без обеспечения защиты от коррозии.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОКРЫТИЙ

Цинковое покрытие

1. Цинковое покрытие является анодным по отношению к черным металлам и защищает сталь от коррозии электрохимически при температурах до 70 °C, при более высоких температурах - механически.

Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов; обеспечивает свинчиваемость резьбовых деталей.

- 2. Для повышения коррозионной стойкости цинковое покрытие хроматируют и фосфатируют. Хроматирование одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная.
- 3. Цинковое хроматированное покрытие теряет свой декоративный вид при условии периодического механического воздействия: прикосновения инструмента, рук.
- 4. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности и при опрессовке пластмассами при температуре выше 100 °C.
- 5. Электрохимическое цинкование вызывает потерю пластичности сталей вследствие наводороживания. Стали с пределом прочности выше 1380 МПа цинкованию не подлежат.
- 6. Покрытие обладает прочным сцеплением с основным металлом, низким сопротивлением механическому истиранию и повышенной хрупкостью при температурах выше 250 °С и ниже минус 70 °С; матовое покрытие выдерживает гибку, развальцовку.

Покрытие обладает низкой химической стойкостью к воздействию продуктов, выделяющихся при старении органических материалов.

7. Микротвердость покрытия, наносимого электрохимическим способом, в среднем, составляет 490-1180 МПа (50-120 кгс/мм²);

удельное сопротивление: при температуре 18 °C составляет $5,75 \cdot 10^{-8}$ Ом · м.

Кадмиевое покрытие

- 1. Кадмиевое покрытие является анодным и защищает сталь от коррозии в атмосфере и морской воде электрохимически; в пресной воде механически.
- 2. Для повышения коррозионной стойкости кадмиевое покрытие хроматируют и фосфатируют. Хроматирование одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная.

Скорость коррозии в промышленной атмосфере в 1,5-2 раза больше, чем у цинкового покрытия.

- 3. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности, при опрессовке пластмассами при температуре выше 100 °C.
- 4. Покрытие не рекомендуется применять для деталей, работающих в атмосфере промышленных районов; в контакте с топливом, содержащим сернистые соединения; в атмосфере, содержащей летучие агрессивные соединения, выделяющиеся при старении из органических веществ: при высыхании олифы. масляных лаков и т. п.
- 5. Электрохимическое кадмирование вызывает потерю пластичности сталей вследствие наводороживания. Для деталей из стали с пределом прочности выше 1370 МПа (140 кгс/мм²) допускается кадмирование по специальной технологии.
- 6. Покрытие обладает прочным сцеплением с основным металлом, хорошими антифрикционными свойствами, низкой износостойкостью; пластичнее цинкового; выдерживает запрессовку, вытяжку, развальцовку, свинчивание. Окислы кадмия токсичны.

Сварка по кадмиевому покрытию не допускается.

7. Микротвёрдость кадмиевого покрытия-340-490 МПа (35-50 кгс/мм²);

удельное сопротивление при температуре 18 °C - 10,98 · 10-8 Ом · м.

Никелевое покрытие

- 1. Никелевое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам. Покрытие применяется для защитной, защитно-декоративной отделки деталей, повышения поверхностной твердости, износостойкости и электропроводности.
- 2. Для повышения декоративности покрытия по никелевому подслою наносят хром толщиной до 1 мкм.
- 3. Увеличение коррозионной стойкости достигается сочетанием нескольких слоев никелевых покрытий с различными физико-химическими свойствами. При толщине 24 мкм защитные свойства двухслойного по-крытия (без подслоя меди) в два раза, а трехслойного с заполнителем в три раза превосходят защитные свойства блестящих покрытий.
- 4. Удельное сопротивление при температуре 18 °C 7,23 \cdot 10⁻⁸ Ом \cdot м.;

микротвердость блестящего покрытия - 4420-4900, полублестящего - 2940-3930 МПа;

коэффициент отражения блестящего покрытия - 75 %. Допустимая рабочая температура $650\,^{\circ}\mathrm{C}$.

- 5. Покрытие обеспечивает хорошую растекаемость припоев и получение вакуумплотных соединений при высокотемпературной пайке в различных средах без применения флюсов, а также при аргонодуговой сварке (в последнем случае без медного подслоя). Никелевое покрытие толщиной до 6 мкм может подвергаться точечной сварке.
- 6. Покрытие служит барьерным слоем под покрытия золотом, серебром, сплавом оловосвинец и другими металлами, предотвращая диффузию меди, цинка, железа и других металлов.
- 7. Черное никелевое покрытие применяется для придания деталям специальных оптических и декоративных свойств.

Коэффициент отражения черного никелевого покрытия - до 20 %.

Никелевое химическое покрытие

1. Химическое никелевое покрытие, содержащее 3-12 % фосфора, обладают лучшими защитными свойствами по сравнению с электрохимическим никелевым покрытием. Покрытие обладает повышенной твердостью и износостойкостью и рекомендуется для деталей, работающих в условиях трения, особенно при отсутствии смазки; применяется для защиты от коррозии, для обеспечения пайки низкотемпературными припоями.

Покрытие обладает повышенной хрупкостью, не рекомендуется гибка и развальцовка деталей с химическим никелевым покрытием.

- 2. Покрытие рекомендуется применять преимущественно для сложнопрофилированных деталей.
- 3. Покрытие после термообработки при температуре 400 °C приобретает высокую твердость.
- Микротвердость покрытия после термообработки - 6400-11800 МПа (650-1200 кгс/мм²);

удельное сопротивление при температуре 18 °C - $6.8 \cdot 10^{-7}$ Ом \cdot м.

Хромовое покрытие

- 1. Хромовое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам, обеспечивает защиту от коррозии и улучшает декоративный вид.
- 2. Защитно-декоративное покрытие наносят по подслою никеля тонким зеркальноблестящим слоем до 1 мкм. Покрытие толщиной до 0,5 мкм - пористое, при увеличении толщины образуется сетка трещин.
- 3. Электрохимическое хромовое покрытие может быть твердым, пористым, молочным.
 - 4. Твердое хромовое покрытие обладает

высокой износостойкостью, жаростойкостью, низким коэффициентом трения, плохой смачиваемостью, низкой пластичностью.

Покрытие эффективно работает на трение (при нанесении на твердую основу), хорошо выдерживает равномерно распределенную нагрузку, легко разрушается под действием сосредоточенных ударных нагрузок.

- 5. Молочное хромовое покрытие обладает невысокой твердостью и износостойкостью, небольшой пористостью. Покрытие защищает от коррозии с сохранением декоративного вила.
- 6. Наводороживание сталей сильнее при получении молочного покрытия, чем твердого.
- 7. Для деталей, к которым предъявляют требования защиты от коррозии, декоративной отделки, а также износостойкости, рекомендуется применять комбинированное покрытие, состоящее из молочного и твердого хрома.
- 8. Пористое покрытие повышает износостойкость деталей. Покрытие характеризуется разветвленной сеткой трещин (поры расширены дополнительным анодным травлением).
- 9. Черное хромовое покрытие применяется для создания светопоглощающей поверхности; покрытие непрочно при работе на трение. Коэффициент отражения черного хромового покрытия 3-4 %; покрытие стабильно в вакууме.
- 10. Нанесение хромовых покрытий на сложнопрофилированные детали затруднено из-за низкой рассеивающей способности хромовых электролитов.
- 11. Для повышения коррозионной стойкости детали с хромовым покрытием могут подвергаться дополнительной обработке (гидрофобизированию, пропитке и т. п.).

При эксплуатации в условиях непосредственного воздействия морской воды для дополнительной защиты хромированных деталей рекомендуется периодическое возобновление смазки.

12. Микротвердость твердого хромового покрытия - 7350-10780 МПа (750-1100 кгс/мм²), черного хромового покрытия - 2940-3430 МПа (300- 350 кгс/мм²).

Медное покрытие

1. Медное покрытие является катодным по отношению к стали, алюминиевым, магниевым и цинковым сплавам. Покрытие применяется в качестве технологического подслоя для уменьшения пористости и повышения сцепления других покрытий. Для защиты от коррозии как самостоятельное покрытие не рекомендуется из-за низкой коррозионной стойкости.

- 2. Медное покрытие обладает высокой электро- и теплопроводностью, пластичностью, выдерживает глубокую вытяжку, развальцовку, хорошо полируется, облегчает приработку, притирку и свинчивание; в свежеосажденном состоянии хорошо паяется. С низкотемпературными припоями образует интерметаллические соединения, резко ухудшающие паяемость и прочность паяного соединения.
- 3. Допустимая рабочая температура покрытия - 300 °С; микротвердость покрытия -590-1470 МПа (60-150 кгс/мм²);

удельное сопротивление при температуре $18 \, ^{\circ}\text{C} - 1,68 \, 10^{-8} \, \text{Om} \cdot \text{м}.$

Покрытие сплавом медь - олово

- 1. Покрытие высокооловянистым сплавом M-O(60) по отношению к стали является катодным, рекомендуется для повышения износостойкости электроконтактных деталей, а также для обеспечения пайки. Покрытие допускается применять в качестве защитнодекоративного.
- 2. Покрытие стойко к воздействию щелочей, слабых органических кислот и сернистых соединений.
- 3. Коэффициент отражения покрытия 60-65 %, сопротивление износу в 4 раза больше, чем у серебряного покрытия; твердость в 5-6 раз больше твердости медного покрытия.
- 4. Покрытие хорошо паяется низкотемпературными припоями с применением канифольных флюсов.
- 5. Покрытие не подвержено росту нитевидных кристаллов и переходу в порошковую модификацию при низких температурах.
- 6. Микротвердость покрытия 5390-6370 МПа (550-650 кгс/мм 2).

Оловянное покрытие

- 1. Оловянное покрытие в атмосферных условиях является катодным по отношению к стали, анодным во многих органических средах, а также по отношению к меди и ее сплавам, содержащим более 50 % меди. Покрытие рекомендуется для обеспечения пайки.
- 2. Оловянное покрытие стойко к действию серосодержащих соединений и рекомендуется для деталей, контактирующих со всеми видами пластмасс и резин.
- 3. Оловянное покрытие обладает хорошим сцеплением с основным металлом, эластичностью, выдерживает изгиб, вытяжку, развальцовку, штамповку, прессовую посадку, хорошо сохраняется при свинчивании.

Свежеосажденное оловянное покрытие хорошо паяется. Блестящее покрытие сохраняет способность к пайке более длительное время, чем матовое.

- 4. Для матового оловянного покрытия характерна значительная пористость. Пористость покрытий малой толщины (до 6 мкм) может быть снижена оплавлением покрытия или нанесением блестящего покрытия.
- 5. На поверхности покрытия в процессе хранения образуются нитевидные токопроводящие кристаллы («иглы»).
- При эксплуатации оловянных покрытий при температуре ниже плюс 13 °C возможно разрушение покрытия вследствие перехода компактного белого олова (β-Sn) в порошкообразное серое олово (α-Sn) («оловянная чума»).
- Микротвердость покрытия 118-198 МПа (12-20 кгс/мм²); удельное сопротивление при 18 °C - 11,5-10-8 Ом:м.

Допустимая рабочая температура покрытия - 200 °C.

Покрытие сплавом олово - никель

- 1. Покрытие сплавом О-H(65) является катодным по отношению к стали; рекомендуется как защитное для деталей, подлежащих пайке; для обеспечения поверхностной твердости и износостойкости.
- 2. Покрытие обладает высокой коррозионной стойкостью: стойко в условиях повышенной влажности и среде, содержащей сернистые соединения.
- 3. Покрытие хорошо полируется, выдерживает запрессовку в пластмассы, вследствие высокой хрупкости не рекомендуется для деталей, подвергаемых развальцовке и ударным нагрузкам.
- 4. Микротвердость покрытия 4900-5880 МПа (500-600 кгс/мм²).

Допустимая рабочая температура 300-350 °C.

Покрытие сплавом олово - висмут

- 1. Покрытие сплавом О-Ви-(99,8) в атмосферных условиях является катодным по отношению к стали, анодным по отношению к меди и ее сплавам, содержащим более 50 % меди; рекомендуется как защитное для деталей, подлежащих пайке.
- 2. Коррозионная стойкость и склонность к иглообразованию такие же, как у оловянного покрытия.
- 3. Покрытие хорошо выдерживает развальцовку, штамповку, прессовые посадки, сохраняются при свинчивании.

Покрытие сплавом олово - свинец

1. Покрытие сплавом O-C(60) в атмосферных условиях является катодным по отношению к стали, анодным - по отношению к мели и ее сплавам.

Покрытие обеспечивает паяемость низкотемпературными припоями.

- 2. В условиях повышенной температуры и влажности коррозионная стойкость ниже, чем у оловянного покрытия.
- 3. Покрытие пластично, обладает низким электрическим сопротивлением, паяется с применением неактивированных канифольных флюсов.
- 4. Оплавленное покрытие имеет лучшие эксплуатационные характеристики.
- 5. Оплавленное покрытие не подвержено иглообразованию. На цинкосодержащих сплавах покрытие должно применяться по подслою никеля, предотвращающего диффузию цинка в покрытие и иглообразование.
- 6. Паяемость покрытия после опрессовки в полимерные материалы, при необходимости, восстанавливают горячим способом с неактивированным канифельным флюсом.

Золотое покрытие

- 1. Золотое покрытие является катодным по отношению к покрываемым металлам и защищает их механически; рекомендуется для обеспечения низкого и стабильного переходного электрического сопротивления контактирующих поверхностей, улучшения поверхностной электропроводности.
- 2. Покрытие обладает высокой тепло- и электропроводностью, химической стойкостью, в том числе в атмосфере с повышенной влажностью и серосодержащих средах.
- 3. Групповые контакты с покрытиями золотом и сплавами золотом, имеющие обычно малые зазоры между цепями, для условий эксплуатация 4-8 следует герметизировать или помещать в пылебрызгозащитные устройства.
- 4. Покрытие из цианистых электролитов, работающее в контактных устройствах, склонно к возрастанию адгезии трущихся поверхностей в процессе работы. Покрытие из кислых электролитов не обладает таким дефектом.
- 5. При осаждении золотого покрытия на латунь рекомендуется подслой никеля, который предотвращает диффузию цинка на поверхность золотых покрытий из основного металла.

Никелевый подслой под покрытие золотом и сплавами золотом следует наносить из

- электролитов, обеспечивающих получение покрытия с низкими внутренними напряжениями.
- 6. С оловянно-свинцовыми припоями золотое покрытие образует хрупкие интерметаллические соединения, снижающие механическую прочность паяного соединения.
- 7. Микротвердость покрытия 392-980 МПа (40-100 кгс/мм²):

удельное сопротивление при температуре $18 \, ^{\circ}\text{C} - 2.2 \cdot 10^{-8} \, \text{Ом} \cdot \text{м}$;

внутренние напряжения достигают 59-147 $M\Pi a$ (6-15 $\kappa rc/mm^2$).

Покрытие сплавом золото - никель

- 1. Покрытия сплавами Зл-Н (99,5-99,9), Зл-Н (98,5-99,5), Зл-Н (93,0-95,0) являются катодными по отношению к покрываемым металлам и защищают их механически. Коррозионная стойкость сплава золото-никель и функциональное назначение такие же, как золотого покрытия.
- 2. Покрытие характеризуется высокой электро- и теплопроводностью, высокой твердостью, повышенным сопротивлением износу, отсутствием склонности к свариванию,
 невысокими внутренними напряжениями;
 отличается химической стойкостью в различных агрессивных средах и сохраняет стабильными во времени свои характеристики.
- 3. Подслой никеля создает благоприятные условия работы покрытий на трение, предотвращает диффузию основного металла при температурах до 350 °C, способствует стабильности контактного сопротивления.
- 4. С оловянно-свинцовыми припоями покрытие образует хрупкие интерметаллические соединения, снижающие механическую прочность паяного соединения.

Серебряное покрытие

- 1. Серебряное покрытие является катодным по отношению к покрываемым металлам; рекомендуется для обеспечения низкого контактного сопротивления, для улучшения поверхностной электропроводности.
- 2. Покрытие характеризуется высокой электро- и теплопроводностью, пластичностью, отражательной способностью; низкими твердостью, сопротивлением механическому износу и внутренними напряжениями; склонностью к свариванию.

Покрытие хорошо выдерживает гибку и развальцовку, плохо переносит опрессовку в полимерные материалы.

Покрытие подвержено миграции по поверхности диэлектрика под действием разности потенциалов.

Блескообразователи в электролитах для нанесения покрытия способны отрицательно влиять на электропроводность покрытия.

- 3. Не допускается применять серебряное покрытие в качестве подслоя под золото из-за диффузии серебра через золото с образованием поверхностных непроводящих пленок (При применении изделий с электроконтактами с золотым покрытием по подслою серебра возможна нестабильность переходного сопротивления вплоть до отказа из-за диффузии серебра через золото).
- 4. Под воздействием соединений хлора, аммиака, серосодержащих, фенолсодержащих и т. п. веществ на поверхности серебряных и серебросодержащих покрытий образуется пленка, способствующая повышению переходного сопротивления покрытия и затрудняющая его пайку.
- 5. Микротвердость покрытия 883-1370 МПа (90-140 кгс/мм²), которая в течение времени может уменьшаться до 558 МПа (60 кгс/мм²);

удельное сопротивление при температуре $18 \, ^{\circ}\text{C} - 1.6 \cdot 10^{-8} \, \text{Ом} \cdot \text{м}$.

Палладиевое покрытие

- 1. Палладиевое покрытие является катодным по отношению к покрываемым металлам, обладает высокой стойкостью в атмосферных условиях и при воздействии сернистых соединений.
- 2. Покрытие рекомендуется применять для снижения переходного сопротивления контактирующих поверхностей, повышения их поверхностной твердости и износостойкости, при необходимости сохранения постоянства электрического сопротивления.
- 3. Покрытие обладает высокой износостойкостью и хорошей электропроводностью, стабильным во времени контактным сопротивлением; коэффициент отражения - 60-70 %.

Электропроводность почти в семь раз ниже, чем у серебряного покрытия, но стабильна во времени до температуры 300 °C.

- 4. Покрытие не рекомендуется применять в контакте с органическими материалами и резинами, а также в замкнутом пространстве при наличии указанных материалов; не допускается применять в среде водорода.
- 5. При толщине более 9 мкм в покрытии возникают микротрещины, что снижает его функциональные и защитные свойства.
- 6. Микропвердость покрытия 1960-2450 МПа (200-260 кгс/мм²);

удельное сопротивление при температуре 18 °C - 10,8·10-8 Ом·м; внутренние напряжения достигают 686 МПа (70 кгс/мм²).

Родиевое покрытие

- 1. Родиевое покрытие является катодным по отношению к покрываемым металлам.
- 2. Покрытие рекомендуется применять для обеспечения стабильных электрических параметров деталей контактных устройств, повышения отражательной способности поверхности.
- 3. Покрытие обладает высокими износостойкостью, электропроводностью, отражательной способностью.

Коэффициент отражения - 76-81 %.

Покрытие не подвержено свариванию, стойко в большинстве коррозионно-активных сред, в том числе в сероводороде, не окисляется до температуры 500 °C.

- 4. Покрытие при толщине 1,0 мкм практически не имеет пор, при толщине более 3 мкм склонно к образованию микротрещин.
- 5. Микротвердость покрытия 3920-7840 МПа (400-800 кгс/мм²);

удельное сопротивление при температуре $18 \, ^{\circ}\text{C} - 4,5 \cdot 10^{-8} \, \text{Ом·м};$

внутренние напряжения достигают 1670 М Π а (170 кгс/мм²).

Анодно-окисные покрытия

- 1. По алюминию и алюминиевым сплавам
- 1.1. При анодировании размеры деталей увеличиваются примерно на 0,5 толщины покрытия (на сторону).
- 1.2. Качество анодно-окисного покрытия повышается с улучшением чистоты обработки поверхности деталей.
- 1.3. Анодно-окисные покрытия, применяющиеся для защиты от коррозии, подвергаются наполнению в растворе бихромата калия, натрия или в воде, в зависимости от их назначения. Эти покрытия являются хорошей основой для нанесения лакокрасочных покрытий, клеев, герметиков и т. п.. Для придания деталям декоративного вида анодноокисные покрытия перед наполнением окрашивают адсорбционным способом в растворах различных красителей или электрохимическим способом в растворах солей металлов.
- 1.4. Для получения на анодированных деталях из алюминиевых сплавов зеркального блеска рекомендуется предварительно полировать поверхность. Отражательная способность анодированного алюминия и его сплавов уменьшается в следующем порядке: А99, А97, А7, А6, АД 1, АМг1, АМг3, АД31, АД33.

1.5. Твердые анодно-окисные покрытия с толщиной 20-100 мкм являются износостой-кими (особенно при использовании смазок), а также обладают тепло- и электроизоляционными свойствами.

Детали с твердыми анодно-окисными покрытиями могут подвергаться механической обработке.

- 1.6. Анодно-окисные покрытия имеют пористое строение, неэлектропроводны, хрупки и склонны к растрескиванию при нагреве выше 100 °C или деформациях.
- 1.7. При сернокислотном анодировании шероховатость поверхности увеличивается на два класса; хромовокислое анодирование в меньшей степени отражается на шероховатости поверхности.

При назначении анодно-окисных покрытий следует учитывать их влияние на механические свойства основного металла. Влияние анодно-окисных покрытий возрастает с увеличением их толщины и зависит от состава сплава.

- 1.8. Анодирование в хромовой кислоте обычно применяется для защиты от коррозии деталей из алюминиевых сплавов, содержащих не более 5 % меди, главным образом, для деталей 5-6 квалитетов.
- 1.9. Покрытие Ан.Окс. эиз наносят для придания поверхности деталей из алюминия и алюминиевых сплавов электроизоляционных свойств.
- 1.10. При электроизоляционном анодировании рекомендуется применять щавелевокислый электролит.

Покрытие обеспечивает стабильные электроизоляционные свойства после пропитки или нанесения соответствующих лакокрасочных материалов; при пропитке толщина покрытия увеличивается на 3-7 мкм, при нанесении лакокрасочного покрытия - до 80 мкм.

Сопротивление покрытия пробою возрастает с увеличением его толщины, уменьшением пористости и повышением качества исходной поверхности.

Царапины, риски, вмятины, острые кромки снижают электроизоляционные свойства покрытия.

После пропитки покрытия электроизоляционным лаком сопротивление пробою зависит, главным образом, от толщины покрытия и мало зависит от состава алюминиевых сплавов и технологического процесса анодирования.

- 1.11. Покрытие Ан.Окс.эмт рекомендуется для деталей из низколегированных деформируемых алюминиевых сплавов с целью придания им декоративного вида.
- 1.12. Для деталей, изготовленных из сплавов, содержащих более 5 % меди, не рекомендуется применять покрытия Ан.Окс.хром и Ан.Окс.тв.

- 1.13. Для деталей, изготовленных зиз сплавов, содержащих более 3 % меди, не рекомендуется применять покрытия Ан.Окс.эмт и Ан.Окс.эиз.
- 1.14. Анодно-окисное покрытие обладает прочным сцеплением с основным металлом; обладает более низкой теплопроводностью, чем основной металл; стойко к механическому износу. Микротвердость на сплавах марок Д1, Д16, В95, АК6, АК8 1960-2450 МПа (200-250 кгс/мм²); на сплавах марок А5, А7, А99, АД1, АМг2, АМг2с, АМг3, АМг5, АМг6, АМц, АВ 2940-4900 МПа (300-500 кгс/мм²); микротвердость эматалевого покрытия 4900 МПа (500 кгс/мм²); удельное сопротивление покрытия 107-1012 Ом-м.
 - 2. По магниевым сплавам
- 2.1. Для защиты деталей, изготовленных из магниевых сплавов, неорганические покрытия рекомендуется применять в сочетании с лакокрасочными покрытиями.
- 2.2. Анодно-окисные покрытия без дополнительной окраски применяют для защиты деталей, работающих в минеральных неагрессивных маслах, а также для межоперационного хранения деталей.

Не подлежат окраске резьбовые поверхности деталей и посадочные поверхности при тугой посадке деталей. В этих случаях на металлические покрытия дополнительно наносят смазку, грунты и т. п.

- 2.3. Для защиты внутренних полостей и в приборах допускается применение анодноокисных покрытий, пропитанных лаками.
- 2.4. Для защиты от коррозии деталей, работающих в жидких диэлектриках, применяется анодно-окисное покрытие без пропитки и лакокрасочного покрытия.
- 2.5. Покрытие Аноцвет обеспечивает хорошую адгезию пропиточного лака, хорошо полируется после пропитки лаком. Обладает высокой износостойкостью; пробивное напряжение не менее 200 В; хрупкое, легко скалывается с острых кромок; снижает усталостную прочность металла.

Поверхностная плотность покрытия - 0,03-0,04 кг/м², после пропитки - 0,035-0,05 кг/м² Микротвердость покрытия - 1670-1960 МПа (170-200 кгс/мм²).

2.6. Покрытие Аноцвет применяют для деталей, имеющих посадочные поверхности 6, 7, 8 квалитетов (2 и 2а классов точности).

Нанесение покрытия Ан.Окс на сборочные единицы допускается при условии изоляции сопряженных деталей из других сплавов. Рабочая температура покрытия - до 400 °C.

2.7. Покрытие Аноцвет допускается наносить на сборочные единицы при условии изоляции сопряженных деталей из разнородных сплавов. Не допускается анодирование деталей, имеющих каналы диаметром менее 5 мм большой протяженности.

Рабочая температура покрытия - до 400 °С. Толщина покрытия - от 5 до 40 мкм. Цвет покрытия - белый, зеленый или серочерный в зависимости от применяемого электролита.

3. По титану и титановым сплавам

Анодно-окисное покрытие применяется для повышения адгезии лакокрасочных материалов, обеспечения свинчиваемости резьбовых деталей, декоративной отделки.

Покрытие Ан.Окс обладает прочным сцеплением с основным металлом: прочность клеевого соединения при работе на отрыв не менее 29,4 МПа (300 кгс/см²); на сдвит - не менее 12,8 МПа (130 кгс/см²);

обладает электроизоляционными свойствами: пробивное напряжение без лакокрасочного покрытия - 10-50 В;

поверхностная плотность покрытия $0.002-0.004 \text{ kr/m}^2$;

износостойко:

при работе на трение предотвращает налипание металла.

Покрытие Аноцвет обеспечивает прочность клеевого соединения при работе на отрыв не менее 11,8 МПа (120 кгс/см 2), на сдвиг - 4,9-5,9 МПа (50-60 кгс/см 2).

Химическое окисное и пассивное покрытия

- 1. По углеродистым сталям
- 1.1. Покрытие Хим.Окс применяется для защиты от коррозии в условиях эксплуатации 1, а также для повышения адгезии лакокрасочных материалов, клеев и т.п.
- 1.2. Покрытие имеет высокую пористость, низкие защитные свойства» улучшающиеся при пропитке нейтральными маслами;

подвержено быстрому истиранию;

не поддается пайке и сварке.

- 2. По алюминию и алюминиевым сплавам
- 2.1. Покрытие Хим.Окс имеет невысокие защитные свойства, низкую механическую прочность;

обладает хорошей прочностью сцепления с основным металлом;

неэлектропроводно;

термостойко до температуры 80 °C.

2.2. Покрытие Хим.Окс.э электропроводно, имеет невысокие защитные свойства, низкую механическую прочность, термостойко до температуры 80 °С, не влияет на затухание высокочастотной энергии в волноводном тракте.

- 3. По меди, медным сплавам и высоколегированным сталям
- 3.1. Покрытие Хим. Пас предохраняет поверхность меди и медных сплавов от окисления и потемнения в течение непродолжительного времени;

несколько повышает коррозионную стой-кость высоколегированных сталей.

- 3.2. Для повышения коррозионной стойкости деталей следует применять смазки или лакокрасочные материалы.
- 3.3. Покрытие непригодно для защиты от контактной коррозии.
- 3.4. Покрытие не влияет на антимагнитные характеристики основного металла.
 - 4. По магниевым сплавам
- 4.1. Покрытие предохраняет от коррозии только при межоперационном хранении и внутризаводской транспортировке;

несколько повышает адгезию лакокрасочных материалов.

4.2. Покрытие нестойко к истиранию, легко нарушается при механическом воздействии;

термостойко до температуры 150 °C; не влияет на усталостную прочность сплавов.

- 4.3. Для деталей 5-6 квалитетов (1-2 классов точности) для нанесения покрытий используются растворы, в которых размеры деталей не изменяются вследствие растравливания.
- 4.4. Нанесение покрытий на сборочные единицы допускается только в растворах, не вызывающих коррозию сопрягаемых металлов.

Химическое фосфатное покрытие

1. Покрытие применяется для защиты стальных деталей от коррозии, повышения адгезии лакокрасочных материалов, клеев, а также как электроизолящионное покрытие.

Обработка в растворах хроматов улучшает защитные свойства.

2. Покрытие обладает высокими электроизоляционными свойствами при температуре до 500 °C; пробивное напряжение - 300-1000 В;

имеет невысокую механическую прочность, легко истирается;

хрупкое, не выдерживает ударов, при изгибе основного металла на 180° дает трещины и осыпается по линии изгиба, но не отслаивается;

не смачивается расплавленными металлами; не поддается пайке и сварке.

Покрытие не влияет на твердость, прочность и магнитные характеристики сталей.

- 3. Обладает высокой стойкостью к воздействию горячих масел, бензола, толуола, различных газов, за исключением сероводорода.
- 4. Поверхностная плотность покрытия 0.001-0.01 кг/м².

ПОКРЫТИЯ МЕТАЛЛИЧЕСКИЕ И НЕМЕТАЛЛИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ НА ПЛАСТМАССАХ

ГОСТ 9.313-89 распространяется на металлические и неметаллические неорганические покрытия, получаемые на пластмассовых деталях способом химического осаждения электропроводного покрытия или подслоя для последующего нанесения электрохимического покрытия с целью придания пластмассовым деталям специальных свойств и декоративного вида, и устанавливает общие требования к деталям и покрытиям, основные параметры операций получения электропроводного покрытия или подслоя никеля, меди и сульфилов меди.

Технические требования к деталям и покрытиям

1. Полимерные материалы, применяемые для изготовления деталей, подлежащих нанесению покрытий, должны соответствовать требованиям нормативно-технической документации на данные материалы.

Пластмассы, применяемые для нанесения покрытий, приведены в табл. 27.

27. Пластмассы, применяемые для нанесения покрытий

	Наименование материала	Обозначение	Нормативный документ
1.	Поликарбанаты	ПК-1 ПК-1 стабилизированная ПК-2 стабилизированная ПК-2 ПК-3	ТУ 6-05-1668
	Пластики акрилонитрилбутадиен- ирольные	АБС-2020-30; высший сорт АБС-0809, неокращенный АБС-МО905Л, неокра- шенный АБС-М1005Л, неокращенный АБС-2020-С22 АБС-2020-С17	ТУ 6-05-1587 ТУ 6-05-05-221 ТУ 6-05-05-221 ТУ 6-05-041-736
3.	Полистирол ударопрочный	УПМ-0612Л УПМ -0703Л	OCT 6-05-406 OCT 6-05-406
4.	Полиамиды Композиция на основе полиамида 610	ПА 610-Л-СВ30	OCT 6-05-408
5.	Полиолефины Полипропилен	ПП 01020 ПП 01010	ТУ 6-05-1105
	Композиция на основе полиэтилена зкого давления	210-46	FOCT 16338
7.	Полиформальдегид Сополимеры формальдегида с диоксоламом	СФД-А СФД-Б СФД-В СФД-Д	ТУ 6-05-1543
8.	Композиция антифрикционная	СФД-ВМ-БС	ТУ 6-05-1932
9.	Фенольные смолы Фенопласт	Э6-014-30	FOCT 5689

28. Толщина покрытий на пластмассовых деталях в зависимости от условий эксплуатации

Обозивиение покрытия	Назначение	Толщ	Толщина покрытия, мкм, для условий эксплуатации покрытий по ГОСТ 15150-69	ия, мкм, для	условий эк	сплуатации	покрытий п	to FOCT 151	50-69
по ГОСТ 9.306	покрытия	1	2	3	4	5	9	7	8
Хим.М.М.Н.6**	Декоративное	9-24; 6	9-24; 9	9-24; 9	9-24; 9	9-24; 12	9-24; 12	ı	1
Хим.М.Нб.Х"	Декоративное	9-24; 6	9-24; 9	9-24; 9 Толщин	9-24; 9 9-24; 9 9-24; 15 Толщина хрома 0,5-1,0 мкм	9-24; 15 1,0 мкм	9-24; 15	9-24; 15	9-24; 15
Хим.М.М.Ср	Для обеспечения поверхностной электропроводности, снижение поверхностного сопротивления	9-24; 3	9-24; 3-6	9-24; 3-6	9-24; 6	9-24; 9	9-24; 9	9-24; 9	9-24; 9
Хим.М.М.О-С(60)	Для обеспечения по- верхностной электро- проводности, под пайку	9-24; 6	9-24; 9	9-24; 9	9-24; 9	9-24; 9	9-24; 9	9-24; 9	9-24; 9*
Хим.М.М.О-Ви(99,8)	Под пайку	9-24; 6	9-24; 9	9-24; 9	9-24; 9	9-24; 12	9-24; 12	9-24; 12*	9-24; 12*

* С дополнительной защитой.

** Взамен Хим. М допускается применять сульфидирование; обозначение - Хим.Мс. После сульфидирования проводят предварительное электрохимическое никелирование (затяжка) из электролитов матового никелирования до образвоания сплошного покрытия на всей детали.

Примечания:

- Знак «-» означаст, что данное покрытие для данных условий эксплуатации не рекомендуется.
- Допускается в качестве подслоя вместо Хим. М применять Хим. Н согласно требованиям потребителя и условиям производства.
 - Толщина химического поделоя 0,3-1 мкм; контролируемая визуально на наличие покрытия. સં
- В качестве медного подслоя допускается применять М.б, М.м.М.б, Н.м.М.б при сохранении суммарной толщины. 4
 - 5. Климатическое исполнение изделий по ГОСТ 15150-69 см. в табл. 21.

- 2. Требования к конструкции деталей
- 2.1. Для нанесения покрытий рекомендуется применять детали с простой конфигурацией.
- 2.2. Нанесению покрытий подлежат детали площадью не более 10 см2 и толшиной стенок не менее 2,5 мм. Отношение максимальной толщины к минимальной должно быть не более 2. выпуклость 0.1-0.2 мм/см.

Рекомендуется рельефная рисунчатость.

- 2.3. Торцы для полых деталей должны иметь буртики высотой не более удвоенной толщины стенки.
- 2.4. На деталях не рекомендуются острые и прямые углы. Для углов, кромок и буртиков радиус закругления не менее 0,5 мм.
- 2.5. Отверстия и углубления должны быть круглого сечения, рекомендуются сквозные, диаметром не менее 0.5 глубины, с радиусом закругления дна не менее 3 мм.

2.6. Глубина пазов должна быть в три раза меньше ширины. Не рекомендуется прямоугольная форма.

2.7. Ребра жесткости должны быть низкими; толщиной не более 0,6-0,8, высотой в две толщины стенки и радиусом у основания 0,5-1,0 мм. Отношение расстояния между ребрами к толщине стенки ребра более 4.

2.8. Нанесению покрытий подлежат детали с резьбой не менее М5. Отверстие на 30 % длиннее нарезки. Не допускается нарезка механическим способом.

2.9. Ширина отверстий рещетки, на которую наносится покрытие, должна быть равна ширине перемычки и в два раза меньше толщины решетки. Ширина перемычки должна быть не менее 1,5 мм. Рекомендуются уклоны в 5° и изгиб решетки (радиус кривизны в 5-10 раз больше ширины решетки).

2.10. Внутренние радиусы закругления 3 мм, внешние - 1,5 мм (или 0,4-0,8 толщины

стенки, но не менее 0,5 мм).

2.11. Технологические уклоны для изделий из пластмасс необходимо подобрать так, чтобы обеспечить беспрепятственное извлечение изделий из пресс-формы и исключить возможные деформащии и повреждения поверхности.

акрилонитрилбутадиенстирольных (АБС) пластиков рекомендуется технологический уклон 1°, для полиэтилена, полипропилена, полиацеталей и акрильных смол - 0,25°, для полиамидов - 0,125°. Мелкие детали простой формы можно изготовлять без технологических уклонов.

- 2.12. На деталях, подлежащих нанесению покрытий, не должно быть выходящей наружу металлической арматуры.
 - 3. На поверхности детали не допускаются:
- 1) расслаивание и трещины, усадки, цара-
- 2) включения других (неметаллических) материалов и других пластмасс при отливе;
- 3) наличие смазки, минеральных масел, вазелина воска и т. п.

Допускается выявление структуры материала на леталях.

4. После химического травления поверхность должна иметь равномерный матовый вид без блестящих точек, рыхлых полос или других видов неоднородностей.

Шероховатость поверхности по ГОСТ 2789-73 после химического травления должна

быть равномерной, Ra 0,1-0,5 мкм.

5. Требования к покрытиям. химическим нанесенным собом (электропроводный подслой)

5.1. Покрытие должно быть сплоциым, не допускаются вздутия, шелушения и отслаивания.

Цвет медного покрытия - от светлорозового до темно-розового, никелевого - от светло-серого до темно-серого; сульфилного от желтого до светло-коричневого с перламутровым блеском.

5.2. Электросопротивление сульфидного покрытия - не более 0,8 кОм/см2.

Покрытия выбирают по табл. 28

Если в табл. 28 приведен интервал толщин, минимальную толщину покрытия в указанных пределах устанавливают в нормативно-технической документации на конкретное изделие с учетом типа пластмассы, специфики изделия (детали) и требований, предъявляемых к изделию.

Допустимую максимальную толшину покрытия в зависимости от минимальной устанавливают в соответствии с ГОСТ 9.303-84.

- 7. Требования к покрытиям, нанесенным электрохимическим способом
- 7.1. Электрохимические покрытия должны соответствовать требованиям ГОСТ 9.301-86.
- 7.2. Прочность сцепления металлического покрытия с основным материалом должна быть не менее 0.6 kH/m^2

По согласованию с заказчиком допускается уменьшать прочность сцепления.

- 7.3. На поверхности покрытых деталей, если нет специальных указаний в конструкторской документации, не являются браковочными следующие признаки:
- 1) неровность края покрытия при частичном нанесении его на деталь;
- 2) следы от подрезки края покрытой поверхности (например, при удалении литника для мелких деталей);
- 3) шероховатость покрытий на поверхностях, подвергающихся гидроабразивной или абразивной обработке, не ухудшающая качества изделия;
- 4) отсутствие покрытия в порах и раковинах (на нелицевой стороне);
- 5) частичное отсутствие покрытия в отверстиях с резьбами менее М5;
- 6) непокрытые точки диаметром до 0,5 мм в количестве 1 точка на 1 см² площади;
- 7) выявление структуры материала после электрохимического покрытия.

Перечень ГОСТов

В 1-м томе справочника использованы ГОСТы, действующие на 1 июля 2000 г.

ГОСТ	Стр.	ГОСТ	Стр.	гост	Стр.
2.308-79	451	801–78	66, 89, 842	1759.0-87	635, 640, 642
2.309-73	331	859–78	261, 514	1759.1–82	666, 668, 674
(ИСО 1302-73)		931–90	214, 215	1759.487	635, 637
4.439–86	194	977–88	67, 163, 166, 706	(ИСО 898/1-78)	
5–78	278	1050-88	85, 87, 94, 514	1759.5–87	635, 638, 639
8.06494	77	1051-73	85, 87, 94, 95,	1761–92	274
9.005–72	870		130	1779–83	302
9.032-74	849, 851, 855	1066–90	219	2060–90	212, 213
9.039-74	860	1133–71	87, 92, 113, 131	2208-9 i	217-219
9.104–79	849, 859, 860,	1144-80	679	2323–76	556
	861	114580	679	2324–77	634
9.301–86	642, 896	1198–93	291	2524-70	688, 690
9.303-84	642, 678, 870, 898	1215-79	194, 706	2526-70	688, 690
9.305-84	896	1320–74	195	2528-73	691
9.306-85	640, 651, 861	1412-85 (ИСО 185)	68-70, 181, 185, 514	2590-88	82, 84, 87, 89, 92, 113, 130
9.313-89	906	1414–75	84, 94, 817	2591-88	82, 84, 87, 89,
20-85	312, 313, 318	1435–90	92, 93, 94, 131		92, 108, 113, 130
82-70	120, 134	1476–93	675	2688-80	175, 178
103–76	82, 87, 89, 92, 108, 113, 126,	1477–93	675	2789-73 (ИСО Р 468)	95, 328, 329, 543
	127, 846	1478-93	675	2832–77	798, 799
288-72	303	1482–84	674	2833–77	799, 800
380-94 (ИСО 630-84,	79–82, 126, 514	1485–84	674	2848-75	486, 487, 488,
ИСО 1052-82)		1488–84	666	l l	555
397-79	729, 833	1491-80	663, 664	2849-77	555
481-80	297, 301	152591	274	2850–95	297
492-73	270	1535–91	261	2879-88	82, 84, 87, 113
493-79	201, 202	1574–91	543	2999–75	76
495-92	261	(ИСО 299-87)		3032–76	705
520-89	335	1577–93	120, 122, 123	3055–69	737, 738
535-88	82-84, 126, 130	1583-93	221–225, 514	3062–80	172, 178
613-79	196, 197	1585–85	193, 194	3067–88	167, 168
792–67	180	1628–78	206, 207	3068-88	167, 169

гост	Стр.	гост	Стр.	гост	Стр.
3070-88		5950-73	94	851086	82, 142, 527
3071-88		600974	132	8559-75	84, 87, 92, 95
3081-80	1 1	6102–94	294	8560–78	84, 92, 94, 130
3111-81	1 1	6111–52	517, 602, 603,	859381	484
3128-70	733, 734, 753		604	8617-81	230, 257, 258
(MCO 2338-86)	, , , , , , ,	6211–81	506, 507, 602, 605, 606, 609	8724-81	510, 582, 618
3129-70	733, 734, 753,	6308-71	303	873474	836
(MCO 2339-86)	764–767	6357–81	605, 607, 609	882069	495, 555
3130-77	797	6393–73	701	8878-93	676 `
3212–92	163	6402–70	541, 717, 771	8908-81	410, 480, 483,
3241-91	167, 168, 178	6418-81	303		486
3262–75	602	6424–73	535, 536	8918–69	696 .
3282-74	178, 179	6449.1-82	633	8922–69	826
3722-81	767, 842	6449.1–82	633	8923–69	738, 739
3882-74	104	6511-60	201, 205, 206	8924–69	738, 739
(ИСО 513-75)	240	ŀ	166, 270, 271,	9000–81	634
4085–68	840	6613–86	273	9012-59	76
4121–76	160, 161	6636–69	481, 544	(ИСО 6506-81, ИСО 410-82)	
4248–92	289	6870-81	842	9013-59	76
4405–75	92, 113, 132, 133	6958–78	706, 708	9150-81	514, 582, 585,
4543-71	89, 92, 94, 514	7293–85	185, 706	9130-01	598, 618
4608-81	634, 683	7338–90	322, 323	9330-76	624
4751–73	823	7417–75	84, 89, 94, 108,	9347-74	302
4784–97	232, 274, 730, 817		131, 661	9378–93	348, 349
501774	200, 201, 270	7505–89	824	(MCO 2632-1,	
5222-72	208	7769–82	188	ИСО 2632-2)	750 774
	166	7796–70	646, 647, 648	9389-75	758, 776
5336-80	113, 114, 115,	7798–70	646, 647, 648	9454–78	84
5632-72 (MCO 683-85,	119, 514, 680	7805–70	643, 645, 647,	9464–79	735
ИСО 4955-83)		7000 70	648	9465-79	736
5638-75	261, 262	7808-70	656, 659	9484–81	612
5915–70	685, 687, 772	7817-80	304	9523-84 (ИСО 237-75)	563, 564, 565
5916-70	640, 685, 687	7850-86	482	9562-81	634
591873	692, 693	8032-84	82, 153, 528,	9639-71	285
591973	692, 693	8239–89	529, 531, 533	9649-78	706, 709
5927–70	688, 690	8240-89	82, 154, 528,	II.	859
5929-70	688, 690		529, 531, 533	9825–75	634
5931-70	694	8278-83	156	9909-81	!
5932–73	692, 693	8325–93	303	9953-82	485, 487, 557
5933–73	692, 693	8381-73	699, 700	10007-80	306
5935–73	691	8509-93	82, 84, 136, 141	10025–78	198–200
5949-75	94, 113		527	10177–82	614, 616

ГОСТ	Стр.	ГОСТ	Стр.	гост	Стр.
10292-74	281	13152-67	652–654	14959-79	66, 94
10336-80	669, 670	13157–67	836, 837	15150-69	860, 870,
10338-80	670, 672	13160–67	753, 755	15142 70	873–893
10341-80	669, 670	13165–67	753	15163-78	655
10342-80	670, 672	13438–68	715	15180–86	297
10343-80	670, 672	13439–68	715		327
10450-78	706, 708	13440–68	839	15521-70	685, 687
10549-80	496, 497-506	13441–68	839	15522-70	685, 687 694
10632-89	320	13463–77	706, 721	15524–70	
10657-80	703	13464–77	706, 724	15527–70	211, 270, 680, 730
10667-90	287	13465–77	706, 721	15945-82	489, 560
10702-78	514, 734	13466–77	706, 724	15948-76	622
10727-91	303	13535–87	634	15960-96	289, 291
1077480	731	13536–68	634	16030-70	524
10851-94	293	1361697	232, 274	16093-81	514, 555, 588,
10906-78	706, 726	13620–90	232, 259		618
10948-64	490	13621–90	232, 258	16350-80	860
11074-93	676, 677	13622–91	232, 274	16841-79	124, 125
11075-93	676, 677	13623-90	232, 256	16868-71	555
11284-75	521, 542	13682–80	537	16967-81	585, 634
11371-78	707, 708	13726–97	247	17133-83	327
11474-76	159	13737-90	232, 254	17305-91	179, 180
11648-75	714	13738-91	232-252	1747380	640, 663, 664 663, 664
11708-82	634	13876-87 (ИСО 2905-74)	532	17474-80 17475-80	663, 664, 704
11709-81	618-621	13897-68	678	17711-93	209, 210
11738-84	558, 667, 668	13913-78	274	18097–93	555
11860-85	697	13940-86	778, 784	18123-82	706, 709
11871-88	701	13941-86	786, 794	18175-78	203, 204, 715
11872-89	719, 720	13942-86	779, 784	19240-73	162
11945–78	309	13943-86	787, 794	19256-73	668
12199-66	821	14034–74	486, 524, 525	19257–73	514
12200-66	822	14082–78	96	19265-73	96, 132
12201-66	652-654	14140-81	457-460, 463	19281-89	64
12202-66	811	14256–78	296	19414–90	633
12207-79	732	14613-83	309, 310	19459-87	305
12214-66	836, 837	14614–79	318	19657-84	274
12215-66	836, 837	14637–89	126	19771-93	149, 150
12217-66	818	14724–69	649, 651	19772–93	149, 152
12414-66	736	14727-69	696	1980791	262, 263
12415-80	523	14728–69	768	19853-74	604
12460-67	704, 705	14734–69	710, 711	19860-93	489, 555
12876-67	538, 540	14741-69	768	19903-74	120, 125, 134
12920-67	680	14775–81	493	19904–90	120, 125, 135,
12970-67	809	14906-77	300		136
12971-67	810	14955–77	84, 85, 87, 89, 96	20072–74	94, 108

ГОСТ	Стр.	гост	Стр.	ГОСТ	Стр.
20376-74	300	22178–76	265, 267	25096-82	634
20437-89	303	22761–77	78	2514282	415
21228-85	288	23166–78	634	25229–82	598, 600
21348-75	519	23360–78	553, 556, 802	2534689	350, 353, 357,
21350-75	520	23779–95	296, 297	25347–82	469, 478 353, 400409,
21437–95	220	24071-80	556	23347-02	469-471, 478,
21448-75	106	24222-80	300		796
21449–75	107	24379.0–80	660	25348-82	353, 357, 478
21474-75	544, 545	24379.1-80	660, 662	25349-88	466, 469–471
21488-97	232, 233	2448280	860	25556-82	674
21631-76	242	24642-81	414, 440	25557-82	487, 488
22032-76	681	(ИСО 1101-83,	1 717, 470	25670-83	478, 480
22033-76	682	ИСО 5459-81)		25827-93 (ИСО	561, 634
22034-76	682	2464381	440, 446, 651, 796	7388–1–81)	1
22035-76	682	24644~81	557, 558, 561,	26179–84	399
22036–76	681	24044-01	562	26358–84	194
22037-76	682	24705-81	514, 555, 582	26492–85	264
22038-76	681	24706-81	585	26645–85	194
22039-76	682	2473781	613, 634	26862–86	732, 734, 736
22040-76	682	24738-81	634	27148–86	510, 511, 513, 647
22041-76	682	24739-81	634	27964–88	349
22042-76	683, 684	24834-81	634	(ИСО	347
22043-76	683	25069-81		4287/284)	
220-13-10	003	43009-81	452, 480	A 31.0175.40-91	844

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

A

Асботекстолит 278-281

конструкционный

Б

Баббиты оловянные и свинцовые 195, 196

Базы 417 – Обозначение 455, 456 **Балки** типовые постоянного сечения 53–60

Биение полное радиальное и допуск 437, 438

-торцовое и допуск 438 - графические символы 451

Биение радиальное и допуск 435, 436 – торцовое и допуск 436, 437 – графические символы 451

Болты: быстросъемные к станочным пазам 652–654; грузовые 827; из углеродистых и легированных сталей 635–637; из цветных металлов 640; класса точности А 643–645, 647; класса точности А с шестигранной уменьшенной головкой для отверстия из-под развертки 656–659; класса точности В 646–649; конические повышенной точности 655; к станочным пазам 652–654; откидные 649–651

Болты фундаментные 660 — Методика расчета 662 — Приливы и отверстия в опорных плитах 580 — Приливы на наклонных поверхностях 581

- с анкерной плитой 662
- с закладным стержнем и колодцем 660, 661

Бочкообразность 424

Бронза: кремнемарганцовая — Проволока 208; оловянно-фосфористая литейная 198 — Прутки 198–200; оловянно-цинковая — Прутки 205, 206

Бронзы безоловянные: литейные 201, 203; обрабатываемые давлением 203, 204

Бронзы оловянные: литейные 196, 197; обрабатываемые давлением 201 **Брус прямой** – Геометрические характеристики 48–52

Бумага асбестовая 296

В

Валы – Параметры шероховатости поверхности 336–343

Взаимозаменяемость — Понятие 350 Винипласт листовой 285

Винты: грузовые 826; из углеродистых и легированных сталей 635–637; из цветных сплавов 640; классов точности А и В 663, 664; регулирующие с квадратным отверстием под ключ 678; с канавкой для пружин растяжения 821, 822; с отверстием для пружин растяжения 822, 823; с ушком для пружин 821; с цилиндрической головкой и шестигранным углублением 667, 668; ходовые — Параметры шероховатости поверхности нарезки 335

Винты невыпадающие 673

- с лыской под ключ 670-672
- с полукруглой головкой 669
- с цилиндрической головкой 669
- с цилиндрической головкой и шестигранным углублением 670-672
- с шестигранной головкой 670-672

Винты установочные: с квадратной головкой и буртиком 666; с квадратной головкой, цилиндрическим и засверленным концами 674; с коническим, плоским, цилиндрическим концами 675; с шестигранным углублением 676, 677

Войлок технический полугрубошерстный 303

Втулки 836-839

Γ

Гайки: из углеродистых и легированных сталей 638, 639; колпачковые 697; круглые с отверстиями на торце под ключ 701, 702; круглые со шлицем на торце 703; круглые с радиально расположенными отверстиями 699, 700; круглые шлицевые 701, 702; с контрящим винтом 704; штурвальные 768, 769 Гайки — барашки 705, 706

Гайки шестигранные: высокие класса точности А 694, 695; класса точности А 688–690; класса точности В 685–687; особо высокие класса точности А 694, 695; прорезные 691; прорезные и корончатые 692, 693; самостопорящиеся с нейлоновым кольцом 698, 699; с буртиком и со сферическим торцом 696

Гайки для концов шпинделей под цанги 554, 555

Гак 834, 835

Галтели вала и корпуса под шарико- и роликоподшипники 492

Гибка – Радиус гиба металлов круглого и квадратного сечений 547 – Радиусы гибки листового и фасонного проката 546—550 – Разделка угловой стали 551

Д

Двутавры равнополочные прессованные из алюминиевых и магниевых сплавов 258

- стальные горячекатаные 153, 154 Детали - Торцовое крепление дисками на валах 712, 713
- корпусные Параметры шероховатости 337
- примыкающие к двутавровым балкам и швеллерам - Профиль 531, 532

- примыкающие к стальным горячекатаным уголкам 529, 530

Детали из древесных материалов — Прочность соединений 633, 634 — Типы и размеры соединений 624—633

Детали из пластмасс — Допускаемые напряжения 74 — Допуски и посадки 466—477 — Квалитеты 466—468 — Рекомендации по изготовлению резьбы 618—620

Допуск 350, 351 – Нанесение обозначений 452–456

Допуски зависимые – Обозначение 456

- линейных размеров 356, 357
- несопрягаемых размеров 355
- расположения 418, 425-435
- расположения осей отверстий для крепежных деталей 457–465 – Числовые значения 457, 464
- формы 417, 419-424
- формы и расположения суммарные Виды 435-440 Рекомендуемые соотношения 446-450 Указания на чертежах 451, 452 Числовые значения
- 440-445
 позиционные 458-462 Выбор 462,
 463 Основные зависимости 463-465
 Допуски углов 410-414

Доски асбоцементные электротехнические дугостойкие 289

 \mathbf{E}

Единая система допусков и посадок (ЕСДП) 353—399— Расположение полей допусков 357—Схема расположения и обозначения основных отклонений 352 Единицы измерения—Таблица перевода в единицы СИ 9—14

Единицы измерения США и Великобритании – Таблицы перевода 15–20

Ж

Жалюзи 581

3

Зависимости тригометрические 23, 24 Заглушки сферические 819, 820 Зажимы для стальных канатов: винтовые 771–773; планочные 773; – для цилиндрических деталей 774 Защитно-декоративные и защитные покрытия – См. Покрытия

И

Изделия крепежные — Технические требования 635—640 — Примеры условных обозначений 640, 641 — фрикционные из ретинакса 293 Исполнения климатические изделий 871

К

Канавки для выхода: долбяков 493, 494; червячных фрез 492, 493; шлифовального круга 495, 496

Канавки для посадки подшипников качения 492

Канаты стальные: двойной свивки 167–171, 174–177; одинарной свивки 172, 173 – Примеры обозначений 178 – Технические требования 178

Картон: асбестовый 297; прокладочный 302; термоизоляционный прокладочный 300

Квалитет – Понятие 351 – Условные обозначения 351

Кнопки 758-761

Кожа техническая 322

Колеса зубчатые – Параметры шероховатости рабочих поверхностей 335 Кольца делительные 801, 802

- запорные 775, 776
- пружинные для стопорения винтов 799, 800
- пружинные упорные плоские 778-795
- Примеры условных обозначений 796

– установочные: с винтовым креплением 798, 799; со штифтовым креплением 797

Конусности нормальные 484

Конусность наружных и внутренних конусов 486

Конусы: инструментов 486, 487; инструментальные Морзе и метрические внутренние 488; инструментальные укороченные 485

Конусы конусностью 7:24 — Допуски 489, 490

Концы шпинделей станков: агрегатных 552–555; сверлильных, расточных и фрезерных 557–560; токарных 555; шлифовальных 556

Копиры, кулачки – Параметры шероховатости поверхности **33**8

Коэффициенты трения ориентировочные 75

Л

Латуни (медно-цинковые сплавы) 208

– литейные 209, 210

обрабатываемые давлением 211
 Лента из фторопласта-4 300

- стальная горячекатаная 132

Ленты: асбестовые теплоизоляционные 296; асбестовые тормозные 291; конвейерные резинотканевые 312—317; латунные общего назначения 217, 218 Листы: из алюминия и алюминиевых сплавов 242—246; из непластифицированного поливинилхлорида (винипласт) 285; из титана и титановых сплавов 262, 263; из ударного полистирола 286; латунные 214; медные 261 Лимбы 803—805

M

Материал: АГ-4 прессовочный 303; фторопластовый уплотнительный 300 Материалы эластичные фрикционные асбестовые 289, 290 Маховички 762–765

Мель 261

Места: под гаечные ключи 535-537; под головки крепежных деталей 540-542

Металл основной – Обозначения способов обработки 861

Металлы цветные – Допускаемые напряжения 74

Модуль: продольной упругости 34; слвига 34

Моменты инерции: осевые плоских фигур 35–47; при кручении прямого бруса 48–52

Моменты сопротивления: плоских фигур 35–47; при кручении прямого бруса 48–52

Муфты стяжные круглые 827, 828

Η

Направляющие станков — Расстояния между боковыми гранями 576, 577 — Расстояния между направляющими 575, 577 — Типы и профили сечений 566

- Фаски и канавки 570
- качения 578, 579

807

- прямоугольные 566, 569, 570
- типа "ласточкин хвост" 566, 569, 570
- треугольные 567, 568, 570

Напряжения допускаемые материалов 61-74

Недорезы для резьбы: конической дюймовой 508; метрической 497—501; метрической для крепежных изделий 510—513; трубной конической 506, 507; трубной цилиндрической 502—505 Нониусы: линейные 808; угловые 806.

O

Объемы тел 31-33 Опоры 839-841; торцовые 336 Оседержатели 845, 846 Оси – Поверхности под уплотнения 336 Отверстия: в двутаврах 528; в опорных плитах под фундаментные болты 580; в угловых профилях 527; в швеллерах 528; под квадраты 565; под концы установочных винтов 523; сквозные под крепежные детали 521–524; центровые 524–526

Отверстия под нарезание резьбы: дюймовой конической 517; 518; метрической 514—517; трубной конической 520; трубной цилиндрической 519

Отклонение - Понятие 350, 351

- формы 416

Отклонения основные — Схема расположения и обозначения 352

Отклонения расположения 425-435

- суммарные 435-440
- формы 419-425

Отклонения предельные вала в системе: вала 370–373; отверстия 367–369, 384–389

- отверстия в системе: вала 373-380,394-398; отверстия 360, 383
- размеров с неуказанными допусками 478–480

Отливки из конструкционной нелегированной и легированной стали 163—166

- из чугуна: антифрикционного 193; высокопрочного 187; жаростойкого 188-192; серого 181-187 - Зарубежные аналоги 181-184

П

Пазы Т-образные обработанные 543, 544

угловые, измеряемые по роликам 577, 578

Паронит 301

Петли 581

– шарнирные 847, 848

Планки: прижимные 571, 572; регулировочные: прямоугольные 573; односкосные 575; остроугольные 574

Пластики древесно-слоистые (ДСП) 274-277

Пластины резиновые и резинотканевые 322–327

Пластмассы – Допускаемые напряжения 74

– для нанесения покрытий 906

Пленка из фторопласта-4 300

Плиты древесно-стружечные 320, 321 — из титановых сплавов 268, 269

Поверхности – Вычисление 31-33

- типы направления неровностей 329, 330

Поверхности сопрягаемые 334—347: в зависимости от методов обработки 346, 347; отверстий и валов в системе отверстия и вала 340—343; пригоняемые 339; свободные 345; типовые 344; шабреные 338

Покрытия лакокрасочные 849–861 — Группы 849, 850 — Классы 851–854 — Обозначения 859, 861 — Требования к окрашиваемым поверхностям 855–858 — Условия эксплуатации 860

Покрытия металлические и неметаллические 872—893 — Выбор 870, 871, 894—898 — Обозначения 862—868 — Обозначения по международным стандартам 869, 870 — Основные характеристики 899—905

 на пластмассах 906–908 – Толщина в зависимости от условий эксплуатации 907 – Требования 908

Поле допуска – Понятие 351 – Обозначение 351–353

Полиамид – Сополимеры литьевые 305 Полосы: горячекатаные и кованые из инструментальной стали 132, 133; горячекатаные стальные 126–129; латунные 214–216; медные 261

Порошки из сплавов для наплавки 106 Посадки 351—355 — Обозначения 353 — Система вала 350 — Система отверстия 350

- переходные 355
- с зазором 354
- с натягом 355

Посадки рекомендуемые в системе вала 370, 371, 391, 392

– в системе отверстия 358, 359, 381, 382– для деталей из пластмасс 476, 477

Пробки: для смазочных отверстий 818, 819; конические с внутренним шестигранником 813; резьбовые 811; резьбовые конические 814—818; с прокладками 811, 812; цилиндрические с внутренним шестигранником 812

Проволока: из кремнемарганцовой бронзы 208; из углеродистой конструкционной стали 179; латунная 219; низкоуглеродистая качественная 180; стальная низкоуглеродистая общего назначения 178

Прокат из конструкционной стали: высокой обрабатываемости резанием 84; легированной 89—91; углеродистой качественной 85—88; широкополосный и толстолистовой 120—123

Прокат из углеродистой стали обыкновенного качества: сортовой и фасонный 82, 83; тонколистовой 124, 125; толстолистовой 126

Прокат калиброванный 94, 95

- -листовой: горячекатаный 134; холоднокатаный 135
- стальной горячекатаный широкополосный универсальный 134

Прокат листовой и фасонный – Радиусы гибки 546–550

Прокладки плоские эластичные 297—299

уплотнительные из картона 302

Проточки для резьбы конической дюймовой 508

- метрической 497-501
- трапецеидальной однозаходной 509
- трубной: конической 506, 507; цилиндрической 502–505

Проточки под запорные кольца 776–778

Профиль деталей, примыкающих к двутавровым балкам и швеллерам 531, 532

- к стальным горячекатаным уголкам 529-531

Профили прессованные из алюминия и алюминиевых сплавов 230, 231

- равнополочные зетового сечения из алюминиевых и магниевых сплавов 259, 260

Прутки бронзовые 206, 207

- для наплавки 107
- катаные из титановых сплавов 264
- латунные 212, 213
- медные круглые 261
- оловянно-фосфористой бронзы 198– 200
- оловянно-цинковой бронзы 203-205
- прессованные из алюминия и алюминиевых сплавов 232-241

P

Радиусы инерции плоских фигур 35-47 Разделка угловой стали при гибке 551 Размеры — Виды 350

- нормальные линейные 481, 482

Ребра жесткости в прокатных профилях 533, 534

Резьба дюймовая коническая с углом профиля 60° – Размеры 603, 604

- метрическая Допуски диаметров 588—595 Обозначение 587 Отклонения 597 Поля допусков 586—597 Радиусы закругления впадин 596 Размеры основные 582—584 Степени точности 586 Форма впадин 595, 596 метрическая коническая Диаметры, шаги и основные размеры 599 Допуски 600 Предельные отклонения 601, 602
- метрическая для деталей из пластмасс Выбор степени точности 618 Методы получения 618 Поля допусков 619 Предельные отклонения 620, 621 Профиль и основные размеры 619 Расчет исполнительных размеров резьбооформляющих деталей 622—624 трапецеидальная Профиль и размеры 612, 613

- трубная коническая Допуски 611 Примеры обозначения 611 Профиль и размеры 609, 610
- трубная цилиндрическая Длины свинчивания 607 Допуски 605, 606 Примеры обозначения 608 Предельные отклонения 607, 608 Размеры 605, 606
- упорная Диаметры в зависимости от шага 616, 618 Профиль и размеры 614, 615

Рельсы: для наземных и подвесных путей 162; крановые 160, 161

Рифления 544, 545

Ролики игольчатые и цилиндрические 842, 843

Рукоятки: вращающиеся 744—747; звездообразные 752; кривошипные 750; переключения 751; с шаровой головкой 737, 738; цилиндрические и с шаровой ручкой 739—741; штурвальные 768, 769

Ручки: переключения с фиксатором 756-758; рычагов управления 749; фасонные 742, 743; шаровые 748

Рым-болты 823–825 – Грузоподъемность 825 – Размеры 823, 824 – Технические требования 824, 825

C

Сетки проволочные тканые с квадратными ячейками 270–274

- стальные плетеные одинарные 166 Система допусков и посадок ОСТ 399-409

Смеси порошков для наплавки 105 Смола первичная капроновая 304 Соединения деталей из древесины 624—634

Сплавы: алюминиевые литейные 221–229 — Зарубежные аналоги 221, 226–229; жаростойкие 115; жаропрочные 118, 119; коррозионно-стойкие 116, 117; твердые спеченные 104; титановые деформируемые 262; цинковые антифрикционные 220, 221

Сталь — Указания по выбору марки 79 — износоустойчивая в условиях абразивного трения 104

- инструментальная нелегированная 92, 93
- калиброванная: круглая 131; сортовая 113
- качественная круглая со специальной отделкой поверхности 96, 97
- листовая волнистая 136;
- легированная 120
- подшипниковая 89
- с особыми тепловыми свойствами 104
- теплоустойчивая 108-112
- углеродистая обыкновенного качества 79–81 Зарубежные аналоги 80, 81 Сталь круглая и квадратная: горячекатаная 130: кованая 131

Стали высоколегированные 115-119

- конструкционные - Назначение основных марок 98-103

Станины станков – Элементы крепления к фундаменту 580, 581

Стекло органическое листовое 287 Стеклотекстолит конструкционный 281–284

Ступицы 766, 767, 770

Стыки 334-338

Сухари к обработанным станочным пазам 844

T

Таблички для машин и приборсв 809, 810

Талрепы 829-835

Твердость – Методы определения 76, 77 – Сравнение чисел твердости по различным шкалам 77, 78

Текстолит конструкционный 278, 279

Титан 262, 263 Ткани асбестовые 294, 295

Трубки фибровые 309-311

У

Углы конусов 484

- нормальные 483

Уголки равнополочные прессованные из алюминиевых и магниевых сплавов 254, 255

- стальные горячекатаные 136–141
- стальные гнутые 149-152

Уголки неравнополочные стальные горячекатаные 142—148

– гнутые 149–152

Φ

Фанера декоративная 318, 319

Фаски входные деталей с неподвижными посадками 491

- для резьбы: конической дюймовой 508; метрической 497-501; трапецеидальной 509; трубной конической 506, 507; трубной цилиндрической 502-505

Фибра листовая 309

Фигуры плоские 24-30 Фиксаторы с вытяжной ручкой

753-755

Фольга медная рулонная 261 Фторопласт-4 306-308

Функции тригонометрические 23

X

Хвостовики инструментов 561-565

П

Целлулоид 288

Ч

Чугуны: антифрикционные 194; высокопрочные с шаровидным графитом 187, 188; жаростойкие 188—193; ковкие — Механические свойства и допускаемые напряжения 71—74; серые — Классификация по ИСО и национальным

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

стандартам 181, 185 - Отечественные марки и зарубежные аналоги 181-184

Ш

Шайбы: для пальцев 709; замковые ШЕЗ 728, 729; конические 715, 716; концевые 710–712; косые 726; пружинные 717, 718; стопорные 719–725; сферические 715, 716; увеличенные и уменьшенные 708, 709; упорные 714, 715

- Технические требования 706, 707 **Шарики** 842

Швеллеры из алюминиевых и магниевых сплавов равнотолщинные и равнополочные 256, 257

- стальные гнутые равнополочные 156-159

- стальные горячекатаные 154, 155 Шероховатость поверхности — Знаки 332, 333 — Классы 329 — Контроль 348, 349 — Обозна чения 331—334 — Параметры 328, 329—338, 344 — Схема 329 – отливок 346

 при механических методах обработки 347

Шнуры асбестовые 302

Шпильки резьбовые 681–684 – Технические требования 635–637, 642

Шплинты 729, 730 - Обозначения 730

- Требования 730

Шпонки 562

Штифты конические 735, 736 – Требования 734

цилиндрические: заклепочные 731;
 незакаленные 733, 734;
 с внутренней резьбой 732 – Требования 734

Штрихи шкал 552 Шурупы 679, 680

Э

Элемент базовый для оценки отклонений формы 415 Элементы сопротивления материалов 34-60

СПРАВОЧНИК СПЕЦИАЛИСТА

Василий Иванович Анурьев СПРАВОЧНИК КОНСТРУКТОРА-МАШИНОСТРОИТЕЛЯ В трех томах

Том 1

Лицензия ЛР № 080003 от 12.09.96 г. Оформление художника T.H. Галицыной Корректоры: Л.Г. Изосимова, Л.С. Рожкова, Е.М. Нуждина

Сдано в набор 10.11.2000. Подписано в печать 29.12.2000. Формат 70×100 1/16. Бумага офсетная. Гарнитура Times ET. Печать офсетная. Усл. печ. л. 74,75. Усл. кр.-отт. 74,75. Уч.-изд. л. 70,6. Заказ 168.

Издательство "Машиностроение", 107076, Москва, Стромынский пер., 4

> Отпечатано в АООТ "Политех", 4 129110, Москва, Б. Переяславская ул., 46